WO2024098747A1 - 一种无人驾驶车辆制动线控控制方法及控制系统 - Google Patents

一种无人驾驶车辆制动线控控制方法及控制系统 Download PDF

Info

Publication number
WO2024098747A1
WO2024098747A1 PCT/CN2023/100341 CN2023100341W WO2024098747A1 WO 2024098747 A1 WO2024098747 A1 WO 2024098747A1 CN 2023100341 W CN2023100341 W CN 2023100341W WO 2024098747 A1 WO2024098747 A1 WO 2024098747A1
Authority
WO
WIPO (PCT)
Prior art keywords
push rod
electric push
brake
signal
oil pump
Prior art date
Application number
PCT/CN2023/100341
Other languages
English (en)
French (fr)
Inventor
金世卓
李子献
李黎明
高新颖
胡浩
Original Assignee
安徽合力股份有限公司
合力工业车辆(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽合力股份有限公司, 合力工业车辆(上海)有限公司 filed Critical 安徽合力股份有限公司
Publication of WO2024098747A1 publication Critical patent/WO2024098747A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid

Definitions

  • the present invention relates to the technical field of brake control for unmanned vehicles, and in particular to a brake wire control method and a control system for unmanned vehicles.
  • the vehicle braking system refers to a series of specialized devices that apply a certain force to the wheels, thereby forcing them to brake to a certain degree.
  • the existing control method of the brake wire control system of unmanned vehicles has the following problems:
  • the existing wire control brake system realizes the braking function in the automatic driving mode by pushing and pulling the brake pedal, which will cause the intelligent driving control system to be unable to determine whether it is manual braking or automatic braking;
  • the existing wire-controlled braking system realizes the braking function in the autonomous driving mode by pushing and pulling the brake pedal. It does not detect the brake valve pressure and cannot perform closed-loop detection of the braking status when the wire-controlled braking device fails.
  • the object of the present invention is to provide a brake wire control method and control system for an unmanned vehicle to solve the problems raised in the above background technology.
  • the present invention provides the following technical solutions:
  • a brake-by-wire control method for an unmanned vehicle comprises the following steps:
  • Step 1 collecting brake control information, obtaining the initial position of the electric push rod release brake position value and the electric push rod maximum brake position value and recording them as d0 and d1;
  • Step 2 Verify and calibrate the electric push rod position when the vehicle is released and at maximum braking according to the braking control information obtained in step 1, and record the calibrated electric push rod release braking position value as D0 and the calibrated electric push rod maximum braking position value as D1;
  • Step 3 obtaining the current control signal of the vehicle, processing the electric push rod position parameter calibrated in step 2 and the current control signal obtained, and obtaining the electric push rod target value for adjusting the braking of the vehicle;
  • Step 4 Transmit the electric push rod target value obtained in step 3 to the vehicle controller for controlling the vehicle braking.
  • the braking control information includes emergency stop switch signal, manual brake pedal switch signal, front and rear axle pressure sensor signals, automatic driving mode signal, automatic driving braking signal, automatic driving braking instruction percentage, electric push rod fault signal, electric push rod motion feedback signal, electric push rod actual position feedback, electric push rod release brake position value, and electric push rod maximum brake position value.
  • the method for obtaining the release brake position value of the electric push rod as D0 and the maximum brake position value of the electric push rod as D1 in step 2 comprises the following steps:
  • Step 2.1 determine whether the CAN communication between the electric linear actuator and the vehicle controller is established successfully. If it is established successfully, execute step 2.2;
  • Step 2.2 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod release brake position value d0, if the electric push rod movement feedback signal is enabled, execute step 2.3;
  • Step 2.3 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, then execute step 2.4;
  • Step 2.4 make the electric push rod movement command signal False, set the oil pump motor speed to 0rpm, stop the brake assist, and determine whether the absolute value of the difference between the actual position feedback of the electric push rod and the brake release position value d0 of the electric push rod is not greater than 2mm. If so, the brake release position value D0 of the electric push rod is equal to the current actual position feedback value of the electric push rod, and execute step 2.5. If not, output a brake parameter setting fault signal and display it on the instrument display;
  • Step 2.5 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod maximum brake position value d1, if the electric push rod movement feedback signal is enabled, execute step 2.6;
  • Step 2.6 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal from the electric push rod movement, then execute step 2.7;
  • Step 2.7 make the electric push rod movement command signal False, set the oil pump motor speed to 0rpm, stop the brake assist, and determine whether the absolute value of the difference between the actual position feedback of the electric push rod and the maximum braking position value d1 of the electric push rod is no more than 2mm. If so, the maximum braking position value D1 of the electric push rod is equal to the current actual position feedback value of the electric push rod. If not, output the brake parameter setting fault signal and display it on the instrument display.
  • step 3 when the vehicle control signal is an emergency stop switch signal, an automatic driving brake signal and an automatic driving brake instruction percentage, the braking control in step 3 includes the following steps:
  • Step 3.1 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the calibrated electric push rod release brake position value D0, if the electric push rod movement feedback signal is enabled, execute step 3.2;
  • Step 3.2 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, then execute step 3.3;
  • Step 3.3 wait to determine whether there is an emergency stop switch rising edge signal or an automatic driving mode signal, if there is an emergency stop switch rising edge signal, execute step 3.4, if there is an automatic driving mode signal, execute step 3.5;
  • Step 3.4 turn on the emergency stop control
  • Step 3.5 Turn on the automatic driving control.
  • the emergency stop control comprises the following steps:
  • Step 3.41 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod maximum brake position value D1, if the electric push rod movement feedback signal is enabled, execute step 3.42;
  • Step 3.42 the electric push rod moves to the target value D1 and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, execute step 3.43;
  • Step 3.43 set the electric push rod movement command signal to False, set the oil pump motor speed to 0rpm, stop the brake assist, and determine whether the absolute value of the difference between the actual position feedback of the electric push rod and the maximum brake position value D1 of the electric push rod is not greater than 2mm. If so, execute step 3.44. If not, output a brake fault signal.
  • Step 3.44 Determine whether the brake pressure meets the brake intensity value through the front and rear axle pressure sensor signals. If so, execute step 3.1 after 2 seconds. If not, output a brake fault signal.
  • the automatic driving control comprises the following steps;
  • Step 3.51 determine whether there is an automatic driving braking signal, if so, execute step 3.52;
  • step 3.41 if there is a rising edge signal of the emergency stop switch, execute step 3.41; if there is no automatic driving brake signal or there is a manual brake pedal switch signal, execute step 3.1.
  • the vehicle controller sends an electric push rod motion command signal and an oil pump motor speed control signal according to the electric push rod target value in step 3, and establishes a CAN sending channel, and sends the electric push rod motion command signal, the electric push rod target value and the oil pump motor speed control signal to the bus in real time.
  • the electric push rod and the oil pump motor obtain the electric push rod motion command signal and the oil pump motor speed control signal through the CAN bus, and control the actions of the electric push rod and the oil pump motor.
  • a brake wire control system for an unmanned vehicle includes a brake system, wherein the brake system includes an oil pump, a brake valve, and a wheel brake in sequence, wherein the brake valve is connected to an electric push rod, and the oil pump is connected to an oil pump motor.
  • the oil pump motor is connected to the oil pump motor controller, the electric push rod and the oil pump motor controller are both connected to the vehicle controller, and the vehicle controller is connected to a signal acquisition unit.
  • the signal acquisition unit includes a rear axle pressure sensor, a front axle pressure sensor, a foot brake pedal switch, and an emergency stop switch;
  • the wheel-side brakes include a front wheel brake group and a rear wheel brake group;
  • the front axle pressure sensor is connected to the brake pipeline of the front wheel brake group;
  • the rear axle pressure sensor is connected to the brake pipeline of the rear wheel brake group.
  • the vehicle controller is in signal communication with the electric push rod and the oil pump motor controller via a CAN bus, and the vehicle controller is connected to an instrument display via the CAN bus.
  • the present invention has the following beneficial effects:
  • This application can detect the emergency stop switch signal and the automatic driving mode switch signal to determine whether the vehicle is in a manual braking state or an automatic braking state, and perform different braking controls in different braking states, thereby improving braking control;
  • the present application adopts a human-machine co-driving brake-by-wire control method to achieve closed-loop detection of the braking state when the brake-by-wire device fails, thereby avoiding a series of safety issues caused by damage to the friction pad due to a brake failure or lack of feedback due to brake failure.
  • Figure 1 is a brake-by-wire control system for unmanned vehicles
  • FIG2 is a control flow chart of the brake-by-wire control system for an unmanned vehicle.
  • a brake wire control system for an unmanned vehicle includes a braking system, which includes an oil pump, a brake valve, and a wheel-side brake in sequence.
  • the brake valve is connected to an electric push rod
  • the oil pump is connected to an oil pump motor
  • the oil pump motor is connected to an oil pump motor controller
  • the electric push rod and the oil pump motor controller are both connected to a vehicle controller
  • the vehicle controller is connected to a signal acquisition unit
  • the signal acquisition unit includes a rear axle pressure sensor, a front axle pressure sensor, a foot brake pedal switch, and an emergency stop switch
  • the wheel-side brake includes a front wheel brake group and a rear wheel brake group
  • the front axle pressure sensor is connected to the brake pipeline of the front wheel brake group
  • the rear axle pressure sensor is connected to the brake pipeline of the rear wheel brake group
  • the vehicle controller communicates with the electric push rod and the oil pump motor controller signal through a CAN bus
  • the vehicle controller is connected to the instrument display through the CAN bus.
  • the vehicle controller is
  • a brake-by-wire control method for an unmanned vehicle comprises the following steps:
  • Step 1 collect braking control information, obtain the initial positions of the electric push rod brake release position value and the electric push rod maximum braking position value and record them as d0 and d1, wherein the braking control information includes the emergency stop switch signal, the manual brake pedal switch signal, the front and rear axle pressure sensor signals, the automatic driving mode signal, the automatic driving braking signal, the automatic driving braking command percentage, the electric push rod fault signal, the electric push rod motion feedback signal, the electric push rod actual position feedback, the electric push rod brake release position value, and the electric push rod maximum braking position value.
  • the braking control information includes the emergency stop switch signal, the manual brake pedal switch signal, the front and rear axle pressure sensor signals, the automatic driving mode signal, the automatic driving braking signal, the automatic driving braking command percentage, the electric push rod fault signal, the electric push rod motion feedback signal, the electric push rod actual position feedback, the electric push rod brake release position value, and the electric push rod maximum braking position value.
  • Step 2 Verify and calibrate the electric push rod position when the vehicle brake is released and at maximum braking according to the braking control information obtained in step 1, and record the calibrated electric push rod release braking position value as D0 and the calibrated electric push rod maximum braking position value as D1;
  • the method for obtaining the electric push rod release braking position value as D0 and the electric push rod maximum braking position value as D1 in step 2 includes the following steps:
  • Step 2.1 determine whether the CAN communication between the electric linear actuator and the vehicle controller is established successfully. If it is established successfully, execute step 2.2;
  • Step 2.2 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod release brake position value d0, if the electric push rod movement feedback signal is enabled, execute step 2.3;
  • Step 2.3 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, then execute step 2.4;
  • Step 2.4 make the electric push rod movement command signal False, set the oil pump motor speed to 0rpm, stop the brake assist, and determine whether the absolute value of the difference between the actual position feedback of the electric push rod and the brake release position value d0 of the electric push rod is not greater than 2mm. If so, the brake release position value D0 of the electric push rod is equal to the current actual position feedback value of the electric push rod, and execute step 2.5. If not, output a brake parameter setting fault signal and display it on the instrument display;
  • Step 2.5 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod maximum brake position value d1, if the electric push rod movement feedback signal is enabled, execute step 2.6;
  • Step 2.6 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal from the electric push rod movement, then execute step 2.7;
  • Step 2.7 Set the electric push rod motion command signal to False, set the oil pump motor speed to 0 rpm, stop the brake assist, and determine the absolute value of the difference between the actual position feedback of the electric push rod and the maximum brake position value d1 of the electric push rod. No, it is not greater than 2mm. If so, the maximum braking position value D1 of the electric push rod is equal to the actual position feedback value of the current electric push rod. If not, a braking parameter setting fault signal is output and displayed on the instrument display.
  • Step 3 obtaining the current control signal of the vehicle, processing the electric push rod position parameter calibrated in step 2 and the current control signal obtained, and obtaining the electric push rod target value for adjusting the braking of the vehicle; in step 3, when the vehicle control signal is an emergency stop switch signal, an automatic driving braking signal, and an automatic driving braking command percentage, the braking control in step 3 includes the following steps:
  • Step 3.1 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the calibrated electric push rod release brake position value D0, if the electric push rod movement feedback signal is enabled, execute step 3.2;
  • Step 3.2 The electric push rod moves to the target value and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, then execute step 3.3;
  • Step 3.3 wait to determine whether there is an emergency stop switch rising edge signal or an automatic driving mode signal, if there is an emergency stop switch rising edge signal, execute step 3.4, if there is an automatic driving mode signal, execute step 3.5;
  • Step 3.4 Enable emergency stop control.
  • Emergency stop control includes the following steps:
  • Step 3.41 make the electric push rod movement command signal True, set the oil pump motor speed to 600rpm, make the hydraulic oil flow to the brake valve for brake assistance, the electric push rod target value is equal to the electric push rod maximum brake position value D1, if the electric push rod movement feedback signal is enabled, execute step 3.42;
  • Step 3.42 the electric push rod moves to the target value D1 and stops moving. If it is determined that there is no feedback signal of the electric push rod movement, execute step 3.43;
  • Step 3.43 set the electric push rod movement command signal to False, set the oil pump motor speed to 0rpm, stop the brake assist, and determine whether the absolute value of the difference between the actual position feedback of the electric push rod and the maximum brake position value D1 of the electric push rod is not greater than 2mm. If so, execute step 3.44. If not, output a brake fault signal.
  • Step 3.44 Determine whether the brake pressure meets the brake strength value through the front and rear axle pressure sensor signals. If yes, execute step 3.1 after 2 seconds. If no, output a brake fault signal.
  • Step 3.5 start the automatic driving control, the automatic driving control includes the following steps;
  • Step 3.51 determine whether there is an automatic driving braking signal, if so, execute step 3.52;
  • step 3.41 if there is a rising edge signal of the emergency stop switch, execute step 3.41; if there is no automatic driving brake signal or there is a manual brake pedal switch signal, execute step 3.1.
  • Step 4 transmit the electric push rod target value obtained in step 3 to the vehicle controller for controlling the braking of the vehicle. That is, the vehicle controller sends an electric push rod movement command signal and an oil pump motor speed control signal according to the electric push rod target value in step 3, and establishes a CAN sending channel to send the electric push rod movement command signal, the electric push rod target value and the oil pump motor speed control signal to the bus in real time.
  • the electric push rod and the oil pump motor obtain the electric push rod movement command signal and the oil pump motor speed control signal through the CAN bus, and control the action of the electric push rod and the oil pump motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

一种无人驾驶车辆制动线控控制方法,包括以下步骤:步骤1、采集制动控制信息,获取电动推杆释放制动位置值和电动推杆最大制动位置值的初始位置并记录为d0和d1;步骤2、对整车制动释放和最大制动时电动推杆位置校验和标定,记录标定的电动推杆释放制动位置值为D0,标定的电动推杆最大制动位置值为D1;步骤3、获取整车当前控制信号,获得用于调整整车制动的电动推杆目标值;步骤4、将步骤3得到的电动推杆目标值到整车控制器用于控制整车制动,通过检测急停开关信号和自动驾驶模式开关信号,进而可以判断整车是处于人工制动状态还是处于自动制动状态,并且在不同的制动状态下执行不同的制动控制,进而可以提高制动控制效果。

Description

一种无人驾驶车辆制动线控控制方法及控制系统 技术领域
本发明涉及无人驾驶车辆制动控制技术领域,具体是一种无人驾驶车辆制动线控控制方法及控制系统。
背景技术
车辆制动系统是指对车轮施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置。
现有的无人驾驶车辆行车制动线控系统控制方法,存在以下问题:
1、现有线控制动系统通过推拉制动踏板来实现自动驾驶模式下的制动功能,会造成智能驾驶控制系统无法判断是人工制动抑或是自动制动;
2、现有线控制动系统通过推拉制动踏板来实现自动驾驶模式下的制动功能,没有对制动阀压力进行检测,无法在线控制动装置故障时对制动状态进行闭环检测。
发明内容
本发明的目的在于提供一种无人驾驶车辆制动线控控制方法及控制系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种无人驾驶车辆制动线控控制方法,包括以下步骤:
步骤1、采集制动控制信息,获取电动推杆释放制动位置值和电动推杆最大制动位置值的初始位置并记录为d0和d1;
步骤2、根据步骤1获取的制动控制信息对整车制动释放和最大制动时电动推杆位置校验和标定,并记录标定的电动推杆释放制动位置值为D0,标定的电动推杆最大制动位置值为D1;
步骤3、获取整车当前控制信号,根据步骤2标定的电动推杆位置参数及获取的当前控制信号进行处理,并获得用于调整整车制动的电动推杆目标值;
步骤4、将步骤3得到的电动推杆目标值传输到整车控制器用于控制整车制动。
作为本发明进一步的方案:所述制动控制信息包括急停开关信号、人工制动踏板开关信号、前后桥压力传感器信号、自动驾驶模式信号、自动驾驶制动信号、自动驾驶制动指令百分比、电动推杆故障信号、电动推杆运动反馈信号、电动推杆实际位置反馈、电动推杆释放制动位置值、电动推杆最大制动位置值。
作为本发明进一步的方案:所述步骤2中电动推杆释放制动位置值为D0、电动推杆最大制动位置值为D1的获取方法包括以下步骤:
步骤2.1、判断电动推杆与整车控制器之间CAN通讯是否建立成功,若是建立成功则执行步骤2.2;
步骤2.2、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆释放制动位置值d0,若电动推杆运动反馈信号使能则执行步骤2.3;
步骤2.3、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.4;
步骤2.4、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆释放制动位置值d0的差值绝对值是否不大于2mm,若是,则电动推杆释放制动位置值D0等于当前电动推杆实际位置反馈值,并且执行步骤2.5,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来;
步骤2.5、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值d1,若电动推杆运动反馈信号使能则执行步骤2.6;
步骤2.6、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.7;
步骤2.7、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值d1的差值绝对值是否不大于2mm,若是,则电动推杆最大制动位置值D1等于当前电动推杆实际位置反馈值,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来。
作为本发明进一步的方案:所述步骤3中当整车控制信号为急停开关信号、自动驾驶制动信号和自动驾驶制动指令百分比,所述步骤3中的制动控制包括以下步骤:
步骤3.1、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于标定的电动推杆释放制动位置值D0,若电动推杆运动反馈信号使能则执行步骤3.2;
步骤3.2、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤3.3;
步骤3.3、等待判断是否有急停开关上升沿信号或者自动驾驶模式信号,若有急停开关上升沿信号则执行步骤3.4,若有自动驾驶模式信号则执行步骤3.5;
步骤3.4、开启急停控制;
步骤3.5、开启自动驾驶控制。
作为本发明进一步的方案:所述急停控制包括以下步骤:
步骤3.41、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值D1,若电动推杆运动反馈信号使能则执行步骤3.42;
步骤3.42、电动推杆运动到目标值D1停止运动,判断电动推杆运动反馈信号无则执行步骤3.43;
步骤3.43、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值D1的差值绝对值是否不大于2mm,若是,则执行步骤3.44,若不是,输出制动故障信号;
步骤3.44、通过前后桥压力传感器信号判断制动压力是否符合制动强度值,若符合,2s后则执行步骤3.1,若不符合,输出制动故障信号。
作为本发明进一步的方案:所述自动驾驶控制包括以下步骤;
步骤3.51、判断是否有自动驾驶制动信号,如有则执行步骤3.52;
步骤3.52、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于L,L=θ×(D1-D0)÷100+D0,若电动推杆运动指令信号False,电动推杆目标值等于D0,通过前后桥压力传感器信号实时判断制动压力是否符合制动强度值,若检测到不符合,输出制动故障信号;
控制过程中,若有急停开关上升沿信号则执行步骤3.41;若无自动驾驶制动信号或者有人工制动踏板开关信号则执行步骤3.1。
作为本发明进一步的方案:所述整车控制器根据所述步骤3中的电动推杆目标值发出电动推杆运动指令信号、油泵电机转速控制信号,并建立CAN发送通道,将电动推杆运动指令信号、电动推杆目标值和油泵电机转速控制信号实时发送到总线上,电动推杆、油泵电机通过CAN总线获取电动推杆运动指令信号、油泵电机转速控制信号,并进行电动推杆、油泵电机动作控制。
一种无人驾驶车辆制动线控控制系统,包括制动系统,所述制动系统包括依次油泵、制动阀、轮边制动器,所述制动阀连接有电动推杆,所述油泵连接有油泵电机, 油泵电机连接油泵电机控制器,所述电动推杆、油泵电机控制器均与整车控制器连通,所述整车控制器连接有信号采集部。
作为本发明进一步的方案:所述信号采集部包括后桥压力传感器、前桥压力传感器、脚制动踏板开关、急停开关,所述轮边制动器包括前轮制动器组、后轮制动器组,所述前桥压力传感器与所述前轮制动器组的制动管路连通,所述后桥压力传感器与所述后轮制动器组的制动管路连通。
作为本发明进一步的方案:所述整车控制器通过CAN总线与电动推杆、油泵电机控制器信号连通,所述整车控制器通过CAN总线连接有仪表显示器。
与现有技术相比,本发明的有益效果是:
1、本申请通过检测急停开关信号和自动驾驶模式开关信号,进而可以判断整车是处于人工制动状态还是处于自动制动状态,并且在不同的制动状态下执行不同的制动控制,进而可以提高制动控制;
2、本申请采用人机共驾线控制动控制方式,实现线控制动装置故障时对制动状态进行闭环检测,从而避免因制动故障导致整车带着制动行驶造成摩擦片损坏或者因制动失效而无反馈造成的一系列安全问题。
附图说明
图1为无人驾驶车辆行车制动线控系统;
图2为无人驾驶车辆行车制动线控系统控制流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-2,本发明实施例中,一种无人驾驶车辆制动线控控制系统,包括制动系统,制动系统包括依次油泵、制动阀、轮边制动器,制动阀连接有电动推杆,油泵连接有油泵电机,油泵电机连接油泵电机控制器,电动推杆、油泵电机控制器均与整车控制器连通,整车控制器连接有信号采集部,信号采集部包括后桥压力传感器、前桥压力传感器、脚制动踏板开关、急停开关,轮边制动器包括前轮制动器组、后轮制动器组,前桥压力传感器与前轮制动器组的制动管路连通,后桥压力传感器与后轮制动器组的制动管路连通,整车控制器通过CAN总线与电动推杆、油泵电机控制器信 号连通,整车控制器通过CAN总线连接有仪表显示器,此外,整车控制器还连接有锂电池组,锂电池组与泵电机控制柜前连通,进而为泵电机提供电力。
一种无人驾驶车辆制动线控控制方法,包括以下步骤:
步骤1、采集制动控制信息,获取电动推杆释放制动位置值和电动推杆最大制动位置值的初始位置并记录为d0和d1,其中,制动控制信息包括急停开关信号、人工制动踏板开关信号、前后桥压力传感器信号、自动驾驶模式信号、自动驾驶制动信号、自动驾驶制动指令百分比、电动推杆故障信号、电动推杆运动反馈信号、电动推杆实际位置反馈、电动推杆释放制动位置值、电动推杆最大制动位置值。
步骤2、根据步骤1获取的制动控制信息对整车制动释放和最大制动时电动推杆位置校验和标定,并记录标定的电动推杆释放制动位置值为D0,标定的电动推杆最大制动位置值为D1;步骤2中电动推杆释放制动位置值为D0、电动推杆最大制动位置值为D1的获取方法包括以下步骤:
步骤2.1、判断电动推杆与整车控制器之间CAN通讯是否建立成功,若是建立成功则执行步骤2.2;
步骤2.2、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆释放制动位置值d0,若电动推杆运动反馈信号使能则执行步骤2.3;
步骤2.3、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.4;
步骤2.4、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆释放制动位置值d0的差值绝对值是否不大于2mm,若是,则电动推杆释放制动位置值D0等于当前电动推杆实际位置反馈值,并且执行步骤2.5,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来;
步骤2.5、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值d1,若电动推杆运动反馈信号使能则执行步骤2.6;
步骤2.6、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.7;
步骤2.7、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值d1的差值绝对值是 否不大于2mm,若是,则电动推杆最大制动位置值D1等于当前电动推杆实际位置反馈值,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来。
步骤3、获取整车当前控制信号,根据步骤2标定的电动推杆位置参数及获取的当前控制信号进行处理,并获得用于调整整车制动的电动推杆目标值;步骤3中当整车控制信号为急停开关信号、自动驾驶制动信号和自动驾驶制动指令百分比,步骤3中的制动控制包括以下步骤:
步骤3.1、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于标定的电动推杆释放制动位置值D0,若电动推杆运动反馈信号使能则执行步骤3.2;
步骤3.2、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤3.3;
步骤3.3、等待判断是否有急停开关上升沿信号或者自动驾驶模式信号,若有急停开关上升沿信号则执行步骤3.4,若有自动驾驶模式信号则执行步骤3.5;
步骤3.4、开启急停控制,急停控制包括以下步骤:
步骤3.41、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值D1,若电动推杆运动反馈信号使能则执行步骤3.42;
步骤3.42、电动推杆运动到目标值D1停止运动,判断电动推杆运动反馈信号无则执行步骤3.43;
步骤3.43、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值D1的差值绝对值是否不大于2mm,若是,则执行步骤3.44,若不是,输出制动故障信号;
步骤3.44、通过前后桥压力传感器信号判断制动压力是否符合制动强度值,若符合,2s后则执行步骤3.1,若不符合,输出制动故障信号
步骤3.5、开启自动驾驶控制,自动驾驶控制包括以下步骤;
步骤3.51、判断是否有自动驾驶制动信号,如有则执行步骤3.52;
步骤3.52、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于L,L=θ×(D1-D0)÷100+D0,若电动推杆运动指令信号False,电动推杆目标值等于D0,通过前后桥压力传感器信号实时判断制动压力是否符合制动强度值,若检测到不符合,输出制动故障信号;
控制过程中,若有急停开关上升沿信号则执行步骤3.41;若无自动驾驶制动信号或者有人工制动踏板开关信号则执行步骤3.1。
步骤4、将步骤3得到的电动推杆目标值传输到整车控制器用于控制整车制动,也就是,整车控制器根据步骤3中的电动推杆目标值发出电动推杆运动指令信号、油泵电机转速控制信号,并建立CAN发送通道,将电动推杆运动指令信号、电动推杆目标值和油泵电机转速控制信号实时发送到总线上,电动推杆、油泵电机通过CAN总线获取电动推杆运动指令信号、油泵电机转速控制信号,并进行电动推杆、油泵电机动作控制。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 一种无人驾驶车辆制动线控控制方法,其特征在于,包括以下步骤:
    步骤1、采集制动控制信息,获取电动推杆释放制动位置值和电动推杆最大制动位置值的初始位置,并记录为d0和d1;
    步骤2、根据步骤1获取的制动控制信息对整车制动释放和最大制动时电动推杆位置校验和标定,并记录标定的电动推杆释放制动位置值为D0,标定的电动推杆最大制动位置值为D1;
    步骤3、获取整车当前控制信号,根据步骤2标定的电动推杆位置参数及获取的当前控制信号进行处理,并获得用于调整整车制动的电动推杆目标值;
    步骤4、将步骤3得到的电动推杆目标值传输到整车控制器用于控制整车制动。
  2. 根据权利要求1所述的一种无人驾驶车辆制动线控控制方法,其特征在于,所述制动控制信息包括急停开关信号、人工制动踏板开关信号、前后桥压力传感器信号、自动驾驶模式信号、自动驾驶制动信号、自动驾驶制动指令百分比、电动推杆故障信号、电动推杆运动反馈信号、电动推杆实际位置反馈、电动推杆释放制动位置值、电动推杆最大制动位置值。
  3. 根据权利要求1所述的一种无人驾驶车辆制动线控控制方法,其特征在于,所述步骤2中电动推杆释放制动位置值为D0、电动推杆最大制动位置值为D1的获取方法包括以下步骤:
    步骤2.1、判断电动推杆与整车控制器之间CAN通讯是否建立成功,若是建立成功则执行步骤2.2;
    步骤2.2、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆释放制动位置值d0,若电动推杆运动反馈信号使能则执行步骤2.3;
    步骤2.3、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.4;
    步骤2.4、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆释放制动位置值d0的差值绝对值是否不大于2mm,若是,则电动推杆释放制动位置值D0等于当前电动推杆实际位置反馈值,并且执行步骤2.5,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来;
    步骤2.5、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压 油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值d1,若电动推杆运动反馈信号使能则执行步骤2.6;
    步骤2.6、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤2.7;
    步骤2.7、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值d1的差值绝对值是否不大于2mm,若是,则电动推杆最大制动位置值D1等于当前电动推杆实际位置反馈值,若不是,输出制动参数设置故障信号,并且在仪表显示器中显示出来。
  4. 根据权利要求1所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述步骤3中当整车控制信号为急停开关信号、自动驾驶制动信号和自动驾驶制动指令百分比,所述步骤3中的制动控制包括以下步骤:
    步骤3.1、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于标定的电动推杆释放制动位置值D0,若电动推杆运动反馈信号使能则执行步骤3.2;
    步骤3.2、电动推杆运动到目标值停止运动,判断电动推杆运动反馈信号无,则执行步骤3.3;
    步骤3.3、等待判断是否有急停开关上升沿信号或者自动驾驶模式信号,若有急停开关上升沿信号则执行步骤3.4,若有自动驾驶模式信号则执行步骤3.5;
    步骤3.4、开启急停控制;
    步骤3.5、开启自动驾驶控制。
  5. 根据权利要求4所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述急停控制包括以下步骤:
    步骤3.41、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于电动推杆最大制动位置值D1,若电动推杆运动反馈信号使能则执行步骤3.42;
    步骤3.42、电动推杆运动到目标值D1停止运动,判断电动推杆运动反馈信号无则执行步骤3.43;
    步骤3.43、使电动推杆运动指令信号False,油泵电机转速设定为0rpm,停止制动助力,判断电动推杆实际位置反馈与电动推杆最大制动位置值D1的差值绝对值是否不大于2mm,若是,则执行步骤3.44,若不是,输出制动故障信号;
    步骤3.44、通过前后桥压力传感器信号判断制动压力是否符合制动强度值,若符 合,2s后则执行步骤3.1,若不符合,输出制动故障信号。
  6. 根据权利要求5所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述自动驾驶控制包括以下步骤;
    步骤3.51、判断是否有自动驾驶制动信号,如有则执行步骤3.52;
    步骤3.52、使电动推杆运动指令信号True,油泵电机转速设定为600rpm,使液压油流到制动阀进行制动助力,电动推杆目标值等于L,,若电动推杆运动指令信号False,电动推杆目标值等于D0,通过前后桥压力传感器信号实时判断制动压力是否符合制动强度值,若检测到不符合,输出制动故障信号;
    控制过程中,若有急停开关上升沿信号则执行步骤3.41;若无自动驾驶制动信号或者有人工制动踏板开关信号则执行步骤3.1。
  7. 根据权利要求1所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述整车控制器根据所述步骤3中的电动推杆目标值发出电动推杆运动指令信号、油泵电机转速控制信号,并建立CAN发送通道,将电动推杆运动指令信号、电动推杆目标值和油泵电机转速控制信号实时发送到总线上,电动推杆、油泵电机通过CAN总线获取电动推杆运动指令信号、油泵电机转速控制信号,并进行电动推杆、油泵电机动作控制。
  8. 使用权利要求1-7任意一项的控制方法的一种无人驾驶车辆制动线控控制系统,包括制动系统,其特征在于,所述制动系统包括依次油泵、制动阀、轮边制动器,所述制动阀连接有电动推杆,所述油泵连接有油泵电机,油泵电机连接油泵电机控制器,所述电动推杆、油泵电机控制器均与整车控制器连通,所述整车控制器连接有信号采集部。
  9. 根据权利要求8所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述信号采集部包括后桥压力传感器、前桥压力传感器、脚制动踏板开关、急停开关,所述轮边制动器包括前轮制动器组、后轮制动器组,所述前桥压力传感器与所述前轮制动器组的制动管路连通,所述后桥压力传感器与所述后轮制动器组的制动管路连通。
  10. 根据权利要求8所述的一种无人驾驶车辆制动线控控制系统,其特征在于,所述整车控制器通过CAN总线与电动推杆、油泵电机控制器信号连通,所述整车控制器通过CAN总线连接有仪表显示器。
PCT/CN2023/100341 2023-03-07 2023-06-15 一种无人驾驶车辆制动线控控制方法及控制系统 WO2024098747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310234131.5 2023-03-07
CN202310234131.5A CN116279382A (zh) 2023-03-07 2023-03-07 一种无人驾驶车辆制动线控控制方法及控制系统

Publications (1)

Publication Number Publication Date
WO2024098747A1 true WO2024098747A1 (zh) 2024-05-16

Family

ID=86790050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100341 WO2024098747A1 (zh) 2023-03-07 2023-06-15 一种无人驾驶车辆制动线控控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN116279382A (zh)
WO (1) WO2024098747A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076926A (ja) * 1996-09-05 1998-03-24 Aisin Seiki Co Ltd ブレ−キ圧供給装置
CN102343875A (zh) * 2011-07-13 2012-02-08 武汉市菱电汽车电子有限责任公司 基于整车控制策略的电动汽车驱动器及其控制方法
DE102016223629A1 (de) * 2016-11-29 2018-05-30 Continental Teves Ag & Co. Ohg Bremssystem und Verfahren zum Betreiben eines Bremssystems
CN109827782A (zh) * 2019-03-25 2019-05-31 江西江铃集团新能源汽车有限公司 电动汽车的制动线性标定方法及系统
CN110160806A (zh) * 2019-06-17 2019-08-23 北京艾尔动力科技有限公司 用于汽车耐久测试的自动驾驶系统及测试方法
CN111994057A (zh) * 2020-08-27 2020-11-27 上海易咖智车科技有限公司 无人驾驶车辆制动控制方法、控制系统及车辆
CN112721881A (zh) * 2019-10-29 2021-04-30 北京宝沃汽车股份有限公司 车辆及获取制动踏板门限值的方法、装置
CN112859878A (zh) * 2021-02-01 2021-05-28 河南科技大学 一种混合动力无人驾驶车辆的控制参数自动标定方法
CN115143909A (zh) * 2022-06-20 2022-10-04 江西五十铃汽车有限公司 一种制动踏板的标定方法、系统存储介质及车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076926A (ja) * 1996-09-05 1998-03-24 Aisin Seiki Co Ltd ブレ−キ圧供給装置
CN102343875A (zh) * 2011-07-13 2012-02-08 武汉市菱电汽车电子有限责任公司 基于整车控制策略的电动汽车驱动器及其控制方法
DE102016223629A1 (de) * 2016-11-29 2018-05-30 Continental Teves Ag & Co. Ohg Bremssystem und Verfahren zum Betreiben eines Bremssystems
CN109827782A (zh) * 2019-03-25 2019-05-31 江西江铃集团新能源汽车有限公司 电动汽车的制动线性标定方法及系统
CN110160806A (zh) * 2019-06-17 2019-08-23 北京艾尔动力科技有限公司 用于汽车耐久测试的自动驾驶系统及测试方法
CN112721881A (zh) * 2019-10-29 2021-04-30 北京宝沃汽车股份有限公司 车辆及获取制动踏板门限值的方法、装置
CN111994057A (zh) * 2020-08-27 2020-11-27 上海易咖智车科技有限公司 无人驾驶车辆制动控制方法、控制系统及车辆
CN112859878A (zh) * 2021-02-01 2021-05-28 河南科技大学 一种混合动力无人驾驶车辆的控制参数自动标定方法
CN115143909A (zh) * 2022-06-20 2022-10-04 江西五十铃汽车有限公司 一种制动踏板的标定方法、系统存储介质及车辆

Also Published As

Publication number Publication date
CN116279382A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US10576956B2 (en) Driver assistance system with increased reliability and availability
JP6545365B2 (ja) 運転者支援のための方法、および、運転者支援システム
JP2004537457A (ja) 自動車用の斜面における発進支援装置
JP5643848B2 (ja) 航空機電気ブレーキシステムのための電力遮断管理
CN105383312A (zh) 车辆的制动设备
CN103419765A (zh) 车辆及用于车辆的自动驻车系统
US20080243323A1 (en) Electronic brake system pedal release transition control apparatus and method
CN111071061A (zh) 新能源无人驾驶汽车的电子驻车系统起步释放方法
US11541853B2 (en) Vehicle braking control device
KR101249367B1 (ko) 전동식 브레이크 시스템의 제어방법
CN104057940A (zh) 一种用于操作液压制动系统的方法
WO2024098747A1 (zh) 一种无人驾驶车辆制动线控控制方法及控制系统
CN113665548B (zh) 车辆线控制动方法、系统、设备及存储介质
CN103072564B (zh) 智能助力制动系统的压力控制装置及其方法
KR101449157B1 (ko) 전동 브레이크 차량의 제어 방법
CN113954645A (zh) 用于电动汽车的自适应巡航控制回馈制动扭矩监控方法
CN115571103A (zh) 一种无人驾驶车辆驻车制动线控系统及控制方法
JP6801113B2 (ja) 車両のブレーキシステムの電気機械式ブレーキ倍力装置を動作させるための制御装置及び方法
CN114228687B (zh) 一种双控驻车系统
CN113348115B (zh) 用于运行制动系统的方法和设备、制动系统以及车辆
CN210322271U (zh) 一种盘式气制动6通道abs系统模拟台
CN115991238A (zh) 预先准备制动系统的系统和方法
CN109572660B (zh) 一种汽车电子真空助力器控制系统及方法
KR101417857B1 (ko) 전자식 주차 브레이크 시스템의 제어 방법
CN115009242B (zh) 制动系统、车辆以及制动系统的控制方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023866678

Country of ref document: EP

Effective date: 20240418