WO2024113944A1 - 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用 - Google Patents

可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用 Download PDF

Info

Publication number
WO2024113944A1
WO2024113944A1 PCT/CN2023/111577 CN2023111577W WO2024113944A1 WO 2024113944 A1 WO2024113944 A1 WO 2024113944A1 CN 2023111577 W CN2023111577 W CN 2023111577W WO 2024113944 A1 WO2024113944 A1 WO 2024113944A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
hot
preparation
5xxx aluminum
weld
Prior art date
Application number
PCT/CN2023/111577
Other languages
English (en)
French (fr)
Inventor
任思蒙
徐志强
李英东
李秀磊
王国军
刘贞山
黄鸣东
Original Assignee
中铝材料应用研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝材料应用研究院有限公司 filed Critical 中铝材料应用研究院有限公司
Priority to EP23801657.0A priority Critical patent/EP4400620A1/en
Publication of WO2024113944A1 publication Critical patent/WO2024113944A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present application relates to the technical field of aluminum alloys, and in particular to a 5XXX aluminum alloy capable of refining MIG weld grains, a preparation method thereof, and applications thereof.
  • aluminum and aluminum alloys are the preferred materials for energy conservation and emission reduction and lightweighting of new energy vehicles due to their low density, high specific strength, good corrosion resistance and welding performance.
  • 5XXX aluminum alloy is a non-heat-treatable aluminum alloy with many excellent properties. Its mechanical properties can usually be improved by alloying to reduce the situation of increasing the strength of structural parts by increasing the thickness of the material.
  • Annealed 5XXX series aluminum alloys have a high yield strength ratio and elongation, and can be used to produce automobile doors and hoods by cold stamping. After that, the parts are assembled to the body-in-white, and riveting, resistance spot welding, MIG welding and other connection processes can be used. MIG welding has the characteristics of low cost and high degree of automation, and is currently widely used in aluminum alloy automobile bodies. Therefore, higher requirements are also placed on the weld strength of 5XXX aluminum alloys, especially plates.
  • the main purpose of the present application is to provide a 5XXX aluminum alloy capable of refining the grains of a MIG weld, a preparation method and an application thereof, so as to solve the problem in the prior art that the weld grains of 5XXX aluminum alloy plates are coarse and the strength is low after MIG welding.
  • a preparation method of a 5XXX aluminum alloy capable of refining the grains of a MIG weld wherein the 5XXX aluminum alloy is composed of the following components by weight percentage: Mg 4.0-4.9%, Mn 0.2-0.5%, Ti 0.01-0.06%, Fe 0.1-0.35%, B ⁇ 0.05%, and the balance is Al and unavoidable impurities, each unavoidable impurity is ⁇ 0.05%, and the total impurities are ⁇ 0.15%;
  • the preparation method comprises the following steps: Step S1, melt-casting the raw material of 5XXX aluminum alloy plate to obtain an ingot, wherein Ti is added at 750-770°C through Al-5Ti-1B master alloy; Step S2, homogenizing the ingot at a temperature of 500-520°C for 3-5 hours to obtain a homogenized ingot; Step S3, hot-rolling the homogenized ingot to obtain a hot-rolled plate
  • the 5XXX aluminum alloy is composed of the following components, by weight percentage: Mg 4.5-4.6%, Mn 0.2-0.3%, Ti 0.03-0.06%, Fe 0.1-0.2%, B ⁇ 0.05%, and the balance is Al and inevitable impurities, each inevitable impurity is ⁇ 0.05%, and the total impurities are ⁇ 0.15%.
  • the hot rolling comprises: performing a first hot rolling on the homogenized ingot to obtain a first hot rolled plate, and then returning the first hot rolled plate to a furnace for heat preservation and then performing a second hot rolling to obtain a hot rolled plate.
  • the starting rolling temperature of the first hot rolling is 500-520° C.
  • the reduction per pass is 2-4 mm/pass
  • the thickness of the first hot rolled plate is 25-35 mm.
  • the temperature of the furnace is 505-515° C., and the time is 0.3-1 h.
  • the reduction of the second hot rolling pass is 2-4 mm/pass, and the thickness of the hot rolled plate is 4-6 mm.
  • the cold rolling reduction is 0.5-1 mm/pass, and the thickness of the cold rolled sheet is 2.5-3 mm; preferably, the annealing temperature is 500-520° C., and the time is 40-60 s.
  • a 5XXX aluminum alloy capable of refining the grains of a MIG weld is provided, which is obtained by the preparation method of the present application.
  • a method for welding aluminum alloy is provided, using the above-mentioned 5XXX aluminum alloy as a base material and performing MIG welding with a welding wire, preferably an ER4043 welding wire.
  • a weld joint is provided, which is obtained using the above welding method, and the weld grain size of the weld joint is 30 to 40 ⁇ m.
  • This application uses a specific aluminum alloy element ratio and uses Al-5Ti-1B master alloy to add at a specific temperature, so that Al-5Ti-1B master alloy plays the role of a refiner. Combined with a specific processing and preparation process, it can effectively control the grain size of the weld zone and the fusion zone when applied to MIG welding, and refine the grains in the weld zone to 30-40 ⁇ m, and the fusion zone is transformed from the original columnar crystal to the equiaxed crystal. Moreover, since this application uses a specific aluminum alloy composition and Al-5Ti-1B master alloy, a low-temperature short-time homogenization treatment can be used to achieve a better uniform structure effect, which can further reduce production costs.
  • the 5XXX aluminum alloy of this application does not contain rare precious metals, and uses low-cost aluminum titanium boron as a master alloy to add titanium elements.
  • the cost is controllable, and there is no need to modify the production line. It can be processed and produced on a conventional production line.
  • the produced 5XXX aluminum alloy has good weldability. When the MIG welding process is used to prepare a welded joint with ER4043 welding wire, the weld structure grains can be effectively refined and the weld strength can be improved.
  • FIG1 shows the grain morphology of the alloy plate parent material according to Comparative Examples 1 to 3 and Examples 1 to 2 of the present application;
  • FIG2 shows grain morphologies of weld zones of MIG welded joints of alloy plates according to Comparative Examples 1 to 3 and Examples 1 to 2 of the present application;
  • FIG3 shows grain morphologies of fusion zones of MIG welded joints of alloy plates according to Comparative Examples 1 to 3 and Examples 1 to 2 of the present application.
  • FIG. 4 shows a microhardness curve of the MIG welded joint of the alloy plate according to Comparative Example 1 and Example 1 of the present application.
  • the prior art has the problem that the weld of 5XXX aluminum alloy sheet has coarse grains and low strength after MIG welding.
  • a method for preparing a 5XXX aluminum alloy that can refine the grains of MIG welds is provided.
  • the 5XXX aluminum alloy is composed of the following components: Mg 4.0-4.9%, Mn 0.2-0.5%, Ti 0.01-0.06%, Fe 0.1-0.35%, B ⁇ 0.05%, and the balance is Al and unavoidable impurities, each unavoidable impurity is ⁇ 0.05%, and the total impurities are ⁇ 0.15%;
  • the preparation method comprises the following steps: Steps: Step S1, melt-casting the raw material of 5XXX aluminum alloy plate to obtain an ingot, wherein Ti is added at 750-770°C through Al-5Ti-1B master alloy; Step S2, homogenizing the ingot at a temperature of 500-520°C for 3-5 hours to obtain a homogenized ingot; Step S3, hot-rolling the homogenized ingot to obtain a hot-rolled plate; Step S4, cold-rolling the hot-rolled plate to obtain a cold-rolled plate; Step S5, annealing the cold-rolled plate to obtain a 5XXX aluminum alloy capable of refining
  • the present application first melts and casts the raw materials of 5XXX aluminum alloy plates to obtain ingots, wherein Ti is added at 750-770°C through Al-5Ti-1B master alloy, so that Al-5Ti-1B master alloy can also play the role of aluminum alloy refiner; then the ingot is homogenized at a temperature of 500-520°C for 3-5 hours to obtain a homogenized ingot. Since the present application uses a specific aluminum alloy composition and Al-5Ti-1B master alloy, a low-temperature short-time homogenization treatment can be used to achieve a better uniform structure effect, which can further reduce production costs. Then the homogenized ingot is sequentially hot-rolled, cold-rolled, and annealed to obtain a 5XXX aluminum alloy that can refine the grains of the MIG weld.
  • the 5XXX aluminum alloy of the present application is solid solution strengthened by adding Mg element, fine grain strengthened by adding Ti and Mn, and the Fe content is controlled within a specific range. This is because when the content of the above elements is too low, the strengthening effect is insufficient, and when the content is too high, a variety of intermetallic compounds will be produced, which will have an adverse effect on the overall performance of the aluminum alloy.
  • the present application limits the content of each element within the above range to improve the metal structure, improve the weld strength by solid solution strengthening and fine grain strengthening, and achieve the effect of grain refinement in the weld zone and the fusion zone, so that it is more suitable for the preparation of 5XXX aluminum alloy using the preparation method of the present application, thereby obtaining a 5XXX aluminum alloy sheet with better welding performance and finer weld grains.
  • the 5XXX aluminum alloy of the present application does not contain rare precious metals, uses low-cost aluminum-titanium-boron intermediate alloy as Ti source and refiner, has controllable cost, does not need to modify the production line, can be processed and produced on a conventional production line, and the 5XXX aluminum alloy produced by combining a specific processing and preparation process has good weldability.
  • the ER4043 welding wire is used to prepare a welded joint using the MIG welding process, the weld structure grain can be effectively refined and the weld strength can be improved.
  • the titanium element is added through When Al-5Ti-1B master alloy is added, a small amount of B element will remain in the prepared aluminum alloy, and its content is generally less than 0.05%.
  • the original base material matrix is partially melted, and the TiAl 3 and TiB 2 particles formed by Al, Ti and a small amount of B will enter the weld pool as the matrix melts.
  • TiB 2 itself has a high melting point and is not easily dissolved and remains in a granular state, while TiAl 3 will dissolve in the molten pool and provide solute Ti to the aluminum melt.
  • the Ti dissolved in the melt will segregate to TiB 2 due to a smaller wetting angle with the TiB 2 particles, and form a TiAl 3 coating layer on the TiB 2 particles.
  • a large number of TiB 2 particles coated with a thin layer of TiAl 3 will serve as an effective nucleation substrate to promote nucleation.
  • the TiAl 3 phase that was not completely dissolved in the molten pool underwent a peritectic reaction, which also directly played a nucleation role.
  • the weld solidified uniform and fine equiaxed crystals were formed in the weld area, and the columnar crystals were transformed into equiaxed crystals in the fusion zone.
  • the grain structure of the weld joint was refined as a whole, and the fine grains were plastically deformed by external forces and could be dispersed in more grains.
  • the fine grains increased the grain boundary area, which played a role in hindering dislocation movement.
  • fine crystals have better mechanical properties than coarse-grained materials. Therefore, the hardness of the weld zone and the fusion zone of the weld joint can be greatly improved.
  • the 5XXX aluminum alloy is composed of the following components by weight percentage: Mg 4.5-4.6%, Mn 0.2-0.3%, Ti 0.03-0.06%, Fe 0.1-0.2%, B ⁇ 0.05%, the balance is Al and inevitable impurities, each inevitable impurity is ⁇ 0.05%, and the total impurities are ⁇ 0.15%.
  • the aluminum alloy with the above composition is better for refining the weld microstructure grain and improving the weld strength when used for MIG welding.
  • the aluminum alloy composition is, by weight percentage, Mg 4.56%, Mn 0.23%, Ti 0.041%, Fe 0.19%, B ⁇ 0.05%, the balance is Al and inevitable impurities; or, the aluminum alloy composition is: Mg 4.54%, Mn 0.23%, Ti 0.058%, Fe 0.19%, B ⁇ 0.05%, the balance is Al and inevitable impurities; or, the aluminum alloy composition is: Mg 4.00%, Mn 0.20%, Ti 0.010%, Fe 0.10%, B ⁇ 0.05%, the balance is Al and inevitable impurities.
  • the aluminum alloy composition is: Mg 4.50%, Mn 0.20%, Ti 0.030%, Fe 0.10%, B ⁇ 0.05%, the balance is Al and inevitable impurities; or, the aluminum alloy composition is: Mg 4.60%, Mn 0.30%, Ti 0.060%, Fe 0.20%, B ⁇ 0.05%, the balance is Al and inevitable impurities; or, the aluminum alloy composition is: Mg 4.90%, Mn 0.50%, Ti 0.060%, Fe 0.35%, B ⁇ 0.05%, the balance is Al and inevitable impurities.
  • the hot rolling includes: performing a first hot rolling on the homogenized ingot to obtain a first hot rolled plate, and then returning the first hot rolled plate to the furnace for heat preservation and performing a second hot rolling to obtain a hot rolled plate.
  • the two hot rollings are conducive to uniformly rolling the aluminum alloy to the target thickness, the uniformity of the structure of the material is better, the grains themselves are further refined, and the strength performance is improved.
  • Controlling the start rolling temperature is beneficial to plastic deformation and controlling the final rolling temperature of the material. If the start rolling temperature is too low, the hot working performance of the alloy will be reduced, and cracking and edge cracking will occur easily during the rolling process. If the start rolling temperature is too high, it will not improve the performance but will waste energy. In view of this, in a preferred embodiment, the start rolling temperature of the first hot rolling is 500-520°C, the pass reduction is 2-4mm/pass, and the thickness of the first hot rolled plate is 25-35mm. Under the above-mentioned first hot rolling process conditions, it is more conducive to the smooth progress of the deformation process and the subsequent heat treatment process.
  • the return to the furnace for heat preservation can reduce the heat loss caused by convection and radiation during the hot rolling process, ensure that the set high temperature is maintained throughout the hot rolling process, and avoid the adverse effect of large temperature differences between the inside and outside of the rolled workpiece on the material quality.
  • the temperature of the remelting and holding is 505-515°C and the time is 0.3-1h, which can better maintain the uniformity of the composition and organization of the material and provide a good foundation for the subsequent acquisition of fine-grained organization of the parent material.
  • the reduction amount of the second hot rolling pass is consistent with that of the first hot rolling pass to make the material structure more uniform. Therefore, in a preferred embodiment, the reduction amount of the second hot rolling pass is 2-4 mm/pass, and the thickness of the hot rolled plate is 4-6 mm.
  • the cold rolling reduction is 0.5-1 mm/pass, and the thickness of the cold rolled plate is 2.5-3 mm.
  • Annealing can control the size and orientation of recrystallized grains and improve the anisotropy of the alloy. Therefore, preferably, the annealing temperature is 500-520°C and the time is 40-60s, which can better make the grains of the alloy meet the refinement requirements.
  • a 5XXX aluminum alloy capable of refining the grains of a MIG weld is provided, which is obtained by the preparation method of the present application.
  • a method for welding aluminum alloy is also provided, using the above-mentioned 5XXX aluminum alloy as a base material and performing MIG welding with a welding wire, preferably an ER4043 welding wire.
  • a weld joint is provided, which is obtained by the above welding method, and the weld grain size of the weld joint is 30-40 ⁇ m, the weld grain is well refined, and the strength is greatly improved.
  • the MIG welding process parameters can be conventional parameters in the art.
  • composition of the 5XXX aluminum alloy of Example 1 is shown in Table 1, and the preparation method is as follows:
  • Example 2 The difference between Examples 2 to 6 and Example 1 is that the components of the 5XXX aluminum alloy are different, see Table 1 for details.
  • composition of the 5XXX aluminum alloy of Example 7 is the same as that of Example 1, and the preparation method is as follows:
  • composition of the 5XXX aluminum alloy of Example 8 is the same as that of Example 1, and the preparation method is as follows:
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that the components of the 5XXX aluminum alloy are different, and the Ti element is added in the form of an Al-5Ti-0.2B master alloy during the melting and casting process, as shown in Table 1 for details.
  • Comparative Example 2 The difference between Comparative Example 2 and Example 1 is that the components of the 5XXX aluminum alloy are different, and the Ti element is added in the form of an Al-5Ti-0.2B master alloy during the melting and casting process, as shown in Table 1 for details.
  • composition of the 5XXX aluminum alloy of Comparative Example 3 is shown in Table 1, and the preparation method is as follows:
  • Comparative Example 4 The difference between Comparative Example 4 and Example 1 is that the components of the 5XXX aluminum alloy are different, see Table 1 for details.
  • the grain size of the joint weld zone was rated with reference to GB/T 3246.1-2012 Deformed aluminum and aluminum alloy product organization test method Part 1: Microstructure test method.
  • the parent material and weld grain size and grain size grade of Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Table 2.
  • the parent material grain morphology of the alloy plate of Examples 1 to 2 and Comparative Examples 1 to 3 is shown in Figure 1; the grain morphology of the weld zone of the MIG welded joint of the alloy plate of Examples 1 to 2 and Comparative Examples 1 to 3 is shown in Figure 2; the grain morphology of the fusion zone of the MIG welded joint of the alloy plate of Examples 1 to 2 and Comparative Examples 1 to 3 is shown in Figure 3; the microhardness curve of the MIG welded joint of the alloy plate of Example 1 and Comparative Example 1 is shown in Figure 4.
  • the embodiments of the present application use a specific ratio of aluminum alloy elements and use Al-5Ti-1B intermediate alloy to add at a specific temperature, so that the Al-5Ti-1B intermediate alloy plays the role of a refiner.
  • a specific processing and preparation process while ensuring a high degree of grain refinement of the parent material, it can effectively control the grain size of the weld zone and the fusion zone when applied to MIG welding, and refine the grains in the weld zone to 30-40 ⁇ m, and transform the fusion zone from the original columnar crystal to equiaxed crystal.
  • the present application uses a specific aluminum alloy composition and Al-5Ti-1B intermediate alloy, a low-temperature short-time homogenization treatment can be used to achieve a better uniform structure, which can further reduce production costs.
  • the 5XXX aluminum alloy of the present application does not contain rare precious metals, and uses low-cost aluminum titanium boron as an intermediate alloy to add titanium elements. The cost is controllable, and there is no need to modify the production line. It can be processed and produced on a conventional production line. The produced 5XXX aluminum alloy has good weldability. When the MIG welding process is used with ER4043 welding wire to prepare the weld joint, the weld microstructure grain can be effectively refined and the weld strength can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

提供了一种可细化MIG焊缝晶粒的5XXX铝合金、其制备方法及应用。按重量百分比计,5XXX铝合金由以下成分组成:Mg 4.0~4.9%、Mn 0.2~0.5%、Ti0.01~0.06%、Fe 0.1~0.35%、B<0.05%,余量为Al及不可避免的杂质;制备方法包括将原料进行熔铸,Ti通过Al-5Ti-1B中间合金在750~770℃加入,得到铸锭,进行500~520℃均匀化处理3~5h,得到均匀化铸锭进行热轧、冷轧和退火。5XXX铝合金应用于MIG焊可以有效调控焊缝区和熔合区晶粒尺寸,将焊缝区晶粒细化至30~40μm,极大提高焊缝强度。

Description

可细化MIG焊缝晶粒的5XXX铝合金、其制备方法及应用
本申请要求申请日为2022年11月30日的中国专利申请202211519706.X的优先权。本申请引用上述中国专利申请的全文。
技术领域
本申请涉及铝合金技术领域,具体而言,涉及一种可细化MIG焊缝晶粒的5XXX铝合金、其制备方法及应用。
背景技术
在众多金属材料中,铝及铝合金因其密度小、比强度高、拥有较好的耐蚀性能和焊接性能,是节能减排,实现新能源汽车轻量化的首选材料。5XXX铝合金为不可热处理强化铝合金,具有诸多优良性能,通常可通过合金化手段提高其力学性能,以减少依靠增加材料厚度提升结构件强度的情况。
退火态的5XXX系铝合金具有较高屈强比和延伸率,可采用冷冲压的加工方式生产出汽车车门和发罩机盖,之后进行零部件总成至白车身,可采用铆接、电阻点焊、MIG焊等连接工艺。MIG焊具有成本低廉、自动化程度高的特定,目前广泛应用于铝合金汽车车身上,由此,也对5XXX铝合金,尤其是板材的焊缝强度提出了更高要求。
发明内容
本申请的主要目的在于提供一种可细化MIG焊缝晶粒的5XXX铝合金、其制备方法及应用,以解决现有技术中5XXX铝合金板材经MIG焊接后,焊缝晶粒粗大、强度低的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种可细化MIG焊缝晶粒的5XXX铝合金的制备方法,按重量百分比计,5XXX铝合金由以下成分组成:Mg 4.0~4.9%、Mn 0.2~0.5%、Ti 0.01~0.06%、Fe 0.1~0.35%、B<0.05%,余量为Al及不可避免的杂质,每种不可避免的杂质<0.05%,总杂质<0.15%;制备方法包括以下步骤:步骤S1,将5XXX铝合金板材的原料进行熔铸,得到铸锭,其中Ti通过Al-5Ti-1B中间合金在750~770℃加入;步骤S2,将铸锭进行均匀化处理,温度为500~520℃,时间为3~5h,得到均匀化铸锭;步骤S3,将均匀化铸锭进行热轧,得到热轧板;步骤S4,将热轧板进行冷轧,得到冷轧板;步骤S5,将冷轧板进行退火处理,得到可细化MIG焊缝晶粒的5XXX铝合金。
进一步地,按重量百分比计,5XXX铝合金由以下成分组成:Mg 4.5~4.6%、Mn 0.2~0.3%、Ti 0.03~0.06%、Fe 0.1~0.2%、B<0.05%,余量为Al及不可避免的杂质,每种不可避免的杂质<0.05%,总杂质<0.15%。
进一步地,热轧包括:将均匀化铸锭进行第一热轧,得到第一热轧板,然后将第一热轧板回炉保温后进行第二热轧,得到热轧板。
进一步地,第一热轧的开轧温度为500~520℃,道次压下量为2~4mm/道次,第一热轧板的厚度为25~35mm。
进一步地,回炉保温的温度为505~515℃,时间为0.3~1h。
进一步地,优选地,第二热轧的道次压下量为2~4mm/道次,热轧板的厚度为4~6mm。
进一步地,冷轧的道次压下量为0.5~1mm/道次,冷轧板的厚度为2.5~3mm;优选地,退火处理的温度为500~520℃,时间为40~60s。
根据本申请的另一方面,提供了一种可细化MIG焊缝晶粒的5XXX铝合金,由本申请的制备方法得到。
根据本申请的另一方面,提供了一种铝合金的焊接方法,采用上述的5XXX铝合金作为母材,与焊丝进行MIG焊接,优选焊丝为ER4043焊丝。
根据本申请的另一方面,提供了一种焊接接头,使用上述焊接方法得到,焊接接头的焊缝晶粒尺寸为30~40μm。
本申请通过使用特定的铝合金元素配比,并采用Al-5Ti-1B中间合金在特定温度下进行添加,使得Al-5Ti-1B中间合金发挥细化剂的作用,结合特定加工制备工艺,应用于MIG焊时可以有效调控焊缝区和熔合区晶粒尺寸,将焊缝区晶粒细化至30~40μm,熔合区由原有柱状晶向等轴晶转变。而且由于本申请使用特定的铝合金成分和Al-5Ti-1B中间合金,从而可以使用低温短时间均匀化处理即可达到较好的均匀组织的效果,可以进一步降低生产成本。本申请的5XXX铝合金不含稀有贵金属,而且采用低成本的铝钛硼作为中间合金添加钛元素,成本可控,无需改造生产线,可在常规生产线上实现加工生产,生产出的5XXX铝合金具有较好的焊接性,与ER4043焊丝应用MIG焊接工艺制备焊接接头时,可有效细化焊缝组织晶粒,提高焊缝强度。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据对比例1至3和本申请实施例1至2的合金板材母材晶粒形貌图;
图2示出了根据对比例1至3和本申请实施例1至2的合金板材MIG焊接接头焊缝区晶粒形貌图;
图3示出了根据对比例1至3和本申请实施例1至2的合金板材MIG焊接接头熔合区晶粒形貌图;以及
图4示出了根据对比例1和本申请实施例1的合金板材MIG焊接接头显微硬度曲线图。
其中,上述附图包括以下附图标记:
a、实施例1;b、实施例2;c、对比例1;d、对比例2;e、对比例3。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
正如本申请背景技术中所述,现有技术中存在5XXX铝合金板材经MIG焊接后,焊缝晶粒粗大、强度低的问题。为了解决上述问题,在本申请一种典型的实施方式中,提供了一种可细化MIG焊缝晶粒的5XXX铝合金的制备方法,按重量百分比计,5XXX铝合金由以下成分组成:Mg 4.0~4.9%、Mn 0.2~0.5%、Ti0.01~0.06%、Fe 0.1~0.35%、B<0.05%,余量为Al及不可避免的杂质,每种不可避免的杂质<0.05%,总杂质<0.15%;制备方法包括以下步骤:步骤S1,将5XXX铝合金板材的原料进行熔铸,得到铸锭,其中Ti通过Al-5Ti-1B中间合金在750~770℃加入;步骤S2,将铸锭进行均匀化处理,温度为500~520℃,时间为3~5h,得到均匀化铸锭;步骤S3,将均匀化铸锭进行热轧,得到热轧板;步骤S4,将热轧板进行冷轧,得到冷轧板;步骤S5,将冷轧板进行退火处理,得到可细化MIG焊缝晶粒的5XXX铝合金。
本申请先将5XXX铝合金板材的原料进行熔铸,得到铸锭,其中Ti通过Al-5Ti-1B中间合金在750~770℃加入,使得Al-5Ti-1B中间合金同时发挥铝合金细化剂的作用;随后将铸锭进行均匀化处理,温度为500~520℃,时间为3~5h,得到均匀化铸锭,由于本申请使用特定的铝合金成分和Al-5Ti-1B中间合金,从而可以使用低温短时间均匀化处理即可达到较好的均匀组织的效果,可以进一步降低生产成本。然后将均匀化铸锭依次进行热轧、冷轧、退火处理,得到可细化MIG焊缝晶粒的5XXX铝合金。
本申请的5XXX铝合金通过添加Mg元素进行固溶强化,通过添加Ti、Mn进行细晶强化,并控制Fe含量在特定范围内,这是因为当上述元素含量过低时,强化效果不足,含量过高时又会产生多种金属间化合物,对铝合金整体性能产生不利影响,因此本申请限定各元素含量在上述范围,以改善金属组织,通过固溶强化和细晶强化提升焊缝强度,并达到焊缝区和熔合区晶粒细化的效果,使其更适合于使用本申请的制备方法进行5XXX铝合金的制备,从而得到焊接性能更加优异、焊缝晶粒更加细化的5XXX铝合金板材。而且本申请的5XXX铝合金不含稀有贵金属,采用低成本的铝钛硼中间合金作为Ti源和细化剂,成本可控,无需改造生产线,可在常规生产线上实现加工生产,结合特定加工制备工艺生产出的5XXX铝合金具有较好的焊接性,与ER4043焊丝应用MIG焊接工艺制备焊接接头时,可有效细化焊缝组织晶粒,提高焊缝强度。
发明人在研究中发现,在MIG焊接过程中,当5XXX铝合金的晶粒细化程度较高时,其自身强度等性能将会得到提升,在焊接时,强度较高的5XXX铝合金母材一方面可以使得焊缝强度更进一步提升。另一方面,由本申请的5XXX铝合金母材的制备过程中,钛元素通过 Al-5Ti-1B中间合金加入,制备得到的铝合金中会遗留少量的B元素,其含量一般<0.05%。在MIG焊接过程中,原有母材基体局部熔化,Al、Ti和少量B形成的TiAl3和TiB2颗粒会随着基体的熔化进入焊缝熔池中,TiB2自身熔点高不易被溶解保持颗粒状,而TiAl3在熔池中会发生溶解并向铝熔体提供溶质Ti,溶解在熔体中的Ti由于与TiB2粒子有较小的润湿角,将会向TiB2发生偏聚,并在TiB2颗粒上形成TiAl3包裹层,在焊缝凝固过程中,大量被TiAl3薄层包裹的TiB2粒子将作为有效的形核基底,促进形核。
同时,在熔池中未被彻底溶解的TiAl3相发生包晶反应,也直接起到了形核作用,焊缝凝固后在焊缝区形成均匀细小的等轴晶,在熔合区由柱状晶向等轴晶转变,焊接接头晶粒组织整体得到细化,细晶粒受到外力发生塑性变形可分散在更多的晶粒内,同时细晶增加晶界面积,起到阻碍位错运动的作用,常温下细晶比粗晶材料具有更佳的力学性能,因此焊接接头焊缝区和熔合区的硬度均可以得到较大提升。
在一种优选的实施方式中,按重量百分比计,5XXX铝合金由以下成分组成:Mg 4.5~4.6%、Mn 0.2~0.3%、Ti 0.03~0.06%、Fe 0.1~0.2%、B<0.05%,余量为Al及不可避免的杂质,每种不可避免的杂质<0.05%,总杂质<0.15%。上述成分的铝合金用于MIG焊时细化焊缝组织晶粒、提高焊缝强度的效果更佳。
更优选地,按重量百分比计,铝合金成分为:Mg 4.56%、Mn 0.23%、Ti 0.041%、Fe 0.19%、B<0.05%,余量为Al及不可避免的杂质;或者,铝合金成分为:Mg 4.54%、Mn 0.23%、Ti 0.058%、Fe 0.19%、B<0.05%,余量为Al及不可避免的杂质;或者,铝合金成分为:Mg 4.00%、Mn 0.20%、Ti 0.010%、Fe 0.10%、B<0.05%,余量为Al及不可避免的杂质;或者,铝合金成分为:Mg 4.50%、Mn 0.20%、Ti 0.030%、Fe 0.10%、B<0.05%,余量为Al及不可避免的杂质;或者,铝合金成分为:Mg 4.60%、Mn 0.30%、Ti 0.060%、Fe 0.20%、B<0.05%,余量为Al及不可避免的杂质;或者,铝合金成分为:Mg 4.90%、Mn 0.50%、Ti 0.060%、Fe 0.35%、B<0.05%,余量为Al及不可避免的杂质。
实际生产过程中,在一种优选的实施方式中,热轧包括:将均匀化铸锭进行第一热轧,得到第一热轧板,然后将第一热轧板回炉保温后进行第二热轧,得到热轧板。两次热轧有利于将铝合金均匀的轧制到目标厚度,材料各处组织均匀性更佳,自身晶粒也得到进一步细化,强度性能提升。
控制开轧温度有利于塑性变形以及控制材料的终轧温度,如果开轧温度过低,会降低合金的热加工性能,容易导致轧制过程中出现开裂和边裂等现象,过高又不会带来性能的提高反而导致能源浪费,鉴于此,在一种优选的实施方式中,第一热轧的开轧温度为500~520℃,道次压下量为2~4mm/道次,第一热轧板的厚度为25~35mm。在上述第一热轧工艺条件下,更有利于变形过程以及后续的热处理工艺顺利进行。
回炉保温可以降低热轧过程中对流和辐射造成的热量损耗,保证整个热轧工序中都具有设定高温,避免轧制工件内外温差大对材料质量产生不良影响。因此,在一种优选的实施方 式中,回炉保温的温度为505~515℃,时间为0.3~1h,可以更好地保持材料具有成分组织均匀性,为后续母材获得细晶粒组织提供良好基础。
第二热轧与第一热轧的道次压下量保持一致,以使得材料组织更加均匀,因此,在一种优选的实施方式中,第二热轧的道次压下量为2~4mm/道次,热轧板的厚度为4~6mm。
冷轧率太大或太小都会导致板材各向异性大,降低铝合金性能,并导致晶粒粗大,因此,在一种优选的实施方式中,冷轧的道次压下量为0.5~1mm/道次,冷轧板的厚度为2.5~3mm。
退火可以控制再结晶晶粒的大小和取向,改善合金的各项异性,因此,优选地,退火处理的温度为500~520℃,时间为40~60s,能更好地使合金的晶粒达到细化要求。
在本申请又一种典型的实施方式中,还提供了一种可细化MIG焊缝晶粒的5XXX铝合金,由本申请的制备方法得到。
在本申请又一种典型的实施方式中,还提供了一种铝合金的焊接方法,采用上述5XXX铝合金作为母材,与焊丝进行MIG焊接,优选焊丝为ER4043焊丝。
在本申请又一种典型的实施方式中,还提供了一种焊接接头,使用上述焊接方法得到,焊接接头的焊缝晶粒尺寸为30~40μm,焊缝晶粒得到良好细化,强度得到较大提升。其中MIG焊接工艺参数使用本领域常规参数即可。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
实施例1的5XXX铝合金的组分见表1,制备方法如下:
(1)将铝合金组分原料进行熔铸,熔铸过程中Ti元素通过Al-5Ti-1B中间合金形式加入,加入温度为760℃,得到铸锭;
(2)将铸锭进行均匀化处理,均匀化制度为510℃,保温3小时,得到均匀化铸锭;
(3)将均匀化处理后的铸锭进行热轧,开轧温度为510℃,按照3mm/道次轧制至30mm后,回炉510℃保温0.5小时,继续按照3mm/道次轧制至5mm,自然冷却到室温,得到热轧板;
(4)将热轧板进行冷轧,按照1mm/道次冷轧至2.5mm,得到冷轧板;
(5)将冷轧板进行退火,退火制度为520℃,时间60s,得到5XXX铝合金的板材;
(6)将上述5XXX铝合金板材作为母材,采用ER4043焊丝,应用MIG焊,焊接参数为104A,0.8m/min进行焊接,对母材和焊接后的接头取金相进行观察,测量焊缝区晶粒度。
实施例2至6
实施例2至6与实施例1的区别在于,5XXX铝合金的组分不同,详见表1。
实施例7
实施例7的5XXX铝合金的组分同实施例1,制备方法如下:
(1)将铝合金组分原料进行熔铸,熔铸过程中Ti元素通过Al-5Ti-1B中间合金形式加入,加入温度为750℃,得到铸锭;
(2)将铸锭进行均匀化处理,均匀化制度为500℃,保温5小时,得到均匀化铸锭;
(3)将均匀化处理后的铸锭进行热轧,开轧温度为500℃,按照2mm/道次轧制至35mm后,回炉505℃保温1小时,继续按照2mm/道次轧制至6mm,自然冷却到室温,得到热轧板;
(4)将热轧板进行冷轧,按照0.5mm/道次冷轧至3mm,得到冷轧板;
(5)将冷轧板进行退火,退火制度为500℃,时间60s,得到5XXX铝合金的板材;
(6)将上述5XXX铝合金板材作为母材,采用ER4043焊丝,应用MIG焊,焊接参数为104A,0.8m/min进行焊接,对母材和焊接后的接头测量焊缝区晶粒度。
实施例8
实施例8的5XXX铝合金的组分同实施例1,制备方法如下:
(1)将铝合金组分原料进行熔铸,熔铸过程中Ti元素通过Al-5Ti-1B中间合金形式加入,加入温度为770℃,得到铸锭;
(2)将铸锭进行均匀化处理,均匀化制度为520℃,保温3小时,得到均匀化铸锭;
(3)将均匀化处理后的铸锭进行热轧,开轧温度为520℃,按照4mm/道次轧制至25mm后,回炉515℃保温0.3小时,继续按照4mm/道次轧制至4mm,自然冷却到室温,得到热轧板;
(4)将热轧板进行冷轧,按照1mm/道次冷轧至2.5mm,得到冷轧板;
(5)将冷轧板进行退火,退火制度为520℃,时间40s,得到5XXX铝合金的板材;
(6)将上述5XXX铝合金板材作为母材,采用ER4043焊丝,应用MIG焊,焊接参数为104A,0.8m/min进行焊接,对母材和焊接后的接头测量焊缝区晶粒度。
对比例1
对比例1与实施例1的区别在于,5XXX铝合金的组分不同,熔铸过程中Ti元素通过Al-5Ti-0.2B中间合金形式加入,详见表1。
对比例2
对比例2与实施例1的区别在于,5XXX铝合金的组分不同,熔铸过程中Ti元素通过Al-5Ti-0.2B中间合金形式加入,详见表1。
对比例3
对比例3的5XXX铝合金的组分见表1,制备方法如下:
(1)将铝合金组分原料进行熔铸,熔铸过程中Ti元素通过Al-5Ti-0.2B中间合金形式加入,加入温度为710℃,得到铸锭;
(2)将铸锭进行均匀化处理,均匀化制度为510℃,保温5小时,得到均匀化铸锭;
(3)将均匀化处理后的铸锭进行热轧,开轧温度为510℃,按照3mm/道次轧制至5mm,自然冷却到室温,得到热轧板;
(4)将热轧板进行冷轧,按照0.75mm/道次冷轧至2.5mm,得到冷轧板;
(5)将冷轧板进行退火,退火制度为500℃,时间30s,得到5XXX铝合金的板材;
(6)将上述5XXX铝合金板材作为母材,采用ER4043焊丝,应用MIG焊,焊接参数为104A,0.8m/min进行焊接,对母材和焊接后的接头取金相进行观察,测量焊缝区晶粒度。
对比例4
对比例4与实施例1的区别在于,5XXX铝合金的组分不同,详见表1。
参照《GB/T 3246.1-2012变形铝及铝合金制品组织检验方法第1部分:显微组织检验方法》对接头焊缝区晶粒度进行评级,实施例1至8和对比例1至4的母材及焊缝晶粒尺寸及晶粒度级别见表2。实施例1至2和对比例1至3的合金板材母材晶粒形貌图见图1;实施例1至2和对比例1至3的合金板材MIG焊接接头焊缝区晶粒形貌图见图2;实施例1至2和对比例1至3的合金板材MIG焊接接头熔合区晶粒形貌图见图3;实施例1和对比例1的合金板材MIG焊接接头显微硬度曲线图见图4。
表1

表2
由上可知,与对比例相比,本申请各实施例通过使用特定的铝合金元素配比,并采用Al-5Ti-1B中间合金在特定温度下进行添加,使得Al-5Ti-1B中间合金发挥细化剂的作用,结合特定加工制备工艺,在保证母材晶粒细化程度较高的同时,应用于MIG焊时可以有效调控焊缝区和熔合区晶粒尺寸,将焊缝区晶粒细化至30~40μm,熔合区由原有柱状晶向等轴晶转变。而且由于本申请使用特定的铝合金成分和Al-5Ti-1B中间合金,从而可以使用低温短时间均匀化处理即可达到较好的均匀组织的效果,可以进一步降低生产成本。本申请的5XXX铝合金不含稀有贵金属,而且采用低成本的铝钛硼作为中间合金添加钛元素,成本可控,无需改造生产线,可在常规生产线上实现加工生产,生产出的5XXX铝合金具有较好的焊接性, 与ER4043焊丝应用MIG焊接工艺制备焊接接头时,可有效细化焊缝组织晶粒,提高焊缝强度。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种可细化MIG焊缝晶粒的5XXX铝合金的制备方法,其特征在于,按重量百分比计,所述5XXX铝合金由以下成分组成:Mg 4.0~4.9%、Mn 0.2~0.5%、Ti 0.01~0.06%、Fe 0.1~0.35%、B<0.05%,余量为Al及不可避免的杂质,每种所述不可避免的杂质<0.05%,总杂质<0.15%;所述制备方法包括以下步骤:
    步骤S1,将所述5XXX铝合金板材的原料进行熔铸,得到铸锭,其中Ti通过A1-5Ti-1B中间合金在750~770℃加入;
    步骤S2,将所述铸锭进行均匀化处理,温度为500~520℃,时间为3~5h,得到均匀化铸锭;
    步骤S3,将所述均匀化铸锭进行热轧,得到热轧板;
    步骤S4,将所述热轧板进行冷轧,得到冷轧板;
    步骤S5,将所述冷轧板进行退火处理,得到所述可细化MIG焊缝晶粒的5XXX铝合金。
  2. 根据权利要求1所述的制备方法,其特征在于,按重量百分比计,所述5XXX铝合金由以下成分组成:Mg 4.5~4.6%、Mn 0.2~0.3%、Ti 0.03~0.06%、Fe 0.1~0.2%、B<0.05%,余量为Al及不可避免的杂质,每种所述不可避免的杂质<0.05%,总杂质<0.15%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述热轧包括:将所述均匀化铸锭进行第一热轧,得到第一热轧板,然后将所述第一热轧板回炉保温后进行第二热轧,得到所述热轧板。
  4. 根据权利要求3所述的制备方法,其特征在于,所述第一热轧的开轧温度为500~520℃,道次压下量为2~4mm/道次,所述第一热轧板的厚度为25~35mm。
  5. 根据权利要求3所述的制备方法,其特征在于,所述回炉保温的温度为505~515℃,时间为0.3~1h。
  6. 根据权利要求3所述的制备方法,其特征在于,所述第二热轧的道次压下量为2~4mm/道次,所述热轧板的厚度为4~6mm。
  7. 根据权利要求1或2所述的制备方法,其特征在于,所述冷轧的道次压下量为0.5~1mm/道次,所述冷轧板的厚度为2.5~3mm;和/或所述退火处理的温度为500~520℃,时间为40~60s。
  8. 一种可细化MIG焊缝晶粒的5XXX铝合金,其特征在于,由权利要求1至7中任一项所述的制备方法得到。
  9. 一种铝合金的焊接方法,其特征在于,采用权利要求8中所述的5XXX铝合金作为母材,与焊丝进行MIG焊接,所述焊丝为ER4043焊丝。
  10. 一种焊接接头,其特征在于,使用权利要求9中所述的焊接方法得到,所述焊接接头的焊缝晶粒尺寸为30~40μm。
PCT/CN2023/111577 2022-11-30 2023-08-07 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用 WO2024113944A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23801657.0A EP4400620A1 (en) 2022-11-30 2023-08-07 5xxx aluminum alloy capable of refining mig weld grains, preparation method therefor, use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211519706.XA CN115652152B (zh) 2022-11-30 2022-11-30 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用
CN202211519706.X 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024113944A1 true WO2024113944A1 (zh) 2024-06-06

Family

ID=85019340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111577 WO2024113944A1 (zh) 2022-11-30 2023-08-07 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用

Country Status (3)

Country Link
EP (1) EP4400620A1 (zh)
CN (1) CN115652152B (zh)
WO (1) WO2024113944A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652152B (zh) * 2022-11-30 2023-03-17 中铝材料应用研究院有限公司 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080299001A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
JP2017128758A (ja) * 2016-01-19 2017-07-27 株式会社Uacj 導電部材用アルミニウム合金板及びその製造方法並びに電気接続部品
CN109988948A (zh) * 2019-04-26 2019-07-09 郑州明泰实业有限公司 一种汽车内板用5182-o状态铝合金板材及其生产方法
CN111763857A (zh) * 2020-07-08 2020-10-13 甘肃东兴铝业有限公司 一种制备5182铝合金带坯的方法
CN113122760A (zh) * 2021-03-11 2021-07-16 中南大学 一种细晶Goss铝合金板材及其制备方法
CN115652152A (zh) * 2022-11-30 2023-01-31 中铝材料应用研究院有限公司 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241064B2 (ja) * 1991-07-05 2001-12-25 住友軽金属工業株式会社 耐軟化性に優れた飲料缶蓋用アルミニウム合金硬質板の製造方法
FR2837499B1 (fr) * 2002-03-22 2004-05-21 Pechiney Rhenalu PRODUITS EN ALLIAGES Al-Mg POUR CONSTRUCTION SOUDEE
JP6270844B2 (ja) * 2012-08-22 2018-01-31 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH 耐粒界腐食性アルミニウム合金ストリップ、およびその製造方法
ES2700140T3 (es) * 2015-06-25 2019-02-14 Hydro Aluminium Rolled Prod Banda de AlMg de alta resistencia y adecuadamente conformable así como procedimiento para su fabricación
CN109207814A (zh) * 2018-10-26 2019-01-15 中铝瑞闽股份有限公司 阳极氧化后具有良好光泽度的5系铝合金板带材及其制造方法
CN112553485A (zh) * 2020-11-23 2021-03-26 天津忠旺铝业有限公司 一种高成形性5754铝合金板的制备工艺
CN112746204B (zh) * 2020-12-28 2022-05-20 浙江永杰铝业有限公司 一种铝合金板材及其制备方法
CN113042564B (zh) * 2021-03-12 2023-03-10 浙江永杰铝业有限公司 一种铝镁合金带材及其制备方法
CN114231801A (zh) * 2021-11-29 2022-03-25 河南科创铝基新材料有限公司 一种耐腐蚀铝合金船板及其生产方法
CN114457265B (zh) * 2022-01-28 2023-06-02 河南明晟新材料科技有限公司 一种高强度高疲劳性能6系铝合金、气瓶及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080299001A1 (en) * 2007-05-31 2008-12-04 Alcan International Limited Aluminum alloy formulations for reduced hot tear susceptibility
JP2017128758A (ja) * 2016-01-19 2017-07-27 株式会社Uacj 導電部材用アルミニウム合金板及びその製造方法並びに電気接続部品
CN109988948A (zh) * 2019-04-26 2019-07-09 郑州明泰实业有限公司 一种汽车内板用5182-o状态铝合金板材及其生产方法
CN111763857A (zh) * 2020-07-08 2020-10-13 甘肃东兴铝业有限公司 一种制备5182铝合金带坯的方法
CN113122760A (zh) * 2021-03-11 2021-07-16 中南大学 一种细晶Goss铝合金板材及其制备方法
CN115652152A (zh) * 2022-11-30 2023-01-31 中铝材料应用研究院有限公司 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用

Also Published As

Publication number Publication date
CN115652152B (zh) 2023-03-17
CN115652152A (zh) 2023-01-31
EP4400620A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
JP4577218B2 (ja) ベークハード性およびヘム加工性に優れたAl−Mg−Si合金板の製造方法
CN107604222B (zh) 一种可时效强化的Al-Mg系合金及其制备方法
KR20010022600A (ko) 용접 구조체 및 브레이징 적용에 대한 고강도 알루미늄-마그네슘-아연-실리콘 합금
WO2024113944A1 (zh) 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用
CN108330361B (zh) 一种汽车保险杠用7000系合金材料及其生产方法
CN103255323B (zh) 一种Al-Mg-Zn-Cu合金及其制备方法
JP2020164946A (ja) Al−Mg−Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al−Mg−Si系アルミニウム合金冷延板及びその製造方法
CN113474479B (zh) 由铝合金制造板材或带材的方法和由此制成的板材、带材或成形件
JP6719219B2 (ja) 成形性に優れる高強度アルミニウム合金板及びその製造方法
JP2003138356A (ja) ろう付け性、成形性および耐エロージョン性に優れた熱交換器用高強度アルミニウム合金ブレージングシートの製造方法
JP4001059B2 (ja) 耐焼付軟化性に優れたアルミニウム合金板の製造方法
JPH10317113A (ja) 曲げ加工性に優れたアルミニウム押出し形材の製造方法
JP6335745B2 (ja) 成形性に優れる高強度アルミニウム合金板及びその製造方法
WO2020155316A1 (zh) 一种建筑用锌基合金板材及其制备方法
JPH0860283A (ja) Di缶胴用アルミニウム合金板およびその製造方法
JP2021095619A (ja) キャップ材用アルミニウム合金板及びその製造方法
JPH0463140B2 (zh)
JPH0387329A (ja) 焼付塗装用アルミニウム合金材の製造方法
CN115679167B (zh) 一种耐蚀可焊超高强铝合金及其制备方法
JPH02104642A (ja) 超塑性加工用アルミニウム合金板材の製造方法
JPH039183B2 (zh)
KR102393019B1 (ko) 알루미늄 합금판재 및 그 제조방법
JPH08165539A (ja) 熱処理型薄肉アルミニウム押出し形材及びその製造方法
JP2652016B2 (ja) 微細結晶粒を有するアルミニウム合金材料の製造方法
JP6809363B2 (ja) 成形性、曲げ加工性及び形状凍結性に優れた高強度アルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023801657

Country of ref document: EP

Effective date: 20231116