WO2024104484A1 - 分液器及具有其的换热器组件 - Google Patents

分液器及具有其的换热器组件 Download PDF

Info

Publication number
WO2024104484A1
WO2024104484A1 PCT/CN2023/132478 CN2023132478W WO2024104484A1 WO 2024104484 A1 WO2024104484 A1 WO 2024104484A1 CN 2023132478 W CN2023132478 W CN 2023132478W WO 2024104484 A1 WO2024104484 A1 WO 2024104484A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
inlet
liquid separation
liquid
section
Prior art date
Application number
PCT/CN2023/132478
Other languages
English (en)
French (fr)
Inventor
王文杰
郎壮
杨洋
陈佳杨
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2024104484A1 publication Critical patent/WO2024104484A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00

Definitions

  • the present application relates to the technical field of air conditioning systems, and in particular to a liquid distributor and a heat exchanger assembly having the same.
  • a liquid separator is usually connected to the liquid inlet end of the heat exchanger.
  • the effect of the liquid separator on fluid mixing and flow separation directly affects the working efficiency of the heat exchanger.
  • the main purpose of the present application is to provide a liquid distributor and a heat exchanger assembly having the same, so as to solve the problems of insufficient fluid mixing and poor distribution effect in the prior art.
  • a liquid separator comprising: a cylinder body, the cylinder body having an inlet end, an outflow end and a connecting cavity connected to both the inflow end and the outflow end; a distribution structure, installed in the connecting cavity; wherein the distribution structure comprises an inlet plate and a diverter plate arranged at intervals, a liquid separation cavity is provided between the inlet plate and the diverter plate, an inlet port is provided on the inlet plate, the diverter plate is provided on a side of the inlet plate away from the inflow end, the diverter plate is provided at the outflow end, a liquid separation outlet is provided on the diverter plate, and both the inlet port and the liquid separation outlet are connected to the liquid separation cavity.
  • the distribution structure comprises an inlet plate and a diverter plate arranged at intervals, a liquid separation cavity is provided between the inlet plate and the diverter plate, an inlet port is provided on the inlet plate, the diverter plate is provided on a side of the inlet plate away from the inflow end, the diverter plate is
  • the inlet plate, the diverter plate and the inner wall of the cylinder enclose the liquid component cavity; or, the distribution structure also includes a connecting plate, which is located between the inlet plate and the diverter plate, and the inlet plate, the diverter plate and the connecting plate enclose the liquid component cavity.
  • the inlet is a circular hole
  • the inlet plate is a circular plate
  • the center of the inlet coincides with the center of the inlet plate
  • the inlet is a first flanged opening, the flange of the first flanged opening extends in the direction from the inlet to the liquid separation outlet, and the flange of the first flanged opening is arranged on the side of the inlet plate close to the diverter plate; and/or, the liquid separation outlet is a second flanged opening, the flange of the second flanged opening extends in the direction from the inlet to the liquid separation outlet, and the flange of the second flanged opening is arranged on the side of the diverter plate away from the inlet plate.
  • the distance between the inlet plate and the diverter plate is L1
  • the flange length of the first flange opening is L2, wherein 1/5 ⁇ L2/L1 ⁇ 1/3.
  • the radius of the inlet is R1
  • the radius of the liquid separation outlet is R2, wherein 1/4 ⁇ R2/R1 ⁇ 1/2
  • the radial spacing between the inlet and the liquid separation outlet is d, wherein 1/2 ⁇ d/R1 ⁇ 2/3.
  • the liquid distributor also includes: a filter screen installed in the connecting cavity, and the filter screen is arranged between the inflow end and the distribution structure.
  • the filter net includes an interconnected mounting section and a filtering section, the mounting section is mounted in the connecting cavity, the shape of the mounting section is adapted to the shape of the inner wall of the cylinder, and the mounting section fits the inner wall of the cylinder; along the extension direction from the mounting section to the filtering section, the filtering section of the filtering section gradually decreases; the cylinder has a limiting protrusion, the limiting protrusion is formed by the side wall of the cylinder being recessed into the connecting cavity, and the limiting protrusion abuts against the filtering section for limiting.
  • the barrel includes a flaring section and a liquid separation section which are connected to each other, wherein the end of the flaring section away from the liquid separation section forms an inflow end, and the end of the liquid separation section away from the flaring section forms an outflow end; wherein the installation section and the distribution structure are both installed at the liquid separation section.
  • a heat exchanger assembly comprising: a heat exchanger; and the liquid separator provided above, wherein the liquid separator is connected to the heat exchanger.
  • a connecting cavity is provided in the cylinder body, a distribution structure is provided in the connecting cavity, an inlet plate and a diverter plate are arranged at intervals in the distribution structure to form a liquid separation cavity, an inlet port is provided on the inlet plate, and a liquid separation outlet is provided on the diverter plate.
  • FIG1 shows a schematic structural diagram of a liquid dispenser provided according to Embodiment 1 of the present application.
  • FIG2 is a schematic diagram showing the dimensions of a liquid dispenser structure provided according to the first embodiment of the present application.
  • the first embodiment of the present application provides a liquid separator, which includes: a cylinder 10, a distribution structure 20 and a filter 30.
  • the cylinder 10 has an inflow end 11, an outflow end 12 and a connecting cavity 13 connected to both the inflow end 11 and the outflow end 12.
  • the distribution structure 20 is installed in the connecting cavity 13.
  • the distribution structure 20 in this embodiment includes an inflow plate 21 and a diverter plate 22, the shapes of the inflow plate 21 and the diverter plate 22 are respectively adapted to the inner wall shape of the cylinder 10, the inflow plate 21 is provided with an inlet 211, the diverter plate 22 is arranged at intervals with the inflow plate 21, the diverter plate 22 is arranged on the side of the inflow plate 21 away from the filter 30, the diverter plate 22 is arranged at the outflow end 12, the diverter plate 22 is provided with a liquid separation outlet 221, and a liquid separation cavity 23 is provided between the inflow plate 21 and the diverter plate 22, and the inflow port 211 and the liquid separation outlet 221 are both connected to the liquid separation cavity 23.
  • a connecting cavity 13 is provided in the liquid separator, a distribution structure 20 is provided in the connecting cavity 13, an inlet plate 21 and a diverter plate 22 are arranged at intervals in the distribution structure 20 to form a liquid separation cavity 23, and an inlet port 211 is provided on the inlet plate 21, and a liquid separation outlet 221 is provided on the diverter plate 22.
  • the liquid separator provided in this embodiment can solve the problems of insufficient fluid mixing and poor distribution effect in the prior art.
  • the liquid separation chamber 23 can be surrounded by the inlet plate 21, the diverter plate 22 and the inner wall of the cylinder 10 to ensure that the fluid can be fully mixed when entering the liquid separation chamber 23, and the separated liquid flows out at the liquid separation outlet 221 after mixing.
  • a connecting plate 24 may be provided between the inlet plate 21 and the diverter plate 22, and the connecting plate 24 is an annular plate structure, and the inlet plate 21 and the diverter plate 22 are respectively installed at both ends of the connecting plate 24.
  • the outer wall shape of the connecting plate 24 is adapted to the inner wall shape of the cylinder 10, so that the connecting plate 24 is installed in the cylinder 10.
  • the inlet plate 21 and the diverter plate 22 can constitute a liquid separation chamber 23 for fluid mixing, and the liquid separation chamber 23 is preferably a circular chamber with a flange hole.
  • the liquid separation chamber 23 is arranged after the filter screen 30 and before the outflow end 12, so that the clean fluid can be diverted to avoid damage to the radiator due to the impact of impurities.
  • the connecting cavity 13 can also be a rectangular cavity or other cavity with a symmetrical center. It should be pointed out here that the connecting plate 24 and the inlet plate 21 and the diverter plate 22 can be a split structure, or the connecting plate 24 and the inlet plate 21 are an integrally formed structure, or the connecting plate 24 and the diverter plate 22 are an integrally formed structure.
  • the inlet 211 is a circular hole
  • the inlet plate 21 is a circular plate
  • the center of the inlet 211 coincides with the center of the inlet plate 21 (the "center coincidence" here allows the center of the inlet 211 and the center of the inlet plate 21 to be within a certain error range).
  • liquid separation outlets 221 which are defined as two or more than two.
  • the inlet 211 is set at the center of the inlet plate 21, and can be set concentrically with the inlet plate 21 (the concentric circle setting here includes the concentric circle setting within the tolerance range, and the "concentric circle setting" can be understood as the center of the inlet 211 coincides with the center of the inlet plate 21).
  • Multiple liquid separation outlets 221 are set around the symmetry axis of the inlet 211 in space, and multiple liquid separation outlets 221 are set at equal intervals along the circumferential direction.
  • the inlet 211 is a first flanged opening, and the flange of the first flanged opening extends from the inlet 211 to the liquid separation outlet 221.
  • the flange of the first flanged opening is arranged on a side of the inlet plate 21 close to the flow dividing plate 22, or the flange is located in the liquid separation cavity 23.
  • a guide channel can be provided for the fluid through the flange of the first flanged opening, which can facilitate the diversion of the fluid to the preset position.
  • the multiple liquid separation outlets 221 are symmetrically arranged with respect to the symmetry center of the inlet 211, so that the flange of the first flanged opening guides the fluid to the plate surface of the diverter plate 22 between the multiple liquid separation outlets 221 and collides with them. After the collision, the fluid rebounds back into the liquid separation chamber 23 and can collide and rebound with the plate surface of the inlet plate 21 again. In this way, the fluid undergoes multiple collisions and rebounds, thereby facilitating better improvement of the mixing uniformity of the liquid separation chamber 23, so as to better achieve uniform liquid separation of the fluid.
  • the flange of the first flanged opening is equivalent to providing an acceleration channel, increasing the flow rate of the fluid entering the liquid separation chamber 23, so as to better improve the collision and rebound of the fluid and improve the mixing uniformity.
  • the liquid separation outlet 221 is a second flanged opening
  • the flange of the second flanged opening extends from the inlet 211 to the liquid separation outlet 221
  • the flange of the second flanged opening is arranged on the side of the diverter plate 22 away from the inlet plate 21.
  • the first flange structure of the inlet 211 can also be symmetrically arranged in multiple positions along the symmetry center according to specific needs.
  • the radius of the liquid separation outlet 221 is smaller than the radius of the inlet 211. Such an arrangement can increase the flow rate of the fluid at the liquid separation outlet 221, thereby improving the heat exchange efficiency in the heat exchanger.
  • the distance between the inlet plate 21 and the diverter plate 22 is L1
  • the flange length of the first flange is L2
  • the radius of the inlet 211 is R1
  • the radius of the liquid separation outlet 221 is R2
  • the radial distance between the inlet 211 and the liquid separation outlet 221 is d.
  • Such a setting can ensure that the fluid has sufficient space to flow out, and avoid the situation where the distance between the flange of the first flange and the diverter plate 22 is too close, so that the fluid flowing out of the first flange mouth collides with the diverter plate 22 and rebounds into the first flange mouth, or avoid the situation where the distance between the flange of the first flange mouth and the diverter plate 22 is too far, so that the fluid cannot collide and rebound multiple times, so that the fluid can be fully mixed in the liquid separation chamber 23.
  • the radial spacing between the inlet 211 and the liquid separation outlet 221 may refer to the spacing between the symmetry axis of the inlet 211 and the symmetry axis of the liquid separation outlet 221, and the liquid separation outlet 221 is arranged around the inlet 211.
  • an inlet pipe 41 is installed at the inflow end 11
  • a liquid separation pipe 42 is installed at the liquid separation outlet 221 .
  • the liquid distributor in this embodiment further includes a filter 30, which is installed in the connecting cavity 13 and is arranged between the inflow end 11 and the distribution structure 20 along the axial direction of the cylinder 10.
  • a filter 30 can filter the fluid flowing into the distribution structure 20, so that the liquid distributor and the filter do not need to be separately arranged in the air conditioning system, and the two are integrated into one, which can compress the installation space as much as possible and reduce the occupied space.
  • the filter screen 30 includes a mounting section 31 and a filtering section 32 which are connected to each other.
  • the shape of the mounting section 31 is adapted to the shape of the inner wall of the cylinder 10 forming the connecting cavity 13 and is in contact with the inner wall of the cylinder 10.
  • the diameter of the filtering section of the filtering section 32 is gradually reduced along the extending direction from the mounting section 31 to the filtering section 32.
  • the barrel 10 has a limiting protrusion 14, and along the axial direction of the barrel 10, the limiting protrusion 14 is located on the side of the mounting section 31 away from the inflow end 11, and the limiting protrusion 14 is abutted and limited with the filter section 32.
  • the setting of the limiting protrusion 14 helps the barrel 10 to abut against the filter screen 30, and limits the filter screen 30 along the direction from the inflow end 11 to the outflow end 12. Such a setting can prevent the filter screen 30 from moving during operation, and enhance the reliability and stability of the liquid dispenser assembly.
  • the limiting protrusion 14 is formed by being recessed from the side wall of the cylinder 10 to the communicating cavity 13 along the radial direction of the cylinder 10.
  • the barrel 10 further comprises a flaring section 15 and a liquid separation section 16 connected to each other, an inflow end 11 is formed at one end of the flaring section 15 away from the liquid separation section 16, and an outflow end 12 is formed at one end of the liquid separation section 16 away from the flaring section 15.
  • the mounting section 31 of the filter 30 is mounted at the liquid separation section 16.
  • the mounting section 31 of the filter 30 is located between the limiting protrusion 14 and the flaring section 15, the mounting section 31 can abut against the flaring section 15, and the filter 30 is limited in the direction from the outflow end 12 to the inflow end 11, that is, the filter 30 can be axially limited by the limiting protrusion 14 and the flaring section 15. In this way, as other embodiments, a clearance fit between the mounting section 31 and the inner wall of the barrel 10 can also be set.
  • the fluid pressure in the liquid separation section 16 is lower than the fluid pressure in the expansion section 15, thereby reducing the fluid impact force on the filter screen 30. It is also convenient to set up a filter screen 30 with a sufficient area for sufficient filtration, thereby improving the filtration effect.
  • a heat exchanger assembly is provided in Example 2 of the present application, including: a heat exchanger and the liquid separator provided in Example 1, the liquid separator is connected to the heat exchanger, so that liquid separation and filtration can be completed before the fluid enters the heat exchanger.
  • the fluid can also be accelerated before entering the heat exchanger, thereby improving the heat exchange efficiency of the heat exchanger.
  • spatially relative terms such as “above”, “above”, “on the upper surface of”, “above”, etc. may be used here to describe the spatial positional relationship between a device or feature and other devices or features as shown in the figure. It should be understood that spatially relative terms are intended to include different orientations of the device in use or operation in addition to the orientation described in the figure. For example, if the device in the accompanying drawings is inverted, the device described as “above other devices or structures” or “above other devices or structures” will be positioned as “below other devices or structures” or “below other devices or structures”. Thus, the exemplary term “above” can include both “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or in other orientations), and the spatially relative descriptions used here are interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一种分液器及具有其的换热器组件,分液器包括:筒体(10),筒体(10)具有流入端(11)、流出端(12)以及与流入端(11)和流出端(12)均连通的连通腔(13);分配结构(20),安装在连通腔(13)内;其中,分配结构(20)包括间隔布置的进流板(21)和分流板(22),进流板(21)和分流板(22)之间具有分液腔(23),进流板(21)上设置有进流口(211),分流板(22)设置在进流板(21)远离流入端(11)的一侧,分流板(22)设置在流出端(12)处,分流板(22)上设置有分液出口(221),进流口(211)和分液出口(221)均与分液腔(23)连通。该分液器能够解决现有技术中流体混合不充分、分配效果差的问题。

Description

分液器及具有其的换热器组件
本申请要求于2022年11月18日提交至中国国家知识产权局、申请号为202211447368.3、申请名称为“分液器及具有其的换热器组件”的专利申请的优先权。
技术领域
本申请涉及空调系统技术领域,具体而言,涉及一种分液器及具有其的换热器组件。
背景技术
目前,在现有的空调系统中,通常会在换热器进液端连有分液器,分液器对流体混合与分流的效果直接影响了换热器的工作效率。
然而,在现有的分液器技术中往往存在流体混合不充分、分配效果差的问题。
发明内容
本申请的主要目的在于提供一种分液器及具有其的换热器组件,以解决现有技术中流体混合不充分、分配效果差的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种分液器,包括:筒体,筒体具有流入端、流出端以及与流入端和流出端均连通的连通腔;分配结构,安装在连通腔内;其中,分配结构包括间隔布置的进流板和分流板,进流板和分流板之间具有分液腔,进流板上设置有进流口,分流板设置在进流板远离流入端的一侧,分流板设置在流出端处,分流板上设置有分液出口,进流口和分液出口均与分液腔连通。
进一步地,进流板、分流板以及筒体的内壁围成分液腔;或者,分配结构还包括连接板,连接板位于进流板和分流板之间,进流板、分流板以及连接板围成分液腔。
进一步地,进流口为圆孔,进流板为圆板,进流口的圆心与进流板的圆心重合;分液出口为多个,多个分液出口在空间上环绕进流口的对称轴设置,多个分液出口沿圆周方向等间隔设置。
进一步地,进流口为第一翻边口,第一翻边口的翻边沿进流口至分液出口的方向延伸,第一翻边口的翻边设置在进流板靠近分流板的一侧;和/或,分液出口为第二翻边口,第二翻边口的翻边沿进流口至分液出口的方向延伸,第二翻边口的翻边设置在分流板远离进流板的一侧。
进一步地,进流板和分流板之间的间距为L1,第一翻边口的翻边长度为L2,其中,1/5≤L2/L1≤1/3。
进一步地,进流口的半径为R1,分液出口的半径为R2,其中1/4≤R2/R1≤1/2;和/或,进流口与分液出口之间的径向间距为d,其中1/2≤d/R1≤2/3。
进一步地,分液器还包括:过滤网,安装在连通腔内,过滤网设置在流入端与分配结构之间。
进一步地,过滤网包括相互连接的安装段和过滤段,安装段安装在连通腔内,安装段的形状与筒体的内壁形状相适配,安装段与筒体的内壁贴合;沿安装段至过滤段的延伸方向,过滤段的过滤截面逐渐减小;筒体具有限位凸起,限位凸起为筒体的侧壁向连通腔内凹陷形成,限位凸起与过滤段抵接限位。
进一步地,筒体包括相互连接的扩口段和分液段,扩口段远离分液段的一端形成流入端,分液段远离扩口段的一端形成流出端;其中,安装段和分配结构均安装在分液段处。
根据本申请的另一方面,提供了一种换热器组件,包括:换热器;上述提供的分液器,分液器与换热器连接。
应用本申请的技术方案,通过在筒体内设置连通腔,在连通腔内设置分配结构,在分配结构中沿间隔布置进流板和分流板以形成分液腔,并在进流板上设置进流口,分流板上设置分液出口,流体进入连通腔后将经进流口进入分液腔内进行充分混合后从分液出口分液流出,增强流体分配与混合的效果。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的实施例一提供的分液器结构示意图;
图2示出了根据本申请的实施例一提供的分液器结构的尺寸示意图。
其中,上述附图包括以下附图标记:
10、筒体;11、流入端;12、流出端;13、连通腔;14、限位凸起;15、扩口段;16、分
液段;
20、分配结构;21、进流板;211、进流口;22、分流板;221、分液出口;23、分液腔;
24、连接板;
30、过滤网;31、安装段;32、过滤段;
41、进口管;42、分液管。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1和图2所示,本申请的实施例一提供了一种分液器,分液器包括:筒体10、分配结构20和过滤网30。筒体10具有流入端11、流出端12以及与流入端11和流出端12均连通的连通腔13。分配结构20安装在连通腔13内。本实施例中的分配结构20包括进流板21与分流板22,进流板21与分流板22的形状分别与筒体10的内壁形状相适配,进流板21上设置有进流口211,分流板22与进流板21间隔设置,分流板22设置在进流板21远离过滤网30的一侧,分流板22设置在流出端12处,分流板22上设置有分液出口221,进流板21和分流板22之间具有分液腔23,进流口211和分液出口221均与分液腔23连通。
采用这样的设置,通过在分液器中设置连通腔13,在连通腔13内设置分配结构20,在分配结构20中沿间隔布置进流板21和分流板22以形成分液腔23,并在进流板21上设置进流口211,分流板22上设置分液出口221,流体进入连通腔13后将经进流口211进入分液腔23内进行充分混合后从分液出口221分液流出,增强流体分配与混合的效果。因此,采用本实施例提供的分液器,能够解决现有技术中流体混合不充分、分配效果差的问题。
具体地,在本实施例中,可以通过进流板21、分流板22及筒体10的内壁围成分液腔23,以保证流体进入分液腔23内可以得到充分混合,并在混合后分液出口221处分液流出。
或者,作为其他实施例,可以在进流板21和分流板22之间设置有连接板24,连接板24为环形板状结构,进流板21和分流板22分别安装在连接板24的两端。连接板24的外壁形状与筒体10的内壁形状相适配,以使连接板24安装在筒体10内。采用这样的结构设置,能够便于使得分配结构20为单独的结构,便于进行拆装和调整,保证了分配结构20的分液腔23的密封效果,便于通过分液腔23进行混合,并在混合后经分液出口221有效进行分液。具体地,进流板21与分流板22可以构成用于流体混合的分液腔23,分液腔23优选为具有翻边孔的圆形腔。分液腔23设置在过滤网30之后,流出端12之前,这样可以确保对干净的流体进行分流,避免因杂质冲击而损坏散热器。此外,根据不同的需求与空调器设置,连通腔13还可以为矩形腔或其他具有对称中心的腔体。这里需要指出的是:连接板24与进流板21、分流板22可以为分体结构,或者连接板24与进流板21为一体成型结构,或者连接板24与分流板22为一体成型结构。
在本实施例中,进流口211为圆孔,进流板21为圆板,进流口211的圆心与进流板21的圆心重合(这里的“圆心重合”可以允许进流口211的圆心与进流板21的圆心在一定的误差范围内)。分液出口221为多个,多个分液出口221在空间上环绕进流口211的对称轴设置,多个分液出口221沿圆周方向等间隔设置。
具体地,分液出口221为多个,定义多个为两个或两个以上,进流口211设置在进流板21的中心,并可以与进流板21同心圆设置(这里的同心圆设置包括在公差允许范围内的同心圆设置,“同心圆设置”可以理解为进流口211的圆心与进流板21的圆心重合),多个分液出口221在空间上环绕进流口211的对称轴设置,多个分液出口221沿圆周方向等间距设置。采 用这样的设置,可以保证经进流口211的流体可以均匀通过分液出口221流向流出端12,实现流体的匀均分液,加强流体的流动性能,从而可以加强空调系统的工作效率。
在本实施例中,进流口211为第一翻边口,第一翻边口的翻边沿进流口211至分液出口221的方向延伸,第一翻边口的翻边设置在进流板21靠近分流板22的一侧,或者说翻边位于分液腔23内。采用这样的设置,可以通过第一翻边口的翻边为流体提供了一个导向通道,能够便于对流体进行导流,以将流体导向至预设位置处。
具体地,当分液出口221为多个时,多个分液出口221以进流口211的对称中心对称布置,这样,第一翻边口的翻边将流体导向至分流板22的位于多个分液出口221之间的板面处并进行碰撞,流体经碰撞后再次反弹回到分液腔23内,并能够再次与进流板21的板面撞击回弹,这样流体经过多次碰撞和回弹,从而便于更好地提高分液腔23的混合均匀性,以便于更好地实现流体的均匀分液。此外,第一翻边口的翻边也相当于提供了一个加速通道,增加了进入分液腔23的流体的流速,以便于更好地提高流体的撞击和回弹,提高混合均匀性。
具体地,分液出口221为第二翻边口,第二翻边口的翻边沿进流口211至分液出口221的方向延伸,第二翻边口的翻边设置在分流板22远离进流板21的一侧。采用这样的结构设置,还能够便于第二翻边口与待连接管件进行连接,方便安装。
具体地,进流口211的第一翻边口结构也可以根据具体需求沿对称中心对称设置为多个。分液出口221的半径小于进流口211的半径,这样的设置可以在分液出口221处增加流体的流速,从而可以提升换热器内的换热效率。
如图2所示,在本实施例中,进流板21和分流板22之间的间距为L1,第一翻边口的翻边长度为L2,进流口211的半径为R1,分液出口221的半径为R2,进流口211与分液出口221之间的径向间距为d。
具体地,上述各数值之间的关系如下:
1/5≤L2/L1≤1/3,这样的设置可以保证流体有充足的空间流出,避免因第一翻边口的翻边与分流板22的距离过近,而使得第一翻边口内流出的流体在与分流板22撞击反弹至第一翻边口内的情况,或者避免因第一翻边口的翻边与分流板22的距离过远,使得流体无法进行多次撞击和回弹,使得流体能够在分液腔23内充分进行混合。
1/4≤R2/R1≤1/2,这样的设置可以使得流体经第一翻边口再进入第二翻边孔使得到进一步加速,更进一步提升系统整体工作效率。
1/2≤d/R1≤2/3,需要说明的是,进流口211与分液出口221之间的径向间距可以指进流口211的对称轴与分液出口221的对称轴之间的间距,分液出口221环绕进流口211设置。通过将进流口211与分液出口221之间的径向间距设置在上述距离比值范围内,能够保证使得经进流口211流出的液体能够撞击至分流板22上并反弹至分液腔23内,从而便于流体在分液腔23内进行充分混合,提高混合均匀性。
在本实施例中,在流入端11处安装有进口管41,在分液出口221处安装有分液管42。
具体地,本实施例中的分液器还包括过滤网30,过滤网30安装在连通腔13内,且沿筒体10的轴向设置在流入端11与分配结构20之间。采用这样的设置,通过在分液器中设置具有流入端11、流出端12以及连通腔13的筒体10,并在连通腔内设置分配结构20及过滤网30,能够使得过滤网30对流入至分配结构20的流体进行过滤,这样,在空调系统中就可以无需再分别单独设置分液器与过滤器,将二者集成于一体,能够尽可能压缩安装空间,减小占用空间。
在本实施例中,过滤网30包括相互连接的安装段31和过滤段32。安装段31的形状与形成连通腔13的筒体10的内壁形状相适配并与筒体10的内壁贴合。同时,过滤段32的过滤截面的直径沿安装段31至过滤段32的延伸方向逐渐减小。采用这样的结构设置,通过安装段31可以便于过滤网30与筒体10配合与安装,同时过滤网30的过滤段32形成漏斗状的结构,可以有效增加过滤面积,增强过滤效果。
在本实施例中,筒体10具有限位凸起14,沿筒体10的轴向,限位凸起14位于安装段31远离流入端11的一侧,限位凸起14与过滤段32抵接限位。限位凸起14的设置有助于筒体10与过滤网30进行抵接,对过滤网30沿从流入端11至流出端12的方向进行限位,这样的设置可以避免过滤网30在工作过程中移动,增强分液器组件的可靠性与稳定性。
在本实施例中,限位凸起14为沿筒体10的径向自筒体10的侧壁向连通腔13内凹陷形成。采用这样的设置,可以无需再单独设置限位结构,仅需在筒体10上加工形成即可,降低了安装难度,节省了制造成本,同时因限位凸起14与筒体10为一体结构,可以避免因单独设置限位结构带来的稳定性降低的隐患。
在本实施例中,筒体10还包括相互连接的扩口段15和分液段16,在扩口段15远离分液段16的一端形成了流入端11,在分液段16远离扩口段15的一端形成了流出端12。过滤网30的安装段31安装在分液段16处。沿筒体10轴向从流入端11至流出端12的方向,扩口段15的截面直径逐渐增大,过滤网30的安装段31位于限位凸起14和扩口段15之间,安装段31能够与扩口段15抵接,对过滤网30从流出端12到流入端11的方向进行限位,即过滤网30可以通过限位凸起14和扩口段15进行轴向限位。这样,作为其他实施方式,还可以设置安装段31与筒体10的内壁之间间隙配合。另外,采用这样的设置,分液段16内的流体压力小于扩口段15内的流体压力,从而降低了过滤网30受到的流体冲击力大小,同时也便于设置充足面积的过滤网30以进行充分过滤,提高过滤效果。
本申请的实施例二中提供了一种换热器组件,包括:换热器和实施例一中提供的分液器,分液器与换热器连接,以此可以在流体进入换热器之前完成分液与过滤,同时因为翻边孔结构的存在,在进入换热器前也可以对流体进行加速,提升换热器的换热效率。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图 包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种分液器,其特征在于,包括:
    简体(10),所述简体(10)具有流入端(11)、流出端(12)以及与所述流入端(11)和所述流出端(12)均连通的连通腔(13);
    分配结构(20),安装在所述连通腔(13)内;
    其中,所述分配结构(20)包括间隔布置的进流板(21)和分流板(22),所述进流板(21)和所述分流板(22)之间具有分液腔(23),所述进流板(21)上设置有进流口(211),所述分流板(22)设置在所述进流板(21)远离所述流入端(11)的一侧,所述分流板(22)设置在所述流出端(12)处,所述分流板(22)上设置有分液出口(221),所述进流口(211)和所述分液出口(221)均与所述分液腔(23)连通。
  2. 根据权利要求1所述的分液器,其特征在于,所述进流板(21)、所述分流板(22)以及所述简体(10)的内壁围成所述分液腔(23);
    或者,所述分配结构(20)还包括连接板(24),所述连接板(24)位于所述进流板(21)和所述分流板(22)之间,所述进流板(21)、所述分流板(22)以及所述连接板(24)围成所述分液腔(23)。
  3. 根据权利要求2所述的分液器,其特征在于,所述进流口(211)为圆孔,所述进流板(21)为圆板,所述进流口(211)的圆心与所述进流板(21)的圆心重合;
    所述分液出口(221)为多个,多个所述分液出口(221)在空间上环绕所述进流口(211)的对称轴设置,多个所述分液出口(221)沿圆周方向等间隔设置。
  4. 根据权利要求3所述的分液器,其特征在于,
    所述进流口(211)为第一翻边口,所述第一翻边口的翻边沿所述进流口(211)至所述分液出口(221)的方向延伸,所述第一翻边口的翻边设置在所述进流板(21)靠近所述分流板(22)的一侧;和/或,
    所述分液出口(221)为第二翻边口,所述第二翻边口的翻边沿所述进流口(211)至所述分液出口(221)的方向延伸,所述第二翻边口的翻边设置在所述分流板(22)远离所述进流板(21)的一侧。
  5. 根据权利要求4所述的分液器,其特征在于,所述进流板(21)和所述分流板(22)之间的间距为L1,所述第一翻边口的翻边长度为L2,其中,1/5≤L2/L1≤1/3。
  6. 根据权利要求3或4所述的分液器,其特征在于,
    所述进流口(211)的半径为R1,所述分液出口(221)的半径为R2,其中1/4≤R2/R1≤1/2;和/或,
    所述进流口(211)与所述分液出口(221)之间的径向间距为d,其中1/2≤d/R1≤ 2/3。
  7. 根据权利要求1所述的分液器,其特征在于,所述分液器还包括:
    过滤网(30),安装在所述连通腔(13)内,所述过滤网(30)设置在所述流入端(11)与所述分配结构(20)之间。
  8. 根据权利要求7所述的分液器,其特征在于,所述过滤网(30)包括相互连接的安装段(31)和过滤段(32),所述安装段(31)安装在连通腔(13)内,所述安装段的形状与所述简体(10)的内壁形状相适配,所述安装段(31)与所述简体(10)的内壁贴合;沿所述安装段(31)至所述过滤段(32)的延伸方向,所述过滤段(32)的过滤截面逐渐减小;
    所述简体(10)具有限位凸起(14),所述限位凸起(14)为所述简体(10)的侧壁向所述连通腔(13)内凹陷形成,所述限位凸起(14)与所述过滤段(32)抵接限位。
  9. 根据权利要求8所述的分液器,其特征在于,所述简体(10)包括相互连接的扩口段(15)和分液段(16),所述扩口段(15)远离所述分液段(16)的一端形成所述流入端(11),所述分液段(16)远离所述扩口段(15)的一端形成所述流出端(12);
    其中,所述安装段(31)和所述分配结构(20)均安装在所述分液段(16)处。
  10. 一种换热器组件,其特征在于,包括:
    换热器;
    权利要求1至9中任一项所述的分液器,所述分液器与所述换热器连接。
PCT/CN2023/132478 2022-11-18 2023-11-18 分液器及具有其的换热器组件 WO2024104484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211447368.3A CN118057098A (zh) 2022-11-18 2022-11-18 分液器及具有其的换热器组件
CN202211447368.3 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024104484A1 true WO2024104484A1 (zh) 2024-05-23

Family

ID=91068761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132478 WO2024104484A1 (zh) 2022-11-18 2023-11-18 分液器及具有其的换热器组件

Country Status (2)

Country Link
CN (1) CN118057098A (zh)
WO (1) WO2024104484A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340649A (ja) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp 冷媒分配器及び熱交換器
WO2016133649A1 (en) * 2015-02-20 2016-08-25 Parker-Hannifin Corporation Flow distributor
CN106537067A (zh) * 2014-07-04 2017-03-22 三菱电机株式会社 制冷剂分配器和具有该制冷剂分配器的热泵装置
CN207146998U (zh) * 2017-07-20 2018-03-27 广东美的暖通设备有限公司 分配器组件和空调器
CN208075387U (zh) * 2018-03-27 2018-11-09 广东恒基金属制品实业有限公司 一种过滤节流分流的管路件
CN215597833U (zh) * 2021-07-09 2022-01-21 青岛海尔空调器有限总公司 一种分液器及空调器
CN215809502U (zh) * 2020-11-09 2022-02-11 珠海格力电器股份有限公司 分流器以及空调
CN218600052U (zh) * 2022-11-18 2023-03-10 浙江盾安禾田金属有限公司 分液器及具有其的换热器组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340649A (ja) * 1992-06-10 1993-12-21 Mitsubishi Electric Corp 冷媒分配器及び熱交換器
CN106537067A (zh) * 2014-07-04 2017-03-22 三菱电机株式会社 制冷剂分配器和具有该制冷剂分配器的热泵装置
WO2016133649A1 (en) * 2015-02-20 2016-08-25 Parker-Hannifin Corporation Flow distributor
CN207146998U (zh) * 2017-07-20 2018-03-27 广东美的暖通设备有限公司 分配器组件和空调器
CN208075387U (zh) * 2018-03-27 2018-11-09 广东恒基金属制品实业有限公司 一种过滤节流分流的管路件
CN215809502U (zh) * 2020-11-09 2022-02-11 珠海格力电器股份有限公司 分流器以及空调
CN215597833U (zh) * 2021-07-09 2022-01-21 青岛海尔空调器有限总公司 一种分液器及空调器
CN218600052U (zh) * 2022-11-18 2023-03-10 浙江盾安禾田金属有限公司 分液器及具有其的换热器组件

Also Published As

Publication number Publication date
CN118057098A (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
CN108551762B (zh) 空调器
WO2020211582A1 (zh) 空调器的分液器
CN207146998U (zh) 分配器组件和空调器
EP2813787B1 (en) Air conditioner
CN103411463A (zh) 制冷剂分配部件、集流管组件和换热器
JP2011169496A (ja) 冷媒分配器
CN218600052U (zh) 分液器及具有其的换热器组件
WO2024104484A1 (zh) 分液器及具有其的换热器组件
CN102997505B (zh) 单流程干式蒸发器
WO2021203926A1 (zh) 阀体组件及具有其的组合阀
CN214307717U (zh) 分配器及空调设备
CN211782111U (zh) 管式分流器及空调器
CN107003047B (zh) 分配器以及制冷循环装置
CN211854540U (zh) 导流式分配器
WO2023185916A1 (zh) 阀芯及单向阀
CN106524793B (zh) 一种换热器
CN114517993A (zh) 卧式管壳式换热器及换热机组
JP2013050221A (ja) 冷媒分配器およびそれを用いたヒートポンプ機器
CN212842339U (zh) 分流器及具有其的空调器
CN209877422U (zh) 空调器的分液器
CN219346856U (zh) 分液结构及具有其的换热组件
JP2746681B2 (ja) 冷媒分流器
CN207487189U (zh) 一种空调分液器
CN214620813U (zh) 分配器
CN111692783A (zh) 分流器及具有其的空调器