WO2024103662A1 - 一种电子器件老化测试装置 - Google Patents

一种电子器件老化测试装置 Download PDF

Info

Publication number
WO2024103662A1
WO2024103662A1 PCT/CN2023/095288 CN2023095288W WO2024103662A1 WO 2024103662 A1 WO2024103662 A1 WO 2024103662A1 CN 2023095288 W CN2023095288 W CN 2023095288W WO 2024103662 A1 WO2024103662 A1 WO 2024103662A1
Authority
WO
WIPO (PCT)
Prior art keywords
baffle
circulating
air
air duct
test
Prior art date
Application number
PCT/CN2023/095288
Other languages
English (en)
French (fr)
Inventor
刘冬喜
Original Assignee
海拓仪器(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海拓仪器(江苏)有限公司 filed Critical 海拓仪器(江苏)有限公司
Publication of WO2024103662A1 publication Critical patent/WO2024103662A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Definitions

  • the invention relates to an electronic device aging test device, which is applicable to the technical field of electronic device aging test.
  • test devices also set the fresh air inlet and exhaust outlet in the circulating air duct.
  • the airflow in the box cannot be discharged smoothly from the box, and the heat dissipation effect is poor.
  • the addition of external devices will cause turbulence in the airflow in the box, destroying the stable test environment.
  • adding external devices to assist in heat dissipation will increase energy consumption, thereby increasing the cost of testing.
  • an electronic device aging test device including a box body, a test cabin arranged in the box body and having at least one group of air inlets and return air outlets, a test circuit unit arranged in the test cabin for connecting the electronic device to be tested, an electric control box adjacent to the test cabin and connected to the test circuit unit to provide power, a circulating air duct arranged at the periphery of the test cabin and connected to the air inlet and the return air outlet at both ends, a circulating fan arranged in the circulating air duct, and a heating device arranged in the circulating air duct.
  • the circulating fan drives the airflow from the circulating air duct through the air inlet, the test cabin, and the return air outlet in sequence and then returns to the circulating air duct to realize air circulation in the box body. Not only can the environment in the test cabin meet the test requirements through the circulating air with heat, but the product can also be cooled by the circulating air to prevent the formation of accumulated temperature around the product, and at the same time ensure that the test temperature at various locations in the box body is uniform.
  • a fresh air inlet for external air to enter the circulating air duct and an exhaust outlet for exhausting the gas in the circulating air duct to the outside are provided on the wall of the circulating air duct.
  • the exhaust outlet is arranged downstream of the return air outlet along the airflow direction, and the fresh air inlet is arranged upstream of the circulating fan along the airflow direction, and the setting position of the fresh air inlet is between the exhaust outlet and the circulating fan.
  • the setting position here refers to the relative position along the airflow direction when the baffle device is in the first working state (to be described below), and does not specifically refer to the relative position in the structure.
  • a baffle device is arranged between the fresh air inlet and the exhaust outlet, which is used to open or cover the fresh air inlet and the exhaust outlet and to open or block the circulating air duct between the exhaust outlet and the fresh air inlet.
  • the baffle device has at least two working states. When it is in the first working state, the fresh air inlet and the exhaust outlet are blocked, and the circulating air duct is opened. At this time, the test device is in a normal testing process, and the circulating fan drives the air flow in the box to circulate in the test chamber and the circulating air duct to ensure that the test temperature in the box is uniform; when the baffle device is in the second working state, the fresh air inlet and the exhaust outlet are opened, and the circulating air duct is blocked. At this time, the test device is in a heat dissipation process.
  • the outside fresh air will enter the circulating air duct from the fresh air inlet under the drive of the circulating fan, and enter the test chamber from the circulating air duct through the air inlet, and enter the circulating air duct again from the return air inlet corresponding to the air inlet, ensuring that the fresh air can evenly take away the heat accumulated around the product in the test chamber, and the airflow that enters the circulating air duct again will flow along the circulating air duct to the exhaust outlet.
  • the present invention arranges the exhaust port, the baffle device, and the fresh air port in sequence between the return air port of the test chamber and the circulating fan, and switches the working state through the baffle device, so that when the aging test device is in normal testing, the circulating air can circulate normally to ensure the uniform temperature in the test chamber; when dissipating heat, the fresh air from the outside can smoothly enter the circulating air duct under the suction of the circulating fan, and dissipate heat along the flow path of the original circulating air in the box, and can be smoothly discharged to the outside, which can not only quickly take away the heat in the box, but also ensure that the temperature between each product is uniform and consistent, thereby improving the accuracy of the test result; at the same time, the fresh air is driven by the original circulating fan of the test device, which can not only avoid the external equipment from disturbing the original
  • the baffle device also has at least one third working state between the first working state and the second working state.
  • the baffle device When the baffle device is in the third working state, the fresh air inlet and the exhaust outlet are partially blocked, and the circulating air duct is partially opened.
  • the test device is in an adjustable heat dissipation state. Since the fresh air inlet is partially blocked, a small amount of external fresh air will be sucked into the circulating air duct by the circulating fan. At this time, the circulating air duct is partially opened, and some of the airflow that has participated in the circulation in the box will continue to circulate.
  • the external fresh air flows into the circulating air duct, it will be mixed with the original circulating air in the circulating air duct and enter the test cabin driven by the circulating fan to dissipate heat for the electronic devices. Since the exhaust outlet is also partially blocked, the airflow that enters the circulating air duct from the test cabin again will be diverted when it flows to the exhaust outlet. Part of it is discharged from the box through the exhaust port to complete the heat dissipation, and the other part will flow through the gap opened by the baffle device and mix with the subsequent fresh air to re-circulate.
  • the opening of the fresh air inlet and the exhaust outlet are synchronous and the same, that is, they increase or decrease at the same time, while the opening of the circulating air duct is synchronous and opposite to the former two, that is, when the opening of the fresh air inlet and the exhaust outlet increases, the opening of the circulating air duct decreases accordingly, and when the opening of the fresh air inlet and the exhaust outlet decreases, the opening of the circulating air duct increases accordingly.
  • the air volume of the intake and exhaust air and the diversion ratio of the airflow at the exhaust port can be adjusted, so as to flexibly adjust the exhaust intensity according to the actual heating situation of the product under test, and improve the flexibility and versatility of the test device.
  • the baffle device includes a rotating shaft connected to the inner wall of the circulating air duct and rotatable along an air flow direction perpendicular to its setting position, a first baffle fixedly connected to one side of the rotating shaft and used for opening or blocking the fresh air outlet, a second baffle fixedly connected to the other side of the rotating shaft and used for opening or blocking the circulating air duct, a third baffle fixedly set on the side of the second baffle close to the inner wall of the circulating air duct and perpendicular to the second baffle and used for opening or blocking the exhaust air outlet, and a driving component connected to the rotating shaft and used to drive the rotating shaft to rotate.
  • the first baffle When the baffle device is in the first working state, the first baffle completely blocks the fresh air outlet, the second baffle completely opens the circulating air duct, and the third baffle completely blocks the exhaust air outlet; when the baffle device is in the third working state, the first baffle partially blocks the fresh air outlet, the second baffle partially blocks the circulating air duct, and the third baffle partially blocks the exhaust air outlet; when the baffle device is in the second working state, the first baffle completely opens the fresh air outlet, the second baffle completely blocks the circulating air duct, and the third baffle completely opens the exhaust air outlet.
  • the above structure can easily and conveniently realize the linkage adjustment of the opening of the fresh air outlet, the exhaust outlet, and the circulating air duct, which not only simplifies the structure of the test device, but also reduces its production cost. It should be noted that although what is mentioned here is “completely blocked” and “completely opened”, due to the errors in manufacturing, processing, installation, etc., it cannot be limited to theoretically “complete”, that is, “completely blocked” should not be limited to “airtight”, but should be understood as basically airtight, and “completely opened” should not be limited to zero obstruction to airflow, but should be understood as basically no obstruction to airflow.
  • the exhaust port is arranged on a side wall of the circulating air duct perpendicular to the rotating axis, and the fresh air port is arranged on a side wall of the circulating air duct parallel to the rotating axis, so as to facilitate the precise adjustment of the opening of the fresh air port and the exhaust port through the first baffle and the third baffle, especially the exhaust port, because the effect of heat dissipation is very significant if the exhaust is well controlled.
  • the driving assembly includes a rocker arm with one end fixedly connected to the end of the rotating shaft, a starting member slidably connected to the box body in a horizontal direction, and a sliding groove perpendicular to the axial direction of the rotating shaft is provided at the end of the starting member near the rocker arm.
  • a slider is provided at the other end of the rocker arm. The slider is connected in the sliding groove so as to be able to rotate relatively and slide relatively. The rotation angles of the first baffle, the second baffle and the third baffle can be simply and quickly adjusted by sliding the starting member.
  • the test circuit unit includes a number of carrier boards arranged up and down and used to load electronic devices.
  • the number of carrier boards divides the test chamber into a number of test layers.
  • Each test layer is provided with a group of air inlets and return air outlets, which can improve the test efficiency while ensuring that fresh air passes around each product.
  • the air inlet and return air outlet in each test layer are respectively arranged on the two opposite side walls of the test layer to ensure the smooth flow of fresh air and prevent turbulence from causing uneven heat dissipation.
  • guide plates are arranged on the inner wall opposite to the air inlet in the circulating air duct, the number and position of which correspond to the air inlet and are used to guide the airflow to the corresponding air inlet.
  • Each guide plate is inclined from the side connected to the inner wall of the circulating air duct to the side close to the air inlet and from the upstream to the downstream of the airflow direction, so that fresh air can be delivered to each test layer respectively.
  • each guide plate located downstream in the airflow direction is greater than the length of the guide plate located upstream in the airflow direction, ensuring that the air volume passing through each test layer is the same, further ensuring uniform heat dissipation in the box.
  • the heating device is located between the fresh air inlet and the circulating fan, so as to heat the fresh air to a certain extent and adjust its temperature according to the test requirements.
  • the present invention has the following advantages compared with the prior art:
  • the electronic device aging test device of the present invention can cut off the original circulating air in the box and allow the external fresh air to dissipate heat along the flow path of the original circulating air, which can not only quickly take away the heat in the box, but also ensure that the temperature between each product is uniform and consistent, thereby improving the accuracy of the test result; at the same time, the fresh air is driven by the original circulating fan of the test device, which can not only avoid the external equipment from disrupting the flow path of the original circulating air in the box, but also ensure that the fresh air inlet and the exhaust outlet are unobstructed, thereby improving the heat dissipation effect, and further ensuring the stability of the test environment in the box, but also reducing energy consumption and reducing the test cost.
  • FIG1 is a schematic structural diagram of an embodiment of the present invention.
  • FIG2 is a schematic structural diagram of a baffle device in the embodiment shown in FIG1 ;
  • FIG3 is a diagram showing the airflow direction when the baffle device in the embodiment shown in FIG1 is in the first working state
  • FIG4 is a diagram showing the airflow direction when the baffle device in the embodiment shown in FIG1 is in a second working state
  • FIG5 is a diagram showing the airflow direction when the baffle device in the embodiment shown in FIG1 is in a third working state
  • this embodiment provides an electronic device aging test device, including a box body 1, a test chamber 2 arranged in the box body 1 and having at least one group of air inlets 21 and return air outlets 22, a test circuit unit (not shown in the figures) arranged in the test chamber 2 for connecting the electronic device under test, an electric control box (not shown in the figures) adjacent to the test chamber 2 and connected to the test circuit unit to provide power, a circulating air duct 3 arranged at the periphery of the test chamber 2 and connected to the air inlet 21 and the return air outlet 22 at both ends, a circulating fan 4 arranged in the circulating air duct 3, and a heating device 6 arranged in the circulating air duct 3 and used for heating the gas.
  • the circulating fan 4 drives the airflow from the circulating air duct 3 through the air inlet 21, the test chamber 2, and the return air outlet 22 in sequence and then returns to the circulating air duct 3. After the airflow is heated by the heating device 6 in the circulating air duct 3, it is driven by the circulating fan 4 to circulate again, thereby realizing the airflow heating cycle in the box 1. Not only can the environment in the test chamber 2 meet the test requirements through the circulating air with heat, but the circulating air can also dissipate heat for the product to prevent the formation of accumulated temperature around the product, and at the same time ensure that the test temperature at various locations in the box 1 is uniform.
  • a fresh air inlet 31 for external air to enter the circulating air duct 3 and an exhaust outlet 32 for exhausting the gas in the circulating air duct 3 to the outside are provided on the wall of the circulating air duct 3.
  • the exhaust outlet 32 is arranged downstream of the return air outlet 22 along the airflow direction, and the fresh air inlet 31 is arranged upstream of the circulating fan 4 along the airflow direction, and the setting position of the fresh air inlet 31 is between the exhaust outlet 32 and the circulating fan 4.
  • the setting position here refers to the relative position along the airflow direction when the baffle device 5 is in the first working state (to be described below), and does not specifically refer to the relative position in the structure.
  • a baffle device 5 for opening or covering the fresh air inlet 31 and the exhaust outlet 32 and for opening or blocking the circulating air duct 3 located between the exhaust outlet 32 and the fresh air inlet 31 is provided between the fresh air inlet 31 and the exhaust outlet 32.
  • the baffle device 5 has at least two working states. When it is in the first working state, as shown in FIG. 3, the fresh air inlet 31 and the exhaust outlet 32 are blocked, and the circulating air duct 3 is opened. At this time, the test device is in a normal test process, and the circulating fan 4 drives the air flow in the box to circulate and heat in the test chamber 2 and the circulating air duct 3, simulating a normal test environment, while ensuring that the test temperature at various locations in the box is uniform; when the baffle device 5 is in the second working state, as shown in FIG. 4, the fresh air inlet 31 and the exhaust outlet 32 are opened, and the circulating air duct 3 is blocked. At this time, the test device is in a heat dissipation process.
  • the circulating air duct 3 between the test chamber 2 is blocked, and the fresh air outlet 31 is arranged upstream of the circulating fan 4.
  • the fresh air from the outside will enter the circulating air duct 3 through the fresh air outlet 31 under the drive of the circulating fan 4, and enter the test chamber 2 from the circulating air duct 3 through the air inlet 21, and enter the circulating air duct 3 again from the return air outlet 22 corresponding to the air inlet 21, to ensure that the fresh air can evenly take away the heat accumulated around the products in the test chamber 2, and the airflow entering the circulating air duct 3 again will flow along the circulating air duct 3 to the exhaust outlet 32.
  • the present invention arranges the exhaust port 32, the baffle device 5, and the fresh air port 31 in sequence between the return air port 22 and the circulating fan 4 of the test chamber 2, and switches the working state through the baffle device 5, so that when the aging test device is in normal testing, the circulating air can circulate normally to ensure the uniform temperature in the test chamber 2; when dissipating heat, the external fresh air can smoothly enter the circulating air duct 3 under the suction of the circulating fan 4, and dissipate heat along the flow path of the original circulating air in the box body 1, and can be smoothly discharged to the outside world, which can not only quickly take away the heat in the box body 1, but also ensure that the temperature between each product is uniform and consistent, thereby improving the accuracy of the test results; at the same time, the original circulating fan 4 of the test device drives the fresh air, which can not only quickly take away the heat in the box body 1, but also ensure that the temperature between each product is uniform and consistent, thereby improving the accuracy of the test results; at the same time, the original circulating fan
  • the baffle device 5 also has at least one third working state between the first working state and the second working state.
  • the baffle device 5 When the baffle device 5 is in the third working state, as shown in Figure 5, the fresh air inlet 31 and the exhaust outlet 32 are partially blocked, and the circulating air duct 3 is partially opened.
  • the test device is in an adjustable heat dissipation state. Since the fresh air inlet 31 is partially blocked, some of the external fresh air will be sucked into the circulating air duct 3 by the circulating fan 4, and at this time, the circulating air duct 3 will be partially opened, and some of the airflow that has participated in the circulation in the box will continue to circulate.
  • the air inlet 31 and the air outlet 32 are connected to the air duct 31 through the air duct 32, and the air inlet 31 is connected to the air duct 31 through the air duct 32.
  • the air duct 31 is connected to the air duct 31 through the air duct 32.
  • the air duct 3 is connected to the air duct 31 through the air duct 32.
  • the baffle device 5 includes a rotating shaft 51 connected to the inner wall of the circulating air duct 3 and rotatable along the air flow direction perpendicular to its setting position, a first baffle 52 fixedly connected to one side of the rotating shaft 51 and used to open or block the fresh air outlet 31, a second baffle 53 fixedly connected to the other side of the rotating shaft 51 and used to open or block the circulating air duct 3, a third baffle 54 fixedly set on the side of the second baffle 53 close to the inner wall of the circulating air duct 3 and perpendicular to the second baffle 53 and used to open or block the exhaust outlet 32, and a driving device connected to the rotating shaft 51 and used to drive the rotating shaft 51 to rotate.
  • Component 55 when the baffle device 5 is in the first working state, the first baffle 52 completely blocks the fresh air outlet 31, the second baffle 53 completely opens the circulating air duct 3, and the third baffle 54 completely blocks the exhaust air outlet 32; when the baffle device 5 is in the third working state, the first baffle 52 partially blocks the fresh air outlet 31, the second baffle 53 partially blocks the circulating air duct 3, and the third baffle 54 partially blocks the exhaust air outlet 32; when the baffle device 5 is in the second working state, the first baffle 52 completely opens the fresh air outlet 31, the second baffle 53 completely blocks the circulating air duct 3, and the third baffle 54 completely opens the exhaust air outlet 32.
  • the exhaust port 32 is arranged on a side wall of the circulating air duct 3 perpendicular to the rotating shaft 51, and the fresh air port 31 is arranged on a side wall of the circulating air duct 3 parallel to the rotating shaft 51, so as to facilitate precise adjustment of the opening of the fresh air port 31 and the exhaust port 32 through the first baffle 52 and the third baffle 54, especially the exhaust port 32, because good control of the exhaust has a significant effect on the heat dissipation.
  • the driving assembly 55 includes a rocker arm 551 with one end fixedly connected to the end of the rotating shaft 51, and a starting member 552 slidably connected to the box body 1 in a horizontal direction.
  • the starting member 552 is provided with a slide groove 553 perpendicular to the axial direction of the rotating shaft 51 at the end near the rocker arm 551, and a slider 554 is provided at the other end of the rocker arm 551.
  • the slider 554 is connected in the slide groove 553 so as to be able to rotate relatively and slide relatively.
  • the rotation angles of the first baffle 52, the second baffle 53, and the third baffle 54 can be simply and quickly adjusted by sliding the starting member 552.
  • the test circuit unit includes a plurality of carrier plates 23 arranged up and down and used to load electronic devices.
  • the plurality of carrier plates 23 divide the test chamber 2 into a plurality of test layers 24.
  • Each test layer 24 is provided with a group of air inlets 21 and return air outlets 22, which can improve the test efficiency while ensuring that fresh air passes around each product.
  • the air inlet 21 and the air return outlet 22 in each test layer 24 are respectively arranged on the two opposite side walls of the test layer 24 to ensure that the fresh air flows smoothly and prevent turbulence that causes uneven heat dissipation.
  • guide plates 33 are provided on the inner wall opposite to the air inlet 21 in the circulating air duct 3, the number and position of which correspond to the air inlet 21 and are used to guide the airflow to the corresponding air inlet 21.
  • Each guide plate 33 is inclined from the side connected to the inner wall of the circulating air duct 3 to the side close to the air inlet 21 and from the upstream to the downstream of the airflow direction, so that fresh air can be delivered to each test layer 24 respectively.
  • each guide plate 33 located downstream in the airflow direction is greater than the length of the guide plate 33 located upstream in the airflow direction, ensuring that the amount of air passing through each test layer 24 is the same, further ensuring uniform heat dissipation in the box 1.
  • the heating device 6 is located between the fresh air inlet 31 and the circulating fan 4, so as to heat the fresh air to a certain extent and adjust its temperature according to the test requirements.
  • the present invention has the following advantages compared with the prior art:
  • the electronic device aging test device of the present invention can cut off the original circulating air in the box and allow the external fresh air to dissipate heat along the flow path of the original circulating air, which can not only quickly take away the heat in the box, but also ensure that the temperature between each product is uniform and consistent, thereby improving the accuracy of the test result; at the same time, the fresh air is driven by the original circulating fan of the test device, which can not only avoid the external equipment from disrupting the flow path of the original circulating air in the box, but also ensure that the fresh air inlet and the exhaust outlet are unobstructed, thereby improving the heat dissipation effect, and further ensuring the stability of the test environment in the box, but also reducing energy consumption and reducing the test cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明涉及一种电子器件老化测试装置,包括箱体、设在箱体内且具有进风口和回风口的试验舱、设在试验舱外围且与进风口和回风口连通的循环风道、循环风机,循环风道壁上设有新风口和排风口,排风口设在回风口下游,新风口设在循环风机上游,新风口位于排风口与循环风机间,新风口和排风口之间设有挡板装置;挡板装置具有至少两种工作状态,当其处于第一状态时,新风口和排风口被遮挡,循环风道打开;当其处于第二状态时,新风口和排风口打开,循环风道被遮挡。本发明可令新风沿原有循环风的流动路径进行散热,不仅可快速散热,还确保产品间温度均匀一致,提高测试结果准确性,同时取消外接设备,确保测试环境稳定,减少能源消耗,降低测试成本。

Description

一种电子器件老化测试装置 技术领域
本发明涉及一种电子器件老化测试装置,适用于电子器件老化测试技术领域。
背景技术
随着5G通信、半导体芯片、航空航天技术等高精尖技术产业的蓬勃发展,被广泛应用于此类行业的精密电子元器件的重要性也日益显现,为了能够把控各类电子器件产品的品质,产品出厂前通常要对其进行老化测试。目前常规的老化测试通常是将产品置于高温环境中,并对产品施加上电压负载,通过高温加速激活产品的失效机制来确定产品的可靠性。但是,由于电子器件加上负载后自身就会散发热量,尤其是半导体芯片等发热量较大的产品,通常都能达到10KW左右的发热量,自身散发的热量在产品周围堆积后就会导致产品实际所处的环境温度与所需的测试温度存在较大误差,并且多个产品之间所处的环境温度也各不相同,进而导致测试结果的准确性降低。
现有的电子器件老化测试装置中通常是通过在试验舱内设置连通外界的新风口和排风口,部分测试装置还会在新风口或排风口外接鼓风或抽风设备,通过外接设备将试验舱内堆积的热量驱散,达到散热降温的目的。然而,此类方案中的新风不管是直接进入试验舱还是直接由试验舱排出,都容易造成舱内靠近新风口或排风口处的产品散热效果好,而其他位置产品的散热效果差,无法解决产品间温度差异大的问题。并且外接设备进行强排,虽然可以快速降温,但同时也会使产品间的温度差异进一步加大,导致舱内温度更加不均匀,无法确保测试结果的准确性。
除上述情况外,也有部分测试装置是将新风口和排风口设置在循环风道中,然而此类方式如果不外接设备辅助散热,箱内气流并不能顺畅地排出箱体,散热效果较差,而增设外接设备则会导致箱内气流紊乱,破坏稳定的测试环境。进一步地,上述几种情况中,增设外接设备进行辅助散热均会增加能源消耗,进而提高测试的成本。
发明内容
为了解决上述现有技术存在的缺陷,本发明提出了一种电子器件老化测试装置。
本发明采用的技术方案是:一种电子器件老化测试装置,包括箱体、设置在箱体内且具有至少一组进风口和回风口的试验舱、设置在试验舱内的用于连接被测电子器件的测试电路单元、与试验舱相邻并连接测试电路单元以提供电源的电控箱、设置在试验舱外围且两端分别与进风口和回风口连通的循环风道、设置在循环风道内的循环风机、设置在循环风道内的加热装置,循环风机驱动气流自循环风道依次经过进风口、试验舱、回风口后回到循环风道,实现箱体内的气流循环,不仅可以通过带有热量的循环风使试验舱内的环境达到测试需求,还可以通过循环风为产品散热,防止产品周围形成积温,同时可以确保箱体内各处的测试温度均匀。循环风道的壁上开设有供外界空气进入循环风道的新风口和用于供循环风道内气体排出至外界的排风口,排风口设置在回风口的沿气流方向的下游,新风口设置在循环风机的沿气流方向的上游,且新风口的设置位置位于排风口和循环风机之间,具体的,这里的设置位置是指当挡板装置处于第一工作状态时(下文将要描述)沿气流方向上的相对位置,并不特指结构上的相对位置,新风口和排风口之间设置有用于打开或遮挡新风口和排风口并用于打开或封堵位于排风口和新风口之间的循环风道的挡板装置。
挡板装置具有至少两种工作状态,当其处于第一工作状态时,新风口和排风口被遮挡,循环风道被打开,此时测试装置处于正常测试过程,循环风机驱动箱内气流在试验舱和循环风道中循环流动,保证箱内测试温度均匀温度;当挡板装置处于第二工作状态时,新风口和排风口被打开,循环风道被遮挡,此时测试装置处于散热过程,由于新风口与排风口之间的循环风道被封堵,且新风口设置于循环风机上游,外界新风会在循环风机的驱动下由新风口进入循环风道,并通过进风口从循环风道中进入试验舱,并从该进风口对应的回风口再次进入循环风道,确保新风可以均匀的带走试验舱内产品周围堆积的热量,而再次进入循环风道的气流会沿循环风道流动至排风口,由于新风口与排风口之间的循环风道被封堵,气体不会继续循环,而是由排风口排出箱体。本发明将排风口、挡板装置、新风口依次设置在试验舱回风口与循环风机之间,并通过挡板装置切换工作状态,使老化测试装置在正常测试时,循环风能够正常循环流动,确保试验舱内温度均匀;在散热时,外界新风可以在循环风机的抽吸下顺利进入循环风道,并沿箱体内原有循环风的流动路径进行散热,且能够顺利排出至外界,不仅可以快速将箱体内的热量带走,还确保了各个产品之间的温度均匀且一致,提高了测试结果的准确性;同时通过测试装置原有的循环风机驱动新风,不仅可以避免外接设备扰乱箱内原有的循环风流动路径,确保新风口与排风口的进排风通畅,提高散热效果,同时进一步保证箱内测试环境稳定,同时也减少了能源消耗,降低了测试成本。
进一步地,挡板装置还具有处于第一工作状态和第二工作状态之间的至少一种第三工作状态,当挡板装置处于第三工作状态时,新风口和排风口被部分遮挡,循环风道被部分打开,此时测试装置处于可调整的散热状态,由于新风口被部分遮挡,所以会有少量外界新风被循环风机抽吸至循环风道中,而此时循环风道被部分打开,箱体内会有部分参与过循环的气流在继续循环,外界新风流入循环风道后会与循环风道内原有的循环风混合,并在循环风机驱动下进入试验舱为电子器件进行散热,而由于排风口也是部分遮挡,由试验舱再次进入循环风道的气流在流至排风口时会出现分流,一部分经由排风口排出箱体,完成散热,另一部分则会流过挡板装置打开的缺口,并与后续进入的新风混合,重新进行循环,在调节挡板装置时,新风口、排风口的开度是同步且相同的,即同时增大或同时减少,而循环风道的开度是与前两者同步且相反的,即新风口和排风口的开度增大时,循环风道的开度随之减小,新风口和排风口的开度减小时,循环风道的开度随之增大,通过挡板装置调节新风口和排风口以及循环风道的开度,就可以调节进风与排风的风量以及气流在排风口处的分流比例,便于根据被测产品实际发热情况灵活调整排风强度,提高测试装置的使用灵活性和通用性。
更进一步地,挡板装置包括沿垂直于其设置位置的气流方向转动连接在循环风道内壁上的转轴、固定连接在转轴一侧并用于打开或遮挡新风口的第一挡板、固定连接在转轴另一侧并用于打开或封堵循环风道的第二挡板、固定设置于第二挡板的贴近循环风道内壁的侧边且垂直于第二挡板并用于打开或遮挡排风口的第三挡板、与转轴相连接并用于驱动转轴转动的驱动组件,当挡板装置处于第一工作状态时,第一挡板完全遮挡新风口,第二挡板完全打开循环风道,第三挡板完全遮挡排风口;当挡板装置处于第三工作状态时,第一挡板部分遮挡新风口,第二挡板部分封堵循环风道,第三挡板部分遮挡排风口;当挡板装置处于第二工作状态时,第一挡板完全打开新风口,第二挡板完全封堵循环风道,第三挡板完全打开排风口。通过上述结构可以简单便捷地实现新风口、排风口、循环风道三者开度的联动调节,不仅简化了测试装置的结构,也降低了其生产成本。需要说明的是,虽然这里所说的是“完全遮挡”和“完全打开”,但是由于制造、加工、安装等所存在的误差,因此这里并不能由此而限定为理论上的“完全”,即,“完全遮挡”不应被限定为“密不透风”,而应理解为基本不透风,“完全打开”不应被限定为对气流零阻碍,而应理解为对气流基本无阻碍。
更进一步地,排风口设置在循环风道的垂直于转轴的一侧壁上,新风口设置在循环风道的平行于转轴的一侧壁上,便于通过第一挡板和第三挡板精准地调节新风口和排风口的开度,尤其是排风口,因为控制好排风,对于散热的效果是十分显著的。
更进一步地,驱动组件包括一端与转轴的端部固定连接的摇臂、沿水平方向滑动连接在箱体上的启动件,启动件靠近摇臂的端部开设有垂直于转轴轴向的滑槽,摇臂的另一端设置有滑块,滑块既能够相对转动又能够相对滑动地连接在滑槽内,可以通过滑动启动件简单快捷地调节第一挡板、第二挡板、第三挡板的转动角度。
进一步地,测试电路单元包括若干上下排布并用于装载电子器件的载板,若干载板将试验舱分隔成若干试验层,每个试验层均设置有一组进风口和回风口,可以在提高测试效率的同时确保每个产品周围均有新风通过。
更进一步地,每个试验层内的进风口和回风口分别设置在试验层相对的两侧壁上,确保新风流向平稳,防止出现紊流而导致散热不均。
更进一步地,循环风道内与进风口相对的内壁上设置有数量、位置均与进风口相对应并用于将气流导向对应进风口的导流板,每个导流板均从其与循环风道的内壁相连接的一侧向靠近进风口的一侧自气流方向的上游向下游倾斜设置,可以将新风分别送入每个试验层。
更进一步地,每个位于气流方向下游的导流板的长度均大于位于气流方向上游的导流板的长度,确保每一试验层内通过的风量相同,进一步保证箱体内散热均匀。
进一步地,加热装置位于新风口和循环风机之间,便于根据测试需求对新风进行一定的加热,调整其温度。
由于上述技术方案运用,本发明相较现有技术具有以下优点:
本发明的电子器件老化测试装置,可以切断箱体内原有的循环风,并令外界新风沿原有循环风的流动路径进行散热,不仅可以快速将箱体内的热量带走,还确保了各个产品之间的温度均匀且一致,提高了测试结果的准确性;同时通过测试装置原有的循环风机驱动新风,不仅可以避免外接设备扰乱箱体内原有循环风的流动路径,确保新风口与排风口的进排风通畅,提高散热效果,同时进一步保证箱内测试环境稳定,同时也减少了能源消耗,降低了测试成本。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的组件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是本发明中一个实施例的结构示意图;
图2是图1所示实施例中挡板装置的结构示意图;
图3是图1所示实施例中挡板装置处于第一工作状态时的气流走向图;
图4是图1所示实施例中挡板装置处于第二工作状态时的气流走向图;
图5是图1所示实施例中挡板装置处于第三工作状态时的气流走向图;
其中,附图标记说明如下:
1、箱体;2、试验舱;21、进风口;22、回风口;23、载板;24、试验层;3、循环风道;31、新风口;32、排风口;33、导流板;4、循环风机;5、挡板装置;51、转轴;52、第一挡板;53、第二挡板;54、第三挡板;55、驱动组件;551、摇臂;552、启动件;553、滑槽;554、滑块;6、加热装置。
实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
参考附图1-5,本实施例提供了一种电子器件老化测试装置,包括箱体1、设置在箱体1内且具有至少一组进风口21和回风口22的试验舱2、设置在试验舱2内的用于连接被测电子器件的测试电路单元(附图中未示出)、与试验舱2相邻并连接测试电路单元以提供电源的电控箱(附图中未示出)、设置在试验舱2外围且两端分别与进风口21和回风口22连通的循环风道3、设置在循环风道3内的循环风机4、设置于循环风道3内并用于为气体加热的加热装置6。如附图3所示,循环风机4驱动气流自循环风道3依次经过进风口21、试验舱2、回风口22后回到循环风道3,气流在循环风道3经加热装置6加热后再次由循环风机4驱动进行循环,实现箱体1内的气流加热循环,不仅可以通过带有热量的循环风使试验舱2内的环境达到测试需求,还可以通过循环风为产品散热,防止产品周围形成积温,同时可以确保箱体1内各处的测试温度均匀。
循环风道3的壁上开设有供外界空气进入循环风道3的新风口31和用于供循环风道3内气体排出至外界的排风口32,排风口32设置在回风口22的沿气流方向的下游,新风口31设置在循环风机4的沿气流方向的上游,且新风口31的设置位置位于排风口32和循环风机4之间,具体的,这里的设置位置是指当挡板装置5处于第一工作状态时(下文将要描述)沿气流方向上的相对位置,并不特指结构上的相对位置,新风口31和排风口32之间设置有用于打开或遮挡新风口31和排风口32并用于打开或封堵位于排风口32和新风口31之间的循环风道3的挡板装置5。
挡板装置5具有至少两种工作状态,当其处于第一工作状态时,如附图3所示,新风口31和排风口32被遮挡,循环风道3被打开,此时测试装置处于正常测试过程,循环风机4驱动箱内气流在试验舱2和循环风道3中循环流动并加热,模拟出正常的测试环境,同时保证箱内各处的测试温度均匀温度;当挡板装置5处于第二工作状态时,如附图4所示,新风口31和排风口32被打开,循环风道3被遮挡,此时测试装置处于散热过程,由于新风口31与排风口32之间的循环风道3被封堵,且新风口31设置于循环风机4上游,外界新风会在循环风机4的驱动下由新风口31进入循环风道3,并通过进风口21从循环风道3中进入试验舱2,并从该进风口21对应的回风口22再次进入循环风道3,确保新风可以均匀的带走试验舱2内产品周围堆积的热量,而再次进入循环风道3的气流会沿循环风道3流动至排风口32,由于新风口31与排风口32之间的循环风道3被封堵,气体不会继续循环,而是由排风口32排出箱体1。本发明将排风口32、挡板装置5、新风口31依次设置在试验舱2的回风口22与循环风机4之间,并通过挡板装置5切换工作状态,使老化测试装置在正常测试时,循环风能够正常循环流动,确保试验舱2内温度均匀;在散热时,外界新风可以在循环风机4的抽吸下顺利进入循环风道3,并沿箱体1内原有循环风的流动路径进行散热,且能够顺利排出至外界,不仅可以快速将箱体1内的热量带走,还确保了各个产品之间的温度均匀且一致,提高了测试结果的准确性;同时通过测试装置原有的循环风机4驱动新风,不仅可以避免外接设备扰乱箱内原有的循环风流动路径,确保新风口31与排风口32的进排风通畅,提高散热效果,同时进一步保证箱内测试环境稳定,同时也减少了能源消耗,降低了测试成本。
在一种更为优选的实施方案中,挡板装置5还具有处于第一工作状态和第二工作状态之间的至少一种第三工作状态,当挡板装置5处于第三工作状态时,如附图5所示,新风口31和排风口32被部分遮挡,循环风道3被部分打开,此时测试装置处于可调整的散热状态,由于新风口31被部分遮挡,所以会有部分外界新风被循环风机4抽吸至循环风道3中,而此时循环风道3被部分打开,箱体内会有部分参与过循环的气流在继续循环,外界新风流入循环风道3后会与循环风道3内原有的循环风混合,并在循环风机4驱动下进入试验舱2为电子器件进行散热,而由于排风口32也是部分遮挡,由试验舱2再次进入循环风道3的气流在流至排风口32时会出现分流,一部分经由排风口32排出箱体1,完成散热,另一部分则会流过挡板装置5打开的缺口,并与后续进入的新风混合,重新进行循环,在调节挡板装置5时,新风口31、排风口32的开度是同步且相同的,即同时增大或同时减少,而循环风道3的开度是与前两者同步且相反的,即新风口31和排风口32的开度增大时,循环风道3的开度随之减小,新风口31和排风口32的开度减小时,循环风道3的开度随之增大,通过挡板装置5调节新风口31和排风口32以及循环风道3的开度,就可以调节进风与排风的风量以及气流在排风口32处的分流比例,便于根据被测产品实际发热情况灵活调整排风强度,提高测试装置的使用灵活性和通用性。
在一种更为优选的实施方案中,挡板装置5包括沿垂直于其设置位置的气流方向转动连接在循环风道3内壁上的转轴51、固定连接在转轴51一侧并用于打开或遮挡新风口31的第一挡板52、固定连接在转轴51另一侧并用于打开或封堵循环风道3的第二挡板53、固定设置于第二挡板53的贴近循环风道3内壁的侧边且垂直于第二挡板53并用于打开或遮挡排风口32的第三挡板54、与转轴51相连接并用于驱动转轴51转动的驱动组件55,当挡板装置5处于第一工作状态时,第一挡板52完全遮挡新风口31,第二挡板53完全打开循环风道3,第三挡板54完全遮挡排风口32;当挡板装置5处于第三工作状态时,第一挡板52部分遮挡新风口31,第二挡板53部分封堵循环风道3,第三挡板54部分遮挡排风口32;当挡板装置5处于第二工作状态时,第一挡板52完全打开新风口31,第二挡板53完全封堵循环风道3,第三挡板54完全打开排风口32。通过上述结构可以简单便捷地实现新风口31、排风口32、循环风道3三者开度的联动调节,不仅简化了测试装置的结构,也降低了其生产成本。需要说明的是,虽然这里所说的是“完全遮挡”和“完全打开”,但是由于制造、加工、安装所存在的误差,因此这里并不能由此而限定为理论上的“完全”,即,“完全遮挡”不应被限定为“密不透风”,而应理解为基本不透风,“完全打开”不应被限定为对气流零阻碍,而应理解为对气流基本无阻碍。
在一种更为优选的实施方案中,排风口32设置在循环风道3的垂直于转轴51的一侧壁上,新风口31设置在循环风道3的平行于转轴51的一侧壁上,便于通过第一挡板52和第三挡板54精准地调节新风口31和排风口32的开度,尤其是排风口32,因为控制好排风,对于散热的效果是十分显著的。
在一种更为优选的实施方案中,驱动组件55包括一端与转轴51的端部固定连接的摇臂551、沿水平方向滑动连接在箱体1上的启动件552,启动件552靠近摇臂551的端部开设有垂直于转轴51轴向的滑槽553,摇臂551的另一端设置有滑块554,滑块554既能够相对转动又能够相对滑动地连接在滑槽553内,可以通过滑动启动件552简单快捷地调节第一挡板52、第二挡板53、第三挡板54的转动角度。
在一种更为优选的实施方案中,测试电路单元包括若干上下排布并用于装载电子器件的载板23,若干载板23将试验舱2分隔成若干试验层24,每个试验层24均设置有一组进风口21和回风口22,可以在提高测试效率的同时确保每个产品周围均有新风通过。
在一种更为优选的实施方案中,每个试验层24内的进风口21和回风口22分别设置在试验层24相对的两侧壁上,确保新风流向平稳,防止出现紊流而导致散热不均。
在一种更为优选的实施方案中,循环风道3内与进风口21相对的内壁上设置有数量、位置均与进风口21相对应并用于将气流导向对应进风口21的导流板33,每个导流板33均从其与循环风道3的内壁相连接的一侧向靠近进风口21的一侧自气流方向的上游向下游倾斜设置,可以将新风分别送入每个试验层24。
在一种更为优选的实施方案中,每个位于气流方向下游的导流板33的长度均大于位于气流方向上游的导流板33的长度,确保每一试验层24内通过的风量相同,进一步保证箱体1内散热均匀。
在一种更为优选的实施方案中,加热装置6位于新风口31和循环风机4之间,便于根据测试需求对新风进行一定的加热,调整其温度。
由于上述技术方案的运用,本发明相较现有技术具有以下优点:
本发明的电子器件老化测试装置,可以切断箱体内原有的循环风,并令外界新风沿原有循环风的流动路径进行散热,不仅可以快速将箱体内的热量带走,还确保了各个产品之间的温度均匀且一致,提高了测试结果的准确性;同时通过测试装置原有的循环风机驱动新风,不仅可以避免外接设备扰乱箱体内原有循环风的流动路径,确保新风口与排风口的进排风通畅,提高散热效果,同时进一步保证箱内测试环境稳定,同时也减少了能源消耗,降低了测试成本。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种电子器件老化测试装置,其特征在于:包括箱体(1)、设置在所述箱体(1)内且具有至少一组进风口(21)和回风口(22)的试验舱(2)、设置在所述试验舱(2)内的用于连接被测电子器件的测试电路单元、与所述试验舱(2)相邻并连接所述测试电路单元以提供电源的电控箱、设置在所述试验舱(2)外围且两端分别与所述进风口(21)和所述回风口(22)连通的循环风道(3)、设置在所述循环风道(3)内的循环风机(4)、设置在所述循环风道(3)内的加热装置(6),所述循环风机(4)驱动气流自所述循环风道(3)依次经过所述进风口(21)、所述试验舱(2)、所述回风口(22)后回到所述循环风道(3),所述循环风道(3)的壁上开设有供外界空气进入所述循环风道(3)的新风口(31)和用于供所述循环风道(3)内气体排出至外界的排风口(32),所述排风口(32)设置在所述回风口(22)的沿气流方向的下游,所述新风口(31)设置在所述循环风机(4)的沿气流方向的上游,且所述新风口(31)的设置位置位于所述排风口(32)和所述循环风机(4)之间,所述新风口(31)和所述排风口(32)之间设置有用于打开或遮挡所述新风口(31)和所述排风口(32)并用于打开或封堵位于所述排风口(32)和所述新风口(31)之间的所述循环风道(3)的挡板装置(5),所述挡板装置(5)包括沿垂直于其设置位置的气流方向转动连接在所述循环风道(3)内壁上的转轴(51)、固定连接在所述转轴(51)一侧并用于打开或遮挡所述新风口(31)的第一挡板(52)、固定连接在所述转轴(51)另一侧并用于打开或封堵所述循环风道(3)的第二挡板(53)、固定设置于所述第二挡板(53)的贴近所述循环风道(3)内壁的侧边且垂直于所述第二挡板(53)并用于打开或遮挡所述排风口(32)的第三挡板(54)、与所述转轴(51)相连接并用于驱动所述转轴(51)转动的驱动组件(55);所述挡板装置(5)具有第一工作状态、第二工作状态、处于所述第一工作状态和所述第二工作状态之间的至少一种第三工作状态,当所述挡板装置(5)处于第一工作状态时,所述第一挡板(52)完全遮挡所述新风口(31),所述第二挡板(53)完全打开所述循环风道(3),所述第三挡板(54)完全遮挡所述排风口(32);当所述挡板装置(5)处于第二工作状态时,所述第一挡板(52)完全打开所述新风口(31),所述第二挡板(53)完全封堵所述循环风道(3),所述第三挡板(54)完全打开所述排风口(32);当所述挡板装置(5)处于第三工作状态时,所述第一挡板(52)部分遮挡所述新风口(31),所述第二挡板(53)部分封堵所述循环风道(3),所述第三挡板(54)部分遮挡所述排风口(32)。
  2. 根据权利要求1所述的电子器件老化测试装置,其特征在于:所述排风口(32)设置在所述循环风道(3)的垂直于所述转轴(51)的一侧壁上,所述新风口(31)设置在所述循环风道(3)的平行于所述转轴(51)的一侧壁上。
  3. 根据权利要求1所述的电子器件老化测试装置,其特征在于:所述驱动组件(55)包括一端与所述转轴(51)的端部固定连接的摇臂(551)、沿水平方向滑动连接在所述箱体(1)上的启动件(552),所述启动件(552)靠近所述摇臂(551)的端部开设有垂直于所述转轴(51)轴向的滑槽(553),所述摇臂(551)的另一端设置有滑块(554),所述滑块(554)既能够相对转动又能够相对滑动地连接在所述滑槽(553)内。
  4. 根据权利要求1所述的电子器件老化测试装置,其特征在于:所述测试电路单元包括若干上下排布并用于装载电子器件的载板(23),若干所述载板(23)将所述试验舱(2)分隔成若干试验层(24),每个所述试验层(24)均设置有一组所述进风口(21)和回风口(22)。
  5. 根据权利要求4所述的电子器件老化测试装置,其特征在于:每个所述试验层(24)内的所述进风口(21)和所述回风口(22)分别设置在所述试验层(24)相对的两侧壁上。
  6. 根据权利要求1所述的电子器件老化测试装置,其特征在于:所述循环风道(3)内与所述进风口(21)相对的内壁上设置有数量、位置均与所述进风口(21)相对应并用于将气流导向对应所述进风口(21)的导流板(33),每个所述导流板(33)均从其与所述循环风道(3)的内壁相连接的一侧向靠近所述进风口(21)的一侧自气流方向的上游向下游倾斜设置。
  7. 根据权利要求6所述的电子器件老化测试装置,其特征在于:每个位于气流方向下游的所述导流板(33)的长度均大于位于气流方向上游的所述导流板(33)的长度。
  8. 根据权利要求1所述的电子器件老化测试装置,其特征在于:所述加热装置(6)位于所述新风口(31)和所述循环风机(4)之间。
PCT/CN2023/095288 2022-11-17 2023-05-19 一种电子器件老化测试装置 WO2024103662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211462361.9A CN115508660B (zh) 2022-11-17 2022-11-17 一种电子器件老化测试装置
CN202211462361.9 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024103662A1 true WO2024103662A1 (zh) 2024-05-23

Family

ID=84513591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095288 WO2024103662A1 (zh) 2022-11-17 2023-05-19 一种电子器件老化测试装置

Country Status (2)

Country Link
CN (1) CN115508660B (zh)
WO (1) WO2024103662A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508660B (zh) * 2022-11-17 2023-03-21 海拓仪器(江苏)有限公司 一种电子器件老化测试装置
CN115913399B (zh) * 2023-02-22 2023-05-26 南京捷希科技有限公司 一种天线基站的老化测试设备
CN117310230B (zh) * 2023-11-27 2024-03-29 南京捷希科技股份有限公司 一种天线基站老化测试箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267818A (ja) * 2007-04-16 2008-11-06 Espec Corp バーンイン試験装置
CN112393354A (zh) * 2020-11-23 2021-02-23 山东大学 内外循环新风系统及其运行方式
CN113406423A (zh) * 2021-06-30 2021-09-17 武汉普赛斯电子技术有限公司 电子器件老化试验系统
CN114184940A (zh) * 2022-02-16 2022-03-15 海拓仪器(江苏)有限公司 一种芯片老化试验装置
CN217819299U (zh) * 2022-05-31 2022-11-15 广东贝尔试验设备有限公司 一种新型光模块老化试验设备
CN115508660A (zh) * 2022-11-17 2022-12-23 海拓仪器(江苏)有限公司 一种电子器件老化测试装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300122A (ja) * 2008-06-10 2009-12-24 Sharp Corp エージング装置
CN202221418U (zh) * 2011-09-09 2012-05-16 深圳市大稳科技有限公司 一种高温老化试验箱
CN204007664U (zh) * 2014-06-30 2014-12-10 王建刚 一种换气老化试验箱
CN206057499U (zh) * 2016-09-26 2017-03-29 东莞市捷新检测设备有限公司 一种高温老化试验机
CN110586205A (zh) * 2018-08-11 2019-12-20 广州威德玛环境仪器有限公司 一种试验箱新风装置
CN217085109U (zh) * 2021-06-30 2022-07-29 武汉普赛斯电子技术有限公司 电子器件老化试验装置
CN114526935A (zh) * 2022-02-21 2022-05-24 海拓仪器(江苏)有限公司 一种风幕型老化试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267818A (ja) * 2007-04-16 2008-11-06 Espec Corp バーンイン試験装置
CN112393354A (zh) * 2020-11-23 2021-02-23 山东大学 内外循环新风系统及其运行方式
CN113406423A (zh) * 2021-06-30 2021-09-17 武汉普赛斯电子技术有限公司 电子器件老化试验系统
CN114184940A (zh) * 2022-02-16 2022-03-15 海拓仪器(江苏)有限公司 一种芯片老化试验装置
CN217819299U (zh) * 2022-05-31 2022-11-15 广东贝尔试验设备有限公司 一种新型光模块老化试验设备
CN115508660A (zh) * 2022-11-17 2022-12-23 海拓仪器(江苏)有限公司 一种电子器件老化测试装置

Also Published As

Publication number Publication date
CN115508660B (zh) 2023-03-21
CN115508660A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024103662A1 (zh) 一种电子器件老化测试装置
JP4994503B2 (ja) 演算処理装置
KR101207891B1 (ko) 반도체 부품 검사용 번인 테스트 챔버
US8810087B2 (en) Motor unit
KR101034767B1 (ko) 반도체 검사용 번인 테스터
WO2023155449A1 (zh) 一种芯片老化试验装置
JP2014048354A (ja) プロジェクタ装置
JP6163835B2 (ja) 冷却フィンおよび該冷却フィンを具備する電力変換装置
CN107843105A (zh) 一种循环节能粮食烘干设备
KR102509238B1 (ko) 검사 장치
CN113611637A (zh) 排风装置及半导体热处理设备
JP2013234802A (ja) 熱交換ユニット
JP2020010006A (ja) 検査装置及び検査装置の清浄化方法
JPH10174369A (ja) 全閉外扇空冷熱交換器形回転電機
WO2013088582A1 (ja) 冷却装置、および、電子機器
JPH10108323A (ja) 配電盤
CN102254493B (zh) 一种led显示屏通风散热箱体
JP7469997B2 (ja) 半導体処理装置
KR100264122B1 (ko) 전자렌지의 전장물 냉각장치
TW202104913A (zh) 預燒測試裝置及其預燒測試設備
US20040141289A1 (en) Apparatus and method for cooling an electronic device
KR20150124725A (ko) 차량용 에어 가이드 유닛
US20240074091A1 (en) Directed cooling in heat producing systems
CN219536726U (zh) 散热风道以及烹饪设备
CN218897428U (zh) 一种高散热性路由器用防磁屏蔽罩