WO2024098679A1 - 检测方法、面密度设备、检测装置和存储介质 - Google Patents

检测方法、面密度设备、检测装置和存储介质 Download PDF

Info

Publication number
WO2024098679A1
WO2024098679A1 PCT/CN2023/091278 CN2023091278W WO2024098679A1 WO 2024098679 A1 WO2024098679 A1 WO 2024098679A1 CN 2023091278 W CN2023091278 W CN 2023091278W WO 2024098679 A1 WO2024098679 A1 WO 2024098679A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
posture
ionization chamber
current
current position
Prior art date
Application number
PCT/CN2023/091278
Other languages
English (en)
French (fr)
Inventor
王强军
张敬东
展冰洋
真志辉
陈维刚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to US18/382,862 priority Critical patent/US20240151521A1/en
Publication of WO2024098679A1 publication Critical patent/WO2024098679A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the field of testing technology, and in particular to a detection method, surface density equipment, detection device and storage medium.
  • the surface density device is a device that detects the thickness and/or density of sheet objects.
  • the surface density device generally includes a radiation source and an ionization chamber.
  • the object to be tested is set between the radiation source and the ionization chamber.
  • the radiation source emits radiation to the object to be tested. After passing through the object to be tested, the radiation enters the ionization chamber.
  • the ionization chamber determines the thickness and/or density of the object to be tested based on the attenuation degree of the radiation.
  • the relative position between the radiation source and the ionization chamber may change, resulting in inaccurate measurement results.
  • the embodiments of the present application provide a detection method, an area density device, a detection apparatus and a storage medium, which can at least partially solve the technical problem that when the area density device is used for too long, the relative position between the radiation source and the ionization chamber may change, causing inaccurate measurement results.
  • the surface density device includes a radiation source and an ionization chamber spaced apart from the radiation source, and the detection method includes:
  • the current positions of the radiation source and the ionization chamber are first obtained respectively, and then it is confirmed whether the position of the radiation source relative to the ionization chamber has changed based on the current position, so that corresponding measures can be taken when the position of the radiation source relative to the ionization chamber changes, so as to improve the accuracy of the measurement results of the surface density equipment.
  • the position of the radiation source and the ionization chamber is detected during the operation of the surface density equipment, so that the surface density equipment does not need to be shut down, the detection process is more convenient, and it is conducive to real-time correction of the measurement results of the surface density equipment, making the detection efficiency of the surface density equipment higher.
  • obtaining the first current position of the radiation source and the second current position of the ionization chamber includes:
  • the current positions of the radiation source and the ionization chamber in at least one direction are acquired to determine the first current position and the second current position.
  • the first current pose and the second current pose are easier to determine.
  • the current position of the radiation source and the ionization chamber in at least one direction is obtained to determine the The first current posture and the second current posture include:
  • Determining whether the radiation source changes its posture relative to the ionization chamber according to the first posture deviation and the second posture deviation includes:
  • the radiation source has a posture change in the first direction relative to the ionization chamber.
  • obtaining a first current position of the radiation source in a first direction includes:
  • the obtaining of a second current position of the ionization chamber in the first direction comprises:
  • Determining whether the radiation source changes its posture relative to the ionization chamber according to the first posture deviation and the second posture deviation includes:
  • obtaining the current positions of the radiation source and the ionization chamber in at least one direction to determine the first current position and the second current position includes:
  • Determining whether the radiation source changes its posture relative to the ionization chamber according to the first posture deviation and the second posture deviation includes:
  • the radiation source has a posture change in the second direction relative to the ionization chamber.
  • obtaining the current positions of the radiation source and the ionization chamber in at least one direction to determine the first current position and the second current position includes:
  • Determining whether the radiation source changes its posture relative to the ionization chamber according to the first posture deviation and the second posture deviation includes:
  • the detection method further comprises:
  • the measurement result of the surface density device is corrected according to the amount of position change.
  • the measurement result of the surface density device is corrected according to the change in posture, so that the measurement result of the surface density device is more accurate.
  • a memory a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the steps of the method described in any one of the above embodiments are implemented.
  • the current positions of the radiation source and the ionization chamber are first obtained respectively, and then it is confirmed based on the current positions whether the radiation source has changed its position relative to the ionization chamber. Therefore, corresponding measures can be taken when the radiation source has changed its position relative to the ionization chamber to improve the accuracy of the measurement results of the surface density equipment.
  • the radiation source and the ionization chamber are both provided with distance sensors, and the distance sensors are used to detect the distance between the radiation source and the ionization chamber and a predetermined position.
  • the current positions of the radiation source and the ionization chamber can be easily acquired according to the distance sensor.
  • a detection device comprising:
  • An acquisition module used for acquiring a first current position of a radiation source of the surface density device and a second current position of an ionization chamber of the surface density device during operation of the surface density device;
  • a confirmation module used to confirm a first posture deviation of the radiation source according to the first current posture, and to confirm a second posture deviation of the ionization chamber according to the second current posture;
  • a determination module is used to determine whether the radiation source has changed its posture relative to the ionization chamber according to the first posture deviation and the second posture deviation.
  • the current positions of the radiation source and the ionization chamber are first obtained respectively, and then it is confirmed based on the current positions whether the radiation source has changed its position relative to the ionization chamber. Therefore, corresponding measures can be taken when the radiation source has changed its position relative to the ionization chamber to improve the accuracy of the measurement results of the surface density equipment.
  • a non-volatile computer-readable storage medium of computer-executable instructions when the computer-executable instructions are executed by one or more processors, enables the processors to execute the detection method described in any one of the above embodiments.
  • FIG1 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • FIG2 is a perspective view of an areal density device according to one embodiment of the present application.
  • FIG3 is a schematic diagram of a radiation source and an ionization chamber in a normal posture according to one embodiment of the present application;
  • FIG4 is a schematic diagram of a radiation source changing its posture relative to ionization according to one embodiment of the present application
  • FIG5 is a schematic diagram of a radiation source changing its posture relative to ionization in one embodiment of the present application
  • FIG6 is a schematic diagram of a radiation source changing its posture relative to ionization according to one embodiment of the present application
  • FIG7 is a schematic diagram of a flow chart of a detection method according to one embodiment of the present application.
  • FIG8 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • FIG9 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • FIG10 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • FIG11 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • FIG12 is a schematic diagram of the calculation principle in the detection method of one embodiment of the present application.
  • FIG13 is a schematic diagram of a flow chart of a detection method according to one embodiment of the present application.
  • FIG. 14 is a schematic diagram of a module of a detection device according to one embodiment of the present application.
  • Area density device 100 Radiation source 10, ionization chamber 20, first predetermined position 30, second predetermined position 40, third predetermined position 50, fourth predetermined position 60;
  • Detection device 200 acquisition module 210 , confirmation module 220 , determination module 230 .
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • the surface density device is a device for detecting the thickness and/or density of sheet objects.
  • the surface density device generally includes a radiation source and an ionization chamber.
  • the object to be tested such as an electrode sheet
  • the radiation source emits radiation to the object to be tested.
  • the radiation After passing through the object to be tested, the radiation enters the ionization chamber.
  • the ionization chamber determines the thickness and/or density of the object to be tested based on the attenuation degree of the radiation.
  • the radiation source and ionization chamber are generally installed on the guide rail. After the area density equipment is assembled and debugged, the radiation source and ionization chamber reciprocate on the guide rail to scan and detect the object to be measured. After the density equipment is used continuously for a period of time, if the guide rail and other parts of the area density equipment are greatly deformed, the fasteners are loose, the transmission parts are worn, etc., the relative position of the radiation source and the detector will change, and the effective rays emitted by the radiation source and passing through the object to be measured cannot be fully received by the ionization chamber, resulting in inaccurate measurement results of the area density equipment.
  • the inventors believe that the areal density device can be regularly inspected after the areal density device does not need to measure the measured object, so as to ensure the measurement accuracy of the areal density device. However, this may cause the areal density device to fail during the two inspections, resulting in errors in the measurement results of a large number of measured objects, causing serious economic losses.
  • the inventor determined whether the relative position of the radiation source and the ionization chamber has changed by detecting the relative position of the radiation source and the ionization chamber in real time during the operation of the surface density equipment, so as to take corresponding measures in time to improve the detection accuracy of the surface density equipment, thereby solving the technical problem that the relative position between the radiation source and the ionization chamber may change, resulting in inaccurate measurement results.
  • Figure 1 is a schematic flow chart of a detection method according to one embodiment of the present application.
  • Figure 2 is a three-dimensional schematic diagram of a surface density device 100 according to one embodiment of the present application.
  • the detection method of the embodiment of the present application is used for an area density device 100, which includes a radiation source 10 and an ionization chamber 20 spaced apart from the radiation source 10.
  • the detection method includes:
  • S40 Determine whether the radiation source 10 has a posture change relative to the ionization chamber 20 according to the first posture deviation and the second posture deviation.
  • the surface density device 100 is a device for detecting the thickness and/or density of a sheet object.
  • the radiation source 10 is a component for emitting detection rays, such as X-rays.
  • the rays emitted by the radiation source 10 are directed toward the ionization chamber 20, or in other words, the radiation source 10 emits rays toward the ionization chamber 20.
  • the ionization chamber 20 is a component for receiving detection rays, and the ionization chamber 20 is also called a detector. In the orientation shown in FIG. 2 , the ionization chamber 20 is arranged above the radiation source 10. There is a gap between the ionization chamber 20 and the radiation source 10, and the detected object is located in the gap.
  • the radiation source 10 and the ionization chamber 20 can synchronously reciprocate along the X direction (first direction), the detected object can move along the Y direction (second direction), and the radiation source 10 emits detection rays toward the Z direction (third direction), so that After passing through the object to be measured, the detection ray enters the ionization chamber 20 and is captured by the ionization chamber 20.
  • the surface density device 100 can calculate the weight per unit area of the object to be measured (ie, the surface density) according to the intensity of the detection ray captured by the ionization chamber 20.
  • the working process of the surface density device 100 refers to the process in which the surface density device 100 is in the process of detecting the surface density and other parameters of the object being measured.
  • the posture of the radiation source 10 is the position and posture of the radiation source 10, for example, the distance of the radiation source 10 relative to the reference position, the angle of rotation and other parameters.
  • the reference position mentioned here can be one position or multiple different positions.
  • the posture of the ionization chamber 20 is the position and posture of the ionization chamber 20.
  • the current posture is the posture detected in real time, for example, the posture detected by the radiation source 10 at the current moment is the current posture.
  • the first current posture and the second current posture can be measured by a sensor such as a distance sensor.
  • a distance sensor can be installed on the radiation source 10, and the distance between the distance sensor and a fixed position on the surface density device is measured by the distance sensor to obtain the first current posture.
  • the first current posture and the second current posture can be measured by a sensor such as a gyroscope.
  • the present application does not limit the specific detection method of the first current posture and the second current posture.
  • the first posture deviation may be the deviation of the first current posture relative to the first initial posture.
  • the second posture deviation may be the deviation of the second current posture relative to the second initial posture.
  • the first initial posture and the second initial posture are the postures of the radiation source 10 and the ionization chamber 20 at a certain position in the motion range after the surface density device 100 is assembled and calibrated.
  • the first initial posture can be measured by relevant equipment and maintained in the surface density device 100.
  • the first initial posture can be measured by a detection component such as a sensor.
  • the first posture deviation is 0. In other words, the current posture of the radiation source 10 has not changed relative to the initial posture.
  • step S40 if at least one of the first posture deviation and the second posture deviation is greater than the deviation threshold, and the first posture deviation and the second posture deviation cannot offset each other, it can be said that the radiation source 10 has changed its posture relative to the ionization chamber 20. For example, if the radiation source 10 and the ionization chamber 20 change the same distance in the same direction, it is considered that the first posture deviation and the second posture deviation can offset each other, and the radiation source 10 and the ionization chamber 20 have not changed their posture.
  • Figure 3 is a schematic diagram of the radiation source 10 and the ionization chamber 20 in a normal position, and Figure 3 illustrates that the radiation source 10 and the ionization chamber 20 have not changed in position.
  • Figures 4 to 6 illustrate that the radiation source 10 and the ionization chamber 20 have undergone different position changes.
  • the current positions of the radiation source 10 and the ionization chamber 20 are first obtained respectively, and then it is confirmed whether the position of the radiation source 10 relative to the ionization chamber 20 has changed based on the current position, so that corresponding measures can be taken when the position of the radiation source 10 relative to the ionization chamber 20 changes, so as to improve the accuracy of the measurement results of the surface density device 100.
  • the position of the radiation source 10 and the ionization chamber 20 is detected during the operation of the surface density device 100, so that the surface density device 100 does not need to be shut down, the detection process is more convenient, and it is conducive to real-time correction of the measurement results of the surface density device 100, making the detection efficiency of the surface density device 100 higher.
  • obtaining a first current position of the radiation source 10 and a second current position of the ionization chamber 20 includes:
  • the current position of the radiation source 10 in a certain direction can be represented by the distance between the radiation source 10 and a certain predetermined position.
  • a three-dimensional coordinate system can be set on the surface density device 100, and the current position of the radiation source 10 can be determined according to the coordinates of the radiation source 10.
  • the current position of the ionization chamber 20 in a certain direction can be represented by the distance between the ionization chamber 20 and a certain predetermined position.
  • the first current pose and the second current pose are easier to determine.
  • step S110 includes:
  • Step S40 includes:
  • the first current position can be represented by a distance, that is, the first current distance between the radiation source 10 and the first predetermined position 30 in the first direction can be obtained to determine the first current position.
  • the radiation source 10 can reciprocate back and forth along the X direction.
  • the first predetermined position 30 can be a position of the surface density device 100 facing the radiation source 10 along the X direction.
  • the first predetermined position 30 is a plane located in the X positive direction of the radiation source 10.
  • the first current distance can be detected by a first distance sensor 101.
  • the first distance sensor 101 can be installed on the radiation source 10, or on the first predetermined position 30.
  • the first distance sensor 101 is, for example, a laser sensor, and the first distance sensor 101 can detect and obtain the first current distance by emitting light and receiving the reflected light.
  • the second current position can be represented by a distance, that is, the second current distance between the ionization chamber 20 and the second predetermined position 40 in the first direction can be obtained to determine the second current position.
  • the ionization chamber 20 reciprocates back and forth along the X direction.
  • the second predetermined position 40 can be a position of the surface density device 100 along the X direction toward the ionization chamber 20.
  • the second predetermined position 40 is a plane located in the X positive direction of the ionization chamber 20.
  • the second current distance can be detected by the second distance sensor 102.
  • the second distance sensor 102 can be installed on the ionization chamber 20, or it can be installed on the second predetermined position 40.
  • the second distance sensor 102 is, for example, a laser sensor, and the second distance sensor 102 can detect and obtain the second current distance by emitting light and receiving the reflected light.
  • step S41 the difference between the first current distance and the first initial distance can be calculated and used as the first difference; and the difference between the second current distance and the second initial distance can be calculated and used as the second difference; when the difference between the first difference and the second difference is greater than the first predetermined difference, it is determined that the radiation source 10 has changed its posture relative to the ionization chamber 20.
  • the first initial distance is the distance between the radiation source 10 and the first predetermined position 30 measured after the radiation source 10 is calibrated by the surface density device 100. According to the first difference, it can be determined whether the radiation source 10 has changed position in the X direction.
  • the first current distance is LAX1'
  • the first initial distance is LAX1
  • the first difference is XA1
  • LAX1'-LAX1 LAX1'-LAX1.
  • the second initial distance is the distance between the ionization chamber 20 and the second predetermined position 40 measured after the ionization chamber 20 is calibrated by the surface density device 100. According to the second difference, it can be determined whether the position of the ionization chamber 20 changes in the X direction.
  • the second current distance is LBX1'
  • the second initial distance is LBX1
  • the second difference is XB1
  • XB1 LBX1'-LBX1.
  • the difference between the first difference and the second difference is larger, it means that the radiation source 10 has changed its position relative to the ionization chamber 20 in its own moving direction.
  • step S110 includes:
  • Step S40 includes:
  • the third current position can be represented by a distance, that is, the third current distance between the radiation source 10 and the third predetermined position 50 in the second direction can be obtained to determine the third current position; the object to be measured can move along the Y direction.
  • the third predetermined position 50 can be a position of the surface density device 100 along the Y direction toward the radiation source 10.
  • the third predetermined position 50 can be a plane perpendicular to the Y direction of the radiation source 10 and the negative direction of the Y direction passes through the third predetermined position 50.
  • the third current distance can be detected by the third distance sensor 103.
  • the third distance sensor 103 can be installed on the radiation source 10, or it can be installed on the third predetermined position 50.
  • the third distance sensor 103 is installed on the radiation source 10.
  • the third distance sensor 103 is, for example, a laser sensor, and the third distance sensor 103 can detect and obtain the third current distance by emitting light and receiving the reflected light.
  • the fourth current position may be represented by a distance, that is, a fourth current distance between the ionization chamber 20 and the fourth predetermined position 60 in the second direction may be acquired to determine the fourth current position.
  • the fourth predetermined position 60 may be a position of the surface density device 100 along the Y direction toward the radiation source 10.
  • the fourth predetermined position 60 is a plane perpendicular to the Y direction of the ionization chamber 50 and the negative direction of the Y direction passes through the third predetermined position 50, and the third predetermined position 50 and the fourth predetermined position 60 may be in the same plane.
  • the fourth current distance may be detected by the fourth distance sensor 104.
  • the fourth distance sensor 104 may be mounted on the ionization chamber 20 or on the fourth predetermined position 60. In order to reduce the number of the fourth distance sensors 104, in the embodiment of the present application, the fourth distance sensor is mounted on the radiation source 10.
  • the fourth distance sensor 104 is, for example, a laser sensor, and the fourth distance sensor 104 may detect and obtain the fourth current distance by emitting light and receiving the reflected light.
  • step S42 the difference between the third current distance and the third initial distance can be calculated and used as the third difference; the difference between the fourth current distance and the fourth initial distance can be calculated and used as the fourth difference; when the difference between the third difference and the fourth difference is greater than the second predetermined difference, it is determined that the radiation source 10 has changed its posture relative to the ionization chamber 20.
  • the third initial distance is the distance between the radiation source 10 and the third predetermined position 50 measured after the radiation source 10 is calibrated by the surface density device 100. According to the third difference, it can be determined whether the radiation source 10 has changed position in the Y direction.
  • the third current distance is LAY'
  • the third initial distance is LAY
  • the third difference is YAY
  • YAY LAY'-YAY.
  • the fourth initial distance is the distance between the ionization chamber 20 and the fourth predetermined position 60 measured after the ionization chamber 20 is calibrated by the surface density device 100. According to the fourth difference, it can be determined whether the position of the ionization chamber 20 changes in the Y direction.
  • the fourth current distance is LBY'
  • the fourth initial distance is LBY
  • the fourth difference is YBY
  • YBY LBY'-YBY.
  • the difference between the third difference and the fourth difference is larger, it means that the position of the radiation source 10 relative to the ionization chamber 20 in the moving direction of the object under test has changed.
  • the third current position and the fourth current position can be used to detect whether the ionization chamber 20 and the radiation source 10 have changed their relative positions in the moving direction of the object being measured.
  • step S110 includes:
  • Step S40 includes:
  • the fifth current position can be represented by a distance, that is, the fifth current distance between the radiation source 10 and the object to be measured can be obtained to determine the fifth current position; the object to be measured is located in the Z direction of the radiation source 10, and the fifth current distance can be detected by the fifth distance sensor 105.
  • the fifth distance sensor 105 can be installed on the radiation source 10.
  • the fifth distance sensor 105 is, for example, a laser sensor, and the fifth distance sensor 105 can detect and obtain the fifth current distance by emitting light and receiving reflected light.
  • the sixth current position can be represented by a distance, that is, the sixth current distance between the ionization chamber 20 and the object to be measured can be obtained to determine the sixth current position.
  • the sixth current distance can be detected by a sixth distance sensor 106.
  • the sixth distance sensor 106 can be installed on the ionization chamber 20.
  • the sixth distance sensor 106 is, for example, a laser sensor, and the sixth distance sensor 106 can detect and obtain the sixth current distance by emitting light and receiving reflected light.
  • step S43 the difference between the fifth current distance and the fifth initial distance can be calculated and used as the fifth difference; and the difference between the sixth current distance and the sixth initial distance can be calculated and used as the sixth difference; when the sum of the fifth difference and the sixth difference is greater than a predetermined value, it is determined that the radiation source 10 has changed its posture relative to the ionization chamber 20.
  • the fifth initial distance is the distance between the radiation source 10 and the object to be measured after the radiation source 10 is calibrated by the surface density device 100. According to the fifth difference, it can be determined whether the radiation source 10 has changed position in the Z direction.
  • the fifth current distance is LAZ'
  • the fifth initial distance is LAZ
  • the fifth difference is ZAZ
  • ZAZ LAZ'-ZAZ.
  • the sixth initial distance is the distance between the ionization chamber 20 and the measured object measured after the ionization chamber 20 is calibrated by the surface density device 100. According to the sixth difference, it can be determined whether the position of the ionization chamber 20 changes in the Z direction.
  • the sixth current distance is LBZ'
  • the sixth initial distance is LBZ
  • the sixth difference is ZBZ
  • ZBZ LBZ'-ZBZ.
  • the difference between the fifth difference and the sixth difference is larger, it means that the position of the radiation source 10 relative to the ionization chamber 20 in the moving direction of the object under test has changed.
  • the fifth current position and the sixth current position can be used to detect whether the ionization chamber 20 and the radiation source 10 have changed their relative postures in the direction of movement of the measured thickness.
  • step S11 includes:
  • Step S12 includes:
  • Step S40 includes:
  • the first radiation part of the radiation source 1010 in the direction of its own movement can be obtained.
  • a first current distance between a second radiation part of the radiation source 1010 and the first predetermined position 30 is taken as one of the first current positions;
  • a seventh current distance between a second radiation part of the radiation source 1010 and the first predetermined position 30 in the direction of its own movement is obtained as another first current position, and the second radiation part and the first radiation part are located on the same side of the radiation source 1010;
  • the first current distance can be detected by the first distance sensor 101.
  • the first distance sensor 101 can be installed on the first radiation part of the radiation source 10, or can be installed on the first predetermined position 30.
  • the first distance sensor 101 is, for example, a laser sensor, and the first distance sensor 101 can detect the first current distance by emitting light and receiving reflected light.
  • the seventh current distance can be detected by the seventh distance sensor 107.
  • the seventh distance sensor 107 can be installed on the second radiation part of the radiation source 10, or can be installed on the first predetermined position 30.
  • the seventh distance sensor 107 is, for example, a laser sensor, and the seventh distance sensor 107 can detect the seventh current distance by emitting light and receiving reflected light.
  • the first radiation site and the second radiation site are two different positions on the radiation source 10 , and the first radiation site and the second radiation site may be entities with specific features such as surfaces or structures.
  • the first torsion angle of the radiation source 10 may be calculated according to the first current distance, the seventh current distance and the first predetermined distance, wherein the first predetermined distance is the distance between the center of the first radiation site and the center of the second radiation site;
  • the first predetermined distance is the distance between the radiation source 10 and the first predetermined position 30 measured after the radiation source 10 is calibrated by the surface density device 100.
  • the first current distance is LAX1'
  • the seventh current distance is LAX2'
  • the first initial distance is LAX1
  • the seventh initial distance is LAX2
  • the first predetermined distance is A
  • the first torsion angle is ⁇ A
  • ⁇ A arcsin([
  • a second current distance between the first ionization site of the ionization chamber 20 and the second predetermined position 40 in the direction of its own motion may be obtained as one of the second current positions;
  • an eighth current distance between the second ionization site of the ionization chamber 20 and the second predetermined position 40 in the direction of its own motion may be obtained as another second current position;
  • the second current distance can be detected by the second distance sensor 102.
  • the second distance sensor 102 can be installed at the first ionization position of the ionization chamber 20, or can be installed at the second predetermined position 40.
  • the second distance sensor 102 is, for example, a laser sensor, and the second distance sensor 102 can detect the second current distance by emitting light and receiving reflected light.
  • the eighth current distance can be detected by the eighth distance sensor 108.
  • the eighth distance sensor 108 can be installed on the second ionization position of the ionization chamber 20, or can be installed on the second predetermined position 40.
  • the eighth distance sensor 108 is, for example, a laser sensor, and the eighth distance sensor 108 can detect the eighth current distance by emitting light and receiving reflected light.
  • the first ionization site and the second ionization site are two different positions on the ionization chamber 20 , and the first ionization site and the second ionization site may be entities with specific features such as surfaces or structures.
  • the second torsion angle of the radiation source 10 may be calculated according to the second current distance, the eighth current distance and the second predetermined distance, the second predetermined distance being the distance between the center of the first ionization site and the center of the second ionization site;
  • the second predetermined distance is the distance between the ionization chamber 20 and the second predetermined position 40 measured after the radiation source 10 is calibrated in the surface density device 100.
  • the second current distance is LBX1'
  • the seventh current distance is LBX2'
  • the second initial distance is LBX1
  • the seventh initial distance is LBX2
  • the second predetermined distance is B
  • first predetermined distance A may be equal to the second predetermined distance B.
  • step S44 when the sum of the first torsion angle and the second torsion angle is greater than the torsion angle threshold, it is determined that the radiation source 10 changes its position relative to the ionization chamber 20.
  • the sum of the first torsion angle and the second torsion angle is larger, it means that the radiation source 10 has changed its position relative to the ionization chamber 20 in its own motion direction.
  • the radiation source 10 and the ionization chamber 20 reciprocate during operation, in order to detect in real time the relationship between the current posture and the initial posture of the radiation source 10 and the ionization chamber 20, it is necessary to pre-determine the initial posture. Therefore, after the surface density device 100 is calibrated, the initial postures are obtained at multiple positions respectively, so that multiple initial postures can be obtained, so that the radiation source 10 and the ionization chamber 20 can be detected and confirmed whether the posture of the radiation source 10 and the ionization chamber 20 changes at any position during operation.
  • obtaining a first current position of the radiation source 10 and a second current position of the ionization chamber 20 (S10) includes:
  • the second current posture is acquired through the detection result of the distance sensor arranged on the ionization chamber 20 .
  • the first to eighth distance sensors can detect corresponding distances to obtain the current positions of the radiation source 10 and the ionization chamber 20. In this way, the current positions of the radiation source 10 and the ionization chamber 20 can be conveniently obtained according to the distance sensors.
  • the detection method further comprises:
  • the measurement result of the surface density device 100 is corrected according to the posture change amount, so that the measurement result of the surface density device 100 is more accurate. For example, when it is confirmed that the measurement result is too large due to the posture change of the radiation source 10 relative to the ionization chamber 20, the measurement result can be corrected to reduce it to make the measurement result more accurate.
  • the surface density device 100 of the embodiment of the present application includes a radiation source 10, an ionization chamber 20 spaced apart from the radiation source 10, a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the steps of the method of any of the above embodiments are implemented.
  • the processor may perform the following detection method steps:
  • the current positions of the radiation source 10 and the ionization chamber 20 are first obtained respectively, and then it is confirmed based on the current positions whether the position of the radiation source 10 relative to the ionization chamber 20 has changed, so that corresponding measures can be taken when the position of the radiation source 10 relative to the ionization chamber 20 changes, so as to improve the accuracy of the measurement results of the surface density device 100.
  • both the radiation source 10 and the ionization chamber 20 are provided with distance sensors for detecting The distance between the radiation source 10 and the ionization chamber 20 and the predetermined position. In this way, the current position of the radiation source 10 and the ionization chamber 20 can be easily obtained according to the distance sensor.
  • the detection device 200 of the embodiment of the present application includes an acquisition module 210, a confirmation module 220 and a determination module 230.
  • the acquisition module 210 is used to obtain the first current posture of the radiation source 10 of the surface density device 100 and the second current posture of the ionization chamber 20 of the surface density device 100 during the operation of the surface density device 100;
  • the confirmation module 220 is used to calculate the first posture deviation between the first current posture and the first initial posture of the radiation source 10, and to calculate the second posture deviation between the second current posture and the second initial posture of the ionization chamber 20;
  • the determination module 230 is used to determine whether the radiation source 10 has a posture change relative to the ionization chamber 20 based on the first posture deviation and the second posture deviation.
  • the current positions of the radiation source 10 and the ionization chamber 20 are first obtained respectively, and then it is confirmed based on the current positions whether the position of the radiation source 10 relative to the ionization chamber 20 has changed, so that corresponding measures can be taken when the position of the radiation source 10 relative to the ionization chamber 20 changes, so as to improve the accuracy of the measurement results of the surface density device 100.
  • the detection device 200 of the embodiment of the present application can implement the detection method of any of the above embodiments, and each step of the detection method of the above embodiments can be executed by the corresponding module of the detection device 200, which will not be repeated here.
  • the explanation of the detection method of the above embodiment is applicable to the detection device 200 of the present application.
  • the detection device 200 of the embodiment of the present application please refer to the corresponding parts of the above test method, which will not be repeated here.
  • a non-volatile computer-readable storage medium of computer-executable instructions when the computer-executable instructions are executed by one or more processors, enables the processors to execute the detection method of any of the above embodiments.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a specific logical function or process, and the scope of the preferred embodiments of the present invention includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of the present invention belong.
  • the logic and/or steps represented in the flowchart or otherwise described herein, for example, can be considered as an ordered list of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by an instruction execution system, device or apparatus (such as a computer-based system, a system including a processing module, or other system that can fetch instructions from an instruction execution system, device or apparatus and execute instructions), or in combination with these instruction execution systems, devices or apparatuses.
  • "computer-readable medium” can be any device that can contain, store, communicate, propagate or transmit a program for use by an instruction execution system, device or apparatus, or in combination with these instruction execution systems, devices or apparatuses.
  • computer-readable media include the following: an electrical connection with one or more wires (electronic device), a portable computer disk box (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), a fiber optic device, and a portable compact disk read-only memory (CDROM).
  • the computer-readable medium may even be a paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium, followed by editing, interpreting or processing in other suitable ways as necessary, and then stored in a computer. in the machine memory.
  • each functional unit in each embodiment of the present invention may be integrated into a processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above-mentioned integrated module may be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种检测方法、面密度设备(100)、检测装置(200)和存储介质,面密度设备(100)包括放射源(10)和与放射源(10)间隔设置的电离室(20),检测方法包括:在面密度设备(100)工作过程中,获取放射源(10)的第一当前位姿和电离室(20)的第二当前位姿;根据第一当前位姿确认放射源(10)的第一位姿偏差;根据第二当前位姿确认电离室(20)的第二位姿偏差;根据第一位姿偏差和第二位姿偏差确定放射源(10)相对于电离室(20)是否发生位姿改变。

Description

检测方法、面密度设备、检测装置和存储介质
优先权信息
本申请请求2022年11月08日向中国国家知识产权局提交的、专利申请号为202211394373.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及测试技术领域,尤其涉及一种检测方法、面密度设备、检测装置和存储介质。
背景技术
面密度设备是一种检测片状物体的厚度和/或密度的设备。面密度设备一般包括放射源和电离室,在面密度设备工作时,被检物体设置在放射源和电离室之间,放射源向被测物体发射射线,射线经过被测物体后进入电离室,电离室根据射线的衰减程度确定被测物体的厚度和/或密度。然而,在面密度设备的使用时间过长时,放射源和电离室之间的相对位置可能发生改变,造成测量结果不准确。
发明内容
本申请实施方式提供了一种检测方法、面密度设备、检测装置和存储介质,能够至少部分解决在面密度设备的使用时间过长时,放射源和电离室之间的相对位置可能发生改变,造成测量结果不准确的技术问题。
本申请实施方式面密度设备的检测方法中,所述面密度设备包括放射源和与所述放射源间隔设置的电离室,所述检测方法包括:
在所述面密度设备工作过程中,获取所述放射源的第一当前位姿和所述电离室的第二当前位姿;
根据所述第一当前位姿确认所述放射源的第一位姿偏差;
根据所述第二当前位姿确认所述电离室的第二位姿偏差;
根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变。
本申请实施方式的检测方法中,先分别获取放射源和电离室的当前位姿,再根据当前位姿确认放射源相对于电离室是否发生位姿改变,从而可以在放射源相对于电离室发生位姿改变时执行相应的措施,以提高面密度设备的测量结果的准确度。
另外,在面密度设备工作过程中对放射源和电离室的位姿进行检测,使得面密度设备无需停机,检测过程更加方便,有利于实时修正面密度设备的测量结果,使得面密度设备的检测效率更高。
在某些实施方式中,所述获取所述放射源的第一当前位姿和所述电离室的第二当前位姿,包括:
获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿。
如此,第一当前位姿和第二当前位姿更加容易确定。
在某些实施方式中,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所 述第一当前位姿和所述第二当前位姿,包括:
获取所述放射源在第一方向上的第一当前位置,所述第一方向与所述放射源的运动方向相同;
获取所述电离室在第一方向上的第二当前位置,所述第一当前位姿包括所述第一当前位置,所述第二当前位姿包括所述第二当前位置;
根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第一方向上发生位姿改变。
如此,这样可以检测电离室和放射源在第一方向上是否相对地发生位姿改变。
在某些实施方式中,所述获取所述放射源在第一方向上的第一当前位置,包括:
获取所述放射源两个不同部位在所述第一方向上的第一当前位置;
根据两个所述第一当前位置确定所述放射源的第一扭转量,所述第一当前位姿包括所述第一扭转量;
所述获取所述电离室在第一方向上的第二当前位置,包括;
获取所述电离室两个不同部位在第一方向上的第二当前位置;
根据两个所述第二当前位置确定所述电离室的第二扭转量,所述第二当前位姿包括所述第二扭转量;
根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室发生扭转位姿改变。
如此,这样可以确定放射源和电离室是否发生扭转状态的位姿改变。
在某些实施方式中,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿,包括:
获取所述放射源在第二方向上的第三当前位置,所述第二方向与所述放射源的运动方向垂直,所述第二方向与所述放射源和所述电离室的排布方向垂直;
获取所述放射源在第二方向上的第四当前位置,所述第一当前位姿包括所述第三当前位置,所述第二当前位姿包括所述第四当前位置;
根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第二方向上发生位姿改变。
如此,这样可以检测电离室和放射源在第二方向上是否相对地发生位姿改变。
在某些实施方式中,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿,包括:
获取所述放射源在第三方向上的第四当前位置,所述第三方向与所述放射源和所述电离室的排布方向相同;
获取所述放射源在第三方向上的第五当前位置,所述第一当前位姿包括所述第四当前位置,所述第二当前位姿包括所述第五当前位置;
根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第三方向上发生位姿改变。
如此,这样可以检测电离室和放射源在第三方向上是否相对地发生位姿改变。
在某些实施方式中,所述检测方法还包括:
在所述放射源相对于所述电离室发生位姿改变时,根据位姿改变量修正所述面密度设备的测量结果。
如此,根据位姿改变量修正所述面密度设备的测量结果,使得面密度设备的测量结果更加准确。
本申请实施方式的面密度设备,包括:
放射源;
与所述放射源间隔设置的电离室;
存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以上任一实施方式所述方法的步骤。
如此,先分别获取放射源和电离室的当前位姿,再根据当前位姿确认放射源相对于电离室是否发生位姿改变,从而可以在放射源相对于电离室发生位姿改变时执行相应的措施,以提高面密度设备的测量结果的准确度。
在某些实施方式中,所述放射源和所述电离室上均设置有距离传感器,所述距离传感器用于检测所述放射源和所述电离室与预定位置之间的距离。
如此,根据距离传感器可以方便地获取到放射源和电离室的当前位姿。
一种检测装置,包括:
获取模块,用于在面密度设备工作过程中,获取所述面密度设备的放射源的第一当前位姿和所述面密度设备的电离室的第二当前位姿;
确认模块,用于根据所述第一当前位姿确认所述放射源的第一位姿偏差,及根据所述第二当前位姿确认所述电离室的第二位姿偏差;
确定模块,用于根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变。
如此,先分别获取放射源和电离室的当前位姿,再根据当前位姿确认放射源相对于电离室是否发生位姿改变,从而可以在放射源相对于电离室发生位姿改变时执行相应的措施,以提高面密度设备的测量结果的准确度。
一种计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行以上任一实施方式所述的检测方法。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请其中一个实施方式的检测方法的流程示意图;
图2是本申请其中一个实施方式的面密度设备的立体图;
图3是本申请其中一个实施方式的放射源和电离室处于正常姿态的示意图;
图4是本申请其中一个实施方式的放射源相对于电离发生姿态改变的示意图;
图5是本申请其中一个实施方式的放射源相对于电离发生姿态改变的示意图;
图6是本申请其中一个实施方式的放射源相对于电离发生姿态改变的示意图;
图7是本申请其中一个实施方式的检测方法的流程示意图;
图8是本申请其中一个实施方式的检测方法的流程示意图;
图9是本申请其中一个实施方式的检测方法的流程示意图;
图10是本申请其中一个实施方式的检测方法的流程示意图;
图11是本申请其中一个实施方式的检测方法的流程示意图;
图12是本申请其中一个实施方式的检测方法中的计算原理示意图;
图13是本申请其中一个实施方式的检测方法的流程示意图;
图14是本申请其中一个实施方式的检测装置的模块示意图。
附图主要标记说明:
面密度设备100、放射源10、电离室20、第一预定位置30、第二预定位置40、第三预定位
置50、第四预定位置60;
第一距离传感器101、第二距离传感器102、第三距离传感器103、第四距离传感器104、
第五距离传感器105、第六距离传感器106、第七距离传感器107、第八距离传感器108;
检测装置200、获取模块210、确认模块220、确定模块230。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
面密度设备是一种检测片状物体的厚度和/或密度的设备。面密度设备一般包括放射源和电离室,在面密度设备工作时,被检物体(例如电极片)设置在放射源和电离室之间,放射源向被测物体发射射线,射线经过被测物体后进入电离室,电离室根据射线的衰减程度确定被测物体的厚度和/或密度。
在面密度设备中,放射源和电离室一般安装在导轨上,在面密度设备组装、调试完成后,放射源和电离室在导轨上往复运动以对被测物体进行扫描检测。在密度设备持续使用一段时间后,如果面密度设备的导轨等零部件发生较大的变形、紧固件松动、传动件磨损等情况,会导致放射源与探测器的相对位姿出现变化,进而使得放射源发出并透过被测物体的有效射线无法被电离室全部接收,造成面密度设备的测量结果不准确。
发明人经过统计发现,若放射源和电离室横向错位4mm时,面密度设备的测量精度降低约11%;若放射源和电离室纵向错位4mm时,面密度设备的测量精度降低约5.5%;若放射源和电离室相对立面扭转2°时,面密度设备的测量精度降低约5%。
对于以上技术问题,发明人研究后,认为可以在面密度设备无需测量被测物体后,定时对面密度设备进行检修,从而保证面密度设备的测量精度。然而,这样可能出现面密度设备在两次检修过程中出现故障,致使大量的被测物体的测量结果出现错误,带来严重的经济损失。
基于此,发明人仔细研究后,发明人通过在面密度设备工作过程中实时检测放射源和电离室的相对位姿,从而确定放射源和电离室的相对位姿是否发生改变,以便及时地采取相应的措施提高面密度设备的检测精度,解决了放射源和电离室之间的相对位置可能发生改变,造成测量结果不准确的技术问题。
请参阅图1和图2,图1是本申请其中一个实施方式的检测方法的流程示意图。图2是本申请其中一个实施方式的面密度设备100的立体示意图。
本申请实施方式的检测方法用于面密度设备100,面密度设备100包括放射源10和与放射源10间隔设置的电离室20,检测方法包括:
S10,在面密度设备100工作过程中,获取放射源10的第一当前位姿和电离室20的第二当前位姿;
S20,根据第一当前位姿确认放射源10的第一位姿偏差;
S30,根据第二当前位姿确认电离室20的第二位姿偏差;
S40,根据第一位姿偏差和第二位姿偏差确定放射源10相对于电离室20是否发生位姿改变。
具体地,面密度设备100是一种检测片状物体的厚度和/或密度的设备。放射源10是用于发出探测射线的部件,探测射线例如为X射线。放射源10发出的射线朝向电离室20,或者说,放射源10向电离室20发出射线。电离室20是用于接收探测射线的部件,电离室20也称作探测器。如图2所示的方位中,电离室20设置在放射源10的上方。电离室20与放射源10之间具有间隙,被探测物体位于该间隙中。
在面密度设备100工作时,放射源10和电离室20可沿X方向(第一方向)同步往复移动,被探测物体可沿Y向(第二方向)运动,放射源10朝向Z向(第三方向)发出探测射线,使得 探测射线穿过被测物体后进入电离室20被电离室20捕获,面密度设备100根据电离室20捕获到的探测射线的强度,可以计算得到被测物体单位面积上的重量(即面密度)。
在步骤S10中,面密度设备100的工作过程中指的是面密度设备100处于检测被测物体的面密度等参数的过程。放射源10的位姿为放射源10的位置和姿态,例如,放射源10相对于参照位置的距离,旋转的角度等参数。此处所说的参照位置可以为一个位置,也可以是多个不同的位置。同理,电离室20的位姿为电离室20的位置和姿态。当前位姿为实时检测到的位姿,例如,放射源10在当前时刻检测得到位姿为当前位姿。
第一当前位姿和第二当前位姿可以由距离传感器等传感器测量得到,例如,可以在放射源10上安装距离传感器,根据距离传感器测量距离传感器与面密度设备上的固定位置的距离从而得到第一当前位姿。又如,第一当前位姿和第二当前位姿可以通过陀螺仪等传感器测量得到。本申请不限制第一当前位姿和第二当前位姿的具体检测方式。
在步骤S20和S30中,第一位姿偏差可为第一当前位姿相对于第一初始位姿的偏差量。第二位姿偏差可为第二当前位姿相对于第二初始位姿的偏差量。
第一初始位姿和第二初始位姿分别为面密度设备100组装完成并经过校准后,放射源10和电离室20在运动行程上的某个位置的位姿。第一初始位姿可以由相关设备测量得到并保持在面密度设备100中,例如,第一初始位姿可以由传感器等检测部件测量得到。
可以理解,若第一当前位姿的数值与第一初始位姿的数值相等,那么,第一位姿偏差为0。也即是说,放射源10的当前位姿相对于初始位姿没有发生改变。
在步骤S40中,若第一位姿偏差和第二位姿偏差中的至少一个大于偏差阈值时,且第一位姿偏差和第二位姿偏差不能相互抵消时,则可以说明放射源10相对于电离室20发生了位姿改变。例如,若放射源10和电离室20向同一个方向改变相同的距离,那么则认为第一位姿偏差和第二位姿偏差能够相互抵消,放射源10和电离室20没有发生位姿改变。
如图3所示,图3是放射源10和电离室20处于正常位置的示意图,图3示意出了放射源10和电离室20没有发生位姿改变。图4-图6分别示意出了放射源10和电离室20发生了不同的位姿改变。
如此,本申请实施方式的检测方法中,先分别获取放射源10和电离室20的当前位姿,再根据当前位姿确认放射源10相对于电离室20是否发生位姿改变,从而可以在放射源10相对于电离室20发生位姿改变时执行相应的措施,以提高面密度设备100的测量结果的准确度。
另外,在面密度设备100工作过程中对放射源10和电离室20的位姿进行检测,使得面密度设备100无需停机,检测过程更加方便,有利于实时修正面密度设备100的测量结果,使得面密度设备100的检测效率更高。
请参阅图7,在某些实施方式中,获取放射源10的第一当前位姿和电离室20的第二当前位姿(S10),包括:
S110,获取放射源10和电离室20在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿;
具体地,放射源10在某个方向上的当前位置可以用放射源10与某个预定位置之间的距离来表示。例如,可以在面密度设备100上设置三维坐标系,可以根据放射源10的坐标来确定放射源10的当前位置。同理地,电离室20在某个方向上的当前位置可以用电离室20与某个预定位置之间的距离来表示。
如此,第一当前位姿和第二当前位姿更加容易确定。
请参阅图8,在某些实施方式中,步骤S110包括:
S11,获取放射源10在第一方向(如图2中的X向)上的第一当前位置,第一方向与放射源10的运动方向相同;
S12,获取电离室20在第一方向上的第二当前位置,第一当前位姿包括第一当前位置,第二当前位姿包括第二当前位置;
步骤S40包括:
S41,在第一位姿偏差和第二位姿偏差的偏差程度不同时,确定放射源10相对于电离室20在第一方向上发生位姿改变。
具体地,在步骤S11中,第一当前位置可以通过距离表示,也就是说,可以获取放射源10在第一方向上与第一预定位置30之间的第一当前距离以确定第一当前位置。放射源10可以沿X向来回往复运动。第一预定位置30可以为面密度设备100的沿X向朝向放射源10的位置。例如,本申请实施方式中,第一预定位置30为位于放射源10的X正向的平面。第一当前距离可以采用第一距离传感器101检测得到。第一距离传感器101可以安装在放射源10上,也可以安装在第一预定位置30上。第一距离传感器101例如为激光传感器,第一距离传感器101可以通过发射光线并接收反射回来的光线检测得到第一当前距离。
在步骤S12中,第二当前位置可以通过距离表示,也就是说,可以获取电离室20在第一方向上与第二预定位置40之间的第二当前距离以确定第二当前位置。电离室20沿X向来回往复运动。第二预定位置40可以为面密度设备100的沿X向朝向电离室20的位置。例如,本申请实施方式中,第二预定位置40为位于电离室20的X正向的平面。第二当前距离可以采用第二距离传感器102检测得到。第二距离传感器102可以安装在电离室20上,也可以安装在第二预定位置40上。第二距离传感器102例如为激光传感器,第二距离传感器102可以通过发射光线并接收反射回来的光线检测得到第二当前距离。
在步骤S41中,可以计算第一当前距离与第一初始距离的差值并作为第一差值;并计算第二当前距离与第二初始距离的差值并作为第二差值;在第一差值与第二差值之间的差值大于第一预定差值时,确定放射源10相对于电离室20发生位姿改变。
具体地,第一初始距离是放射源10在面密度设备100校准后,测量得到的放射源10与第一预定位置30之间的距离,根据第一差值,可以确定放射源10是否在X方向上发生位置改变。在一个例子中,第一当前距离为LAX1’,第一初始距离为LAX1,第一差值为XA1,那么XA1=LAX1’-LAX1。
第二初始距离是电离室20在面密度设备100校准后,测量得到的电离室20与第二预定位置40之间的距离,根据第二差值,可以确定电离室20是否在X方向上发生位置改变。在一个例子中,第二当前距离为LBX1’,第二初始距离为LBX1,第二差值为XB1,那么XB1=LBX1’-LBX1。
若第一差值与第二差值之间的差值较大,则说明放射源10相对于电离室20在自身运动方向上发生了位置改变。在一个例子中,第一差值与第二差值之间的差值为ΔX,ΔX=XA1-XB1。若ΔX大于第一预定差值,则确定放射源10相对于电离室20发生位姿改变。
综上,通过第一当前位置和第二当前位置可以检测电离室20和放射源10在第一方向上是否相对地发生位姿改变。
请参阅图9,在某些实施方式中,步骤S110,包括:
S13,获取放射源10在第二方向(如图2中的Y向)上的第三当前位置,第二方向与放射源10的运动方向垂直,第二方向与放射源10和电离室20的排布方向垂直;
S14,获取放射源10在第二方向上的第四当前位置,第一当前位姿包括第三当前位置,第二当前位姿包括第四当前位置;
步骤S40包括:
S42,在第一位姿偏差和第二位姿偏差的偏差程度不同时,确定放射源10相对于电离室20在第二方向上发生位姿改变。
具体地,在步骤S13中,第三当前位置可以通过距离表示,也就是说,可以获取放射源10在第二方向上与第三预定位置50之间的第三当前距离以确定第三当前位置;被测物体可以沿Y向运动。第三预定位置50可以为面密度设备100的沿Y向朝向放射源10的位置。例如,本申请实施方式中,第三预定位置50可以为与放射源10的Y向垂直的平面并且Y向的负向穿过第三预定位置50。第三当前距离可以采用第三距离传感器103检测得到。第三距离传感器103可以安装在放射源10上,也可以安装在第三预定位置50上。为了减少第三距离传感器103的数量,本申请实施方式中,第三距离传感器103安装在放射源10上。第三距离传感器103例如为激光传感器,第三距离传感器103可以通过发射光线并接收反射回来的光线检测得到第三当前距离。
在步骤S14中,第四当前位置可以通过距离表示,也就是说,可以获取电离室20在第二方向上与第四预定位置60之间的第四当前距离以确定第四当前位置。
第四预定位置60可以为面密度设备100的沿Y向朝向放射源10的位置。例如,本申请实施方式中,第四预定位置60与电离室50的Y向垂直的平面并且Y向的负向穿过第三预定位置50,第三预定位置50和第四预定位置60可以为同一平面。第四当前距离可以采用第四距离传感器104检测得到。第四距离传感器104可以安装在电离室20上,也可以安装在第四预定位置60上。为了减少第四距离传感器104的数量,本申请实施方式中,第四距离传感器安装在放射源10上。第四距离传感器104例如为激光传感器,第四距离传感器104可以通过发射光线并接收反射回来的光线检测得到第四当前距离。
在步骤S42中,可以计算第三当前距离与第三初始距离的差值并作为第三差值;计算第四当前距离与第四初始距离的差值并作为第四差值;在第三差值与第四差值之间的差值大于第二预定差值时,确定放射源10相对于电离室20发生位姿改变。
其中,第三初始距离是放射源10在面密度设备100校准后,测量得到的放射源10与第三预定位置50之间的距离,根据第三差值,可以确定放射源10是否在Y方向上发生位置改变。在一个例子中,第三当前距离为LAY’,第三初始距离为LAY,第三差值为YAY,那么,YAY=LAY’-YAY。
第四初始距离是电离室20在面密度设备100校准后,测量得到的电离室20与第四预定位置60之间的距离,根据第四差值,可以确定电离室20是否在Y方向上发生位置改变。在一个例子中,第四当前距离为LBY’,第四初始距离为LBY,第四差值为YBY,那么,YBY=LBY’-YBY。
若第三差值与第四差值之间的差值较大,则说明放射源10相对于电离室20在被测物体的运动方向上发生了位置改变。在一个例子中,第三差值与第二差值之间的差值为ΔY,ΔY=YAY-YBY。若ΔY大于第二预定差值,则确定放射源10相对于电离室20发生位姿改变。
如此,通过第三当前位置第四当前位置可以检测电离室20和放射源10在被测物体运动方向上是否相对地发生位姿改变。
请参阅图10,在某些实施方式中,步骤S110,包括:
S15,获取放射源10在第三方向(如图2中的Z向)上的第四当前位置,第三方向与放射源10和电离室20的排布方向相同;
S16,获取放射源10在第三方向上的第五当前位置,第一当前位姿包括第四当前位置,第二当前位姿包括第五当前位置;
步骤S40包括:
S43,在第一位姿偏差和第二位姿偏差的偏差程度不同时,确定放射源10相对于电离室20在第三方向上发生位姿改变。
在步骤S15中,第五当前位置可以通过距离表示,也就是说,可以获取放射源10与被测物体之间的第五当前距离以确定第五当前位置;被测物体位于放射源10的Z向,第五当前距离可以采用第五距离传感器105检测得到。第五距离传感器105可以安装在放射源10上。第五距离传感器105例如为激光传感器,第五距离传感器105可以通过发射光线并接收反射回来的光线检测得到第五当前距离。
在步骤S16中,第六当前位置可以通过距离表示,也就是说,可以获取电离室20与被测物体之间的第六当前距离以确定第六当前位置。第六当前距离可以采用第六距离传感器106检测得到。第六距离传感器106可以安装在电离室20上。第六距离传感器106例如为激光传感器,第六距离传感器106可以通过发射光线并接收反射回来的光线检测得到第六当前距离。
在步骤S43中,可以计算第五当前距离与第五初始距离的差值并作为第五差值;并计算第六当前距离与第六初始距离的差值并作为第六差值;在第五差值与第六差值之间的和大于预定值时,确定放射源10相对于电离室20发生位姿改变。
第五初始距离是放射源10在面密度设备100校准后,测量得到的放射源10与被测物体之间的距离,根据第五差值,可以确定放射源10是否在Z方向上发生位置改变。在一个例子中,第五当前距离为LAZ’,第五初始距离为LAZ,第五差值为ZAZ,那么,ZAZ=LAZ’-ZAZ。
第六初始距离是电离室20在面密度设备100校准后,测量得到的电离室20与被测物体之间的距离,根据第六差值,可以确定电离室20是否在Z方向上发生位置改变。在一个例子中,第六当前距离为LBZ’,第六初始距离为LBZ,第六差值为ZBZ,那么,ZBZ=LBZ’-ZBZ。
若第五差值与第六差值之间的差值较大,则说明放射源10相对于电离室20在被测物体的运动方向上发生了位置改变。在一个例子中,第五差值与第二差值之间的差值为ΔZ,ΔZ=ZAZ-ZBZ。若ΔZ大于第二预定差值,则确定放射源10相对于电离室20发生位姿改变。
如此,通过第五当前位置第六当前位置可以检测电离室20和放射源10在被测厚度运动方向上是否相对地发生位姿改变。
需要指出的是,由于被测物体的厚度差异较小,因此,被测物体的厚度差异带来的测量误差可以忽略不计。
请参阅图11,在某些实施方式中,步骤S11包括:
S111,获取放射源10两个不同部位在第一方向上的第一当前位置;
S112,根据两个第一当前位置确定放射源10的第一扭转量,第一当前位姿包括第一扭转量;
步骤S12包括:
S121,获取电离室20两个不同部位在第一方向上的第二当前位置;
S122,根据两个第二当前位置确定电离室20的第二扭转量,第二当前位姿包括第二扭转量;
步骤S40,包括:
S44,在第一位姿偏差和第二位姿偏差的偏差程度不同时,确定放射源10相对于电离室20发生扭转位姿改变。
具体地,在步骤S111和S112中,可以获取放射源1010的第一放射部位在自身运动方向上 与第一预定位置30之间的第一当前距离作为其中一个第一当前位置;可以,获取放射源1010的第二放射部位在自身运动方向上与第一预定位置30之间的第七当前距离作为另一个第一当前位置,第二放射部位与第一放射部位位于放射源1010的同一侧;
如以上所讨论的,第一当前距离可以采用第一距离传感器101检测得到。第一距离传感器101可以安装在放射源10的第一放射部位上,也可以安装在第一预定位置30上。第一距离传感器101例如为激光传感器,第一距离传感器101可以通过发射光线并接收反射回来的光线检测得到第一当前距离。
类似的,如图2所示,第七当前距离可以采用第七距离传感器107检测得到。第七距离传感器107可以安装在放射源10的第二放射部位上,也可以安装在第一预定位置30上。第七距离传感器107例如为激光传感器,第七距离传感器107可以通过发射光线并接收反射回来的光线检测得到第七当前距离。
本申请实施方式中,第一放射部位和第二放射部位为放射源10上的两个不同的位置,第一放射部位和第二放射部位可以是面或者结构体等具有具体特征的实体。
可以根据第一当前距离、第七当前距离和第一预定距离计算放射源10的第一扭转角,第一预定距离为第一放射部位的中心与第二放射部位的中心之间的距离;
第一预定距离是放射源10在面密度设备100校准后,测量得到的放射源10与第一预定位置30之间的距离。请结合图12,在一个例子中,第一当前距离为LAX1’,第七当前距离为LAX2’,第一初始距离为LAX1,第七初始距离为LAX2,第一预定距离为A,第一扭转角为θA,那么,θA=arcsin([|(LAX1’-LAX1)-(LAX2’-LAX2)|]/A)。
在步骤S121和S122中,可以获取电离室20的第一电离部位在自身运动方向上与第二预定位置40之间的第二当前距离作为其中一个第二当前位置;可以获取电离室20的第二电离部位在自身运动方向上与第二预定位置40之间的第八当前距离作为另一个第二当前位置;
如以上所讨论的,第二当前距离可以采用第二距离传感器102检测得到。第二距离传感器102可以安装在电离室20的第一电离部位上,也可以安装在第二预定位置40上。第二距离传感器102例如为激光传感器,第二距离传感器102可以通过发射光线并接收反射回来的光线检测得到第二当前距离。
类似地,第八当前距离可以采用第八距离传感器108检测得到。第八距离传感器108可以安装在电离室20的第二电离部位上,也可以安装在第二预定位置40上。第八距离传感器108例如为激光传感器,第八距离传感器108可以通过发射光线并接收反射回来的光线检测得到第八当前距离。
本申请实施方式中,第一电离部位和第二电离部位为电离室20上的两个不同的位置,第一电离部位和第二电离部位可以是面或者结构体等具有具体特征的实体。
可以根据第二当前距离、第八当前距离和第二预定距离计算放射源10的第二扭转角,第二预定距离为第一电离部位的中心与第二电离部位的中心之间的距离;
第二预定距离是放射源10在面密度设备100校准后,测量得到的电离室20与第二预定位置40之间的距离。在一个例子中,第二当前距离为LBX1’,第七当前距离为LBX2’,第二初始距离为LBX1,第七初始距离为LBX2,第二预定距离为B,第二扭转角为θB,那么θB=arcsin([|(LBX1’-LBX1)-(LBX2’-LBX2)|]/B)。
需要指出的是,第一预定距离A可以等于第二预定距离B。
在步骤S44中,可以在第一扭转角与第二扭转角之间的和大于扭转角阈值时,确定放射源 10相对于电离室20发生位姿改变。
若第一扭转角与第二扭转角之间的和较大,则说明放射源10相对于电离室20在自身运动方向上发生了位置改变。在一个例子中,第一扭转角与第二扭转角之间的和为θ,θ=θA+θB。若θ大于扭转角阈值,则确定放射源10相对于电离室20发生位姿改变。
如此,通过第一扭转角和第二扭转角可以确定放射源10和电离室20是否发生扭转状态的位姿改变。
本申请实施方式中,由于放射源10和电离室20在工作的过程中往复运动,为了可以实时检测放射源10和电离室20的当前位姿和初始位姿的关系,需要预先测定初始位姿。因此,在面密度设备100校准后,在多个位置上分别获得初始位姿,从而可以得到多个初始位姿,使得放射源10和电离室20在工作过程中处于任意一个位置上均可以检测确认放射源10和电离室20是否发生位姿改变。
在某些实施方式中,获取放射源10的第一当前位姿和电离室20的第二当前位姿(S10),包括:
通过设置在放射源10上的距离传感器的检测结果获取第一当前位姿;
通过设置在电离室20上的距离传感器的检测结果获取第二当前位姿。
如以上所讨论的,可以通过第一至第八距离传感器检测相应的距离,从而获取得到放射源10和电离室20的当前位姿。如此,根据距离传感器可以方便地获取到放射源10和电离室20的当前位姿。
请参阅图13,在某些实施方式中,检测方法还包括:
S50,在放射源10相对于电离室20发生位姿改变时,根据位姿改变量修正面密度设备100的测量结果。
如此,根据位姿改变量修正面密度设备100的测量结果,使得面密度设备100的测量结果更加准确。例如,当确认由于放射源10相对于电离室20发生位姿改变而导致测量结果偏大时,可以将测量结果修正减小,以使测量结果更加准确。
另外,在某些实施方式中,在放射源10相对于电离室20发生位姿改变时,可以发出提示和预警,以便于对设备状态进行评估、维护保养和检修工作等工作,有效避免面密度设备100的在故障时工作,避免大批量的产品发生安全隐患。
本申请实施方式的面密度设备100包括放射源10、与放射源10间隔设置的电离室20和存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以上任一实施方式的方法的步骤。
例如,处理器可以执行以下检测方法的步骤:
S10,在面密度设备100工作过程中,获取放射源10的第一当前位姿和电离室20的第二当前位姿;
S20,根据第一当前位姿确认放射源10的第一位姿偏差;
S30,根据第二当前位姿确认电离室20的第二位姿偏差;
S40,根据第一位姿偏差和第二位姿偏差确定放射源10相对于电离室20是否发生位姿改变。
如此,先分别获取放射源10和电离室20的当前位姿,再根据当前位姿确认放射源10相对于电离室20是否发生位姿改变,从而可以在放射源10相对于电离室20发生位姿改变时执行相应的措施,以提高面密度设备100的测量结果的准确度。
在某些实施方式中,放射源10和电离室20上均设置有距离传感器,距离传感器用于检测 放射源10和电离室20与预定位置之间的距离。如此,根据距离传感器可以方便地获取到放射源10和电离室20的当前位姿。
需要指出的是,上述实施方式的检测方法的解释说明适用于本申请的检测装置,本申请实施方式的检测装置其他未展开的部分,请参考上述测试方法相应的部分,在此不再赘述。
请参阅图14,本申请实施方式的检测装置200包括获取模块210、确认模块220和确定模块230,获取模块210用于在面密度设备100工作过程中,获取面密度设备100的放射源10的第一当前位姿和面密度设备100的电离室20的第二当前位姿;确认模块220用于计算第一当前位姿与放射源10的第一初始位姿的第一位姿偏差,及用于计算第二当前位姿与电离室20的第二初始位姿的第二位姿偏差;确定模块230用于根据第一位姿偏差和第二位姿偏差确定放射源10相对于电离室20是否发生位姿改变。
如此,先分别获取放射源10和电离室20的当前位姿,再根据当前位姿确认放射源10相对于电离室20是否发生位姿改变,从而可以在放射源10相对于电离室20发生位姿改变时执行相应的措施,以提高面密度设备100的测量结果的准确度。
需要指出的是,本申请实施方式的检测装置200可以实现以上任一实施方式的检测方法,以上实施方式的检测方法的各个步骤可以由检测装置200对应的模块执行,在此不再赘述。
另外,上述实施方式的检测方法的解释说明适用于本申请的检测装置200,本申请实施方式的检测装置200其他未展开的部分,请参考上述测试方法相应的部分,在此不再赘述。
一种计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行以上任一实施方式的检测方法。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算 机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。上述提到的存储介质可以是只读存储器,磁盘或光盘等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种面密度设备的检测方法,其特征在于,所述面密度设备包括放射源和与所述放射源间隔设置的电离室,所述检测方法包括:
    在所述面密度设备工作过程中,获取所述放射源的第一当前位姿和所述电离室的第二当前位姿;
    根据所述第一当前位姿确认所述放射源的第一位姿偏差;
    根据所述第二当前位姿确认所述电离室的第二位姿偏差;
    根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变。
  2. 根据权利要求1所述的检测方法,其特征在于,所述获取所述放射源的第一当前位姿和所述电离室的第二当前位姿,包括:
    获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿。
  3. 根据权利要求2所述的检测方法,其特征在于,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿,包括:
    获取所述放射源在第一方向上的第一当前位置,所述第一方向与所述放射源的运动方向相同;
    获取所述电离室在第一方向上的第二当前位置,所述第一当前位姿包括所述第一当前位置,所述第二当前位姿包括所述第二当前位置;
    根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
    在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第一方向上发生位姿改变。
  4. 根据权利要求3所述的检测方法,其特征在于,所述获取所述放射源在第一方向上的第一当前位置,包括:
    获取所述放射源两个不同部位在所述第一方向上的第一当前位置;
    根据两个所述第一当前位置确定所述放射源的第一扭转量,所述第一当前位姿包括所述第一扭转量;
    所述获取所述电离室在第一方向上的第二当前位置,包括;
    获取所述电离室两个不同部位在第一方向上的第二当前位置;
    根据两个所述第二当前位置确定所述电离室的第二扭转量,所述第二当前位姿包括所述第二扭转量;
    根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
    在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室发生扭转位姿改变。
  5. 根据权利要求2所述的检测方法,其特征在于,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿,包括:
    获取所述放射源在第二方向上的第三当前位置,所述第二方向与所述放射源的运动方向垂直,所述第二方向与所述放射源和所述电离室的排布方向垂直;
    获取所述放射源在第二方向上的第四当前位置,所述第一当前位姿包括所述第三当前位置,所述第二当前位姿包括所述第四当前位置;
    根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
    在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第二方向上发生位姿改变。
  6. 根据权利要求2所述的检测方法,其特征在于,获取所述放射源和所述电离室在至少一个方向上的当前位置以确定所述第一当前位姿和所述第二当前位姿,包括:
    获取所述放射源在第三方向上的第四当前位置,所述第三方向与所述放射源和所述电离室的排布方向相同;
    获取所述放射源在第三方向上的第五当前位置,所述第一当前位姿包括所述第四当前位置,所述第二当前位姿包括所述第五当前位置;
    根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变,包括:
    在所述第一位姿偏差和所述第二位姿偏差的偏差程度不同时,确定所述放射源相对于所述电离室在所述第三方向上发生位姿改变。
  7. 根据权利要求1所述的检测方法,其特征在于,所述检测方法还包括:
    在所述放射源相对于所述电离室发生位姿改变时,根据位姿改变量修正所述面密度设备的测量结果。
  8. 一种面密度设备,其特征在于,包括:
    放射源;
    与所述放射源间隔设置的电离室;
    存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1-7所述方法的步骤。
  9. 根据权利要求8所述的密度设备,其特征在于,所述放射源和所述电离室上均设置有距离传感器,所述距离传感器用于检测所述放射源和所述电离室与预定位置之间的距离。
  10. 一种检测装置,其特征在于,包括:
    获取模块,用于在面密度设备工作过程中,获取所述面密度设备的放射源的第一当前位姿和所述面密度设备的电离室的第二当前位姿;
    确认模块,用于根据所述第一当前位姿确认所述放射源的第一位姿偏差,及根据所述第二当前位姿确认所述电离室的第二位姿偏差;
    确定模块,用于根据所述第一位姿偏差和所述第二位姿偏差确定所述放射源相对于所述电离室是否发生位姿改变。
  11. 一种计算机可执行指令的非易失性计算机可读存储介质,其特征在于,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行权利要求1-7中任一项所述的检测方法的步骤。
PCT/CN2023/091278 2022-11-08 2023-04-27 检测方法、面密度设备、检测装置和存储介质 WO2024098679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/382,862 US20240151521A1 (en) 2022-11-08 2023-10-23 Detection method, surface density device, detection means, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211394373.2A CN115931633A (zh) 2022-11-08 2022-11-08 检测方法、面密度设备、检测装置和存储介质
CN202211394373.2 2022-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/382,862 Continuation US20240151521A1 (en) 2022-11-08 2023-10-23 Detection method, surface density device, detection means, and storage medium

Publications (1)

Publication Number Publication Date
WO2024098679A1 true WO2024098679A1 (zh) 2024-05-16

Family

ID=86653173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091278 WO2024098679A1 (zh) 2022-11-08 2023-04-27 检测方法、面密度设备、检测装置和存储介质

Country Status (2)

Country Link
CN (1) CN115931633A (zh)
WO (1) WO2024098679A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115931633A (zh) * 2022-11-08 2023-04-07 宁德时代新能源科技股份有限公司 检测方法、面密度设备、检测装置和存储介质
CN117007464A (zh) * 2023-07-21 2023-11-07 深圳市大成精密设备股份有限公司 一种射线测量设备及可移植的校验装置
CN116713103B (zh) * 2023-08-02 2024-01-02 江苏时代新能源科技有限公司 阴极粉料中杂质金属颗粒的分离方法和检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110017A1 (en) * 2007-03-15 2008-09-18 University Of Northern British Columbia Systems and methods for monitoring wood product characteristics
CN103876759A (zh) * 2012-12-20 2014-06-25 上海联影医疗科技有限公司 X射线摄影系统及其控制方法
CN115015039A (zh) * 2022-04-27 2022-09-06 杭州安脉盛智能技术有限公司 一种面密度检测系统及方法
CN115096756A (zh) * 2022-07-27 2022-09-23 浙江双元科技股份有限公司 一种自标定面密度检测仪及其标定方法
CN217605573U (zh) * 2022-06-24 2022-10-18 青海盐湖工业股份有限公司 放射性密度计安装装置及放射性密度计组件
CN115931633A (zh) * 2022-11-08 2023-04-07 宁德时代新能源科技股份有限公司 检测方法、面密度设备、检测装置和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110017A1 (en) * 2007-03-15 2008-09-18 University Of Northern British Columbia Systems and methods for monitoring wood product characteristics
CN103876759A (zh) * 2012-12-20 2014-06-25 上海联影医疗科技有限公司 X射线摄影系统及其控制方法
CN115015039A (zh) * 2022-04-27 2022-09-06 杭州安脉盛智能技术有限公司 一种面密度检测系统及方法
CN217605573U (zh) * 2022-06-24 2022-10-18 青海盐湖工业股份有限公司 放射性密度计安装装置及放射性密度计组件
CN115096756A (zh) * 2022-07-27 2022-09-23 浙江双元科技股份有限公司 一种自标定面密度检测仪及其标定方法
CN115931633A (zh) * 2022-11-08 2023-04-07 宁德时代新能源科技股份有限公司 检测方法、面密度设备、检测装置和存储介质

Also Published As

Publication number Publication date
CN115931633A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024098679A1 (zh) 检测方法、面密度设备、检测装置和存储介质
CN101175986B (zh) 玻璃检测系统及其使用方法
US6111601A (en) Non-contacting laser gauge for qualifying screw fasteners and the like
KR101578496B1 (ko) 이미지 센서의 틸트 결정 방법
US20110040510A1 (en) Film thickness measurement apparatus
US20130057650A1 (en) Optical gage and three-dimensional surface profile measurement method
TWI420081B (zh) 測距系統及測距方法
CN105403183B (zh) 一种用于检验车钩的工作样板计量检测方法
TWI391652B (zh) Edge sensor and defect inspection device
US20100315653A1 (en) Optical sensor for positioning tasks
CN109827607A (zh) 线结构光焊缝跟踪传感器的标定方法及装置
TWI428567B (zh) 測距方法、測距系統與其處理軟體
JPH09264719A (ja) ねじ要素の測定方法および装置
US20240151521A1 (en) Detection method, surface density device, detection means, and storage medium
JP5054592B2 (ja) 形状算出装置,形状算出プログラム,形状算出方法,形状測定装置
JP7375458B2 (ja) 外観検査装置及び、不良検査方法
US20210086282A1 (en) Processing system, processing method, and storage medium
US20070102556A1 (en) Apparatus and method for measuring roll sidewall quality
JPH06281593A (ja) 表面検査方法及びその装置
JP2021085659A (ja) 検査装置及び検査方法
JP4218880B2 (ja) エッジセンサの診断方法および診断装置
JPS60174948A (ja) 管の劣化診断装置
JP6170714B2 (ja) 測距装置
KR20010063525A (ko) 냉연강판용 폭측정장치
US11359910B2 (en) Inspection method, correction method, and inspection device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023789483

Country of ref document: EP

Effective date: 20231024