WO2024098954A1 - 旋转轴承组件及其负载元件 - Google Patents

旋转轴承组件及其负载元件 Download PDF

Info

Publication number
WO2024098954A1
WO2024098954A1 PCT/CN2023/118657 CN2023118657W WO2024098954A1 WO 2024098954 A1 WO2024098954 A1 WO 2024098954A1 CN 2023118657 W CN2023118657 W CN 2023118657W WO 2024098954 A1 WO2024098954 A1 WO 2024098954A1
Authority
WO
WIPO (PCT)
Prior art keywords
covering portion
radius
rolling elements
accommodating
load element
Prior art date
Application number
PCT/CN2023/118657
Other languages
English (en)
French (fr)
Inventor
钟启闻
朱威颖
Original Assignee
台达电子工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台达电子工业股份有限公司 filed Critical 台达电子工业股份有限公司
Publication of WO2024098954A1 publication Critical patent/WO2024098954A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings

Definitions

  • the present invention relates to a rotary bearing, and more particularly to a rotary bearing assembly and a load element thereof, which has the advantages of high load capacity and high-speed reduction output, as well as small size, and its load element is easy to assemble and maintain.
  • a conventional rotary bearing includes a bearing inner ring, a bearing outer ring, and a load element disposed on the bearing inner ring and the bearing outer ring.
  • the bearing outer ring can be fixed and the bearing inner ring can be rotated, or the bearing outer ring can be rotated and the bearing inner ring can be fixed.
  • a rotary bearing is used.
  • the motors used in automation applications have the characteristics of high speed and low torque, so it is not easy to drive large loads. Therefore, when the motor is used to push heavy objects, a reducer must be used to reduce speed and increase torque. Therefore, traditional rotary bearings are used in motor and reducer combinations. When torque output is required, they are used in conjunction with a gear set. However, since the gear set and the rotary bearing are of different sizes, they cannot share the same material. Therefore, when the rotary bearing is used in conjunction with a gear set, the design space requirement is large, which is not conducive to miniaturization.
  • reducers can adopt a variety of different designs.
  • multiple rollers are placed between the inner and outer teeth, and the bearing ring and the inner gear ring are designed separately to facilitate the axial fixation and assembly of the rollers.
  • the separate design of the bearing ring and the inner gear ring increases the number of parts, and also increases the processing and assembly costs.
  • the fixing and assembly of the bearing ring between the inner and outer teeth also consumes time and cost.
  • the purpose of this case is to provide a rotating bearing assembly and a load element thereof, which are used to construct a bearing with high load capacity and a high-speed reduction output, while having the advantages of a small volume, and its load element is easier to assemble and maintain.
  • the rotary bearing assembly is used in combination with a reducer to reduce the overall volume and number of parts under the same load, facilitate the assembly process, and solve the shortcomings of traditional cycloid reducers such as being unfavorable for miniaturization and being unable to share bearing materials.
  • the rotary bearing assembly includes an input shaft, an inner ring, an outer ring, and a load element.
  • the input shaft assembly rotates in conjunction with the rotating shaft of the motor and provides a power input.
  • the inner ring includes a gear set, and is sleeved on the input shaft through the gear set and driven by the input shaft.
  • the outer ring is sleeved on the inner ring through the load element and meshes with the gear set, wherein the gear set is driven by the input shaft to drive the inner ring, the gear set drives the outer ring, and the inner ring and the outer ring rotate relative to each other, wherein one of the inner ring and the outer ring provides a power output, and the power input and the power output have a speed difference.
  • the load element is further provided with a plurality of bearing rolling elements through a retainer, so that the load element can be quickly and easily assembled between the inner ring and the outer ring, and the plurality of bearing rolling elements can stably run on the running track between the inner ring and the outer ring.
  • the retainer can design the first covering part and the second covering part of the accommodating seat according to the characteristics of the bearing rolling element and the running track, so that each bearing rolling element is detachably arranged in the retainer and runs on the running track.
  • the inner contraction arc surface of the first covering part and the second covering part adopts a non-concentric circle design, and the retainer is integrally formed.
  • the present case provides a rotating bearing assembly, including an outer ring member and a load element.
  • the outer ring member includes a running track, which surrounds the central axis and has an inclination angle.
  • the load element includes a plurality of bearing rolling elements and a retainer.
  • the plurality of bearing rolling elements are assembled to run on the running track.
  • the retainer includes a plurality of accommodating seats, which are respectively assembled to accommodate a plurality of bearing rolling elements, wherein each of the plurality of accommodating seats includes a first covering portion, a second covering portion and a accommodating groove.
  • the first covering portion has an inner shrinking arc surface of a first radius.
  • the second covering portion is spatially opposite to the first covering portion, and has an inner shrinking arc surface of a second radius.
  • the inner shrinking arc surface of the first radius and the inner shrinking arc surface of the second radius are non-concentric circles.
  • the accommodating groove is arranged between the first covering portion and the second covering portion, wherein each of the plurality of bearing rolling elements is detachably accommodated therein.
  • the accommodating groove is located between the first covering portion and the second covering portion, and runs on the running track.
  • the present case further provides a rotating bearing assembly, which is configured to accommodate multiple bearing rolling elements to run on a running track
  • the load element includes a retainer.
  • the retainer includes multiple accommodating seats, which are respectively configured to accommodate multiple bearing rolling elements.
  • Each of the multiple accommodating seats includes a first covering portion, a second covering portion and an accommodating groove.
  • the first covering portion has an inner contraction arc surface of a first radius.
  • the second covering portion is spatially opposite to the first covering portion, and has an inner contraction arc surface of a second radius.
  • the inner contraction arc surface of the first radius is not concentric with the inner contraction arc surface of the second radius.
  • the accommodating groove is arranged between the first covering portion and the second covering portion, wherein each of the multiple bearing rolling elements is detachably accommodated between the accommodating groove, the first covering portion and the second covering portion, and runs on the running track.
  • FIG1 is a schematic structural diagram of a rotary bearing assembly in a preferred embodiment of the present invention.
  • FIG2 is a three-dimensional structural diagram of a rotary bearing assembly according to a preferred embodiment of the present invention.
  • FIG3 is a vertical cross-sectional view of a rotary bearing assembly of a preferred embodiment of the present invention.
  • FIG4 is an exploded view of the structure of the outer ring member in the rotary bearing assembly of the preferred embodiment of the present invention.
  • FIG5 is a vertical cross-sectional view of the outer ring member in the rotary bearing assembly of the preferred embodiment of the present invention.
  • FIG6 is an enlarged view of area P1 in FIG5 ;
  • FIG7 is a schematic diagram of the structure of a load element in a rotary bearing assembly in a preferred embodiment of the present invention.
  • FIG8 is an exploded view of the structure of the load element in the rotary bearing assembly of the preferred embodiment of the present invention.
  • FIG9 is an enlarged view of the load element unit structure in area P2 in FIG7;
  • FIG10 is a vertical cross-sectional view of a load cell unit structure
  • FIG11 is a diagram showing the relationship between the dimensions of the load element unit structure and the bearing rolling element
  • FIG. 12 is another dimensional relationship diagram of the load element unit structure corresponding to the bearing rolling element.
  • first feature is set on or above a second feature
  • different embodiments of the present disclosure may use repeated reference symbols and/or marks.
  • spatially related terms such as “top”, “bottom”, “upper”, “lower” and similar terms may be used.
  • spatially related terms are used to cover different orientations of the device in use or operation.
  • the device may also be positioned otherwise (e.g., rotated 90 degrees or located in other orientations), and the description of the spatially related terms used may be interpreted accordingly.
  • FIG. 1 to 12 disclose a preferred embodiment of the rotary bearing assembly of the present invention.
  • the rotary bearing assembly 1 of the present invention can be used in, but not limited to, various motor devices, machine tools, mechanical arms, automobiles, motorcycles or other power machines to provide a power output with an appropriate speed difference.
  • the rotary bearing assembly 1 includes an input shaft 10, an inner ring 20, an outer ring 30, and a load element 40.
  • the input shaft 10 is located substantially at the center of the rotary bearing assembly 1 and extends along the central axis J of the rotary bearing assembly 1.
  • the input shaft 10 is assembled with the motor.
  • the rotating shaft (not shown) rotates and provides a power input.
  • the inner ring 20 includes a gear set 21, and is sleeved on the input shaft 10 through the gear set 21 and driven by the input shaft 10.
  • the outer ring 30 is sleeved on the inner ring 20 through the load element 40, and meshes with the gear set 21, wherein the gear set 21 is driven by the input shaft 10 to drive the inner ring 20, the gear set 21 drives the outer ring 30, and the inner ring 20 and the outer ring 30 rotate relative to each other.
  • the outer ring 30 can also be rotated by the input shaft 10 through the gear set 21.
  • one of the inner ring 20 and the outer ring 30 provides a power output, and the power input and the power output have a speed difference.
  • the outer ring 30 can be an output end, and the inner ring 20 is a fixed end and includes at least one output gear disc 23, 23' and a transmission shaft 22.
  • the output gear disc 23 can be fixedly disposed on the motor housing, and the output gear disc 23' is fixed to a ground.
  • the housings 23, 23' are respectively connected to the gear set 21 through the transmission shaft 22. When the gear set 21 is driven by the input shaft 10, the gear set 21 drives the outer ring 30 to provide power output.
  • the outer ring 30 may be a fixed end
  • the inner ring 20 is an output end and includes at least one output sprocket 23, 23' and a transmission shaft 22.
  • At least one output sprocket 23, 23' is connected to the gear set 21 through the transmission shaft 22.
  • the gear set 21 drives at least one output sprocket 23, 23' through the transmission shaft 22 to provide power output.
  • the outer ring 30 can be, for example, a pin shell ring, and the inner ring surface 301 corresponds to the gear set 21 of the inner ring 20 .
  • the outer ring 30 is sleeved on the output toothed discs 23 and 23 'of the inner ring 20 through the load element 40 to realize the application of the output end and the fixed end.
  • the output toothed discs 23 and 23 'of the outer ring 30 and the inner ring 20 form a pair of running tracks 31, which surround the central axis J of the rotating bearing assembly 1 and are assembled to provide a plurality of bearing rolling elements 42 of the load element 40 to run on.
  • the running track 31 is spatially relative to the outer ring 30 and at least one output toothed disc 23 and 23 'of the inner ring 20, and is a parallelogram in a radial cross section, so that the plurality of bearing rolling elements 42 of the load element 40 can roll between the outer ring 30 and the at least one output toothed disc 23 and 23 'of the inner ring 20.
  • the running track 31 on the outer ring 30 is located at the (upper and lower) opposite outer sides of the inner ring surface 301, and has an inclination angle ⁇ (as shown in FIG. 12 ), for example, 45°, relative to the central axis J.
  • a plurality of bearing rolling elements 42 are cylindrical and rotate on the running track 31.
  • the inclination angle ⁇ of the running track 31 relative to the central axis J is the inclination angle ⁇ of each bearing rolling element 42 relative to the central axis J.
  • the load element 40 further includes a retainer 41, and each bearing rolling element 42 is detachably disposed on the retainer 41, so that the plurality of bearing rolling elements 42 are maintained to run on the running track 31 on the outer ring 30.
  • the outer ring 30 further includes a pair of roller retaining rings 33, which are respectively located between the running track 32 and the inner ring surface 301.
  • the pair of roller retaining rings 33 are further respectively arranged on the upper and lower opposite sides of the inner ring surface 301 through a receiving groove 32.
  • the running track 31 and the roller retaining ring 33 are arranged adjacent to each other. After the roller retaining ring 33 is arranged in the receiving groove 32, the roller (not shown) on the inner ring surface 301 can be restricted.
  • the retainer 41 of the load element 40 is, for example, integrally formed into a ring structure, including a plurality of accommodating seats 410, each of which is configured to accommodate a plurality of bearing rolling elements 42.
  • the unit structure of each accommodating seat 410 is shown in Figure 9.
  • the ratio of the inclined length W1 to the thickness W2 ranges from 9/10 to 700/27, and the ratio of the inclined length W1 to the installation depth W3 ranges from 1/2 to 620/27. This helps to optimize the operation of multiple bearing rolling elements 42 on the running track.
  • the plurality of bearing rolling elements 42 are cylindrical, having a diameter length ⁇ E and a cylinder height L.
  • Each of the plurality of receiving seats 410 includes a receiving groove 413, a first covering portion 411 and a second covering portion 412. The first covering portion 411 and the second covering portion 412 are opposite to each other in space and are respectively located at two opposite ends of the receiving groove 413.
  • Each of the plurality of bearing rolling elements 42 is detachably received between the receiving groove 413, the first covering portion 411 and the second covering portion 412, and runs on the running track 31 (as shown in FIG. 5 ).
  • the retainer 41 can design the first covering portion 411 and the second covering portion 412 of the receiving seat 410 according to the characteristics of the bearing rolling element 42 and the running track 31.
  • the first covering portion 411 has a first covering thickness T1
  • the second covering portion 412 has a second covering thickness T2.
  • the ratio of the first coating thickness T1 or the second coating thickness T2 to the diameter length ⁇ E of the bearing rolling elements 42 ranges from 0.2 to 0.25.
  • the first covering portion 411 has an inwardly contracted arc surface with a first radius R1
  • the second covering portion 412 has an inwardly contracted arc surface with a second radius R2
  • the inwardly contracted arc surface with the first radius R1 is not concentric with the inwardly contracted arc surface with the second radius R2, as shown in FIG12 (a cross section perpendicular to the rolling center C of the bearing rolling element 42).
  • the inwardly contracted arc surface with the first radius R1 has a first circle center C1
  • the inwardly contracted arc surface with the second radius R2 has a second circle center C2.
  • Each of the multiple bearing rolling elements 42 is a cylinder, and the rolling center C of the cylinder passes through a cylinder center.
  • the bearing rolling element 42 When each bearing rolling element 42 is accommodated in the corresponding accommodating groove 413, the cylinder center is concentric with the first circle center C1, but is not concentric with the second circle center C2. C2 is not concentric. In other embodiments, when each of the plurality of accommodating grooves 413 is accommodated in the corresponding accommodating groove 413, the center of the cylinder is concentric with the second center C2, but is not concentric with the first center C1. Thus, under such a design, the bearing rolling element 42 can be enclosed in the accommodating seat 410. In actual operation, the bearing rolling element 42 may abut against the second enclosing portion 412 or the first enclosing portion 411. Of course, the present case is not limited thereto.
  • the ratio of the first radius R1 or the second radius R2 to the diameter length ⁇ E of the plurality of bearing rolling elements 42 ranges from 0.5 to 0.55.
  • the bearing rolling elements 42 are accommodated in the receiving groove 413, and the receiving groove 413 has an axial inclination angle ⁇ relative to the central axis J of the input shaft 10.
  • the ratio of the column height L to sin (inclination angle ⁇ ) is less than or equal to a height H of the retainer 41.
  • each accommodating seat 410 adjacent to the first covering portion 411 has a first radial length L1
  • the end surface of each accommodating seat 410 adjacent to the second covering portion 412 has a second radial length L2
  • the ratio of the radial length ⁇ E of the plurality of bearing rolling elements 42 to the first radial length L1 or the second radial length L2 is in a range of 2 to 2.5
  • the accommodating groove 413 has an accommodating width W and an accommodating length L3.
  • the accommodating width W is greater than the radial length ⁇ E of the plurality of bearing rolling elements 42
  • the accommodating length L3 is greater than the column height L.
  • the plurality of bearing rolling elements 42 can be easily and firmly mounted on the retainer 41, simplifying the installation of the load element 40 (as shown in FIG. 3 ), and maintaining the operation optimization of the plurality of bearing rolling elements 42 on the running track.
  • the retainer 41 can design the first covering portion 411 and the second covering portion 412 of the accommodating seat 410 according to the characteristics of the bearing rolling element 42 and the running track 31, so that each bearing rolling element 42 is detachably arranged on the retainer 41 and runs on the running track 31.
  • Each bearing rolling element 42 is easy to install to the accommodating seat 410 or to disassemble from the accommodating seat 410.
  • a plurality of bearing rolling elements 42 can be first accommodated in the retainer 41, and then the load element 40 can be assembled to the running track 31 between the inner ring 20 and the outer ring 30, thereby simplifying the assembly and maintenance of the rotary bearing assembly 1.
  • the present case is not limited to this and will not be described in detail.
  • the present invention provides a rotating bearing assembly and a load element thereof, which are used to construct a bearing with a high load capacity and a high-speed reduction output, while having the advantage of a small volume, and its load element is easier to assemble and maintain.
  • the rotating bearing assembly is used in conjunction with a reducer to reduce the overall volume and number of parts under the same load, facilitate the assembly process, and solve the shortcomings of traditional cycloid reducers such as being unfavorable for miniaturization and being unable to share bearing materials.
  • the rotating bearing assembly includes an input shaft, an inner ring, an outer ring, and a load element. The input shaft assembly is combined with the rotation of the motor shaft and provides a power input.
  • the inner ring includes a gear set, and is mounted on the input shaft through the gear set and is driven by the input shaft.
  • the outer ring is connected to the input shaft through the gear set.
  • the overload element is sleeved on the inner ring and meshes with the gear set, wherein the gear set is driven by the input shaft to drive the inner ring, the gear set drives the outer ring, and the inner ring and the outer ring rotate relative to each other, wherein one of the inner ring and the outer ring provides a power output, and the power input and the power output have a speed difference.
  • the load element is further provided with a plurality of bearing rolling elements through a retainer, so that the load element can be quickly and easily assembled between the inner ring and the outer ring, and the plurality of bearing rolling elements can stably run on the running track between the inner ring and the outer ring.
  • the retainer can design the first covering part and the second covering part of the accommodating seat according to the characteristics of the bearing rolling element and the running track, so that each bearing rolling element is detachably arranged on the retainer and runs on the running track.
  • the inner contraction arc surface of the first covering part and the second covering part adopts a non-concentric circle design, and the retainer is integrally formed.
  • each bearing rolling element When each bearing rolling element is accommodated in the corresponding accommodating groove, it can be supported by the first covering part or the second covering part, which is easy to assemble and disassemble. After a plurality of bearing rolling elements are accommodated in the retainer, the load element is assembled to the running track between the inner ring and the outer ring, thereby simplifying the assembly and maintenance of the rotating bearing assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种旋转轴承组件(1)及其负载元件(40)。旋转轴承组件(1)的外环件(30)包括具有倾斜角度的运行轨道(32)环绕中心轴,负载元件(40)包括多个轴承滚动体(42)及保持器(41),多个轴承滚动体(42)组配于运行轨道(32)上运行;保持器(41)包括多个容置座(410)组配容置多个轴承滚动体(42);每一容置座(410)包括第一包覆部(411)、第二包覆部(412)及容纳槽(413);第一包覆部(411)具有第一半径的内缩弧面,第二包覆部(412)具有第二半径的内缩弧面,第一半径的内缩弧面与第二半径的内缩弧面非同心圆;容纳槽(413)位于第一包覆部(411)与第二包覆部(412)之间。轴承滚动体(42)系可拆地容置于容纳槽(413)、第一包覆部(411)以及第二包覆部(412)之间,并于运行轨道(32)上运行。该旋转轴承组件(1)具有高负载能力及高速比减速输出外,又具有小体积的优势,且其负载元件易于组装和维修。

Description

旋转轴承组件及其负载元件 技术领域
本案为一种旋转轴承,尤指一种旋转轴承组件及其负载元件,具有高负载能力及高速比减速输出外,又具有小体积的优势,且其负载元件易于组装和维修。
背景技术
一般而言,传统旋转轴承包括轴承内圈、轴承外圈以及设置于轴承内圈和轴承外圈的负载元件。通过负载元件的滚动,可达成轴承外圈固定和轴承内圈转动,或轴承外圈转动和轴承内圈固定的应用。而于一般自动化应用上若要承载负载并做一旋转运动时,便会使用到旋转轴承。
另一方面,自动化应用中的马达包含高转速而扭力小的特性,因此不易驱动大型的负载,故当马达欲使用于推动重物时,便须利用减速机来进行减速,由此提高扭力。因此,传统旋转轴承应用于马达与减速机组合中,在需配合扭力输出的情况下,会再搭配齿轮组来做使用。然而,由于齿轮组与所配合的旋转轴承尺寸不同,无法共用物料。因此,旋转轴承搭配齿轮组使用时,设计空间需求大,不利于小型化设计。
为了提高性能,减速机可采用多种不同的设计。但要在相同负载条件下同时达到减小整体体积、减少零件数量和便于组装的目的并不容易。例如在传统的减速器中,在内齿和外齿之间放置多个滚柱,轴承圈和内齿圈分开设计,以方便滚柱的轴向固定和组装。但是,轴承圈和内齿圈分开设计则增加了零件数量,也增加了加工成本和装配成本。此外,轴承圈在内齿和外齿之间的固定和组装亦需耗费工时与成本。当设计零件数量增加,空间需求也增加时,则旋转轴承组件即难以实现体积小型化。
有鉴于此,实有必要提供一种旋转轴承组件及其负载元件,具有高负载能力及高速比减速输出外,又具有小体积的优势,且其负载元件易于组装和维修,以解决现有技术的缺失。
发明内容
本案的目的在于提供一种旋转轴承组件及其负载元件,用以架构具有高负载能力的轴承及高速比减速输出,同时具有小体积的优势,且其负载元件更易于组装和维修。
本案的另一目的在于提供一种旋转轴承组件。旋转轴承组件结合减速机使用,可于相同负荷下减小整体体积及零件数,便利组装程序,并解决传统摆线型减速机具有不利于小型化及无法共用轴承物料等缺失。旋转轴承组件包括输入轴、内环件、外环件以及负载元件。输入轴组配结合马达的转轴转动并提供一动力输入。内环件包括一齿轮组,且通过齿轮组套设于输入轴上,并受输入轴驱动。外环件通过负载元件套设于内环件上,且与齿轮组啮合,其中齿轮组受输入轴驱动带动内环件,齿轮组带动外环件,且内环件与外环件相对转动,其中内环件和外环件的一者提供一动力输出,且动力输入与动力输出具有一转速差。另一方面,负载元件更通过保持器设置多个轴承滚动体,使负载元件可快速简易地组装于内环件与外环件之间,且多个轴承滚动体可于内环件与外环件之间的运行轨道上稳定运行。在不影响旋转轴承组件实现体积小型化的需求下,保持器可依据轴承滚动体和运行轨道特性设计容置座的第一包覆部和第二包覆部,使每一轴承滚动体呈可拆地设置于保持器并于运行轨道上运行。其中第一包覆部和第二包覆部的内缩弧面采非同心圆设计,保持器一体成型,每一轴承滚动体容置于对应的容纳槽时,可通过第一包覆部或第二包覆部抵顶,易于组装和拆卸。待多个轴承滚动体容置于保持器后,负载元件再一并组装至内环件和外环件之间的运行轨道,简化旋转轴承组件的组装和维修。
为达上述目的,本案提供一种旋转轴承组件,包括外环件及负载元件。外环件包括一运行轨道,运行轨道环绕中心轴,且具有一倾斜角度。负载元件包括多个轴承滚动体及保持器。多个轴承滚动体组配于运行轨道上运行。保持器包括多个容置座,分别组配容置多个轴承滚动体,其中多个容置座的每一个包括第一包覆部、第二包覆部及容纳槽。第一包覆部具有第一半径的内缩弧面。第二包覆部于空间上相对第一包覆部,且具有第二半径的内缩弧面。第一半径的内缩弧面与第二半径的内缩弧面非同心圆。容纳槽设置于第一包覆部与第二包覆部之间,其中多个轴承滚动体的每一个系可拆地容置于 容纳槽、第一包覆部以及第二包覆部之间,并于运行轨道上运行。
为达上述目的,本案另提供一种旋转轴承组件,组配容置多个轴承滚动体于运行轨道上运行,负载元件包括保持器。保持器包括多个容置座,分别组配容置多个轴承滚动体。多个容置座的每一个包括多个容置座的每一个包括第一包覆部、第二包覆部及容纳槽。第一包覆部具有第一半径的内缩弧面。第二包覆部于空间上相对第一包覆部,且具有第二半径的内缩弧面。第一半径的内缩弧面与第二半径的内缩弧面非同心圆。容纳槽设置于第一包覆部与第二包覆部之间,其中多个轴承滚动体的每一个可拆地容置于容纳槽、第一包覆部以及第二包覆部之间,并于运行轨道上运行。
附图说明
图1为本案较佳实施例的旋转轴承组件结构示意图;
图2为本案较佳实施例的旋转轴承组件的立体结构图;
图3为本案较佳实施例的旋转轴承组件的垂直截面图;
图4为本案较佳实施例的旋转轴承组件中外环件的结构分解图;
图5为本案较佳实施例的旋转轴承组件中外环件的垂直截面图;
图6为图5中区域P1的放大图;
图7为本案较佳实施例的旋转轴承组件中负载元件的结构示意图;
图8为本案较佳实施例的旋转轴承组件中负载元件的结构分解图;
图9为图7中区域P2的负载元件单元结构放大图;
图10为负载元件单元结构的垂直截面图;
图11为负载元件单元结构对应轴承滚动体的尺寸关系图;
图12为负载元件单元结构对应轴承滚动体的另一尺寸关系图。
附图标号说明:
1:旋转轴承组件
10:输入轴
20:内环件
21:齿轮组
22:传动轴
23、23’:输出齿盘
30:外环件
301:内环面
31:运行轨道
32:容置沟
33:滚柱挡环
40:负载元件
41:保持器
410:容置座
411:第一包覆部
412:第二包覆部
42:轴承滚动体
C:滚动中心
C1:第一圆心
C2:第二圆心
H:高度
J:中心轴
L:柱体高度
L1:第一径向长度
L2:第二径向长度
L3:容置长度
R1:第一半径
R2:第二半径
T1:第一包覆厚度
T2:第二包覆厚度
W:容置宽度
W1:倾斜长度
W2:厚度
W3:安装深度
X、Y、Z:轴
ΦE:径长
θ:倾斜角度
具体实施方式
体现本案特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本案能够在不同的实施例上具有各种的变化,其皆不脱离本案的范围,且其中的说明及附图在本质上当作说明之用,而非用于限制本案。例如,若是本揭示以下的内容叙述了将一第一特征设置于一第二特征之上或上方,即表示其包含了所设置的上述第一特征与上述第二特征是直接接触的实施例,亦包含了尚可将附加的特征设置于上述第一特征与上述第二特征之间,而使上述第一特征与上述第二特征可能未直接接触的实施例。另外,本揭示中不同实施例可能使用重复的参考符号和/或标记。这些重复系为了简化与清晰的目的,并非用以限定各个实施例和/或所述外观结构之间的关系。再者,为了方便描述附图中一组件或特征部件与另一(多)组件或(多)特征部件的关系,可使用空间相关用语,例如“顶”、“底”、“上”、“下”及类似的用语等。除了附图所示出的方位之外,空间相关用语用以涵盖使用或操作中的装置的不同方位。所述装置也可被另外定位(例如,旋转90度或者位于其他方位),并对应地解读所使用的空间相关用语的描述。此外,当将一组件称为“连接到”或“耦合到”另一组件时,其可直接连接至或耦合至另一组件,或者可存在介入组件。尽管本揭示的广义范围的数值范围及参数为近似值,但尽可能精确地在具体实例中陈述数值。另外,可理解的是,虽然“第一”、“第二”、“第三”等用词可被用于权利要求范围中以描述不同的组件,但这些组件并不应被这些用语所限制,在实施例中相应描述的这些组件是以不同的组件符号来表示。这些用语是为了分别不同组件。例如:第一组件可被称为第二组件,相似地,第二组件也可被称为第一组件而不会脱离实施例的范围。
请参阅图1至图12,其系揭示本案较佳实施例的旋转轴承组件。本案的旋转轴承组件1可为但不限于应用在各种马达装置、工具机、机械手臂、汽车、机车或其它动力机械内,以便提供适当的转速差的动力输出。
请参阅图1至图3,于本实施例中,旋转轴承组件1包括输入轴10、内环件20、外环件30以及负载元件40。输入轴10位于旋转轴承组件1实质上中心的位置,沿旋转轴承组件1的中心轴J延伸,输入轴10组配结合马达的 转轴(未示出)转动并提供一动力输入。内环件20包括一齿轮组21,且通过齿轮组21套设(sleeved on)于输入轴10上,并受输入轴10驱动。外环件30通过负载元件40套设于内环件20上,且与齿轮组21啮合,其中齿轮组21受输入轴10驱动带动内环件20,齿轮组21带动外环件30,且内环件20与外环件30相对转动。换言之,外环件30通过齿轮组21亦可为输入轴10所转动。于本实施例中,内环件20和外环件30的一者提供一动力输出,且动力输入与动力输出具有一转速差。
于一实施例中,外环件30可为一输出端,内环件20为一固定端且包括至少一输出齿盘23、23’以及一传动轴22。于本实施例中,输出齿盘23可例如固定设置于马达外壳,输出齿盘23’则固定于一地面。壳体23、23’分别通过传动轴22连接至齿轮组21,于齿轮组21受输入轴10驱动,齿轮组21带动外环件30提供动力输出。
于另一实施例中,外环件30可为一固定端,内环件20则为一输出端且包括至少一输出齿盘23、23’以及传动轴22,至少一输出齿盘23、23’通过传动轴22连接至该齿轮组21,于齿轮组21受输入轴10驱动,齿轮组21经传动轴22带动至少一输出齿盘23、23’提供动力输出。
请一并参阅图4,于本实施例中,外环件30可例如为一针壳环,内环面301对应于内环件20的齿轮组21。另外,外环件30通过负载元件40套设于内环件20的输出齿盘23、23’,以实现前述输出端和固定端的应用。其中外环件30和内环件20的输出齿盘23、23’形成一对运行轨道31,环绕旋转轴承组件1的中心轴J,组配提供负载元件40的多个轴承滚动体42在上面运行。于本实施例中,运行轨道31于空间上相对外环件30以及内环件20的至少一输出齿盘23、23’,且于一径向的截面上呈一平行四边型,以供负载元件40的多个轴承滚动体42于外环件30以及内环件20的该至少一输出齿盘23、23’之间滚动。当然,本案并不以此为限。于本实施例中,外环件30上的运行轨道31位内环面301的(上、下)两相对外侧,于相对中心轴J更具有一倾斜角度θ(如图12所示),例如45°。多个轴承滚动体42呈圆柱体且贴合运行轨道31上旋转运行,运行轨道31相对中心轴J的倾斜角度θ即为每一轴承滚动体42相对中心轴J的倾斜角度θ。于本实施例中,负载元件40还包括保持器41,每一轴承滚动体42呈可拆地设置于保持器41,使多个轴承滚动体42维持于外环件30上的运行轨道31上运行。
于本实施例中,外环件30还包含一对滚柱挡环33,分别位于运行轨道32和内环面301之间。该对滚柱挡环33更分别通过一容置沟32设置于内环面301的上下两相对侧。运行轨道31与滚柱挡环33相邻设置,滚柱挡环33设置于容置沟32后,可限制内环面301上的滚柱(未示出)。
请参阅图6至图9,于本实施例中,负载元件40的保持器41例如一体成型制造成环状结构,包括多个容置座410,分别组配容置多个轴承滚动体42。每一容置座410单元结构如图9所示。于本实施例中,运行轨道31的一轨道环内径以及一轨道环外径之间具有一倾斜长度W1,滚柱挡环33具一厚度W2,且容置沟32具有一安装深度W3。较佳者,倾斜长度W1相对厚度W2的比值范围介于9/10至700/27之间,且倾斜长度W1相对安装深度W3的比值范围介于1/2至620/27之间。由此,有助于实现多个轴承滚动体42于运行轨道的运行最佳化。
请参阅图9至图12,另一方面,于本实施例中,多个轴承滚动体42呈一圆柱体,具有一径长ΦE以及柱体高度L。其中多个容置座410的每一个包括一容纳槽413、一第一包覆部411以及一第二包覆部412。第一包覆部411以及第二包覆部412于空间上彼此相对,分别位于容纳槽413的两相对端。多个轴承滚动体42的每一个可拆地容置于容纳槽413、第一包覆部411以及第二包覆部412之间,并于运行轨道31(如图5所示)上运行。于本实施例中,在不影响旋转轴承组件1(如图2所示)实现体积小型化的需求下,保持器41可依据轴承滚动体42和运行轨道31特性设计容置座410的第一包覆部411和第二包覆部412。其中第一包覆部411具有第一包覆厚度T1,第二包覆部412具有一第二包覆厚度T2。较佳者,第一包覆厚度T1或第二包覆厚度T2相对多个轴承滚动体42的径长ΦE的比值范围介于0.2至0.25。
再者,于本实施例中,第一包覆部411具有一第一半径R1的内缩弧面,第二包覆部412具有一第二半径R2的内缩弧面,具有该第一半径R1的内缩弧面与具有第二半径R2的内缩弧面不同心,如图12所示(垂直轴承滚动体42滚动中心C的截面)。于本实施例中,第一半径R1的内缩弧面具有一第一圆心C1,第二半径R2的内缩弧面具有一第二圆心C2。多个轴承滚动体42的每一个呈一圆柱体,圆柱体的滚动中心C贯穿一柱体圆心。当每一轴承滚动体42容置于对应的容纳槽413时,圆柱体的柱体圆心与第一圆心C1呈同心设置,但与第二圆心 C2不同心。于其他实施例中,多个的每一个容置于对应的容纳槽413时,柱体圆心与第二圆心C2呈同心设置,但与第一圆心C1不同心。如此一来,在这样的设计下,轴承滚动体42可包覆在容置座410内。而在实际运转时,轴承滚动体42可能顶抵第二包覆部412或第一包覆部411。当然,本案并不受限于此。
于本实施例中,第一半径R1或第二半径R2相对多个轴承滚动体42的径长ΦE的比值范围介于0.5至0.55。于本实施例中,轴承滚动体42容置于容纳槽413,容纳槽413相对输入轴10的中心轴J轴向具有一倾斜角度θ。较佳者,柱体高度L相对sin(倾斜角度θ)的比值小于或等于保持器41的一高度H。
另外,于本实施例中,每一容置座410邻近第一包覆部411的端面具有第一径向长度L1,每一容置座410邻近第二包覆部412的端面具有一第二径向长度L2,其中多个轴承滚动体42的该径长ΦE相对第一径向长度L1或第二径向长度L2的比值范围介于2至2.5之间。再者,容纳槽413具有一容置宽度W以及一容置长度L3。较佳者,容置宽度W大于多个轴承滚动体42的径长ΦE,容置长度L3大于柱体高度L。由此,多个轴承滚动体42可简易且稳固地安装至保持器41上,简化负载元件40(如图3所示)的安装,并维持多个轴承滚动体42于运行轨道的运行最佳化。换言之,在不影响旋转轴承组件1(如图3所示)实现体积小型化的需求下,保持器41可依据轴承滚动体42和运行轨道31特性设计容置座410的第一包覆部411和第二包覆部412,使每一轴承滚动体42呈可拆地设置于保持器41并于运行轨道31上运行。每一轴承滚动体42易于安装至容置座410或自容置座410拆卸。于组装旋转轴承组件1时,可将多个轴承滚动体42先容置于保持器41后,负载元件40再一并组装至内环件20和外环件30之间的运行轨道31,简化旋转轴承组件1的组装和维修。当然,本案并不受限于此,且不再赘述。
综上所述,本案提供一种旋转轴承组件及其负载元件,用以架构具有高负载能力的轴承及高速比减速输出,同时具有小体积的优势,且其负载元件更易于组装和维修。旋转轴承组件结合减速机使用,可于相同负荷下减小整体体积及零件数,便利组装程序,并解决传统摆线型减速机具有不利于小型化及无法共用轴承物料等缺失。旋转轴承组件包括输入轴、内环件、外环件以及负载元件。输入轴组配结合马达的转轴转动并提供一动力输入。内环件包括一齿轮组,且通过齿轮组套设于输入轴上,并受输入轴驱动。外环件通 过负载元件套设于内环件上,且与齿轮组啮合,其中齿轮组受输入轴驱动带动内环件,齿轮组带动外环件,且内环件与外环件相对转动,其中内环件和外环件的一者提供一动力输出,且动力输入与动力输出具有一转速差。另一方面,负载元件更通过保持器设置多个轴承滚动体,使负载元件可快速简易地组装于内环件与外环件之间,且多个轴承滚动体可于内环件与外环件之间的运行轨道上稳定运行。在不影响旋转轴承组件实现体积小型化的需求下,保持器可依据轴承滚动体和运行轨道特性设计容置座的第一包覆部和第二包覆部,使每一轴承滚动体呈可拆地设置于保持器并于运行轨道上运行。其中第一包覆部和第二包覆部的内缩弧面采非同心圆设计,保持器一体成型,每一轴承滚动体容置于对应的容纳槽时,可通过第一包覆部或第二包覆部抵顶,易于组装和拆卸。待多个轴承滚动体容置于保持器后,负载元件再一并组装至内环件和外环件之间的运行轨道,简化旋转轴承组件的组装和维修。
本案得由本领域技术人员任施匠思而为诸般修饰,然皆不脱如附权利要求范围所欲保护的。

Claims (14)

  1. 一种旋转轴承组件,包括:
    外环件,包括运行轨道,环绕中心轴,具有倾斜角度;以及
    负载元件,组配包括:
    多个轴承滚动体,组配于所述运行轨道上运行;以及
    保持器,包括多个容置座,分别组配容置所述多个轴承滚动体,其中所述多个容置座的每一个包括:
    第一包覆部,具有第一半径的内缩弧面;
    第二包覆部,于空间上相对所述第一包覆部,且具有第二半径的内缩弧面,其中所述第一半径的内缩弧面与所述第二半径的内缩弧面非同心圆;以及
    容纳槽,设置于所述第一包覆部与所述第二包覆部之间,其中所述多个轴承滚动体的每一个可拆地容置于所述容纳槽、所述第一包覆部以及所述第二包覆部之间,并于所述运行轨道上运行。
  2. 根据权利要求1所述的旋转轴承组件,其中所述外环件通过所述负载元件套设于内环件上,所述内环件包括齿轮组套设于输入轴,且所述齿轮组受所述输入轴驱动带动所述内环件,所述齿轮组带动所述外环件,且所述内环件与所述外环件相对转动,其中所述内环件和所述外环件的一者提供动力输出,且所述动力输入与所述动力输出具有转速差。
  3. 根据权利要求2所述的旋转轴承组件,其中所述外环件为输出端,所述内环件为固定端且包括至少一输出齿盘以及传动轴,所述至少一输出齿盘固定设置且通过所述传动轴连接至所述齿轮组,于所述齿轮组受所述输入轴驱动,所述齿轮组带动所述外环件提供所述动力输出。
  4. 根据权利要求2所述的旋转轴承组件,其中所述外环件为固定端,所述内环件为输出端且包括至少一输出齿盘以及传动轴,所述至少一输出齿盘通过所述传动轴连接至所述齿轮组,于所述齿轮组受所述输入轴驱动,所述齿轮组经所述传动轴带动所述至少一输出齿盘提供所述动力输出。
  5. 根据权利要求1所述的旋转轴承组件,其中所述外环件包含一对运行轨道以及一对滚柱挡环,所述对运行轨道位于所述外环件的两相对外侧,所述对滚柱挡环分别通过容置沟设置于两相对侧,且分别与所述对运行轨道相 邻设置。
  6. 根据权利要求5所述的旋转轴承组件,其中所述对运行轨道的轨道环内径以及轨道环外径之间具有倾斜长度,所述对滚柱挡环具厚度,且所述容置沟具有安装深度,其中所述倾斜长度相对所述厚度的比值范围介于9/10至700/27之间,所述倾斜长度相对所述安装深度的比值范围介于1/2至620/27之间。
  7. 根据权利要求1所述的旋转轴承组件,其中所述多个轴承滚动体的每一个呈圆柱体,容置于所述容纳槽并顶抵所述第一包覆部或所述第二包覆部。
  8. 一负载元件,组配容置多个轴承滚动体于运行轨道上运行,所述负载元件包括:
    保持器,包括多个容置座,分别组配容置所述多个轴承滚动体,其中所述多个容置座的每一个包括:
    第一包覆部,具有第一半径的内缩弧面;
    第二包覆部,于空间上相对所述第一包覆部,且具有第二半径的内缩弧面,其中所述第一半径的内缩弧面与所述第二半径的内缩弧面非同心圆;以及
    容纳槽,设置于所述第一包覆部与所述第二包覆部之间,其中所述多个轴承滚动体的每一个可拆地容置于所述容纳槽、所述第一包覆部以及所述第二包覆部之间,并于所述运行轨道上运行。
  9. 根据权利要求8所述的负载元件,其中多个轴承滚动体的每一个呈圆柱体,具有径长以及柱体高度,所述第一包覆部以及所述第二包覆部分别位于所述容纳槽的两相对端,其中所述第一包覆部具有包覆厚度,所述第二包覆部具有第二包覆厚度,其中所述包覆厚度或所述第二包覆厚度相对所述多个轴承滚动体的所述径长的比值范围介于0.2至0.25。
  10. 根据权利要求9所述的负载元件,其中所述第一半径或所述第二半径相对所述多个轴承滚动体的所述径长的比值范围介于0.5至0.55。
  11. 根据权利要求9所述的负载元件,其中所述容置座邻近所述第一包覆部的端面具有第一径向长度,所述容置座邻近所述第二包覆部的端面具有第二径向长度,其中所述多个轴承滚动体的所述径长相对所述第一径向长度 或所述第二径向长度的比值范围介于2至2.5之间。
  12. 根据权利要求9所述的负载元件,其中所述容纳槽具有容置宽度以及容置长度,所述容置宽度大于所述多个轴承滚动体的所述径长,所述容置长度大于所述柱体高度。
  13. 根据权利要求9所述的负载元件,其中所述容纳槽相对所述运行轨道的一中心轴且具有一倾斜角度,其中所述柱体高度相对sin(所述倾斜角度)的比值小于或等于所述保持器的高度。
  14. 根据权利要求8所述的负载元件,其中所述多个轴承滚动体的每一个呈圆柱体,具有柱体圆心,所述第一半径的内缩弧面具有第一圆心,所述第二半径的内缩弧面具有第二圆心,所述多个轴承滚动体的每一个容置于对应的所述容纳槽时顶抵所述第一包覆部或所述第二包覆部,且所述第一圆心和所述第二圆心中的一者与所述柱体圆心呈同心。
PCT/CN2023/118657 2022-11-10 2023-09-13 旋转轴承组件及其负载元件 WO2024098954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263424395P 2022-11-10 2022-11-10
US63/424,395 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024098954A1 true WO2024098954A1 (zh) 2024-05-16

Family

ID=90943674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118657 WO2024098954A1 (zh) 2022-11-10 2023-09-13 旋转轴承组件及其负载元件

Country Status (4)

Country Link
US (1) US20240159269A1 (zh)
JP (1) JP2024070219A (zh)
CN (2) CN118009005A (zh)
WO (1) WO2024098954A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100757A (ja) * 2005-09-30 2007-04-19 Nsk Ltd 直動案内装置用転動体収容ベルトおよび直動案内装置
JP2008002486A (ja) * 2006-06-20 2008-01-10 Jtekt Corp 円筒ころ軸受および円筒ころ軸受用保持器
TW201416577A (zh) * 2012-10-30 2014-05-01 Hiwin Tech Corp 交叉式滾柱軸承
CN105485171A (zh) * 2015-12-28 2016-04-13 瓦房店轴承集团有限责任公司 一体不同心圆弧兜孔结构保持架
CN111102325A (zh) * 2018-10-29 2020-05-05 欢颜自动化设备(上海)有限公司 一种微型大孔径中空轴rv减速机
CN212455226U (zh) * 2020-04-13 2021-02-02 洛阳Lyc轴承有限公司 一种圆柱滚子轴承整体式保持器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100757A (ja) * 2005-09-30 2007-04-19 Nsk Ltd 直動案内装置用転動体収容ベルトおよび直動案内装置
JP2008002486A (ja) * 2006-06-20 2008-01-10 Jtekt Corp 円筒ころ軸受および円筒ころ軸受用保持器
TW201416577A (zh) * 2012-10-30 2014-05-01 Hiwin Tech Corp 交叉式滾柱軸承
CN105485171A (zh) * 2015-12-28 2016-04-13 瓦房店轴承集团有限责任公司 一体不同心圆弧兜孔结构保持架
CN111102325A (zh) * 2018-10-29 2020-05-05 欢颜自动化设备(上海)有限公司 一种微型大孔径中空轴rv减速机
CN212455226U (zh) * 2020-04-13 2021-02-02 洛阳Lyc轴承有限公司 一种圆柱滚子轴承整体式保持器

Also Published As

Publication number Publication date
US20240159269A1 (en) 2024-05-16
JP2024070219A (ja) 2024-05-22
CN118009005A (zh) 2024-05-10
CN118008948A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
JP5675104B2 (ja) 伝動装置
CN1236215C (zh) 行星齿轮装置和带有这种行星齿轮装置的驱动部件
GB2047381A (en) Speed change device
JP2006200557A (ja) 伝動装置
WO2024098954A1 (zh) 旋转轴承组件及其负载元件
CN111911604B (zh) 无活齿架平面正弦活齿减速单元
JP5603661B2 (ja) 歯車と軸の摺動構造およびころ軸受のリテーナ
JPH07239004A (ja) 動力伝達装置
JP4895273B2 (ja) 減速機
JP5822383B2 (ja) 減速装置
JP4811795B2 (ja) トロイダル型無段変速機
JP2006300338A (ja) 減速機
JP7187888B2 (ja) 遊星式動力伝達装置
US20020094763A1 (en) Rotary drive device of a polishing device
US11788606B2 (en) Transmission mechanism
SK284375B6 (sk) Prevodovka s valivým eliminačným zariadením
JP4947770B2 (ja) 減速機
JP5919773B2 (ja) トロイダル型無段変速機
TWI820817B (zh) 共軛凸輪式減速機
TWI820695B (zh) 擺線型減速機
CN113483061B (zh) 基于交叉滚子轴承的小型正弦齿轮减速器
JP2008082536A (ja) トロイダル型無段変速機
CN117307667A (zh) 一种传动装置
JP2022092919A (ja) トラクション変速機および電動機付きトラクション変速機
JP4855532B2 (ja) 減速機