WO2022138666A1 - 積層体、及び、ポリマーフィルム - Google Patents

積層体、及び、ポリマーフィルム Download PDF

Info

Publication number
WO2022138666A1
WO2022138666A1 PCT/JP2021/047404 JP2021047404W WO2022138666A1 WO 2022138666 A1 WO2022138666 A1 WO 2022138666A1 JP 2021047404 W JP2021047404 W JP 2021047404W WO 2022138666 A1 WO2022138666 A1 WO 2022138666A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
layer
polymer film
ppm
Prior art date
Application number
PCT/JP2021/047404
Other languages
English (en)
French (fr)
Inventor
泰行 佐々田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180082458.4A priority Critical patent/CN116635456A/zh
Priority to JP2022571518A priority patent/JPWO2022138666A1/ja
Publication of WO2022138666A1 publication Critical patent/WO2022138666A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/55Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present disclosure relates to a laminate and a polymer film.
  • Patent Document 1 describes a method for manufacturing a prepreg, which comprises a step of transporting a long base material and impregnating the base material with a resin varnish in a dip tank.
  • the first and second dip rolls forming the rotation axis in the direction orthogonal to the transport direction are placed in the resin varnish, and the upper peripheral surface of the first dip roll is brought into contact with the lower surface of the base material, and then the second dip roll is placed.
  • Described is a method for producing a prepreg, which comprises contacting the lower peripheral surface of a dip roll with the upper surface of a base material and impregnating the base material with a resin varnish.
  • Patent Document 2 describes a resin composition used for producing a laminated board, wherein the resin composition contains an insulating resin having an aromatic ring, and the shear elastic modulus of the insulating resin having an aromatic ring is Tg or more. Described is a resin composition characterized in that the obtained molecular weight between cross-linking points of the insulating resin is 300 to 1000 at the stage after manufacturing the laminated board.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-291156
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-7576
  • An object to be solved by the embodiment of the present invention is to provide a laminated body having excellent breaking strength and warpage suppressing property of a polymer film. Further, an object to be solved by the embodiment of the present invention is to provide a polymer film having excellent breaking strength and warpage suppressing property.
  • the means for solving the above problems include the following aspects.
  • ⁇ 1> A polymer film having a coefficient of linear expansion of at least one surface X smaller than the coefficient of linear expansion inside, and a metal layer or metal wiring on the surface Y side opposite to the surface X of the polymer film.
  • ⁇ 2> The laminate according to ⁇ 1>, wherein the coefficient of thermal expansion of the surface X is ⁇ 20 ppm / K to 50 ppm / K.
  • ⁇ 3> The laminate according to ⁇ 1> or ⁇ 2>, wherein the coefficient of thermal expansion of the surface Y is 10 ppm / K to 200 ppm / K.
  • ⁇ 4> The laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the polymer film contains a polymer having a dielectric loss tangent of 0.01 or less.
  • ⁇ 5> The laminate according to ⁇ 4>, wherein the polymer having a dielectric loss tangent of 0.01 or less is a fluorinated polymer.
  • ⁇ 6> The laminate according to ⁇ 4>, wherein the polymer having a dielectric loss tangent of 0.01 or less is a liquid crystal polymer.
  • ⁇ 7> The laminate according to ⁇ 6>, wherein the polymer having a dielectric loss tangent of 0.01 or less contains a liquid crystal polymer having a structural unit represented by any of the formulas (1) to (3).
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4).
  • Equation (4) -Ar 4 -Z-Ar 5- Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • ⁇ 9> The laminate according to any one of ⁇ 1> to ⁇ 8>, wherein the polymer film has a layer A and a layer B provided on at least one surface of the layer A.
  • the linear expansion coefficient of the surface of the layer B opposite to the layer A side is ⁇ 20 ppm / K to 50 ppm / K.
  • the layer A contains a filler.
  • the peel strength between the polymer film and the metal layer or the metal wiring is 0.5 kN / m or more.
  • ⁇ 13> A polymer film in which the coefficient of linear expansion of at least one surface X is smaller than the coefficient of linear expansion of the inside.
  • ⁇ 14> The polymer film according to ⁇ 13>, wherein the coefficient of thermal expansion of the surface X is ⁇ 20 ppm / K to 50 ppm / K.
  • ⁇ 15> The polymer film according to ⁇ 13> or ⁇ 14>, wherein the coefficient of thermal expansion of the surface Y is 10 ppm / K to 200 ppm / K.
  • ⁇ 16> The polymer film according to any one of ⁇ 13> to ⁇ 15>, which comprises a polymer having a dielectric loss tangent of 0.01 or less.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4).
  • Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • ⁇ 21> The polymer film according to any one of ⁇ 13> to ⁇ 20>, which has a layer A and a layer B provided on at least one surface of the layer A.
  • ⁇ 22> The polymer film according to ⁇ 21>, wherein the linear expansion coefficient of the surface of the layer B opposite to the layer A side is ⁇ 20 ppm / K to 50 ppm / K.
  • ⁇ 23> The polymer film according to ⁇ 21> or ⁇ 22>, wherein the layer B contains a filler.
  • the present invention it is possible to provide a laminated body having excellent breaking strength and warpage suppressing property of a polymer film. Further, according to another embodiment of the present invention, it is possible to provide a polymer film having excellent breaking strength and warpage suppressing property.
  • the notation that does not describe substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth) acrylic is a term used in a concept that includes both acrylic and methacrylic
  • (meth) acryloyl is a term that is used as a concept that includes both acryloyl and methacrylic. Is.
  • the term "process” in the present specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” will be used as long as the intended purpose of the process is achieved. included.
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the laminate according to the present disclosure includes a polymer film in which the coefficient of linear expansion of at least one surface X is smaller than the coefficient of linear expansion inside, and a metal layer or a metal layer on the surface Y side opposite to the surface X of the polymer film. Has metal wiring.
  • the present inventor has found that the conventional laminated body does not sufficiently have both the breaking strength of the polymer film and the warp suppressing property.
  • the present inventor has found that when a filler is added to a conventional polymer film to suppress warpage, the breaking strength is reduced.
  • the detailed mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
  • the metal layer or the metal wiring is arranged by arranging the metal layer or the metal wiring on the surface Y side opposite to the surface X. It is presumed that the warp moment caused by the difference in the coefficient of linear expansion from the polymer film can be effectively suppressed, and the warp suppression property is excellent. Further, it is presumed that such a configuration can reduce the amount of filler or the like added necessary for suppressing the linear expansion coefficient of the polymer film, and is also effective in improving the breaking strength of the polymer film. Further, by suppressing the warp of the laminated body, it is possible to contribute to the improvement of the yield, such as preventing an error during transportation.
  • the laminate according to the present disclosure has a metal layer or metal wiring on the surface Y side opposite to the surface X of the polymer film.
  • the surface of the polymer film refers to the outer surface of the polymer film (the surface in contact with air or the substrate), in the range of 3 ⁇ m in the depth direction from the most surface, or with respect to the thickness of the entire polymer film from the most surface. Of the range of 10% or less, the smaller one is defined as the "surface”.
  • the inside of the polymer film refers to a part other than the surface of the polymer film, that is, the inner surface of the polymer film (the surface not in contact with air or the substrate), and is not limited, but ⁇ from the center in the thickness direction of the polymer film.
  • the metal layer or metal wiring may be a known metal layer or metal wiring, but for example, a copper layer or copper wiring is preferable. Further, it is preferable that the laminate according to the present disclosure does not have a metal layer or metal wiring on the surface X side.
  • the method for attaching the polymer film to the metal layer or the metal wiring is not particularly limited, and a known laminating method can be used.
  • the pressure at the time of bonding is not particularly limited, but is preferably 0.1 MPa or more, and preferably 0.2 MPa to 10 MPa.
  • the temperature at the time of bonding can be appropriately selected depending on the polymer film or the like used, but is preferably 150 ° C. or higher, more preferably 280 ° C. or higher, and 280 ° C. or higher and 420 ° C. The following is particularly preferable.
  • the peel strength between the polymer film and the metal layer or metal wiring is preferably 0.5 kN / m or more, more preferably 0.7 kN / m or more, and 0.7 kN / m to 2.0 kN. It is more preferably / m, and particularly preferably 0.9 kN / m to 1.5 kN / m.
  • the peel strength between the polymer film and the metal layer or metal wiring shall be measured by the following method.
  • a 1.0 cm wide peeling test piece was prepared from a laminate of a polymer film and a metal layer or metal wiring, the polymer film was fixed to a flat plate with double-sided adhesive tape, and the 180 ° method was performed according to JIS C 5016 (1994). Measures the strength (kN / m) when the polymer film is peeled from the metal layer or the metal wiring at a speed of 50 mm / min.
  • the metal layer is preferably a copper layer.
  • a rolled copper foil formed by a rolling method or an electrolytic copper foil formed by an electrolytic method is preferable, and a rolled copper foil is more preferable from the viewpoint of bending resistance.
  • the metal wiring is preferably copper wiring.
  • a rolled copper foil formed by a rolling method or a copper wiring formed by etching an electrolytic copper foil formed by an electrolytic method is preferable, and the rolled copper foil is etched from the viewpoint of bending resistance. It is more preferable that the copper wiring is made of.
  • the average thickness of the metal layer or the metal wiring, preferably the copper layer or the copper wiring is not particularly limited, but is preferably 2 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 18 ⁇ m, and further preferably 5 ⁇ m to 12 ⁇ m. preferable.
  • the copper foil may be a copper foil with a carrier formed on a support (carrier) so as to be peelable.
  • a carrier a known carrier can be used.
  • the average thickness of the carrier is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 18 ⁇ m to 50 ⁇ m.
  • etching it is also preferable to process the metal layer in the laminate according to the present disclosure into a desired circuit pattern by etching, for example, to form a flexible printed circuit board.
  • the etching method is not particularly limited, and a known etching method can be used.
  • the laminate according to the present disclosure has a polymer film in which the coefficient of linear expansion of at least one surface X is smaller than the coefficient of linear expansion inside.
  • the coefficient of linear expansion of the surface X is preferably -20 ppm / K to 50 ppm / K, preferably -10 ppm / K to 40 ppm / K, from the viewpoint of the coefficient of linear expansion of the polymer film and the warp suppressing property. Is more preferable, 0 ppm / K to 35 ppm / K is further preferable, 10 ppm / K to 30 ppm / K is particularly preferable, and 15 ppm / K to 25 ppm / K is most preferable.
  • the coefficient of linear expansion inside the polymer film may be 10 ppm / K to 200 ppm / K from the viewpoint of the coefficient of linear expansion of the polymer film and the warp inhibitory property. It is preferably 20 ppm / K to 150 ppm / K, more preferably 30 ppm / K to 100 ppm / K, and particularly preferably 40 ppm / K to 80 ppm / K.
  • the coefficient of linear expansion inside the polymer film in the present disclosure is the coefficient of linear expansion at the center of the polymer film in the thickness direction when the polymer film has a single-layer structure, and when the polymer film has a multilayer structure, the coefficient of linear expansion is the linear expansion coefficient. It is the coefficient of linear expansion of the central layer or the layer near the central portion in the thickness direction of the polymer film other than the layer having the surface X.
  • the coefficient of linear expansion of the surface Y is preferably equal to or less than the coefficient of linear expansion of the surface X from the viewpoint of the coefficient of linear expansion of the polymer film and the warp inhibitory property, and is smaller than the coefficient of linear expansion of the surface X. Is more preferable.
  • the coefficient of linear expansion of the surface Y is preferably 10 ppm / K to 200 ppm / K, and more preferably 20 ppm / K to 150 ppm / K, from the viewpoint of the coefficient of linear expansion of the polymer film and the property of suppressing warpage. It is preferably 30 ppm / K to 100 ppm / K, more preferably 40 ppm / K to 80 ppm / K, and particularly preferably 40 ppm / K to 80 ppm / K.
  • the value of the linear expansion coefficient of the surface Y-the linear expansion coefficient of the surface X is preferably 10 ppm / K or more, preferably 20 ppm / K or more, from the viewpoint of the linear expansion coefficient of the polymer film and the warpage inhibitory property. It is more preferably 20 ppm / K to 200 ppm / K, and particularly preferably 30 ppm / K to 100 ppm / K. Further, the value of the linear expansion coefficient of the surface Y-the internal linear expansion coefficient is preferably 10 ppm / K or more, preferably 20 ppm / K or more, from the viewpoint of the linear expansion coefficient of the polymer film and the warp suppression property. It is more preferably 20 ppm / K to 200 ppm / K, and particularly preferably 30 ppm / K to 100 ppm / K.
  • the coefficient of linear expansion of the polymer film is preferably -20 ppm / K to 50 ppm / K, more preferably -10 ppm / K to 40 ppm / K, and 0 ppm / K to 35 ppm, from the viewpoint of suppressing warpage. It is more preferably / K, particularly preferably 10 ppm / K to 30 ppm / K, and most preferably 15 ppm / K to 25 ppm / K.
  • the method for measuring the coefficient of linear expansion in the present disclosure shall be as follows. Using a thermomechanical analyzer (TMA), a tensile load of 1 g is applied to both ends of a polymer film having a width of 5 mm and a length of 20 mm, the temperature is raised to 25 ° C to 200 ° C at a rate of 5 ° C / min, and then 20 ° C. The coefficient of linear expansion is calculated from the slope of the TMA curve between 30 ° C. and 150 ° C. when the temperature is cooled to 30 ° C. at a rate of / min and the temperature is raised again at a rate of 5 ° C./min.
  • TMA thermomechanical analyzer
  • the polymer film has a metal layer or metal wiring, it is evaluated after removing it with ferric chloride.
  • an unnecessary portion may be scraped off with a razor or the like, and the layer or surface to be measured may be formed into a thickness of, for example, 5 ⁇ m to 10 ⁇ m to prepare a measurement sample.
  • the film is cut with a microtome to prepare a section sample, set in an optical microscope equipped with a heating stage system (HS82, manufactured by Polymer Toledo), and subsequently from 25 ° C to 200 ° C at a rate of 5 ° C / min.
  • the polymer film or the thickness of each layer (ts30) at 30 ° C. and the thickness of each layer (ts30) at 30 ° C. when the temperature was cooled to 30 ° C. at a rate of 20 ° C./min and then raised again at a rate of 5 ° C./min, and 150 ° C.
  • the thickness (ts150) of the polymer film or each layer was evaluated, the value obtained by dividing the dimensional change by the temperature change ((ts150-ts30) / (150-30)) was calculated, and the linear expansion coefficient of the polymer film or each layer was calculated. calculate.
  • the polymer film preferably contains a polymer having a dielectric positive contact of 0.01 or less from the viewpoints of the linear expansion coefficient of the polymer film, the breaking strength of the polymer film, and the warp suppressing property.
  • the dielectric loss tangent of the polymer having a dielectric loss tangent of 0.01 or less is preferably 0.005 or less, preferably 0.004 or less, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. Is more preferable, and more than 0 and 0.003 or less are particularly preferable.
  • the method for measuring the dielectric loss tangent in the present disclosure shall be the following method.
  • the permittivity measurement is carried out by the resonance perturbation method at a frequency of 10 GHz.
  • a 1 GHz hollow resonator (Kanto Denshi Applied Development Co., Ltd.) is connected to a network analyzer (“E8632B” manufactured by Agent Technology), and a polymer sample (width: 2) having a dielectric constant contact of 0.01 or less is connected to the cavity resonator. .7 mm x length: 45 mm) is inserted, and the permittivity and dielectric constant contact of the polymer whose dielectric constant is 0.01 or less from the change in resonance frequency before and after the insertion for 96 hours under the environment of temperature 20 ° C.
  • the measurement of the dielectric loss tangent of the polymer in the present disclosure shall be carried out according to the above-mentioned method for measuring the dielectric loss tangent using a sample obtained by identifying or isolating the chemical structure of the polymer constituting each layer and measuring the polymer as a powder. do.
  • the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.01 or less is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 5,000 or more. Further, the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.005 or less is preferably 1,000,000 or less, more preferably 300,000 or less, and more preferably less than 100,000. Especially preferable.
  • the melting point Tm or 5% by mass weight loss temperature Td of the polymer having a dielectric loss tangent of 0.01 or less is 200 ° C. or higher from the viewpoint of the dielectric loss tangent of the polymer film, the adhesion to the metal layer or the metal wiring, and the heat resistance. It is preferably 250 ° C. or higher, more preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher and 420 ° C. or lower.
  • the melting point Tm in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device. That is, 5 mg of a sample is placed in a DSC measuring pan, and the peak temperature of the endothermic peak that appears when the temperature is raised from 30 ° C.
  • DSC differential scanning calorimetry
  • the 5% by mass weight loss temperature Td in the present disclosure shall be measured by using a thermogravimetric analysis (TGA) apparatus. That is, the weight of the sample placed in the measurement pan is set as the initial value, and the temperature when the weight is reduced by 5% by mass with respect to the initial value due to the temperature rise is set as the 5% by mass weight loss temperature Td.
  • TGA thermogravimetric analysis
  • the glass transition temperature Tg of the polymer having a dielectric loss tangent of 0.01 or less is preferably 150 ° C. or higher from the viewpoint of the dielectric loss tangent of the polymer film, adhesion to the metal layer or metal wiring, and heat resistance. It is more preferably 200 ° C. or higher, and particularly preferably 200 ° C. or higher and lower than 280 ° C.
  • the glass transition temperature Tg in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device.
  • the type of polymer having a dielectric loss tangent of 0.01 or less is not particularly limited, and known polymers can be used.
  • the polymer having a dielectric positive contact of 0.01 or less include a liquid crystal polymer, a fluoropolymer, a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, an aromatic polyether ketone, and a polyolefin.
  • thermoplastic resins such as polyetherimide; elastomers such as copolymers of glycidyl methacrylate and polyethylene; phenolic resins, Examples thereof include thermocurable resins such as epoxy resins, polyimide resins, and cyanate resins.
  • thermocurable resins such as epoxy resins, polyimide resins, and cyanate resins.
  • liquid crystal polymers, fluoropolymers, cyclic aliphatic hydrocarbon groups, and groups having an ethylenically unsaturated bond from the viewpoints of dielectric constant contact of the polymer film, adhesion to the metal layer or metal wiring, and heat resistance.
  • a liquid crystal polymer is particularly preferable from the viewpoint of the dielectric positive contact of the polymer film, and a fluoropolymer is preferable from the viewpoint of heat resistance and mechanical strength.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a liquid crystal polymer from the viewpoint of the dielectric loss tangent of the polymer film.
  • the liquid crystal polymer used as the polymer having a dielectric loss tangent of 0.01 or less is not particularly limited as long as the dielectric loss tangent is 0.01 or less, and a known liquid crystal polymer can be used. ..
  • the liquid crystal polymer may be a thermotropic liquid crystal polymer that exhibits liquid crystal properties in a molten state, or may be a riotropic liquid crystal polymer that exhibits liquid crystal properties in a solution state.
  • the liquid crystal is melted at a temperature of 450 ° C. or lower.
  • the liquid crystal polymer include liquid crystal polyester, liquid crystal polyester amide having an amide bond introduced into the liquid crystal polyester, liquid crystal polyester ether having an ether bond introduced into the liquid crystal polyester, and liquid crystal polyester carbonate having a carbonate bond introduced into the liquid crystal polyester.
  • the liquid crystal polymer is preferably a polymer having an aromatic ring, and more preferably an aromatic polyester or an aromatic polyester amide, from the viewpoint of liquid crystal property and linear expansion coefficient.
  • the liquid crystal polymer may be a polymer in which an imide bond, a carbodiimide bond, an isocyanate-derived bond such as an isocyanurate bond, or the like is further introduced into an aromatic polyester or an aromatic polyester amide. Further, the liquid crystal polymer is preferably a total aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer.
  • liquid crystal polymer examples include the following liquid crystal polymers. 1) (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines. It is made by polycondensing. 2) Polycondensation of multiple types of aromatic hydroxycarboxylic acids. 3) A polycondensation of (i) an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of aromatic diols, aromatic hydroxyamines and aromatic diamines. 4) (i) Polyester such as polyethylene terephthalate and (ii) aromatic hydroxycarboxylic acid are polycondensed.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine may be independently replaced with a polycondensable derivative.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid ester and the aromatic dicarboxylic acid ester by converting the carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid halide and the aromatic dicarboxylic acid halide.
  • the aromatic hydroxycarboxylic acid and the aromatic dicarboxylic acid can be replaced with the aromatic hydroxycarboxylic acid anhydride and the aromatic dicarboxylic acid anhydride.
  • polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines, are those obtained by acylating a hydroxy group and converting it into an acyloxy group (acylated product). Can be mentioned.
  • the aromatic hydroxycarboxylic acid, the aromatic diol, and the aromatic hydroxyamine can each be replaced with an acylated product.
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines, include those obtained by acylating an amino group and converting it into an acylamino group (acylated product).
  • aromatic hydroxyamines and aromatic diamines can each be replaced with acylated products by acylating the amino group to convert it to an acylamino group.
  • the liquid crystal polymer is a structural unit represented by any of the following formulas (1) to (3) from the viewpoint of liquid crystal property, dielectric loss tangent of the polymer film, and adhesion to the metal layer (hereinafter, formula (1). ) Is preferably referred to as a constituent unit (1) or the like, more preferably a constituent unit represented by the following formula (1), and the following formula (1). ), A structural unit represented by the following formula (2), and a structural unit represented by the following formula (3) are particularly preferable.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 independently represent a phenylene group, a naphthylene group, a biphenylylene group or the following formula (4).
  • Ar 4 and Ar 5 independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylene group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group and 2-ethylhexyl group. Examples thereof include an n-octyl group and an n-decyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms.
  • aryl group examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group and a 2-naphthyl group.
  • the aryl group preferably has 6 to 20 carbon atoms.
  • the number of substitutions is independently, preferably 2 or less, and more preferably 1 in Ar 1 , Ar 2 or Ar 3 , respectively.
  • alkylene group examples include a methylene group, a 1,1-ethanediyl group, a 1-methyl-1,1-ethanediyl group, a 1,1-butandyl group and a 2-ethyl-1,1-hexanediyl group.
  • the alkylene group preferably has 1 to 10 carbon atoms.
  • the structural unit (1) is a structural unit derived from an aromatic hydroxycarboxylic acid.
  • Ar 1 is a p-phenylene group (a structural unit derived from p-hydroxyacousic acid) and an embodiment in which Ar 1 is a 2,6-naphthylene group (6-hydroxy-).
  • a structural unit derived from 2-naphthoic acid) or an embodiment having a 4,4'-biphenylylene group (constituent unit derived from 4'-hydroxy-4-biphenylcarboxylic acid) is preferable.
  • the structural unit (2) is a structural unit derived from an aromatic dicarboxylic acid.
  • Ar 2 is a p-phenylene group (constituent unit derived from terephthalic acid)
  • Ar 2 is an m-phenylene group (constituent unit derived from isophthalic acid)
  • Ar 2 Is a 2,6-naphthylene group (a structural unit derived from 2,6-naphthalenedicarboxylic acid)
  • Ar 2 is a diphenyl ether-4,4'-diyl group (diphenyl ether-4,4'-.
  • a structural unit derived from a dicarboxylic acid) is preferable.
  • the structural unit (3) is a structural unit derived from an aromatic diol, an aromatic hydroxylamine or an aromatic diamine.
  • Ar 3 is a p-phenylene group (a structural unit derived from hydroquinone, p-aminophenol or p-phenylenediamine) and an embodiment in which Ar 3 is an m-phenylene group (isophthalic acid).
  • the structural unit to be used) is preferable.
  • the content of the structural unit (1) is determined by dividing the total amount of all the structural units (the mass of each structural unit (also referred to as “monomer unit”) constituting the liquid crystal polymer by the formula amount of each structural unit.
  • the amount of substance equivalent (mol) of the constituent unit is determined, and the total value thereof is preferably 30 mol% or more, more preferably 30 mol% to 80 mol%, still more preferably 30 mol% to 60 mol. %, Especially preferably 30 mol% to 40 mol%.
  • the content of the structural unit (2) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units.
  • the content of the structural unit (3) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, still more preferably 20 mol% to 35 mol%, particularly, with respect to the total amount of all the structural units. It is preferably 30 mol% to 35 mol%.
  • the larger the content of the structural unit (1) the easier it is to improve the heat resistance, strength and rigidity, but if it is too large, the solubility in a solvent tends to be low.
  • the ratio between the content of the constituent unit (2) and the content of the constituent unit (3) is expressed by [content of the constituent unit (2)] / [content of the constituent unit (3)] (mol / mol). It is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and further preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polymer may have two or more types of constituent units (1) to (3) independently. Further, the liquid crystal polymer may have a structural unit other than the structural units (1) to (3), but the content thereof is preferably 10 mol% or less with respect to the total amount of all the structural units. It is preferably 5 mol% or less.
  • the liquid crystal polymer has a structural unit (3) in which at least one of X and Y is an imino group as a structural unit (3), that is, an aromatic as a structural unit (3). It is preferable to have at least one of the structural unit derived from hydroxylamine and the structural unit derived from aromatic diamine, and it is more preferable to have only the structural unit (3) in which at least one of X and Y is an imino group.
  • the liquid crystal polymer is preferably produced by melt-polymerizing a raw material monomer corresponding to a constituent unit constituting the liquid crystal polymer.
  • the melt polymerization may be carried out in the presence of a catalyst.
  • catalysts include magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, metal compounds such as antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole and the like.
  • metal compounds such as antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole and the like.
  • nitrogen heterocyclic compounds and nitrogen-containing heterocyclic compounds are preferably mentioned.
  • the melt polymerization may be further solid-phase polymerized, if necessary.
  • the lower limit of the flow start temperature of the liquid crystal polymer is preferably 180 ° C. or higher, more preferably 200 ° C. or higher, still more preferably 250 ° C. or higher, and the upper limit of the flow start temperature is preferably 350 ° C. or higher, 330 ° C. or higher. Is more preferable, and 300 ° C. is even more preferable.
  • the solubility, heat resistance, strength and rigidity are excellent, and the viscosity of the solution is appropriate.
  • the flow start temperature also called the flow temperature or the flow temperature, melts the liquid crystal polymer using a capillary leometer while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ). It is a temperature that shows a viscosity of 4,800 Pa ⁇ s (48,000 poise) when extruded from a nozzle with an inner diameter of 1 mm and a length of 10 mm, and is a guideline for the molecular weight of the liquid crystal polymer (edited by Naoyuki Koide). , "Liquid Liquid Polymer-Synthesis / Molding / Application-", CMC Co., Ltd., June 5, 1987, p.95).
  • the weight average molecular weight of the liquid crystal polymer is preferably 1,000,000 or less, more preferably 3,000 to 300,000, still more preferably 5,000 to 100,000. It is particularly preferably 5,000 to 30,000.
  • the film after heat treatment is excellent in thermal conductivity, heat resistance, strength and rigidity in the thickness direction.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a fluoropolymer from the viewpoint of heat resistance and mechanical strength.
  • the type of the fluorine-based polymer used as the polymer having a dielectric loss tangent of 0.01 or less is not particularly limited as long as the dielectric loss tangent is 0.01 or less, and a known fluorine-based polymer is used. be able to.
  • fluoropolymer examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / propylene hexafluoride copolymer, and ethylene / tetrafluoride.
  • fluoropolymer examples include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride / propylene hexafluoride copolymer, and ethylene / tetrafluoride.
  • examples thereof include an ethylene copolymer and an ethylene / chlorotrifluoroethylene copolymer. Among them, polytetrafluoroethylene is preferable.
  • the fluoropolymer is a fluorinated ⁇ -olefin monomer, that is, an ⁇ -olefin monomer containing at least one fluorine atom, and, if necessary, a non-fluorinated ethylene that is reactive with the fluorinated ⁇ -olefin monomer.
  • fluorinated ⁇ -olefin monomer that is, an ⁇ -olefin monomer containing at least one fluorine atom, and, if necessary, a non-fluorinated ethylene that is reactive with the fluorinated ⁇ -olefin monomer.
  • Examples include homopolymers and copolymers containing building blocks derived from sex unsaturated monomers.
  • Examples thereof include perfluoro (alkyl having 2 to 8 carbon atoms) vinyl ether (for example, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, perfluorooctyl vinyl ether) and the like.
  • tetrafluoroethylene CF 2
  • (perfluorobutyl) ethylene vinylidene fluoride
  • CH 2 CF 2
  • hexafluoropropylene CF 2 ).
  • At least one monomer selected from the group consisting of CFCF 3 ) is preferred.
  • the non-fluorinated monoethylene unsaturated monomer include ethylene, propylene, butene, and an ethylenically unsaturated aromatic monomer (for example, styrene and ⁇ -methylstyrene).
  • the fluorinated ⁇ -olefin monomer may be used alone or in combination of two or more.
  • the non-fluorinated ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • fluoropolymer examples include polychlorotrifluoroethylene (PCTFE), poly (chlorotrifluoroethylene-propylene), poly (ethylene-tetrafluoroethylene) (ETFE), poly (ethylene-chlorotrifluoroethylene) (ECTFE), and the like.
  • the fluoropolymer may be used alone or in combination of two
  • the fluoropolymer is preferably at least one of FEP, PFA, ETFE, or PTFE.
  • FEP is available under the trade name of Teflon (registered trademark) FEP (TEFLON (registered trademark) FEP) from DuPont, or the trade name of NEOFLON FEP from Daikin Industries, Ltd .
  • PFA is the trade name of NEOFLON PFA from Daikin Industries, Ltd., the trade name of Teflon (registered trademark) PFA (TEFLON® PFA) from DuPont, or Solvay. It is available from Solexis) under the trade name of HYFLON PFA.
  • the fluoropolymer preferably contains PTFE.
  • the PTFE can include a PTFE homopolymer, a partially modified PTFE homopolymer, or a combination comprising one or both of these.
  • Partially modified PTFE homopolymers preferably contain less than 1% by weight of building blocks derived from commonomers other than tetrafluoroethylene, based on the total weight of the polymer.
  • the fluoropolymer may be a crosslinkable fluoropolymer having a crosslinkable group.
  • the crosslinkable fluoropolymer can be crosslinked by a conventionally known crosslinking method.
  • One of the typical crosslinkable fluoropolymers is a fluoropolymer having a (meth) acryloxy group.
  • R is a fluorinated oligomer chain having two or more structural units derived from a fluorinated ⁇ -olefin monomer or a non-fluorinated monoethylene unsaturated monomer, and R'is H or-. It is CH 3 and n is 1 to 4.
  • R may be a fluorine-based oligomer chain containing a structural unit derived from tetrafluoroethylene.
  • Forming a crosslinked fluoropolymer network structure by exposing a fluoropolymer having a (meth) acryloxy group to a free radical source in order to initiate a radical crosslinking reaction via the (meth) acryloxy group on a fluoropolymer.
  • the free radical source is not particularly limited, but a photoradical polymerization initiator or an organic peroxide is preferable. Suitable photoradical polymerization initiators and organic peroxides are well known in the art.
  • Crosslinkable fluoropolymers are commercially available and include, for example, DuPont Byton B.
  • the polymer having a dielectric tangent of 0.01 or less may be a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond a structural unit formed of a monomer composed of a cyclic olefin such as, for example, norbornene or a polycyclic norbornene-based monomer is used.
  • thermoplastic resin having the above examples are also referred to as a thermoplastic cyclic olefin resin.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is the hydrogenation of the ring-opening polymer of the above cyclic olefin or the ring-opening copolymer using two or more kinds of cyclic olefins. It may be a product, or it may be an addition polymer of a cyclic olefin and an aromatic compound having an ethylenically unsaturated bond such as a chain olefin or a vinyl group.
  • a polar group may be introduced into the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be used alone or in combination of two or more.
  • the ring structure of the cyclic aliphatic hydrocarbon group may be a monocyclic ring, a condensed ring in which two or more rings are condensed, or a bridged ring.
  • Examples of the ring structure of the cyclic aliphatic hydrocarbon group include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, an isovoron ring, a norbornane ring, a dicyclopentane ring and the like.
  • the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound.
  • the number of cyclic aliphatic hydrocarbon groups in the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be 1 or more, and may be 2 or more.
  • a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond polymerizes a compound having at least one cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer may be a polymer of a compound having two or more kinds of cyclic aliphatic hydrocarbon groups and a group having an ethylenically unsaturated bond, or may not have a cyclic aliphatic hydrocarbon group. It may be a copolymer with another ethylenically unsaturated compound.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is preferably a cycloolefin polymer.
  • the polymer having a dielectric loss tangent of 0.01 or less may be a polyphenylene ether.
  • the weight average molecular weight (Mw) of the polyphenylene ether is preferably 500 to 5,000, preferably 500 to 3,000, from the viewpoint of heat resistance and film forming property when thermosetting after film formation. It is preferable to have. When it is not heat-cured, it is not particularly limited, but is preferably 3,000 to 100,000, and preferably 5,000 to 50,000.
  • the average number of phenolic hydroxyl groups at the molecular terminal per molecule is preferably 1 to 5 from the viewpoint of dielectric loss tangent and heat resistance, and is preferably 1.5. More preferably, the number is 3 to 3.
  • the number of hydroxyl groups or phenolic hydroxyl groups of the polyphenylene ether can be found, for example, from the standard value of the product of the polyphenylene ether. Examples of the number of terminal hydroxyl groups or the number of terminal phenolic hydroxyl groups include numerical values representing the average value of hydroxyl groups or phenolic hydroxyl groups per molecule of all polyphenylene ethers present in 1 mol of polyphenylene ether.
  • the polyphenylene ether may be used alone or in combination of two or more.
  • polyphenylene ether examples include polyphenylene ether composed of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol, poly (2,6-dimethyl-1,4-phenylene oxide) and the like.
  • examples thereof include those containing the polyphenylene ether of the above as a main component. More specifically, for example, a compound having a structure represented by the formula (PPE) is preferable.
  • X represents an alkylene group or a single bond having 1 to 3 carbon atoms
  • m represents an integer of 0 to 20
  • n represents an integer of 0 to 20
  • m and n The sum represents an integer from 1 to 30.
  • alkylene group in the X include a dimethylmethylene group and the like.
  • the polymer having a dielectric loss tangent of 0.01 or less may be an aromatic polyetherketone.
  • the aromatic polyetherketone is not particularly limited, and known aromatic polyetherketones can be used.
  • the aromatic polyetherketone is preferably a polyetheretherketone.
  • Polyetheretherketone is a kind of aromatic polyetherketone, and is a polymer in which bonds are arranged in the order of ether bond, ether bond, and carbonyl bond (ketone). It is preferable that each bond is linked by a divalent aromatic group.
  • the aromatic polyetherketone may be used alone or in combination of two or more.
  • aromatic polyether ketone examples include a polyether ether ketone having a chemical structure represented by the following formula (P1) (PEEK) and a polyether ketone having a chemical structure represented by the following formula (P2) (PEK).
  • P1 polyether ether ketone having a chemical structure represented by the following formula (P1)
  • P2 polyether ketone having a chemical structure represented by the following formula (P2)
  • P3 Polyether ether ketone ketone
  • PEEKK polyether ether ketone ketone
  • P5 examples thereof include polyether ketones and ether ketone ketones (PEKEKK) having the represented chemical structure.
  • n of the formulas (P1) to (P5) is preferably 10 or more, more preferably 20 or more, from the viewpoint of mechanical properties.
  • n is preferably 5,000 or less, more preferably 1,000 or less, in that an aromatic polyetherketone can be easily produced. That is, n is preferably 10 to 5,000, more preferably 20 to 1,000.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a polymer soluble in a specific organic solvent (hereinafter, also referred to as “soluble polymer”).
  • the soluble polymers in the present disclosure are N-methylpyrrolidone, N-ethylpyrrolidone, dichloromethane, dichloroethane, chloroform, N, N-dimethylacetamide, ⁇ -butyrolactone, dimethylformamide, ethylene glycol monobutyl ether at 25 ° C.
  • ethylene glycol a polymer that dissolves 0.1 g or more in 100 g of at least one solvent selected from the group consisting of monoethyl ether.
  • the polymer film may contain only one kind of polymer having a dielectric loss tangent of 0.01 or less, or may contain two or more kinds of polymers.
  • the content of the polymer having a dielectric positive contact of 0.01 or less in the polymer film is 20% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric positive contact of the polymer film, the breaking strength of the polymer film, and the warp suppression property. It is preferably ⁇ 100% by mass, more preferably 30% by mass to 100% by mass, further preferably 40% by mass to 100% by mass, and particularly preferably 50% by mass to 100% by mass. preferable.
  • the polymer film preferably contains a filler from the viewpoint of the coefficient of linear expansion and the property of suppressing warpage.
  • the filler may be in the form of particles or fibers, and may be an inorganic filler or an organic filler.
  • the number density of the filler is preferably larger inside than the surface of the polymer film from the viewpoint of the coefficient of linear expansion and the adhesion to the metal layer or the metal wiring.
  • the inorganic filler a known inorganic filler can be used.
  • the material of the inorganic filler include BN, Al 2 O 3 , Al N, TiO 2 , SiO 2 , barium titanate, strontium titanate, aluminum hydroxide, calcium carbonate, and a material containing two or more of these. Be done.
  • metal oxide particles or fibers are preferable, and silica particles, titania particles, or glass fibers are more preferable, and silica particles or fibers are preferable from the viewpoint of adhesion to a metal layer or metal wiring. Glass fiber is particularly preferred.
  • the average particle size of the inorganic filler is preferably about 20% to about 40% of the thickness of the contained layer, for example, 25%, 30% or 35% of the thickness of the contained layer is selected. May be good. When the particle or fiber is flat, it indicates the length in the short side direction.
  • the average particle size of the inorganic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 10 ⁇ m, and further preferably 20 nm to 1 ⁇ m from the viewpoint of adhesion to the metal layer or metal wiring. It is preferably 25 nm to 500 nm, and particularly preferably 25 nm.
  • the organic filler a known organic filler can be used.
  • the material of the organic filler include polyethylene, polystyrene, urea-formalin filler, polyester, cellulose, acrylic resin, fluororesin, cured epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin, and a material containing two or more of these.
  • the organic filler may be in the form of fibers such as nanofibers, or may be hollow resin particles.
  • the organic filler is preferably fluororesin particles, polyester-based resin particles, or cellulose-based resin nanofibers from the viewpoint of adhesion to the metal layer or metal wiring, and polytetrafluoroethylene particles. Is more preferable.
  • the average particle size of the organic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 1 ⁇ m, still more preferably 20 nm to 500 nm, from the viewpoint of adhesion to the metal layer or metal wiring. It is particularly preferably 25 nm to 90 nm.
  • the polymer film may contain only one kind of filler or two or more kinds of fillers.
  • the content of the filler in the polymer film is preferably 5% by volume to 80% by volume, preferably 10% by volume to 70% by volume, based on the total volume of the polymer film, from the viewpoint of adhesion to the metal layer or metal wiring. It is more preferably 15% by volume to 70% by volume, and particularly preferably 20% by volume to 60% by volume.
  • the polymer film may contain other additives other than the above-mentioned components.
  • additives known additives can be used. Specific examples thereof include leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, colorants and the like.
  • the polymer film may contain other resins other than the polymer having a dielectric loss tangent of 0.01 or less as other additives.
  • resins include thermoplastic resins such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modifications, polyetherimide, etc .; Elastomers such as polymers; thermocurable resins such as phenolic resins, epoxy resins, polyimide resins, cyanate resins and the like can be mentioned.
  • the total content of the other additives in the polymer film is preferably 25 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of the polymer having a dielectric loss tangent of 0.005 or less. It is more preferably 5 parts by mass or less. Further, the total content of other additives in the polymer film is preferably smaller than the content of the compound having a functional group.
  • the polymer film may have a multilayer structure.
  • the polymer film preferably has a layer A and a layer B on at least one surface of the layer A.
  • the surface X may be the surface on the layer A side or the surface on the layer B side, but the surface on the layer B side is preferable.
  • the polymer film has a layer A containing a polymer having a dielectric loss tangent of 0.01 or less and at least one surface of the layer A from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or metal wiring. It is preferable to have a layer B containing a polymer and a filler having a dielectric loss tangent of 0.01 or less.
  • the layer A is preferably a layer made of a polymer having a dielectric loss tangent of 0.01 or less.
  • the layer B preferably contains a filler from the viewpoint of suppressing warpage.
  • the coefficient of linear expansion of layer B is preferably smaller than the coefficient of linear expansion of layer A from the viewpoint of suppressing warpage. It is preferable that the surface of the layer B opposite to the layer A side is the surface X. Further, the linear expansion coefficient of the surface of the surface of the layer B opposite to the layer A side is preferably ⁇ 20 ppm / K to 50 ppm / K from the viewpoint of the linear expansion coefficient of the polymer film and the warp inhibitory property.
  • the surface of the layer A opposite to the layer B side is the surface Y.
  • the linear expansion coefficient of the surface of the surface of the layer A opposite to the layer B side is preferably 10 ppm / K to 200 ppm / K, preferably 20 ppm, from the viewpoint of the linear expansion coefficient of the polymer film and the warp suppression property. It is more preferably / K to 150 ppm / K, further preferably 30 ppm / K to 100 ppm / K, and particularly preferably 40 ppm / K to 80 ppm / K.
  • the polymer film further has a layer C in addition to the layer A and the layer B, and has the layer B, the layer A, and the layer C in this order.
  • the surface X may be a surface on the layer B side or a surface on the layer C side, but is preferably a surface on the layer B side.
  • the layer C preferably contains a polymer having a dielectric loss tangent of 0.01 or less.
  • the laminate according to the present disclosure includes a polymer film according to the present disclosure having a layer B, a layer A, and a layer C in this order, and a metal layer arranged on the surface of the polymer film on the layer B side.
  • the metal layer arranged on the surface on the layer B side is preferably a metal layer arranged on the surface of the layer B.
  • the metal layer arranged on the surface on the layer C side is preferably a metal layer arranged on the surface of the layer C, and the metal layer arranged on the surface on the layer B side is the surface of the layer B. It is more preferable that the metal layer arranged on the surface of the layer C and the metal layer arranged on the surface of the layer C is a metal layer arranged on the surface of the layer C.
  • the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side are different materials and thicknesses even if they are metal layers having the same material, thickness and shape. And may be a metal layer of shape. From the viewpoint of characteristic impedance adjustment, the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side may be metal layers of different materials and thicknesses. A metal layer may be laminated on only one side of B or layer C.
  • the layer B or the layer C is a layer that comes into contact with the metal layer as a laminated body, it preferably contains a compound having a functional group described later, and more preferably contains a compound having a group capable of a curing reaction described later.
  • the functional group is at least one selected from the group consisting of a covalent group, an ionic bondable group, a hydrogen bondable group, a bipolar element interactable group, and a curing reaction capable group. It is preferably a group.
  • the compound having a functional group may be a low molecular weight compound or a high molecular weight compound.
  • the compound having a functional group is preferably a low molecular weight compound from the viewpoint of compatibility between the polymer and the compound having a functional group and the dielectric rectification of the polymer film, and the heat resistance and dynamics of the polymer film. From the viewpoint of target strength, a polymer compound is preferable.
  • the number of functional groups in the compound having a functional group may be 1 or more, may be 2 or more, but is preferably 2 or more, and the amount of functional groups is set to an appropriate amount in the polymer film. From the viewpoint of reducing the dielectric loss tangent, 10 or less is preferable. Further, the compound having a functional group may have only one kind of functional group or may have two or more kinds of functional groups.
  • the low molecular weight compound used as the compound having a functional group preferably has a molecular weight of 50 or more and less than 2,000, and more preferably 100 or more and less than 1,000, from the viewpoint of adhesion to the metal layer. It is particularly preferable that the molecular weight is 200 or more and less than 1,000.
  • the compound having a functional group is a small molecule compound, the spread of the compound is narrow and the contact probability between the functional groups is increased. Therefore, the content of the compound having a functional group is 10% by mass with respect to the total mass of the layer B. It is preferable to include the above.
  • the polymer compound used as the compound having a functional group is preferably a polymer having a weight average molecular weight of 1,000 or more, and a weight average molecular weight of 2,000 or more, from the viewpoint of adhesion to the metal layer. It is more preferable that the polymer has a weight average molecular weight of 3,000 or more and 1,000,000 or less, and a polymer having a weight average molecular weight of 5,000 or more and 200,000 or less. Especially preferable.
  • the polymer having a dielectric loss tangent of 0.005 or less and the compound having a functional group are compatible with each other.
  • the difference between the SP value of the polymer by the Hoy method and the SP value of the compound having a functional group by the Hoy method is the compatibility between the polymer having a dielectric loss tangent of 0.005 or less and the compound having a functional group, and the dielectric of the polymer film. From the viewpoint of direct contact and adhesion to the metal layer, it is preferably 5 MPa 0.5 or less. The lower limit is 0 MPa 0.5 .
  • the SP value (solubility parameter value) by the Hoy method is calculated from the molecular structure of the resin by the method described in Polymer Handbook future edition.
  • the SP value is calculated as the SP value of each constituent unit.
  • the functional group in the compound having a functional group was selected from the group consisting of a covalent group, an ionic bondable group, a hydrogen bondable group, a bipolar element interactable group, and a curing reaction capable group. It is preferably at least one group. From the viewpoint of the adhesion between the layer C and the metal layer, the functional group is preferably a covalent group or a group capable of a curing reaction, and more preferably a covalent group. Further, from the viewpoint of storage stability and handleability, the functional group is preferably an ion-bondable group, a hydrogen-bondable group, or a dipole-interactable group.
  • the group that can be covalently bonded is not particularly limited as long as it is a group that can form a covalent bond. , Iimide ester group, alkyl halide group, thiol group, hydroxy group, carboxy group, amino group, amide group, isocyanate group, aldehyde group, sulfonic acid group and the like.
  • it is selected from the group consisting of an epoxy group, an oxetanyl group, an N-hydroxy ester group, an isocyanate group, an imide ester group, an alkyl halide group, and a thiol group. It is preferably at least one functional group, and an epoxy group is particularly preferable.
  • the surface of the metal to be bonded to the layer C has a group paired with the functional group of the compound having a functional group.
  • a covalent group and a group paired with the covalent group are, for example, an epoxy.
  • the other group includes a hydroxy group, an amino group and the like.
  • the other may be an amino group or the like.
  • the group capable of ionic bonding include a cationic group and an anionic group.
  • the cationic group is preferably an onium group.
  • the onium group include an ammonium group, a pyridinium group, a phosphonium group, an oxonium group, a sulfonium group, a selenonium group, an iodonium group and the like.
  • an ammonium group, a pyridinium group, a phosphonium group, or a sulfonium group is preferable, an ammonium group or a phosphonium group is more preferable, and an ammonium group is particularly preferable.
  • the anionic group is not particularly limited, and is, for example, a phenolic hydroxyl group, a carboxy group, -SO 3 H, -OSO 3 H, -PO 3 H, -OPO 3 H 2 , -CONHSO 2- , -SO 2 NHSO. 2 -etc.
  • a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfate group, a sulfonic acid group, a sulfinic acid group or a carboxy group is preferable, and a phosphoric acid group or a carboxy group is more preferable. It is more preferably a carboxy group.
  • an ionic bondable group and a group paired with the ionic bondable group (combination of a functional group of a compound having a functional group and a group having a group on the surface of a metal), for example, one of them is acidic. If it has a group, the other is a basic group. Examples of the acidic group include a carboxy group, a sulfo group, a phosphoric acid group and the like, and a carboxy group is preferable.
  • examples of the group that can be ionically bonded to the carboxy group include a tertiary amino group, a pyridyl group, and a piperidyl group.
  • the group capable of hydrogen bonding include a group having a hydrogen bond donating site and a group having a hydrogen bond accepting site.
  • the hydrogen bond donating site may have a structure having an active hydrogen atom capable of hydrogen bonding, but is preferably a structure represented by XH.
  • X represents a heteroatom, and is preferably a nitrogen atom or an oxygen atom.
  • the hydrogen bond donating site includes a hydroxy group, a carboxy group, a primary amide group, a secondary amide group, a primary amino group, and a secondary amino from the viewpoint of adhesion between the layer C and the metal layer.
  • It is preferably at least one structure selected from the group consisting of a group, a primary sulfonamide group, a secondary sulfonamide group, an imide group, a urea bond, and a urethane bond, and preferably has a hydroxy group, a carboxy group, and a first structure. It may be at least one structure selected from the group consisting of a primary amide group, a secondary amide group, a primary sulfonamide group, a secondary sulfonamide group, a maleimide group, a urea bond, and a urethane bond.
  • At least one structure selected from the group consisting of a hydroxy group, a carboxy group, a primary amide group, a secondary amide group, a primary sulfonamide group, a secondary sulfonamide group, and a maleimide group is more preferable, and it is particularly preferable that the structure is at least one selected from the group consisting of a hydroxy group and a secondary amide group.
  • the hydrogen bond accepting site preferably has a structure containing an atom having an unshared electron pair, preferably a structure containing an oxygen atom having an unshared electron pair, and has a carbonyl group (carboxy group, amide group, imide group).
  • a carbonyl structure such as a urea bond and a urethane bond
  • a sulfonyl group including a sulfonyl structure such as a sulfonamide group
  • a carbonyl group is particularly preferable.
  • the group capable of hydrogen bonding is preferably a group having both the hydrogen bond donating site and the hydrogen bond accepting site, and is preferably a carboxy group, an amide group, an imide group, a urea bond, a urethane bond, or a sulfonamide. It preferably has a group, and more preferably has a carboxy group, an amide group, an imide group, or a sulfonamide group.
  • a group capable of hydrogen bonding and a group paired with the group capable of hydrogen bonding provides a hydrogen bond.
  • the other includes a group having a hydrogen binding accepting site.
  • one of the above combinations is a carboxy group, an amide group, a carboxy group and the like can be mentioned.
  • one of the above combinations is, for example, a phenolic hydroxyl group, the other may be phenolic hydroxide or the like.
  • the dipole interactable group had a polarized structure other than the structure represented by XH (X represents a hetero atom, a nitrogen atom, or an oxygen atom) in the hydrogen-bondable group. Any group may be used, and a group to which atoms having different electronegativity are bonded is preferable. As a combination of atoms having different electric negative degrees, a combination of at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a halogen atom and a carbon atom is preferable, and an oxygen atom, a nitrogen atom, and the like.
  • a combination of at least one atom selected from the group consisting of sulfur atoms and a carbon atom is more preferable.
  • a combination of a nitrogen atom and a carbon atom and a combination of a carbon atom and a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and specifically, cyano A group, a cyanul group, and a sulfonic acid amide group are more preferable.
  • the combination of the dipole-interactable group and the group paired with the dipole-interactable group (combination of the functional group of the compound having a functional group and the group having on the surface of the metal) is the same.
  • a combination of dipole-interactable groups is preferred.
  • one of the above combinations is, for example, a cyano group
  • the other is a cyano group.
  • one of the above combinations is, for example, a sulfonic acid amide group
  • the other may be a sulfonic acid amide group.
  • the group capable of a curing reaction examples include an ethylenically unsaturated group, a cyclic ether group, a cyanato group, a reactive silyl group, an oxazine ring group, a urethane group and the like.
  • the compound having a group capable of a curing reaction the following curable compound may be used.
  • the curable compound is a compound that is cured by irradiation with heat or light (for example, visible light, ultraviolet rays, near infrared rays, far infrared rays, electron beams, etc.), and may require a curing aid described later. ..
  • curable compounds include epoxy compounds, cyanate ester compounds, vinyl compounds, silicone compounds, oxazine compounds, maleimide compounds, allyl compounds, acrylic compounds, methacrylic compounds, and urethane compounds. These may be used alone or in combination of two or more.
  • the compound is at least one selected from the group consisting of an epoxy compound, a cyanate ester compound, a vinyl compound, an allyl compound, and a silicone compound.
  • the content of the curable compound in the layer B is preferably 10% by mass or more and 90% by mass or less, and more preferably 20% by mass or more and 80% by mass or less with respect to the total mass of the layer C.
  • Hardening aid examples include polymerization initiators such as photoreaction initiators (photoradical generators, photoacid generators, photobase generators). Specific examples of the curing aid include onium salt compounds, sulfone compounds, sulfonic acid ester compounds, sulfonimide compounds, disulfonyldiazomethane compounds, disulfonylmethane compounds, oxime sulfonate compounds, hydrazine sulfonate compounds, triazine compounds, and nitrobenzyl compounds. Examples thereof include benzylimidazole compounds, organic halides, octylate metal salts, disulfones and the like.
  • these curing aids may be used alone or in combination of two or more.
  • the content of the curing aid in the layer B is preferably 5% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 10% by mass or less with respect to the total mass of the layer B.
  • the functional group in the compound having a functional group include an epoxy group, an oxetanyl group, an isocyanate group, an acid anhydride group, a carbodiimide group, an N-hydroxyester group, a glyoxal group, an imide ester group and an alkyl halide group.
  • an epoxy group, an oxetanyl group, an isocyanate group, an acid anhydride group, a carbodiimide group, an N-hydroxyester group, a glyoxal group, an imide ester group, an alkyl halide group or a thiol group is more preferable.
  • bonds or interactions of the two functional groups are shown below, but the above-mentioned bonds or interactions in the present disclosure are not limited thereto.
  • the compound having a functional group is preferably a polyfunctional epoxy compound or a polymer of a polyfunctional epoxy compound from the viewpoint of the dielectric tangent of the polymer film and the adhesion to the metal layer, and the bifunctional epoxy compound.
  • it is more preferably a polymer of a bifunctional epoxy compound, and particularly preferably a bifunctional epoxy compound.
  • the layer B or the layer C may contain only one kind of compound having a functional group, or may contain two or more kinds of compounds.
  • the content of the compound having a functional group in the layer B or the layer C is 1% by mass to 80% by mass with respect to the total mass of the polymer film from the viewpoint of the dielectric adpositivity of the polymer film and the adhesion to the metal layer. It is preferably 5% by mass to 70% by mass, more preferably 10% by mass to 60% by mass, and particularly preferably 20% by mass to 60% by mass.
  • the coefficient of linear expansion of layer B is preferably smaller than the coefficient of linear expansion of layer C from the viewpoint of suppressing warpage.
  • the surface of layer B opposite to the layer A side is the surface X.
  • the linear expansion coefficient of the surface of the surface of the layer B opposite to the layer A side is preferably ⁇ 20 ppm / K to 50 ppm / K from the viewpoint of the linear expansion coefficient of the polymer film and the warp inhibitory property.
  • the surface of the layer C opposite to the layer A side is the surface Y.
  • the linear expansion coefficient of the surface of the surface of the layer C opposite to the layer A side is preferably 10 ppm / K to 200 ppm / K, preferably 20 ppm, from the viewpoint of the linear expansion coefficient of the polymer film and the warp inhibitory property. It is more preferably / K to 150 ppm / K, further preferably 30 ppm / K to 100 ppm / K, and particularly preferably 40 ppm / K to 80 ppm / K.
  • the average thickness of the layer A is not particularly limited, but is preferably 5 ⁇ m to 90 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. More preferably, it is particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the average thickness of the layer B is not particularly limited, but is preferably 5 ⁇ m to 90 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. More preferably, it is particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the method for measuring the average thickness of each layer in the polymer film is as follows.
  • the polymer film is cut with a microtome and the cross section is observed with an optical microscope to evaluate the thickness of each layer.
  • the cross-section sample is cut out at three or more places, the thickness is measured at three or more points in each cross-section, and the average value thereof is taken as the average thickness.
  • the average thickness of the layer C is preferably thinner than the average thickness of the layer A and thinner than the average thickness of the layer B from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. Is preferable.
  • the value of TA / TB which is the ratio of the average thickness TA of the layer A to the average thickness TB of the layer B , is 0. It is preferably 2 to 5, more preferably 0.5 to 2, and particularly preferably 0.8 to 1.2.
  • the value of TA / TC which is the ratio of the average thickness TA of the layer A to the average thickness TC of the layer C , is determined from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. It is preferably larger than 1, more preferably 2 to 100, further preferably 2.5 to 20, and particularly preferably 3 to 10. Further, the value of TB / TC , which is the ratio of the average thickness TB of the layer B to the average thickness TC of the layer C , is from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring.
  • the average thickness of the layer C is preferably 0.1 ⁇ m to 20 ⁇ m, preferably 0.2 ⁇ m to 15 ⁇ m, from the viewpoint of the dielectric loss tangent of the polymer film and the adhesion to the metal layer or the metal wiring. It is more preferably 0.5 ⁇ m to 10 ⁇ m, and particularly preferably 0.5 ⁇ m to 8 ⁇ m.
  • the average thickness of the polymer film is preferably 6 ⁇ m to 200 ⁇ m, more preferably 12 ⁇ m to 100 ⁇ m, from the viewpoints of strength, dielectric loss tangent of the polymer film, and adhesion to the metal layer or metal wiring. It is particularly preferably 20 ⁇ m to 60 ⁇ m.
  • the average thickness of the polymer film is measured at any five points using an adhesive film thickness meter, for example, an electronic micrometer (product name "KG3001A", manufactured by Anritsu Co., Ltd.), and is used as the average value thereof.
  • an adhesive film thickness meter for example, an electronic micrometer (product name "KG3001A", manufactured by Anritsu Co., Ltd.), and is used as the average value thereof.
  • the dielectric loss tangent of the polymer film is preferably 0.02 or less, more preferably 0.01 or less, further preferably 0.005 or less, and more than 0 to 0. It is particularly preferable that it is .003 or less.
  • the method for producing the polymer film is not particularly limited, and a known method can be referred to.
  • Examples of the method for producing the polymer film include a casting method, a coating method, an extrusion method and the like, and among them, the casting method is particularly preferable.
  • the polymer film has a multi-layer structure, for example, a co-flow spreading method, a multi-layer coating method, a co-extrusion method and the like are preferably used. Of these, the coextrusion method is particularly preferable for relatively thin film formation, and the coextrusion method is particularly preferable for thick film formation.
  • a layer A forming composition, a layer B forming composition, and a layer C in which the components of each layer such as a liquid crystal polymer are dissolved or dispersed in a solvent, respectively, are used. It is preferable to carry out a co-flow spreading method or a multi-layer coating method using a forming composition or the like.
  • the solvent examples include halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and ⁇ -butyrolactone; ethylene Phenols such as carbonates and propylene carbonates; amines such as triethylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; N, N-dimethyl
  • an aprotic compound particularly a solvent containing an aprotic compound having no halogen atom as a main component is preferable because it is low in corrosiveness and easy to handle, and the ratio of the aprotic compound to the whole solvent is It is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • an amide such as N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea, N-methylpyrrolidone, or ⁇ -butyrolactone may be used. Esters are preferred, with N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone being more preferred.
  • a solvent containing a compound having a dipole moment of 3 to 5 as a main component is preferable because the liquid crystal polymer is easily dissolved, and the ratio of the compound having a dipole moment of 3 to 5 in the whole solvent is preferable. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a dipole moment of 3 to 5.
  • a solvent containing a compound having a boiling point of 220 ° C. or lower at 1 atm as a main component is preferable because it is easy to remove, and the ratio of the compound having a boiling point of 220 ° C. or less at 1 atm to the whole solvent. Is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a boiling point of 220 ° C. or lower at 1 atm.
  • a support may be used when the polymer film is produced by the above-mentioned casting method, co-casting method, coating method, multi-layer coating method, extrusion method, co-extrusion method or the like.
  • a metal layer (metal foil) or the like used for the laminate described later is used as a support, it may be used as it is without peeling.
  • the support include a metal drum, a metal band, a glass plate, a resin film or a metal foil. Of these, metal drums, metal bands, and resin films are preferable.
  • the resin film examples include a polyimide (PI) film, and examples of commercially available products include U-Pylex S and U-Pylex R manufactured by Ube Kosan Co., Ltd., Kapton manufactured by Toray DuPont Co., Ltd., and Examples thereof include IF30, IF70 and LV300 manufactured by SKC Koron PI.
  • the support may have a surface treatment layer formed on the surface thereof so that the support can be easily peeled off.
  • the surface treatment layer hard chrome plating, fluororesin or the like can be used.
  • the average thickness of the resin film support is not particularly limited, but is preferably 25 ⁇ m or more and 75 ⁇ m or less, and more preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the method for removing at least a part of the solvent from the cast or applied film-like composition is not particularly limited, and a known drying method can be used.
  • the polymer film can be appropriately stretched from the viewpoint of controlling the molecular orientation and adjusting the coefficient of thermal expansion and the mechanical properties.
  • the stretching method is not particularly limited, and a known method can be referred to, and the stretching method may be carried out in a solvent-containing state or in a dry film state. Stretching in a state containing a solvent may be carried out by grasping and stretching the film, or by utilizing self-shrinkage due to drying without stretching. Stretching is particularly effective for the purpose of improving breaking strength and breaking strength when the brittleness of the film is reduced by the addition of an inorganic filler or the like.
  • the method for producing the polymer film may include a step of polymerizing by light or heat, if necessary.
  • the light irradiating means and the heat applying means are not particularly limited, and known light irradiating means such as a metal halide lamp and known heat applying means such as a heater can be used.
  • the light irradiation conditions and the heat application conditions are not particularly limited, and can be carried out at a desired temperature and time, and in a known atmosphere.
  • the polymer film may be heat-treated (annealed).
  • the heat treatment temperature in the above heat treatment step is the glass transition of the polymer having a dielectric positive contact of 0.01 or less from the viewpoint of the mechanical strength of the web during the manufacturing process, the dimensional change of the manufactured polymer film, the breaking strength, and the like.
  • the temperature is preferably Tg or higher, or preferably less than the melting point Tm.
  • the heat treatment temperature is preferably 260 ° C. to 370 ° C., more preferably 310 ° C. to 350 ° C. from the viewpoint of breaking strength.
  • the annealing time is preferably 30 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the method for producing a polymer film according to the present disclosure may include other known steps, if necessary.
  • the laminate according to the present disclosure may have a layer or the like other than those described above.
  • the other polymer film may be the polymer film according to the present disclosure or another polymer film different from the polymer film according to the present disclosure, but the polymer film according to the present disclosure is preferable.
  • the laminate according to the present disclosure can be used for various purposes, and above all, it can be suitably used for electronic components such as printed wiring boards, and can be preferably used for flexible printed circuit boards.
  • the coefficient of linear expansion of at least one surface X is smaller than the coefficient of linear expansion inside.
  • the preferred embodiment of the polymer film according to the present disclosure is the same as the preferred embodiment of the polymer film in the laminate according to the present disclosure described above.
  • the polymer film according to the present disclosure can be used for various purposes, and above all, it can be suitably used for a film for electronic parts such as a printed wiring board, and can be preferably used for a flexible printed circuit board. Further, the polymer film according to the present disclosure can be suitably used as a polymer film for metal adhesion.
  • thermomechanical analyzer a tensile load of 1 g is applied to both ends of a film having a width of 5 mm and a length of 20 mm, the temperature is raised to 25 ° C to 200 ° C at a rate of 5 ° C / min, and then 20 ° C /
  • the coefficient of linear expansion was calculated from the slope of the TMA curve between 30 ° C. and 150 ° C. when the temperature was cooled to 30 ° C. at a rate of 30 ° C. and raised again at a rate of 5 ° C./min.
  • the film had a metal foil, it was evaluated after removing it with ferric chloride. When measuring each layer or each surface, the layer or surface to be measured was scraped off with a razor or the like to prepare a measurement sample.
  • the liquid crystal polyester (A1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (A2).
  • the flow start temperature of this liquid crystal polyester (A2) was 220 ° C.
  • the liquid crystal polyester (A2) obtained above is heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 25 minutes, and then from 180 ° C. to 255 ° C. over 6 hours and 40 minutes. After solid-phase polymerization by holding at 255 ° C. for 5 hours, the mixture was cooled to obtain powdery liquid crystal polyesters (A) (LC-A).
  • the flow start temperature of the liquid crystal polyester (A) was 302 ° C. Further, the melting point of this liquid crystal polyester (A) was measured using a differential scanning calorimetry apparatus and found to be 311 ° C.
  • LC-B Liquid crystal polymer produced according to the following manufacturing method
  • the liquid crystal polyester (B1) obtained above is heated in a nitrogen atmosphere from room temperature to 160 ° C. over 2 hours and 20 minutes, then from 160 ° C. to 180 ° C. over 3 hours and 20 minutes, and at 180 ° C. By holding for 5 hours, solid-phase polymerization was carried out, the mixture was cooled, and then the mixture was pulverized with a pulverizer to obtain a powdery liquid crystal polyester (B2).
  • the liquid crystal polyester (B2) obtained above was heated in a nitrogen atmosphere from room temperature (23 ° C.) to 180 ° C. over 1 hour and 20 minutes, and then from 180 ° C. to 240 ° C. over 5 hours to 240.
  • the liquid crystal polyester (C) (LC-B) in the form of powder was obtained by solid-phase polymerization by holding at ° C. for 5 hours and then cooling.
  • ⁇ Filler> F-1 Commercially available hydrophobic silica with an average primary particle size of 20 nm (NX90S (surface treated with hexamethyldisilazane, manufactured by Nippon Aerosil Co., Ltd.) is used so that the solid content is as shown in Table 1. board.)
  • NX90S surface treated with hexamethyldisilazane, manufactured by Nippon Aerosil Co., Ltd.
  • F-2 Liquid crystal polymer particles produced according to the following manufacturing method
  • Liquid crystal polyester (LC-C) was pulverized using a jet mill (“KJ-200” manufactured by Kurimoto Iron Works Co., Ltd.) to obtain liquid crystal polyester particles (F-2).
  • the average particle size of the liquid crystal polyester particles was 9 ⁇ m.
  • F-3 Commercially available silica particles having an average particle size of 0.5 ⁇ m (SO-C2, manufactured by Admatex Co., Ltd.) were used so that the solid content was the amount shown in Table 1.
  • F-4 Commercially available hollow powder with an average particle size of 16 ⁇ m (Glass Bubbles iM30K, manufactured by 3M Japan Ltd.)
  • F-5 Boron nitride particles (melting point> 500 ° C., HP40MF100 (manufactured by Mizushima Alloy Iron Co., Ltd.), dielectric loss tangent 0.0007)
  • M-1 A commercially available aminophenol type epoxy resin (jER630LSD, manufactured by Mitsubishi Chemical Corporation) was used so that the solid content was the amount shown in Table 1.
  • M-2 A commercially available low-dielectric adhesive (SLK (manufactured by Shin-Etsu Chemical Co., Ltd.) varnish containing mainly a polymer-type curable compound) was used so that the solid content was as shown in Table 1. .)
  • a film was formed according to the following flow.
  • a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was passed, and then a sintered fiber metal filter having a nominal pore diameter of 10 ⁇ m was also passed to obtain each polymer solution.
  • a liquid crystal polymer solution was prepared without adding the additive, passed through the sintered fiber metal filter, and then the additive was added and stirred.
  • the obtained polymer solution was sent to a casting die equipped with a feed block adjusted for three-layer co-casting, and copper foil (manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., CF-T4X-SV-12, The copper foil was cast so as to be in contact with the copper foil and the layer A or C on the treated surface having an average thickness of 12 ⁇ m and a surface roughness of the treated surface Rz of 1.2 ⁇ m).
  • the solvent was removed from the cast film by drying at 40 ° C. for 4 hours to obtain a laminate having a copper layer and a film (single-sided copper-clad laminate).
  • the copper foil on which the polymer solution is poured is CF-T4X-SV-12 (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average thickness 12 ⁇ m, surface roughness Rz 1.2 ⁇ m on the treated surface). Same as co-flow extension A except that it was changed on the treated surface of CF-T9DA-SV-12 (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., average thickness 12 ⁇ m, surface roughness Rz 0.8 ⁇ m of the treated surface). It was carried out in.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムと、上記ポリマーフィルムの上記表面Xとは反対側の表面Y側に金属層又は金属配線とを有する積層体、及び、少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルム。

Description

積層体、及び、ポリマーフィルム
 本開示は、積層体、及び、ポリマーフィルムに関する。
 近年、通信機器に使用される周波数は非常に高くなる傾向にある。高周波帯域における伝送損失を抑えるため、回路基板に用いられる絶縁材料の比誘電率と誘電正接とを低くすることが要求されている。
 従来、回路基板に用いられる絶縁材料として、ポリイミドが多く用いられてきたが、高耐熱性及び低吸水性であり、かつ、高周波帯域での損失が小さい液晶ポリマーが注目されている。
 従来のプリプレグの製造方法としては、例えば、特許文献1には、長尺の基材を搬送してディップ槽内において樹脂ワニスを基材に含浸させる工程を含むプリプレグの製造方法において、基材の搬送方向と直交する方向に回転軸を形成する第1及び第2のディップロールを樹脂ワニス中に配置し、第1のディップロールの上側周面を基材下面に接触させた後、第2のディップロールの下側周面を基材上面に接触させて基材に樹脂ワニスを含浸させることを特徴とするプリプレグの製造方法が記載されている。
 また、従来の積層板の製造に用いられる樹脂組成物としては、特許文献2に記載されたものが知られている。
 特許文献2には、積層板の製造に用いられる樹脂組成物であって、樹脂組成物が芳香環を有する絶縁性樹脂を含み、かつ芳香環を有する絶縁性樹脂のTg以上のせん断弾性率から求めた、上記絶縁性樹脂の架橋点間分子量が、積層板製造後の段階で300~1000であることを特徴とする樹脂組成物が記載されている。
  特許文献1:特開2008-291156号公報
  特許文献2:特開2009-7576号公報
 本発明の実施形態が解決しようとする課題は、ポリマーフィルムの破断強度、及び、反り抑制性に優れる積層体を提供することである。
 また、本発明の実施形態が解決しようとする課題は、破断強度、及び、反り抑制性に優れるポリマーフィルムを提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムと、上記ポリマーフィルムの上記表面Xとは反対側の表面Y側に金属層又は金属配線とを有する積層体。
<2> 上記表面Xの熱膨張係数が、-20ppm/K~50ppm/Kである<1>に記載の積層体。
<3> 上記表面Yの熱膨張係数が、10ppm/K~200ppm/Kである<1>又は<2>に記載の積層体。
<4> 上記ポリマーフィルムが、誘電正接が0.01以下であるポリマーを含む<1>~<3>のいずれか1つに記載の積層体。
<5> 上記誘電正接が0.01以下であるポリマーが、フッ素系ポリマーである<4>に記載の積層体。
<6> 上記誘電正接が0.01以下であるポリマーが、液晶ポリマーである<4>に記載の積層体。
<7> 上記誘電正接が0.01以下であるポリマーが、式(1)~式(3)のいずれかで表される構成単位を有する液晶ポリマーを含む<6>に記載の積層体。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
<8> 上記誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である<4>~<7>のいずれか1つに記載の積層体。
<9> 上記ポリマーフィルムが、層Aと、上記層Aの少なくとも一方の面に設けられた層Bを有する<1>~<8>のいずれか1つに記載の積層体。
<10> 上記層Bの上記層A側とは反対側の表面の線膨張係数が、-20ppm/K~50ppm/Kである<9>に記載の積層体。
<11> 上記層Aが、フィラーを含む<9>又は<10>に記載の積層体。
<12> 上記ポリマーフィルムと上記金属層又は金属配線との剥離強度が、0.5kN/m以上である<1>~<11>のいずれか1つに記載の積層体。
<13> 少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルム。
<14> 上記表面Xの熱膨張係数が、-20ppm/K~50ppm/Kである<13>に記載のポリマーフィルム。
<15> 上記表面Yの熱膨張係数が、10ppm/K~200ppm/Kである<13>又は<14>に記載のポリマーフィルム。
<16> 誘電正接が0.01以下であるポリマーを含む<13>~<15>のいずれか1つに記載のポリマーフィルム。
<17> 上記誘電正接が0.01以下であるポリマーが、フッ素系ポリマーである<16>に記載のポリマーフィルム。
<18> 上記誘電正接が0.01以下であるポリマーが、液晶ポリマーである<16>に記載のポリマーフィルム。
<19> 上記誘電正接が0.01以下であるポリマーが、式(1)~式(3)のいずれかで表される構成単位を有する液晶ポリマーを含む<18>に記載のポリマーフィルム。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
<20> 上記誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である<16>~<19>のいずれか1つに記載のポリマーフィルム。
<21> 層Aと、上記層Aの少なくとも一方の面に設けられた層Bを有する<13>~<20>のいずれか1つに記載のポリマーフィルム。
<22> 上記層Bの上記層A側とは反対側の表面の線膨張係数が、-20ppm/K~50ppm/Kである<21>に記載のポリマーフィルム。
<23> 上記層Bが、フィラーを含む<21>又は<22>に記載のポリマーフィルム。
 本発明の実施形態によれば、ポリマーフィルムの破断強度、及び、反り抑制性に優れる積層体を提供することができる。
 また、本発明の他の実施形態によれば、破断強度、及び、反り抑制性に優れるポリマーフィルムを提供することができる。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 なお、本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel SuperHM-H(東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶剤PFP(ペンタフルオロフェノール)/クロロホルム=1/2(質量比)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
(積層体)
 本開示に係る積層体は、少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムと、上記ポリマーフィルムの上記表面Xとは反対側の表面Y側に金属層又は金属配線とを有する。
 従来の積層体は、ポリマーフィルムの破断強度、及び、反り抑制性が十分両立できていないことを本発明者は見出した。
 また、従来のポリマーフィルムにフィラーを添加し、反りを抑制した場合、破断強度が低下することを本発明者は見出した。
 本発明者が鋭意検討した結果、上記構成をとることにより、ポリマーフィルムの破断強度、及び、反り抑制性に優れる積層体が提供できることを見出した。
 上記効果が得られる詳細なメカニズムは不明であるが、以下のように推測される。
 少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムにおいて、表面Xとは反対側の表面Y側に金属層又は金属配線を配置することにより、金属層又は金属配線と、ポリマーフィルムとの線膨張係数差に起因する反りモーメントを効果的に抑制することができ、反り抑制性に優れると推定している。また、このような構成にすることによって、ポリマーフィルムの線膨張係数抑制に必要なフィラー等の添加量を低減することができ、ポリマーフィルムの破断強度向上にも有効であると推定している。
 また、積層体の反りを抑制することで、搬送中のエラーを防ぐ等、歩留り向上にも寄与することができる。
~金属層又は金属配線~
 本開示に係る積層体は、上記ポリマーフィルムの上記表面Xとは反対側の表面Y側に金属層又は金属配線を有する。
 ここで、ポリマーフィルムにおける表面とは、ポリマーフィルムの外側の面(空気又は基板に接する面)を指し、最も表面から深さ方向に3μmの範囲、または、最も表面からポリマーフィルム全体の厚みに対して10%以下の範囲のうち、小さい方を「表面」とする。ポリマーフィルムの内部とは、ポリマーフィルムの表面以外の部分、即ち、ポリマーフィルムの内側の面(空気又は基板に接しない面)を指し、限定的ではないが、ポリマーフィルムの厚み方向の中心から±1.5μmの範囲、または、ポリマーフィルムの厚み方向の中心から総厚みの±5%の範囲、のうち、数値の小さい方を「内部」とする。
 上記金属層又は金属配線は、公知の金属層又は金属配線であればよいが、例えば、銅層又は銅配線であることが好ましい。
 また、本開示に係る積層体は、上記表面X側に金属層又は金属配線を有しないことが好ましい。
 ポリマーフィルムと金属層又は金属配線とを貼り付ける方法としては、特に制限はなく、公知のラミネート方法を用いることができる。
 上記貼り合わせ時の圧力は、特に制限はないが、0.1MPa以上であることが好ましく、0.2MPa~10MPaであることが好ましい。
 また、上記貼り合わせ時の温度は、使用するポリマーフィルム等に応じて適宜選択することができるが、150℃以上であることが好ましく、280℃以上であることがより好ましく、280℃以上420℃以下であることが特に好ましい。
 上記ポリマーフィルムと上記金属層又は金属配線との剥離強度は、0.5kN/m以上であることが好ましく、0.7kN/m以上であることがより好ましく、0.7kN/m~2.0kN/mであることが更に好ましく、0.9kN/m~1.5kN/mであることが特に好ましい。
 本開示において、ポリマーフィルムと金属層又は金属配線(例えば、銅層又は銅配線)との剥離強度は、以下の方法により測定するものとする。
 ポリマーフィルムと金属層又は金属配線との積層体から1.0cm幅の剥離用試験片を作製し、ポリマーフィルムを両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、50mm/分の速度で金属層又は金属配線からポリマーフィルムを剥離したときの強度(kN/m)を測定する。
 金属層は、銅層であることが好ましい。銅層としては、圧延法により形成された圧延銅箔、又は、電解法により形成された電解銅箔が好ましく、耐屈曲性の観点から、圧延銅箔であることがより好ましい。
 金属配線は、銅配線であることが好ましい。銅配線としては、圧延法により形成された圧延銅箔、又は、電解法により形成された電解銅箔をエッチングしてなる銅配線が好ましく、耐屈曲性の観点から、圧延銅箔をエッチングしてなる銅配線であることがより好ましい。
 金属層又は金属配線、好ましくは銅層又は銅配線の平均厚みは、特に限定されないが、2μm~20μmであることが好ましく、3μm~18μmであることがより好ましく、5μm~12μmであることが更に好ましい。銅箔は、支持体(キャリア)上に剥離可能に形成されているキャリア付き銅箔であってもよい。キャリアとしては、公知のものを用いることができる。キャリアの平均厚みは、特に限定されないが、10μm~100μmであることが好ましく、18μm~50μmであることがより好ましい。
 本開示に係る積層体における金属層を、例えば、エッチングにより所望の回路パターンに加工し、フレキシブルプリント回路基板することも好ましい。エッチング方法としては、特に制限はなく、公知のエッチング方法を用いることができる。
~ポリマーフィルム~
 本開示に係る積層体は、少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムを有する。
 上記表面Xの線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、-20ppm/K~50ppm/Kであることが好ましく、-10ppm/K~40ppm/Kであることがより好ましく、0ppm/K~35ppm/Kであることが更に好ましく、10ppm/K~30ppm/Kであることが特に好ましく、15ppm/K~25ppm/Kであることが最も好ましい。
 上記ポリマーフィルムの内部(好ましくは、ポリマーフィルムの厚み方向の中央部)の線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から10ppm/K~200ppm/Kであることが好ましく、20ppm/K~150ppm/Kであることがより好ましく、30ppm/K~100ppm/Kであることが更に好ましく、40ppm/K~80ppm/Kであることが特に好ましい。
 なお、本開示における上記ポリマーフィルムの内部の線膨張係数とは、ポリマーフィルムが単層構造である場合は、ポリマーフィルムの厚み方向の中央部の線膨張係数であり、多層構造である場合は、表面Xを有する層以外のポリマーフィルムの厚み方向の中央部の層又は中央部に近い層の線膨張係数である。
 上記表面Yの線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、上記表面Xの線膨張係数以下であることが好ましく、上記表面Xの線膨張係数よりも小さいことがより好ましい。
 上記表面Yの線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、10ppm/K~200ppm/Kであることが好ましく、20ppm/K~150ppm/Kであることがより好ましく、30ppm/K~100ppm/Kであることが更に好ましく、40ppm/K~80ppm/Kであることが特に好ましい。
 上記表面Yの線膨張係数-上記表面Xの線膨張係数の値は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、10ppm/K以上であることが好ましく、20ppm/K以上であることがより好ましく、20ppm/K~200ppm/Kであることが更に好ましく、30ppm/K~100ppm/Kであることが特に好ましい。
 また、上記表面Yの線膨張係数-上記内部の線膨張係数の値は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、10ppm/K以上であることが好ましく、20ppm/K以上であることがより好ましく、20ppm/K~200ppm/Kであることが更に好ましく、30ppm/K~100ppm/Kであることが特に好ましい。
 上記ポリマーフィルムの線膨張係数は、反り抑制性の観点から、-20ppm/K~50ppm/Kであることが好ましく、-10ppm/K~40ppm/Kであることがより好ましく、0ppm/K~35ppm/Kであることが更に好ましく、10ppm/K~30ppm/Kであることが特に好ましく、15ppm/K~25ppm/Kであることが最も好ましい。
 本開示における線膨張係数の測定方法は、以下の方法により測定するものとする。
 熱機械分析装置(TMA)を用いて、幅5mm、長さ20mmのポリマーフィルムの両端に1gの引張荷重をかけ、5℃/分の速度で25℃~200℃まで昇温した後、20℃/分の速度で30℃まで冷却し、再び5℃/分の速度で昇温したときの、30℃~150℃の間のTMA曲線の傾きから線膨張係数を算出する。なお、ポリマーフィルムに金属層又は金属配線が付いている場合は、塩化第二鉄で除去した後に評価を行う。
 また、各層又は各表面を測定する場合は、カミソリ等により不要な部分を削り取り、測定する層又は表面を、例えば、5μm~10μmの厚さに成形して測定サンプルを作製してもよい。
 また、上記方法にて線膨張係数の測定が困難な場合は、以下の方法にて測定するものとする。
 フィルムをミクロトームで切削して切片サンプルを作製し、加熱ステージシステム(HS82、メトラー・トレド社製)を備えた光学顕微鏡にセットし、続いて、5℃/分の速度で25℃~200℃まで昇温した後、20℃/分の速度で30℃まで冷却し、再び5℃/分の速度で昇温したときの、30℃でのポリマーフィルム又は各層の厚み(ts30)、及び、150℃でのポリマーフィルム又は各層の厚み(ts150)を評価し、寸法変化を温度変化で除した値((ts150-ts30)/(150-30))を算出し、ポリマーフィルム又は各層の線膨張係数を算出する。
<誘電正接が0.01以下であるポリマー>
 上記ポリマーフィルムは、ポリマーフィルムの線膨張係数、ポリマーフィルムの破断強度、及び、反り抑制性の観点から、誘電正接が0.01以下であるポリマーを含むことが好ましい。
 誘電正接が0.01以下であるポリマーの誘電正接は、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、0.005以下であることが好ましく、0.004以下であることがより好ましく、0を超え0.003以下であることが特に好ましい。
 本開示における誘電正接の測定方法は、以下の方法により測定するものとする。
 誘電率測定は、周波数10GHzで共振摂動法により実施する。ネットワークアナライザ(Agilent Technology社製「E8362B」)に1GHzの空洞共振器((株)関東電子応用開発)を接続し、空洞共振器に誘電正接が0.01以下であるポリマーのサンプル(幅:2.7mm×長さ:45mm)を挿入し、温度20℃、湿度65%RH環境下、96時間の挿入前後の共振周波数の変化から誘電正接が0.01以下であるポリマーの誘電率及び誘電正接を測定する。
 後述するポリマーフィルムの各層を測定する場合は、カミソリ等で不要な層を削り出し、目的の層だけの評価用サンプルを作製してもよい。また、層の厚みが薄い等の理由で、単膜の取り出しが困難な場合には、カミソリ等で測定する層を削り取り、得られた粉末状の試料を用いてもよい。本開示におけるポリマーの誘電正接の測定は、各層を構成するポリマーの化学構造を特定するか又は単離し、測定するポリマーを粉末としたサンプルを用いて、上記の誘電正接の測定方法に従って行うものとする。
 誘電正接が0.01以下であるポリマーの重量平均分子量Mwは、1,000以上であることが好ましく、2,000以上であることがより好ましく、5,000以上であることが特に好ましい。また、誘電正接が0.005以下であるポリマーの重量平均分子量Mwは、1,000,000以下であることが好ましく、300,000以下であることがより好ましく、100,000未満であることが特に好ましい。
 誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdは、ポリマーフィルムの誘電正接、金属層又は金属配線との密着性、及び、耐熱性の観点から、200℃以上であることが好ましく、250℃以上であることがより好ましく、280℃以上であることが更に好ましく、300℃以上420℃以下であることが特に好ましい。
 本開示における融点Tmは、示差走査熱量分析(DSC)装置を用いて測定するものとする。すなわち、DSCの測定パンにサンプルを5mg入れ、これを窒素気流中で10℃/分で30℃から昇温した際に現れた吸熱ピークのピーク温度をフィルムのTmとする。
 また、本開示における5質量%減量温度Tdは、熱重量分析(TGA)装置を用いて測定するものとする。すなわち、測定パンに入れたサンプルの重量を初期値とし、昇温によって上記初期値に対して重量が5質量%低下したときの温度を5質量%減量温度Tdとする。
 誘電正接が0.01以下であるポリマーのガラス転移温度Tgは、ポリマーフィルムの誘電正接、金属層又は金属配線との密着性、及び、耐熱性の観点から、150℃以上であることが好ましく、200℃以上であることがより好ましく、200℃以上280℃未満であることが特に好ましい。
 本開示におけるガラス転移温度Tgは、示差走査熱量分析(DSC)装置を用いて測定するものとする。
 本開示において、誘電正接が0.01以下であるポリマーの種類は特に限定されず、公知のポリマーを用いることができる。
 誘電正接が0.01以下であるポリマーとしては、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、芳香族ポリエーテルケトン、ポリオレフィン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 これらの中でも、ポリマーフィルムの誘電正接、金属層又は金属配線との密着性、及び、耐熱性の観点から、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、及び、芳香族ポリエーテルケトンよりなる群から選ばれる少なくとも1種のポリマーであることが好ましく、液晶ポリマー及びフッ素系ポリマーよりなる群から選ばれる少なくとも1種のポリマーであることがより好ましく、ポリマーフィルムの誘電正接の観点からは、液晶ポリマーであることが特に好ましく、耐熱性、及び、力学的強度の観点からは、フッ素系ポリマーが好ましい。
-液晶ポリマー-
 誘電正接が0.01以下であるポリマーは、ポリマーフィルムの誘電正接の観点から、液晶ポリマーであることが好ましい。
 本開示において、誘電正接が0.01以下であるポリマーとして用いる液晶ポリマーは、誘電正接が0.01以下であれば、液晶ポリマーの種類は特に限定されず、公知の液晶ポリマーを用いることができる。
 また、液晶ポリマーは、溶融状態で液晶性を示すサーモトロピック液晶ポリマーでもよく、溶液状態で液晶性を示すリオトロピック液晶ポリマーでもよい。また、サーモトロピック液晶の場合は、450℃以下の温度で溶融するものであることが好ましい。
 液晶ポリマーとしては、例えば、液晶ポリエステル、液晶ポリエステルにアミド結合が導入された液晶ポリエステルアミド、液晶ポリエステルにエーテル結合が導入された液晶ポリエステルエーテル、液晶ポリエステルにカーボネート結合が導入された液晶ポリエ
ステルカーボネートなどを挙げることができる。
 また、液晶ポリマーは、液晶性、及び、線膨張係数の観点から、芳香環を有するポリマーであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドであることがより好ましい。
 更に、液晶ポリマーは、芳香族ポリエステル又は芳香族ポリエステルアミドに、更にイミド結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
 また、液晶ポリマーは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリマーであることが好ましい。
 液晶ポリマーの例としては、例えば、以下の液晶ポリマーが挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 2)複数種の芳香族ヒドロキシカルボン酸を重縮合させてなるもの。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重縮合させてなるもの。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンはそれぞれ独立に、重縮合可能な誘導体に置き換えてもよい。
 例えば、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸エステル及び芳香族ジカルボン酸エステルに置き換えることができる。
 カルボキシ基をハロホルミル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸ハロゲン化物及び芳香族ジカルボン酸ハロゲン化物に置き換えることができる。
 カルボキシ基をアシルオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸無水物及び芳香族ジカルボン酸無水物に置き換えることができる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、ヒドロキシ基をアシル化してアシルオキシ基に変換することにより、芳香族ヒドロキシカルボン酸、芳香族ジオール、及び芳香族ヒドロキシアミンをそれぞれ、アシル化物に置き換えることができる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、アミノ基をアシル化してアシルアミノ基に変換することにより、芳香族ヒドロキシアミン及び芳香族ジアミンをそれぞれ、アシル化物に置き換えることができる。
 液晶ポリマーは、液晶性、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、下記式(1)~式(3)のいずれかで表される構成単位(以下、式(1)で表される構成単位等を、構成単位(1)等ということがある。)を有することが好ましく、下記式(1)で表される構成単位を有することがより好ましく、下記式(1)で表される構成単位と、下記式(2)で表される構成単位と、下記式(3)で表される構成単位とを有することが特に好ましい。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられる。上記アルキル基の炭素数は、好ましくは1~10である。
 上記アリール基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。上記アリール基の炭素数は、好ましくは6~20である。
 上記水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArにおいて、それぞれ独立に、好ましくは2個以下であり、より好ましくは1個である。
 上記アルキレン基としては、メチレン基、1,1-エタンジイル基、1-メチル-1,1-エタンジイル基、1,1-ブタンジイル基及び2-エチル-1,1-ヘキサンジイル基が挙げられる。上記アルキレン基の炭素数は、好ましくは1~10である。
 構成単位(1)は、芳香族ヒドロキシカルボン酸に由来する構成単位である。
 構成単位(1)としては、Arがp-フェニレン基である態様(p-ヒドロキシ安香酸に由来する構成単位)、及びArが2,6-ナフチレン基である態様(6-ヒドロキシ-2-ナフトエ酸に由来する構成単位)、又は、4,4’-ビフェニリレン基である態様(4’-ヒドロキシ-4-ビフェニルカルボン酸に由来する構成単位)が好ましい。
 構成単位(2)は、芳香族ジカルボン酸に由来する構成単位である。
 構成単位(2)としては、Arがp-フェニレン基である態様(テレフタル酸に由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、Arが2,6-ナフチレン基である態様(2,6-ナフタレンジカルボン酸に由来する構成単位)、又は、Arがジフェニルエーテル-4,4’-ジイル基である態様(ジフェニルエーテル-4,4’-ジカルボン酸に由来する構成単位)が好ましい。
 構成単位(3)は、芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する構成単位である。
 構成単位(3)としては、Arがp-フェニレン基である態様(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、又は、Arが4,4’-ビフェニリレン基である態様(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する構成単位)が好ましい。
 構成単位(1)の含有量は、全構成単位の合計量(液晶ポリマーを構成する各構成単位(「モノマー単位」ともいう。)の質量をその各構成単位の式量で割ることにより、各構成単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30モル%~80モル%、更に好ましくは30モル%~60モル%、特に好ましくは30モル%~40モル%である。
 構成単位(2)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(3)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(1)の含有量が多いほど、耐熱性、強度及び剛性が向上し易いが、あまり多いと、溶媒に対する溶解性が低くなり易い。
 構成単位(2)の含有量と構成単位(3)の含有量との割合は、[構成単位(2)の含有量]/[構成単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、更に好ましくは0.98/1~1/0.98である。
 なお、液晶ポリマーは、構成単位(1)~(3)をそれぞれ独立に、2種以上有してもよい。また、液晶ポリマーは、構成単位(1)~(3)以外の構成単位を有してもよいが、その含有量は、全構成単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。
 液晶ポリマーは、溶媒に対する溶解性の観点から、構成単位(3)として、X及びYの少なくとも一方がイミノ基である構成単位(3)を有すること、すなわち、構成単位(3)として、芳香族ヒドロキシルアミンに由来する構成単位及び芳香族ジアミンに由来する構成単位の少なくとも一方を有することが好ましく、X及びYの少なくとも一方がイミノ基である構成単位(3)のみを有することがより好ましい。
 液晶ポリマーは、液晶ポリマーを構成する構成単位に対応する原料モノマーを溶融重合させることにより製造することが好ましい。溶融重合は、触媒の存在下に行ってもよい。触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物などが挙げられ、含窒素複素環式化合物が好ましく挙げられる。なお、溶融重合は、必要に応じて、更に固相重合させてもよい。
 液晶ポリマーの流動開始温度の下限値としては、好ましくは180℃以上、より好ましくは200℃以上、更に好ましくは250℃以上であり、流動開始温度の上限値としては、350℃が好ましく、330℃がより好ましく、300℃が更に好ましい。液晶ポリマーの流動開始温度が上記範囲であると、溶解性、耐熱性、強度及び剛性に優れ、また、溶液の粘度が適度である。
 流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリマーを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4,800Pa・s(48,000ポイズ)の粘度を示す温度であり、液晶ポリマーの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 また、液晶ポリマーの重量平均分子量は、1,000,000以下であることが好ましく、3,000~300,000であることがより好ましく、5,000~100,000であることが更に好ましく、5,000~30,000であることが特に好ましい。この液晶ポリマーの重量平均分子量が上記範囲であると、熱処理後のフィルムにおいて、厚さ方向の熱伝導性、耐熱性、強度及び剛性に優れる。
-フッ素系ポリマー-
 誘電正接が0.01以下であるポリマーは、耐熱性、及び、力学的強度の観点から、フッ素系ポリマーであることが好ましい。
 本開示において、誘電正接が0.01以下であるポリマーとして用いるフッ素系ポリマーは、誘電正接が0.01以下であれば、フッ素系ポリマーの種類は特に限定されず、公知のフッ素系ポリマーを用いることができる。
 フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン/六フッ化プロピレン共重合体、エチレン/四フッ化エチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体等が挙げられる。
 中でも、ポリテトラフルオロエチレンが好ましく挙げられる。
 また、フッ素系ポリマーは、フッ素化α-オレフィンモノマー、すなわち、少なくとも1つのフッ素原子を含むα-オレフィンモノマー、及び、必要に応じ、フッ素化α-オレフィンモノマーに対して反応性の非フッ素化エチレン性不飽和モノマーから誘導される構成単位を含むホモポリマー及びコポリマーが挙げられる。
 フッ素化α-オレフィンモノマーとしては、CF=CF、CHF=CF、CH=CF、CHCl=CHF、CClF=CF、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、CFCF=CF、CFCF=CHF、CFCH=CF、CFCH=CH、CHFCH=CHF、CFCF=CF、パーフルオロ(炭素数2~8のアルキル)ビニルエーテル(例えば、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル、パーフルオロオクチルビニルエーテル)等が挙げられる。中でも、テトラフルオロエチレン(CF=CF)、クロロトリフルオロエチレン(CClF=CF)、(パーフルオロブチル)エチレン、フッ化ビニリデン(CH=CF)、及び、ヘキサフルオロプロピレン(CF=CFCF)よりなる群から選ばれた少なくとも1種のモノマーが好ましい。
 非フッ素化モノエチレン性不飽和モノマーとしては、エチレン、プロピレン、ブテン、エチレン性不飽和芳香族モノマー(例えば、スチレン及びα-メチルスチレン)等が挙げられる。
 フッ素化α-オレフィンモノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、非フッ素化エチレン性不飽和モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素系ポリマーとしては、ポリクロロトリフルオロエチレン(PCTFE)、ポリ(クロロトリフルオロエチレン-プロピレン)、ポリ(エチレン-テトラフルオロエチレン)(ETFE)、ポリ(エチレン-クロロトリフルオロエチレン)(ECTFE)、ポリ(ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン)(PTFE)、ポリ(テトラフルオロエチレン-エチレン-プロピレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)(FEP)、ポリ(テトラフルオロエチレン-プロピレン)(FEPM)、ポリ(テトラフルオロエチレン-パーフルオロプロピレンビニルエーテル)、ポリ(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル)(PFA)(例えば、ポリ(テトラフルオロエチレン-パーフルオロプロピルビニルエーテル))、ポリビニルフルオリド(PVF)、ポリフッ化ビニリデン(PVDF)、ポリ(フッ化ビニリデン-クロロトリフルオロエチレン)、パーフルオロポリエーテル、パーフルオロスルホン酸、パーフルオロポリオキセタン等が挙げられる。
 フッ素系ポリマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素系ポリマーは、FEP、PFA、ETFE、又は、PTFEの少なくとも1つであることが好ましい。FEPは、デュポン(DuPont)社よりテフロン(登録商標)FEP(TEFLON(登録商標)FEP)の商品名、又は、ダイキン工業(株)よりネオフロンFEP(NEOFLON FEP)の商品名で入手可能であり;PFAは、ダイキン工業(株)よりネオフロンPFA(NEOFLON PFA)の商品名、デュポン(DuPont)社よりテフロン(登録商標)PFA(TEFLON(登録商標)PFA)の商品名、又は、ソルベイ・ソレクシス(Solvay Solexis)社よりハイフロンPFA(HYFLON PFA)の商品名で入手可能である。
 フッ素系ポリマーは、PTFEを含むことが好ましい。PTFEは、PTFEホモポリマー、一部が変性されたPTFEホモポリマー、又は、これらの一方若しくは両方を含む組合せを含むことができる。一部が変性されたPTFEホモポリマーは、ポリマーの全質量を基準として、テトラフルオロエチレン以外のコモノマーに由来する構成単位を1質量%未満含むことが好ましい。
 フッ素系ポリマーは、架橋性基を有する架橋性フルオロポリマーであってもよい。架橋性フルオロポリマーは、従来公知の架橋方法によって架橋させることができる。代表的な架橋性フルオロポリマーの1つは、(メタ)アクリロキシ基を有するフルオロポリマーである。例えば、架橋性フルオロポリマーは式:
  HC=CR’COO-(CH-R-(CH-OOCR’=CH
で表すことができ、式中、Rは、フッ素化α-オレフィンモノマー又は非フッ素化モノエチレン性不飽和モノマーに由来する構成単位を2以上有するフッ素系オリゴマー鎖であり、R’はH又は-CHであり、nは1~4である。Rは、テトラフルオロエチレンに由来する構成単位を含むフッ素系オリゴマー鎖であってよい。
 フッ素系ポリマー上の(メタ)アクリロキシ基を介してラジカル架橋反応を開始するために、(メタ)アクリロキシ基を有するフルオロポリマーをフリーラジカル源に曝露することによって、架橋フルオロポリマー網目構造を形成することができる。フリーラジカル源は、特に制限はないが、光ラジカル重合開始剤、又は、有機過酸化物が好適に挙げられる。適切な光ラジカル重合開始剤及び有機過酸化物は当技術分野においてよく知られている。架橋性フルオロポリマーは市販されており、例えば、デュポン社製バイトンBが挙げられる。
-環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物-
 誘電正接が0.01以下であるポリマーは、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物の例としては、例えば、ノルボルネン又は多環ノルボルネン系モノマーのような環状オレフィンからなるモノマーから形成される構成単位を有する熱可塑性の樹脂が挙げられ、熱可塑性環状オレフィン系樹脂とも呼ばれる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、上記環状オレフィンの開環重合体や2種以上の環状オレフィンを用いた開環共重合体の水素添加物であってもよく、環状オレフィンと、鎖状オレフィン又はビニル基の如きエチレン性不飽和結合を有する芳香族化合物などとの付加重合体であってもよい。また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物には、極性基が導入されていてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 環状脂肪族炭化水素基の環構造としては、単環であっても、2以上の環が縮合した縮合環であっても、橋掛け環であってもよい。
 環状脂肪族炭化水素基の環構造としては、シクロペンタン環、シクロヘキサン環、シクロオクタン環、イソボロン環、ノルボルナン環、ジシクロペンタン環等が挙げられる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物は、単官能エチレン性不飽和化合物であっても、多官能エチレン性不飽和化合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物における環状脂肪族炭化水素基の数は、1以上であればよく、2以上有していてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、少なくとも1種の環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物を重合してなる重合体であればよく、2種以上環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよいし、環状脂肪族炭化水素基を有しない他のエチレン性不飽和化合物との共重合体であってもよい。
 また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、シクロオレフィンポリマーであることが好ましい。
-ポリフェニレンエーテル-
 誘電正接が0.01以下であるポリマーは、ポリフェニレンエーテルであってもよい。
 ポリフェニレンエーテルの重量平均分子量(Mw)は、製膜後に熱硬化する場合には、耐熱性、及び、膜形成性の観点から、500~5,000であることが好ましく、500~3,000であることが好ましい。また、熱硬化しない場合には、特に限定されないが、3,000~100,000であることが好ましく、5,000~50,000であることが好ましい。
 ポリフェニレンエーテルとしては、分子末端のフェノール性水酸基の1分子当たりの平均個数(末端水酸基数)が、誘電正接、及び、耐熱性の観点から、1個~5個であることが好ましく、1.5個~3個であることがより好ましい。
 ポリフェニレンエーテルの水酸基数又はフェノール性水酸基は、例えば、ポリフェニレンエーテルの製品の規格値からわかる。また、末端水酸基数又は末端フェノール性水酸基数としては、例えば、ポリフェニレンエーテル1モル中に存在する全てのポリフェニレンエーテルの1分子あたりの水酸基又はフェノール性水酸基の平均値を表した数値等が挙げられる。
 ポリフェニレンエーテルは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリフェニレンエーテルとしては、例えば、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテル、又は、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルとを主成分とするもの等が挙げられる。より具体的には、例えば、式(PPE)で表される構造を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(PPE)中、Xは、炭素数1~3のアルキレン基又は単結合を表し、mは、0~20の整数を表し、nは、0~20の整数を表し、mとnとの合計は、1~30の整数を表す。
 上記Xにおける上記アルキレン基としては、例えば、ジメチルメチレン基等が挙げられる。
-芳香族ポリエーテルケトン-
 誘電正接が0.01以下であるポリマーは、芳香族ポリエーテルケトンであってもよい。
 芳香族ポリエーテルケトンとしては、特に限定されず、公知の芳香族ポリエーテルケトンを用いることができる。
 芳香族ポリエーテルケトンは、ポリエーテルエーテルケトンであることが好ましい。
 ポリエーテルエーテルケトンは、芳香族ポリエーテルケトンの1種であり、エーテル結合、エーテル結合、カルボニル結合(ケトン)の順に結合が配置されたポリマーである。各結合間は、2価の芳香族基により連結されていることが好ましい。
 芳香族ポリエーテルケトンは、1種単独で使用してもよいし、2種以上を併用してもよい。
 芳香族ポリエーテルケトンとしては、例えば、下記式(P1)で表される化学構造を有するポリエーテルエーテルケトン(PEEK)、下記式(P2)で表される化学構造を有するポリエーテルケトン(PEK)、下記式(P3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)、下記式(P4)で表される化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)、下記式(P5)で表される化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(P1)~(P5)の各々のnは、機械的特性の観点から、10以上が好ましく、20以上がより好ましい。一方、芳香族ポリエーテルケトンを容易に製造できる点では、nは、5,000以下が好ましく、1,000以下がより好ましい。すなわち、nは、10~5,000が好ましく、20~1,000がより好ましい。
 誘電正接が0.01以下であるポリマーは、特定の有機溶媒に可溶性のポリマー(以下、「可溶性ポリマー」ともいう。)であることが好ましい。
 具体的には、本開示における可溶性ポリマーは、25℃において、N-メチルピロリドン、N-エチルピロリドン、ジクロロメタン、ジクロロエタン、クロロホルム、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルホルムアミド、エチレングリコールモノブチルエーテル及びエチレングリコールモノエチルエーテルよりなる群から選ばれる少なくとも1種の溶媒100gに、0.1g以上溶解するポリマーである。
 ポリマーフィルムは、誘電正接が0.01以下であるポリマーを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムにおける誘電正接が0.01以下であるポリマーの含有量は、ポリマーフィルムの誘電正接、ポリマーフィルムの破断強度、及び、反り抑制性の観点から、ポリマーフィルムの全質量に対し、20質量%~100質量%であることが好ましく、30質量%~100質量%であることがより好ましく、40質量%~100質量%であることが更に好ましく、50質量%~100質量%であることが特に好ましい。
<フィラー>
 ポリマーフィルムは、線膨張係数、及び、反り抑制性の観点から、フィラーを含むことが好ましい。
 フィラーは、粒子状であっても、繊維状であってもよく、また、無機フィラーであっても、有機フィラーであってもよい。
 上記ポリマーフィルムにおいて、上記フィラーの数密度は、線膨張係数、及び、金属層又は金属配線との密着性の観点から、上記ポリマーフィルムの表面より内部の方が大きいことが好ましい。
 無機フィラーとしては、公知の無機フィラーを用いることができる。
 無機フィラーの材質としては、例えば、BN、Al、AlN、TiO、SiO、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム、及び、これらを2種以上含む材質が挙げられる。
 中でも、無機フィラーとしては、金属層又は金属配線との密着性の観点から、金属酸化物粒子、又は、繊維が好ましく、シリカ粒子、チタニア粒子、又は、ガラス繊維がより好ましく、シリカ粒子、又は、ガラス繊維が特に好ましい。
 無機フィラーの平均粒径は、含有する層の厚みの約20%~約40%であることが好ましく、例えば、含有する層の厚みの25%、30%又は35%にあるものを選択してもよい。粒子又は繊維が扁平状の場合には、短辺方向の長さを示す。
 また、無機フィラーの平均粒径は、金属層又は金属配線との密着性の観点から、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましく、20nm~1μmであることが更に好ましく、25nm~500nmであることが特に好ましい。
 有機フィラーとしては、公知の有機フィラーを用いることができる。
 有機フィラーの材質としては、例えば、ポリエチレン、ポリスチレン、尿素-ホルマリンフィラー、ポリエステル、セルロース、アクリル樹脂、フッ素樹脂、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂、及び、これらを2種以上含む材質が挙げられる。
 また、有機フィラーは、ナノファイバーのような繊維状であってもよく、中空樹脂粒子であってもよい。
 中でも、有機フィラーとしては、金属層又は金属配線との密着性の観点から、フッ素樹脂粒子、若しくは、ポリエステル系樹脂粒子、又は、セルロース系樹脂のナノファイバーであることが好ましく、ポリテトラフルオロエチレン粒子であることがより好ましい。
 有機フィラーの平均粒径は、金属層又は金属配線との密着性の観点から、5nm~20μmであることが好ましく、10nm~1μmであることがより好ましく、20nm~500nmであることが更に好ましく、25nm~90nmであることが特に好ましい。
 ポリマーフィルムは、フィラーを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムにおけるフィラーの含有量は、金属層又は金属配線との密着性の観点から、ポリマーフィルムの全体積に対し、5体積%~80体積%であることが好ましく、10体積%~70体積%であることがより好ましく、15体積%~70体積%であることが更に好ましく、20体積%~60体積%であることが特に好ましい。
-その他の添加剤-
 上記ポリマーフィルムは、上述した成分以外のその他の添加剤を含んでいてもよい。
 その他の添加剤としては、公知の添加剤を用いることができる。具体的には、例えば、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤等が挙げられる。
 また、上記ポリマーフィルムは、その他の添加剤として、誘電正接が0.01以下であるポリマー以外のその他の樹脂を含んでいてもよい。
 その他の樹脂の例としては、ポリプロピレン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 上記ポリマーフィルムにおけるその他の添加剤の総含有量は、誘電正接が0.005以下であるポリマーの含有量100質量部に対して、好ましくは25質量部以下であり、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。
 また、ポリマーフィルムにおけるその他の添加剤の総含有量は、官能基を有する化合物の含有量よりも少ないことが好ましい。
 また、上記ポリマーフィルムは、多層構造を有するものであってもよい。
 上記ポリマーフィルムは、層Aと、上記層Aの少なくとも一方の面に層Bとを有することが好ましい。
 層A及び層Bを有するポリマーフィルムにおいて、上記表面Xは、層A側の表面であっても、層B側の表面であってもよいが、層B側の表面であることが好ましい。
 上記ポリマーフィルムは、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、誘電正接が0.01以下であるポリマーを含む層Aと、上記層Aの少なくとも一方の面に誘電正接が0.01以下であるポリマー及びフィラーを含む層Bとを有することが好ましい。
 層Aは、誘電正接が0.01以下であるポリマーからなる層であることが好ましい。
 層Bは、反り抑制の観点から、フィラーを含むことが好ましい。
 層Bの線膨張係数は、反り抑制性の観点から、層Aの線膨張係数よりも小さいことが好ましい。
 層Bの層A側とは反対側の表面が、上記表面Xであることが好ましい。
 また、層Bの層A側とは反対側の表面の線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、-20ppm/K~50ppm/Kであることが好ましく、-10ppm/K~40ppm/Kであることがより好ましく、0ppm/K~35ppm/Kであることが更に好ましく、10ppm/K~30ppm/Kであることが特に好ましく、15ppm/K~25ppm/Kであることが最も好ましい。
 層Aの層B側とは反対側の表面が、上記表面Yであることが好ましい。
 また、層Aの層B側とは反対側の表面の線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、10ppm/K~200ppm/Kであることが好ましく、20ppm/K~150ppm/Kであることがより好ましく、30ppm/K~100ppm/Kであることが更に好ましく、40ppm/K~80ppm/Kであることが特に好ましい。
 また、上記ポリマーフィルムは、層A及び層Bに加え、層Cを更に有し、上記層Bと、上記層Aと、上記層Cとをこの順で有することが好ましい。
 上記層A~層Cを有するポリマーフィルムにおいて、上記表面Xは、層B側の表面であっても、層C側の表面であってもよいが、層B側の表面であることが好ましい。
 層Cは、誘電正接が0.01以下であるポリマーを含むことが好ましい。
 また、本開示に係る積層体は、層Bと、層Aと、層Cとをこの順で有する本開示に係るポリマーフィルムと、上記ポリマーフィルムの上記層B側の面に配置された金属層と、上記ポリマーフィルムの上記層C側の面に配置された金属層とを有することが好ましく、上記金属層がいずれも、銅層であることがより好ましい。
 上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であることが好ましい。
 上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることが好ましく、上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であり、かつ上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることがより好ましい。
 また、上記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、同じ材質、厚さ及び形状の金属層であっても、異なる材質、厚さ及び形状の金属層であってもよい。特性インピーダンス調整の観点からは、上記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、異なる材質や厚みの金属層であってもよく、層B又は層Cのうち、片側だけに金属層が積層されていてもよい。
 また、層B又は層Cが、積層体として金属層と接触する層である場合、後述する官能基を有する化合物を含むことが好ましく、後述する硬化反応可能な基を有する化合物を含むことがより好ましい。
 上記官能基としては、共有結合可能な基、イオン結合可能な基、水素結合可能な基、双極子相互作用可能な基、及び、硬化反応可能な基よりなる群から選ばれた少なくとも1種の基であることが好ましい。
 官能基を有する化合物は、低分子化合物であっても、高分子化合物であってもよい。
 官能基を有する化合物は、上記ポリマーと官能基を有する化合物との相溶性、及び、ポリマーフィルムの誘電正接の観点からは、低分子化合物であることが好ましく、ポリマーフィルムの耐熱性、及び、力学的強度の観点からは、高分子化合物であることが好ましい。
 官能基を有する化合物における官能基の数は、1以上であればよく、2以上であってもよいが、2以上であることが好ましく、また、官能基量を適度な量とし、ポリマーフィルムの誘電正接を小さくする観点から、10以下が好ましい。
 また、官能基を有する化合物は、1種のみの官能基を有していても、2種以上の官能基を有していてもよい。
 官能基を有する化合物として用いられる低分子化合物としては、金属層との密着性の観点から、分子量50以上2,000未満であることが好ましく、分子量100以上1,000未満であることがより好ましく、分子量200以上1,000未満であることが特に好ましい。
 官能基を有する化合物が低分子化合物である場合、化合物の広がりが狭く、官能基同士の接触確率を上げるため、官能基を有する化合物の含有量は、層Bの全質量に対し、10質量%以上含むことが好ましい。
 また、官能基を有する化合物として用いられる高分子化合物としては、金属層との密着性の観点から、重量平均分子量が1,000以上のポリマーであることが好ましく、重量平均分子量が2,000以上のポリマーであることがより好ましく、重量平均分子量が3,000以上1,000,000以下のポリマーであることが更に好ましく、重量平均分子量が5,000以上200,000以下のポリマーであることが特に好ましい。
 更に、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、誘電正接が0.005以下であるポリマーと官能基を有する化合物とは、相溶可能であることが好ましい。
 上記ポリマーのHoy法によるSP値と官能基を有する化合物のHoy法によるSP値との差は、誘電正接が0.005以下であるポリマーと官能基を有する化合物との相溶性、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、5MPa0.5以下であることが好ましい。なお、下限値は、0MPa0.5である。
 Hoy法によるSP値(溶解性パラメータ値)は、樹脂の分子構造からPolymer Handbook fourth editionに記載の方法で計算する。また、樹脂が複数種の樹脂の混合物である場合、SP値は、各構成単位のSP値をそれぞれ算出する。
<<官能基>>
 官能基を有する化合物における官能基は、共有結合可能な基、イオン結合可能な基、水素結合可能な基、双極子相互作用可能な基、及び、硬化反応可能な基よりなる群から選ばれた少なくとも1種の基であることが好ましい。
 層Cと金属層との密着性の観点からは、官能基は、共有結合可能な基、又は、硬化反応可能な基であることが好ましく、共有結合可能な基であることがより好ましい。
 また、保存安定性、及び、取り扱い性の観点からは、官能基が、イオン結合可能な基、水素結合可能な基、又は、双極子相互作用可能な基であることが好ましい。
-共有結合可能な基-
 共有結合可能な基としては、共有結合が形成可能な基であれば特に制限はなく、例えば、エポキシ基、オキセタニル基、イソシアネート基、酸無水物基、カルボジイミド基、N-ヒドロキシエステル基、グリオキサール基、イミドエステル基、ハロゲン化アルキル基、チオール基、ヒドロキシ基、カルボキシ基、アミノ基、アミド基、イソシアネート基、アルデヒド基、スルホン酸基等を挙げることができる。これらの中でも、層Cと金属層との密着性の観点から、エポキシ基、オキセタニル基、N-ヒドロキシエステル基、イソシアネート基、イミドエステル基、ハロゲン化アルキル基、及び、チオール基よりなる群から選ばれる少なくとも1種の官能基であることが好ましく、エポキシ基が特に好ましい。
 また、後述するように、層Cと貼り合わせる金属の表面に、官能基を有する化合物の官能基と対になる基を有していることが好ましい。
 共有結合可能な基と上記共有結合可能な基と対になる基との組み合わせ(官能基を有する化合物の官能基と、金属の表面に有する基との組み合わせ)としては、一方が、例えば、エポキシ基又はオキセタニル基である場合、他方は、ヒドロキシ基、アミノ基等が挙げられる。
 また、上記組み合わせの一方が、例えば、N-ヒドロキシエステル基又はイミドエステル基である場合、他方は、アミノ基等が挙げられる。
-イオン結合可能な基-
 イオン結合可能な基としては、カチオン性基、アニオン性基等が挙げられる。
 上記カチオン性基としては、オニウム基であることが好ましい。オニウム基の例は、アンモニウム基、ピリジニウム基、ホスホニウム基、オキソニウム基、スルホニウム基、セレノニウム基、ヨードニウム基等が挙げられる。中でも、層Cと金属層との密着性の観点から、アンモニウム基、ピリジニウム基、ホスホニウム基、又は、スルホニウム基が好ましく、アンモニウム基、又は、ホスホニウム基がより好ましく、アンモニウム基が特に好ましい。
 アニオン性基としては、特に制限はなく、例えば、フェノール性水酸基、カルボキシ基、-SOH、-OSOH、-POH、-OPO、-CONHSO-、-SONHSO-等が挙げられる。これらの中でも、リン酸基、ホスホン酸基、ホスフィン酸基、硫酸基、スルホン酸基、スルフィン酸基又はカルボキシ基であることが好ましく、リン酸基、又は、カルボキシ基であることがより好ましく、カルボキシ基であることが更に好ましい。
 イオン結合可能な基と上記イオン結合可能な基と対になる基との組み合わせ(官能基を有する化合物の官能基と、金属の表面に有する基との組み合わせ)としては、例えば、一方が、酸性基を有する場合、他方は、塩基性基が挙げられる。
 上記酸性基としては、例えば、カルボキシ基、スルホ基、リン酸基等が挙げられ、カルボキシ基であることが好ましい。
 また、上記組み合わせの一方が、例えば、カルボキシ基である場合、カルボキシ基とイオン結合可能な基は、第三級アミノ基、ピリジル基、ピペリジル基等が挙げられる。
-水素結合可能な基-
 水素結合可能な基としては、水素結合供与性部位を有する基、水素結合受容性部位を有する基が挙げられる。
 上記水素結合供与性部位は、水素結合可能な活性水素原子を有する構造であればよいが、X-Hで表される構造であることが好ましい。
 Xは、ヘテロ原子を表し、窒素原子、又は、酸素原子であることが好ましい。
 上記水素結合供与性部位としては、層Cと金属層との密着性の観点から、ヒドロキシ基、カルボキシ基、第一級アミド基、第二級アミド基、第一級アミノ基、第二級アミノ基、第一級スルホンアミド基、第二級スルホンアミド基、イミド基、ウレア結合、及び、ウレタン結合よりなる群から選ばれる少なくとも1種の構造であることが好ましく、ヒドロキシ基、カルボキシ基、第一級アミド基、第二級アミド基、第一級スルホンアミド基、第二級スルホンアミド基、マレイミド基、ウレア結合、及び、ウレタン結合よりなる群から選ばれる少なくとも1種の構造であることがより好ましく、ヒドロキシ基、カルボキシ基、第一級アミド基、第二級アミド基、第一級スルホンアミド基、第二級スルホンアミド基、及び、マレイミド基よりなる群から選ばれる少なくとも1種の構造であることが更に好ましく、ヒドロキシ基、及び、第二級アミド基よりなる群から選ばれる少なくとも1種の構造であることが特に好ましい。
 上記水素結合受容性部位としては、非共有電子対を有する原子を含む構造がよく、非共有電子対を有する酸素原子を含む構造であることが好ましく、カルボニル基(カルボキシ基、アミド基、イミド基、ウレア結合、ウレタン結合等のカルボニル構造を含む。)、及び、スルホニル基(スルホンアミド基等のスルホニル構造を含む。)よりなる群から選ばれた少なくとも1種の構造であることがより好ましく、カルボニル基(カルボキシ基、アミド基、イミド基、ウレア結合、ウレタン結合等のカルボニル構造を含む。)であることが特に好ましい。
 水素結合可能な基としては、上記水素結合供与性部位及び水素結合受容性部位の両方を有する基であることが好ましく、カルボキシ基、アミド基、イミド基、ウレア結合、ウレタン結合、又は、スルホンアミド基を有していることが好ましく、カルボキシ基、アミド基、イミド基、又は、スルホンアミド基を有していることがより好ましい。
 水素結合可能な基と上記水素結合可能な基と対になる基との組み合わせ(官能基を有する化合物の官能基と、金属の表面に有する基との組み合わせ)としては、一方が、水素結合供与性部位を有する基を有する場合、他方が、水素結合受容性部位を有する基が挙げられる。
 例えば、上記組み合わせの一方がカルボキシ基である場合、アミド基、カルボキシ基等が挙げられる。
 また、上記組み合わせの一方が、例えば、フェノール性水酸基である場合、他方は、フェノール性水酸等が挙げられる。
-双極子相互作用可能な基-
 双極子相互作用可能な基としては、上記水素結合可能な基におけるX-H(Xは、ヘテロ原子を表し、窒素原子、又は、酸素原子)で表される構造以外の分極した構造を有した基であればよく、電気陰性度の異なる原子が結合された基が好適に挙げられる。
 電気陰性度の異なる原子の組み合わせとしては、酸素原子、窒素原子、硫黄原子、及びハロゲン原子からなる群より選択される少なくとも1種の原子と炭素原子との組み合わせが好ましく、酸素原子、窒素原子、及び、硫黄原子からなる群より選択される少なくとも1種の原子と炭素原子との組み合わせがより好ましい。
 これらの中でも、層Cと金属層との密着性の観点から、窒素原子と炭素原子との組み合わせ、炭素原子と、窒素原子、酸素原子及び硫黄原子との組み合わせが好ましく、具体的には、シアノ基、シアヌル基、スルホン酸アミド基がより好ましい。
 双極子相互作用可能な基と上記双極子相互作用可能な基と対になる基との組み合わせ(官能基を有する化合物の官能基と、金属の表面に有する基との組み合わせ)としては、同一の双極子相互作用可能な基の組み合わせが好ましく挙げられる。
 上記組み合わせの一方が、例えば、シアノ基である場合、他方は、シアノ基が挙げられる。
 また、上記組み合わせの一方が、例えば、スルホン酸アミド基である場合、他方は、スルホン酸アミド基が挙げられる。
-硬化反応可能な基-
 硬化反応可能な基としては、エチレン性不飽和基、環状エーテル基、シアナト基、反応性シリル基、オキサジン環基、ウレタン基等が挙げられる。
 硬化反応可能な基を有する化合物としては、下記の硬化性化合物を用いてもよい。
~硬化性化合物~
 硬化性化合物は、熱や光(例えば、可視光、紫外線、近赤外線、遠赤外線、電子線等)の照射により硬化する化合物であり、後述する硬化助剤を必要とするものであってもよい。このような硬化性化合物としては、例えば、エポキシ化合物、シアネートエステル化合物、ビニル化合物、シリコーン化合物、オキサジン化合物、マレイミド化合物、アリル化合物、アクリル化合物、メタクリル化合物、ウレタン化合物が挙げられる。これらは、1種単独で用いられてもよいし、2種以上が併用されてもよい。これらの中でも、前記重合体との相溶性、耐熱性等の特性上の観点から、エポキシ化合物、シアネートエステル化合物、ビニル化合物、シリコーン化合物、オキサジン化合物、マレイミド化合物、及び、アリル化合物よりなる群から選ばれた少なくとも1種であることが好ましく、エポキシ化合物、シアネートエステル化合物、ビニル化合物、アリル化合物、及び、シリコーン化合物よりなる群から選ばれた少なくとも1種であることがより好ましい。
 層B中の硬化性化合物の含有量は、層Cの全質量に対して、10質量%以上90質量%以下であることが好ましく、20質量%以上80質量%以下であることがより好ましい。
~硬化助剤~
 硬化助剤としては、例えば、光反応開始剤(光ラジカル発生剤、光酸発生剤、光塩基発生剤)等の重合開始剤を挙げることができる。硬化助剤の具体例としては、オニウム塩化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物、ジスルホニルジアゾメタン化合物、ジスルホニルメタン化合物、オキシムスルホネート化合物、ヒドラジンスルホネート化合物、トリアジン化合物、ニトロベンジル化合物、ベンジルイミダゾール化合物、有機ハロゲン化物類、オクチル酸金属塩、ジスルホン等が挙げられる。これらの硬化助剤は、種類を問わず、1種単独で用いてもよいし、2種以上を併用してもよい。
 層B中の硬化助剤の含有量は、層Bの全質量に対して、5質量%以上20質量%以下であることが好ましく、5質量%以上10質量%以下であることがより好ましい。
 官能基を有する化合物における官能基は、具体的には、エポキシ基、オキセタニル基、イソシアネート基、酸無水物基、カルボジイミド基、N-ヒドロキシエステル基、グリオキサール基、イミドエステル基、ハロゲン化アルキル基、チオール基、ヒドロキシ基、カルボキシ基、アミノ基、アミド基、イソシアネート基、アルデヒド基、スルホン酸基、アンモニウム基、ピリジニウム基、ホスホニウム基、オキソニウム基、スルホニウム基、セレノニウム基、ヨードニウム基、リン酸基、ホスホン酸基、ホスフィン酸基、硫酸基、スルホン酸基、スルフィン酸基又はカルボキシ基、ヒドロキシ基、カルボキシ基、第一級アミド基、第二級アミド基、第一級アミノ基、第二級アミノ基、第一級スルホンアミド基、第二級スルホンアミド基、イミド基、ウレア結合、及び、ウレタン結合よりなる群から選ばれた少なくとも1種を含むことが好ましい。密着性向上の観点から、エポキシ基、オキセタニル基、イソシアネート基、酸無水物基、カルボジイミド基、N-ヒドロキシエステル基、グリオキサール基、イミドエステル基、ハロゲン化アルキル基、又は、チオール基がより好ましい。
 2種の官能基の結合又は相互作用の具体例を以下に下記に示すが、本開示における上記結合又は相互作用は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
 官能基を有する化合物は、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、多官能エポキシ化合物、又は、多官能エポキシ化合物の重合体であることが好ましく、2官能エポキシ化合物、又は、2官能エポキシ化合物の重合体であることがより好ましく、2官能エポキシ化合物であることが特に好ましい。
 層B又は層Cは、官能基を有する化合物を1種のみ含んでいても、2種以上含んでいてもよい。
 層B又は層Cにおける官能基を有する化合物の含有量は、ポリマーフィルムの誘電正接、及び、金属層との密着性の観点から、ポリマーフィルムの全質量に対し、1質量%~80質量%であることが好ましく、5質量%~70質量%であることがより好ましく、10質量%~60質量%であることが更に好ましく、20質量%~60質量%であることが特に好ましい。
 層Bの線膨張係数は、反り抑制性の観点から、層Cの線膨張係数よりも小さいことが好ましい。
 上記層A~層Cを有するポリマーフィルムにおいて、層Bの層A側とは反対側の表面が、上記表面Xであることが好ましい。
 また、層Bの層A側とは反対側の表面の線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、-20ppm/K~50ppm/Kであることが好ましく、-10ppm/K~40ppm/Kであることがより好ましく、0ppm/K~35ppm/Kであることが更に好ましく、10ppm/K~30ppm/Kであることが特に好ましく、15ppm/K~25ppm/Kであることが最も好ましい。
 上記層A~層Cを有するポリマーフィルムにおいて、層Cの層A側とは反対側の表面が、上記表面Yであることが好ましい。
 更に、層Cの層A側とは反対側の表面の線膨張係数は、ポリマーフィルムの線膨張係数、及び、反り抑制性の観点から、10ppm/K~200ppm/Kであることが好ましく、20ppm/K~150ppm/Kであることがより好ましく、30ppm/K~100ppm/Kであることが更に好ましく、40ppm/K~80ppm/Kであることが特に好ましい。
 層Aの平均厚みは、特に制限はないが、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~50μmであることが特に好ましい。
 層Bの平均厚みは、特に制限はないが、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~50μmであることが特に好ましい。
 上記ポリマーフィルムにおける各層の平均厚みの測定方法は、以下の通りである。
 ポリマーフィルムをミクロトームで切削し、断面を光学顕微鏡で観察して、各層の厚みを評価する。断面サンプルは3ヶ所以上切り出し、各断面において、3点以上厚みを測定し、それらの平均値を平均厚みとする。
 層Cの平均厚みは、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、層Aの平均厚みよりも薄いことが好ましく、また、層Bの平均厚みよりも薄いことが好ましい。
 層Aの平均厚みTと層Bの平均厚みTとの比であるT/Tの値は、線膨張係数、及び、金属層又は金属配線との密着性の観点から、0.2~5であることが好ましく、0.5~2であることがより好ましく、0.8~1.2であることが特に好ましい。
 層Aの平均厚みTと層Cの平均厚みTとの比であるT/Tの値は、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 また、層Bの平均厚みTと層Cの平均厚みTとの比であるT/Tの値は、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 更に、層Cの平均厚みは、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、0.1μm~20μmであることが好ましく、0.2μm~15μmであることがより好ましく、0.5μm~10μmであることが更に好ましく、0.5μm~8μmであることが特に好ましい。
 上記ポリマーフィルムの平均厚みは、強度、ポリマーフィルムの誘電正接、及び、金属層又は金属配線との密着性の観点から、6μm~200μmであることが好ましく、12μm~100μmであることがより好ましく、20μm~60μmであることが特に好ましい。
 ポリマーフィルムの平均厚みは、任意の5箇所について、接着式の膜厚計、例えば、電子マイクロメータ(製品名「KG3001A]、アンリツ社製)を用いて測定し、それらの平均値とする。
 上記ポリマーフィルムの誘電正接は、誘電率の観点から、0.02以下であることが好ましく、0.01以下であることがより好ましく、0.005以下であることが更に好ましく、0を超え0.003以下であることが特に好ましい。
<ポリマーフィルムの製造方法>
〔製膜〕
 上記ポリマーフィルムの製造方法は、特に制限はなく、公知の方法を参照することができる。
 上記ポリマーフィルムの製造方法としては、例えば、流延法、塗布法、押出法等が好適に挙げられ、中でも、流延法が特に好ましい。また、上記ポリマーフィルムが、多層構造を有する場合には、例えば、共流延法、重層塗布法、共押出法等が好適に挙げられる。中でも、比較的薄手の製膜には共流延法が特に好ましく、厚手の製膜には共押出法が特に好ましい。
 ポリマーフィルムにおける多層構造を共流延法及び重層塗布法により製造する場合、液晶ポリマー等の各層の成分をそれぞれ溶媒に溶解又は分散した層A形成用組成物、層B形成用組成物、層C形成用組成物等を用いて、共流延法又は重層塗布法を行うことが好ましい。
 溶媒としては、例えば、ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;ヘキサメチルリン酸アミド、トリn-ブチルリン酸等のリン化合物等が挙げられ、それらを2種以上用いてもよい。
 溶媒としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物、特にハロゲン原子を有しない非プロトン性化合物を主成分とする溶媒が好ましく、溶媒全体に占める非プロトン性化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。また、上記非プロトン性化合物としては、液晶ポリマーを溶解し易いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド又はγ-ブチロラクトン等のエステルを用いることが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンがより好ましい。
 また、溶媒としては、液晶ポリマーを溶解し易いことから、双極子モーメントが3~5である化合物を主成分とする溶媒が好ましく、溶媒全体に占める双極子モーメントが
3~5である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、双極子モーメントが3~5である化合物を用いることが好ましい。
 また、溶媒としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を主成分とするとする溶媒が好ましく、溶媒全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
 また、上記ポリマーフィルムの製造方法は、上記流延法、共流延法、塗布方、重層塗布法、押出法、及び共押出法等により製造する場合、支持体を使用してもよい。また、後述する積層体に用いる金属層(金属箔)等を支持体として使用する場合、剥離せずそのまま使用してもよい。
 支持体としては、例えば、金属ドラム、金属バンド、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、金属ドラム、金属バンド、樹脂フィルムが好ましい。
 樹脂フィルムとしては、例えばポリイミド(PI)フィルムを挙げることができ、市販品の例としては、宇部興産(株)製U-ピレックスS及びU-ピレックスR、東レデュポン(株)製カプトン、並びに、SKCコーロンPI社製IF30、IF70及びLV300等が挙げられる。
 また、支持体は、容易に剥離できるように、表面に表面処理層が形成されていてもよい。表面処理層は、ハードクロムメッキ、フッ素樹脂等を用いることができる。
 樹脂フィルム支持体の平均厚みは、特に制限はないが、好ましくは25μm以上75μm以下であり、より好ましくは50μm以上75μmである。
 また、流延又は塗布された膜状の組成物(流延膜又は塗膜)から溶媒の少なくとも一部を除去する方法としては、特に制限はなく、公知の乾燥方法を用いることができる。
〔延伸〕
 上記ポリマーフィルムは、分子配向を制御し、熱膨張係数や力学物性を調整する観点で、適宜、延伸を組み合わせることができる。延伸の方法は、特に制限はなく、公知の方法を参照することができ、溶媒を含んだ状態で実施してもよく、乾膜の状態で実施してもよい。溶媒を含んだ状態での延伸は、フィルムを把持して伸長してもよく、伸長せずに乾燥による自己収縮を利用して実施してもよい。延伸は、無機フィラー等の添加によってフィルム脆性が低下した場合に、破断強度や破断強度を改善する目的で特に有効である。
 また、上記ポリマーフィルムの製造方法は、必要に応じて、光又は熱により重合する工程を含んでいてもよい。
 光の照射手段、及び、熱の付与手段としては、特に制限はなく、メタルハライドランプ等の公知の光の照射手段、及び、ヒーター等の公知の熱の付与手段を用いることができる。
 光照射条件、及び、熱付与条件としては、特に制限はなく、所望の温度及び時間、並びに、公知の雰囲気で行うことができる。
〔熱処理〕
 上記ポリマーフィルムは、熱処理(アニール)を行ってもよい。
 上記熱処理する工程における熱処理温度としては、製造プロセス中のウェブの機械強度、及び、製造されたポリマーフィルムの寸法変化、破断強度等の観点から、誘電正接が0.01以下であるポリマーのガラス転移温度Tg以上の温度、又は、融点Tm未満の温度であることが好ましい。
 更に、上記熱処理温度として具体的には、破断強度の観点から、260℃~370℃であることが好ましく、310℃~350℃であることがより好ましい。アニールの時間としては、30分~5時間が好ましく、30分~3時間が更に好ましい。
 また、本開示に係るポリマーフィルムの製造方法は、必要に応じ、他の公知の工程を含んでいてもよい。
 また、本開示に係る積層体は、上述した以外の層等を有していてもよい。
 例えば、少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムと、上記ポリマーフィルムの上記表面Xとは反対側の表面Y側に有する金属層又は金属配線と、他のポリマーフィルムとを有する積層体であってもよい。
 上記他のポリマーフィルムは、本開示に係るポリマーフィルムであっても、本開示に係るポリマーフィルムとは異なる別のポリマーフィルムであってもよいが、本開示に係るポリマーフィルムであることが好ましい。
<用途>
 本開示に係る積層体は、種々の用途に用いることができる、中でも、プリント配線板などの電子部品に好適に用いることができ、フレキシブルプリント回路基板により好適に用いることができる。
(ポリマーフィルム)
 本開示に係るポリマーフィルムは、少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さい。
 本開示に係るポリマーフィルムの好ましい態様は、上述した本開示に係る積層体におけるポリマーフィルムの好ましい態様と同様である。
<用途>
 本開示に係るポリマーフィルムは、種々の用途に用いることができる、中でも、プリント配線板などの電子部品用フィルムに好適に用いることができ、フレキシブルプリント回路基板により好適に用いることができる。
 また、本開示に係るポリマーフィルムは、金属接着用ポリマーフィルムとして好適に用いることができる。
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に限定されるものではない。
<<測定法>>
〔線膨張係数〕
 熱機械分析装置(TMA)を用いて、幅5mm、長さ20mmのフィルムの両端に1gの引張荷重をかけ、5℃/分の速度で25℃~200℃まで昇温した後、20℃/分の速度で30℃まで冷却し、再び5℃/分の速度で昇温したときの、30℃~150℃の間のTMA曲線の傾きから線膨張係数を算出した。なお、フィルムに金属箔が付いている場合は、塩化第二鉄で除去した後に評価を行った。
 また、各層又は各表面を測定する場合は、カミソリ等により、測定する層又は表面を削り取り測定サンプルを作製した。
〔破断強度〕
 作製したフィルムから150mm×10mmのサンプルを切り出し、東洋ボールドウィン(株)製万能引っ張り試験機“STM T50BP”を用い、25℃、60%RH雰囲気中、引張速度10%/分で伸びに対する応力を測定し、伸び0.1%~0.5%区間の傾きから弾性率を求めた。なお、フィルムに金属箔が付いている場合は、塩化第二鉄で除去した後に評価を行った。
<<製造例>>
<ポリマー>
 LC-A:下記製造方法に従って作製した液晶ポリマー
-LC-Aの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から140℃まで60分かけて昇温し、140℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(A1)を得た。この液晶ポリエステル(A1)の流動開始温度は、193.3℃であった。
 上記で得た液晶ポリエステル(A1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(A2)を得た。この液晶ポリエステル(A2)の流動開始温度は、220℃であった。
 上記で得た液晶ポリエステル(A2)を、窒素雰囲気下、室温(23℃)から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(A)(LC-A)を得た。液晶ポリエステル(A)の流動開始温度は、302℃であった。また、この液晶ポリエステル(A)を、示差走査熱量分析装置を用いて融点を測定した結果、311℃であった。
 LC-B:下記製造方法に従って作製した液晶ポリマー
-LC-Bの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、4-ヒドロキシアセトアミノフェン377.9g(2.5モル)、イソフタル酸415.3g(2.5モル)及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から143℃まで60分かけて昇温し、143℃で1時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(B1)を得た。
 上記で得た液晶ポリエステル(B1)を、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(B2)を得た。
 上記で得た液晶ポリエステル(B2)を、窒素雰囲気下、室温(23℃)から180℃まで1時間20分かけて昇温し、次いで180℃から240℃まで5時間かけて昇温し、240℃で5時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステル(C)(LC-B)を得た。
<フィラー>
 F-1:市販の平均一次粒径20nmの疎水性シリカ(NX90S(ヘキサメチルジシラザンで表面処理、日本アエロジル(株)製)を用い、固形分量が表1に記載の量となるように用いた。)
 F-2:下記製造方法に従って作製した液晶ポリマー粒子
-LC-Cの製造-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計モル量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、固形状の液晶ポリエステル(LC-C)を取り出し、この液晶ポリエステル(LC-C)を室温まで冷却した。このポリエステル(LC-C)の流動開始温度は、265℃であった。
〔液晶ポリエステル粒子(F-1)の製造〕
 ジェットミル((株)栗本鐡工所製「KJ-200」)を用いて、液晶ポリエステル(LC-C)を粉砕し、液晶ポリエステル粒子(F-2)を得た。この液晶ポリエステル粒子の平均粒径は9μmであった。
 F-3:市販の平均粒径0.5μmのシリカ粒子(SO-C2、(株)アドマテックス製)を、固形分量が表1に記載の量となるように用いた。
 F-4:市販の平均粒径16μmの中空粉体(グラスバブルズiM30K、スリーエムジャパン(株)製)
 F-5:窒化ホウ素粒子(融点>500℃、HP40MF100(水島合金鉄(株)製)、誘電正接0.0007)
<硬化性化合物>
 M-1:市販のアミノフェノール型エポキシ樹脂(jER630LSD、三菱ケミカル(株)製)を、固形分量が表1に記載の量となるように用いた。
 M-2:市販の低誘電接着剤(ポリマー型の硬化性化合物を主として含むSLK(信越化学工業(株)製)のワニスを用い、固形分量が表1に記載の量になるように用いた。)
<製膜>
 下記の流延に準じて製膜を行った。
〔共流延A(溶液製膜)〕
-ポリマー溶液の調製-
 上記ポリマー、及び、添加剤をN-メチルピロリドンに加え、窒素雰囲気下、140℃4時間撹拌し、ポリマー溶液を得た。ポリマーと添加剤は、表1に記載の体積比率で添加し、N-メチルピロリドンに対するポリマー濃度は、層B(空気界面側の層)用の溶液は9質量%、層A及び層C用の溶液は8質量%とした。
 続いて、最初に、公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく公称孔径10μmの焼結繊維金属フィルターを通過させ、各ポリマー溶液をそれぞれ得た。
 なお、添加剤がN-メチルピロリドンに溶解しない場合は、添加剤を添加せずに液晶ポリマー溶液を調製し、上記焼結繊維金属フィルターに通過させた後に添加剤を添加して、撹拌した。
-片面銅張積層板の作製-
 得られたポリマー溶液を、3層共流延用に調整したフィードブロックを装備した流延ダイに送液し、銅箔(福田金属箔粉工業(株)製、CF-T4X-SV-12、平均厚み12μm、処理面の表面粗さRz1.2μm)の処理面上に、銅箔と層A又は層Cとが接するように流延した。40℃にて4時間乾燥することにより、流延膜から溶媒を除去し、銅層とフィルムとを有する積層体(片面銅張積層板)を得た。
〔共流延B(溶液製膜)〕
 前述の共流延Aのうち、ポリマー溶液を流延する銅箔をCF-T4X-SV-12(福田金属箔粉工業(株)製、平均厚み12μm、処理面の表面粗さRz1.2μm)から、CF-T9DA-SV-12(福田金属箔粉工業(株)製、平均厚み12μm、処理面の表面粗さRz0.8μm)の処理面上に変更した以外は、共流延Aと同様に実施した。
〔単層流延(溶液製膜)〕
-ポリマー溶液の調製-
 上記ポリマー、及び、添加剤をN-メチルピロリドンに加え、窒素雰囲気下、140℃4時間撹拌し、ポリマー溶液を得た。ポリマーと添加剤は、表1に記載の体積比率で添加し、固形分濃度は23質量%とした。
 続いて、最初に、公称孔径10μmの焼結繊維金属フィルターを通過させ、ついで同じく公称孔径10μmの焼結繊維金属フィルターを通過させ、各ポリマー溶液をそれぞれ得た。
 なお、添加剤がN-メチルピロリドンに溶解しない場合は、添加剤を添加せずに液晶ポリマー溶液を調製し、上記焼結繊維金属フィルターに通過させた後に添加剤を添加して、撹拌した。
-片面銅張積層板の作製-
 得られたポリマー溶液を、単層タイプの流延ダイに送液し、銅箔(福田金属箔粉工業(株)製、CF-T4X-SV-12、平均厚み12μm)の処理面上に流延した。40℃にて4時間乾燥することにより、流延膜から溶媒を除去し、銅層とフィルムとを有する積層体(片面銅張積層板)を得た。
<アニール工程>
 上記で得られた片面銅張積層板を、更に窒素雰囲気下で室温(25℃)から270℃まで1℃/分で昇温し、その温度で2時間保持する熱処理を行い、片面銅張積層板を作製した。
<反り>
 上記の片面銅張積層板を斜め45°方向に100mm角で切出し、四隅の浮き量を測定し、平均値を下記の判断基準で評価した。
  A:浮き量が5mm未満であった。
  B:浮き量が5mm以上であった。
  C:浮き量が5mm以上であり、且つ立ち上り角度が90°を越えていた。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例1~実施例9では、ポリマーフィルムの破断強度、及び、銅張積層板(積層体)の反りが良好であった。
 2020年12月21日に出願された日本国特許出願第2020-211786号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (23)

  1.  少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さいポリマーフィルムと、
     前記ポリマーフィルムの前記表面Xとは反対側の表面Y側に金属層又は金属配線とを有する
     積層体。
  2.  前記表面Xの熱膨張係数が、-20ppm/K~50ppm/Kである請求項1に記載の積層体。
  3.  前記表面Yの熱膨張係数が、10ppm/K~200ppm/Kである請求項1又は請求項2に記載の積層体。
  4.  前記ポリマーフィルムが、誘電正接が0.01以下であるポリマーを含む請求項1~請求項3のいずれか1項に記載の積層体。
  5.  前記誘電正接が0.01以下であるポリマーが、フッ素系ポリマーである請求項4に記載の積層体。
  6.  前記誘電正接が0.01以下であるポリマーが、液晶ポリマーである請求項4に記載の積層体。
  7.  前記誘電正接が0.01以下であるポリマーが、式(1)~式(3)のいずれかで表される構成単位を有する液晶ポリマーを含む請求項6に記載の積層体。
     式(1) -O-Ar-CO-
     式(2) -CO-Ar-CO-
     式(3) -X-Ar-Y-
     式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
     式(4) -Ar-Z-Ar
     式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
  8.  前記誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である請求項4~請求項7のいずれか1項に記載の積層体。
  9.  前記ポリマーフィルムが、層Aと、前記層Aの少なくとも一方の面に設けられた層Bを有する請求項1~請求項8のいずれか1項に記載の積層体。
  10.  前記層Bの前記層A側とは反対側の表面の線膨張係数が、-20ppm/K~50ppm/Kである請求項9に記載の積層体。
  11.  前記層Bが、フィラーを含む請求項9又は請求項10に記載の積層体。
  12.  前記ポリマーフィルムと前記金属層又は金属配線との剥離強度が、0.5kN/m以上である請求項1~請求項11のいずれか1項に記載の積層体。
  13.  少なくとも一方の表面Xの線膨張係数が、内部の線膨張係数よりも小さい
     ポリマーフィルム。
  14.  前記表面Xの熱膨張係数が、-20ppm/K~50ppm/Kである請求項13に記載のポリマーフィルム。
  15.  前記表面Yの熱膨張係数が、10ppm/K~200ppm/Kである請求項13又は請求項14に記載のポリマーフィルム。
  16.  誘電正接が0.01以下であるポリマーを含む請求項13~請求項15のいずれか1項に記載のポリマーフィルム。
  17.  前記誘電正接が0.01以下であるポリマーが、フッ素系ポリマーである請求項16に記載のポリマーフィルム。
  18.  前記誘電正接が0.01以下であるポリマーが、液晶ポリマーである請求項16に記載のポリマーフィルム。
  19.  前記誘電正接が0.01以下であるポリマーが、式(1)~式(3)のいずれかで表される構成単位を有する液晶ポリマーを含む請求項18に記載のポリマーフィルム。
     式(1) -O-Ar-CO-
     式(2) -CO-Ar-CO-
     式(3) -X-Ar-Y-
     式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
     式(4) -Ar-Z-Ar
     式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
  20.  前記誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdが、200℃以上である請求項16~請求項19のいずれか1項に記載のポリマーフィルム。
  21.  層Aと、前記層Aの少なくとも一方の面に設けられた層Bを有する請求項13~請求項20のいずれか1項に記載のポリマーフィルム。
  22.  前記層Bの前記層A側とは反対側の表面の線膨張係数が、-20ppm/K~50ppm/Kである請求項21に記載のポリマーフィルム。
  23.  前記層Bが、フィラーを含む請求項21又は請求項22に記載のポリマーフィルム。
PCT/JP2021/047404 2020-12-21 2021-12-21 積層体、及び、ポリマーフィルム WO2022138666A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180082458.4A CN116635456A (zh) 2020-12-21 2021-12-21 层叠体及聚合物膜
JP2022571518A JPWO2022138666A1 (ja) 2020-12-21 2021-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-211786 2020-12-21
JP2020211786 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022138666A1 true WO2022138666A1 (ja) 2022-06-30

Family

ID=82159784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047404 WO2022138666A1 (ja) 2020-12-21 2021-12-21 積層体、及び、ポリマーフィルム

Country Status (4)

Country Link
US (1) US20230311453A1 (ja)
JP (1) JPWO2022138666A1 (ja)
CN (1) CN116635456A (ja)
WO (1) WO2022138666A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250860A (ja) * 1995-11-13 1996-09-27 Nippon Steel Chem Co Ltd フレキシブルプリント基板
JP2006192800A (ja) * 2005-01-14 2006-07-27 Kaneka Corp 多層押出ポリイミドフィルムおよびその利用
JP2008137178A (ja) * 2006-11-30 2008-06-19 Toray Ind Inc 金属層付きフィルム、これを用いたフレキシブル回路基板および半導体装置
JP2014526399A (ja) * 2011-09-07 2014-10-06 エルジー・ケム・リミテッド フッ素樹脂含有軟性金属積層板
WO2017150336A1 (ja) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 液晶ポリマー粒子を含有する樹脂組成物、それを用いた成形体、及びそれらの製造方法
WO2018061727A1 (ja) * 2016-09-29 2018-04-05 新日鉄住金化学株式会社 ポリイミドフィルム、銅張積層板及び回路基板
JP2020109166A (ja) * 2018-12-28 2020-07-16 日鉄ケミカル&マテリアル株式会社 ポリイミド前駆体組成物及びそれから生じるポリイミドフィルム及びフレキシブルデバイス、ポリイミドフィルムの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250860A (ja) * 1995-11-13 1996-09-27 Nippon Steel Chem Co Ltd フレキシブルプリント基板
JP2006192800A (ja) * 2005-01-14 2006-07-27 Kaneka Corp 多層押出ポリイミドフィルムおよびその利用
JP2008137178A (ja) * 2006-11-30 2008-06-19 Toray Ind Inc 金属層付きフィルム、これを用いたフレキシブル回路基板および半導体装置
JP2014526399A (ja) * 2011-09-07 2014-10-06 エルジー・ケム・リミテッド フッ素樹脂含有軟性金属積層板
WO2017150336A1 (ja) * 2016-02-29 2017-09-08 ポリプラスチックス株式会社 液晶ポリマー粒子を含有する樹脂組成物、それを用いた成形体、及びそれらの製造方法
WO2018061727A1 (ja) * 2016-09-29 2018-04-05 新日鉄住金化学株式会社 ポリイミドフィルム、銅張積層板及び回路基板
JP2020109166A (ja) * 2018-12-28 2020-07-16 日鉄ケミカル&マテリアル株式会社 ポリイミド前駆体組成物及びそれから生じるポリイミドフィルム及びフレキシブルデバイス、ポリイミドフィルムの製造方法

Also Published As

Publication number Publication date
US20230311453A1 (en) 2023-10-05
JPWO2022138666A1 (ja) 2022-06-30
CN116635456A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2022163776A1 (ja) ポリマーフィルム、並びに、積層体及びその製造方法
WO2022114159A1 (ja) 液晶ポリマーフィルム及びその製造方法、並びに、積層体
WO2022113964A1 (ja) フィルム及び積層体
WO2022138665A1 (ja) ポリマーフィルム、並びに、積層体及びその製造方法
US20230321958A1 (en) Liquid crystal polymer film, polymer film, and laminate
US20230292434A1 (en) Liquid crystal polymer film, polymer film, and laminate
WO2023191010A1 (ja) フィルム、及び、積層体
WO2022113963A1 (ja) ポリマーフィルム、及び、積層体
WO2022113973A1 (ja) ポリマーフィルム、及び、積層体
WO2022176914A1 (ja) 液晶ポリマーフィルム、ポリマーフィルム、及び積層体
WO2022138666A1 (ja) 積層体、及び、ポリマーフィルム
WO2023191012A1 (ja) フィルム、並びに、積層体及びその製造方法
WO2023191011A1 (ja) フィルム、及び、積層体
WO2024048729A1 (ja) フィルム及びその製造方法、並びに、積層体
CN116568753A (zh) 液晶聚合物膜、聚合物膜及层叠体
CN118973817A (zh) 膜及层叠体
CN116648355A (zh) 聚合物膜及层叠体
WO2024048728A1 (ja) フィルム、及び、積層体
WO2024127887A1 (ja) ポリマー組成物、ポリマーフィルム前駆体、ポリマーフィルム、積層体前駆体、及び積層体
CN116457199A (zh) 液晶聚合物膜、聚合物膜及层叠体
JP2024034319A (ja) フィルム、及び、積層体
WO2024048727A1 (ja) 積層体、フィルム、熱硬化性フィルム、及び、配線基板の製造方法
WO2023233878A1 (ja) フィルム及び積層体
WO2024095641A1 (ja) ポリマーフィルム及び積層体
WO2024122276A1 (ja) ポリマーフィルム、積層体及び金属付き積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571518

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180082458.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910806

Country of ref document: EP

Kind code of ref document: A1