WO2024100979A1 - ウェーハの深さ方向の欠陥位置の評価方法 - Google Patents

ウェーハの深さ方向の欠陥位置の評価方法 Download PDF

Info

Publication number
WO2024100979A1
WO2024100979A1 PCT/JP2023/032948 JP2023032948W WO2024100979A1 WO 2024100979 A1 WO2024100979 A1 WO 2024100979A1 JP 2023032948 W JP2023032948 W JP 2023032948W WO 2024100979 A1 WO2024100979 A1 WO 2024100979A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
xrt
eye image
depth direction
defect
Prior art date
Application number
PCT/JP2023/032948
Other languages
English (en)
French (fr)
Inventor
久之 斉藤
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2024100979A1 publication Critical patent/WO2024100979A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/205Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials using diffraction cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a method for evaluating defect positions in the depth direction of a wafer using X-ray topography (XRT).
  • XRT X-ray topography
  • X-ray topography is a device that is widely used to observe defects in crystalline materials, especially semiconductor device materials such as silicon wafers.
  • XRT has a different measurement principle than X-ray CT, detecting distortion of the diffraction grating rather than differences in transmittance. Therefore, it can only be applied to single crystals, but it can measure very small defects.
  • the transmission method of XRT can identify defect positions across the entire wafer, but cannot obtain information about the depth of the defects. Depth information about defects in semiconductor device materials is extremely important for determining whether the defects will affect device failure. In recent years, it has become possible to obtain cross-sectional topographs and three-dimensional topographs obtained by combining multiple cross-sectional topographs in order to obtain depth information with XRT, but extremely long measurements are required to obtain cross-sectional topographs, and even longer is required to obtain three-dimensional data that requires multiple cross-sectional topographical information, and there are many constraints to these measurements, such as the need to use synchrotron radiation, a powerful X-ray generator.
  • the present invention was made in consideration of the problems described above, and aims to provide a method for evaluating defect positions in the depth direction of a wafer using a simple method that uses X-ray topography (XRT).
  • XRT X-ray topography
  • the present invention has been made to solve the above problems, and provides a method for evaluating defect positions in the depth direction of a wafer using an X-ray topograph (XRT), the wafer having a front and back surface, the method including the steps of: irradiating X-rays from the right and left directions onto the front surface at angles of incidence that satisfy the diffraction conditions to obtain two XRT images, a right-eye image and a left-eye image, on the back surface; aligning the two obtained XRT images at defect positions on either the front surface or the back surface; and a defect position determination step of determining other defect positions in a different depth direction of the wafer from the deviation between the right-eye image and the left-eye image.
  • XRT X-ray topograph
  • the right-eye image and left-eye image will match for defects on the aligned surface, but for defects on a surface other than the aligned surface, a misalignment will occur between the right-eye image and left-eye image, and this misalignment will enable it to be determined that the defect has a different position in the depth direction.
  • XRT X-ray topograph
  • the method of irradiating X-rays onto the surface from the right and left directions at angles of incidence that satisfy the diffraction conditions is preferably such that the angle of incidence is fixed in either the right or left direction, X-rays are irradiated to obtain an XRT image, and then the wafer is rotated 180°, X-rays are irradiated to obtain an XRT image in the other direction, thereby obtaining two XRT images, the right-eye image and the left-eye image.
  • XRT images can be easily obtained in the right and left directions without moving the X-ray generator or detector, making it possible to evaluate the defect positions in the depth direction of the wafer in an extremely simple manner.
  • the defect position determination step preferably performs determination by inverting one of the two acquired XRT images and combining the images.
  • Such a defect position determination process can reliably determine the defect position based on the difference between black and white, and therefore can be suitably applied to a method for evaluating defect positions in the depth direction of a wafer.
  • a method for evaluating defect positions in the depth direction of a wafer using an X-ray topograph in which the wafer has a front and back surface, and X-rays are incident on the front surface from the right and left directions at angles of incidence that satisfy the diffraction conditions, two XRT images, a right-eye image and a left-eye image, are obtained on the back surface, and the two XRT images are visually captured as a single image, thereby providing a method for evaluating defect positions in the depth direction of a wafer, in which the defect positions in the depth direction are observed stereoscopically (3D image).
  • XRT X-ray topograph
  • the wafer is at least one of a single crystal wafer and a wafer on which a device is formed.
  • Such wafers can be suitably applied to a method for evaluating the position of defects in the depth direction of a wafer using an X-ray topograph (XRT).
  • XRT X-ray topograph
  • some silicon wafers and SiC wafers have a known incidence angle that serves as a diffraction condition, and can be suitably applied to a method for evaluating the position of defects in the depth direction of a wafer.
  • the method of the present invention for evaluating defect positions in the depth direction of a wafer requires only obtaining two images using the normal method of using an X-ray topograph (XRT), allowing measurements to be made in a short time, and is versatile because it does not require special methods such as intensifying the synchrotron radiation or narrowing the measurement area. As a result, it is possible to evaluate defect positions in the depth direction of a wafer using an extremely simple method.
  • XRT X-ray topograph
  • FIG. 13 is a schematic diagram showing a case where two XRT images are obtained by changing the incidence angle of X-rays.
  • FIG. 13 is a schematic diagram showing the case where two XRT images are acquired by rotating a wafer.
  • FIG. 13 is a schematic explanatory diagram of another embodiment of the present invention.
  • 1 is a schematic explanatory diagram showing the difference between when X-rays are incident in one direction and when they are incident in two directions.
  • 1 is a schematic diagram of the incidence angle and diffraction that are diffraction conditions of a wafer.
  • FIG. 1 is a photograph for explaining the effect of the first embodiment of the present invention. 11 is a photograph for explaining Example 2 of the present invention.
  • FIG. 1 is a schematic diagram showing a case where a defect penetrates from the front surface to the back surface of a wafer. This is a photograph of a wafer with complex dislocations.
  • the inventors found that by irradiating X-rays onto the front surface of the wafer from the right and left directions at angles of incidence that satisfy the diffraction conditions and acquiring two XRT images, a right-eye image and a left-eye image, on the back surface, it is possible to evaluate the defect positions in the depth direction of the wafer in a short amount of time and with general purpose, and as a result, it is possible to evaluate the defect positions in the depth direction of the wafer in a very simple method, and thus completed the present invention.
  • the present invention is a method for evaluating defect positions in the depth direction of a wafer using an X-ray topograph (XRT), the wafer having a front and back surface, characterized in that it includes the steps of: irradiating X-rays from the right and left directions onto the front surface at angles of incidence that satisfy the diffraction conditions to obtain two XRT images, a right-eye image and a left-eye image, on the back surface; aligning the two obtained XRT images at defect positions on either the front or back surface; and a defect position determination step of determining other defect positions in a different depth direction of the wafer from the deviation between the right-eye image and the left-eye image.
  • XRT X-ray topograph
  • the present invention also provides a method for evaluating defect positions in the depth direction of a wafer using an X-ray topograph (XRT), which has a front and back surface, and is characterized in that X-rays are incident on the front surface from the right and left directions at angles of incidence that satisfy the diffraction conditions, two XRT images, a right-eye image and a left-eye image, are obtained on the back surface, and the two XRT images are visually captured as a single image, thereby observing the defect positions in the depth direction as a stereoscopic (3D image).
  • XRT X-ray topograph
  • Figure 5 shows two wafers with different defect positions.
  • the wafer in the upper figure has elliptical and rectangular defects on the bottom surface and a circular defect on the top surface.
  • the wafer in the lower figure has elliptical, rectangular, and circular defects on the bottom surface.
  • the only difference between the upper and lower wafers is the position of the circular defect, which differs not only in the vertical direction but also in the horizontal direction, with the circular defect on the wafer in the upper figure being located slightly to the right.
  • the arrows going from bottom to top in the figure indicate the direction of incidence of X-rays, which are irradiated in the first direction from the bottom left to the top right, and the second direction from the bottom right to the top left.
  • X-rays are irradiated in these two directions separately, and the respective XRT images are obtained above the wafer.
  • the respective images are called the left eye image and the right eye image, in analogy with the image observed by the human eye from above.
  • the center of Figure 5 shows only one direction (XRT image in the first direction (left eye image) only), but there is no difference between the images in the upper and lower figures. This is due to the shift in the position of the circular defect (it is on the left side of the bottom surface in the lower image, and on the right side of the top surface in the upper image) and the phenomenon in which the defect on the bottom surface is significantly shifted to the right of the defect on the top surface due to the incident angle from the bottom left to the top right, resulting in images in which the positions of the circular defects match. In other words, with measurement in only one direction, it is possible that there will be no difference in the XRT images even if the defect positions are different.
  • the right side of Figure 5 shows two directions (both the XRT image in the first direction (left eye image) and the XRT image in the second direction (right eye image)).
  • the left eye image is the same as before, but the position of the circular defect in the right eye image is significantly different between the image in the upper figure and the image in the lower figure.
  • a difference in the defect position will appear in the image in at least one direction.
  • the method used here takes advantage of the fact that when images from different angles, such as the right eye image and the left eye image, are superimposed, the defect position changes depending on the depth position. With the usual XRT image taken from a single direction, differences due to differences in depth cannot be obtained.
  • the wafer is placed with the front side facing down and the back side facing up, and a typical transmission XRT is used to measure twice.
  • X-rays are incident obliquely from the left and right directions on the same diffraction surface, and measurements are taken respectively. Since X-rays are incident obliquely on the sample, the position of the obtained image from the defect shifts depending on the depth of the defect. The results are obtained separately as a left-eye image and a right-eye image, and by comparing these, it is possible to evaluate the position in the depth direction from the difference in the defect position.
  • the right-eye image of the acquired X-ray topograph is inverted, and then overlaid with the left-eye image while aligning the positions of defects (oval, rectangular) near the front (bottom) surface, making it possible to highlight only the area where the defect position has shifted, i.e., the circular defect on the back (top) surface.
  • Fig. 2 shows the relative positions of the generator, detector, and sample when obtaining right-eye and left-eye images in a device in which the X-ray generator and detector move freely.
  • the generator When obtaining a right-eye image, the generator is placed on the right side, and when obtaining a left-eye image, the generator is placed on the left side.
  • measurements are performed by irradiating X-rays from both the left and right, but it is desirable to set the incidence from both the left and right so that the same diffraction surface is measured.
  • measurements are often made using (400) or (220) diffraction, but when using (400) diffraction, the incidence angle is 74.86° from the right and 105.15° from the left, while when using (220) diffraction, the incidence angle is 79.36° from the right and 100.64° from the left.
  • wafers have an OFF angle, and diffraction rarely occurs at the above incidence angles, with many cases being off by a few degrees to a few minutes.
  • SiC wafers are often measured on the (11-20) diffraction plane, in which case the angle of incidence is 76.66° from the right and 103.34° from the left.
  • Normal XRT measurements are often performed using monochromatic X-rays, in which case the diffraction angle must be determined precisely, but recently there has been an increase in XRT using non-monochromatic X-rays, in which case the diffraction angle does not need to be so precise; specifically, as long as an XRT image can be obtained, there is no problem if the diffraction angle deviates.
  • the image when the X-rays enter from the left is called the left eye image
  • the image when the X-rays enter from the right is called the right eye image, but as long as the two XRT images can be compared, it does not matter if the right eye image and left eye image are swapped. If the X-ray generator and detector cannot move to the inversion position due to equipment restrictions, the sample can be rotated 180 degrees and measured at the same angle, and the measurement results can be rotated 180 degrees.
  • one embodiment of the present invention is a method for evaluating defect positions in the depth direction of a wafer using an X-ray topograph (XRT), in which the wafer has a front surface (bottom surface) and a back surface (top surface), and includes a process of irradiating X-rays from the right and left directions onto the front surface (bottom surface) at angles of incidence that satisfy the diffraction conditions to obtain two XRT images, a right-eye image and a left-eye image, on the back surface (top surface), an alignment process of aligning the two obtained XRT images at defect positions on the front surface, and a defect position determination process of determining other defect positions in different wafer depth directions from the deviation between the right-eye image and the left-eye image, thereby demonstrating that it is possible to determine defect positions on the back surface (top surface) of the wafer in different depth directions.
  • XRT X-ray topograph
  • the right-eye image and the left-eye image will match for defects on the aligned front surface, but for defects on the back surface, which is different from the aligned surface, there will be a misalignment between the right-eye image and the left-eye image, and this misalignment will enable it to be determined that the defect has a different position in the depth direction.
  • XRT X-ray topograph
  • the right-eye image of the two acquired XRT images was inverted and combined with the left-eye image, making it possible to determine the location of a circular defect on the back surface (top surface).
  • Such a defect position determination process can reliably determine the defect position based on the difference between black and white, and therefore can be suitably applied to a method for evaluating defect positions in the depth direction of a wafer.
  • the right eye image and left eye layer can be obtained as shown in FIG. 1. Irradiate X-rays from the right to obtain a right-eye image. 2. Rotate the wafer 180 degrees and irradiate X-rays from the right at the same irradiation angle to obtain an image. Figure 3 shows that when the wafers marked A and B are rotated 180 degrees, they are reversed left and right. 3. Acquisition of a Left-Eye Image By rotating the image acquired in step 2 by 180 degrees, it becomes the same as an X-ray topographic image acquired by irradiating the wafer from the left direction without rotating it.
  • the method for evaluating defect positions in the depth direction of a wafer shows that the method of irradiating X-rays onto the surface from the right and left directions at angles of incidence that satisfy the diffraction conditions involves fixing the angle of incidence to the right, irradiating X-rays to obtain an XRT image (right-eye image), rotating the wafer 180°, irradiating X-rays to obtain an XRT image in the other direction, and rotating the obtained image 180° to obtain two XRT images, a right-eye image and a left-eye image.
  • This method makes it possible to easily obtain XRT images to the right and left without moving the X-ray generator or detector, making it an extremely simple method for evaluating defect positions in the depth direction of the wafer.
  • the acquired right-eye and left-eye images can also be captured as a single image, making it possible to observe in stereoscopic vision (3D images), and it is easy to distinguish between surface defects and back-side defects.
  • a stereoscopic image of the defect can be obtained by stereoscopically viewing the two images.
  • the defect on the front surface can be seen to stand out using a method such as stereoscopic vision or 3D glasses.
  • a circular defect on the back surface (top surface) of the wafer can be seen to stand out.
  • the wafer has a front and back surface, and X-rays are incident on the front surface from the right and left directions at angles of incidence that satisfy the diffraction conditions, two XRT images, a right-eye image and a left-eye image, are obtained on the back surface, and the two XRT images are visually captured as a single image, thereby demonstrating a method of evaluating defect positions in the depth direction of a wafer in which defect positions in the depth direction are observed stereoscopically (3D image).
  • the present invention is not limited to silicon wafers, but can also be applied to SiC wafers and silicon wafers on which devices are formed.
  • SiC wafers crystal defects may be complicated inside the crystal, and this condition can be confirmed.
  • surface defects directly affect the device yield, so only surface defects can be evaluated by XRT, not the entire depth direction. Furthermore, this is effective when it is desired to know the three-dimensional structure of defects in these wafers.
  • Example 1 First, a carbon film was vapor-deposited on the upper surface of a silicon wafer having a surface orientation of (100). The damage formed on the rear surface side during handling at this time was evaluated.
  • the front surface was set as the X-ray irradiation surface, and X-rays were incident from the direction (1) shown in Fig. 6 to perform XRT measurement. At this time, since the measurement was performed under the (400) diffraction condition, the incident angle was set to 74.86°.
  • Figure 7 shows a case in which the image taken in (1) was used as the right-eye image and the image taken in (2) was used as the left-eye image, with one side inverted and the other overlaid. In this case, the position of the surface defect was aligned. Defects on the surface that could be seen as linear cracks cancel each other out and become invisible, leaving only the contact scratches on the back surface visible.
  • Example 2 Also, as shown in FIG. 8, it is possible to visually observe the defect in stereoscopic view (3D image) by aligning the round dots on the right-eye image and the left-eye image to capture them as a single image, and this method can also be used to obtain defect depth information.
  • 3D image stereoscopic view
  • the image in Figure 8 is the same as that shown in Figure 7, but by overlapping the circles on top of the image, a stereoscopic view can be obtained.
  • This data is the result when there are defects on the front and back surfaces of a Si wafer, but when defects occur not only on the front and back surfaces of a crystal but also inside, such as with slips in Si crystals or defects in SiC, this stereoscopic view (3D image) method is more effective because it can reveal intermediate defects in the crystal bulk.
  • FIG. 9 shows a schematic diagram of a defect penetrating from the front surface to the back surface of a wafer, and an example of a stereoscopic view.
  • FIG. 10 is an example of a case where complex dislocations exist inside a crystal. In cases like those in FIGS. 9 and 10, it is easier to grasp the overall picture of the defect by viewing it stereoscopically.
  • the present invention is not limited to the above examples.
  • the above examples are merely illustrative, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits similar effects is included within the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明は、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、前記ウェーハは表面と裏面を有し、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、前記裏面で右目像と左目像の2つのXRT画像を取得する工程と、前記取得した2つのXRT画像について、前記表面又は前記裏面のいずれか一方の面上の欠陥位置で位置合わせを行う位置合わせ工程と、前記右目像と前記左目像のずれから前記ウェーハの深さ方向が異なる他の欠陥位置を判定する欠陥位置判定工程と、を含むことを特徴とするウェーハの深さ方向の欠陥位置の評価方法である。これにより、X線トポグラフ(XRT)を用いた簡便な方法で、ウェーハの深さ方向の欠陥位置の評価方法が提供される。

Description

ウェーハの深さ方向の欠陥位置の評価方法
 本発明は、X線トポグラフ(XRT)によるウェーハの深さ方向の欠陥位置の評価方法に関する。
 X線トポグラフ(XRT)は、結晶材料、特にシリコンウェーハに代表される半導体デバイス材料の欠陥観察に広く使われている装置である。XRTはX線CTとは測定原理が異なり、透過率の違いではなく、回折格子の歪を検出する。そのため、単結晶にしか適応できないが、非常に小さな欠陥を測定する事が出来る。
 XRTの透過法では、ウェーハ全体の欠陥位置が分かるが、その欠陥の深さ情報などを得ることが出来ない。半導体デバイス材料の欠陥の深さ情報というのは、その欠陥がデバイスの不良に影響するかどうかを決定するために非常に重要な情報である。近年、XRTで深さ情報を得るためには断面トポグラフや、その断面トポグラフを複数組み合わせて得る3次元のトポグラフを得ることが可能となったが、断面トポグラフを得るためには非常に長時間の測定が必要であり、その断面トポグラフ情報が複数必要な3次元データを得るためにはさらに多くの時間がかかり、その測定には、強いX線発生装置である放射光を利用しなければならない等の制約が多かった。
 このように、従来、断面トポグラフ像を重ねることによる3次元のデータ化は困難であったが、近年では欠陥の3次元データ化を可能とする方法が開発されている(例えば、特許文献1)。しかし、この方法でも、やはり3次元データの取得には時間がかかり、また、測定領域が狭いという問題がある。
 さらに、半導体デバイス材料において、デバイス不良を起こす欠陥が、デバイス層である表面にあるか裏面にあるかは非常に重要であるが、XRTでは欠陥の深さ位置を簡便な方法で評価することが出来なかった。
特開2015-105831号公報
 本発明は、前述のような問題に鑑みてなされたもので、X線トポグラフ(XRT)を用いた簡便な方法で、ウェーハの深さ方向の欠陥位置の評価方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、前記ウェーハは表面と裏面を有し、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、前記裏面で右目像と左目像の2つのXRT画像を取得する工程と、前記取得した2つのXRT画像について、前記表面又は前記裏面のいずれか一方の面上の欠陥位置で位置合わせを行う位置合わせ工程と、前記右目像と前記左目像のずれから前記ウェーハの深さ方向が異なる他の欠陥位置を判定する欠陥位置判定工程と、を含むウェーハの深さ方向の欠陥位置の評価方法を提供する。
 このようなウェーハの深さ方向の欠陥位置の評価方法であれば、位置合わせした面上の欠陥については右目像と左目像が一致するが、位置合わせした面とは異なる面上の欠陥においては右目像と左目像にずれが生じ、このずれから深さ方向の位置が異なる欠陥であると判定できる。この方法であれば、X線トポグラフ(XRT)の通常の使い方で2つの画像を取得するだけで良く、短時間での測定が可能であり、放射光を強めたり測定領域を狭くしたりといった特殊な使い方をしないので、汎用的である。その結果、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 また、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射する方法は、右方向、左方向のいずれかの方向に入射角度を固定し、X線を入射してXRT画像を取得してから、前記ウェーハを180°回転させて、X線を入射してもう一方の方向のXRT画像を取得することにより、前記右目像と前記左目像の2つのXRT画像を取得することが好ましい。
 このような方法であれば、X線の発生器や検出器を動かさなくても、容易に右方向及び左方向のXRT画像を取得することができるので、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 また、前記欠陥位置判定工程は、前記取得した2つのXRT画像のどちらか一方を白黒反転させ、合成することによって判定することが好ましい。
 このような欠陥位置判定工程であれば、白か黒かの色の違いによって確実に欠陥位置を判定できるので、ウェーハの深さ方向の欠陥位置の評価方法に好適に適用することができる。
 また、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、前記ウェーハは表面と裏面を有し、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、前記裏面で右目像と左目像の2つのXRT画像を取得し、目視により前記2つのXRT画像を1つの画像として捉えることで、深さ方向の欠陥位置を立体視(3D画像)として観察するウェーハの深さ方向の欠陥位置の評価方法を提供する。
 このようなウェーハの深さ方向の欠陥位置の評価方法であれば、目視により2つのXRT画像を1つの画像として捉えようとすると、深さ方向の位置が異なる欠陥があると2つの画像のずれから立体に見えるので、この立体に見えたことから深さ方向の位置が異なる欠陥であると判定できる。この方法であれば、X線トポグラフ(XRT)の通常の使い方で2つの画像を取得するだけで良く、短時間での測定が可能であり、放射光を強めたり測定領域を狭くしたりといった特殊な使い方をしないので、汎用的である。加えて、欠陥位置の評価を目視で行うので、別途評価装置等を準備する必要がない。その結果、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 また、前記ウェーハは単結晶ウェーハ、デバイスが形成されたウェーハの少なくとも一つであることが好ましい。
 このようなウェーハであれば、X線トポグラフ(XRT)を用いたウェーハの深さ方向の欠陥位置の評価方法に好適に適用することができる。特に、シリコンウェーハ及びSiCウェーハであれば、あらかじめ回折条件となる入射角度が知られているものがあり、ウェーハの深さ方向の欠陥位置の評価方法に好適に適用することができる。
 また、SiCウェーハであれば、結晶欠陥が結晶内部で複雑に入り組んでいる場合があり、その状況を確認するために適用することができる。
 さらに、デバイスが形成されたウェーハであれば、例えばデバイス不良を起こす欠陥がデバイス層である表面にあるか裏面にあるかを簡単に評価することができる。デバイスが形成されたウェーハでは表面欠陥が直接デバイス歩留まりに影響するので、深さ方向全体ではなく表面欠陥のみを評価できるだけでも、歩留まり改善に役立てることができる。
 以上のように、本発明のウェーハの深さ方向の欠陥位置の評価方法であれば、X線トポグラフ(XRT)の通常の使い方で2つの画像を取得するだけで良く、短時間での測定が可能であり、放射光を強めたり測定領域を狭くしたりといった特殊な使い方をしないので、汎用的である。その結果、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
本発明のウェーハの深さ方向の欠陥位置の評価方法における、一実施形態の概略説明図である。 X線の入射角度を変えて2つのXRT画像を取得する場合の模式図である。 ウェーハを回転させて2つのXRT画像を取得する場合の模式図である。 本発明の他の実施形態の概略説明図である。 X線の入射が一方向の場合と二方向の場合の違いを示す概略説明図である。 ウェーハの回折条件となる入射角度と回折の模式図である。 本発明の実施例1の効果を説明するための写真である。 本発明の実施例2を説明するための写真である。 ウェーハ表面から裏面まで欠陥が貫通している場合の模式図である。 ウェーハに複雑な転位が存在する場合の写真である。
 前述のように、X線トポグラフ(XRT)を用いたウェーハの評価方法において、短時間で、汎用的で、その結果極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる方法が求められていた。
 そこで本発明者らが検討を重ねたところ、ウェーハの表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面で右目像と左目像の2つのXRT画像を取得することで、短時間、かつ汎用的であり、その結果極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できることが判り、本発明を完成させた。
 即ち、本発明は、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、ウェーハは表面と裏面を有し、表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面で右目像と左目像の2つのXRT画像を取得する工程と、取得した2つのXRT画像について、表面又は裏面のいずれか一方の面上の欠陥位置で位置合わせを行う位置合わせ工程と、右目像と左目像のずれからウェーハの深さ方向が異なる他の欠陥位置を判定する欠陥位置判定工程と、を含むことを特徴とするウェーハの深さ方向の欠陥位置の評価方法である。
 また、本発明は、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、ウェーハは表面と裏面を有し、表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面で右目像と左目像の2つのXRT画像を取得し、目視により2つのXRT画像を1つの画像として捉えることで、深さ方向の欠陥位置を立体視(3D画像)として観察することを特徴とするウェーハの深さ方向の欠陥位置の評価方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 まず、図5を用いて、X線の入射方向によって欠陥がどのような画像として観測されるかを説明する。図5の左には欠陥位置が異なる二つのウェーハを示す。まず上図のウェーハは下面に楕円形と長方形の欠陥があり、上面に円形の欠陥がある。下図のウェーハは下面に楕円と長方形と円形の欠陥がある。上下のウェーハの違いは円形の欠陥の位置のみとし、円形の欠陥は上下方向の位置だけでなく、左右方向の位置も異なっていて、上図のウェーハの円形の欠陥の方がやや右側に位置している。また、同図の下から上に向かう矢線はX線の入射方向を示し、左下から右上へと向かう第一の方向と、右下から左上に向かう第二の方向で照射する。この二つの方向のX線を個別に照射し、ウェーハの上方でそれぞれのXRT画像を取得する。このとき、上方からヒトが目で観測するイメージになぞらえて、それぞれの画像を左目像、右目像と呼ぶこととする。
 図5の中央には一方向のみ(第一の方向のXRT画像(左目像)のみ)を示すが、上図の画像と下図の画像とに違いが無い。これは、円形の欠陥の位置のずれ方(下図では下面の左側にあり、上図では上面の右側にある)と、左下から右上へ向かう入射角度によって生じる下面の欠陥が上面の欠陥より右側に大きくずれる現象とにより、結果として円形の欠陥の位置が一致した画像となったものである。つまり、一方向だけの測定では、欠陥位置が異なってもXRT画像に違いが無いということが起こり得る。
 図5の右側には2方向(第一の方向のXRT画像(左目像)と第二の方向のXRT画像(右目像)の両方)を示す。左目像は先ほどと同じであるが、右目像は上図の画像と下図の画像とで円形の欠陥の位置が大きく異なる。つまり、二方向で測定することにより、少なくとも一つの方向の画像には欠陥位置の違いが現れる。これは逆に言うと、画像に欠陥位置の違いが現れた場合には、下面を基準とすると、上方向の異なる面に欠陥があることがわかり、深さ方向が異なる欠陥位置を判定できることを意味している。
 今回の方法は、右目像、左目像という角度の異なる方向からの像を重ねると、深さ位置によって欠陥位置が変わる事を利用した方法である。通常行われる一方向からのXRT像では、深さの違いによる差が得られない。
 以下、本発明の一実施形態について、図1および図2を参照して説明する。
 ウェーハの表面を下面に、裏面を上面になるように配置して、一般的な透過XRTを2回測定する。その際、図1の上図に示すように、同じ回折面に対して左方向と右方向から斜めにX線の入射を行いそれぞれ測定する。X線はサンプルに対して斜めに入射されるために、得られる欠陥からの像は、欠陥の深さによって位置がずれる、その結果を左目像、右目像として別々に取得して、これらを比較することで、欠陥位置の違いから深さ方向の位置を評価することが可能となる。
 図1で、表面(下面)近くの欠陥(楕円形、長方形)は、右目像、左目像で位置が変わらないが、裏面(上面)近くの欠陥(円形)は像の位置が変わる。右目像と左目像で位置が変わる欠陥のみ抽出すれば、それが裏面付近の欠陥と判断できる。
 取得したX線トポグラフ像の右目像を白黒反転し、表面(下面)近くの欠陥(楕円形、長方形)位置が合うように位置合わせしながら左目像と重ね合わせることで、欠陥位置のずれの生じたところ、すなわち裏面(上面)にある円形の欠陥のみを浮き上がらせることが出来る。
 なお図2は、X線の発生器、検出器が自由に動く装置の場合での右目像、左目像を得る場合の発生器、検出器、サンプルの位置関係である。右目像を取得する際には発生器を右側に配置し、左目像を取得する際には発生器を左側に配置すればよい。
 このようにX線を左右から入射して測定を行うが、左右からの入射は同じ回折面を測れる様に設定するのが望ましい。具体的に(100)のシリコンウェーハの測定では、(400)回折か(220)回折で測定する場合が多いが、(400)回折を利用する場合の入射角は右方向からの入射角が74.86°、左方向からの入射角が105.15°であり、(220)回折を利用する場合の入射角は右方向からの入射角が79.36°、左方向からの入射角が100.64°である。しかしウェーハにはOFF角というものが存在し、上記の入射角で回折が起きることはまれで、数度~数分ずれている場合が多い。
 また、SiCウェーハでは(11-20)の回折面で測定する場合が多く、この場合の入射角は右方向からの入射角が76.66°、左方向からの入射角が103.34°である。
 通常のXRT測定は、単色化されたX線で測定する場合が多く、その場合、回折角は厳密に決定しなければならないが、最近単色化しないX線でのXRTも存在する為、その場合、回折角はそれほど厳密でなくても良い、具体的にはXRT像が得られる範囲であれば、回折角はずれても問題ない。
 また、左右から1回ずつ2回測定する際、同じ回折面で測定すれば目視で立体視することも可能となるが、別の回折条件での像を利用して比較することも可能である。
 X線を左から入射した場合の像が左目像、右から入射した場合の像を右目像としているが、右目像、左目像が入れ替わっても2つのXRT画像を比較できればよく、右目像、左目像が入れ替わっても問題ない。装置の制約上、X線の発生機、検出器が反転位置まで動かない場合は、サンプルを180度回転させて同じ角度で測定し、測定した結果を180度回転させても良い。
 以上のように、本発明の一実施形態は、X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、ウェーハは表面(下面)と裏面(上面)を有し、表面(下面)に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面(上面)で右目像と左目像の2つのXRT画像を取得する工程と、取得した2つのXRT画像について、表面の面上の欠陥位置で位置合わせを行う位置合わせ工程と、右目像と左目像のずれからウェーハの深さ方向が異なる他の欠陥位置を判定する欠陥位置判定工程と、を含むことにより、ウェーハの深さ方向が異なる裏面(上面)の欠陥位置が判定できることを示した。
 このようなウェーハの深さ方向の欠陥位置の評価方法であれば、位置合わせした表面上の欠陥については右目像と左目像が一致するが、位置合わせした面とは異なる裏面上の欠陥においては右目像と左目像にずれが生じ、このずれから深さ方向の位置が異なる欠陥であると判定できる。この方法であれば、X線トポグラフ(XRT)の通常の使い方で2つの画像を取得するだけで良く、短時間での測定が可能であり、放射光を強めたり測定領域を狭くしたりといった特殊な使い方をしないので、汎用的である。その結果、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 尚、ウェーハの深さ方向の欠陥位置は、表面上と裏面上について説明したが、ウェーハの内部を見ることも可能である。
 また、欠陥位置判定工程として、取得した2つのXRT画像のうちの右目像を白黒反転させ、左目像と合成することによって、裏面(上面)の円形の欠陥位置を判定することができた。
 このような欠陥位置判定工程であれば、白か黒かの色の違いによって確実に欠陥位置を判定できるので、ウェーハの深さ方向の欠陥位置の評価方法に好適に適用することができる。
 以下、本発明の他の実施形態について、図3を参照して説明する。
 装置の制約上、X線の発生機、検出器が反転位置まで動かない場合は、図3のようにして、右目像、左目層を得ることが出来る。
1.右方向からX線を照射して右目像を取得
2.ウェーハを180°回転させて右方向から同じ照射角度でX線を照射して、画像を取得。図3ではA、Bと表記したウェーハを180°回転したときに左右反転したようになることを示している。
3.左目像の取得
2で取得した画像を180°回転することにより、ウェーハを回転せずに左方向から照射して取得したX線トポグラフ像と同じになる。
 この実施形態においても、取得した右目像と左目像のX線トポグラフ像のどちらかを白黒反転し、重ね合わせることで、欠陥位置のずれの生じたところ、すなわち表面にある欠陥を浮き上がらせることが出来る。
 以上のように、本実施形態のウェーハの深さ方向の欠陥位置の評価方法によって、表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射する方法は、右方向に入射角度を固定し、X線を入射してXRT画像(右目像)を取得してから、ウェーハを180°回転させて、X線を入射してもう一方の方向のXRT画像を取得し、取得した画像を180°回転することにより、右目像と左目像の2つのXRT画像を取得することが示せた。
 このような方法であれば、X線の発生器や検出器を動かさなくても、容易に右方向及び左方向のXRT画像を取得することができるので、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 なお本実施形態においても、取得した右目像と左目像を1つの像として捉えることで、立体視(3D画像)で観察することも可能であり、表面欠陥と裏面欠陥を容易に区別することが出来る。
 なお、原理上、X線の照射面の欠陥位置を合わせてX線の照射面とは反対側の表面欠陥の位置のずれからX線の照射面と反対側の表面欠陥のみを評価するだけでなく、X線の照射面と反対側の表面の欠陥位置を合わせれば、X線の照射面の欠陥の位置がずれるので、X線の照射面の欠陥のみを評価することもできる。
 以下、本発明の他の実施形態について、図4を参照して説明する。
 別の方法としては、2つの像を立体視することで、欠陥の立体像を得ることもできる。
前述の実施形態と同様の方法(表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面で右目像と左目像の2つのXRT画像を取得)によって得られた右目像、左目像を、それぞれ右目、左目で見ることで、立体視、3D眼鏡等の方法により、表面にある欠陥が浮き出て見える。図4においてはウェーハ裏面(上面)の円形の欠陥が浮き出て見えることになる。
 以上のように、本実施形態のウェーハの深さ方向の欠陥位置を評価する方法によって、ウェーハは表面と裏面を有し、表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、裏面で右目像と左目像の2つのXRT画像を取得し、目視により2つのXRT画像を1つの画像として捉えることで、深さ方向の欠陥位置を立体視(3D画像)として観察するウェーハの深さ方向の欠陥位置の評価方法を示した。
 このようなウェーハの深さ方向の欠陥位置の評価方法であれば、目視により2つのXRT画像を1つの画像として捉えようとすると、深さ方向の位置が異なる欠陥があると2つの画像のずれから立体に見えるので、この立体に見えたことから深さ方向の位置が異なる欠陥(裏面(上面)の円形の欠陥)であると判定できる。この方法であれば、X線トポグラフ(XRT)の通常の使い方で2つの画像を取得するだけで良く、短時間での測定が可能であり、放射光を強めたり測定領域を狭くしたりといった特殊な使い方をしないので、汎用的である。加えて、欠陥位置の評価を目視で行うので、別途評価装置等を準備する必要がない。その結果、極めて簡便な方法で、ウェーハの深さ方向の欠陥位置を評価できる。
 なお、本発明はシリコンウェーハに限定されず、SiCウェーハやデバイスが形成されたシリコンウェーハにも適用することができる。
 SiCウェーハは、結晶欠陥が結晶内部で複雑に入り組んでいる場合があり、その状況を確認することができる。また、デバイスが形成されたシリコンウェーハでは表面欠陥が直接デバイス歩留まりに影響するので、深さ方向全体ではなく表面欠陥のみをXRTで評価することができる。
 さらに、これらのウェーハについて、ウェーハ中の欠陥の立体構造を知りたい場合に有効である。
 以下、実際に試作評価を行った結果について、写真や図面等を用いて具体的に説明する。
(実施例1)
 まず、面方位が(100)のシリコンウェーハの上面に炭素膜を気相成長させた。このときのハンドリングによって裏面側に形成された傷について評価する。
 表面側をX線の照射面として、図6に示す(1)の方向からX線を入射し、XRT測定を行った。このとき、(400)回折条件で測定した為、入射角は74.86°とした。
 今回使用した装置は、X線発生機が(2)の方向の位置までは移動できない為、ウェーハを180度回転して、(1)方向から入射して再度XRTを測定した。その後、2回目の測定結果を180度回転させて、1回目の測定と同じ位置関係とした。(1)で撮った像を右目像、(2)で撮った像を左目像として、片側を白黒反転させて重ねた像を得たケースについて図7に示す。この場合は表面欠陥位置を合わせた。表面の欠陥である直線状のひび割れの様に見え得る欠陥は打ち消し合って見えなくなり、裏面にある接触傷のみを残して表示することが出来ている。
(実施例2)
 また、図8に示すように、右目像と左目像の上の丸い点を合わせるように1つの画像として捉えることでも目視で立体視(3D画像)による観察することが可能であり、この方法によっても、欠陥の深さ情報を得ることが出来る。
 図8の画像は図7に示した画像と同じものであるが、画像の上にある丸を重ねるようしてみることで、立体視ができる。このデータはSiウェーハの表面と裏面に欠陥がある場合の結果であるが、Si結晶中のスリップやSiCの欠陥の様に結晶の表面と裏面だけでなく内部に欠陥が発生した場合にはこの立体視(3D画像)による方法が結晶バルク中の中間の欠陥も分かる為より有効である。
 さらに、立体視が有効と思われる例を補足する。
 ウェーハ表面から裏面まで欠陥が貫通している場合の模式図と、立体視の例を図9に示す。
 図10は結晶内部に複雑な転位が存在する場合の例である、図9、図10のような場合は立体視による確認のほうが欠陥の全体像をつかみやすい。
 なお、本発明は、上記実施例に限定されるものではない。上記実施例は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、
     前記ウェーハは表面と裏面を有し、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、前記裏面で右目像と左目像の2つのXRT画像を取得する工程と、
     前記取得した2つのXRT画像について、前記表面又は前記裏面のいずれか一方の面上の欠陥位置で位置合わせを行う位置合わせ工程と、
     前記右目像と前記左目像のずれから前記ウェーハの深さ方向が異なる他の欠陥位置を判定する欠陥位置判定工程と、
    を含むことを特徴とするウェーハの深さ方向の欠陥位置の評価方法。
  2.  前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射する方法は、右方向、左方向のいずれかの方向に入射角度を固定し、X線を入射してXRT画像を取得してから、前記ウェーハを180°回転させて、X線を入射してもう一方の方向のXRT画像を取得することにより、前記右目像と前記左目像の2つのXRT画像を取得することを特徴とする請求項1に記載のウェーハの深さ方向の欠陥位置の評価方法。
  3.  前記欠陥位置判定工程は、前記取得した2つのXRT画像のどちらか一方を白黒反転させ、合成することによって判定することを特徴とする請求項1または請求項2に記載のウェーハの深さ方向の欠陥位置の評価方法。
  4.  X線トポグラフ(XRT)を用いて、ウェーハの深さ方向の欠陥位置を評価する方法であって、
     前記ウェーハは表面と裏面を有し、前記表面に対して、X線を右方向と左方向から回折条件となる入射角度で入射して、前記裏面で右目像と左目像の2つのXRT画像を取得し、目視により前記2つのXRT画像を1つの画像として捉えることで、深さ方向の欠陥位置を立体視(3D画像)として観察することを特徴とするウェーハの深さ方向の欠陥位置の評価方法。
  5.  前記ウェーハは単結晶ウェーハ、デバイスが形成されたウェーハの少なくとも一つであることを特徴とする請求項1または請求項4に記載のウェーハの深さ方向の欠陥位置の評価方法。
PCT/JP2023/032948 2022-11-09 2023-09-11 ウェーハの深さ方向の欠陥位置の評価方法 WO2024100979A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179236 2022-11-09
JP2022-179236 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024100979A1 true WO2024100979A1 (ja) 2024-05-16

Family

ID=91032245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032948 WO2024100979A1 (ja) 2022-11-09 2023-09-11 ウェーハの深さ方向の欠陥位置の評価方法

Country Status (1)

Country Link
WO (1) WO2024100979A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311111A (ja) * 1996-05-23 1997-12-02 Sumitomo Electric Ind Ltd 単結晶薄膜の評価方法
JP2003203956A (ja) * 2002-01-07 2003-07-18 Toshiba Corp Soi基板の評価方法及び評価装置、半導体装置の製造方法
JP2006284219A (ja) * 2005-03-31 2006-10-19 Xanavi Informatics Corp ナビゲーション装置および50音文字入力方法
JP2006349481A (ja) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind 単結晶試料における面内配向した転位線を有する結晶欠陥のx線トポグラフによる撮影方法
JP2015105831A (ja) * 2013-11-28 2015-06-08 株式会社リガク X線トポグラフィ装置
US20150369761A1 (en) * 2014-06-18 2015-12-24 Jordan Valley Semiconductors Ltd. Using multiple sources/detectors for high-throughput x-ray topography measurement
CN107044830A (zh) * 2016-12-27 2017-08-15 江苏量淘数据技术有限公司 分布式多目立体视觉系统及目标提取方法
US20190317028A1 (en) * 2018-04-12 2019-10-17 Bruker Jv Israel Ltd. Image contrast in X-Ray topography imaging for defect inspection
WO2022008924A1 (en) * 2020-07-09 2022-01-13 Oxford Instruments Nanotechnology Tools Limited Material analysis with multiple detectors
WO2022075100A1 (ja) * 2020-10-05 2022-04-14 信越半導体株式会社 欠陥評価方法、soi基板の欠陥評価方法、及び多層基板の欠陥評価方法
US20220113262A1 (en) * 2020-10-09 2022-04-14 Fei Company Method and system for wafer defect inspection
KR20230037309A (ko) * 2021-09-09 2023-03-16 한국전기연구원 비파괴분석법을 이용한 탄화규소 결정 결함위치 분석법과 이를 포함하는 분석장치 및 컴퓨터 프로그램
JP2023132352A (ja) * 2022-03-10 2023-09-22 キオクシア株式会社 評価装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311111A (ja) * 1996-05-23 1997-12-02 Sumitomo Electric Ind Ltd 単結晶薄膜の評価方法
JP2003203956A (ja) * 2002-01-07 2003-07-18 Toshiba Corp Soi基板の評価方法及び評価装置、半導体装置の製造方法
JP2006284219A (ja) * 2005-03-31 2006-10-19 Xanavi Informatics Corp ナビゲーション装置および50音文字入力方法
JP2006349481A (ja) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind 単結晶試料における面内配向した転位線を有する結晶欠陥のx線トポグラフによる撮影方法
JP2015105831A (ja) * 2013-11-28 2015-06-08 株式会社リガク X線トポグラフィ装置
US20150369761A1 (en) * 2014-06-18 2015-12-24 Jordan Valley Semiconductors Ltd. Using multiple sources/detectors for high-throughput x-ray topography measurement
CN107044830A (zh) * 2016-12-27 2017-08-15 江苏量淘数据技术有限公司 分布式多目立体视觉系统及目标提取方法
US20190317028A1 (en) * 2018-04-12 2019-10-17 Bruker Jv Israel Ltd. Image contrast in X-Ray topography imaging for defect inspection
WO2022008924A1 (en) * 2020-07-09 2022-01-13 Oxford Instruments Nanotechnology Tools Limited Material analysis with multiple detectors
WO2022075100A1 (ja) * 2020-10-05 2022-04-14 信越半導体株式会社 欠陥評価方法、soi基板の欠陥評価方法、及び多層基板の欠陥評価方法
US20220113262A1 (en) * 2020-10-09 2022-04-14 Fei Company Method and system for wafer defect inspection
KR20230037309A (ko) * 2021-09-09 2023-03-16 한국전기연구원 비파괴분석법을 이용한 탄화규소 결정 결함위치 분석법과 이를 포함하는 분석장치 및 컴퓨터 프로그램
JP2023132352A (ja) * 2022-03-10 2023-09-22 キオクシア株式会社 評価装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第3章 出力系, 3次元映像ハンドブック, 初版, 株式会社朝倉書店, 20 February 2006, pp. 171-207, 3.1.1 Taking and viewing stereo photos to 3.2.3 Depth sampling method, (ASAKURA PUBLISHING CO., LTD.), non-official translation (Chapter 3 Output system. 3D Image Handbook. 1st edition.) 3.1.1-3.2.3 *

Similar Documents

Publication Publication Date Title
JP5273955B2 (ja) X線撮像装置及びx線撮像方法
CN108701623A (zh) 包括利用偏振所得到的平行光对基板进行评价的方法
Imai et al. High‐Angular‐Resolution Microbeam X‐Ray Diffraction with CCD Detector
JP2017211380A (ja) 回折パターンを用いた二次元x線検出器位置較正及び補正
WO2024100979A1 (ja) ウェーハの深さ方向の欠陥位置の評価方法
JP2012083349A (ja) 多結晶材料中の結晶粒の配向と弾性歪を測定する方法
TW202420457A (zh) 晶圓的深度方向的缺陷位置的評估方法
KR100936746B1 (ko) Χ-선 토포그래피에 의한 결함의 3-차원 분포의 분석
TW421730B (en) Method of inspection with X-ray and an apparatus using such method
WO2017163697A1 (ja) 検出装置及び検出方法
TW202234056A (zh) 缺陷評價方法、soi基板之缺陷評價方法及多層基板之缺陷評價方法
JP2009097937A (ja) 試料分析装置、試料分析方法および試料分析プログラム
Bose et al. Nondestructive monitoring of die warpage in encapsulated chip packages
CN104502378B (zh) X射线ct装置
JP2007240510A (ja) X線トポグラフィー測定装置、および、x線トポグラフィー測定方法
US7903785B2 (en) Method of bright-field imaging using X-rays
JP2003090807A (ja) X線撮像法
JP2008249605A (ja) 結晶粒の極点図測定方法およびその装置
JP5935231B2 (ja) X線イメージングの方法及び装置
KR102180648B1 (ko) 3차원 단층촬영 검사 장치 및 방법
Riedl et al. Reliability of high‐resolution electron backscatter diffraction determination of strain and rotation variations using phase‐only and cross correlation
JP2013117495A (ja) 多結晶材料中の結晶粒の配向と弾性歪を測定する方法
US20080231855A1 (en) Method for Measuring the Anisotropy in an Element Comprising at Least One Fissile Material and a Corresponding Installation
Bowen et al. Full‐Wafer Defect Identification using X‐ray Topography
JP7134427B2 (ja) 結晶格子面分布測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888334

Country of ref document: EP

Kind code of ref document: A1