WO2024109603A1 - 电阻率检测方法、装置及设备 - Google Patents

电阻率检测方法、装置及设备 Download PDF

Info

Publication number
WO2024109603A1
WO2024109603A1 PCT/CN2023/131720 CN2023131720W WO2024109603A1 WO 2024109603 A1 WO2024109603 A1 WO 2024109603A1 CN 2023131720 W CN2023131720 W CN 2023131720W WO 2024109603 A1 WO2024109603 A1 WO 2024109603A1
Authority
WO
WIPO (PCT)
Prior art keywords
tested
test
current
resistivity
current electrode
Prior art date
Application number
PCT/CN2023/131720
Other languages
English (en)
French (fr)
Inventor
何文
罗鑫洪
陈小琼
杨挺
侯帅
傅明利
樊灵孟
周粤
洪浚轩
何浩辉
李欢
展云鹏
贾磊
黎小林
惠宝军
朱闻博
冯宾
陈永明
权德泓
Original Assignee
广东电网有限责任公司东莞供电局
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司东莞供电局, 南方电网科学研究院有限责任公司 filed Critical 广东电网有限责任公司东莞供电局
Publication of WO2024109603A1 publication Critical patent/WO2024109603A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the present application relates to the field of resistivity detection technology, and in particular to a resistivity detection method, device and equipment.
  • a test sample of the semi-conductive shielding material can be selected, and then an operator performs resistivity testing on the test sample to determine the resistivity of the semi-conductive shielding material.
  • the present application provides a resistivity detection method.
  • the method comprises:
  • test current is applied to the material to be tested through the current electrodes;
  • the test tool is used to detect the resistance of the material to be tested to which the test current is applied, and the resistivity of the material to be tested is determined based on the test result.
  • controlling the current electrode and the test tool to abut against the material to be tested includes:
  • the current electrode and the test tool are controlled to move toward the material to be tested as a whole through the overall adjustment device until the current electrode contacts the material to be tested;
  • test tool is controlled to move toward the material to be tested until the test tool and the material to be tested are aligned.
  • Material abutment
  • the lowest point of the current electrode in the vertical direction is lower than the lowest point of the test tool in the vertical direction.
  • applying a test current to a material to be tested through a current electrode comprises:
  • the pressure sensor is used to perform pressure detection on the material to be tested
  • a test current is applied to the material to be tested through the current electrodes.
  • determining a test current of a material to be tested includes:
  • the method further comprises:
  • the ambient temperature of the material to be tested is adjusted to the test temperature through the temperature control box.
  • the temperature regulating medium of the temperature control box is dimethyl silicone oil.
  • the present application also provides a resistivity detection device.
  • the device comprises:
  • a determination module used for determining a test current of a material to be tested
  • a control module used for respectively controlling the current electrode and the test tool to abut against the material to be tested
  • An application module used for applying a test current to a material to be tested through a current electrode
  • the test module is used to perform resistance detection on the material to be tested to which the test current is applied through the test tool, and determine the resistivity of the material to be tested according to the test result.
  • the present application also provides a resistivity detection device.
  • the device comprises:
  • Concave base the concave base is used to carry the material to be tested
  • test tool the test tool is used to detect the resistance of the material to be tested with a test current applied thereto;
  • the controller is connected to the current electrode and the test tool respectively, and is used to determine the test current of the material to be tested, control the current electrode and the test tool to abut against the material to be tested, control the current electrode to apply the test current to the material to be tested, control the test tool to perform resistance detection on the material to be tested with the test current applied, and determine the resistivity of the material to be tested based on the test result.
  • the device further comprises:
  • Temperature control box the temperature control box is used to adjust the ambient temperature of the material to be tested to the test temperature.
  • the device further comprises:
  • the pressure sensor is used to detect the pressure of the material to be tested after the current electrode and the test tool are in contact with the material to be tested.
  • the test current by determining the test current, it is ensured that the subsequent resistance detection of the material to be tested can be carried out smoothly, and inaccurate resistance detection results caused by the incompatibility of the test current and the material to be tested are prevented; by controlling the abutment between the current motor, the test tool and the material to be tested, it is ensured that the current motor can apply the test current to the material to be tested, and it is ensured that the test tool can perform resistance detection on the material to be tested with the test current applied, and it is ensured that the resistivity of the material to be tested can be smoothly determined subsequently; through the current electrode and the test tool, the resistance detection of the material to be tested is realized, the accuracy of the resistance detection is guaranteed, the accuracy of the determined resistivity is improved, and the error in the process of determining the resistivity is reduced.
  • FIG1 is a flow chart of a resistivity detection method provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a current electrode and a test tool lifting structure provided in an embodiment of the present application
  • FIG3 is a cross-sectional schematic diagram of another current electrode and test tool lifting structure provided in an embodiment of the present application.
  • FIG4 is a flow chart of a method for controlling a current electrode and a test tool to abut against a material to be tested provided by an embodiment of the present application;
  • FIG5 is a schematic structural diagram of a test tool lifting structure provided in an embodiment of the present application.
  • FIG6 is a cross-sectional schematic diagram of another test tool lifting structure provided in an embodiment of the present application.
  • FIG7 is a flow chart of a method for applying a test current to a material to be tested provided by an embodiment of the present application
  • FIG8 is a flow chart of a method for determining a test current provided in an embodiment of the present application.
  • FIG9 is a flow chart of another resistivity detection method provided in an embodiment of the present application.
  • FIG10 is a structural block diagram of a first resistivity detection device provided in an embodiment of the present application.
  • FIG11 is a structural block diagram of a second resistivity detection device provided in an embodiment of the present application.
  • FIG12 is a structural block diagram of a third resistivity detection device provided in an embodiment of the present application.
  • FIG13 is a structural block diagram of a fourth resistivity detection device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a resistivity detection device provided in an embodiment of the present application.
  • FIG. 15 is a structural diagram of a resistivity detection device with three concave bases provided in an embodiment of the present application. intention.
  • Reference numerals 1. Base; 2. Lifting bracket; 3. Lifting platform; 4. Current electrode; 5. Test tool; 6. Lifting cylinder; 7. Through hole; 8. Adjusting platform; 9. Adjusting cylinder; 10. Adjusting slide; 11. Reset spring; 12. Adjusting bolt; 13. Concave base; 14. Load-bearing groove; 15. Material to be tested.
  • a layer of semi-conductive shielding material can be added between the conductive core and the insulation layer, and between the insulation layer and the metal shielding layer in the cable.
  • the semi-conductive shielding material can be called a conductor shielding layer or an insulating shielding layer.
  • the semi-conductive shielding material has a potential close to that of the conductor. Therefore, for the inner shielding material of the outer layer of the conductor, the lower the resistivity, the closer the external surface field strength can be to the conductor field strength, and even reach the same potential as the conductor. This prevents the field strength from being too high when in contact with the insulation, and even causes partial discharge.
  • the resistivity detection process of the above-mentioned related technologies cannot guarantee the accuracy of resistivity detection of semi-conductive shielding materials.
  • the reasons that affect the accuracy of resistivity detection may include: since only one test sample of semi-conductive shielding material can be tested each time, the replacement and selection of the test sample may also cause errors in the test results; the related technologies cannot perform resistivity detection of semi-conductive shielding materials under variable temperature conditions. Accurate detection can be performed; the detection equipment of the related art does not consider the influence of the contact pressure between the current electrode and the semi-conductive shielding material on the resistivity of the semi-conductive shielding material.
  • the present application discloses a resistivity detection method, device and equipment, which determines a test current and applies the test current to a material to be tested according to a current electrode; and performs resistance detection on the material to be tested to which the test current is applied according to a test tool.
  • FIG1 is a flow chart of a resistivity detection method provided in an embodiment of the present application.
  • the resistivity detection method can be applied to a resistivity detection device and is specifically executed by a controller in the resistivity detection device.
  • the controller may include the following steps when executing the resistivity detection method:
  • Step 101 determining the test current of the material to be tested.
  • the test current refers to the current that can stably detect the resistance of the material to be tested. It can be understood that the test current is a current that can detect the resistance of the material to be tested without causing damage to the material to be tested, and the resistivity of the material to be tested can be calculated based on the test current.
  • test current of the material to be tested can be determined according to the current range that the material to be tested can withstand; specifically, when it is necessary to determine the test current of the material to be tested, the current range that the material to be tested can be determined based on the material of the material to be tested and the relevant information corresponding to the material, and finally, a current value is selected from the current range that the material to be tested can withstand as the test current of the material to be tested.
  • the selection can be made according to the output current range of the power supply equipment that outputs the test current; specifically, after determining the current range that the material to be tested can withstand, determine whether there is an overlapping range between the output current range of the power supply equipment and the current range that the material to be tested can withstand. If there is an overlapping range, select the test current from the overlapping range; if there is no overlapping range, replace the power supply equipment and select a power supply equipment whose output current range can overlap with the current range that the material to be tested can withstand.
  • Step 102 Control the current electrode and the test tool to abut against the material to be tested.
  • a lifting cylinder can be used to drive a lifting platform equipped with the current electrode and the test tool to lift and lower, so as to achieve control of the current electrode and the test tool contacting with the material to be tested; or, a lifting bracket can be set to pass through the lifting platform equipped with the current electrode and the test tool, so that the lifting platform can move up and down along the lifting bracket, so as to achieve control of the current electrode and the test tool contacting with the material to be tested.
  • the resistivity detection method can be applied to a resistivity detection device.
  • the structure of the current electrode and the test tool in the resistivity detection device for height adjustment can be as shown in FIG2.
  • FIG2 is a diagram of an embodiment of the present application.
  • the resistivity detection equipment includes a base 1, a lifting bracket 2 is fixedly arranged on the upper surface of the base 1, a lifting platform 3 is lifted and lowered in the lifting bracket 2, and a current electrode 4 and a test tool 5 are installed on the lower surface of the lifting platform 3; a lifting cylinder 6 is arranged on the top of the lifting bracket 2, and the piston rod end of the lifting cylinder 6 passes through the lifting bracket 2 and is fixedly connected with the lifting platform 3; according to the above structure, the lifting platform 3 is driven up and down by the lifting cylinder 6, so as to control the current electrode 4 and the test tool 5 to abut against the material to be tested.
  • the resistivity detection method can be applied to a resistivity detection device.
  • the structure for adjusting the height of the current electrode and the test tool in the resistivity detection device can be as shown in Figure 3.
  • Figure 3 is a cross-sectional schematic diagram of another current electrode and test tool lifting structure provided in an embodiment of the present application.
  • the resistivity detection method can be applied to a resistivity detection device.
  • the resistivity detection device includes a base 1, a lifting bracket 2 is fixedly provided on the upper surface of the base 1, a lifting platform 3 is lifted and lowered in the lifting bracket 2, and a current electrode 4 and a test tool 5 are installed on the lower surface of the lifting platform 3; through holes 7 are penetrated at both ends of the lifting platform 3 in the length direction, and the lifting bracket 2 penetrates the through hole 7 and slides with the through hole 7.
  • the lifting platform 3 is allowed to slide up and down in the lifting bracket 2 through the through hole 7, thereby controlling the current electrode 4 and the test tool 5 to abut against the material to be tested.
  • the fixing device can be provided to fix the lifting platform in the lifting bracket, thereby ensuring that the resistance detection of the material to be tested is carried out smoothly.
  • the fixing device may be a bolt-type structure, and the friction between the through hole of the lifting platform and the lifting bracket is increased by inserting the bolt-type fixing device into the through hole, so that the lifting platform can remain fixed at a certain position of the lifting bracket.
  • Step 103 applying a test current to the material to be tested through the current electrode.
  • the material to be tested is connected to the circuit where the current electrode is located, thereby inputting current into the material to be tested; it should be further noted that the current motor can be connected to a power supply device, and the power supply device provides current output for the current electrode, thereby ensuring that when the resistance of the material to be tested is detected by the test tool, there is current flowing in the material to be tested.
  • Step 104 using a test tool to perform resistance detection on the material to be tested to which the test current is applied, and determining the resistivity of the material to be tested based on the test result.
  • the voltage value of the material to be tested with the test current applied thereto can be obtained according to the measurement of the test tool, and the voltage value of the material to be tested and the current value applied to the material to be tested by the current electrode are substituted into formula (1) to determine the resistance value of the material to be tested; the cross-sectional area of the material to be tested is determined according to the width and height of the material to be tested; and the resistance of the material to be tested, the cross-sectional area and the length of the material to be tested are substituted into formula (2) to determine the resistivity of the material to be tested.
  • R refers to the resistance value of the material to be tested
  • U refers to the voltage value of the material to be tested with the test current applied, which is measured by the test tool
  • I refers to the current value applied to the material to be tested by the current electrode.
  • refers to the resistivity of the material to be tested
  • R refers to the resistance value of the material to be tested
  • S refers to the cross-sectional area of the material to be tested (in square centimeters)
  • L refers to the length of the material to be tested (in centimeters).
  • the accuracy of the resistivity of the material to be tested is ensured by performing multiple detections on the material to be tested. For example, when it is necessary to determine the resistivity of the material to be tested, the voltage of the material to be tested with the test current applied is obtained multiple times by the test tool, and the average voltage of the material to be tested is calculated. The resistance value of the material to be tested is calculated based on the average voltage and formula (1); the resistivity of the material to be tested is determined based on the resistance value of the material to be tested and formula (2).
  • the position of the material to be tested can be adjusted before the test current is applied to the material to be tested each time, for example: turning the material to be tested upside down or turning the material to be tested left to right.
  • the resistivity detection method may include multiple current motors and multiple test tools, so as to realize resistance detection of multiple materials to be tested simultaneously according to multiple current motors and multiple test tools, thereby simultaneously determining the resistivity of multiple materials to be tested.
  • the resistivity detection method of the present application by determining the test current, it is ensured that the subsequent resistance detection of the material to be tested can be carried out smoothly, and inaccurate resistance detection results caused by the incompatibility of the test current and the material to be tested are prevented; by controlling the abutment between the current motor, the test tool and the material to be tested, it is ensured that the current motor can apply the test current to the material to be tested, and it is ensured that the test tool can perform resistance detection on the material to be tested with the test current applied, thereby ensuring that the resistivity of the material to be tested can be smoothly determined subsequently; through the current electrode and the test tool, the resistance detection of the material to be tested is realized, the accuracy of the resistance detection is guaranteed, the accuracy of the determined resistivity is improved, and the error in the resistivity determination process is reduced.
  • FIG4 is a flow chart of a method for controlling the current electrode and the test tool to abut against the material to be tested provided in an embodiment of the present application. Specifically, controlling the current electrode and the test tool to abut against the material to be tested may include the following steps:
  • Step 401 through the overall adjustment device, control the current electrode and the test tool to move toward the material to be tested. Move until the current electrode contacts the material to be tested.
  • the overall adjustment device refers to a device that can adjust the current electrode and the test tool as a whole, and the overall adjustment device can only adjust the current electrode and the test tool as a whole, and cannot adjust the current electrode or the test tool separately.
  • the overall adjustment device can be a combination of a lifting cylinder and a lifting platform as shown in Figure 2, and the lifting cylinder drives the lifting platform to lift and lower to achieve overall adjustment of the current electrode and the test tool; or, the overall adjustment device can be a lifting platform and a lifting bracket as shown in Figure 3, and the lifting platform can be lifted and lowered in the lifting bracket through the through hole opened on the lifting platform to achieve overall adjustment of the current electrode and the test tool.
  • Step 402 Control the test tool to move toward the material to be tested by a separate adjustment device until the test tool abuts against the material to be tested.
  • the separate adjustment device refers to a device that can only adjust the test tool.
  • the test tool to adjust, for example: adjusting the height of the test tool by adjusting the cylinder; or adjusting the height of the test tool by adjusting the bolt; the above two methods for adjusting the height of the test tool will be described in detail below, specifically:
  • the resistivity detection method can be applied to a resistivity detection device.
  • the height adjustment structure of the test tool in the resistivity detection device can be as shown in Figure 5.
  • Figure 5 is a structural schematic diagram of a test tool lifting structure provided in an embodiment of the present application.
  • the current electrode 4 is arranged on the lower surface of the lifting platform 3, and an adjusting platform 8 is arranged on the lower surface of the lifting platform 3 for lifting; an adjusting cylinder 9 is fixed on the upper surface of the lifting platform 3, and the piston rod end of the adjusting cylinder 9 passes through the lifting platform 3 and is fixedly connected to the upper surface of the adjusting platform 8 below; the test tool 5 is fixedly arranged on the lower surface of the adjusting platform 8.
  • the resistivity detection method can be applied to a resistivity detection device.
  • the height adjustment structure of the test tool in the resistivity detection device can be as shown in Figure 6.
  • Figure 6 is a cross-sectional schematic diagram of another test tool lifting structure provided in an embodiment of the present application.
  • the current electrode 4 is arranged on the lower surface of the lifting platform 3, and an adjustment platform 8 is arranged on the lower surface of the lifting platform 3 for lifting and lowering, and an adjustment slide 10 is fixed on the lower surface of the lifting platform 3, and the adjustment platform 8 can slide up and down in the adjustment slide 10;
  • a reset spring 11 is arranged in the adjustment slide 10, one end of the reset spring 11 is fixedly connected to the lifting platform 3, and the other end of the reset spring 11 is fixedly connected to the adjustment platform 8, an adjusting bolt 12 is arranged through the lifting platform 3, the adjusting bolt 12 passes through the lifting platform 3 and is threaded with the lifting platform 3, the threaded end of the adjusting bolt 12 abuts against the adjusting platform 8, and the test tool 5 is arranged on the lower surface of the adjusting platform 8.
  • the lowest point of the current electrode in the vertical direction is lower than the lowest point of the test tool in the vertical direction.
  • the current electrode and the tip of the test tool can be made of a resistive material with a lower resistance value.
  • the contact resistance between the current electrode and the test tool and the material to be tested is reduced to ensure the accuracy of the resistivity of the material to be tested.
  • the resistance material with a lower resistance value may include: metallic silver or silver-containing material.
  • the current electrode is brought into contact with the material to be tested through an overall adjustment device, ensuring that the current motor can smoothly apply the test current to the material to be tested, ensuring that the subsequent resistance detection of the material to be tested is carried out smoothly, and the lifting and lowering adjustment of the test tool is achieved through a separate adjustment device, ensuring that after the test current is applied to the material to be tested, the test tool can perform resistance detection on the material to be tested, ensuring the subsequent smooth determination of the resistivity of the material to be tested.
  • FIG. 7 is a flow chart of a method for applying a test current to the material to be tested provided in an embodiment of the present application. Specifically, applying the test current to the material to be tested may include the following steps:
  • Step 701 If it is detected that the current electrode and the test tool are in contact with the material to be tested, a pressure sensor is used to perform pressure testing on the material to be tested.
  • the pressure sensor in order to ensure that the pressure sensor can accurately measure the pressure exerted on the material to be tested when the current electrode and the test tool abut against the material to be tested, the pressure sensor can be arranged directly below or above the current electrode and the test tool, thereby preventing the pressure exerted on the material to be tested from being divided before being transmitted to the pressure sensor, thereby ensuring that the pressure sensor can accurately measure the pressure exerted on the material to be tested.
  • the installation position of the pressure sensor can be set below the material to be tested, and the pressure sensor is directly below the current electrode and the test tool, thereby ensuring that the pressure sensor performs pressure detection on the material to be tested without affecting the resistance detection of the material to be tested.
  • Step 702 If the result of the pressure detection is less than the preset pressure threshold, a test current is applied to the material to be tested through the current electrode.
  • the pressure threshold indicates the maximum pressure that the current electrode and the test tool can apply to the material to be tested without affecting the accuracy of the resistance detection of the material to be tested; if the result of the pressure detection is less than the preset pressure threshold, the pressure applied to the material to be tested by the current electrode and the test tool is less than the maximum pressure, which means that it will not affect the accuracy of the resistance detection of the material to be tested; if the result of the pressure detection is greater than or equal to the preset pressure threshold, the pressure applied to the material to be tested by the current electrode and the test tool is greater than or equal to the maximum pressure, which means that it will affect the accuracy of the resistance detection of the material to be tested.
  • different materials to be tested have different pressure thresholds.
  • the pressure threshold of the material to be tested needs to be determined, a continuously increasing pressure can be applied to the material to be tested, a stable and constant current can be input to the material to be tested, and the change of the current in the material to be tested can be monitored in real time. If the current in the material to be tested remains constant as the pressure continues to increase, it means that the maximum pressure that can be applied to the material to be tested has not yet been reached; if the pressure continues to increase, when the pressure reaches a certain value, the current in the material to be tested changes. changes, the pressure at this value is the maximum pressure that can be applied to the material to be tested, and this maximum pressure is the pressure threshold.
  • pressure detection of the material to be tested is achieved through a pressure sensor, so as to prevent the accuracy of pressure detection of the material to be tested from being affected due to excessive pressure applied to the material to be tested by the current electrode and the test tool; and, when it is necessary to perform resistance detection on the material to be tested multiple times, the pressure sensor can be used to ensure that the pressure applied by the current electrode and the test tool to the material to be tested in each resistance detection is the same, thereby further improving the accuracy of resistance detection.
  • test current of the material to be tested can be determined according to the material properties of the material to be tested.
  • FIG8 is a flow chart of a method for determining a test current provided in an embodiment of the present application. Specifically, determining the test current may include the following steps:
  • Step 801 determining the effective current range of the material to be tested according to the material properties of the material to be tested.
  • material properties refer to relevant information that can reflect the material characteristics of the material to be tested.
  • the effective current range corresponding to the material to be tested can be determined; further explained, the effective current range refers to the current value range that will not cause damage to the material to be tested. If the test current applied to the material to be tested does not belong to the effective current range, it may cause damage to the material to be tested, thereby affecting the accuracy of subsequent resistance detection of the material to be tested.
  • Step 802 Determine the test current of the material to be tested according to the effective current range.
  • the effective current range of the material to be tested determines whether there is an overlapping range between the output current range of the power supply device that outputs the test current and the effective current range that the material to be tested can withstand. If there is an overlapping range, select the test current from the overlapping range; if there is no overlapping range, replace the power supply device and select a power supply device whose output current range can overlap with the effective current range of the material to be tested.
  • the effective current range is determined by the material properties of the material to be tested, thereby ensuring the accuracy of subsequent resistance detection of the material to be tested, preventing damage to the material to be tested, and further improving the accuracy of resistivity determination.
  • the ambient temperature of the material to be tested can be adjusted to the test temperature according to the temperature control box.
  • the test current is applied to the material to be tested according to the current electrode; then, the resistance of the material to be tested with the test current applied is detected by the test tool, and the resistivity of the material to be tested is determined according to the test results.
  • the temperature regulating medium of the temperature control box is dimethyl silicone oil.
  • the ambient temperature of the material to be tested is adjusted by setting a temperature control box, so that the resistance of the material to be tested can be detected under a variable temperature state, which ensures that the ambient temperature can be accurately adjusted to the test temperature, thereby improving the accuracy of resistance detection of the material to be tested under a variable temperature state.
  • FIG. 9 is a flow chart of another resistivity detection method provided in an embodiment of the present application.
  • Step 901 determining the effective current range of the material to be tested according to the material properties of the material to be tested.
  • Step 902 Determine the test current of the material to be tested according to the effective current range.
  • Step 903 adjust the ambient temperature of the material to be tested to the test temperature through a temperature control box.
  • Step 904 Control the current electrode and the test tool to move toward the material to be tested as a whole through the overall adjustment device until the current electrode contacts the material to be tested.
  • Step 905 Control the test tool to move toward the material to be tested by a separate adjustment device until the test tool abuts against the material to be tested.
  • Step 906 If it is detected that the current electrode and the test tool are in contact with the material to be tested, a pressure sensor is used to perform pressure testing on the material to be tested.
  • Step 907 If the result of the pressure detection is less than the preset pressure threshold, a test current is applied to the material to be tested through the current electrode.
  • Step 908 Use a test tool to perform resistance detection on the material to be tested to which the test current is applied, and determine the resistivity of the material to be tested based on the test result.
  • the two materials to be tested are material A to be tested and material B to be tested.
  • the resistivity detection of material A to be tested and material B to be tested is performed at 23°C and 90°C by the traditional method and the resistivity detection method of the present application, and the results are shown in the following table.
  • the resistivity detection method of the present application when used to detect the resistivity of the material to be detected, the standard deviation of the resistivity of the material A to be detected at 23°C decreases from 2.71 to 0.71, and the standard deviation of the resistivity at 90°C decreases from 40.72 to 9.71; the standard deviation of the resistivity of the material B to be detected at 23°C decreases from 2.05 to 0.25, and the standard deviation of the resistivity at 90°C decreases from 17.61 to 8.68. Therefore, based on the above data, it can be fully explained that the resistance data measured by the resistivity detection method of the present application is stable, which improves the test accuracy.
  • the resistivity detection method of the present application by determining the test current, it is ensured that the subsequent resistance detection of the material to be tested can be carried out smoothly, and inaccurate resistance detection results caused by the incompatibility of the test current and the material to be tested are prevented; by controlling the abutment between the current motor, the test tool and the material to be tested, it is ensured that the current motor can apply the test current to the material to be tested, and it is ensured that the test tool can perform resistance detection on the material to be tested with the test current applied, and it is ensured that the resistivity of the material to be tested can be smoothly determined subsequently; through the current electrode and the test tool, the resistance detection of the material to be tested is realized, the accuracy of the resistance detection is guaranteed, the accuracy of the determined resistivity is improved, and the error in the process of determining the resistivity is reduced.
  • the embodiment of the present application also provides a resistivity detection device for implementing the resistivity detection method involved above.
  • the implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above method, so the specific limitations in one or more resistivity detection device embodiments provided below can refer to the limitations of the resistivity detection method above, and will not be repeated here.
  • FIG. 10 is a structural block diagram of a first resistivity detection device provided in an embodiment of the present application, and provides a resistivity detection device, including: a determination module 100, a control module 200, an application module 300 and a test module 400, wherein:
  • the determination module 100 is used to determine the test current of the material to be tested.
  • the control module 200 is used to control the current electrode and the test tool to abut against the material to be tested.
  • the application module 300 is used to apply the test current to the material to be tested through the current electrodes.
  • the testing module 400 is used to perform resistance detection on the material to be tested to which the test current is applied by means of a testing tool, and determine the resistivity of the material to be tested according to the test result.
  • the ambient temperature of the material to be tested can be adjusted to the test temperature according to the temperature control box, wherein the temperature regulating medium of the temperature control box is dimethyl silicone oil.
  • the resistivity detection device of the present application by determining the test current, it is ensured that the subsequent resistance detection of the material to be tested can be carried out smoothly, and inaccurate resistance detection results caused by the incompatibility of the test current and the material to be tested are prevented; by controlling the abutment between the current motor, the test tool and the material to be tested, it is ensured that the current motor can apply the test current to the material to be tested, and it is ensured that the test tool can perform resistance detection on the material to be tested with the test current applied, thereby ensuring that the resistivity of the material to be tested can be smoothly determined subsequently; through the current electrode and the test tool, the resistance detection of the material to be tested is realized, the accuracy of the resistance detection is guaranteed, the accuracy of the determined resistivity is improved, and the error in the process of determining the resistivity is reduced.
  • FIG. 11 is a structural block diagram of a second resistivity detection device provided in an embodiment of the present application, and provides a resistivity detection device.
  • a control module 200 includes: a first control unit 210 and a second control unit 220, wherein:
  • the first control unit 210 is used to control the current electrode and the test tool to move toward the material to be tested as a whole through the overall adjustment device until the current electrode contacts the material to be tested.
  • the second control unit 220 is used to control the test tool to move toward the material to be tested through a separate adjustment device until the test tool abuts against the material to be tested.
  • the lowest point of the current electrode in the vertical direction is lower than the lowest point of the test tool in the vertical direction.
  • the overall adjustment decoration is used to make the current electrode abut against the material to be tested, ensuring that the current motor can smoothly apply the test current to the material to be tested, ensuring that the subsequent resistance detection of the material to be tested is carried out smoothly, and the lifting and lowering adjustment of the test tool is achieved through a separate adjustment device, ensuring that after the test current is applied to the material to be tested, the test tool can perform resistance detection on the material to be tested, ensuring the subsequent smooth determination of the resistivity of the material to be tested.
  • FIG. 12 is a structural block diagram of a third resistivity detection device provided in an embodiment of the present application, and provides a resistivity detection device.
  • an applying module 300 includes: a detection unit 310 and an applying unit 320, wherein:
  • the detection unit 310 is used to perform pressure detection on the material to be tested if it is detected by the pressure sensor that the current electrode and the test tool are in contact with the material to be tested.
  • the applying unit 320 is used to apply a test current to the material to be tested through the current electrodes if the result of the pressure detection is less than a preset pressure threshold.
  • the pressure sensor is used to detect the pressure of the material to be tested, so as to prevent the material to be tested from being damaged due to excessive pressure applied by the current electrode and the test tool.
  • the accuracy of pressure detection of materials is affected; and, when resistance detection of the material to be tested needs to be performed multiple times, the pressure sensor can be used to ensure that the pressure applied by the current electrode and the test tool to the material to be tested is the same each time the resistance is detected, thereby further improving the accuracy of resistance detection.
  • FIG. 13 is a structural block diagram of a fourth resistivity detection device provided in an embodiment of the present application, and provides a resistivity detection device.
  • a determination module 100 includes: a first determination unit 110 and a second determination unit 120, wherein:
  • the first determining unit 110 is used to determine an effective current interval of the material to be tested according to a material property of the material to be tested.
  • the second determination unit 120 is used to determine the test current of the material to be tested according to the effective current interval.
  • the effective current range is determined by the material properties of the material to be tested, thereby ensuring the accuracy of subsequent resistance detection of the material to be tested, preventing damage to the material to be tested, and further improving the accuracy of resistivity determination.
  • Each module in the resistivity detection device can be implemented in whole or in part by software, hardware, or a combination thereof.
  • Each module can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute operations corresponding to each module.
  • a resistivity detection device comprising:
  • Concave base the concave base is used to carry the material to be tested
  • test tool the test tool is used to detect the resistance of the material to be tested with a test current applied thereto;
  • the controller is connected to the current electrode and the test tool respectively, and is used to determine the test current of the material to be tested, control the current electrode and the test tool to abut against the material to be tested, control the current electrode to apply the test current to the material to be tested, control the test tool to perform resistance detection on the material to be tested with the test current applied, and determine the resistivity of the material to be tested based on the test result.
  • FIG14 is a schematic diagram of the structure of a resistivity detection device provided in an embodiment of the present application
  • the resistivity detection device includes a lifting bracket 2, a lifting platform 3 is provided inside the lifting bracket 2 for lifting, a lifting cylinder 6 is fixed on the top of the lifting bracket 2, the piston rod end of the lifting cylinder 6 passes through the lifting bracket 2 and is fixedly connected to the lifting platform 3 below, and a current motor 4 and a test tool 5 are provided on the side of the lifting platform 3 away from the lifting cylinder 6; a concave base 13 is provided below the current motor 4 and the test tool 5.
  • the concave base 13 can be located on both sides of the lower surface of the material to be tested 15, and a bearing groove 14 is provided on the side of the concave base 13 that contacts the material to be tested 15.
  • the bearing groove 14 is used to carry and limit the material to be tested 15. When the material to be tested 15 is placed in the bearing groove 14, the material to be tested 15 is prevented from being moved during resistance detection. Further explanation: by setting the concave base on both sides of the lower surface of the material to be tested, the contact area between the material to be tested and the concave base is reduced, thereby preventing the base to be tested from interfering with and affecting the resistance detection of the material to be tested.
  • the resistivity detection device when it is necessary to perform resistance detection on multiple materials to be tested at the same time, may include multiple concave bases; as shown in Figure 15, Figure 15 is a structural schematic diagram of a resistivity detection device with three concave bases provided in an embodiment of the present application.
  • the resistivity detection device may include three concave bases 13, and corresponding lifting brackets 2 are respectively provided above the three concave bases 13.
  • the resistivity detection device of the present application by determining the test current, it is ensured that the subsequent resistance detection of the material to be tested can be carried out smoothly, and inaccurate resistance detection results caused by the incompatibility of the test current and the material to be tested are prevented; by controlling the abutment between the current motor, the test tool and the material to be tested, it is ensured that the current motor can apply the test current to the material to be tested, and it is ensured that the test tool can perform resistance detection on the material to be tested with the test current applied, thereby ensuring that the resistivity of the material to be tested can be smoothly determined subsequently; through the current electrode and the test tool, the resistance detection of the material to be tested is realized, the accuracy of the resistance detection is guaranteed, the accuracy of the determined resistivity is improved, and the error in the resistivity determination process is reduced.
  • any reference to the memory, database or other medium used in the embodiments provided in the present application can include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc.
  • Volatile memory can include random access memory (RAM) or external cache memory, etc.
  • RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • the database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include distributed databases based on blockchain, etc., but are not limited to this.
  • the processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic unit, a data processing logic unit based on quantum computing, etc., but are not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种电阻率检测方法、装置及设备。方法包括:确定待测材料(15)的测试电流;控制电流电极(4)和测试刀具(5)与待测材料(15)抵接;通过电流电极(4),将测试电流施加于待测材料(15);通过测试刀具(5),对施加有测试电流的待测材料(15)进行电阻检测,并根据测试结果,确定待测材料(15)的电阻率。该检测方法实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。

Description

电阻率检测方法、装置及设备
本申请要求在2022年11月24日提交中国专利局、申请号为202211481278.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电阻率检测技术领域,特别是涉及一种电阻率检测方法、装置及设备。
背景技术
随着电力行业的不断发展,电缆的应用也变得愈加的普遍,电缆已经成为了电力输送等相关行业的必要材料,为保证电缆的质量能够达到电力行业的使用标准,需要对电缆中的半导电屏蔽材料进行电阻率检测。
相关技术中,当需要对电缆中的半导电屏蔽材料进行电阻率检测时,可通过选取半导电屏蔽材料的一个测试样品,然后,操作人员对该测试样品进行电阻率检测,从而确定半导电屏蔽材料的电阻率。
但是,相关技术中电阻率检测的检测精确度较低。
发明内容
基于此,有必要针对上述技术问题,提供一种能够准确检测待测材料电阻率的电阻率检测方法、装置及设备。
第一方面,本申请提供了一种电阻率检测方法。该方法包括:
确定待测材料的测试电流;
控制电流电极和测试刀具与待测材料抵接;
通过电流电极,将测试电流施加于待测材料;
通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
在其中一个实施例中,控制电流电极和测试刀具与待测材料抵接,包括:
通过整体调节装置,控制电流电极和测试刀具整体向待测材料移动,直至电流电极与待测材料抵接;
通过单独调节装置,控制测试刀具向待测材料移动,直至测试刀具与待测材 料抵接;
其中,在移动前的初始状态下,电流电极在竖直方向的最低点低于测试刀具在竖直方向的最低点。
在其中一个实施例中,通过电流电极,将测试电流施加于待测材料,包括:
若检测到电流电极和测试刀具与待测材料抵接,则通过压力传感器,对待测材料进行压力检测;
若压力检测的结果小于预先设定的压力阈值,则通过电流电极,将测试电流施加于待测材料。
在其中一个实施例中,确定待测材料的测试电流,包括:
根据待测材料的材料属性,确定待测材料的有效电流区间;
根据有效电流区间,确定待测材料的测试电流。
在其中一个实施例中,方法还包括:
通过控温箱,将待测材料所处的环境温度调整到测试温度。
在其中一个实施例中,控温箱的温度调节介质为二甲基硅油。
第二方面,本申请还提供了一种电阻率检测装置。装置包括:
确定模块,用于确定待测材料的测试电流;
控制模块,用于分别控制电流电极和测试刀具与待测材料抵接;
施加模块,用于通过电流电极,将测试电流施加于待测材料;
测试模块,用于通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
第三方面,本申请还提供了一种电阻率检测设备。装置包括:
凹形底座,凹形底座用于承载待测材料;
电流电极,电流电极用于将测试电流施加于待测材料;
测试刀具,测试刀具用于对施加有测试电流的待测材料进行电阻检测;
控制器,控制器分别与电流电极和测试刀具连接,用于确定待测材料的测试电流,控制电流电极和测试刀具与待测材料抵接,控制电流电极将测试电流施加于待测材料,控制测试刀具对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
在其中一个实施例中,设备还包括:
控温箱,控温箱用于将待测材料所处的环境温度调整到测试温度。
在其中一个实施例中,设备还包括:
压力传感器,压力传感器用于在电流电极和测试刀具与待测材料抵接之后,对待测材料进行压力检测。
根据本申请的技术方案,通过确定测试电流,保证了后续对待测材料的电阻检测能够顺利进行,防止由于测试电流与待测材料不适配而导致电阻检测的结果不准确;通过控制电流电机与测试刀具和待测材料抵接,保证了能够让电流电机向待测材料施加测试电流,并且,保证了能够让测试刀具对施加有测试电流的待测材料进行电阻检测,保证了后续能够顺利确定待测材料的电阻率;通过电流电极和测试刀具,实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。
附图说明
图1为本申请实施例提供的一种电阻率检测方法的流程图;
图2为本申请实施例提供的一种电流电极和测试刀具升降结构示意图;
图3为本申请实施例提供的另一种电流电极和测试刀具升降结构的截面示意图;
图4为本申请实施例提供的一种控制电流电极和测试刀具与待测材料抵接的方法流程图;
图5为本申请实施例提供的一种测试刀具升降结构的结构示意图;
图6为本申请实施例提供的另一种测试刀具升降结构的截面示意图;
图7为本申请实施例提供的一种向待测材料施加测试电流的方法流程图;
图8为本申请实施例提供的一种测试电流确定的方法流程图;
图9为本申请实施例提供的另一种电阻率检测方法的流程图;
图10为本申请实施例提供的第一种电阻率检测装置的结构框图;
图11为本申请实施例提供的第二种电阻率检测装置的结构框图;
图12为本申请实施例提供的第三种电阻率检测装置的结构框图;
图13为本申请实施例提供的第四种电阻率检测装置的结构框图;
图14为本申请实施例提供的一种电阻率检测设备的结构示意图;
图15为本申请实施例提供的一种三个凹形底座的电阻率检测设备的结构示 意图。
附图标记
1、底座;2、升降支架;3、升降台;4、电流电极;5、测试刀具;6、升降
气缸;7、通孔;8、调节台;9、调节气缸;10、调节滑道;11、复位弹簧;12、调节螺栓;13、凹形底座;14、承载凹槽;15、待测材料。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。在本申请的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
在中、高压电力电缆中,为缓和电缆内部电场集中、改善绝缘层内外表面电场应力分布、提高电缆电气强度,可在电缆中的导电线芯和绝缘层、绝缘层和金属屏蔽层之间分别加有一层半导电屏蔽材料,半导电屏蔽材料可称为导体屏蔽层或者绝缘屏蔽层。半导电屏蔽材料具有与导体相近的电位,因而,对于导体外层的内层屏蔽材料来说,越低的电阻率可以使得外部表面场强越接近导体场强,甚至达到与导体具有等电位。从而防止与绝缘接触时场强过高,甚至引起局部放电的情况发生。
为保证电缆的质量能够达到电力行业的使用标准,需要对电缆中的半导电屏蔽材料进行电阻率检测,相关技术中的,当需要对电缆中的半导电屏蔽材料进行电阻率检测时,可通过选取半导电屏蔽材料的一个测试样品,然后,操作人员对该测试样品进行电阻率检测,从而确定半导电屏蔽材料的电阻率。
但是,上述相关技术的电阻率检测过程,无法保证对半导电屏蔽材料电阻率检测的准确性。其中,影响电阻率检测准确性的原因可包括:由于每次检测只能够测试半导电屏蔽材料的一个测试样品,因此,测试样品的更换和选取也可能造成检测结果的误差;相关技术无法在变温状态下,对半导电屏蔽材料的电阻率进 行准确检测;相关技术的检测设备没有考虑电流电极与半导电屏蔽材料的接触压力对半导电屏蔽材料电阻率的影响。
本申请公开了一种电阻率检测方法、装置及设备,通过确定测试电流,根据电流电极将测试电流施加于待测材料;根据测试刀具对施加有测试电流的待测材料进行电阻检测。
图1为本申请实施例提供的一种电阻率检测方法的流程图,该电阻率检测方法可应用于电阻率检测设备,具体由该电阻率检测设备中的控制器执行,该控制器在执行电阻率检测方法时可包括以下步骤:
步骤101,确定待测材料的测试电流。
其中,测试电流指的是能够让待测材料稳定进行电阻检测的电流,可理解为,测试电流是既能够对待测材料进行电阻检测又不会对待测材料造成损坏的电流,并且,根据测试电流能够计算出待测材料对应的电阻率。
需要说明的是,可根据待测材料能够承受的电流范围,确定待测材料的测试电流;具体的,当需要确定待测材料的测试电流时,可根据待测材料的材料和该材料对应的相关信息,确定待测材料所能够承受的电流范围,最后,从待测材料所能够承受的电流范围中选择某电流值作为待测材料的测试电流。
进一步说明,当从待测材料所能够承受的电流范围选择某一电流值作为待测材料的测试电流时,可根据输出测试电流的供电设备的输出电流范围进行选择;具体的,当确定待测材料所能够承受的电流范围后,判断供电设备的输出电流范围与待测材料承受的电流范围是否存在重合范围,若存在重合范围,则从重合范围内选取测试电流,若不存在重合范围,则更换供电设备,选择输出电流范围能够与待测材料承受的电流范围重合的供电设备。
步骤102,控制电流电极和测试刀具与待测材料抵接。
需要说明的是,控制电流电极和测试刀具升降从而实现与待测材料抵接的方法有很多,例如:可通过升降气缸驱动安装有电流电极和测试刀具的升降台进行升降运动,从而实现控制电流电极和测试刀具与待测材料抵接;或者,设置升降支架,让升降支架贯穿安装有电流电极和测试刀具的升降台,使得升降台能够沿着升降支架进行上下运动,从而实现控制电流电极和测试刀具与待测材料抵接。下面将对上述两种控制电流电极和测试刀具升降的方法进行详细说明,具体的:
作为一种实现方法,电阻率检测方法可应用于电阻率检测设备,当通过升降气缸控制电流电极和测试刀具与待测材料抵接时,电阻率检测设备中电流电极和测试刀具进行高低调节的结构可如图2所示,图2为本申请实施例提供的一 种电流电极和测试刀具升降结构示意图;电阻率检测设备中包括底座1,底座1上表面固定设置有升降支架2,升降支架2内升降设置有升降台3,升降台3下表面安装设置有电流电极4和测试刀具5;在升降支架2的顶部设置有升降气缸6,升降气缸6的活塞杆端部贯穿升降支架2与升降台3固定连接;根据上述结构,实现根据升降气缸6驱动升降台3上下移动,从而控制电流电极4和测试刀具5与待测材料抵接。
作为另一种实现方法,电阻率检测方法可应用于电阻率检测设备,当通过升降台和升降支架滑移配合控制电流电极和测试刀具与待测材料抵接时,电阻率检测设备中电流电极和测试刀具进行高低调节的结构可如图3所示,图3为本申请实施例提供的另一种电流电极和测试刀具升降结构的截面示意图,具体的,电阻率检测方法可应用于电阻率检测设备,电阻率检测设备中包括底座1,底座1上表面固定设置有升降支架2,升降支架2内升降设置有升降台3,升降台3下表面安装设置有电流电极4和测试刀具5;升降台3长度方向的两端均贯穿设置有通孔7,并且,升降支架2贯穿通孔7且与通孔7滑移配合,根据上述结构,实现让升降台3通过通孔7在升降支架2内上下滑移,从而控制电流电极4和测试刀具5与待测材料抵接。
进一步说明,可通过设置固定装置,实现升降台在升降支架内的固定,从而保证对待测材料的电阻检测顺利进行。
其中,固定装置可为栓型结构,通过将栓型结构的固定装置插入通孔实现增加升降台的通孔与升降支架之间的摩擦力,使得升降台能够在升降支架的某一位置保持固定不动。
步骤103,通过电流电极,将测试电流施加于待测材料。
需要说明的是,通过电流电极与待测材料抵接,实现将待测材料接入电流电极所处的电路中,从而实现对待测材料输入电流;进一步说明,电流电机可与供电设备连接,供电设备为电流电极提供电流输出,从而保证在根据测试刀具对待测材料进行电阻检测时,待测材料内存在电流流动。
步骤104,通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
在本申请的一种实施例中,当通过测试刀具对待测材料进行电阻检测时,可根据测试刀具测量得到施加有测试电流的待测材料的电压值,将待测材料的电压值和电流电极施加给待测材料的电流值代入公式(1),确定待测材料的电阻值;根据待测材料的宽度和高度,确定待测材料横截面积;将待测材料的电阻、待测材料的横截面积和长度代入公式(2),确定待测材料的电阻率。
进一步说明,上述公式(1)如下所示:
R=U/I……(1)
其中,R指的是待测材料的电阻值;U指的是根据测试刀具测量得到的施加有测试电流的待测材料的电压值;I指的是电流电极施加给待测材料的电流值。
进一步说明,上述公式(2)如下所示:
ρ=RS/L……(2)
其中,ρ指的是待测材料的电阻率;R指的是待测材料的电阻值;S指的是待测材料的横截面积(单位为平方厘米);L指的是待测材料的长度(单位为厘米)。
需要说明的是,当需要对待测材料进行电阻检测时,通过对待测材料进行多次检测从而保证待测材料电阻率的准确性,例如,当需要确定待测材料的电阻率时,通过测试刀具多次获取施加有测试电流的待测材料的电压,计算出待测材料的平均电压,根据平均电压和公式(1),计算出待测材料的电阻值;根据待测材料的电阻值和公式(2),确定待测材料的电阻率。
进一步说明,当根据测试刀具多次获取施加有测试电流的待测材料的电压时,可在每次将测试电流施加于待测材料之前,调整待测材料的位置,例如:将待测材料进行上下翻转或者对待测材料进行左右翻转。
在本申请的一种实施例中,电阻率检测方法可包括多个电流电机和多个测试刀具,从而实现根据多个电流电机和多个测试刀具同时对多个待测材料进行电阻检测,从而同时确定多个待测材料的电阻率。
根据本申请的电阻率检测方法,通过确定测试电流,保证了后续对待测材料的电阻检测能够顺利进行,防止由于测试电流与待测材料不适配而导致电阻检测的结果不准确;通过控制电流电机与测试刀具和待测材料抵接,保证了能够让电流电机向待测材料施加测试电流,并且,保证了能够让测试刀具对施加有测试电流的待测材料进行电阻检测,保证了后续能够顺利确定待测材料的电阻率;通过电流电极和测试刀具,实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。
需要说明的是,通过整体调节装置和单独调节装置,实现控制电流电极和测试刀具与待测材料抵接,可选地,如图4所示,图4为本申请实施例提供的一种控制电流电极和测试刀具与待测材料抵接的方法流程图,具体的,控制电流电极和测试刀具与待测材料抵接可以包括以下步骤:
步骤401,通过整体调节装置,控制电流电极和测试刀具整体向待测材料移 动,直至电流电极与待测材料抵接。
其中,整体调节装置指的是能够对电流电极和测试刀具进行整体调节的装置,并且,整体调节装置只能够对电流电极和测试刀具进行整体调节,无法针对电流电极或者测试刀具进行单独调节。进一步说明,整体调节装置可如图2中的升降气缸和升降台的组合,通过升降气缸驱动升降台升降可实现对电流电极和测试刀具进行整体调节;或者,整体调节装置可如图3中的升降台和升降支架,通过升降台开设的通孔让升降台在升降支架内升降可实现对电流电极和测试刀具进行整体调节。
步骤402,通过单独调节装置,控制测试刀具向待测材料移动,直至测试刀具与待测材料抵接。
其中,单独调节装置指的是仅能够对测试刀具进行调节的装置,具体的,控制测试刀具进行调节的方法有很多,例如:通过调节气缸对测试刀具进行高低调节;或者,通过调节螺栓对测试刀具进行高低调节;下面将对上述两种对测试刀具进行高低调节的方法进行详细说明,具体的:
作为一种实现方法,电阻率检测方法可应用于电阻率检测设备,当通过调节气缸对测试刀具进行高低调节时,电阻率检测设备中测试刀具的高低调节结构可如图5所示,图5为本申请实施例提供的一种测试刀具升降结构的结构示意图,具体的,电流电极4设置于升降台3下表面,升降台3下表面升降设置有调节台8;升降台3上表面固定有调节气缸9,调节气缸9的活塞杆端部贯穿升降台3且与下方调节台8的上表面固接;测试刀具5固定设置于调节台8下表面。
作为另一种实现方法,电阻率检测方法可应用于电阻率检测设备,当通过调节螺栓对测试刀具进行高低调节时,电阻率检测设备中测试刀具的高低调节结构可如图6所示,图6为本申请实施例提供的另一种测试刀具升降结构的截面示意图,具体的,电流电极4设置于升降台3下表面,升降台3下表面升降设置有调节台8,并且,升降台3下表面固定有调节滑道10,调节台8可在调节滑道10内上下滑移;调节滑道10内设置有复位弹簧11,复位弹簧11的一端与升降台3固接,复位弹簧11的另一端与调节台8固接,升降台3贯穿设置有调节螺栓12,调节螺栓12贯穿升降台3且与升降台3螺纹配合,调节螺栓12带有螺纹的一端与调节台8抵接,测试刀具5设置于调节台8下表面。
进一步说明,在移动前的初始状态下,电流电极在竖直方向的最低点低于测试刀具在竖直方向的最低点。
进一步说明,电流电极和测试刀具的顶端可采用电阻值较低的电阻材料,从 而实现减小电流电极和测试刀具与待测材料的接触电阻,保证待测材料电阻率的准确性,其中,电阻值较低的电阻材料可包括:金属银或者含银材料。
根据本申请的电阻率检测方法,通过整体调节装置实现让电流电极与待测材料抵接,保证了能够让电流电机顺利将测试电流施加给待测材料,保证了后续待测材料的电阻检测顺利进行,通过单独调节装置,实现对于测试刀具的升降调节,保证了在将测试电流施加于待测材料之后,测试刀具能够对待测材料进行电阻检测,保证了后续待测材料的电阻率的顺利确定。
需要说明的是,可根据压力传感器,辅助控制电流电机将测试电流施加于待测材料,可选地,如图7所示,图7为本申请实施例提供的一种向待测材料施加测试电流的方法流程图,具体的,向待测材料施加测试电流可以包括以下步骤:
步骤701,若检测到电流电极和测试刀具与待测材料抵接,则通过压力传感器,对待测材料进行压力检测。
在本申请的一种实施例中,为保证压力传感器能够准确测量当电流电极和测试刀具与待测材料抵接时,待测材料所承受的压力,可将压力传感器设置于电流电极和测试刀具的正下方或者正上方,从而防止待测材料承受到的压力在传导到压力传感器之前被分力,保证了压力传感器能够准确测量待测材料所承受的压力。
进一步说明,压力传感器的安装位置可设置于待测材料的下方,并且压力传感器处于电流电极和测试刀具的正下方,从而保证压力传感器在不影响待测材料进行电阻检测的前提下,对待测材料进行压力检测。
步骤702,若压力检测的结果小于预先设定的压力阈值,则通过电流电极,将测试电流施加于待测材料。
需要说明的是,压力阈值表示在不影响对待测材料电阻检测准确率的前提下,电流电极和测试刀具能够施加给待测材料的最大压力;若压力检测的结果小于预先设定的压力阈值,则电流电极和测试刀具施加给待测材料的压力小于最大压力,则表示不会对待测材料电阻检测准确率造成影响;若压力检测的结果大于或者等于预先设定的压力阈值,则电流电极和测试刀具施加给待测材料的压力大于或者等于最大压力,则表示会对待测材料电阻检测准确率造成影响。
在本申请的一种实施例中,不同待测材料对应的压力阈值不同,当需要确定待测材料的压力阈值时,可通过给待测材料施加一个不断增大的压力,向待测材料输入稳定不变的电流并实时监测待测材料内电流的变化,若随着压力的不断增加,待测材料内电流始终恒定,则表示还未达到能够施加给待测材料的最大压力;若随着压力的不断增加,当压力达到某一数值时,待测材料内的电流发生了 改变,则该数值下的压力为能够施加给待测材料的最大压力,该最大压力即为压力阈值。
根据本申请的电阻率检测方法,通过压力传感器,实现对于待测材料的压力检测,防止由于电流电极和测试刀具对待测材料施加的压力过大从而导致待测材料的压力检测准确性受到影响;并且,当需要对待测材料多次进行电阻检测时,可通过压力传感器,保证电流电极和测试刀具在每次电阻检测对待测材料施加的压力均相同,进一步提高了电阻检测的准确性。
需要说明的是,可根据待测材料的材料属性,确定待测材料的测试电流,可选地,如图8所示,图8为本申请实施例提供的一种测试电流确定的方法流程图,具体的,确定测试电流可以包括以下步骤:
步骤801,根据待测材料的材料属性,确定待测材料的有效电流区间。
其中,材料属性指的是能够反应待测材料的材料特性的相关信息,根据材料属性和已知材料相关信息,可以确定出待测材料对应的有效电流区间;进一步说明,有效电流区间,指的是不会对待测材料造成损坏的电流值范围区间,若施加给待测材料的测试电流不属于有效电流区间,则可能会导致待测材料发生损坏,从而影响后续对待测材料进行电阻检测的准确性。
步骤802,根据有效电流区间,确定待测材料的测试电流。
具体的,当确定待测材料有效电流区间后,判断输出测试电流的供电设备的输出电流范围与待测材料承受的有效电流区间是否存在重合范围,若存在重合范围,则从重合范围内选取测试电流,若不存在重合范围,则更换供电设备,选择输出电流范围能够与待测材料有效电流区间重合的供电设备。
根据本申请的电阻率检测方法,通过待测材料的材料属性,确定有效电流区间,保证了后续对待测材料进行电阻检测的准确性,防止对待测材料造成破坏,进一步调高了电阻率确定的准确性。
需要说明的是,当待测材料需要在变温状态下确定电阻率时,可根据控温箱,将待测材料所处的环境温度调整到测试温度。在根据电流电极,将测试电流施加于待测材料;然后,通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
作为一种示例,控温箱的温度调节介质为二甲基硅油。
根据本申请的电阻率检测方法,通过设置控温箱实现了对于待测材料所处的环境温度的调整,实现了让待测材料在变温状态下进行电阻检测,保证了能够将环境温度准确调整到测试温度,提高了待测材料在变温状态下电阻检测的准确性。
在本申请的一种实施例中,如图9所示,图9为本申请实施例提供的另一种电阻率检测方法的流程图,当需要确定对待测材料进行电阻率检测时:
步骤901,根据待测材料的材料属性,确定待测材料的有效电流区间。
步骤902,根据有效电流区间,确定待测材料的测试电流。
步骤903,通过控温箱,将待测材料所处的环境温度调整到测试温度。
步骤904,通过整体调节装置,控制电流电极和测试刀具整体向待测材料移动,直至电流电极与待测材料抵接。
步骤905,通过单独调节装置,控制测试刀具向待测材料移动,直至测试刀具与待测材料抵接。
步骤906,若检测到电流电极和测试刀具与待测材料抵接,则通过压力传感器,对待测材料进行压力检测。
步骤907,若压力检测的结果小于预先设定的压力阈值,则通过电流电极,将测试电流施加于待测材料。
步骤908,通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
在本申请的一种实施例中,当对两种不同待测材料进行电阻率检测时,其中,两种待检测材料分别为待检测材料A和待检测材料B。通过传统方法和本申请的电阻率检测方法分别对待检测材料A和待检测材料B在23℃和90℃时进行电阻率检测,得到的结果如下表所示。

从表中可知,采用本申请电阻率检测方法检测待检测材料的电阻率时,待检测材料A在23℃时电阻率标准差从2.71减小为0.71,90℃时电阻率的标准差从40.72降低为9.71;待检测材料B在23℃时电阻率的标准差从2.05减小为0.25,90℃时电阻率的标准差从17.61降低为8.68,因此根据上述数据,可充分说明通过本申请电阻率检测方法测定的电阻数据稳定,提高了测试准确性。
根据本申请的电阻率检测方法,通过确定测试电流,保证了后续对待测材料的电阻检测能够顺利进行,防止由于测试电流与待测材料不适配而导致电阻检测的结果不准确;通过控制电流电机与测试刀具和待测材料抵接,保证了能够让电流电机向待测材料施加测试电流,并且,保证了能够让测试刀具对施加有测试电流的待测材料进行电阻检测,保证了后续能够顺利确定待测材料的电阻率;通过电流电极和测试刀具,实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的构思,本申请实施例还提供了一种用于实现上述所涉及的电阻率检测方法的电阻率检测装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个电阻率检测装置实施例中的具体限定可以参见上文中对于电阻率检测方法的限定,在此不再赘述。
在一个实施例中,如图10所示,图10为本申请实施例提供的第一种电阻率检测装置的结构框图,提供了一种电阻率检测装置,包括:确定模块100、控制模块200、施加模块300和测试模块400其中:
确定模块100用于确定待测材料的测试电流。
控制模块200用于分别控制电流电极和测试刀具与待测材料抵接。
施加模块300用于通过电流电极,将测试电流施加于待测材料。
测试模块400用于通过测试刀具,对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
需要说明的是,当需要在变温状态对待测材料进行电阻检测时,可根据控温箱,将待测材料所处的环境温度调整到测试温度。其中,控温箱的温度调节介质为二甲基硅油。
根据本申请的电阻率检测装置,通过确定测试电流,保证了后续对待测材料的电阻检测能够顺利进行,防止由于测试电流与待测材料不适配而导致电阻检测的结果不准确;通过控制电流电机与测试刀具和待测材料抵接,保证了能够让电流电机向待测材料施加测试电流,并且,保证了能够让测试刀具对施加有测试电流的待测材料进行电阻检测,保证了后续能够顺利确定待测材料的电阻率;通过电流电极和测试刀具,实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。
在一个实施例中,如图11所示,图11为本申请实施例提供的第二种电阻率检测装置的结构框图,提供了一种电阻率检测装置,该电阻率检测装置中控制模块200包括:第一控制单元210和第二控制单元220,其中:
第一控制单元210,用于通过整体调节装置,控制电流电极和测试刀具整体向待测材料移动,直至电流电极与待测材料抵接。
第二控制单元220,用于通过单独调节装置,控制测试刀具向待测材料移动,直至测试刀具与待测材料抵接。
其中,在移动前的初始状态下,电流电极在竖直方向的最低点低于测试刀具在竖直方向的最低点。
根据本申请的电阻率检测装置,通过整体调节装饰实现让电流电极与待测材料抵接,保证了能够让电流电机顺利将测试电流施加给待测材料,保证了后续待测材料的电阻检测顺利进行,通过单独调节装置,实现对于测试刀具的升降调节,保证了在将测试电流施加于待测材料之后,测试刀具能够对待测材料进行电阻检测,保证了后续待测材料的电阻率的顺利确定。
在一个实施例中,如图12所示,图12为本申请实施例提供的第三种电阻率检测装置的结构框图,提供了一种电阻率检测装置,该电阻率检测装置中施加模块300包括:检测单元310和施加单元320,其中:
检测单元310,用于通过压力传感器,若检测到电流电极和测试刀具与待测材料抵接,则对待测材料进行压力检测。
施加单元320,用于若压力检测的结果小于预先设定的压力阈值,则通过电流电极,将测试电流施加于待测材料。
根据本申请的电阻率检测装置,通过压力传感器,实现对于待测材料的压力检测,防止由于电流电极和测试刀具对待测材料施加的压力过大从而导致待测 材料的压力检测准确性受到影响;并且,当需要对待测材料多次进行电阻检测时,可通过压力传感器,保证电流电极和测试刀具每次电阻检测对待测材料施加的压力均相同,进一步提高了电阻检测的准确性。
在一个实施例中,如图13所示,图13为本申请实施例提供的第四种电阻率检测装置的结构框图,提供了一种电阻率检测装置,该电阻率检测装置中确定模块100包括:第一确定单元110和第二确定单元120,其中:
第一确定单元110,用于根据待测材料的材料属性,确定待测材料的有效电流区间。
第二确定单元120,用于根据有效电流区间,确定待测材料的测试电流。
根据本申请的电阻率检测装置,通过待测材料的材料属性,确定有效电流区间,保证了后续对待测材料进行电阻检测的准确性,防止对待测材料造成破坏,进一步调高了电阻率确定的准确性。
上述电阻率检测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种电阻率检测设备,该电阻率检测设备包括:
凹形底座,凹形底座用于承载待测材料;
电流电极,电流电极用于将测试电流施加于待测材料;
测试刀具,测试刀具用于对施加有测试电流的待测材料进行电阻检测;
控制器,控制器分别与电流电极和测试刀具连接,用于确定待测材料的测试电流,控制电流电极和测试刀具与待测材料抵接,控制电流电极将测试电流施加于待测材料,控制测试刀具对施加有测试电流的待测材料进行电阻检测,并根据测试结果,确定待测材料的电阻率。
需要说明的是,如图14所示,图14为本申请实施例提供的一种电阻率检测设备的结构示意图,电阻率检测设备包括升降支架2,升降支架2内升降设置有升降台3,升降支架2顶部固定有升降气缸6,升降气缸6的活塞杆端部贯穿升降支架2与下方的升降台3固接,升降台3远离升降气缸6的一侧面设置有电流电机4与测试刀具5;电流电机4和测试刀具5下方设置有凹形底座13。凹形底座13可位于待测材料15的下表面两侧,并且,凹形底座13与待测材料15接触的侧面开设有承载凹槽14,承载凹槽14用于对待测材料15进行承载和限位,放待测材料15放置于承载凹槽14内时,防止待测材料15在进行电阻检 测时发生偏移,从而影响电阻检测的结果准确性。进一步说明,通过将凹形底座设置于待测材料的下表面两侧,减少待测材料与凹形底座的接触面积,从而防止待测底座对待测材料的电阻检测造成干扰和影响。
在本申请的一种实施例中,当需要同时对多个待测材料进行电阻检测时,电阻率检测设备可包含多个凹形底座;如图15所示,图15为本申请实施例提供的一种三个凹形底座的电阻率检测设备的结构示意图,当需要同时对三个待测材料进行电阻检测时,电阻率检测设备可包含三个凹形底座13,在三个凹形底座13上方设置分别设置有对应的升降支架2。
根据本申请的电阻率检测设备,通过确定测试电流,保证了后续对待测材料的电阻检测能够顺利进行,防止由于测试电流与待测材料不适配而导致电阻检测的结果不准确;通过控制电流电机与测试刀具和待测材料抵接,保证了能够让电流电机向待测材料施加测试电流,并且,保证了能够让测试刀具对施加有测试电流的待测材料进行电阻检测,保证了后续能够顺利确定待测材料的电阻率;通过电流电极和测试刀具,实现了对待测材料进行电阻检测,保证了电阻检测的准确性,提高了确定的电阻率的准确性,减少确定电阻率过程中的误差。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实 施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (10)

  1. 一种电阻率检测方法,包括:
    确定待测材料的测试电流;
    控制电流电极和测试刀具与所述待测材料抵接;
    通过所述电流电极,将所述测试电流施加于所述待测材料;
    通过所述测试刀具,对施加有所述测试电流的所述待测材料进行电阻检测,并根据测试结果,确定所述待测材料的电阻率。
  2. 根据权利要求1所述的方法,其中,所述控制电流电极和测试刀具与所述待测材料抵接,包括:
    通过整体调节装置,控制所述电流电极和所述测试刀具整体向所述待测材料移动,直至所述电流电极与所述待测材料抵接;
    通过单独调节装置,控制所述测试刀具向所述待测材料移动,直至所述测试刀具与所述待测材料抵接;
    其中,在移动前的初始状态下,所述电流电极在竖直方向的最低点低于所述测试刀具在竖直方向的最低点。
  3. 根据权利要求1所述的方法,其中,所述通过所述电流电极,将所述测试电流施加于所述待测材料,包括:
    若检测到所述电流电极和所述测试刀具与所述待测材料抵接,则通过压力传感器,对所述待测材料进行压力检测;
    若压力检测的结果小于预先设定的压力阈值,则通过所述电流电极,将所述测试电流施加于所述待测材料。
  4. 根据权利要求1所述的方法,其中,所述确定待测材料的测试电流,包括:
    根据所述待测材料的材料属性,确定所述待测材料的有效电流区间;
    根据有效电流区间,确定所述待测材料的所述测试电流。
  5. 根据权利要求1所述的方法,还包括:
    通过控温箱,将所述待测材料所处的环境温度调整到测试温度。
  6. 根据权利要求5所述的方法,其中,所述控温箱的温度调节介质为二甲基硅油。
  7. 一种电阻率检测装置,包括:
    确定模块,用于确定待测材料的测试电流;
    控制模块,用于分别控制电流电极和测试刀具与所述待测材料抵接;
    施加模块,用于通过所述电流电极,将所述测试电流施加于所述待测材料;
    测试模块,用于通过所述测试刀具,对施加有所述测试电流的所述待测材料进行电阻检测,并根据测试结果,确定所述待测材料的电阻率。
  8. 一种电阻率检测设备,包括:
    凹形底座,所述凹形底座用于承载待测材料;
    电流电极,所述电流电极用于将测试电流施加于所述待测材料;
    测试刀具,所述测试刀具用于对施加有所述测试电流的所述待测材料进行电阻检测;
    控制器,所述控制器分别与所述电流电极和所述测试刀具连接,用于确定所述待测材料的测试电流,控制所述电流电极和所述测试刀具与所述待测材料抵接,控制所述电流电极将所述测试电流施加于所述待测材料,控制所述测试刀具对施加有所述测试电流的所述待测材料进行电阻检测,并根据测试结果,确定所述待测材料的电阻率。
  9. 根据权利要求8所述的设备,还包括:
    控温箱,所述控温箱用于将所述待测材料所处的环境温度调整到测试温度。
  10. 根据权利要求8所述的设备,还包括:
    压力传感器,所述压力传感器用于在所述电流电极和所述测试刀具与所述待测材料抵接之后,对所述待测材料进行压力检测。
PCT/CN2023/131720 2022-11-24 2023-11-15 电阻率检测方法、装置及设备 WO2024109603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211481278.6 2022-11-24
CN202211481278.6A CN115856021A (zh) 2022-11-24 2022-11-24 电阻率检测方法、装置、设备、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024109603A1 true WO2024109603A1 (zh) 2024-05-30

Family

ID=85665798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131720 WO2024109603A1 (zh) 2022-11-24 2023-11-15 电阻率检测方法、装置及设备

Country Status (2)

Country Link
CN (1) CN115856021A (zh)
WO (1) WO2024109603A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856021A (zh) * 2022-11-24 2023-03-28 广东电网有限责任公司东莞供电局 电阻率检测方法、装置、设备、计算机设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656940A (en) * 1994-01-28 1997-08-12 Commissariat A L'energie Atomique Apparatus for measuring the surface resistance and electrical resistivity of a homogeneous resistive material at high temperature
CN1851485A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 一种高温电阻率的测试装置及其测试方法
CN101692111A (zh) * 2009-10-13 2010-04-07 中国科学院上海光学精密机械研究所 二氧化锡电极电阻率的测试装置及测试方法
CN202758002U (zh) * 2012-08-17 2013-02-27 中国科学院宁波材料技术与工程研究所 一种电阻率测试装置
CN211348428U (zh) * 2019-12-27 2020-08-25 苏州福田金属有限公司 电阻率测试治具
CN115201574A (zh) * 2022-07-29 2022-10-18 湃瑞电子科技(苏州)有限公司 电阻检测及传感器制备方法、装置、电子设备及存储介质
CN115856021A (zh) * 2022-11-24 2023-03-28 广东电网有限责任公司东莞供电局 电阻率检测方法、装置、设备、计算机设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656940A (en) * 1994-01-28 1997-08-12 Commissariat A L'energie Atomique Apparatus for measuring the surface resistance and electrical resistivity of a homogeneous resistive material at high temperature
CN1851485A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 一种高温电阻率的测试装置及其测试方法
CN101692111A (zh) * 2009-10-13 2010-04-07 中国科学院上海光学精密机械研究所 二氧化锡电极电阻率的测试装置及测试方法
CN202758002U (zh) * 2012-08-17 2013-02-27 中国科学院宁波材料技术与工程研究所 一种电阻率测试装置
CN211348428U (zh) * 2019-12-27 2020-08-25 苏州福田金属有限公司 电阻率测试治具
CN115201574A (zh) * 2022-07-29 2022-10-18 湃瑞电子科技(苏州)有限公司 电阻检测及传感器制备方法、装置、电子设备及存储介质
CN115856021A (zh) * 2022-11-24 2023-03-28 广东电网有限责任公司东莞供电局 电阻率检测方法、装置、设备、计算机设备及存储介质

Also Published As

Publication number Publication date
CN115856021A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024109603A1 (zh) 电阻率检测方法、装置及设备
Krückemeier et al. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells
CN105719691A (zh) 阻变存储器的操作方法及阻变存储器装置
US9314878B2 (en) Non-destructive aluminum weld quality estimator
CN1305028C (zh) 用于测试具有tmr元件的磁头的方法和设备
JPH11186351A (ja) 絶縁膜評価方法および装置ならびにプロセス評価方法
KR20190105041A (ko) 4개의 프로브 저항 측정에 관한 위치 보정을 위한 위치 보정 방법 및 시스템
US20160041125A1 (en) Method of Analyzing at Least Two Inhibitors Simultaneously in a Plating Bath
US20130320959A1 (en) Power Device Analyzer
CN110568325B (zh) 可调速驱动设备的电压暂降耐受能力检测方法、装置
Van Beek et al. Impact of self-heating on reliability predictions in STT-MRAM
KR102677517B1 (ko) 반도체 장치 테스트 방법
CN106030319A (zh) 用于检测电流的电流探测装置和方法
JP2010210510A (ja) 絶縁検査装置及び絶縁検査方法
TWI704346B (zh) 智慧濃度測量系統、方法及智慧濃度分析模組
US9261532B1 (en) Conductive atomic force microscope and method of operating the same
KR100459812B1 (ko) 커패시터의 양부 판정 방법
JPH0114538B2 (zh)
US20110084716A1 (en) Diagnostic method for oil-filled electrical device, diagnostic device for implementing the diagnostic method, and oil-filled electrical device provided with the diagnostic device
KR102161466B1 (ko) 산화물 반도체 박막 검사장치
TWI642954B (zh) 用於電性測試在電遷移測試結構中的電遷移的系統和方法
JP2010232547A (ja) 太陽電池の導通部探査方法、その導通部探査プログラム、その導通部探査装置、太陽電池の導通部除去方法、その導通部除去プログラム、その導通部除去装置及び太陽電池の製造方法
JP5463540B2 (ja) 4探針抵抗率測定装置及び4探針抵抗率測定方法
JP3859357B2 (ja) 絶縁膜評価方法
JP2007519830A (ja) Ecmpシステム