WO2024111130A1 - ポリアミック酸エステル及び樹脂組成物 - Google Patents

ポリアミック酸エステル及び樹脂組成物 Download PDF

Info

Publication number
WO2024111130A1
WO2024111130A1 PCT/JP2022/043635 JP2022043635W WO2024111130A1 WO 2024111130 A1 WO2024111130 A1 WO 2024111130A1 JP 2022043635 W JP2022043635 W JP 2022043635W WO 2024111130 A1 WO2024111130 A1 WO 2024111130A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
group
polyamic acid
acid ester
tetracarboxylic dianhydride
Prior art date
Application number
PCT/JP2022/043635
Other languages
English (en)
French (fr)
Inventor
真吾 田原
Original Assignee
Hdマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hdマイクロシステムズ株式会社 filed Critical Hdマイクロシステムズ株式会社
Priority to PCT/JP2022/043635 priority Critical patent/WO2024111130A1/ja
Publication of WO2024111130A1 publication Critical patent/WO2024111130A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • This disclosure relates to polyamic acid esters and resin compositions.
  • Such a protective film (cured film) using a polyimide resin can be obtained by applying a polyimide precursor or a resin composition containing a polyimide precursor onto a substrate, drying the applied resin film, and then heating the resulting film to cure it.
  • polyimide precursors such as polyamic acid esters or resin compositions containing polyimide precursors to have excellent light transmittance.
  • the present disclosure has been made in consideration of the above-mentioned conventional circumstances, and aims to provide a polyamic acid ester with excellent light transmittance and a resin composition containing the same.
  • a polyamic acid ester comprising a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, wherein at least a portion of the structural unit (A) has an unsaturated double bond, and the structural unit (A) comprises a structural unit (A1-1) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to aromatic rings.
  • a polyamic acid ester comprising a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, wherein at least a portion of the structural unit (A) has an unsaturated double bond, and the structural unit (A) does not contain an aromatic ring or contains a structural unit (A1-2) in which the value obtained by dividing the number of aromatic rings contained in the tetracarboxylic dianhydride by the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • ⁇ 3> The polyamic acid ester according to ⁇ 1>, wherein a content of the structural unit (A1-1) in the structural unit (A) is 25 mol % or more with respect to the structural unit (A).
  • ⁇ 4> The polyamic acid ester according to ⁇ 2>, wherein a content of the structural unit (A1-2) in the structural unit (A) is 25 mol % or more with respect to the structural unit (A).
  • ⁇ 5> The polyamic acid ester according to any one of ⁇ 1> to ⁇ 4>, wherein the tetracarboxylic dianhydride includes at least one of compounds represented by the following chemical formulas (A-1) to (A-6): ⁇ 6>
  • ⁇ 7> The polyamic acid ester according to any one of ⁇ 1> to ⁇ 6>, wherein the structural unit (A) has a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring.
  • R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7).
  • the tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
  • ⁇ 9> The polyamic acid ester according to any one of ⁇ 1> to ⁇ 8>, wherein the polyamic acid ester has a weight-average molecular weight of 20,000 or more.
  • a resin composition comprising the polyamic acid ester according to any one of ⁇ 1> to ⁇ 9>.
  • 1 is a graph showing the results of light transmittance at each wavelength for solutions of polyamic acid esters 2, 4, 10, and 12.
  • the numerical range indicated using “to” includes the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
  • the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
  • each component may contain multiple types of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
  • the terms "layer” and “film” include cases where the layer or film is formed over the entire area when the area in which the layer or film is present is observed, as well as cases where the layer or film is formed over only a portion of the area.
  • the polyamic acid ester of the present disclosure contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and at least a portion of the structural unit (A) has an unsaturated double bond and satisfies the following (1) or (2): (1)
  • the structural unit (A) contains a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  • the structural unit (A) does not contain an aromatic ring, or contains a structural unit (A1-2) in which the value obtained by dividing the number of aromatic rings contained in the tetracarboxylic dianhydride by the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • the polyamic acid ester of the present disclosure has excellent light transmittance. Therefore, by using a resin composition containing the polyamic acid ester, it is possible to form an excellent pattern shape. Although the reason for this is not clear, it is presumed as follows. First, when the light transmittance of the polyamic acid ester and the resin composition containing the polyamic acid ester is insufficient, when the photosensitive film containing the polyamic acid ester applied to the substrate or the like is subjected to pattern exposure, it is difficult for the light to reach the bottom of the photosensitive film. Therefore, it is difficult to obtain a patterned cured film having a highly accurate pattern shape corresponding to the pattern exposure.
  • the patterned cured film obtained tends to have a reverse tapered shape
  • the patterned cured film obtained tends to have a tapered shape
  • the polyamic acid ester of the present disclosure has a low content of aromatic rings due to the inclusion of the structural unit (A1-1) or the structural unit (A1-2). By using such a polyamic acid ester, the light transmittance of the polyamic acid ester and the resin composition containing the same is improved.
  • the structural unit (A1-1) may contain an aromatic ring that is not bonded to an acid anhydride group, as long as the two acid anhydride groups are not bonded to an aromatic ring. Even if the structural unit (A1-1) contains an aromatic ring, the aromatic ring is not bonded to the two acid anhydride groups, and another functional group, other structure, etc. is bonded to the two acid anhydride groups. This is presumably to reduce the proportion of aromatic rings in the structural unit (A1-1), improving the light transmittance of the polyamic acid ester and the resin composition containing it.
  • the polyamic acid ester of the present disclosure may be used in materials that require photosensitivity (e.g., negative or positive photosensitive resin compositions, preferably negative photosensitive resin compositions), or may be used in materials that do not require photosensitivity. Since the polyamic acid ester of the present disclosure has an unsaturated double bond, it is preferably used in materials that require photosensitivity.
  • the structural unit (A) constituting the polyamic acid ester has the following structural unit (A1-1) or structural unit (A1-2).
  • Structural unit (A1-1) A structural unit in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  • Structural unit (A1-2) A structural unit in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring, or the value obtained by dividing the number of aromatic rings contained in the tetracarboxylic dianhydride by the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • aromatic ring content the value obtained by dividing the number of aromatic rings contained in tetracarboxylic dianhydride by the molecular weight of the tetracarboxylic dianhydride is also referred to as the "aromatic ring content.”
  • the two acid anhydride groups contained in the tetracarboxylic dianhydride may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, etc.
  • linking group examples include an alkylene group, a halogenated alkylene group, a phenylene group (however, not bonded to an acid anhydride group), a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more).
  • the structural units (A1-1) and (A1-2) preferably contain an alicyclic structure.
  • the structural units may contain one alicyclic structure or two or more alicyclic structures.
  • two alicyclic structures may be bonded at two positions by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two alicyclic structures.
  • the alicyclic ring may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
  • Alicyclic structures include the tricyclodecane skeleton, cyclohexane skeleton, cyclopentane skeleton, cyclobutene skeleton, 1,3-adamantane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, hydrogenated bisphenol S skeleton, and isobornyl skeleton.
  • the amount of aromatic rings may be 0.0067 or less, 0.0060 or less, 0.0050 or less, 0.0040 or less, or may be 0, meaning that no aromatic rings are contained.
  • the structural unit (A1-1) may or may not contain an aromatic ring that is not bonded to the two acid anhydride groups contained in the tetracarboxylic dianhydride. It is preferable that the structural unit (A1-1) does not contain an aromatic ring that is not bonded to the two acid anhydride groups.
  • each aromatic ring may have a substituent or may be unsubstituted.
  • substituent on the aromatic ring include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
  • the number of aromatic rings within the structural unit (A1-1) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
  • the aromatic rings may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, or the like.
  • linking group examples include an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more).
  • two benzene rings may be linked at two points by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two aromatic rings.
  • the compound represented by the chemical formula (A-1) and the compound represented by the chemical formula (A-5) are tetracarboxylic dianhydrides containing an aromatic ring that is not bonded to two acid anhydride groups.
  • the compounds represented by the chemical formulas (A-2) to (A-4) and the compound represented by the chemical formula (A-6) are tetracarboxylic dianhydrides containing no aromatic ring.
  • the tetracarboxylic dianhydride preferably contains at least one of the compounds represented by the chemical formula (A-2), the compounds represented by the chemical formula (A-4), and the compounds represented by the chemical formula (A-6).
  • the structural unit (A) may have a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring.
  • the inclusion of the structural unit (A2) improves the durability of the cured product. Even when the structural unit (A) contains the structural unit (A2), the proportion of aromatic rings in the entire structural unit (A) is low because the structural unit (A1-1) or (A1-2) is included, and as a result, the polyamic acid ester and the resin composition containing it tend to have excellent light transmittance.
  • the preferred forms of the aromatic ring contained in the structural unit (A2) are the same as the preferred forms of the aromatic ring that can be contained in the structural unit (A1-1).
  • the number of aromatic rings in the structural unit (A2) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
  • the amount of aromatic rings may be 0.0045 or more, 0.0050 or more, or 0.0060 or more.
  • the upper limit may be, for example, 0.0100, 0.0080, or 0.0070.
  • the structural unit (A2) may contain groups represented by the following general formulas (A) to (E):
  • a and B each independently represent a single bond, a methylene group, a halogenated methylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-) or a silylene bond (-Si(R A ) 2 -; each of R A independently represents a hydrogen atom, an alkyl group or a phenyl group), and both A and B are not single bonds.
  • C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more), or a divalent group comprising at least two of these in combination.
  • C may also have a structure represented by formula (C1) below.
  • the alkylene group represented by C in general formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and even more preferably an alkylene group having 1 or 2 carbon atoms.
  • alkylene group represented by C in the general formula (E) include linear alkylene groups such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group; a methylmethylene group, a methylethylene group, an ethylmethylene group, a dimethylmethylene group, a 1,1-dimethylethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, an ethylethylene group, a 1-methyltetramethylene group, a 2-methyltetramethylene group, a 1-ethyltrimethylene group, a 2-ethyltrimethylene group, a 1,1-dimethyl branched alkylene groups such as ethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene
  • the halogenated alkylene group represented by C in general formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms, and even more preferably a halogenated alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the halogenated alkylene group represented by C in the general formula (E) include alkylene groups in which at least one hydrogen atom contained in the alkylene group represented by C in the above-mentioned general formula (E) is substituted with a halogen atom such as a fluorine atom or a chlorine atom.
  • a fluoromethylene group, a difluoromethylene group, a hexafluorodimethylmethylene group, etc. are preferred.
  • the alkyl group represented by R A or R B contained in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R A or R B include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and the like.
  • the combination of A and B in formula (D) is not particularly limited, and a combination of a methylene group and an ether bond, a combination of a methylene group and a sulfide bond, a combination of a carbonyl group and an ether bond, and the like are preferred.
  • C is preferably a single bond, an ether bond, a carbonyl group, or the like.
  • the tetracarboxylic dianhydride of the structural unit (A2) may be pyromellitic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,5,6-pyridine tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, m-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, p-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, 1,1,1,
  • the content of the structural unit (A1-1) in the structural unit (A) and the content of the structural unit (A1-2) in the structural unit (A) are each independently preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more.
  • At least a portion of the structural unit (A) has an unsaturated double bond.
  • the unsaturated double bond contained in the structural unit (A) may be present in the ester portion of the tetracarboxylic dianhydride.
  • the R of the -COOR group has an unsaturated double bond. It is preferable that R contains a group represented by the following general formula (7).
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms; q represents an integer of 1 to 10.
  • the carbon number of the aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (7) is 1 to 3, and preferably 1 or 2.
  • Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, etc., and a methyl group is preferred.
  • R 8 to R 10 in the general formula (7) a combination in which R 8 and R 9 are hydrogen atoms and R 10 is a hydrogen atom or a methyl group is preferred.
  • q is preferably an integer from 1 to 10, more preferably an integer from 2 to 5, and even more preferably 2 or 3.
  • the polyamic acid ester contains a structural unit (B) derived from a diamine compound.
  • a structural unit (B) derived from a diamine compound.
  • the structural unit (B) may or may not contain an aromatic ring, but it is preferable for it to contain an aromatic ring from the viewpoint of durability when made into a cured product.
  • the structural unit (B) preferably contains a structural unit represented by the formula -NH-Y-NH-, where Y is a divalent organic group.
  • the divalent organic group represented by Y preferably has 6 to 25 carbon atoms, more preferably 6 to 14 carbon atoms, and even more preferably 12 to 14 carbon atoms.
  • the divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance and high elasticity, the divalent organic group represented by Y is preferably a divalent aromatic group.
  • divalent aromatic group represented by Y examples include groups represented by the following general formula (F) and the following general formula (G).
  • each R independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, or a phenyl group, and each n independently represents an integer of 0 to 4.
  • D represents a single bond, or an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more), or a divalent group combining at least
  • the alkyl group represented by R in general formula (F) or general formula (G) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and further preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R in general formula (F) or general formula (G) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the alkoxy group represented by R in the general formula (F) or the general formula (G) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and further preferably an alkoxy group having 1 or 2 carbon atoms.
  • Specific examples of the alkoxy group represented by R in the general formula (F) or (G) include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, an s-butoxy group, and a t-butoxy group.
  • the halogenated alkyl group represented by R in the general formula (F) or (G) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, more preferably a halogenated alkyl group having 1 to 3 carbon atoms, and further preferably a halogenated alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the halogenated alkyl group represented by R in general formula (F) or general formula (G) include alkyl groups in which at least one hydrogen atom contained in the alkyl group represented by R in general formula (F) or general formula (G) is substituted with a halogen atom such as a fluorine atom or a chlorine atom.
  • a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, etc. are preferred.
  • n is preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • divalent aliphatic group represented by Y examples include linear or branched alkylene groups, cycloalkylene groups, divalent groups having a polyalkylene oxide structure, and divalent groups having a polysiloxane structure.
  • the linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms, and even more preferably an alkylene group having 1 to 10 carbon atoms.
  • alkylene group represented by Y examples include a tetramethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, an undecamethylene group, a dodecamethylene group, a 2-methylpentamethylene group, a 2-methylhexamethylene group, a 2-methylheptamethylene group, a 2-methyloctamethylene group, a 2-methylnonamethylene group, and a 2-methyldecamethylene group.
  • the cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, and more preferably a cycloalkylene group having 3 to 6 carbon atoms.
  • Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group, a cyclohexylene group, and the like.
  • the unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and even more preferably an alkylene oxide structure having 1 to 4 carbon atoms.
  • the polyalkylene oxide structure is preferably a polyethylene oxide structure or a polypropylene oxide structure.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the unit structure in the polyalkylene oxide structure may be of one type or two or more types.
  • Examples of the divalent group having a polysiloxane structure represented by Y include divalent groups having a polysiloxane structure in which a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms bonded to a silicon atom in the polysiloxane structure include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-octyl group, a 2-ethylhexyl group, an n-dodecyl group, etc.
  • a methyl group is preferable.
  • the aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent.
  • substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and a benzyl group. Of these, a phenyl group is preferred.
  • the alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms in the polysiloxane structure may be of one type or of two or more types.
  • the silicon atom constituting the divalent group having a polysiloxane structure represented by Y may be bonded to the NH group in general formula (6) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group.
  • diamine compound of the structural unit (B) examples include 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,4
  • the polyamic acid ester having an unsaturated double bond may be, for example, a polyamic acid ester having a structural unit represented by the following general formula (6).
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • R6 and R7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R6 and R7 is a group represented by the following general formula (7), and the tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms; q represents an integer of 1 to 10.
  • the number of carbon atoms in the aliphatic hydrocarbon group represented by R6 and R7 in general formula (6) is 1 to 4, and preferably 1 or 2.
  • Specific examples of the aliphatic hydrocarbon group represented by R6 and R7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like.
  • R 6 and R 7 are a group represented by the general formula (7), and it is more preferable that both of R 6 and R 7 are groups represented by the general formula (7).
  • General formula (7) has the same meaning as general formula (7) explained in relation to the structural unit (A).
  • Y has the same meaning as Y explained in relation to the structural unit (B).
  • X in the general formula (6) may be any of the linking groups and composite linking groups described in relation to the structural units (A1-1) and (A1-2).
  • the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 4 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms.
  • the tetravalent organic group represented by X may contain an aromatic ring. If X contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides exemplified for the structural units (A1-1) and (A1-2).
  • the polyamic acid ester having an unsaturated double bond may further have a structural unit represented by the following general formula (6-1) in addition to the structural unit represented by the general formula (6).
  • X 1 represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7), and the tetravalent organic group represented by X 1 contains an aromatic ring.
  • the four carbonyl groups in the general formula (6-1) are bonded to the aromatic ring contained in X 1 , and it is more preferable that the two carbonyl groups in the general formula (6-1) are bonded to one aromatic ring (first aromatic ring) contained in X 1 , and the remaining two carbonyl groups are bonded to another aromatic ring (second aromatic ring) contained in X 1 .
  • Y, R 6 and R 7 in formula (6-1) have the same meanings as Y, R 6 and R 7 in formula (6), respectively.
  • X1 in the general formula (6-1) include the general formulae (A) to (E) described in relation to the structural unit (A2).
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides described in relation to the structural unit (A2).
  • the polyamic acid ester may have other structural units than those represented by the general formula (6) and the general formula (6-1).
  • Examples of the other structural units include structural units in which neither R 6 nor R 7 in the general formula (6) and the general formula (6-1) is a group represented by the general formula (7).
  • the content of the structural unit represented by general formula (6) in the polyamic acid ester is preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more, based on the total structural units contained in the polyamic acid ester.
  • the total content of the structural units represented by general formula (6) and the structural units represented by general formula (6-1) in the polyamic acid ester is preferably 50 mol% or more, more preferably 80 mol% or more and 100 mol% or less, and even more preferably 90 mol% or more and 100 mol% or less, based on all the structural units contained in the polyamic acid ester.
  • the polyamic acid ester may be synthesized using a tetracarboxylic dianhydride and a diamine compound.
  • X corresponds to a residue derived from the tetracarboxylic dianhydride
  • Y corresponds to a residue derived from the diamine compound.
  • the polyamic acid ester may be synthesized using a tetracarboxylic acid instead of the tetracarboxylic dianhydride.
  • X is the same as X in general formula (6), and specific examples and preferred examples are also the same.
  • the polyamic acid ester can be obtained, for example, by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH in an organic solvent such as N-methyl-2-pyrrolidone to obtain a diester derivative, and then subjecting the diester derivative to a condensation reaction with a diamine compound represented by H 2 N-Y-NH 2 ; or by reacting a tetracarboxylic dianhydride with a diamine compound represented by H 2 N-Y-NH 2 in an organic solvent to obtain a polyamic acid, adding a compound represented by R-OH, and reacting the resulting polyamic acid in an organic solvent to introduce an ester group.
  • a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH in an organic solvent such as N-methyl-2-pyrrolidone to obtain a diester derivative, and then subjecting the diester derivative to a condensation reaction with a
  • Y in the diamine compound represented by H 2 N-Y-NH 2 is the same as Y in general formula (6), and specific examples and preferred examples are also the same.
  • R in the compound represented by R-OH represents a group represented by general formula (7) or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and specific examples and preferred examples are the same as R 6 and R 7 in general formula (6).
  • the tetracarboxylic dianhydride represented by formula (8), the diamine compound represented by H 2 N-Y-NH 2 , and the compound represented by R-OH may each be used alone or in combination of two or more.
  • a polyamic acid ester can be obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, then reacting the diester with a chlorinating agent such as thionyl chloride to convert it to an acid chloride, and then reacting a diamine compound represented by H 2 N-Y-NH 2 with the acid chloride.
  • the polyamic acid ester can be obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then reacting the diamine compound represented by H 2 N-Y-NH 2 with the diester derivative in the presence of a carbodiimide compound. Furthermore, the polyamic acid ester can be obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a diamine compound represented by H 2 N-Y-NH 2 to form a polyamic acid, isoimidizing the polyamic acid in the presence of trifluoroacetic anhydride, and then reacting with a compound represented by R-OH.
  • the compound represented by R-OH may be reacted in advance with a part of the tetracarboxylic dianhydride, and the partially esterified tetracarboxylic dianhydride may be reacted with the diamine compound represented by H 2 N-Y-NH 2 to form a polyamic acid.
  • Compounds represented by R-OH that are used in the synthesis of polyamic acid esters include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, etc.
  • the molecular weight of the polyamic acid ester is not particularly limited, and may be, for example, 10,000 to 200,000, 20,000 to 150,000, or 30,000 to 100,000 in weight average molecular weight.
  • the weight average molecular weight can be measured, for example, by gel permeation chromatography, and can be calculated using a standard polystyrene calibration curve.
  • the weight average molecular weight of the polyamic acid ester is preferably 20,000 or more, more preferably 30,000 or more, and even more preferably 40,000 or more.
  • the weight average molecular weight of the polyamic acid ester may be 200,000 or less, 150,000 or less, or 100,000 or less.
  • the weight average molecular weight of the polyamic acid ester is preferably 35,000 or more, more preferably 35,000 or more, and even more preferably 40,000 or more, from the viewpoint of obtaining a cured product with low stress.
  • the weight average molecular weight of the polyamic acid ester is preferably 50,000 or more, more preferably 60,000 or more, and even more preferably 70,000 or more, from the viewpoint of obtaining a cured product with low stress.
  • the resin composition of the present disclosure includes the polyamic acid ester of the present disclosure.
  • the resin composition may include other components other than the polyamic acid ester of the present disclosure.
  • the other components include resin components other than the polyamic acid ester of the present disclosure, polymerizable monomers, photopolymerization initiators, thermal polymerization initiators, solvents, sensitizers, stabilizers, coupling agents, surfactants, leveling agents, and rust inhibitors.
  • the resin components other than the polyamic acid ester of the present disclosure include polyamic acid esters other than the polyamic acid ester of the present disclosure and resin components other than the polyamic acid ester.
  • the resin composition of the present disclosure may be a photosensitive resin composition, or may be a thermosetting resin composition that is cured by heating.
  • the resin composition of the present disclosure may be, for example, a composition that can provide a cured product by irradiation with light, heating, etc.
  • a patterned cured product may be formed using the photosensitive resin composition.
  • the cured product obtained from the resin composition of the present disclosure can be used as an interlayer insulating film, a cover coat layer, or a surface protective film. Furthermore, the cured product can be used as a passivation film, a buffer coat film, etc. Using one or more selected from the group consisting of the above passivation films, buffer coat films, interlayer insulating films, cover coat layers, and surface protection films, etc., highly reliable electronic components such as semiconductor devices, multilayer wiring boards, various electronic devices, and stacked devices (multi-die fan-out wafer level packages, etc.) can be manufactured.
  • This solution was designated as an sBPDA solution.
  • 340 g of the sBPDA solution was placed in a 0.5-liter flask equipped with a stirrer and a thermometer, and then 29.7 g (250 mmol) of thionyl chloride was added dropwise using a dropping funnel while cooling with ice so that the reaction solution temperature was kept below 10° C. After the dropwise addition of thionyl chloride was completed, the mixture was stirred for 2 hours while cooling with ice to obtain a solution of acid chloride of sBPDA.
  • GPC gel permeation chromatography
  • polyamic acid ester 3 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid ester 3.
  • the weight average molecular weight of polyamic acid ester 3 calculated in terms of standard polystyrene was 28,000.
  • Polyamic acid ester 4 was obtained in the same manner as in the above (Synthesis of polyamic acid ester 3), except that the amount of PPD added was changed so that the molar ratio to the acid anhydride was 0.99.
  • This polyamic acid ester 5 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid ester 5.
  • the weight average molecular weight of polyamic acid ester 5 calculated in terms of standard polystyrene was 25,000.
  • Polyamic acid ester 6 was obtained in the same manner as in the above (Synthesis of polyamic acid ester 5), except that the amount of PPD added was changed so that the molar ratio to the acid anhydride was 0.99.
  • This polyamic acid ester 7 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid ester 7.
  • the weight average molecular weight of polyamic acid ester 7 calculated in terms of standard polystyrene was 27,000.
  • Polyamic acid ester 8 was obtained in the same manner as in the above (Synthesis of polyamic acid ester 7), except that the amount of PPD added was changed so that the molar ratio to the acid anhydride was 0.99.
  • the weight average molecular weight of polyamic acid ester 8 calculated in terms of standard polystyrene was 39,000.
  • This polyamic acid ester 9 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid ester 9.
  • the weight average molecular weight of polyamic acid ester 9 calculated in terms of standard polystyrene was 20,000.
  • Polyamic acid ester 10 was obtained in the same manner as in the above (Synthesis of polyamic acid ester 9), except that the amount of PPD added was changed so that the molar ratio to the acid anhydride was 0.99.
  • the weight average molecular weight of polyamic acid ester 10 calculated in terms of standard polystyrene was 47,000.
  • This polyamic acid ester 11 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid ester 11.
  • the weight average molecular weight of polyamic acid ester 11 calculated in terms of standard polystyrene was 46,000.
  • Polyamic acid ester 12 was obtained in the same manner as in the above (Synthesis of polyamic acid ester 11), except that the amount of PPD added was changed so that the molar ratio to the acid anhydride was 0.99.
  • the weight average molecular weight of polyamic acid ester 12 calculated in terms of standard polystyrene was 89,000.
  • Resin compositions 1 to 12 were prepared using the above-mentioned polyamic acid esters 1 to 12. Each resin composition was prepared using 30 parts by mass of the polyamic acid ester and 70 parts by mass of 3-methoxy-N,N-dimethylpropanamide ("KJCMPA-100" (KJ Chemicals Corporation)) as a solvent.
  • KJCMPA-100 3-methoxy-N,N-dimethylpropanamide
  • the obtained resin composition was applied onto a 6-inch silicon wafer by spin coating, and heated on a hot plate at 100°C for 3 minutes to volatilize the solvent and obtain a coating film having a thickness of about 10 ⁇ m after curing. This was then heated and cured at 350°C for 1 hour in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg to obtain a polyimide film (cured film).
  • the residual stress of the cured polyimide film was measured at room temperature using a thin film stress measurement device FLX-2320 manufactured by KLATencor. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

ポリアミック酸エステルは、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有する化合物であり、下記(1)又は(2)を満たす。(1)構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含む。(2)構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値が0.0068未満である構成単位(A1-2)を含む。

Description

ポリアミック酸エステル及び樹脂組成物
 本開示は、ポリアミック酸エステル及び樹脂組成物に関する。
 近年、半導体集積回路(LSI)の保護膜材料として、ポリイミド樹脂等の高い耐熱性を有する有機材料が広く適用されている(例えば、特許文献1参照)。
 このようなポリイミド樹脂を用いた保護膜(硬化膜)は、ポリイミド前駆体又はポリイミド前駆体を含有する樹脂組成物を基板上に塗布及び乾燥して形成した樹脂膜を、加熱して硬化することで得られる。
特開2016-199662号公報
 半導体集積回路の微細化に伴い、樹脂組成物には優れたパターン形状を形成可能であることが求められている。優れたパターン形成を可能とする観点では、ポリアミック酸エステル等のポリイミド前駆体又はポリイミド前駆体を含有する樹脂組成物は、光透過性に優れることが望ましい。
 本開示は、上記従来の事情に鑑みてなされたものであり、光透過性に優れるポリアミック酸エステル及びこれを含む樹脂組成物を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有し、前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含むポリアミック酸エステル。
<2> テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有し、前記構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値が0.0068未満である構成単位(A1-2)を含むポリアミック酸エステル。
<3> 前記構成単位(A)に占める前記構成単位(A1-1)の含有率は、前記構成単位(A)に対して、25モル%以上である、<1>に記載のポリアミック酸エステル。
<4> 前記構成単位(A)に占める前記構成単位(A1-2)の含有率は、前記構成単位(A)に対して、25モル%以上である、<2>に記載のポリアミック酸エステル。
<5> 前記テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも何れか1つを含む<1>~<4>のいずれか1つに記載のポリアミック酸エステル。
<6> 前記テトラカルボン酸二無水物は、前記化学式(A-2)で表される化合物、前記化学式(A-4)で表される化合物及び前記化学式(A-6)で表される化合物の内の少なくとも何れか1つを含む、<5>に記載のポリアミック酸エステル。
<7> 前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有する<1>~<6>のいずれか1つに記載のポリアミック酸エステル。
<8> 下記一般式(6)で表される構成単位を有する化合物である<1>~<7>のいずれか1つに記載のポリアミック酸エステル。

 
(一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。)

(一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。)
<9> ポリアミック酸エステルの重量平均分子量は、20,000以上である<1>~<8>のいずれか1つに記載のポリアミック酸エステル。
<10> <1>~<9>のいずれか1つに記載のポリアミック酸エステルを含む樹脂組成物。
 本開示によれば、光透過性に優れるポリアミック酸エステル及びこれを含む樹脂組成物を提供することができる。
各波長でのポリアミック酸エステル2、4、10及び12の溶液の光透過率の結果を示すグラフである。
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<ポリアミック酸エステル>
 本開示のポリアミック酸エステルは、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有し、下記(1)又は(2)を満たす。
(1)構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含む。
(2)構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値が0.0068未満以下である構成単位(A1-2)を含む。
 本開示のポリアミック酸エステルは、光透過性に優れる。そのため、ポリアミック酸エステルを含む樹脂組成物を用いることで優れたパターン形状を形成可能である。これらの理由は明確ではないが、以下のように推察される。
 まず、ポリアミック酸エステル及びこれを含む樹脂組成物の光透過性が不充分である場合、基板等に塗布されたポリアミック酸エステルを含む感光性膜にパターン露光を施した際、当該感光性膜の底部まで光が照射されにくくなる。そのため、パターン露光に対応した高精度のパターン形状を有するパターン硬化膜を得ることが難しい。例えば、ネガ型の感光性膜である場合、得られるパターン硬化膜が逆テーパー形状となりやすく、ポジ型の感光性膜である場合、得られるパターン硬化膜がテーパー形状となりやすい。
 一方、本開示のポリアミック酸エステルは、構成単位(A1-1)又は構成単位(A1-2)を有することで、芳香環の含有量が少ない。このようなポリアミック酸エステルを用いることで、ポリアミック酸エステル及びこれを含む樹脂組成物の光透過性が向上する。また、光透過性が向上することで、基板等に塗布されたポリアミック酸エステルを含む感光性膜にパターン露光を施した際、当該感光性膜の底部まで光が照射される。これにより、パターン露光に対応した高精度のパターン形状を有するパターン硬化膜を得ることができる。
 さらに、構成単位(A1-1)及び(A1-2)が脂環構造を含む場合、硬化物の高弾性化が可能となり、硬化物の耐久性が向上する傾向にある。
 また、構成単位(A1-1)は、2つの酸無水物基が芳香環に結合していなければよく、酸無水物基と結合しない芳香環を含んでいてもよい。構成単位(A1-1)が芳香環を含む場合であっても、芳香環が2つの酸無水物基に結合せずに他の官能基、他の構造等が2つの酸無水物基に結合している。これにより、構成単位(A1-1)中の芳香環の割合が低下し、ポリアミック酸エステル及びこれを含む樹脂組成物の光透過性が向上する、と推測される。
 本開示のポリアミック酸エステルは、感光性が要求される材料(例えば、ネガ型又はポジ型の感光性樹脂組成物、好ましくはネガ型の感光性樹脂組成物)に用いられてもよく、感光性が要求されない材料に用いられてもよい。本開示のポリアミック酸エステルは、不飽和二重結合を有するため、感光性が要求される材料に用いられることが好ましい。
 ポリアミック酸エステルを構成する構成単位(A)は、下記構成単位(A1-1)又は構成単位(A1-2)を有する。
 構成単位(A1-1)・・・テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位
 構成単位(A1-2)・・・芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値が0.0068未満である構成単位
 以下、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値を「芳香環量」ともいう。
 構成単位(A1-1)及び(A1-2)において、テトラカルボン酸二無水物に含まれる2つの酸無水物基は、単結合により連結されていてもよいし、連結基、連結基を2種以上組み合わせた複合連結基等により結合されていてもよい。連結基としては、アルキレン基、ハロゲン化アルキレン基、フェニレン基(但し、酸無水物基とは結合していない)、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等が挙げられる。
 構成単位(A1-1)及び(A1-2)は、硬化物としたときの耐久性の観点から、脂環構造を含むことが好ましい。脂環構造は1つ含んでいても、2以上含んでいてもよい。脂環構造を2以上含む場合、2つの脂環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つの脂環の間に連結基を含む5員環又は6員環が形成されていてもよい。
 脂環は、置換基を有していてもよいし、無置換であってもよい。置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
 脂環構造としては、トリシクロデカン骨格、シクロヘキサン骨格、シクロペンタン骨格、シクロブテン骨格、1,3-アダマンタン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールS骨格、イソボルニル骨格等が挙げられる。
 構成単位(A1-2)では、芳香環量は、0.0067以下であってもよく、0.0060以下であってもよく、0.0050以下であってもよく、0.0040以下であってもよく、0であること、つまり芳香環を含まなくてもよい。
 構成単位(A1-1)は、テトラカルボン酸二無水物に含まれる2つの酸無水物基に芳香環が結合していなければよく、2つの酸無水物基に結合しない芳香環を含んでいてもよく、含んでいなくてもよい。構成単位(A1-1)は、2つの酸無水物基に結合しない芳香環を含まないことが好ましい。
 構成単位(A1-1)が芳香環を含む場合、芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環等が挙げられる。これらの中でも、ポリアミック酸エステルの紫外領域における光透過性を向上する観点から、ベンゼン環が好ましい。
 構成単位(A1-1)が芳香環を含む場合、各芳香環は、置換基を有していてもよいし、無置換であってもよい。芳香環の置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
 構成単位(A1-1)が芳香環を含む場合、構成単位(A1-1)中の芳香環の個数は、1個~4個であることが好ましく、1個~3個であることがより好ましく、1個又は2個であることがさらに好ましく、1個であることが特に好ましい。
 構成単位(A1-1)が2個以上の芳香環を含む場合、各芳香環は、単結合により連結されていてもよいし、連結基、連結基を2種以上組み合わせた複合連結基等により結合されていてもよい。連結基としては、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等が挙げられる。また、2つのベンゼン環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つの芳香環の間に連結基を含む5員環又は6員環が形成されていてもよい。
 テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも何れか1つを含むことが好ましい。下記化学式(A-1)~化学式(A-6)で表される化合物は、構成単位(A1-1)を構成するテトラカルボン酸二無水物及び構成単位(A1-2)を構成するテトラカルボン酸二無水物の好ましい例である。
 なお、化学式(A-1)で表される化合物及び(A-5)で表される化合物は、2つの酸無水物基に結合しない芳香環を含むテトラカルボン酸二無水物である。
 化学式(A-2)~(A-4)で表される化合物及び化学式(A-6)で表される化合物は、芳香環を含まないテトラカルボン酸二無水物である。
 テトラカルボン酸二無水物は、前記化学式(A-2)で表される化合物、前記化学式(A-4)で表される化合物及び前記化学式(A-6)で表される化合物の内の少なくとも何れか1つを含むことが好ましい。当該化合物に由来する構成単位を含むポリアミック酸エステルを用いることで、低応力の硬化物が得られやすくなる。
 構成単位(A)は、テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有していてもよい。構成単位(A2)を含むことで、硬化物としたときの耐久性が向上する。なお、構成単位(A)が構成単位(A2)を含む場合であっても、構成単位(A1-1)又は構成単位(A1-2)を含むため、構成単位(A)全体中の芳香環の占める割合が低くなり、結果、ポリアミック酸エステル及びこれを含む樹脂組成物は光透過性に優れる傾向にある。
 構成単位(A2)に含まれる芳香環の好ましい形態は、構成単位(A1-1)に含まれ得る芳香環の好ましい形態と同様である。
 構成単位(A2)中の芳香環の個数は、1個~4個であることが好ましく、1個~3個であることがより好ましく、1個又は2個であることがさらに好ましく、1個であることが特に好ましい。
 構成単位(A2)では、芳香環量は、0.0045以上であってもよく、0.0050以上であってもよく、0.0060以上であってもよい。上限値としては、例えば、0.0100であってもよく、0.0080であってもよく、0.0070であってもよい。
 構成単位(A2)は、下記一般式(A)~下記一般式(E)で表される基を含んでもよい。

 
 一般式(D)において、A及びBは、それぞれ独立に、単結合、メチレン基、ハロゲン化メチレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)又はシリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)を表し、A及びBの両方が単結合となることはない。
 一般式(E)において、Cは、単結合、又は、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)若しくはこれらを少なくとも2つ組み合わせた2価の基を表す。また、Cは、下記式(C1)で表される構造であってもよい。

 
 一般式(E)におけるCで表されるアルキレン基としては、炭素数が1~10のアルキレン基であることが好ましく、炭素数が1~5のアルキレン基であることがより好ましく、炭素数が1又は2のアルキレン基であることがさらに好ましい。
 一般式(E)におけるCで表されるアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基;メチルメチレン基、メチルエチレン基、エチルメチレン基、ジメチルメチレン基、1,1-ジメチルエチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、2,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基等の分岐鎖状アルキレン基;などが挙げられる。これらの中でも、メチレン基が好ましい。
 一般式(E)におけるCで表されるハロゲン化アルキレン基としては、炭素数が1~10のハロゲン化アルキレン基であることが好ましく、炭素数が1~5のハロゲン化アルキレン基であることがより好ましく、炭素数が1~3のハロゲン化アルキレン基であることがさらに好ましい。
 一般式(E)におけるCで表されるハロゲン化アルキレン基の具体例としては、上述の一般式(E)におけるCで表されるアルキレン基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキレン基が挙げられる。これらの中でも、フルオロメチレン基、ジフルオロメチレン基、ヘキサフルオロジメチルメチレン基等が好ましい。
 上記シリレン結合又はシロキサン結合に含まれるR又はRで表されるアルキル基としては、炭素数が1~5のアルキル基であることが好ましく、炭素数が1~3のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。R又はRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
 一般式(D)におけるA及びBの組み合わせは特に限定されるものではなく、メチレン基とエーテル結合との組み合わせ、メチレン基とスルフィド結合との組み合わせ、カルボニル基とエーテル結合との組み合わせ等が好ましい。
 一般式(E)におけるCとしては、単結合、エーテル結合、カルボニル基等が好ましい。
 構成単位(A2)のテトラカルボン酸二無水物としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、p-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、4,4’-オキシジフタル酸二無水物、4,4’-スルホニルジフタル酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等が挙げられる。
 構成単位(A)に占める構成単位(A1-1)の含有率及び構成単位(A)に占める構成単位(A1-2)の含有率は、それぞれ独立に、25モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることがさらに好ましい。当該割合の上限値は特に制限はなく、上限は特に限定されず、100モル%でもよく、80モル%以下であってもよく、60モル%以下であってもよい。
 構成単位(A)の少なくとも一部は不飽和二重結合を有する。構成単位(A)に含まれる不飽和二重結合は、テトラカルボン酸二無水物のエステル部分に存在してもよい。この場合、-COOR基のRが不飽和二重結合を有することとなる。Rは、下記一般式(7)で表される基を含むことが好ましい。

 
 一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。
 一般式(7)におけるR~R10で表される脂肪族炭化水素基の炭素数は1~3であり、1又は2であることが好ましい。R~R10で表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。
 一般式(7)におけるR~R10の組み合わせとしては、R及びRが水素原子であり、R10が水素原子又はメチル基の組み合わせが好ましい。
 一般式(7)におけるqは1~10の整数であることが好ましく、2~5の整数であることがより好ましく、2又は3であることがさらに好ましい。
 ポリアミック酸エステルは、ジアミン化合物に由来する構成単位(B)を含む。構成単位(B)としては、ジアミン化合物に由来する構成を含んでいれば特に限定されず、芳香環を含んでいても、含んでいなくてもよく、硬化物としたときの耐久性の観点から、芳香環を含むことが好ましい。
 構成単位(B)は、-NH-Y-NH-で表される構成単位を含むことが好ましい。Yは、2価の有機基である。
 Yで表される2価の有機基は、炭素数が6~25であることが好ましく、6~14であることがより好ましく、12~14であることがさらに好ましい。
 Yで表される2価の有機基は、2価の脂肪族基であってもよく、2価の芳香族基であってもよい。耐熱性及び高弾性の観点から、Yで表される2価の有機基は、2価の芳香族基であることが好ましい。
 Yで表される2価の芳香族基の具体例としては、下記一般式(F)及び下記一般式(G)で表される基を挙げることができる。

 
 一般式(F)又は一般式(G)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基又はフェニル基を表し、nは、それぞれ独立に、0~4の整数を表す。
 一般式(G)において、Dは、単結合、又は、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)若しくはこれらを少なくとも2つ組み合わせた2価の基を表す。また、Dは、上記式(C1)で表される構造であってもよい。一般式(G)におけるDの具体例は、一般式(E)におけるCの具体例と同様である。
 一般式(G)におけるDとしては、単結合が好ましい。
 一般式(F)又は一般式(G)におけるRで表されるアルキル基としては、炭素数が1~10のアルキル基であることが好ましく、炭素数が1~5のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
 一般式(F)又は一般式(G)におけるRで表されるアルコキシ基としては、炭素数が1~10のアルコキシ基であることが好ましく、炭素数が1~5のアルコキシ基であることがより好ましく、炭素数が1又は2のアルコキシ基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基等が挙げられる。
 一般式(F)又は一般式(G)におけるRで表されるハロゲン化アルキル基としては、炭素数が1~5のハロゲン化アルキル基であることが好ましく、炭素数が1~3のハロゲン化アルキル基であることがより好ましく、炭素数が1又は2のハロゲン化アルキル基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるハロゲン化アルキル基の具体例としては、一般式(F)又は一般式(G)におけるRで表されるアルキル基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキル基が挙げられる。これらの中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が好ましい。
 一般式(F)又は一般式(G)におけるnは、それぞれ独立に、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
 Yで表される2価の脂肪族基の具体例としては、直鎖状又は分岐鎖状のアルキレン基、シクロアルキレン基、ポリアルキレンオキサイド構造を有する2価の基、ポリシロキサン構造を有する2価の基等が挙げられる。
 Yで表される直鎖状又は分岐鎖状のアルキレン基としては、炭素数が1~20のアルキレン基であることが好ましく、炭素数が1~15のアルキレン基であることがより好ましく、炭素数が1~10のアルキレン基であることがさらに好ましい。
 Yで表されるアルキレン基の具体例としては、テトラメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、2-メチルペンタメチレン基、2-メチルヘキサメチレン基、2-メチルヘプタメチレン基、2-メチルオクタメチレン基、2-メチルノナメチレン基、2-メチルデカメチレン基等が挙げられる。
 Yで表されるシクロアルキレン基としては、炭素数が3~10のシクロアルキレン基であることが好ましく、炭素数が3~6のシクロアルキレン基であることがより好ましい。
 Yで表されるシクロアルキレン基の具体例としては、シクロプロピレン基、シクロヘキシレン基等が挙げられる。
 Yで表されるポリアルキレンオキサイド構造を有する2価の基に含まれる単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリエチレンオキサイド構造又はポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。
 Yで表されるポリシロキサン構造を有する2価の基としては、ポリシロキサン構造中のケイ素原子が水素原子、炭素数1~20のアルキル基又は炭素数6~18のアリール基と結合しているポリシロキサン構造を有する2価の基が挙げられる。
 ポリシロキサン構造中のケイ素原子と結合する炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基が好ましい。
 ポリシロキサン構造中のケイ素原子と結合する炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基の具体例としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。炭素数6~18のアリール基の具体例としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 ポリシロキサン構造中の炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種類でもよく、2種類以上であってもよい。
 Yで表されるポリシロキサン構造を有する2価の基を構成するケイ素原子は、メチレン基、エチレン基等のアルキレン基、フェニレン基等のアリーレン基などを介して一般式(6)中のNH基と結合していてもよい。
 構成単位(B)のジアミン化合物としては、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、1,5-ジアミノナフタレン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、2,4’-ジアミノジフェニルスルフィド、2,2’-ジアミノジフェニルスルフィド、o-トリジン、o-トリジンスルホン、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、2,4-ジアミノメシチレン、1,5-ジアミノナフタレン、4,4’-ベンゾフェノンジアミン、ビス-{4-(4’-アミノフェノキシ)フェニル}スルホン、2,2-ビス{4-(4’-アミノフェノキシ)フェニル}プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス{4-(3’-アミノフェノキシ)フェニル}スルホン、2,2-ビス(4-アミノフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,6-ジアミノヘキサン、2-メチル-1,7-ジアミノヘプタン、2-メチル-1,8-ジアミノオクタン、2-メチル-1,9-ジアミノノナン、2-メチル-1,10-ジアミノデカン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジアミノポリシロキサン等が挙げられる。
 ジアミン化合物は、1種を単独で用いても2種以上を併用してもよい。
 不飽和二重結合を有するポリアミック酸エステルは、例えば、下記一般式(6)で表される構成単位を有するポリアミック酸エステルであってもよい。

 
 一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。

 
 一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。
 一般式(6)におけるR及びRで表される脂肪族炭化水素基の炭素数は、1~4であり、1又は2であることが好ましい。R及びRで表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。
 一般式(6)においては、R及びRの少なくとも一方が、前記一般式(7)で表される基であり、R及びRの両方が前記一般式(7)で表される基であることがより好ましい。
 一般式(7)は、構成単位(A)で説明した一般式(7)と同義である。
 一般式(6)におけるYは、構成単位(B)で説明したYと同義である。
 一般式(6)におけるXは、構成単位(A1-1)及び(A1-2)で説明した連結基及び複合連結基が挙げられる。
 一般式(6)において、Xで表される4価の有機基は、炭素数が4~25であることが好ましく、4~13であることがより好ましく、6~12であることがさらに好ましい。
 Xで表される4価の有機基は、芳香環を含んでもよい。Xが芳香環を含む場合、当該芳香環は、4つのカルボニル基に結合していない。
 一般式(6)において、Xの具体例としては、下記で表される基を挙げることができるが、本開示は下記具体例に限定されるものではない。
 Xがテトラカルボン酸二無水物由来の残基に該当する場合、当該残基の元となるテトラカルボン酸二無水物の具体例としては、構成単位(A1-1)及び(A1-2)で例示したテトラカルボン酸二無水物が挙げられる。
 一般式(6)において、-COOR基と-CONH-基とは互いにオルト位置にあり、-COOR基と-CO-基とは互いにオルト位置にあることが好ましい。
 不飽和二重結合を有するポリアミック酸エステルは、一般式(6)で表される構成単位に加えて、下記一般式(6-1)で表される構成単位をさらに有してもよい。
 一般式(6-1)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は芳香環を含む。一般式(6-1)中の4つのカルボニル基は、Xに含まれる芳香環と結合することが好ましく、一般式(6-1)中の2つのカルボニル基はXに含まれる1つの芳香環(第1の芳香環)と結合し、残り2つのカルボニル基はXに含まれる他の1つの芳香環(第2の芳香環)と結合していることがより好ましい。
 一般式(6-1)におけるY、R、Rは、一般式(6)におけるY、R、Rと、それぞれ同義である。
 一般式(6-1)中のXの具体例としては、構成単位(A2)で説明した一般式(A)~一般式(E)を挙げることができる。
 Xがテトラカルボン酸二無水物由来の残基に該当する場合、当該残基の元となるテトラカルボン酸二無水物の具体例としては、構成単位(A2)で説明したテトラカルボン酸二無水物が挙げられる。
 ポリアミック酸エステルは、一般式(6)及び一般式(6-1)以外のその他の構成単位を有していてもよい。その他の構成単位としては、一般式(6)及び一般式(6-1)におけるR及びRのいずれもが一般式(7)で表される基ではない構成単位が挙げられる。
 ポリアミック酸エステルに占める一般式(6)で表される構成単位の含有率は、ポリアミック酸エステルに含有される全構成単位に対して、25モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることがさらに好ましい。当該割合の上限値は特に制限はなく、上限は特に限定されず、100モル%でもよく、80モル%以下であってもよく、60モル%以下であってもよい。
 ポリアミック酸エステルに占める一般式(6)で表される構成単位及び一般式(6-1)で表される構成単位の合計含有率は、ポリアミック酸エステルに含有される全構成単位に対して、50モル%以上であることが好ましく、80モル%以上100モル%以下であることがより好ましく、90モル%以上100モル%以下であることがさらに好ましい。
 ポリアミック酸エステルは、テトラカルボン酸二無水物と、ジアミン化合物とを用いて合成されたものであってもよい。この場合、Xは、テトラカルボン酸二無水物由来の残基に該当し、Yは、はジアミン化合物由来の残基に該当する。なお、ポリアミック酸エステルは、テトラカルボン酸二無水物に替えて、テトラカルボン酸を用いて合成されたものであってもよい。

 
 一般式(8)において、Xは、一般式(6)におけるXと同様であり、具体例及び好ましい例も同様である。
 ポリアミック酸エステルは、例えば、下記一般式(8)で表されるテトラカルボン酸二無水物とR-OHで表される化合物とを、N-メチル-2-ピロリドン等の有機溶剤中にて反応させジエステル誘導体とした後、ジエステル誘導体とHN-Y-NHで表されるジアミン化合物とを縮合反応させるか、または、テトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを有機溶剤中にて反応させポリアミック酸を得て、R-OHで表される化合物を加え、有機溶剤中で反応させエステル基を導入することで、得ることができる。
 ここで、HN-Y-NHで表されるジアミン化合物におけるYは、一般式(6)におけるYと同様であり、具体例及び好ましい例も同様である。また、R-OHで表される化合物におけるRは、一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基を表し、具体例及び好ましい例は、一般式(6)におけるR及びRの場合と同様である。
 式(8)で表されるテトラカルボン酸二無水物、HN-Y-NHで表されるジアミン化合物及びR-OHで表される化合物は、各々、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 また、ポリアミック酸エステルは、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、塩化チオニル等の塩素化剤を作用させて酸クロリドに変換し、次いで、HN-Y-NHで表されるジアミン化合物と酸クロリドとを反応させることで得ることができる。
 さらに、ポリアミック酸エステルは、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、カルボジイミド化合物の存在下でHN-Y-NHで表されるジアミン化合物とジエステル誘導体とを反応させることで得ることができる。
 さらに、ポリアミック酸エステルは、下記一般式(8)で表されるテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてポリアミック酸とした後、トリフルオロ酢酸無水物の存在下でポリアミック酸をイソイミド化し、次いでR-OHで表される化合物を作用させて得ることができる。この場合、テトラカルボン酸二無水物の一部に予めR-OHで表される化合物を作用させて、部分的にエステル化されたテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてポリアミック酸としてもよい。
 ポリアミック酸エステルの合成に用いられるR-OHで表される化合物としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル等が挙げられる。
 ポリアミック酸エステルの分子量には特に制限はなく、例えば、重量平均分子量で10,000~200,000であってもよく、20,000~150,000であってもよく、30,000~100,000であってもよい。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
 ポリアミック酸エステルの重量平均分子量は、低応力の硬化物を得る観点から、20,000以上であることが好ましく、30,000以上であることがより好ましく、40,000以上であることがさらに好ましい。ポリアミック酸エステルの重量平均分子量は、200,000以下であってもよく、150,000以下であってもよく、100,000以下であってもよい。
 構成単位(A)が、化学式(A-2)で表される化合物に由来する構成単位及び化学式(A-4)で表される化合物に由来する構成単位の少なくとも一方を含む場合(好ましくは、化学式(A-6)で表される化合物に由来する構成単位を含まない場合)、ポリアミック酸エステルの重量平均分子量は、低応力の硬化物を得る観点から、35,000以上であることが好ましく、35,000以上であることがより好ましく、40,000以上であることがさらに好ましい。
 構成単位(A)が、化学式(A-6)で表される化合物に由来する構成単位を含む場合、ポリアミック酸エステルの重量平均分子量は、低応力の硬化物を得る観点から、50,000以上であることが好ましく、60,000以上であることがより好ましく、70,000以上であることがさらに好ましい。
<樹脂組成物>
 本開示の樹脂組成物は、本開示のポリアミック酸エステルを含む。樹脂組成物は、本開示のポリアミック酸エステル以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、本開示のポリアミック酸エステル以外の樹脂成分、重合性モノマー、光重合開始剤、熱重合開始剤、溶剤、増感剤、安定剤、カップリング剤、界面活性剤、レベリング剤及び防錆剤が挙げられる。本開示のポリアミック酸エステル以外の樹脂成分としては、例えば、本開示のポリアミック酸エステル以外のポリアミック酸エステル及びポリアミック酸エステル以外の樹脂成分が挙げられる。
 本開示の樹脂組成物は、感光性樹脂組成物であってもよく、加熱により硬化する熱硬化性樹脂組成物であってもよい。
 本開示の樹脂組成物は、例えば、光照射、加熱等により硬化物が得られる組成物であってもよい。樹脂組成物が感光性樹脂組成物である場合、当該感光性樹脂組成物を用いてパターン硬化物を形成してもよい。
 本開示の樹脂組成物から得られる硬化物は、層間絶縁膜、カバーコート層又は表面保護膜として用いることができる。さらには、硬化物は、パッシベーション膜、バッファーコート膜等として用いることができる。
 上記パッシベーション膜、バッファーコート膜、層間絶縁膜、カバーコート層及び表面保護膜等からなる群より選択される1以上を用いて、信頼性の高い、半導体装置、多層配線板、各種電子デバイス、積層デバイス(マルチダイファンアウトウエハレベルパッケージ等)等の電子部品などを製造することができる。
 以下、実施例及び比較例に基づき、本開示についてさらに具体的に説明する。尚、本開示は下記実施例に限定されるものではない。
(ポリアミック酸エステル1の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24h乾燥させた3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(sBPDA、芳香環量:0.0068)50.0g(170mmol)とメタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gを3-メトキシ-N,N-ジメチルプロパンアミド(「KJCMPA-100」(KJケミカルズ株式会社製)) 384.8gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をsBPDA溶液とする。
 撹拌機、温度計を備えた0.5リットルのフラスコ中にsBPDA溶液340gを入れ、その後、氷冷下で塩化チオニル29.7g(250mmol)を反応溶液温度が10℃以下を保つように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間撹拌を行いsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル1溶液を得た。このポリアミック酸エステル1溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル1を得た。標準ポリスチレン換算により求めたポリアミック酸エステル1の重量平均分子量は29,000であった。
 本実施例において、ポリアミック酸エステルの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。具体的には、ポリアミック酸エステルの0.5mgを溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mLに溶解させた溶液を用い、以下の条件で測定した。
-測定条件-
測定装置:株式会社島津製作所SPD-M20A
ポンプ:株式会社島津製作所LC-20AD
カラムオーブン:株式会社島津製作所:CTO-20A
測定条件:カラムGelpack GL-S300MDT-5×2本
溶離液:THF/DMF=1/1(容積比)
    LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/min、検出器:UV270nm、カラム温度:40℃
 標準ポリスチレン:東ソー製 TSKgel standard Polystyrene Type F-1,F-4,F-20,F-80,A-2500にて検量線を作成
(ポリアミック酸エステル2の合成)
 前述の(ポリアミック酸エステル1の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル2を得た。標準ポリスチレン換算により求めたポリアミック酸エステル2の重量平均分子量は78,000であった。
(ポリアミック酸エステル3の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた化学式(A-2)で表される化合物(CpODA)65.3g(170mmol)と、メタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gをKJCMPA-100 369.5gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をCpODA溶液とする。
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、上記で得られたCpODA溶液170gと(ポリアミック酸エステル1の合成)にて得られたsBPDA溶液170gを入れた。このときのCpODAとsBPDAの配合比率(CpODA:sBPDA)は、酸無水基のモル当量数(mol Eq)比で0.5:0.5とした。
 その後、氷冷下で塩化チオニル29.7gを反応溶液温度が10℃以下に保たれるように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いCpODAとsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらCpODAとsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル3溶液を得た。このポリアミック酸エステル3溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル3を得た。標準ポリスチレン換算により求めたポリアミック酸エステル3の重量平均分子量は28,000であった。
(ポリアミック酸エステル4の合成)
 前述の(ポリアミック酸エステル3の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル4を得た。標準ポリスチレン換算により求めたポリアミック酸エステル4の重量平均分子量は40,000であった。
(ポリアミック酸エステル5の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた化学式(A-1)で表される化合物(TDA-100)51.0g(170mmol)と、メタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gをKJCMPA-100 383.8gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をTDA-100溶液とする。
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、上記で得られたTDA-100溶液170gと(ポリアミック酸エステル1の合成)にて得られたsBPDA溶液170gを入れた。このときのTDA-100とsBPDAの配合比率(TDA-100:sBPDA)は、酸無水基のモル当量数(mol Eq)比で0.5:0.5とした。
 その後、氷冷下で塩化チオニル29.7gを反応溶液温度が10℃以下に保たれるように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いTDA-100とsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらTDA-100とsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル5溶液を得た。このポリアミック酸エステル5溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル5を得た。標準ポリスチレン換算により求めたポリアミック酸エステル5の重量平均分子量は25,000であった。
(ポリアミック酸エステル6の合成)
 前述の(ポリアミック酸エステル5の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル6を得た。標準ポリスチレン換算により求めたポリアミック酸エステル6の重量平均分子量は60,000であった。
(ポリアミック酸エステル7の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた化学式(A-5)で表される化合物(BzDAxx)69.1g(170mmol)と、メタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gをKJCMPA-100 365.7gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をBzDAxx溶液とする。
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、上記で得られたBzDAxx溶液170gと(ポリアミック酸エステル1の合成)にて得られたsBPDA溶液170gを入れた。このときのBzDAxxとsBPDAの配合比率(BzDAxx:sBPDA)は、酸無水基のモル当量数(mol Eq)比で0.5:0.5とした。
 その後、氷冷下で塩化チオニル29.7gを反応溶液温度が10℃以下に保たれるように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いBzDAxxとsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらBzDAxxとsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル7溶液を得た。このポリアミック酸エステル7溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル7を得た。標準ポリスチレン換算により求めたポリアミック酸エステル7の重量平均分子量は27,000であった。
(ポリアミック酸エステル8の合成)
 前述の(ポリアミック酸エステル7の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル8を得た。標準ポリスチレン換算により求めたポリアミック酸エステル8の重量平均分子量は39,000であった。
(ポリアミック酸エステル9の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた化学式(A-4)で表される化合物(BT-100)33.7g(170mmol)と、メタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gをKJCMPA-100 401.1gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をBT-100溶液とする。
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、上記で得られたBT-100溶液170gと(ポリアミック酸エステル1の合成)にて得られたsBPDA溶液170gを入れた。このときのBT-100とsBPDAの配合比率(BT-100:sBPDA)は、酸無水基のモル当量数(mol Eq)比で0.5:0.5とした。
 その後、氷冷下で塩化チオニル29.7gを反応溶液温度が10℃以下に保たれるように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いBT-100とsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらBT-100とsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル9溶液を得た。このポリアミック酸エステル9溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル9を得た。標準ポリスチレン換算により求めたポリアミック酸エステル9の重量平均分子量は20,000であった。
(ポリアミック酸エステル10の合成)
 前述の(ポリアミック酸エステル9の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル10を得た。標準ポリスチレン換算により求めたポリアミック酸エステル10の重量平均分子量は47,000であった。
(ポリアミック酸エステル11の合成)
 0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた化学式(A-6)で表される化合物(CBDA)33.3g(170mmol)と、メタクリル酸2-ヒドロキシエチル46.5g(357mmol)とベンゾキノン0.183gをKJCMPA-100 401.5gに溶解し、1,8-ジアザビシクロウンデセンを触媒量添加の後に、室温下(25℃)で24時間撹拌し、エステル化を行い、ジエステル溶液を得た。この溶液をCBDA溶液とする。
 撹拌機及び温度計を備えた0.5リットルのフラスコ中に、上記で得られたCBDA溶液170gと(ポリアミック酸エステル1の合成)にて得られたsBPDA溶液170gを入れた。このときのCBDAとsBPDAの配合比率(CBDA:sBPDA)は、酸無水基のモル当量数(mol Eq)比で0.5:0.5とした。
 その後、氷冷下で塩化チオニル29.7gを反応溶液温度が10℃以下に保たれるように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いCBDAとsBPDAの酸クロリドの溶液を得た。
 次いで、滴下漏斗を用いて、p-フェニレンジアミン(PPD)11.68g(108.0mmol)、ピリジン35.884g(454mmol)、及びベンゾキノン0.082g(0.757mmol)のKJCMPA-100 69.17g溶液を、氷冷化で反応溶液の温度が10℃を超えないように注意しながらCBDAとsBPDAの酸クロリドの溶液に滴下し、ポリアミック酸エステル11溶液を得た。このポリアミック酸エステル11溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸エステル11を得た。標準ポリスチレン換算により求めたポリアミック酸エステル11の重量平均分子量は46,000であった。
(ポリアミック酸エステル12の合成)
 前述の(ポリアミック酸エステル11の合成)にてPPD添加量を酸無水物とのモル比が0.99になるように変更した以外は同様にしてポリアミック酸エステル12を得た。標準ポリスチレン換算により求めたポリアミック酸エステル12の重量平均分子量は89,000であった
(樹脂組成物の調製)
 前述のポリアミック酸エステル1~12を用いて、樹脂組成物1~12をそれぞれ調製した。各樹脂組成物の調製には、ポリアミック酸エステルを30質量部、溶剤として3-メトキシ-N,N-ジメチルプロパンアミド(「KJCMPA-100」(KJケミカルズ株式会社製))を70質量部用いた。
(応力測定)
 得られた樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ硬化後膜厚が約10μmとなる塗膜を得た。これを、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、350℃で1時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力はKLATencor社製薄膜ストレス測定装置FLX-2320を用いて室温において測定した。
 結果を表1に示す。
(弾性率測定)
 得られた樹脂組成物を用いて前述の応力測定と同様にポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜を短冊状に打ち抜いて試験片(幅:10mm)とし、株式会社島津製作所製のAGS-100NXを用いて、チャック間長20mm、引張速度5mm/分で、引張弾性率(GPa)を測定した。
 結果を表1に示す。表1中の「-」は未測定であることを意味する。
(光透過率測定)
 前述のポリアミック酸エステルを溶剤である3-メトキシ-N,N-ジメチルプロパンアミド(「KJCMPA-100」(KJケミカルズ株式会社製))に溶解させて固形分濃度0.1質量%の光透過率測定用の溶液を調製した。そして、各波長での溶液に光透過率を測定した。
 結果を図1に示す。
 ポリアミック酸エステル1~12をそれぞれ用いたときの各物性の測定結果を表1に示す。表1中の酸無水物1は、構成単位(A1-1)及び構成単位(A1-2)を構成する酸無水物であり、酸無水物2は、構成単位(A2)を構成する酸無水物である。酸無水物1の項目における「-」は未使用を意味する。
 表1中の
 図1に示すように、酸無水物としてs-BPDAのみを用いて合成したポリアミック酸エステル2の溶液と比較して、構成単位(A1-1)及び構成単位(A1-2)を構成する酸無水物を用いて合成したポリアミック酸エステルの溶液4、10及び12は、同一波長における光透過率に優れる傾向が確認された。
 表1に示すように、ポリアミック酸エステルの重量平均分子量を増加させることで、応力が低下する傾向が確認された。

Claims (10)

  1.  テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有し、前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含むポリアミック酸エステル。
  2.  テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、前記構成単位(A)の少なくとも一部は不飽和二重結合を有し、前記構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量でテトラカルボン酸二無水物に含まれる芳香環の数を除した値が0.0068未満である構成単位(A1-2)を含むポリアミック酸エステル。
  3.  前記構成単位(A)に占める前記構成単位(A1-1)の含有率は、前記構成単位(A)に対して、25モル%以上である、請求項1に記載のポリアミック酸エステル。
  4.  前記構成単位(A)に占める前記構成単位(A1-2)の含有率は、前記構成単位(A)に対して、25モル%以上である、請求項2に記載のポリアミック酸エステル。
  5.  前記テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも何れか1つを含む請求項1~請求項4のいずれか1項に記載のポリアミック酸エステル。
  6.  前記テトラカルボン酸二無水物は、前記化学式(A-2)で表される化合物、前記化学式(A-4)で表される化合物及び前記化学式(A-6)で表される化合物の内の少なくとも何れか1つを含む、請求項5に記載のポリアミック酸エステル。
  7.  前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有する請求項1~請求項6のいずれか1項に記載のポリアミック酸エステル。
  8.  下記一般式(6)で表される構成単位を有する化合物である請求項1~請求項7のいずれか1項に記載のポリアミック酸エステル。

    (一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。)

    (一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。)
  9.  ポリアミック酸エステルの重量平均分子量は、20,000以上である請求項1~請求項8のいずれか1項に記載のポリアミック酸エステル。
  10.  請求項1~請求項9のいずれか1項に記載のポリアミック酸エステルを含む樹脂組成物。
PCT/JP2022/043635 2022-11-25 2022-11-25 ポリアミック酸エステル及び樹脂組成物 WO2024111130A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043635 WO2024111130A1 (ja) 2022-11-25 2022-11-25 ポリアミック酸エステル及び樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043635 WO2024111130A1 (ja) 2022-11-25 2022-11-25 ポリアミック酸エステル及び樹脂組成物

Publications (1)

Publication Number Publication Date
WO2024111130A1 true WO2024111130A1 (ja) 2024-05-30

Family

ID=91195958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043635 WO2024111130A1 (ja) 2022-11-25 2022-11-25 ポリアミック酸エステル及び樹脂組成物

Country Status (1)

Country Link
WO (1) WO2024111130A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058324A (ja) * 2004-08-17 2006-03-02 Toyobo Co Ltd ネガ型感光性ポリイミド前駆体組成物
JP2006521452A (ja) * 2003-03-24 2006-09-21 エルジー・ケム・リミテッド 高耐熱性透明ポリイミド前駆体及びそれの感光性ポリイミド組成物
JP2014009305A (ja) * 2012-06-29 2014-01-20 Asahi Kasei E-Materials Corp 樹脂組成物、積層体及び積層体の製造方法
JP2016057605A (ja) * 2014-09-09 2016-04-21 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018035340A (ja) * 2016-08-26 2018-03-08 Jnc株式会社 ポリエステルアミド酸及びこれを含有する感光性組成物
JP2019031597A (ja) * 2017-08-07 2019-02-28 東レ株式会社 樹脂組成物、硬化膜、半導体装置および半導体装置の製造方法
WO2021045126A1 (ja) * 2019-09-05 2021-03-11 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、樹脂、及び、樹脂の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006521452A (ja) * 2003-03-24 2006-09-21 エルジー・ケム・リミテッド 高耐熱性透明ポリイミド前駆体及びそれの感光性ポリイミド組成物
JP2006058324A (ja) * 2004-08-17 2006-03-02 Toyobo Co Ltd ネガ型感光性ポリイミド前駆体組成物
JP2014009305A (ja) * 2012-06-29 2014-01-20 Asahi Kasei E-Materials Corp 樹脂組成物、積層体及び積層体の製造方法
JP2016057605A (ja) * 2014-09-09 2016-04-21 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018035340A (ja) * 2016-08-26 2018-03-08 Jnc株式会社 ポリエステルアミド酸及びこれを含有する感光性組成物
JP2019031597A (ja) * 2017-08-07 2019-02-28 東レ株式会社 樹脂組成物、硬化膜、半導体装置および半導体装置の製造方法
WO2021045126A1 (ja) * 2019-09-05 2021-03-11 富士フイルム株式会社 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、樹脂、及び、樹脂の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI SUNG MOOK, AHN TAEK; KIM JIN SOO; YI MIHYE: "Synthesis and characterization of photo‐crosslinkable poly(amic acid ester)s with 2‐hydroxy‐4‐oxo‐hept‐5‐enyl side chain", POLYMERS FOR ADVANCED TECHNOLOGIES, WILEY & SONS , BOGNOR REGIS, GB, vol. 21, no. 6, 1 June 2010 (2010-06-01), GB , pages 418 - 423, XP093174952, ISSN: 1042-7147, DOI: 10.1002/pat.1445 *

Similar Documents

Publication Publication Date Title
KR101931997B1 (ko) 폴리아미드산 수지 조성물, 이것을 사용한 폴리이미드 필름 및 그 제조 방법
JP6712607B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、積層体の製造方法、および半導体デバイス
JPWO2011122198A1 (ja) ポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法
WO2007007730A1 (ja) ポジ型感光性樹脂組成物およびパターン形成方法
WO2011065131A1 (ja) 光学フィルム、光学フィルムの製造方法、透明基板、画像表示装置及び太陽電池
KR20130139872A (ko) 수지 조성물 및 그의 제조 방법
KR101924829B1 (ko) 폴리아미드산 및 그것을 함유하는 수지 조성물
JP2021123652A (ja) 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
TW201106105A (en) Photosensitive resin composition and cured film
WO2024111130A1 (ja) ポリアミック酸エステル及び樹脂組成物
WO2024111131A1 (ja) ポリアミック酸エステル及び樹脂組成物
JP7384037B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミド樹脂膜、およびフレキシブルデバイス
WO2024095573A1 (ja) ポリイミド前駆体及び樹脂組成物
JP3862570B2 (ja) 新規なポリイミドおよびポリアミド酸共重合体
KR100244981B1 (ko) 감광성 폴리이미드 전구체
JP2002012761A (ja) 耐熱性樹脂組成物
TW202419527A (zh) 聚醯亞胺前驅物及樹脂組成物
WO2024084636A1 (ja) 感光性樹脂組成物、硬化物、パターン硬化物の製造方法、及び電子部品
WO2023195322A1 (ja) 半導体装置の製造方法、ハイブリッドボンディング絶縁膜形成材料及び半導体装置
WO2022162895A1 (ja) ポリイミド前駆体の選択方法、樹脂組成物の製造方法、ポリイミド前駆体、樹脂組成物及び硬化物
JPH0359031A (ja) ポリイミドイソインドロキナゾリンジオン及びその前駆体の製造法
JP2023182123A (ja) 樹脂組成物およびフィルム
TW202419536A (zh) 感光性樹脂組成物、硬化物、圖案硬化物的製造方法及電子零件
TW202336092A (zh) 膜及其製造方法、以及圖像顯示裝置
JP2022185863A (ja) ポリイミド前駆体の製造方法、及び硬化物の製造方法