WO2024111568A1 - 方向性電磁鋼板とその製造方法 - Google Patents

方向性電磁鋼板とその製造方法 Download PDF

Info

Publication number
WO2024111568A1
WO2024111568A1 PCT/JP2023/041721 JP2023041721W WO2024111568A1 WO 2024111568 A1 WO2024111568 A1 WO 2024111568A1 JP 2023041721 W JP2023041721 W JP 2023041721W WO 2024111568 A1 WO2024111568 A1 WO 2024111568A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
grain
coating
annealing
Prior art date
Application number
PCT/JP2023/041721
Other languages
English (en)
French (fr)
Inventor
拓弥 山田
誠 渡邉
敬 寺島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024522141A priority Critical patent/JPWO2024111568A1/ja
Publication of WO2024111568A1 publication Critical patent/WO2024111568A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to grain-oriented electrical steel sheets and their manufacturing methods, and more specifically, to grain-oriented electrical steel sheets with extremely low iron loss and their manufacturing methods.
  • Grain-oriented electrical steel sheet is a soft magnetic material used primarily for the iron cores of transformers and the like, and low iron loss is a particularly important magnetic property.
  • One method for reducing iron loss is to apply a coating tension to the surface of the steel sheet.
  • the above-mentioned coating tension refers to the tensile stress applied to the steel sheet by the coating formed on its surface due to the difference in thermal properties between the steel sheet and the coating.
  • this coating tension utilizes the fact that when a coating with a lower thermal expansion coefficient than the steel sheet is formed on the surface of the steel sheet at high temperatures and then cooled to room temperature, the steel sheet shrinks while the coating does not shrink as much, resulting in a tensile stress being applied to the steel sheet. Therefore, the more a coating with a lower thermal expansion coefficient and higher Young's modulus than the steel sheet is formed, the higher the coating tension that can be applied to the surface of the steel sheet.
  • a typical specific method for imparting coating tension is to apply a chemical solution consisting of phosphate and silica to the steel sheet surface after finish annealing, and then bake this at high temperature to form a coating.
  • Patent Document 1 proposes a method for forming a coating consisting of aluminum phosphate and silica
  • Patent Document 2 proposes a method for forming a coating consisting of magnesium phosphate and silica.
  • Patent Document 3 proposes a method of forming a ceramic coating by evaporating ceramic onto the surface of a steel plate using a PVD or CVD method
  • Patent Document 4 proposes a method of forming a ceramic coating by applying a sol to the surface of a steel plate using a sol-gel method and then baking it at high temperature.
  • Patent Documents 1 and 2 While it is possible to increase the coating tension by increasing the thickness of the coating, this results in a decrease in the space factor, so in practice there is a limit to how much the coating tension can be increased using this method.
  • the method of Patent Document 3 has problems with poor manufacturability due to the slow coating speed and the need to reduce pressure when forming the coating, which increases manufacturing costs.
  • the method of Patent Document 4 has problems with poor manufacturability due to the slow coating speed and the need to repeat coating and baking.
  • the present invention was made in consideration of the above problems with the conventional technology, and its purpose is to provide a grain-oriented electrical steel sheet with low core loss and a coating that has excellent uniformity and adhesion and can impart high tension to the steel sheet, and to propose a manufacturing method for grain-oriented electrical steel sheet that can form the coating in a short time.
  • the inventors conducted extensive research, focusing on a method for forming a coating on the surface of steel sheet after final annealing. As a result, they discovered that a method for electrolytically depositing ceramic on the surface of steel sheet can form a coating that is highly uniform and adheres well and can impart high tensile strength in a short period of time, and that can produce grain-oriented electrical steel sheet with extremely low iron loss at low cost and with good productivity, which led to the development of the present invention.
  • the present invention is a grain-oriented electrical steel sheet characterized in that the surface of the steel sheet after final annealing has an electrochemically deposited coating of ceramics consisting of carbides, nitrides, and oxides of one or more metallic elements selected from Mg, Al, Si, Ti, Cr, Zr, and Y, or ceramics consisting of a composite of two or more of the above carbides, nitrides, and oxides.
  • the grain-oriented electrical steel sheet of the present invention is characterized in that the tensile stress imparted to the steel sheet by the ceramic electrochemically deposited coating is in the range of 5 to 40 MPa.
  • the grain-oriented electrical steel sheet of the present invention is also characterized by not having a forsterite coating.
  • the grain-oriented electrical steel sheet of the present invention is characterized by having a composition containing C: 0.0050 mass% or less, Si: 2.0 to 5.0 mass%, Mn: 0.01 to 0.5 mass%, and the balance being Fe and unavoidable impurities.
  • the grain-oriented electrical steel sheet of the present invention is characterized in that, in addition to the above-mentioned composition, it further contains at least one of B: 0.0001-0.005 mass%, Ti: 0.001-0.01 mass%, P: 0.005-0.1 mass%, Cr: 0.01-0.5 mass%, Ni: 0.01-1.5 mass%, Cu: 0.01-0.5 mass%, Nb: 0.002-0.08 mass%, Mo: 0.005-0.1 mass%, Sn: 0.005-0.5 mass%, Sb: 0.005-0.5 mass%, and Bi: 0.001-0.05 mass%.
  • the present invention also proposes a method for manufacturing grain-oriented electrical steel sheet, which comprises hot rolling a steel material having a specified composition, cold rolling it, subjecting it to decarburization annealing that also serves as primary recrystallization annealing, applying an annealing separator to the steel sheet surface, finish annealing, and then flattening annealing, characterized in that a ceramic consisting of any of carbides, nitrides, and oxides of one or more metal elements selected from Mg, Al, Si, Ti, Cr, Zr, and Y, or a ceramic consisting of a composite of two or more of the above carbides, nitrides, and oxides, is electrodeposited on the steel sheet surface after the above finish annealing to form an electrodeposited ceramic coating.
  • the manufacturing method of the grain-oriented electrical steel sheet of the present invention is also characterized in that the tensile stress imparted to the steel sheet by the ceramic electrochemically deposited coating is within the range of 5 to 40 MPa.
  • the manufacturing method of the above-mentioned grain-oriented electrical steel sheet of the present invention is characterized in that ceramic is electrochemically deposited on the surface of the steel sheet after final annealing, which does not have a forsterite coating.
  • the steel material used in the method for producing the grain-oriented electrical steel sheet of the present invention is characterized by having a component composition containing C: 0.01 to 0.1 mass%, Si: 2.0 to 5.0 mass%, and Mn: 0.01 to 0.5 mass%, and further containing at least one inhibitor-forming component of the following groups A and B, with the balance being Fe and unavoidable impurities: Group A: At least one of S: 0.005-0.03 mass% and Se: 0.005-0.03 mass% Group B: Al: 0.010-0.04 mass% and N: 0.005-0.01 mass%
  • the steel material used in the manufacturing method of the grain-oriented electrical steel sheet of the present invention is characterized by having a composition containing C: 0.01-0.1 mass%, Si: 2.0-5.0 mass%, Mn: 0.01-0.5 mass%, S: less than 0.005 mass%, Se: less than 0.005 mass%, Al: less than 0.010 mass%, N: less than 0.005 mass%, with the balance being Fe and unavoidable impurities.
  • the steel material used in the manufacturing method of the grain-oriented electrical steel sheet of the present invention is characterized by containing, in addition to the above-mentioned composition, at least one of B: 0.0001-0.005 mass%, Ti: 0.001-0.01 mass%, P: 0.005-0.1 mass%, Cr: 0.01-0.5 mass%, Ni: 0.01-1.5 mass%, Cu: 0.01-0.5 mass%, Nb: 0.002-0.08 mass%, Mo: 0.005-0.1 mass%, Sn: 0.005-0.5 mass%, Sb: 0.005-0.5 mass%, and Bi: 0.001-0.05 mass%.
  • a coating that is uniform, has excellent adhesion, and can impart high tensile strength can be formed in a short time, making it possible to inexpensively and productively manufacture grain-oriented electrical steel sheet with extremely low iron loss.
  • the hot-rolled sheet was subjected to hot-rolled sheet annealing, and then cold-rolled twice with intermediate annealing in between to obtain a cold-rolled sheet with a final sheet thickness of 0.23 mm.
  • the cold-rolled sheet was subjected to decarburization annealing, which also serves as primary recrystallization annealing, and an annealing separator mainly composed of MgO was applied to the steel sheet surface, followed by finish annealing to obtain a finish annealed sheet having a forsterite coating.
  • decarburization annealing which also serves as primary recrystallization annealing
  • an annealing separator mainly composed of MgO was applied to the steel sheet surface, followed by finish annealing to obtain a finish annealed sheet having a forsterite coating.
  • the steel sheet was subjected to flattening annealing under the conditions of 850°C x 60s to bake the coating, and then test pieces were taken from the steel sheet to evaluate the coating properties (film thickness, uniformity, adhesion, and coating tension) and magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ).
  • the film thickness of the coating was measured by observing the cross section of the coating with a SEM.
  • the uniformity of the coating was evaluated by visually observing the steel sheet surface, and was evaluated as O if uniform, ⁇ if slightly non-uniform, and ⁇ if non-uniform.
  • the adhesion of the coating was evaluated by wrapping the steel sheet around round bars of various diameters and measuring the minimum diameter at which the coating did not peel off (hereinafter referred to as "bending peeling diameter").
  • the coating tension was calculated from the following formula (1) by measuring the amount of warping of the steel sheet after removing the coating from one side.
  • Coating tension (MPa) Young's modulus of steel sheet (GPa) ⁇ thickness of steel sheet (mm) ⁇ warpage of steel sheet (mm) ⁇ (length of steel sheet (mm)) 2 ⁇ 10 3 ... (1) (The Young's modulus of the steel plate used was 132 GPa.)
  • the magnetic properties were measured in accordance with JIS C 2556 (1996).
  • the inventors conducted experiments to form electrodeposited coatings on ceramics other than the above-mentioned silica (SiO 2 ) in the same manner as above and to confirm their effects. As a result, it was confirmed that similar effects can be obtained with electrodeposited coatings of ceramics consisting of any of carbides, nitrides and oxides of one or more metal elements selected from Mg, Al, Si, Ti, Cr, Zr and Y, or ceramics consisting of a composite of two or more of the above-mentioned carbides, nitrides and oxides.
  • the present invention was developed based on the above-mentioned new findings.
  • C 0.01 to 0.1 mass%
  • C is an effective component for improving the primary recrystallization texture, and if it is less than 0.01 mass%, the above effect cannot be sufficiently obtained. On the other hand, if it exceeds 0.1 mass%, it becomes difficult to decarburize to a level that does not cause magnetic aging by decarburization annealing. Therefore, C is preferably in the range of 0.01 to 0.1 mass%, and more preferably in the range of 0.02 to 0.08 mass%.
  • Si 2.0 to 5.0 mass% Silicon is an effective component for increasing the resistivity of steel and improving magnetic properties, but if the content is less than 2.0 mass%, the above effects cannot be sufficiently obtained. On the other hand, if the content exceeds 5.0 mass%, the steel becomes hard and brittle, making it difficult to cold roll. Therefore, the content of silicon is preferably in the range of 2.0 to 5.0 mass%, and more preferably in the range of 2.5 to 4.5 mass%.
  • Mn 0.01 to 0.5 mass% Mn, like Si, has the effect of increasing the resistivity of steel and improving magnetic properties. It is also an effective component for improving hot rolling properties. However, if the Mn content is less than 0.01 mass%, the above effect cannot be sufficiently obtained, while if it exceeds 0.5 mass%, it induces ⁇ transformation after secondary recrystallization, and the magnetic properties deteriorate. Therefore, Mn is preferably in the range of 0.01 to 0.5 mass%. More preferably, it is in the range of 0.01 to 0.2 mass%.
  • the steel material (slab) used to manufacture the grain-oriented electrical steel sheet of the present invention differs depending on whether or not inhibitors such as MnS, MnSe, and AlN are used to induce secondary recrystallization.
  • MnS and/or MnSe when used as the inhibitor, it is preferable to further contain at least one of S: 0.005-0.03 mass% and Se: 0.005-0.03 mass% in addition to the above-mentioned Mn.
  • S 0.005-0.03 mass%
  • Se 0.005-0.03 mass%
  • AlN when used as the inhibitor, it is preferable to contain Al: 0.010-0.04 mass% and N: 0.005-0.01 mass%.
  • the above inhibitors may be used alone or multiple inhibitors may be used in combination.
  • S is less than 0.005 mass%
  • Se is less than 0.005 mass%
  • Al is less than 0.010 mass%
  • N is less than 0.005 mass%.
  • the remainder of the steel material used in the present invention is essentially Fe and unavoidable impurities.
  • the slab is reheated to a specified temperature and then hot rolled to obtain a hot-rolled sheet. If the slab does not contain inhibitor-forming components, it may be subjected to hot rolling directly after continuous casting without reheating.
  • the hot-rolled sheet is annealed as necessary.
  • the annealing temperature is preferably in the range of 800 to 1150°C. If the temperature is less than 800°C, the band structure formed by hot rolling remains, a uniform primary recrystallized structure is not obtained, and the growth of secondary recrystallized grains is inhibited, so there is a risk that the effect of hot-rolled sheet annealing will not be fully obtained. On the other hand, if the temperature exceeds 1150°C, the grain size after hot-rolled sheet annealing becomes too large, and it becomes difficult to obtain a uniform primary recrystallized structure.
  • the hot-rolled sheet after the above hot rolling or hot-rolled sheet annealing is descaled by pickling or the like, and then cold-rolled once or cold-rolled two or more times with intermediate annealing in between to produce a cold-rolled sheet of the final thickness.
  • the annealing temperature is preferably in the range of 900 to 1200°C. If the annealing temperature is less than 900°C, the grain size after intermediate annealing will be too small, reducing the Goss nuclei in the primary recrystallized structure and possibly degrading the magnetic properties. On the other hand, if it exceeds 1200°C, the grain size after intermediate annealing will be too large, making it difficult to obtain a uniform grain primary recrystallized structure.
  • the cold-rolled sheet having the final thickness is subjected to decarburization annealing, which also serves as primary recrystallization annealing.
  • the heating rate between 500 and 700°C in the heating process of the decarburization annealing is preferably 50°C/s or more. This increases the number of Goss nuclei in the primary recrystallization structure, and improves the magnetic properties.
  • the temperature during decarburization annealing is preferably in the range of 750 to 950°C. If the temperature is less than 750°C, decarburization itself becomes difficult.
  • the atmosphere during decarburization annealing is preferably set to an oxygen potential P H2O /P H2 in the range of 0.3 to 0.6. If P H2O /P H2 is less than 0.3, decarburization becomes difficult. On the other hand, if it exceeds 0.6, there is a risk that FeO is excessively generated on the steel sheet surface, deteriorating the coating properties.
  • the steel sheet after the decarburization annealing is coated with an annealing separator on the surface of the steel sheet, and then subjected to secondary recrystallization and finish annealing for purification.
  • the secondary recrystallization is caused during the temperature rise of the finish annealing, it is preferable to heat the steel sheet at a temperature range of 700 to 1100 ° C. at a temperature rise rate of 2 to 50 ° C. / s.
  • the secondary recrystallization is caused by holding the steel sheet at a constant temperature, it is preferable to hold the steel sheet at any temperature between 700 and 1100 ° C. for 25 hours or more.
  • the steel sheet it is preferable to hold the steel sheet at a temperature of 1120 to 1250 ° C. for 2 to 50 hours in an H 2 -containing atmosphere. If the purification temperature is less than 1120 ° C. and the holding time is less than 2 hours, the purification is insufficient. On the other hand, if the purification temperature exceeds 1250 ° C. and the holding time exceeds 50 hours, the coil may buckle and deform, and the steel sheet shape may deteriorate. By carrying out the above purification treatment, the inhibitor-forming components added to the steel material are reduced to the level of unavoidable impurities.
  • a ceramic coating is formed by electrochemically depositing ceramic on the surface of the steel sheet after the above-mentioned finish annealing.
  • the ceramic to be electrochemically deposited must be made of either a carbide, nitride or oxide of one or more metal elements selected from Mg, Al, Si, Ti, Cr, Zr and Y, or a composite of two or more of the above-mentioned carbides, nitrides and oxides. These ceramics have a low thermal expansion coefficient and a high Young's modulus, making them advantageous for forming a coating that imparts a large tensile stress to the steel sheet.
  • the coating tension applied to the steel sheet by the ceramic coating is preferably in the range of 5 to 40 MPa. If the coating tension is less than 5 MPa, the iron loss reduction effect due to the coating tension is not sufficiently obtained. On the other hand, if the coating tension exceeds 40 MPa, the stress generated at the interface between the steel sheet and the coating is too strong, and the adhesion of the coating deteriorates. A range of 10 to 35 MPa is more preferable.
  • the thickness of the ceramic coating is not particularly specified, so long as it is within the range in which the above-mentioned coating tension can be obtained.
  • the upper limit is preferably 5 ⁇ m. More preferably, it is 3 ⁇ m or less.
  • the method for mirror-finishing a method of chemically or physically removing the forsterite coating, a method of adding a chloride to an annealing separator to peel off the forsterite coating, a method of applying an annealing separator mainly composed of Al2O3 or the like to prevent the formation of a forsterite coating , or the like may be used.
  • the method of electrodepositing the ceramic is not particularly limited, but for example, when electrodepositing silica (SiO 2 ), electrodeposition may be performed in a solution containing silicate ions, or electrophoretic deposition may be performed in a solution in which silica particles are dispersed. When electrophoretic deposition is performed, water or an organic solvent may be used as the dispersion medium, or a mixture of these may be used. Electrodeposition may also be performed while applying tension to the steel plate. The same applies to other ceramics.
  • electrodeposition is an advantageous method for forming a coating because the thickness of the film can be easily increased by increasing the current density, voltage, and current flow time.
  • the optimal electrodeposition conditions vary depending on the type of ceramic, but from the perspective of improving manufacturability, it is preferable to increase the current density and voltage and shorten the current flow time.
  • the method of applying electricity is not particularly limited, but for example, a method of indirectly applying electricity by alternately arranging anodes and cathodes in a non-contact manner in the sheet passing direction may be used, or a method of directly applying electricity using an electric current roll may be used.
  • the steel sheet with the ceramic electrodeposited thereon is subjected to flattening annealing to correct the shape of the steel sheet, and the electrodeposited ceramic is baked to form a ceramic coating.
  • the coating may be baked in a facility other than the flattening annealing facility.
  • the annealing temperature is preferably in the range of 800 to 1000°C. If the annealing temperature is less than 800°C, flattening is likely to be insufficient, and there is also a risk that the adhesion of the ceramic coating will be insufficient. On the other hand, if the annealing temperature exceeds 1000°C, the steel sheet will undergo creep deformation, and there is a risk that the magnetic properties will deteriorate.
  • the steel sheet after the above-mentioned flattening annealing is then subjected to a magnetic domain refining process as necessary to produce a finished sheet.
  • a commonly known insulating coating may be further formed on the above-mentioned ceramic coating as necessary.
  • a steel material (slab) containing 0.03 mass% C, 3.4 mass% Si, 0.07 mass% Mn, 0.003 mass% S, with the balance being Fe and unavoidable impurities, was hot-rolled to form a hot-rolled sheet, which was then annealed.
  • the hot-rolled sheet was then cold-rolled to form a cold-rolled sheet with a final thickness of 0.23 mm, and was subjected to decarburization annealing, which also served as primary recrystallization annealing.
  • the steel sheet surface was then coated with an annealing separator mainly composed of MgO, and then finished annealed.
  • the steel sheet was then pickled with hydrochloric acid to remove the forsterite coating, and chemically polished with hydrofluoric acid to give a mirror finish.
  • the steel sheet was then electrophoretically deposited in a mixed solution of water and ethanol in which various ceramics shown in Table 2 were dispersed, and baked in a flattening annealing condition of 850°C x 60s to form a product sheet.
  • Test pieces were taken from the product sheets thus obtained, and the coating properties (film thickness, uniformity, adhesion, and coating tension) and magnetic properties (magnetic flux density B8 , iron loss W17 /50 ) were evaluated.
  • the properties of the ceramic coating were evaluated by the method explained in the above experiment.
  • the magnetic properties were measured in accordance with JIS C 2556 (1996).
  • Table 2 The results of the above evaluations are shown in Table 2. From Table 2, it can be seen that by electrolytically depositing ceramics on the surface of the steel sheet after final annealing under conditions that satisfy the present invention, a ceramic coating that has excellent uniformity and adhesion and can impart high tensile strength can be formed in a short period of time, making it possible to inexpensively and productively manufacture grain-oriented electrical steel sheets with extremely low iron loss.
  • a steel material (slab) containing various components shown in Table 3, with the balance being Fe and unavoidable impurities, was hot-rolled to form a hot-rolled sheet, which was then annealed and cold-rolled to form a cold-rolled sheet with a final thickness of 0.23 mm.
  • the cold-rolled sheet was then subjected to decarburization annealing, which also served as primary recrystallization annealing, and then an annealing separator mainly composed of MgO and containing antimony chloride was applied to the surface of the steel sheet, followed by finish annealing to form a finish annealed sheet without a forsterite coating.
  • a ceramic coating was then electrophoretically deposited on the finish annealed sheet in a mixed solution of water and ethanol in which alumina (Al 2 O 3 ) was dispersed, under conditions of 5 V x 40 sec, and then baked in a planarization annealing condition of 850°C x 60 s to form a product sheet.
  • alumina Al 2 O 3
  • Test pieces were taken from the product sheets thus obtained, and the coating properties (film thickness, uniformity, adhesion, and coating tension) and magnetic properties (magnetic flux density B8 , iron loss W17 /50 ) were evaluated.
  • the properties of the ceramic coating were evaluated by the method explained in the above experiment.
  • the magnetic properties were measured in accordance with JIS C 2556 (1996).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

所定の成分組成を有する鋼素材を熱間圧延し、冷間圧延し、一次再結晶焼鈍を兼ねた脱炭焼鈍し、焼鈍分離剤を鋼板表面に塗布し、仕上焼鈍した後、平坦化焼鈍して方向性電磁鋼板を製造する際、上記仕上焼鈍後の鋼板表面にセラミック、好ましくは、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミック、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックを電着してセラミックス被膜を形成し、好ましくは5~40MPaの被膜張力を鋼板に付与することで、均一性と密着性に優れかつ鋼板表面に高い張力を付与可能な被膜を有する、低鉄損の方向性電磁鋼板を得る。

Description

方向性電磁鋼板とその製造方法
 本発明は、方向性電磁鋼板とその製造方法に関し、具体的には、鉄損が極めて低い方向性電磁鋼板とその製造方法に関するものである。
 方向性電磁鋼板は、主として変圧器等の鉄心に用いられる軟磁性材料であり、その磁気特性としては、特に低鉄損であることが強く求められている。鉄損を低減する方法の一つに、鋼板表面に被膜張力を付与する方法がある。ここで、上記被膜張力とは、鋼板とその表面上に形成した被膜との熱的な特性の違いによって、被膜から鋼板に付与される引張応力のことをいう。具体的には、この被膜張力は、鋼板よりも熱膨張率が低い被膜を鋼板表面上に高温で形成した後、室温まで冷却すると、鋼板が縮む一方で、被膜はそれほど縮まないため、鋼板に引張応力が掛かることを利用したものである。従って、鋼板よりも熱膨張率が低く、ヤング率が高い被膜を形成するほど、鋼板表面に付与する被膜張力を高めることができる。
 被膜張力を付与する具体的な方法としては、仕上焼鈍後、鋼板表面にリン酸塩とシリカからなる薬液を塗布した後、これを高温で焼き付けて被膜を形成する方法が一般的である。例えば、特許文献1には、リン酸アルミニウムとシリカからなる被膜を形成する方法が、特許文献2には、リン酸マグネシウムとシリカからなる被膜を形成する方法が提案されている。
 また、他の方法としては、セラミックは熱膨張率が低く、ヤング率が高いため、高い張力の付与に有利な被膜を形成し易いことに着目した技術が提案されている。例えば、特許文献3には、PVD法やCVD法を用いて、鋼板表面にセラミックを蒸着してセラミックス被膜を形成する方法が、特許文献4には、ゾル・ゲル法を用いて、鋼板表面にゾルを塗布した後、これを高温で焼き付けてセラミックス被膜を形成する方法が提案されている。
特公昭53-028375号公報 特公昭56-052117号公報 特公昭63-054767号公報 特開平02-243770号公報
 しかしながら、上記特許文献1および2の方法では、被膜の厚さを増すことで被膜張力を高めることができる反面、占積率の低下をもたらすため、実際には、この方法での被膜張力の増大には限界があった。また、上記特許文献3の方法では、成膜速度が遅く、しかも、被膜形成時に減圧する必要があるため、製造性が悪く、製造コストが上昇するという問題があった。また、上記特許文献4の方法では、成膜速度が遅いことの他に、塗布と焼き付けを繰り返す必要があるため、やはり製造性が悪いという問題があった。
 本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、均一性と密着性に優れかつ鋼板に高い張力を付与可能な被膜を有する、低鉄損の方向性電磁鋼板を提供するとともに、上記被膜を短時間で形成可能な方向性電磁鋼板の製造方法を提案することにある。
 発明者らは、上記課題を解決するため、仕上焼鈍後の鋼板表面に被膜を形成する方法に着目して鋭意検討を重ねた。その結果、鋼板表面にセラミックを電着する方法であれば、均一性と密着性に優れかつ高い張力を付与可能な被膜を短時間で形成可能であり、鉄損が極めて低い方向性電磁鋼板を安価にかつ生産性よく製造し得ることを見出し、本発明を開発するに至った。
 上記知見に基づく本発明は、仕上焼鈍後の鋼板表面に、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミックス、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックスの電着被膜を有することを特徴とする方向性電磁鋼板である。
 本発明の上記方向性電磁鋼板は、上記セラミックスの電着被膜が鋼板に付与する引張応力が、5~40MPaの範囲内にあることを特徴とする。
 また、本発明の上記方向性電磁鋼板は、フォルステライト被膜を有しないことを特徴とする。
 また、本発明の上記方向性電磁鋼板は、C:0.0050mass%以下、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。
 また、本発明の上記方向性電磁鋼板は、上記成分組成に加えてさらに、B:0.0001~0.005mass%、Ti:0.001~0.01mass%、P:0.005~0.1mass%、Cr:0.01~0.5mass%、Ni:0.01~1.5mass%、Cu:0.01~0.5mass%、Nb:0.002~0.08mass%、Mo:0.005~0.1mass%、Sn:0.005~0.5mass%、Sb:0.005~0.5mass%およびBi:0.001~0.05mass%のうちの少なくとも1種を含有することを特徴とする。
 また、本発明は、所定の成分組成を有する鋼素材を熱間圧延し、冷間圧延し、一次再結晶焼鈍を兼ねた脱炭焼鈍し、焼鈍分離剤を鋼板表面に塗布し、仕上焼鈍した後、平坦化焼鈍する方向性電磁鋼板の製造方法において、上記仕上焼鈍後の鋼板表面に、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミック、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックを電着してセラミックスの電着被膜を形成することを特徴とする方向性電磁鋼板の製造方法を提案する。
 また、本発明の上記方向性電磁鋼板の製造方法は、上記セラミックスの電着被膜が鋼板に付与する引張応力を5~40MPaの範囲内とすることを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法は、フォルステライト被膜を有しない仕上焼鈍後の鋼板表面にセラミックを電着することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、C:0.01~0.1mass%、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、さらに、下記AおよびB群のうちの少なくとも1群のインヒビター形成成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。
     記
 ・A群:S:0.005~0.03mass%およびSe:0.005~0.03mass%のうちの少なくとも1種
 ・B群:Al:0.010~0.04mass%およびN:0.005~0.01mass%
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、C:0.01~0.1mass%、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、さらに、S:0.005mass%未満、Se:0.005mass%未満、Al:0.010mass%未満およびN:0.005mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。
 また、本発明の上記方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、B:0.0001~0.005mass%、Ti:0.001~0.01mass%、P:0.005~0.1mass%、Cr:0.01~0.5mass%、Ni:0.01~1.5mass%、Cu:0.01~0.5mass%、Nb:0.002~0.08mass%、Mo:0.005~0.1mass%、Sn:0.005~0.5mass%、Sb:0.005~0.5mass%およびBi:0.001~0.05mass%のうちの少なくとも1種を含有することを特徴とする。
 本発明によれば、仕上焼鈍後の鋼板表面にセラミックを電着することで、均一性と密着性に優れかつ高い張力を付与可能な被膜を短時間で形成できるので、鉄損が極めて低い方向性電磁鋼板を安価にかつ生産性よく製造することが可能となる。
 まず、本発明を開発する契機となった実験について説明する。
 C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、S:0.002mass%、Al:0.023mass%およびN:0.008mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材を熱間圧延して熱延板とした。次いで、上記熱延板に熱延板焼鈍を施した後、中間焼鈍を挟む2回の冷間圧延をして最終板厚0.23mmの冷延板とした。次いで、上記冷延板に一次再結晶焼鈍を兼ねた脱炭焼鈍を施し、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、仕上焼鈍を施してフォルステライト被膜を有する仕上焼鈍板とした。
 次いで、上記仕上焼鈍後の鋼板表面に、10mass%オルト珪酸ナトリウム溶液中で、表1に示す種々の条件でシリカ(SiO)の電着被膜を形成した。
 次いで、上記鋼板に、850℃×60sの条件で平坦化焼鈍を施して被膜を焼き付けた後、該鋼板から試験片を採取し、被膜特性(膜厚、均一性、密着性および被膜張力)と磁気特性(磁束密度B、鉄損W17/50)を評価した。ここで、被膜の膜厚は、被膜断面をSEMで観察することにより測定した。また、被膜の均一性は、鋼板表面を目視観察し、均一であれば○、やや不均一であれば△、不均一であれば×と評価した。また、被膜の密着性は、鋼板を種々の直径の丸棒に巻き付け、被膜が剥離しない最小の直径(以下、「曲げ剥離径」と称する)で評価した。また、被膜張力は、片面の被膜を除去した後の鋼板の反り量を測定し、下記(1)式から算出した。
 被膜張力(MPa)=鋼板のヤング率(GPa)×鋼板の板厚(mm)×鋼板の反り量(mm)÷(鋼板の長さ(mm))×10 ・・・(1)
 (なお、上記鋼板のヤング率は132GPaを用いた。)
 さらに、磁気特性は、JIS C 2556(1996)に準拠して測定した。
Figure JPOXMLDOC01-appb-T000001
 上記測定の結果を表1に併記した。表1から、電流密度を大きくしたり、通電時間を長くしたりすることで、被膜の厚さが増大するとともに、被膜張力も増大し、鉄損が低減している。ただし、被膜が薄く、被膜張力が小さ過ぎると、鉄損の低減効果が不十分である。逆に、被膜が厚く、被膜張力が大きくなり過ぎると、却って密着性が劣化し、鉄損も劣化している。これらの結果から、鋼板表面にシリカを電着して被膜を形成する方法は、生産性に優れるだけでなく、被膜特性や磁気特性の向上に極めて有効な手段であることがわかった。
 さらに、発明者らは、上記したシリカ(SiO)以外のセラミックについても、上記と同様にして電着被膜を形成し、その効果を確認する実験を行った。その結果、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミック、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックの電着被膜であれば、同様の効果が得られることを確認した。本発明は、上記の新規な知見に基づき開発したものである。
 次に、本発明の方向性電磁鋼鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.01~0.1mass%
 Cは、一次再結晶集合組織を改善するのに有効な成分であり、0.01mass%未満では上記効果が十分に得られない。一方、0.1mass%を超えると、脱炭焼鈍で磁気時効を起こさないレベルまで脱炭することが難しくなる。そのため、Cは0.01~0.1mass%の範囲とするのが好ましい。より好ましくは、0.02~0.08mass%の範囲である。
Si:2.0~5.0mass%
 Siは、鋼の比抵抗を高め、磁気特性を改善するのに有効な成分であるが、2.0mass%未満では、上記効果が十分に得られない。一方、5.0mass%を超えると、鋼が硬化・脆化して冷間圧延することが難しくなる。そのため、Siは2.0~5.0mass%の範囲とするのが好ましい。より好ましくは、2.5~4.5mass%の範囲である。
Mn:0.01~0.5mass%
 Mnは、Siと同様、鋼の比抵抗を高めて、磁気特性を改善する効果がある。また、熱間圧延性の改善にも有効な成分である。しかし、Mn含有量が0.01mass%未満では、上記効果が十分に得られず、一方、0.5mass%を超えると、二次再結晶後にγ変態を誘起し、磁気特性が劣化するようになる。そのため、Mnは0.01~0.5mass%の範囲とするのが好ましい。より好ましくは、0.01~0.2mass%の範囲である。
 また、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上記必須とする成分以外は、二次再結晶を起こさせるために、MnS、MnSeおよびAlN等のインヒビターを用いる場合と、用いない場合とで異なる。
 例えば、二次再結晶の発現にインヒビターを活用する場合で、インヒビターとしてMnSおよび/またはMnSeを用いるときは、上述したMnに加えてさらに、S:0.005~0.03mass%およびSe:0.005~0.03mass%のうちの少なくとも1種を含有することが好ましい。また、インヒビターとしてAlNを用いるときは、Al:0.010~0.04mass%およびN:0.005~0.01mass%を含有することが好ましい。なお、上記インヒビターは単体で用いてもよいし、複数のインヒビターを併用して用いてもよい。
 一方、二次再結晶を起こさせるためにインヒビターを用いない場合は、上記したインヒビター形成成分は極力低減するのが好ましい。具体的には、S:0.005mass%未満、Se:0.005mass%未満、Al:0.010mass%未満およびN:0.005mass%未満であることが好ましい。
 なお、本発明に用いる上記鋼素材は、上記成分以外の残部は、実質的にFeおよび不可避的不純物である。ただし、磁気特性の改善を目的として、上記成分に加えてさらに、B:0.0001~0.005mass%、Ti:0.001~0.01mass%、P:0.005~0.1mass%、Cr:0.01~0.5mass%、Ni:0.01~1.5mass%、Cu:0.01~0.5mass%、Nb:0.002~0.08mass%、Mo:0.005~0.1mass%、Sn:0.005~0.5mass%、Sb:0.005~0.5mass%およびBi:0.001~0.05mass%のうちの少なくとも1種を含有してもよい。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 まず、本発明に適合する上記の成分組成に調整した鋼を通常公知の精錬プロセスで溶製した後、通常公知の造塊-分塊圧延法あるいは連続鋳造法で鋼素材(スラブ)を製造する。なお、直接鋳造法で100mm以下の薄鋳片を製造してもよい。
 次いで、上記スラブは、所定の温度に再加熱した後、熱間圧延して熱延板とする。なお、インヒビター形成成分を含有しない場合は、連続鋳造後、スラブを再加熱することなく直接、熱間圧延に供してもよい。
 次いで、上記熱延板は、必要に応じて熱延板焼鈍を施す。熱延板焼鈍を施す場合は、焼鈍温度を800~1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織が得られず、二次再結晶粒の成長が阻害されるため、熱延板焼鈍の効果が十分に得られない虞がある。一方、1150℃を超えると、熱延板焼鈍後の粒径が大きくなり過ぎ、やはり、整粒の一次再結晶組織を得ることが難しくなる。
 上記熱間圧延後または熱延板焼鈍後の熱延板は、酸洗等で脱スケールした後、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延をして最終板厚の冷延板とする。なお、中間焼鈍を実施する場合は、焼鈍温度を900~1200℃の範囲とするのが好ましい。焼鈍温度が900℃未満では、中間焼鈍後の粒径が小さ過ぎて一次再結晶組織におけるGoss核が減少し、磁気特性が劣化する虞がある。一方、1200℃を超えると、中間焼鈍後の粒径が大きくなり過ぎ、整粒の一次再結晶組織が得ることが難しくなる。
 次いで、最終板厚とした冷延板は、一次再結晶焼鈍を兼ねた脱炭焼鈍を施す。ここで、上記脱炭焼鈍の加熱過程における500~700℃間の昇温速度は、50℃/s以上とするのが好ましい。これによって、一次再結晶組織におけるGoss核の数が増大し、磁気特性を改善することができる。また、脱炭焼鈍時の温度は、750~950℃の範囲とするのが好ましい。750℃未満では、脱炭すること自体が難しくなる。一方、950℃を超えると、一次再結晶粒の粒径が大きくなり過ぎ、二次再結晶が阻害される虞がある。また、脱炭焼鈍時の雰囲気は、酸素ポテンシャルPH2O/PH2を0.3~0.6の範囲とするのが好ましい。PH2O/PH2が0.3未満では脱炭が難しくなる。一方、0.6を超えると、鋼板表面にFeOが過剰に生成して、被膜特性が劣化する虞がある。上記脱炭焼鈍により、鋼中に含まれるCは、磁気時効を起こさない0.0050mass%以下まで低減される。
 次いで、上記脱炭焼鈍後の鋼板は、鋼板表面に焼鈍分離剤を塗布し、その後、二次再結晶させた後、純化処理する仕上焼鈍を施す。ここで、上記二次再結晶を仕上焼鈍の昇温中に起こさせる場合は、700~1100℃の温度範囲を2~50℃/sの昇温速度で加熱することが好ましい。一方、一定温度に保持して二次再結晶を起こさせる場合は、700~1100℃間のいずれかの温度で25hr以上保持することが好ましい。また、純化処理は、H含有雰囲気下で1120~1250℃の温度に2~50hr保持することが好ましい。純化処理の温度が1120℃未満、保持時間が2hr未満では、純化が不充分となる。一方、純化処理の温度が1250℃超え、保持時間が50hr超えでは、コイルが座屈変形し、鋼板形状が劣化する虞がある。上記純化処理を施すことで、鋼素材中に添加されたインヒビター形成成分は、不可避的不純物レベルまで低減される。
 ここで、本発明において最も重要なことは、上記仕上焼鈍後の鋼板表面に、セラミックを電着してセラミックス被膜を形成するということである。電着するセラミックとしては、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるもの、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるものであることが必要である。これらのセラミックは、熱膨張率が低く、ヤング率が高いため、鋼板に付与する引張応力が大きい被膜を形成するのに有利である。
 また、上記セラミックス被膜が鋼板に付与する被膜張力は、5~40MPaの範囲とするのが好ましい。被膜張力が5MPa未満では、被膜張力による鉄損低減効果が十分に得られない。一方、被膜張力が40MPaを超えると、鋼板と被膜との界面に生じる応力が強すぎ、被膜の密着性が却って劣化するようになる。より好ましくは10~35MPaの範囲である。
 また、上記セラミックス被膜の厚さは、上述した被膜張力が得られる範囲内であればよく、特に規定しない。ただし、膜厚が5μmを超えると、占積率が低下し、変圧器の磁気特性が低下するので、上限は5μmとするのが好ましい。より好ましくは3μm以下である。
 また、さらにセラミックス被膜の効果を増大して鉄損をより低減するためには、仕上焼鈍後の鋼板表面の上に、好ましくは上記鋼板表面からフォルステライト等のガラス質の被膜を除去して鏡面化した鋼板表面の上に、セラミックを電着するのが好ましい。鏡面化の方法については特に限定しない。例えば、化学的あるいは物理的にフォルステライト被膜を除去する方法、焼鈍分離剤に塩化物を添加してフォルステライト被膜を剥離する方法、Al等を主体とした焼鈍分離剤を塗布することでフォルステライト被膜を形成しない方法等を用いてもよい。
 また、セラミックを電着する方法についても、特に限定しないが、例えば、シリカ(SiO)を電着する場合は、ケイ酸イオンを含む溶液中で電着してもよいし、シリカ粒子を分散した溶液中で泳動電着してもよい。また、泳動電着する場合は、分散媒に水や有機溶剤を用いてもよいし、これらを混合して用いてもよい。また、鋼板に張力を掛けながら、電着してもよい。他のセラミックについても同様である。
 また、電着は、電流密度、電圧および通電時間を増大することで、容易に膜厚を厚くすることができるため、被膜の形成には有利な手段である。好適な電着条件は、セラミックの種類によっても変わるが、製造性を高める観点からは、電流密度および電圧を高くし、通電時間を短くするのが好ましい。
 また、通電方法についても特に制限しないが、例えば、通板方向に非接触に陽極と陰極を交互に配置して間接的に通電する方法を用いてもよいし、通電ロールを用いて直接的に通電する方法を用いてもよい。
 次に、上記セラミックを電着した鋼板は、その後、鋼板形状を矯正する平坦化焼鈍を施して電着したセラミックを焼き付けてセラミックス被膜とする。なお、被膜の焼き付けは、平坦化焼鈍設備以外で行ってもよい。ここで、上記焼鈍温度は、800~1000℃の範囲とするのが好ましい。焼鈍温度が800℃未満では、平坦化が不十分となり易いほか、セラミックス被膜の密着性も不十分となる虞がある。一方、焼鈍温度が1000℃を超えると、鋼板がクリープ変形し、磁気特性が却って劣化する虞がある。
 上記平坦化焼鈍後の鋼板は、その後、必要に応じて磁区細分化処理を施し、製品板とする。また、必要に応じて上記セラミックス被膜の上にさらに通常公知の絶縁被膜を形成してもよい。ただし、膜厚が増大すると、占積率が低減するため、セラミック被膜と併せて上記した膜厚の範囲(5μm以下)とするのが好ましい。
 C:0.03mass%、Si:3.4mass%、Mn:0.07mass%、S:0.003mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材(スラブ)を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施した。次いで、上記熱延板焼鈍後の鋼板を、冷間圧延して最終板厚0.23mmの冷延板とし、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布し、仕上焼鈍を施した。その後、塩酸酸洗してフォルステライト被膜を除去し、フッ酸を用いた化学研磨により、鏡面化した。次いで、表2に示す種々のセラミックを分散した水とエタノールの混合溶液中で泳動電着し、平坦化焼鈍において850℃×60sの条件で焼き付けて製品板とした。
 斯くして得た製品板から試験片を採取し、被膜特性(膜厚、均一性、密着性および被膜張力)と磁気特性(磁束密度B、鉄損W17/50)を評価した。なお、セラミックス被膜の特性は、前述した実験で説明した方法で評価した。また、磁気特性は、JIS C 2556(1996)に従って測定した。
Figure JPOXMLDOC01-appb-T000002
 上記評価の結果を表2に併記した。表2から、本発明を満たす条件で仕上焼鈍後の鋼板表面にセラミックを電着することで、均一性と密着性に優れかつ高い張力を付与可能なセラミックス被膜を短時間で形成できるので、鉄損が極めて低い方向性電磁鋼板を安価にかつ生産性よく製造できることがわかる。
 表3に示す種々の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼素材(スラブ)を熱間圧延して熱延板とし、該熱延板に熱延板焼鈍を施し、冷間圧延して最終板厚0.23mmの冷延板とした。次いで、上記冷延板に、一次再結晶焼鈍を兼ねた脱炭焼鈍を施した後、鋼板表面にMgOを主体とし、塩化アンチモンを含む焼鈍分離剤を塗布し、仕上焼鈍を施して、フォルステライト被膜を有しない仕上焼鈍板とした。次いで、上記仕上焼鈍板に、アルミナ(Al)を分散した水とエタノールの混合溶液中で5V×40secの条件でセラミックス被膜を泳動電着した後、平坦化焼鈍において850℃×60sの条件で焼き付けて製品板とした。
 斯くして得た製品板から試験片を採取し、被膜特性(膜厚、均一性、密着性および被膜張力)と磁気特性(磁束密度B、鉄損W17/50)を評価した。なお、セラミックス被膜の特性は、前述した実験で説明した方法で評価した。また、磁気特性は、JIS C 2556(1996)に従って測定した。
Figure JPOXMLDOC01-appb-T000003
 上記評価の結果を表3に併記した。表3から、素材成分が大きく異なる鋼素材を用いても、本発明の成分条件を満たす鋼板は、良好な被膜特性および磁気特性が得られている。

 

Claims (11)

  1. 仕上焼鈍後の鋼板表面に、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミックス、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックスの電着被膜を有することを特徴とする方向性電磁鋼板。
  2. 上記セラミックスの電着被膜が鋼板に付与する引張応力が5~40MPaの範囲内にあることを特徴とする請求項1に記載の方向性電磁鋼板。
  3. フォルステライト被膜を有しないことを特徴とする請求項1または2に記載の方向性電磁鋼板。
  4. C:0.0050mass%以下、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板。
  5. 上記成分組成に加えてさらに、B:0.0001~0.005mass%、P:0.005~0.1mass%、Ti:0.001~0.01mass%、Cr:0.01~0.5mass%、Ni:0.01~1.5mass%、Cu:0.01~0.5mass%、Nb:0.002~0.08mass%、Mo:0.005~0.1mass%、Sn:0.005~0.5mass%、Sb:0.005~0.5mass%およびBi:0.001~0.05mass%のうちの少なくとも1種を含有することを特徴とする請求項4に記載の方向性電磁鋼板。
  6. 所定の成分組成を有する鋼素材を熱間圧延し、冷間圧延し、一次再結晶焼鈍を兼ねた脱炭焼鈍し、焼鈍分離剤を鋼板表面に塗布し、仕上焼鈍した後、平坦化焼鈍する方向性電磁鋼板の製造方法において、
    上記仕上焼鈍後の鋼板表面に、Mg,Al,Si,Ti,Cr,ZrおよびYのうちから選ばれる1以上の金属元素の炭化物、窒化物および酸化物のいずれかからなるセラミック、または、上記炭化物、窒化物および酸化物のうちの2以上の複合体からなるセラミックを電着してセラミックスの電着被膜を形成することを特徴とする方向性電磁鋼板の製造方法。
  7. 上記セラミックスの電着被膜が鋼板に付与する引張応力を5~40MPaの範囲内とすることを特徴とする請求項6に記載の方向性電磁鋼板の製造方法。
  8. フォルステライト被膜を有しない仕上焼鈍後の鋼板表面にセラミックを電着することを特徴とする請求項6または7に記載の方向性電磁鋼板の製造方法。
  9. 上記鋼素材は、C:0.01~0.1mass%、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、さらに、下記AおよびB群のうちの少なくとも1群のインヒビター形成成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項6~8のいずれか1項に記載の方向性電磁鋼板の製造方法。
         記
     ・A群:S:0.005~0.03mass%およびSe:0.005~0.03mass%のうちの少なくとも1種
     ・B群:Al:0.010~0.04mass%およびN:0.005~0.01mass%
  10. 上記鋼素材は、C:0.01~0.1mass%、Si:2.0~5.0mass%およびMn:0.01~0.5mass%を含有し、さらに、S:0.005mass%未満、Se:0.005mass%未満、Al:0.010mass%未満およびN:0.005mass%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項6~8のいずれか1項に記載の方向性電磁鋼板の製造方法。
  11. 上記鋼素材は、上記成分組成に加えてさらに、B:0.0001~0.005mass%、P:0.005~0.1mass%、Ti:0.001~0.01mass%、Cr:0.01~0.5mass%、Ni:0.01~1.5mass%、Cu:0.01~0.5mass%、Nb:0.002~0.08mass%、Mo:0.005~0.1mass%、Sn:0.005~0.5mass%、Sb:0.005~0.5mass%およびBi:0.001~0.05mass%のうちの少なくとも1種を含有することを特徴とする請求項9または10に記載の方向性電磁鋼板の製造方法。
PCT/JP2023/041721 2022-11-22 2023-11-21 方向性電磁鋼板とその製造方法 WO2024111568A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024522141A JPWO2024111568A1 (ja) 2022-11-22 2023-11-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022186528 2022-11-22
JP2022-186528 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111568A1 true WO2024111568A1 (ja) 2024-05-30

Family

ID=91195704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041721 WO2024111568A1 (ja) 2022-11-22 2023-11-21 方向性電磁鋼板とその製造方法

Country Status (2)

Country Link
JP (1) JPWO2024111568A1 (ja)
WO (1) WO2024111568A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287765A (ja) * 1993-04-02 1994-10-11 Nippon Steel Corp 方向性電磁鋼板の張力被膜形成方法
JPH11181576A (ja) * 1997-12-19 1999-07-06 Kawasaki Steel Corp 被膜密着性がよく鉄損値が極めて低い方向性電磁鋼板 およびその製造方法
JP2001316873A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 磁気特性と被膜密着性の優れた方向性電磁鋼板の製造方法
KR20200069830A (ko) * 2018-12-07 2020-06-17 주식회사 포스코 저철손 방향성 전기강판 제조방법
JP2021183722A (ja) * 2020-05-20 2021-12-02 Jfeスチール株式会社 方向性電磁鋼板とその製造方法ならびに歪導入装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287765A (ja) * 1993-04-02 1994-10-11 Nippon Steel Corp 方向性電磁鋼板の張力被膜形成方法
JPH11181576A (ja) * 1997-12-19 1999-07-06 Kawasaki Steel Corp 被膜密着性がよく鉄損値が極めて低い方向性電磁鋼板 およびその製造方法
JP2001316873A (ja) * 2000-04-28 2001-11-16 Kawasaki Steel Corp 磁気特性と被膜密着性の優れた方向性電磁鋼板の製造方法
KR20200069830A (ko) * 2018-12-07 2020-06-17 주식회사 포스코 저철손 방향성 전기강판 제조방법
JP2021183722A (ja) * 2020-05-20 2021-12-02 Jfeスチール株式会社 方向性電磁鋼板とその製造方法ならびに歪導入装置

Also Published As

Publication number Publication date
JPWO2024111568A1 (ja) 2024-05-30

Similar Documents

Publication Publication Date Title
JP6156646B2 (ja) 磁気特性および被膜密着性に優れる方向性電磁鋼板
EP3396022B1 (en) Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
CN108699621B (zh) 取向性电磁钢板的制造方法
WO1986004929A1 (en) Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
JP7197068B1 (ja) 方向性電磁鋼板の製造方法
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP7197069B1 (ja) 方向性電磁鋼板の製造方法
JP7231888B2 (ja) 方向性電磁鋼板の製造方法
JPS6332849B2 (ja)
WO2024111568A1 (ja) 方向性電磁鋼板とその製造方法
JPH0347974A (ja) 熱安定性超低鉄損一方向性けい素鋼板およびその製造方法
JP4300604B2 (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JP7338812B1 (ja) 方向性電磁鋼板の製造方法
JPS621820A (ja) 熱安定性、超低鉄損一方向性けい素鋼板の製造方法
JP7255761B1 (ja) 方向性電磁鋼板の製造方法
JPH0742505B2 (ja) 磁気特性およびベンド特性に優れた方向性けい素鋼板の製造方法
JPS6269503A (ja) 超低鉄損方向性けい素鋼板およびその製造方法
JPH0375354A (ja) 歪取り焼鈍によって特性の劣化しない超低鉄損一方向性珪素鋼板の製造方法
JP3456869B2 (ja) 一方向性電磁鋼板の製造方法
JP4374108B2 (ja) 方向性電磁鋼板の製造方法
WO2023068236A1 (ja) 方向性電磁鋼板およびその製造方法
JPS6332850B2 (ja)
JPS6230302A (ja) 超低鉄損一方向性けい素鋼板の製造方法
JPS62182222A (ja) 一方向性けい素鋼板の製造方法
JPS6263408A (ja) 超低鉄損一方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894573

Country of ref document: EP

Kind code of ref document: A1