WO2020155316A1 - 一种建筑用锌基合金板材及其制备方法 - Google Patents

一种建筑用锌基合金板材及其制备方法 Download PDF

Info

Publication number
WO2020155316A1
WO2020155316A1 PCT/CN2019/077954 CN2019077954W WO2020155316A1 WO 2020155316 A1 WO2020155316 A1 WO 2020155316A1 CN 2019077954 W CN2019077954 W CN 2019077954W WO 2020155316 A1 WO2020155316 A1 WO 2020155316A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
alloy sheet
rolled
rolling
based alloy
Prior art date
Application number
PCT/CN2019/077954
Other languages
English (en)
French (fr)
Inventor
任玉平
李洪晓
李松
秦高梧
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020155316A1 publication Critical patent/WO2020155316A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon

Definitions

  • the invention belongs to the technical field of materials, and specifically relates to a zinc-based alloy plate for construction and a preparation method thereof.
  • Metal zinc has a very wide range of applications in industrial fields such as steel material anticorrosion, hardware devices, automobiles and construction industries. Among them, in air, water or other solutions, zinc is corroded in preference to steel materials, so most of the zinc consumption has been applied to the corrosion protection layer of steel materials.
  • zinc alloy is often used in the roof, exterior wall and drainage system of buildings such as airports, schools and exhibition halls. Especially in European and American countries, zinc alloy has been used in buildings for 200 years, and it is mainly Zn -Cu-Ti alloy sheet (thickness 0.5 ⁇ 1.0mm).
  • Zn-Cu-Ti alloy has very significant advantages as a building material, including the service life of the plate can be as long as 80-100 years, the corrosion product of the plate surface is blue-gray and is very compatible with most materials, and it also has the ability to self-heal from wounds. Reduce daily maintenance costs and workload.
  • Adding a small amount of Cu and Ti to the Zn-Cu-Ti alloy can significantly improve the creep resistance of the Zn alloy and obtain good comprehensive mechanical properties.
  • Cu and Ti are added in 0.5%-2.0% and 0.05%-0.4%, in addition to a small amount of Al, Mg, Cr, Fe and other elements. Except for a small amount of Cu element in solid solution, most of Cu and Ti are present in the alloy in the form of the second phase CuZn 4 and Zn 16 Ti (or Zn 15 Ti).
  • the tensile strength of most Zn-Cu-Ti alloy sheets reaches 160-210MPa in the longitudinal direction, 220-300MPa in the transverse direction, and the elongation reaches 28%-54% in the longitudinal direction and 16%-47% in the transverse direction.
  • the main producing areas of Zn-Cu-Ti alloy plates include the United States, Germany, France and other European countries; some domestic enterprises are also engaged in the development and production of related products, but most of the Zn-Cu-Ti alloy plates still need to be imported. Therefore, the development of a new type of Zn alloy and its preparation process, and further expansion of the scope of application of zinc alloys are of extremely important significance and value. To this end, this patent discloses a new type of Zn-Mn-Al-Ti-Mg alloy plate and its preparation method.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a method for preparing zinc alloys with high strength and high plasticity and their plates, through raw material fusion casting, homogenization treatment, hot rolling and cold rolling to obtain a certain thickness, with Plates with good mechanical properties at room temperature.
  • a zinc-based alloy sheet for construction including components and weight percentages: Mn: 0.5-1.2%, Al: 0.1-0.6%, Ti: 0.05-0.4%, Mg: 0.05-0.2%, unavoidable impurities ⁇ 0.2 %, the balance is Zn.
  • the said zinc-based alloy sheet for construction is subjected to a tensile test under the conditions of a tensile test at room temperature and a strain rate of 10 -3 s -1 .
  • the results show that:
  • the tensile strength of the hot-rolled Zn alloy sheet is 370-470MPa, the tensile yield strength is 300-420MPa, and the elongation is 20-40%; the tensile strength of the cold-rolled Zn alloy sheet is 400-450MPa.
  • the tensile yield strength is 320-400MPa, and the elongation rate is 25-50%.
  • the tensile strength of the hot-rolled Zn alloy sheet is 460 ⁇ 540MPa, the tensile yield strength is 350-470MPa, and the elongation is 15-25%; the tensile strength of the cold-rolled Zn alloy sheet is 470 ⁇ 500MPa, The tensile yield strength is 390-470MPa, and the elongation is 20-35%.
  • the neutral salt spray test measured the corrosion rate of zinc-based alloy sheets for construction to be 0.5-1mm/year.
  • the method for preparing the zinc-based alloy sheet for construction includes the following steps:
  • Ingredients weigh the ingredients according to the mass percentage of the zinc alloy
  • the mold is cooled by passing water during the casting process to obtain an ingot.
  • the cooling method is water cooling.
  • the cooling method is air cooling.
  • the thickness of the hot-rolled zinc alloy sheet is 2-5 mm, and the average grain size of the crystal grains in the hot-rolled zinc alloy sheet is 1-2 m.
  • the average grain size of the crystal grains in the cold-rolled zinc alloy sheet is 0.1-0.8 ⁇ m.
  • the heating equipment used is a resistance furnace.
  • the cooling method is air cooling.
  • the thickness of the zinc-based alloy sheet for construction is 0.3-2 mm.
  • the present invention discloses a new zinc alloy system and the preparation process for sheets of different thicknesses.
  • the product also has high strength, high plasticity and good creep resistance, which can meet the application needs of different fields.
  • the alloying elements mainly include manganese, titanium, aluminum, and magnesium.
  • the alloy prepared by the present invention part of the Mn element and all the Al elements are dissolved in the Zn matrix, and can also form The fine second phases MnZn 13 , Zn 16 Ti (or Zn 15 Ti) and Mg 2 Zn 11 .
  • the dynamic recrystallization process of the alloy is controlled by the rolling process, and the second phase particles are used to pin the grain boundaries to hinder the growth of the grains, so that the matrix grains are significantly refined to between 0.1-2 ⁇ m.
  • the formation of a large number of fine second phases MnZn 13 and Zn 16 Ti (or Zn 15 Ti) greatly improves the creep resistance of the alloy ⁇ Variable performance.
  • the zinc-based alloy sheet for construction of the present invention can be prepared through conventional rolling and intermediate annealing processes to obtain a sheet with a thickness of 0.3-5 mm.
  • the preparation process is simple and suitable for industrial production, and is more Zn- Cu-Ti alloy sheet has higher strength and plasticity.
  • Figure 1 is a photo of the microstructure of the hot-rolled zinc alloy sheet product in Example 5 of the present invention (the observation area is the side of the sheet, and the rolling direction is along the vertical direction);
  • Example 5 is a diagram of the grain size distribution of the hot rolled zinc alloy sheet product in Example 5 of the present invention.
  • Figure 3 is a room temperature tensile engineering stress-strain curve (stretched along the rolling direction) of the hot-rolled zinc alloy sheet product in Example 5 of the present invention
  • Example 4 is a photo of the microstructure of the cold-rolled zinc alloy sheet product in Example 5 of the present invention (the observation area is the side of the sheet, and the rolling direction is along the horizontal direction);
  • Figure 5 is a diagram of the crystal grain size distribution of cold rolled zinc alloy sheet products in Example 5 of the present invention.
  • Figure 6 is a room temperature tensile engineering stress-strain curve (stretched along the rolling direction) of the cold rolled zinc alloy sheet product in Example 5 of the present invention.
  • the purity of the metallic zinc used in the embodiment of the present invention is 99.995%, the Mn content of the Zn-Mn master alloy is 10%, the Ti content of the Zn-Ti master alloy is 3%, the Mg content of the Zn-Mg master alloy is 50%, and the metal Al The purity is 99.99%.
  • the Oxford HKL Channel 5EBSD system configured on the JSM-7800F field emission SEM produced by JEOL is used to observe and analyze the microstructure of the side sample of the sheet.
  • the standard used in the tensile test in the embodiment of the present invention is the national standard GB/T228-2002 "Metal Material Room Temperature Tensile Test Method", and the equipment is the AG-X100kN electronic universal material testing machine produced by Shimadzu Corporation.
  • the standard used in the neutral salt spray test in the following examples is the national standard GB/T10125-1997 "Artificial Atmosphere Corrosion Test-Salt Spray Test", and the corrosion rate is determined according to the corrosion weight.
  • the specific parameters are: the concentration of the NaCl solution It is 5%, and the pH value is between 6.5 and 7.2.
  • the corrosion rate is calculated after being placed in the salt spray box for 7 days.
  • the temperature accuracy of the resistance furnace equipment used in the following embodiments has an error of ⁇ 5°C.
  • a zinc-based alloy sheet for construction including components and mass percentages: Mn 1%, Al 0.5%, Ti 0.3%, Mg 0.15%, the total amount of other impurities does not exceed 0.2%, and the balance is Zn; metallic zinc, Zn-Mn master alloy, Zn-Ti master alloy, Zn-Mg master alloy and metallic aluminum are used as raw materials.
  • the preparation method of the zinc-based alloy sheet for construction includes the following steps:
  • the ratio heat the pure metallic zinc to 600°C, then add the metal Zn-Ti master alloy and Zn-Mn master alloy in turn after melting; after all the metals are melted, the melt temperature is reduced to 620°C, and the metal Al is heated with a graphite bell jar , The Zn-Mg master alloy is pressed into the alloy melt, stirred until it is uniformly mixed and allowed to stand for 15 minutes to obtain a zinc alloy melt. The temperature of the melt was reduced to 530°C, and hexachloroethane was added to the melt using a graphite bell jar. The amount of hexachloroethane added was 0.7% of the melt mass, and then it was allowed to stand for 15 minutes. The temperature of the melt was lowered to 490°C and casting was carried out. During the casting process, the mold was cooled by passing water to obtain an ingot with a size of 300 ⁇ 150 ⁇ 25 mm.
  • the ingot was kept at 300°C for 6h, and then heated to 390°C with the furnace for 3h, and then quickly water-cooled out of the furnace.
  • the ingot is kept at 300°C for 40 minutes and then hot rolled, with a single pass reduction of 20% and a rolling speed of 250 mm/s. After rolling for 3 passes, return the alloy plate to the furnace, keep it at 300°C for 15 minutes, and repeat the above rolling process. A total of 9 passes are rolled to obtain a hot-rolled zinc alloy sheet with a thickness of 4 mm and a grain size of 1.0 ⁇ m.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 440MPa
  • the tensile yield strength reaches 400MPa
  • the elongation reaches 28%.
  • Perpendicular to the rolling direction the hot-rolled zinc alloy sheet has a tensile strength of 520MPa, a tensile yield strength of 450MPa, and an elongation of 17%.
  • the hot-rolled plate is continuously rolled at room temperature, wherein the single-pass reduction is 10%, and the rolling speed is 80mm/s. After 5 passes of rolling, the alloy sheet is held at 300°C for 5 minutes for intermediate annealing, and then the above rolling process is repeated. After a total of 2 intermediate annealing and 10 rolling passes, a cold-rolled zinc alloy sheet with a thickness of 1.5 mm and a grain size of 0.8 ⁇ m is obtained. After cooling to room temperature, a zinc-based alloy sheet for construction is obtained. Along the rolling direction: the tensile strength of the zinc-based alloy sheet for construction reaches 435MPa, the tensile yield strength reaches 390MPa, and the elongation reaches 35%.
  • the tensile strength reaches 490MPa
  • the tensile yield strength reaches 420MPa
  • the elongation reaches 27%.
  • the neutral salt spray test measured the corrosion rate of the zinc-based alloy sheet for construction to be 0.6mm/year.
  • a zinc-based alloy sheet for construction including components and mass percentages: Mn 0.8%, Al 0.3%, Ti 0.4%, Mg 0.1%, the total amount of other impurities does not exceed 0.2%, and the balance is Zn; metallic zinc, Zn-Mn master alloy, Zn-Ti master alloy, Zn-Mg master alloy and metallic aluminum are used as raw materials.
  • the preparation method of the zinc-based alloy sheet for construction includes the following steps:
  • the pure metallic zinc is heated to 620°C, and after melting, the metal Zn-Ti master alloy and Zn-Mn master alloy are sequentially added; after all the metals are melted, the melt temperature is reduced to 560°C, and the metal Al is heated with a graphite bell jar , Zn-Mg master alloy is pressed into the alloy melt, stirred until it is uniformly mixed and allowed to stand for 20 minutes to obtain a zinc alloy melt.
  • the temperature of the melt was lowered to 540°C, and hexachloroethane was added to the melt using a graphite bell jar. The amount of hexachloroethane added was 0.5% of the melt mass, and then it was allowed to stand for 10 minutes.
  • the temperature of the melt was lowered to 480°C, and the casting was carried out. During the casting process, the mold was cooled by passing water to obtain an ingot with a size of 300 ⁇ 150 ⁇ 25 mm.
  • the ingot is kept at 320°C for 5 hours, then heated to 380°C with the furnace for 4 hours, and then quickly water-cooled out of the furnace.
  • the ingot After the ingot is kept at 250°C for 50 minutes, it is hot rolled, with a single pass reduction of 15% and a rolling speed of 150 mm/s. After 5 passes of rolling, the alloy plate was returned to the furnace, kept at 250°C for 20 minutes, and the above rolling process was repeated. A total of 13 passes are rolled to obtain a hot-rolled zinc alloy sheet with a thickness of 3 mm and a grain size of 1.8 ⁇ m.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 420MPa, the tensile yield strength reaches 360MPa, and the elongation reaches 32%.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 490MPa, the tensile yield strength reaches 400MPa, and the elongation reaches 23%.
  • the hot-rolled plate is continuously rolled at room temperature, wherein the single-pass reduction is 12%, and the rolling speed is 100mm/s. After 5 passes of rolling, the alloy sheet is kept at 200°C for 10 minutes for intermediate annealing, and then the above rolling process is repeated. A total of 1 intermediate annealing, 8 passes of rolling to obtain a cold-rolled zinc alloy sheet with a thickness of 1 mm and a grain size of 0.4 ⁇ m.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 420MPa
  • the tensile yield strength reaches 380MPa
  • the elongation rate reaches 44%.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 490MPa
  • the tensile yield strength reaches 430MPa
  • the elongation rate reaches 28%.
  • the neutral salt spray test measured the corrosion rate of the zinc-based alloy sheet for construction to be 0.7mm/year.
  • a zinc-based alloy sheet for construction including components and mass percentages: Mn 0.5%, Al 0.2%, Ti 0.05%, Mg 0.05%, the total amount of other impurities does not exceed 0.2%, and the balance is Zn; metallic zinc, Zn-Mn master alloy, Zn-Ti master alloy, Zn-Mg master alloy and metallic aluminum are used as raw materials.
  • the preparation method of the zinc-based alloy sheet for construction includes the following steps:
  • the pure metallic zinc is heated to 600°C, and after melting, the metal Zn-Ti master alloy and Zn-Mn master alloy are added in sequence; after all the metals are melted, the melt temperature is reduced to 540°C, and the metal Al is heated with a graphite bell jar , Zn-Mg master alloy is pressed into the alloy melt, stirred until it is uniformly mixed and allowed to stand for 30 minutes to obtain a zinc alloy melt.
  • the temperature of the melt was reduced to 520°C, and hexachloroethane was added to the melt using a graphite bell jar. The amount of hexachloroethane added was 0.4% of the melt mass, and then it was allowed to stand for 30 minutes.
  • the temperature of the melt was lowered to 480°C, and the casting was carried out. During the casting process, the mold was cooled by passing water to obtain an ingot with a size of 300 ⁇ 150 ⁇ 25 mm.
  • the ingot was kept at 340°C for 5 hours, then heated to 370°C with the furnace for 4 hours, and then quickly water-cooled out of the furnace.
  • the ingot is heated at 200°C for 60 minutes and then hot-rolled, with a single-pass reduction of 15% and a rolling speed of 200mm/s. After 4 passes of rolling, the alloy plate was returned to the furnace, kept at 200°C for 20 minutes, and the above rolling process was repeated. A total of 16 passes are rolled to obtain a hot-rolled zinc alloy sheet with a thickness of 2 mm and a grain size of 1.5 ⁇ m.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 370MPa
  • the tensile yield strength reaches 300MPa
  • the elongation rate reaches 40%.
  • Perpendicular to the rolling direction the tensile strength of the hot-rolled zinc alloy sheet reaches 460MPa, the tensile yield strength reaches 350MPa, and the elongation rate reaches 25%.
  • the hot-rolled plate is continuously rolled at room temperature, wherein the single-pass reduction is 15%, and the rolling speed is 120mm/s. After 3 passes of rolling, the alloy sheet is kept at 250°C for 10 minutes for intermediate annealing, and then the above rolling process is repeated. After a total of 2 intermediate annealing and 12 rolling passes, a cold-rolled zinc alloy sheet with a thickness of 0.3 mm and a grain size of 0.6 ⁇ m is obtained.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 400MPa
  • the tensile yield strength reaches 320MPa
  • the elongation reaches 50%.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 470MPa
  • the tensile yield strength reaches 390MPa
  • the elongation rate reaches 35%.
  • the neutral salt spray test measured the corrosion rate of the zinc-based alloy sheet for construction to be 0.5mm/year.
  • a zinc-based alloy sheet for construction including components and mass percentages: Mn 1.2%, Al 0.6%, Ti 0.15%, Mg 0.2%, the total amount of other impurities does not exceed 0.2%, and the balance is Zn; metallic zinc, Zn-Mn master alloy, Zn-Ti master alloy, Zn-Mg master alloy and metallic aluminum are used as raw materials.
  • the preparation method of the zinc-based alloy sheet for construction includes the following steps:
  • the pure metallic zinc is heated to 640°C, and after melting, the metal Zn-Ti master alloy and Zn-Mn master alloy are added in sequence; after all the metals are melted, the melt temperature is reduced to 560°C, and the metal Al is heated with a graphite bell jar , Zn-Mg master alloy is pressed into the alloy melt, stirred until it is uniformly mixed and allowed to stand for 30 minutes to obtain a zinc alloy melt.
  • the temperature of the melt was reduced to 530°C, and hexachloroethane was added to the melt using a graphite bell jar. The amount of hexachloroethane added was 0.8% of the melt mass, and then it was allowed to stand for 20 minutes.
  • the temperature of the melt is reduced to 500°C, and the casting is carried out. During the casting process, the mold is cooled by passing water to obtain an ingot with a size of 300 ⁇ 150 ⁇ 25 mm.
  • the ingot was kept at 320°C for 6h, and then heated to 390°C with the furnace for 4h, and then quickly water-cooled out of the furnace.
  • the ingot is kept at 350° C. for 30 minutes and then hot rolled, with a single pass reduction of 12% and a rolling speed of 100 mm/s. After rolling for 3 passes, return the alloy sheet to the furnace, hold it at 350°C for 10 minutes, and repeat the above rolling process. A total of 13 passes are rolled to obtain a hot-rolled zinc alloy sheet with a thickness of 5 mm and a grain size of 2.0 ⁇ m.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 470MPa
  • the tensile yield strength reaches 420MPa
  • the elongation rate reaches 20%.
  • Perpendicular to the rolling direction the hot-rolled zinc alloy sheet has a tensile strength of 540MPa, a tensile yield strength of 470MPa, and an elongation of 15%.
  • the hot-rolled plate is continuously rolled at room temperature, wherein the single-pass reduction is 8%, and the rolling speed is 50mm/s. After 5 passes of rolling, the alloy plate is kept at 150°C for 15 minutes for intermediate annealing, and then the above rolling process is repeated. After a total of 2 intermediate annealing and 11 rolling passes, a cold-rolled zinc alloy sheet with a thickness of 2 mm and a grain size of 0.1 ⁇ m is obtained.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 450MPa
  • the tensile yield strength reaches 400MPa
  • the elongation rate reaches 25%.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 500MPa
  • the tensile yield strength reaches 470MPa
  • the elongation rate reaches 20%.
  • the neutral salt spray test measured the corrosion rate of the zinc-based alloy sheet for construction to be 1mm/year.
  • a zinc-based alloy sheet for construction including components and mass percentages: Mn 1%, Al 0.1%, Ti 0.2%, Mg 0.1%, the total amount of other impurities does not exceed 0.2%, and the balance is Zn; metallic zinc, Zn-Mn master alloy, Zn-Ti master alloy, Zn-Mg master alloy and metallic aluminum are used as raw materials.
  • the preparation method of the zinc-based alloy sheet for construction includes the following steps:
  • the pure metallic zinc is heated to 620°C, and after melting, the metal Zn-Ti master alloy and Zn-Mn master alloy are sequentially added; after all the metals are melted, the melt temperature is reduced to 560°C, and the metal Al is heated with a graphite bell jar , Zn-Mg master alloy is pressed into the alloy melt, stirred until it is uniformly mixed and allowed to stand for 20 minutes to obtain a zinc alloy melt.
  • the temperature of the melt was lowered to 540°C, and hexachloroethane was added to the melt using a graphite bell jar. The amount of hexachloroethane added was 0.5% of the melt mass, and then it was allowed to stand for 10 minutes.
  • the temperature of the melt was lowered to 480°C, and the casting was carried out. During the casting process, the mold was cooled by passing water to obtain an ingot with a size of 300 ⁇ 150 ⁇ 25 mm.
  • the ingot was kept at 340°C for 4 hours, then heated to 390°C with the furnace for 5 hours, and then quickly water-cooled out of the furnace.
  • the ingot After the ingot is kept at 300°C for 40 minutes, it is hot-rolled, with a single-pass reduction of 8% and a rolling speed of 300mm/s. After 6 passes of rolling, the alloy sheet was returned to the furnace, kept at 300°C for 15 minutes, and the above rolling process was repeated. A total of 32 passes are rolled to obtain a hot-rolled zinc alloy sheet with a thickness of 2mm and a grain size of 1.1 ⁇ m.
  • the microstructure photo of the hot-rolled zinc alloy sheet product (the observation area is the side of the sheet, and the rolling direction is along the vertical direction. ) As shown in Figure 1, the grain size distribution diagram is shown in Figure 2, and the room temperature tensile engineering stress-strain curve (stretched along the rolling direction) is shown in Figure 3.
  • the tensile strength of the hot-rolled zinc alloy sheet reaches 460MPa
  • the tensile yield strength reaches 380MPa
  • the elongation reaches 28%.
  • the tensile strength of the hot rolled zinc alloy sheet reaches 500MPa
  • the tensile yield strength reaches 420MPa
  • the elongation rate reaches 19%.
  • the hot-rolled plate is continuously rolled at room temperature, wherein the single-pass reduction is 5%, and the rolling speed is 150mm/s. After 6 passes of rolling, the alloy plate is kept at 200°C for 40 minutes for intermediate annealing, and then the above rolling process is repeated. A total of 4 times of intermediate annealing and 27 passes were rolled to obtain cold-rolled zinc alloy sheets with a thickness of 0.5mm and a grain size of 0.5 ⁇ m. After cooling, the zinc-based alloy sheets for construction and cold-rolled zinc alloy sheets were obtained.
  • the microstructure picture (the observation area is the side of the sheet, the rolling direction is along the horizontal direction) is shown in Figure 4, the grain size distribution is shown in Figure 5, and the room temperature tensile engineering stress-strain curve (stretched along the rolling direction) is shown in Figure 4. 6 shown.
  • the tensile strength of the zinc-based alloy sheet for construction reaches 420MPa
  • the tensile yield strength reaches 350MPa
  • the elongation rate reaches 37%.
  • Perpendicular to the rolling direction the tensile strength of the zinc-based alloy sheet for construction reaches 480MPa
  • the tensile yield strength reaches 400MPa
  • the elongation rate reaches 24%.
  • the neutral salt spray test measured the corrosion rate of the zinc-based alloy sheet for construction to be 0.9mm/year, and the microstructure photo of the hot-rolled zinc alloy sheet product (the observation area is the side of the sheet, and the rolling direction is in the vertical direction).
  • the deformation in the present invention is not limited to rolling.
  • Other combinations of hot deformation (forging, rolling) and cold deformation (pressing, rolling, drawing) for this alloy system can achieve high strength and high strength.
  • Plastic zinc alloy The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them.
  • Other modifications or equivalent replacements made by those of ordinary skill in the art to the technical solution of the present invention shall be covered by the scope of the claims of the present invention as long as they do not depart from the spirit and scope of the technical solution of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

本发明的一种建筑用锌基合金板材及其制备方法,锌基合金板材包括组分及重量百分比为:Mn:0.5~1.2%,Al:0.1~0.6%,Ti:0.05~0.4%,Mg:0.05~0.2%,不可避免杂质≤0.2%,余量为Zn。制法步骤为:按配比,将纯金属锌熔化后先后加入各中间合金及金属Al,混均得锌合金熔体,向其中加入六氯乙烷静置降温后,浇铸成锭,控制相应温度与时间,分两段进行加热保温处理,经热轧退火和冷轧退火,控制压下量与轧制速度,制得建筑用锌基合金板材。本发明方法制备工艺简单,通过热挤压或轧制工艺控制合金动态再结晶过程,并利用第二相颗粒钉扎晶界阻碍晶粒长大,从而使基体晶粒显著地细化至几百纳米,使得锌基合金板材具备室温超塑性。

Description

一种建筑用锌基合金板材及其制备方法 技术领域:
本发明属于材料技术领域,具体涉及一种建筑用锌基合金板材及其制备方法。
背景技术:
金属锌在钢铁材料防腐、五金器件、汽车和建筑行业等工业领域具有非常广泛的应用。其中,在空气、水或其他溶液中,锌优先于钢铁材料发生腐蚀,所以一直以来大部分的锌消费量被应用于钢铁材料的防腐蚀保护层。锌合金作为结构材料常被用于机场、学校和展览馆等建筑物的屋顶、外墙和排水系统,特别是在欧美国家锌合金在建筑物上已有200年的使用历史,而且主要是Zn-Cu-Ti合金板材(厚度为0.5~1.0mm)。Zn-Cu-Ti合金作为建筑材料具有非常显著的优势,包括板材的使用寿命可长达80~100年,板材表面腐蚀产物呈蓝灰色与大多数材料十分协调,同时还具有创伤自愈能力从而降低日常维护费用与工作量。
Zn-Cu-Ti合金中添加少量的Cu和Ti能够明显改善Zn合金的抗蠕变性能,同时获得良好的综合力学性能。通常Cu和Ti的添加量分别为0.5%~2.0%和0.05%~0.4%,此外还有少量的Al、Mg、Cr、Fe等元素。除少量Cu元素固溶之外,大部分Cu和Ti以第二相CuZn 4和Zn 16Ti(或Zn 15Ti)形式存在于合金中。目前,大部分Zn-Cu-Ti合金板材的抗拉强度沿纵向达到160~210MPa、沿横向达到220~300MPa,延伸率沿纵向达到28%~54%、沿横向达到16%~47%。目前,Zn-Cu-Ti合金板材主要产地包括美国与德国、法国等欧洲国家;国内一些企业单位也在从事相关产品开发与生产,但大部分Zn-Cu-Ti合金板材仍需要进口。所以,开发新型Zn合金及其制备被工艺,进一步扩大锌合金应用范围都具有极其重要的意义和价值。为此,本专利公开了一种新型的Zn-Mn-Al-Ti-Mg合金板材及其制备方法。
发明内容:
本发明的目的是克服上述现有技术存在的不足,提供具有高强度、高塑性的锌合金及其板材的制备方法,通过原料熔铸、均匀化处理、热轧与冷轧获得一定厚度的、具有良好室温力学性能的板材。
为实现上述目的,本发明采用以下技术方案:
一种建筑用锌基合金板材,包括组分及重量百分比为:Mn:0.5~1.2%,Al:0.1~0.6%,Ti:0.05~0.4%,Mg:0.05~0.2%,不可避免杂质≤0.2%,余量为Zn。
所述的建筑用锌基合金板材,在室温、应变速率为10 -3s -1的拉伸试验条件下进行拉伸试验。结果显示:
沿轧制方向:热轧Zn合金板材的抗拉强度为370~470MPa,拉伸屈服强度为300~420MPa,延伸率20~40%;冷轧Zn合金板材的抗拉强度为400~450MPa,拉伸屈服强度为320~400MPa,延伸率25~50%。
垂直于轧制方向:热轧Zn合金板材的抗拉强度为460~540MPa,拉伸屈服强度为350~470MPa,延伸率15~25%;冷轧Zn合金板材的抗拉强度为470~500MPa,拉伸屈服强度为390~470MPa,延伸率20~35%。
中性盐雾试验测得建筑用锌基合金板材腐蚀速率为0.5~1mm/year。
所述的建筑用锌基合金板材的制备方法,包括以下步骤:
步骤1,熔铸:
(1)配料:按照锌合金的质量百分比,称量配料;
(2)将纯金属锌加热至600-640℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至540-580℃,将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置15-30min,获得锌合金熔体;
(3)将锌合金熔体温度降至500-540℃,向熔体中加入六氯乙烷,之后静置10-30min,其中:所述的六氯乙烷的加入质量为熔体质量的0.4~0.8%;
(4)将熔体温度降至480-500℃,进行浇铸,获得铸锭;
所述的步骤1(3)中,浇铸过程中模具通水冷却,获得铸锭。
步骤2,均匀化处理:
(1)将铸锭,在300-340℃保温4~6h;
(2)随炉升温至350-390℃保温3~5h;
(3)冷却至室温,获得锭坯;
所述的步骤2(3)中,冷却方式为水冷。
步骤3,热轧:
(1)将锭坯,在200~350℃保温30-60min;
(2)将锭坯从加热炉中取出后,直接进行轧制,其中,单道次压下量8~20%,轧制速度100~300mm/s;
(3)轧制3~6道次之后,在200-300℃保温10-20min,之后重复(2)继续进行轧制,直到板材厚度达到2~5mm;
(4)冷却至室温,获得热轧态锌合金板材;
所述的步骤3(4)中,冷却方式为空冷。
所述的步骤3(4)中,热轧态锌合金板材厚度为2~5mm,热轧态锌合金板材中晶粒平均粒 径为1-2μm。
步骤4,冷轧:
(1)将热轧态锌合金板材在室温下继续进行轧制,其中,单道次压下量5~15%,轧制速度50~150mm/s;
(2)轧制3~6道次之后,对板材进行中间退火,退火工艺为150~300℃下保温5-15min,退火态板材重复(2)继续进行轧制,获得冷轧态锌合金板材,所述冷轧态锌合金板材厚度为0.3~2mm;
所述的步骤4(2)中,冷轧态锌合金板材中晶粒平均粒径为0.1-0.8μm。
(3)冷轧态锌合金板材冷却至室温,最终获得建筑用锌基合金板材。
所述的步骤1~4中,采用的加热设备均为电阻炉。
所述的步骤4(3)中,冷却方式为空冷。
所述的步骤4(3)中,建筑用锌基合金板材厚度为0.3~2mm。
本发明的有益效果:
1.针对目前锌合金板材综合力学性能(强度、塑性以及抗蠕变性能)尚不能完全满足应用需求的现状,本发明公开了一种新的锌合金体系及其不同厚度板材的制备工艺,所得产品同时具备高强度、高塑性以及良好抗蠕变能力,可满足不同领域的应用需求。
2.本发明的建筑用锌基合金板材中,合金元素主要包括锰、钛、铝、镁,通过本发明制备的合金中,部分Mn元素与全部Al元素固溶于Zn基体,同时还可以形成细小的第二相MnZn 13、Zn 16Ti(或Zn 15Ti)和Mg 2Zn 11。通过轧制工艺控制合金动态再结晶过程,并利用第二相颗粒钉扎晶界阻碍晶粒长大,从而使基体晶粒显著地细化至0.1~2μm之间。通过第二相强化与细晶强化作用提高合金强度,同时保持较高的延伸率,特别是大量细小第二相MnZn 13、Zn 16Ti(或Zn 15Ti)的形成极大地改善合金的抗蠕变性能。
3.本发明的建筑用锌基合金板材可通过常规的轧制、中间退火工艺制备,获得厚度在0.3~5mm之间的板材,制备工艺简单适合工业化生产,且比目前应用较多的Zn-Cu-Ti合金板材具有更高的强度与塑性。
附图说明:
图1为本发明实施例5中热轧态锌合金板材产品的微观组织照片(观察区域为板材侧面,轧向沿竖直方向);
图2为本发明实施例5中热轧态锌合金板材产品的晶粒尺寸分布图;
图3为本发明实施例5中热轧态锌合金板材产品的室温拉伸工程应力应变曲线(沿轧制方向拉伸);
图4为本发明实施例5中冷轧态锌合金板材产品的微观组织照片(观察区域为板材侧面,轧向沿水平方向);
图5为本发明实施例5中冷轧态锌合金板材产品的晶粒尺寸分布图;
图6为本发明实施例5中冷轧态锌合金板材产品的室温拉伸工程应力应变曲线(沿轧制方向拉伸)。
具体实施方式:
下面结合实施例对本发明作进一步的详细说明。
本发明实施例中采用的金属锌的纯度为99.995%,Zn-Mn中间合金Mn含量为10%,Zn-Ti中间合金Ti含量为3%,Zn-Mg中间合金Mg含量为50%,金属Al的纯度为99.99%。
本发明实施例中采用JEOL公司生产的JSM-7800F型场发射SEM上配置的Oxford HKL Channel 5EBSD系统对板材侧面试样进行微观组织观察与分析。
本发明实施例中拉伸实验采用的标准为国标GB/T228-2002《金属材料室温拉伸实验方法》,设备为岛津制作株式会社所生产的AG-X100kN电子万能材料试验机。
以下实施例中中性盐雾实验采用的标准为国家标准GB/T10125-1997《人造气氛腐蚀试验——盐雾试验》,并根据腐蚀增重测定腐蚀速率,其具体参数为:配制NaCl溶液浓度为5%,pH值在6.5~7.2之间,在盐雾箱中放置7天之后计算其腐蚀速率。
下面结合实施例对本发明做进一步说明,但本发明并不局限于实施例。
以下实施例中采用的电阻炉设备温度精度具有±5℃的误差。
实施例1
一种建筑用锌基合金板材,包括组分及质量百分比为:Mn 1%,Al 0.5%,Ti 0.3%,Mg 0.15%,其他杂质总量不超过0.2%,余量为Zn;金属锌、Zn-Mn中间合金、Zn-Ti中间合金、Zn-Mg中间合金与金属铝作为原料。
所述的建筑用锌基合金板材制备方法,包括以下步骤:
按配比,将纯金属锌加热至600℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至620℃,用石墨钟罩将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置15min,获得锌合金熔体。将熔体温度降至530℃,利用石墨钟罩向熔体中加入六氯乙烷,六氯乙烷的加入量为熔体质量的0.7%,之后静置15min。将熔体温度降至490℃,进行浇铸,浇铸过程中模具通水冷却,获得尺寸为300×150×25mm的铸锭。
将铸锭在300℃下保温6h,之后随炉升温到390℃保温3h,之后出炉快速水冷。
将锭坯在300℃下保温40min之后进行热轧,其中单道次压下量为20%,轧制速度为 250mm/s。轧制3道次后将合金板材回炉,在300℃下保温15min,并重复上述轧制过程。一共经过9道次轧制获得厚度为4mm,晶粒尺寸为1.0μm的热轧态锌合金板材。沿轧制方向:热轧态锌合金板材的抗拉强度达到440MPa,拉伸屈服强度达到400MPa,延伸率达到28%。垂直于轧制方向:热轧态锌合金板材的抗拉强度达到520MPa,拉伸屈服强度达到450MPa,延伸率达到17%。
将热轧态板材在室温下继续进行轧制,其中单道次压下量为10%,轧制速度为80mm/s。轧制5道次后将合金板材在300℃下保温5min进行中间退火,之后重复上述轧制过程。一共经过2次中间退火、10道次轧制获得厚度为1.5mm,晶粒尺寸为0.8μm的冷轧态锌合金板材,冷却至室温后获得建筑用锌基合金板材。沿轧制方向:建筑用锌基合金板材的抗拉强度达到435MPa,拉伸屈服强度达到390MPa,延伸率达到35%。垂直于轧制方向:抗拉强度达到490MPa,拉伸屈服强度达到420MPa,延伸率达到27%。中性盐雾试验测得建筑用锌基合金板材的腐蚀速率为0.6mm/year。
实施例2
一种建筑用锌基合金板材,包括组分及质量百分比为:Mn 0.8%,Al 0.3%,Ti 0.4%,Mg 0.1%,其他杂质总量不超过0.2%,余量为Zn;金属锌、Zn-Mn中间合金、Zn-Ti中间合金、Zn-Mg中间合金与金属铝作为原料。
所述的建筑用锌基合金板材制备方法,包括以下步骤:
按配比,将纯金属锌加热至620℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至560℃,用石墨钟罩将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置20min,获得锌合金熔体。将熔体温度降至540℃,利用石墨钟罩向熔体中加入六氯乙烷,六氯乙烷的加入量为熔体质量的0.5%,之后静置10min。将熔体温度降至480℃,进行浇铸,浇铸过程中模具通水冷却,获得尺寸为300×150×25mm的铸锭。
将铸锭在320℃下保温5h,之后随炉升温到380℃保温4h,之后出炉快速水冷。
将锭坯在250℃下保温50min之后进行热轧,其中单道次压下量为15%,轧制速度为150mm/s。轧制5道次后将合金板材回炉,在250℃下保温20min,并重复上述轧制过程。一共经过13道次轧制获得厚度为3mm,晶粒尺寸为1.8μm的热轧态锌合金板材。沿轧制方向:热轧态锌合金板材的抗拉强度达到420MPa,拉伸屈服强度达到360MPa,延伸率达到32%。垂直于轧制方向:热轧态锌合金板材的抗拉强度达到490MPa,拉伸屈服强度达到400MPa,延伸率达到23%。
将热轧态板材在室温下继续进行轧制,其中单道次压下量为12%,轧制速度为100mm/s。 轧制5道次后将合金板材在200℃下保温10min进行中间退火,之后重复上述轧制过程。一共经过1次中间退火、8道次轧制获得厚度为1mm,晶粒尺寸为0.4μm的冷轧态锌合金板材。沿轧制方向:建筑用锌基合金板材的抗拉强度达到420MPa,拉伸屈服强度达到380MPa,延伸率达到44%。垂直于轧制方向:建筑用锌基合金板材的抗拉强度达到490MPa,拉伸屈服强度达到430MPa,延伸率达到28%。中性盐雾试验测得建筑用锌基合金板材的腐蚀速率为0.7mm/year。
实施例3
一种建筑用锌基合金板材,包括组分及质量百分比为:Mn 0.5%,Al 0.2%,Ti 0.05%,Mg 0.05%,其他杂质总量不超过0.2%,余量为Zn;金属锌、Zn-Mn中间合金、Zn-Ti中间合金、Zn-Mg中间合金与金属铝作为原料。
所述的建筑用锌基合金板材制备方法,包括以下步骤:
按配比,将纯金属锌加热至600℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至540℃,用石墨钟罩将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置30min,获得锌合金熔体。将熔体温度降至520℃,利用石墨钟罩向熔体中加入六氯乙烷,六氯乙烷的加入量为熔体质量的0.4%,之后静置30min。将熔体温度降至480℃,进行浇铸,浇铸过程中模具通水冷却,获得尺寸为300×150×25mm的铸锭。
将铸锭在340℃下保温5h,之后随炉升温到370℃保温4h,之后出炉快速水冷。
将锭坯在200℃下保温60min之后进行热轧,其中单道次压下量为15%,轧制速度为200mm/s。轧制4道次后将合金板材回炉,在200℃下保温20min,并重复上述轧制过程。一共经过16道次轧制获得厚度为2mm,晶粒尺寸为1.5μm的热轧态锌合金板材。沿轧制方向:热轧态锌合金板材的抗拉强度达到370MPa,拉伸屈服强度达到300MPa,延伸率达到40%。垂直于轧制方向:热轧态锌合金板材的抗拉强度达到460MPa,拉伸屈服强度达到350MPa,延伸率达到25%。
将热轧态板材在室温下继续进行轧制,其中单道次压下量为15%,轧制速度为120mm/s。轧制3道次后将合金板材在250℃下保温10min进行中间退火,之后重复上述轧制过程。一共经过2次中间退火、12道次轧制获得厚度为0.3mm,晶粒尺寸为0.6μm的冷轧态锌合金板材。沿轧制方向:建筑用锌基合金板材的抗拉强度达到400MPa,拉伸屈服强度达到320MPa,延伸率达到50%。垂直于轧制方向:建筑用锌基合金板材的抗拉强度达到470MPa,拉伸屈服强度达到390MPa,延伸率达到35%。中性盐雾试验测得建筑用锌基合金板材的腐蚀速率为0.5mm/year。
实施例4
一种建筑用锌基合金板材,包括组分及质量百分比为:Mn 1.2%,Al 0.6%,Ti 0.15%,Mg 0.2%,其他杂质总量不超过0.2%,余量为Zn;金属锌、Zn-Mn中间合金、Zn-Ti中间合金、Zn-Mg中间合金与金属铝作为原料。
所述的建筑用锌基合金板材制备方法,包括以下步骤:
按配比,将纯金属锌加热至640℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至560℃,用石墨钟罩将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置30min,获得锌合金熔体。将熔体温度降至530℃,利用石墨钟罩向熔体中加入六氯乙烷,六氯乙烷的加入量为熔体质量的0.8%,之后静置20min。将熔体温度降至500℃,进行浇铸,浇铸过程中模具通水冷却,获得尺寸为300×150×25mm的铸锭。
将铸锭在320℃下保温6h,之后随炉升温到390℃保温4h,之后出炉快速水冷。
将锭坯在350℃下保温30min之后进行热轧,其中单道次压下量为12%,轧制速度为100mm/s。轧制3道次后将合金板材回炉,在350℃下保温10min,并重复上述轧制过程。一共经过13道次轧制获得厚度为5mm,晶粒尺寸为2.0μm的热轧态锌合金板材。沿轧制方向:热轧态锌合金板材的抗拉强度达到470MPa,拉伸屈服强度达到420MPa,延伸率达到20%。垂直于轧制方向:热轧态锌合金板材的抗拉强度达到540MPa,拉伸屈服强度达到470MPa,延伸率达到15%。
将热轧态板材在室温下继续进行轧制,其中单道次压下量为8%,轧制速度为50mm/s。轧制5道次后将合金板材在150℃下保温15min进行中间退火,之后重复上述轧制过程。一共经过2次中间退火、11道次轧制获得厚度为2mm,晶粒尺寸为0.1μm的冷轧态锌合金板材。沿轧制方向:建筑用锌基合金板材的抗拉强度达到450MPa,拉伸屈服强度达到400MPa,延伸率达到25%。垂直于轧制方向:建筑用锌基合金板材的抗拉强度达到500MPa,拉伸屈服强度达到470MPa,延伸率达到20%。中性盐雾试验测得建筑用锌基合金板材的腐蚀速率为1mm/year。
实施例5
一种建筑用锌基合金板材,包括组分及质量百分比为:Mn 1%,Al 0.1%,Ti 0.2%,Mg 0.1%,其他杂质总量不超过0.2%,余量为Zn;金属锌、Zn-Mn中间合金、Zn-Ti中间合金、Zn-Mg中间合金与金属铝作为原料。
所述的建筑用锌基合金板材制备方法,包括以下步骤:
按配比,将纯金属锌加热至620℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间 合金;待全部金属熔化后,熔体温度降低至560℃,用石墨钟罩将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置20min,获得锌合金熔体。将熔体温度降至540℃,利用石墨钟罩向熔体中加入六氯乙烷,六氯乙烷的加入量为熔体质量的0.5%,之后静置10min。将熔体温度降至480℃,进行浇铸,浇铸过程中模具通水冷却,获得尺寸为300×150×25mm的铸锭。
将铸锭在340℃下保温4h,之后随炉升温到390℃保温5h,之后出炉快速水冷。
将锭坯在300℃下保温40min之后进行热轧,其中单道次压下量为8%,轧制速度为300mm/s。轧制6道次后将合金板材回炉,在300℃下保温15min,并重复上述轧制过程。一共经过32道次轧制获得厚度为2mm,晶粒尺寸为1.1μm的热轧态锌合金板材,热轧态锌合金板材产品的微观组织照片(观察区域为板材侧面,轧向沿竖直方向)如图1所示,晶粒尺寸分布图如图2所示,室温拉伸工程应力应变曲线(沿轧制方向拉伸)图如图3所示。沿轧制方向:热轧态锌合金板材的抗拉强度达到460MPa,拉伸屈服强度达到380MPa,延伸率达到28%。垂直于轧制方向:热轧态锌合金板材的抗拉强度达到500MPa,拉伸屈服强度达到420MPa,延伸率达到19%。
将热轧态板材在室温下继续进行轧制,其中单道次压下量为5%,轧制速度为150mm/s。轧制6道次后将合金板材在200℃下保温40min进行中间退火,之后重复上述轧制过程。一共经过4次中间退火、27道次轧制获得厚度为0.5mm,晶粒尺寸为0.5μm的冷轧态锌合金板材,冷却后获得建筑用锌基合金板材,冷轧态锌合金板材产品的微观组织照片(观察区域为板材侧面,轧向沿水平方向)如图4所示,晶粒尺寸分布图如图5所示,室温拉伸工程应力应变曲线(沿轧制方向拉伸)如图6所示。沿轧制方向:建筑用锌基合金板材的抗拉强度达到420MPa,拉伸屈服强度达到350MPa,延伸率达到37%。垂直于轧制方向:建筑用锌基合金板材的抗拉强度达到480MPa,拉伸屈服强度达到400MPa,延伸率达到24%。中性盐雾试验测得建筑用锌基合金板材的腐蚀速率为0.9mm/year,热轧态锌合金板材产品的微观组织照片(观察区域为板材侧面,轧向沿竖直方向)。
最后说明的是,本发明中变形不仅局限于轧制,其他针对本合金系的热变形(锻造、轧制)与冷变形(冲压、轧制、拉拔)组合方式均可获得高强度、高塑性锌合金。以上实施例也仅用以说明本发明的技术方案而非限制。本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (6)

  1. 一种建筑用锌基合金板材,其特征在于,包括组分及重量百分比为:Mn:0.5~1.2%,Al:0.1~0.6%,Ti:0.05~0.4%,Mg:0.05~0.2%,不可避免杂质≤0.2%,余量为Zn。
  2. 根据权利要求1所述的一种建筑用锌基合金板材,其特征在于,在室温、应变速率为10 -3s -1的拉条件下:
    沿轧制方向:热轧Zn合金板材的抗拉强度为370~470MPa,拉伸屈服强度为300~420MPa,延伸率20~40%;冷轧Zn合金板材的抗拉强度为400~450MPa,拉伸屈服强度为320~400MPa,延伸率25~50%;
    垂直于轧制方向:热轧Zn合金板材的抗拉强度为460~540MPa,拉伸屈服强度为350~470MPa,延伸率15~25%;冷轧Zn合金板材的抗拉强度为470~500MPa,拉伸屈服强度为390~470MPa,延伸率20~35%。
  3. 根据权利要求1所述的一种建筑用锌基合金板材,其特征在于,中性盐雾试验测得建筑用锌基合金板材腐蚀速率为0.5~1mm/year。
  4. 权利要求1所述的建筑用锌基合金板材的制备方法,其特征在于,包括以下步骤:
    步骤1,熔铸:
    (1)配料:按照建筑用锌基合金板材的质量百分比,称量配料;
    (2)将纯金属锌加热至600-640℃,熔化后依次加入金属Zn-Ti中间合金和Zn-Mn中间合金;待全部金属熔化后,熔体温度降低至540-580℃,将金属Al、Zn-Mg中间合金压入合金熔体中,搅拌至混合均匀并静置15-30min,获得锌合金熔体;
    (3)将锌合金熔体温度降至500-540℃,向熔体中加入六氯乙烷,之后静置10-30min,其中:所述的六氯乙烷的加入质量为熔体质量的0.4~0.8%;
    (4)将熔体温度降至480-500℃,进行浇铸,获得铸锭;
    步骤2,均匀化处理:
    (1)将铸锭,在300-340℃保温4~6h;
    (2)随炉升温至350-390℃保温3~5h;
    (3)冷却至室温,获得锭坯;
    步骤3,热轧:
    (1)将锭坯,在200~350℃保温30-60min;
    (2)将锭坯从加热炉中取出后,直接进行轧制,其中,单道次压下量8~20%,轧制速度100~300mm/s;
    (3)轧制3~6道次之后,在200-300℃保温10-20min,之后重复(2)继续进行轧制,直到板材厚度达到2~5mm;
    (4)冷却至室温,获得热轧态锌合金板材;
    步骤4,冷轧:
    (1)将热轧态锌合金板材在室温下继续进行轧制,其中,单道次压下量5~15%,轧制速度50~150mm/s;
    (2)轧制3~6道次之后,对板材进行中间退火,退火工艺为150~300℃下保温5-15min,退火态板材重复(2)继续进行轧制,获得冷轧态锌合金板材,所述冷轧态锌合金板材厚度为0.3~2mm;
    (3)冷轧态锌合金板材冷却至室温,最终获得建筑用锌基合金板材。
  5. 根据权利要求4所述的建筑用锌基合金板材的制备方法,其特征在于,所述的步骤3(4)中,热轧态锌合金板材中晶粒平均粒径为1-2μm。
  6. 根据权利要求4所述的建筑用锌基合金板材的制备方法,其特征在于,所述的步骤4(2)中,冷轧态锌合金板材中晶粒平均粒径为0.1-0.8μm。
PCT/CN2019/077954 2019-01-28 2019-03-13 一种建筑用锌基合金板材及其制备方法 WO2020155316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910080283.8 2019-01-28
CN201910080283.8A CN109536779B (zh) 2019-01-28 2019-01-28 一种建筑用锌基合金板材及其制备方法

Publications (1)

Publication Number Publication Date
WO2020155316A1 true WO2020155316A1 (zh) 2020-08-06

Family

ID=65838763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077954 WO2020155316A1 (zh) 2019-01-28 2019-03-13 一种建筑用锌基合金板材及其制备方法

Country Status (2)

Country Link
CN (1) CN109536779B (zh)
WO (1) WO2020155316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836652B (zh) * 2022-05-06 2023-04-28 中国石油大学(北京) 一种可降解锌合金及应用该可降解锌合金的可溶桥塞

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE712078A (zh) * 1967-04-18 1968-09-12
JPH10168533A (ja) * 1996-12-09 1998-06-23 Mitsui Mining & Smelting Co Ltd 高強度耐熱亜鉛合金及び成形品
CN105925847A (zh) * 2016-05-12 2016-09-07 管仁国 一种新型生物可降解锌基金属材料及采用该材料获得的输尿管扩张支架

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199063A (ja) * 1985-02-28 1986-09-03 Sadaji Nagabori 溶融メッキ用高耐食性高加工性Zn合金
JPS61201743A (ja) * 1985-03-04 1986-09-06 Sadaji Nagabori 溶融メツキ用高耐食性高加工性Zn合金の製造法
CN101906555B (zh) * 2010-08-05 2012-06-06 中南大学 一种含Mn的抗蠕变轧制锌合金板带材及其制备方法
JP6070915B1 (ja) * 2015-04-08 2017-02-01 新日鐵住金株式会社 Zn−Al−Mg系めっき鋼板、及びZn−Al−Mg系めっき鋼板の製造方法
JP6816550B2 (ja) * 2017-02-17 2021-01-20 日本製鉄株式会社 曲げ加工性に優れた黒色表面被覆高強度溶融Zn−Al−Mg系めっき鋼板及びその製造方法
CN107177754B (zh) * 2017-05-22 2019-02-26 北京科技大学 一种高塑性和可生物降解Zn-Mn系锌合金及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE712078A (zh) * 1967-04-18 1968-09-12
JPH10168533A (ja) * 1996-12-09 1998-06-23 Mitsui Mining & Smelting Co Ltd 高強度耐熱亜鉛合金及び成形品
CN105925847A (zh) * 2016-05-12 2016-09-07 管仁国 一种新型生物可降解锌基金属材料及采用该材料获得的输尿管扩张支架

Also Published As

Publication number Publication date
CN109536779B (zh) 2020-11-06
CN109536779A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US4411707A (en) Processes for making can end stock from roll cast aluminum and product
US8016958B2 (en) High strength aluminum alloy sheet and method of production of same
CN105829559B (zh) 成形用铝合金板
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
WO2014046047A1 (ja) 自動車部材用アルミニウム合金板
CN109735744B (zh) 一种具有室温超塑性的锌基合金棒材/板材及其制备方法
WO2014046046A1 (ja) アルミニウム合金製自動車部材
JPH06500602A (ja) 改良リチウムアルミニウム合金系
CN109371269B (zh) 一种超高强度Al-Zn-Mg-Cu合金线材的制备方法
KR102155934B1 (ko) 마그네슘 합금 판재 및 이의 제조방법
CN107012392A (zh) 一种600MPa级高强度低合金冷轧带钢及其生产方法
US20020056493A1 (en) Aluminum-based alloy and procedure for its heat treatment
CN106574327A (zh) 成形用铝合金板
JPH1161311A (ja) 自動車ボディパネル用アルミニウム合金板およびその製造方法
CN113308653B (zh) 一种基于喷射成形的铝锂合金热处理制备方法
WO2020155316A1 (zh) 一种建筑用锌基合金板材及其制备方法
CN112410628B (zh) 一种幕墙用高强度铝合金板材及其制备方法
WO2024113944A1 (zh) 可细化mig焊缝晶粒的5xxx铝合金、其制备方法及应用
AU2023339342A1 (en) Manufacturing method for improving edge fitting properties of 6016 automobile stamped sheets
JP2014062287A (ja) 自動車部材用アルミニウム合金板
US3323953A (en) Method of treating steel and novel product
CN116727443A (zh) 一种镍基合金卷板及其生产方法
CN100561345C (zh) 印刷用ps版基用铝板的制造方法
JP5860371B2 (ja) アルミニウム合金製自動車部材
US20170349978A1 (en) Aluminum alloy sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914043

Country of ref document: EP

Kind code of ref document: A1