WO2024098309A1 - 一种水力自适应电化学半柔性反应装置 - Google Patents

一种水力自适应电化学半柔性反应装置 Download PDF

Info

Publication number
WO2024098309A1
WO2024098309A1 PCT/CN2022/130997 CN2022130997W WO2024098309A1 WO 2024098309 A1 WO2024098309 A1 WO 2024098309A1 CN 2022130997 W CN2022130997 W CN 2022130997W WO 2024098309 A1 WO2024098309 A1 WO 2024098309A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
sheet
titanium sheet
concentration
reaction device
Prior art date
Application number
PCT/CN2022/130997
Other languages
English (en)
French (fr)
Inventor
朱昊
刘汉飞
高源�
季雨凡
倪嵩波
黄益平
Original Assignee
中建安装集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建安装集团有限公司 filed Critical 中建安装集团有限公司
Priority to PCT/CN2022/130997 priority Critical patent/WO2024098309A1/zh
Publication of WO2024098309A1 publication Critical patent/WO2024098309A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction

Definitions

  • the invention relates to the technical field of electrochemical reactions, in particular to a hydraulic self-adaptive electrochemical semi-flexible reaction device.
  • Electrochemical technology is green, clean and easy to operate, and has gradually been promoted and applied in the field of water treatment.
  • electrochemical catalytic oxidation technology can use the active catalytic layer of the anode to produce high-energy free radicals to degrade or even mineralize difficult-to-degrade pollutants in water.
  • the configurations of the anode, cathode and device are basically fixed, and the (positive and negative) charge distribution on the electrode surface is basically determined.
  • electrochemical reactors with fixed structures, such as flat reactors have major defects in the treatment of complex organic wastewater. Since most organic matter is negatively charged, when pollutants diffuse to the vicinity of the electrode interface, the positive electric traction of the anode can enhance the interfacial mass transfer of pollutants.
  • the present invention proposes a hydraulic adaptive electrochemical semi-flexible reaction device.
  • the device can be in an electrochemical unit, according to the water quality and treatment requirements of the influent, by simply adjusting the hydraulic parameters to achieve seamless switching of the complex breaking-degradation electrochemical reaction process, and can also carry out series and parallel connection of multiple units as needed to form an integrated application.
  • the present invention provides a hydraulic adaptive electrochemical semi-flexible reaction device, comprising an anode, a cathode, a power supply and a water inlet and outlet system, wherein the anode and the cathode are arranged in parallel in a mirror image and are respectively connected to the positive and negative electrodes of the power supply; the anode and the cathode both have a current collector and a flexible catalyst sheet array, the bottom of the flexible catalyst sheet array is fixed on the current collector, and the catalytic surface of the flexible catalyst sheet is arranged perpendicular to the water inlet and outlet direction.
  • the flexible catalyst sheet is prepared by staggered stripe induction-anodic oxidation-multilayer electrodeposition, has mechanical flexibility, and is a flexible sheet structure with catalytic activity, the current collector is non-flexible, and the current collectors of the cathode and the anode are both titanium materials.
  • the flexible catalyst sheet is affected by water flow impact, water pressure and other factors, and will bend from the water-facing surface to the water-retaining surface, resulting in a rearrangement of the charge distribution on the catalyst sheet.
  • the preparation method of the flexible catalyst sheet comprises the following steps:
  • an aqueous solution containing strong acid, strong oxidizing and corrosive ions, and further temperature activation is used to corrode and destroy the formed nanopores, which eventually leads to connectivity between the nanopores.
  • Channels appear in the grooves of the original cross wear marks, while only corrosion pits appear on the protrusions, and the macroscopic block protrusion structure is still retained.
  • the thrice-treated titanium sheet has oriented bending flexibility along the direction of the original cross wear mark.
  • the fixing method is not limited.
  • welding is used to ensure that the bottom of the flexible catalyst sheet is in seamless contact with the current collector and cannot be separated.
  • the fixing and arrangement methods of the flexible catalyst sheets of the cathode and anode are consistent.
  • the titanium sheet is rectangular, and the ratio of the height to the width of the titanium sheet is 0.8 to 1.5; the titanium sheet is polished with sandpaper or a grinding wheel, and the polishing direction is cross polishing, that is, it is roughly polished once along the width and height of the titanium sheet respectively, and then washed with clean water after polishing, and dried for standby use, so as to ensure that cross grinding marks appear on the surface of the titanium sheet after polishing; the sandpaper is 200 to 400 mesh.
  • the concentration of sulfuric acid is 0.25-0.95 mol/L
  • the concentration of isopropanol is 0.15-0.4 mol/L
  • the concentration of ammonium fluoride is 0.025-0.088 mol/L
  • the concentration of perchloric acid is 0.08-0.40 mol/L.
  • the power supply voltage is 30-80V
  • the reaction time is 2-18h
  • the bottom is magnetically stirred during the reaction
  • the stirring speed is 300-600rpm
  • the drying temperature is 50-85°C
  • the drying time is 6-12h.
  • the concentration of perchloric acid is 0.5-0.8 mol/L
  • the mass fraction of phosphoric acid is 5-8wt%
  • the concentration of hydrofluoric acid is 0.04-0.1 mol/L
  • the mass fraction of nitric acid is 1-3wt%
  • the temperature of the mixed solution is 30-45°C
  • the immersion time of the initially treated titanium sheet is 20-60 min
  • the drying temperature is 50-80°C.
  • the concentration of glucose is 3-10 g/L, and the concentration of lead nitrate is 6-10 g/L; the immersion time of the secondary treated titanium sheet is 1-3 min, and the drying temperature is 50-80°C.
  • the temperature in S4, in the first calcination, the temperature is 240-260°C, and the time is 0.5-1h; in the second calcination, the temperature is 390-410°C, and the time is 0.5-2h; the heating and cooling rates are both 1-6°C/min.
  • the flexible catalytic sheet array is arranged in parallel at equal intervals, and the interval is 1/3 to 2/3 of the height of the flexible catalytic sheet.
  • the flexible catalytic sheet of the anode and the flexible catalytic sheet of the cathode are arranged opposite to each other without contacting each other and are separated by a certain distance as a whole, and the minimum distance between them is 1/4 to 1/3 of the height of the flexible catalytic sheet.
  • the water inlet and outlet system includes a water inlet pump, a solenoid valve, a raw water tank, a water inlet pipe, a return pipe and connecting parts.
  • the hydraulic self-adaptive electrochemical semi-flexible reaction device provided by the present invention can utilize the deformation of the flexible catalyst sheet to generate reaction characteristics under different hydraulic conditions (such as flow rates).
  • the flexible catalyst sheet produces weak deformation, with high-density charge discharge reaction at the edge as the main reaction.
  • the DC voltage 60-180V (pulse discharge can also be used, with a voltage of 300-1000V and a discharge frequency of 50-120Hz)
  • the inorganic-organic complex bonds in water can be destroyed, thereby achieving the decomplexation and release of pollutants.
  • the flexible catalyst sheet undergoes strong deformation, with the catalytic oxidation reaction of the blocky catalytic reaction clusters on the surface being the main reaction.
  • the current density to 5-50 mA/ cm2 (current collector area)
  • the capture and catalytic degradation of free (negatively charged) organic matter in water can be achieved.
  • the decomplexation and degradation of target pollutants in water can be achieved.
  • the low flow rate hydraulic conditions There is no obvious boundary between the low flow rate hydraulic conditions and the high flow rate hydraulic conditions.
  • the hydraulic conditions that can make the flexible catalytic sheet produce an average inclination angle of no more than 15° can be considered as low flow rate hydraulic conditions, and the others are high flow rate hydraulic conditions.
  • the operation modes of the hydraulic adaptive electrochemical semi-flexible reaction device provided by the present invention may include but are not limited to the following:
  • Mode 1 Single electrochemical semi-flexible reaction device mode
  • the switching between the complex breaking process and the degradation process of the electrochemical semi-flexible reaction device is achieved by regulating a single electrochemical semi-flexible reaction device and the inlet flow rate.
  • the inlet water reflux solenoid valve can be opened to increase the reflux of the inlet pump, thereby reducing the flow rate entering the electrochemical semi-flexible reaction device and reducing the deflection angle of the flexible catalyst sheet, which is conducive to gathering the charge at the edge of the flexible catalyst sheet and generating a discharge complex breaking phenomenon.
  • the inlet water reflux can be closed or reduced, the flow rate entering the electrochemical semi-flexible reaction device is increased, and the deflection angle of the flexible catalyst sheet is increased, which is conducive to dispersing the charge on the blocky catalytic reaction clusters on the surface of the flexible catalyst sheet, increasing the contact probability between the charge and the organic matter in the water, and realizing the catalytic degradation process.
  • the electrochemical semi-flexible reaction devices can be used in series.
  • the front device undergoes a decomposition reaction at a low flow rate, and the outlet water is converted to a high flow rate state through the pump flow rate increase, and enters the rear device to undergo a degradation reaction at a high flow rate.
  • Each subunit in the series can also add multiple devices for parallel use to meet different water treatment needs.
  • the hydraulic adaptive electrochemical semi-flexible reaction device proposed in the present invention solves the problem that the traditional fixed electrochemical reaction device has a single function and limited flexibility and adaptability in dealing with complex wastewater. Specifically, it solves the problem that the electrochemical catalytic oxidation reaction device cannot effectively solve the complex breaking of the organic-cation complex for complex wastewater, resulting in limited interfacial mass transfer and reduced degradation efficiency, and the traditional electrochemical device is difficult to achieve flexible coordination of the "complex breaking" and "degradation" functions.
  • the flexible catalyst sheet proposed in the present invention has a macroscopic rectangular shape and has oriented flexibility along the cross-wear mark direction.
  • the concave part of the cross-wear mark is a water flow channel, which allows water to flow through and enhances the mass transfer area between the catalyst sheet and the wastewater.
  • the raised part of the cross-wear mark is a block-shaped catalytic reaction cluster, which can produce charge distribution at high flow rates, increase the contact area with pollutants, and achieve efficient catalytic degradation of pollutants.
  • the flexible catalyst sheet has the characteristics of cross flexibility and is a key material for realizing hydraulic adaptive electrochemical semi-flexible reactions.
  • the hydraulic adaptive electrochemical semi-flexible reaction device proposed in the present invention can realize different functions by simply adjusting the water inlet flow rate according to the existence form and treatment requirements of different wastewaters and pollutants therein, and the method is simple.
  • the series/parallel connection of reactions can realize the coordinated use of multiple functions, with flexible application scenarios, complete functions and ease of use.
  • FIG. 1 is a diagram showing the internal operating states of the hydraulic adaptive electrochemical semi-flexible reaction device of the present invention at different flow rates.
  • FIG. 2 is a schematic diagram showing two existing forms and charge distribution of the flexible catalyst sheet in the present invention.
  • FIG. 3 is a schematic diagram of a single electrochemical semi-flexible reaction device in the present invention.
  • FIG. 4 is a schematic diagram of a hybrid mode of a multi-electrochemical semi-flexible reaction device in the present invention.
  • FIG. 5 is a schematic diagram of a partial structure of an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the cross wear mark in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the inclination angle of the flexible catalyst sheet in an embodiment of the present invention.
  • a hydraulic adaptive electrochemical semi-flexible reaction device comprises an anode, a cathode, a power supply and an inlet and outlet water system, as shown in Figures 3 and 5, the anode and the cathode are arranged in parallel in a mirror image, and are respectively connected to the positive and negative electrodes of the power supply, the inlet and outlet water system comprises a raw water tank, the outlet of the raw water tank is connected to a water inlet pipe, a water inlet pump is provided on the water inlet pipe, the inlet of the raw water tank is connected to a return pipe, and a solenoid valve is provided on the return pipe; the anode and the cathode both have a current collector and a flexible catalyst sheet array, the flexible catalyst sheet array is welded and fixed on the current collector, and the catalytic surface of the flexible catalyst sheet 1 is arranged perpendicular to the inlet and outlet water direction.
  • the flexible catalyst sheet 1 is a flexible sheet structure with catalytic activity, the current collector is non-flexible, and the current collectors of the cathode and anode are both made of titanium.
  • the flexible catalyst sheet array is arranged in parallel with equal spacing, and the distance between two adjacent flexible catalyst sheets is 5 cm.
  • the flexible catalyst sheet 1 of the anode and the flexible catalyst sheet 1 of the cathode are arranged one by one opposite to each other without contact, and the minimum distance between them is 5 cm.
  • the method for preparing the flexible catalytic sheet 1 comprises the following steps:
  • the titanium sheet with cross-grinding marks is immersed in a mixed solution containing a certain concentration of sulfuric acid, isopropanol, ammonium fluoride and perchloric acid, with the titanium sheet as the anode and the stainless steel sheet as the cathode, the distance between the anode and the cathode is 1.5 cm, and power is applied for an anodic oxidation reaction.
  • the titanium sheet after the reaction is taken out, washed and dried to obtain a pre-treated titanium sheet; in the mixed solution, the concentration of sulfuric acid is 0.3 mol/L, the concentration of isopropanol is 0.2 mol/L, the concentration of ammonium fluoride is 0.05 mol/L, and the concentration of perchloric acid is 0.20 mol/L; in the anodic oxidation reaction, the power-on voltage is 60 V, the reaction time is 6 h, the bottom is magnetically stirred during the reaction, the stirring speed is 300 rpm, the drying temperature is 65 ° C, and the drying time is 8 h.
  • Example 1 The flexible catalyst sheet preparation method and electrode assembly method in Example 1 were used to control the water inlet flow rate to increase continuously from 0, and the effect of the water inlet flow rate on the inclination angle of the flexible catalyst sheet (as shown in FIG. 7 ) was measured.
  • the results are shown in the following table:
  • the flexible catalyst sheet preparation method and electrode assembly method in Example 1 were used.
  • the pollutant in the influent was terephthalic acid (200 mg/L), and the cation was trivalent iron ion (100 mg/L).
  • the two existed in a complex state of terephthalic acid-iron ion.
  • the influent flow rate was 5 cm/s (low flow rate)
  • the DC voltage was 100 V
  • the hydraulic retention time was 50 min.
  • the results were: the decomposition efficiency was 98.8%, and the degradation rate was 7%.
  • Example 1 The flexible catalyst sheet preparation method and electrode assembly method in Example 1 were used, and the pollutant in the influent was terephthalic acid (200 mg/L). As shown in FIG3 , the influent flow rate was 20 cm/s (high flow rate), the current density was 20 mA/cm 2 , and the hydraulic retention time was 12 min. The results showed that the degradation efficiency reached 92%.
  • a hydraulic adaptive electrochemical semi-flexible reaction device comprises an anode, a cathode, a power supply and an inlet and outlet water system, as shown in FIG5 , the anode and the cathode are arranged in parallel in a mirror image, and are respectively connected to the positive and negative electrodes of the power supply, the inlet and outlet water system comprises a raw water tank, the outlet of the raw water tank is connected to a water inlet pipe, a water inlet pump is provided on the water inlet pipe, the inlet of the raw water tank is connected to a return pipe, and a solenoid valve is provided on the return pipe; the anode and the cathode both have a current collector and a flexible catalyst sheet array, the flexible catalyst sheet array is fixed on the current collector, and the catalytic surface of the flexible catalyst sheet 1 is arranged perpendicular to the inlet and outlet water direction.
  • the flexible catalyst sheet is a flexible sheet structure with catalytic activity, the current collector is non-flexible, and the current collectors of the cathode and anode are both made of titanium.
  • the flexible catalyst sheet array is arranged in parallel with equal spacing, and the distance between two adjacent flexible catalyst sheets is 5 cm.
  • the flexible catalyst sheet 1 of the anode and the flexible catalyst sheet 1 of the cathode are arranged one by one opposite to each other without contact, and the minimum distance between them is 5 cm.
  • the method for preparing the flexible catalytic sheet 1 comprises the following steps:
  • the titanium sheet with cross-grinding marks is immersed in a mixed solution containing a certain concentration of sulfuric acid, isopropanol, ammonium fluoride and perchloric acid, with the titanium sheet as the anode and the stainless steel sheet as the cathode, the distance between the anode and the cathode is 1 cm, and power is applied for an anodic oxidation reaction.
  • the titanium sheet after the reaction is taken out, washed and dried to obtain a pre-treated titanium sheet; in the mixed solution, the concentration of sulfuric acid is 0.25 mol/L, the concentration of isopropanol is 0.15 mol/L, the concentration of ammonium fluoride is 0.025 mol/L, and the concentration of perchloric acid is 0.08 mol/L; in the anodic oxidation reaction, the power-on voltage is 30 V, the reaction time is 2 h, the bottom is magnetically stirred during the reaction, the stirring speed is 400 rpm, the drying temperature is 50°C, and the drying time is 6 h.
  • the thrice-treated titanium sheet is calcined once in an air atmosphere and then calcined twice in an oxygen-free atmosphere. After cooling, a flexible catalytic sheet is obtained.
  • the temperature is 240°C and the time is 0.8h.
  • the temperature is 390°C and the time is 0.5h.
  • the heating and cooling rates are both 1°C/min.
  • a hydraulic adaptive electrochemical semi-flexible reaction device comprises an anode, a cathode, a power supply and an inlet and outlet water system, as shown in FIG5 , the anode and the cathode are arranged in parallel in a mirror image, and are respectively connected to the positive and negative electrodes of the power supply, the inlet and outlet water system comprises a raw water tank, the outlet of the raw water tank is connected to a water inlet pipe, a water inlet pump is provided on the water inlet pipe, the inlet of the raw water tank is connected to a return pipe, and a solenoid valve is provided on the return pipe; the anode and the cathode both have a current collector and a flexible catalyst sheet array, the flexible catalyst sheet array is fixed on the current collector, and the catalytic surface of the flexible catalyst sheet 1 is arranged perpendicular to the inlet and outlet water direction.
  • the flexible catalyst sheet 1 is a flexible sheet structure with catalytic activity, the current collector is non-flexible, and the current collectors of the cathode and anode are both made of titanium.
  • the flexible catalyst sheet array is arranged in parallel with equal spacing, and the distance between two adjacent flexible catalyst sheets is 5 cm.
  • the flexible catalyst sheet 1 of the anode and the flexible catalyst sheet 1 of the cathode are arranged one by one opposite to each other without contact, and the minimum distance between them is 5 cm.
  • the method for preparing the flexible catalytic sheet 1 comprises the following steps:
  • the titanium sheet with cross-grinding marks is immersed in a mixed solution containing a certain concentration of sulfuric acid, isopropanol, ammonium fluoride and perchloric acid, with the titanium sheet as the anode and the stainless steel sheet as the cathode, the distance between the anode and the cathode is 2 cm, and power is applied for an anodic oxidation reaction.
  • the titanium sheet after the reaction is taken out, washed and dried to obtain a pre-treated titanium sheet; in the mixed solution, the concentration of sulfuric acid is 0.95 mol/L, the concentration of isopropanol is 0.4 mol/L, the concentration of ammonium fluoride is 0.088 mol/L, and the concentration of perchloric acid is 0.40 mol/L; in the anodic oxidation reaction, the power-on voltage is 80 V, the reaction time is 18 h, the bottom is magnetically stirred during the reaction, the stirring speed is 600 rpm, the drying temperature is 85°C, and the drying time is 12 h.
  • the thrice-treated titanium sheet is calcined once in an air atmosphere and then calcined twice in an oxygen-free atmosphere. After cooling, a flexible catalytic sheet is obtained. In the first calcination, the temperature is 260°C and the time is 1 hour. In the second calcination, the temperature is 410°C and the time is 2 hours. The heating and cooling rates are both 6°C/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种水力自适应电化学半柔性反应装置,包括阳极、阴极、电源和进出水系统,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连;所述阳极和阴极均具有集流体和柔性催化片阵列,所述柔性催化片阵列固定于所述集流体上,且所述柔性催化片的催化面与进出水方向垂直布置。本发明能够解决传统固定式电化学反应装置功能单一,应对复杂废水出现灵活性与适应性受限问题。

Description

一种水力自适应电化学半柔性反应装置 技术领域
本发明涉及电化学反应技术领域,具体是一种水力自适应电化学半柔性反应装置。
背景技术
电化学技术具有绿色、清洁、易操作的特点,在水处理领域逐渐得到了推广应用。其中,电化学催化氧化技术可利用阳极的活性催化层产生高能自由基,对水中难降解污染物进行降解甚至矿化。在现有的电化学反应装置中,阳极、阴极和装置的构型基本固定,电极表面的(正、负)电荷分布基本确定。然而,固定结构的电化学反应器,如平板反应器,在针对复杂有机废水的处理过程中存在较大缺陷。由于大部分有机物都呈现负电,污染物扩散至电极界面附近时,通过阳极的正电牵引力可强化污染物的界面传质。然而在复杂废水中,存在大量的有机物-阳离子络合现象(如钙离子、铁离子等高价阳离子与带有羧酸根的有机物发生络合),形成近电中性的络合体,导致阳极的电迁移效果减弱,大幅降低了电催化氧化降解效率。此外,板式电化学反应器电极为平行放置,缺少具有尖端放电或脉冲放电功能的有效破络单元,无法实现络合体的解络,进一步限制了在上述废水中的应用。因此,传统的固定式电化学反应装置,单一构型在应对上述复杂废水缺少灵活性与适应性,往往需要多个不同构型、不同功能的电化学装置组合,难以达到“破络”与“降解”的高效协同。
如何能够在同一电化学反应装置内,通过施加可变构型,针对不同场合实现破络与降解功能灵活调配的电化学反应过程,是解决现有复杂废水电化学处理瓶颈的一个重要方向。
发明内容
针对上述现有技术,为了解决传统固定式电化学反应装置功能单一,应对复杂废水出现灵活性与适应性受限问题,具体地,是为了解决电化学催化氧化反应装置针对有机物-阳离子络合的复杂废水,无法有效解决络合体的破络,导致出现界面传质受限而降解效率下降,以及传统电化学装置难以达到“破络”与“降解”功能的灵活调配问题,本发明提出一种水力自适应电化学半柔性反应装置。该装置可在一个电化学单元内,根 据进水水质与处理需求,通过简单调控水力参数即可实现破络-降解电化学反应过程的无缝切换,还可根据需要进行多单元的串并联,形成集成应用。
本发明提供的一种水力自适应电化学半柔性反应装置,包括阳极、阴极、电源和进出水系统,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连;所述阳极和阴极均具有集流体和柔性催化片阵列,所述柔性催化片阵列的底部固定于所述集流体上,且所述柔性催化片的催化面与进出水方向垂直布置。其中,所述柔性催化片采用交错条纹诱导-阳极氧化-多层电沉积方式制备,具有机械柔性,为具有催化活性的柔性片状结构,所述集流体为非柔性,所述阴极和阳极的集流体均为钛材料。
所述柔性催化片受水流冲击、水压等因素影响,会产生迎水面至背水面方向的弯曲,导致催化片上的电荷产生重排分布。优选地,所述柔性催化片的制备方法包括下述步骤:
S1、将具有十字磨痕的钛片浸没于含有一定浓度的硫酸、异丙醇、氟化铵和高氯酸的混合溶液中,以钛片为阳极,以不锈钢片为阴极,阳极和阴极的为间距1~2cm,通电进行阳极氧化反应,将反应后的钛片取出,洗净后烘干,得到初处理钛片;
该步骤中,由于钛片表面出现十字磨痕,阳极氧化的氟离子倾向于腐蚀十字磨痕的凹槽处,导致凹槽处出现二氧化钛纳米孔阵列,而十字磨痕的凸起处,基于阳极氧化原理,由于电阻较大无法形成纳米孔。
S2、将所述初处理钛片浸没于含有高氯酸、磷酸、氢氟酸和硝酸的混合溶液中一定时间,取出后烘干,得到二次处理钛片;
该步骤中,利用强酸、强氧化性与腐蚀性离子共存的水溶液,进一步加上温度的活化,可对已成型的纳米孔进行腐蚀破坏,最终导致纳米孔之间出现连通,原十字磨痕的凹槽处出现了通道,而凸起处仅出现了腐蚀导致的侵蚀坑,仍保留有宏观块状凸起结构。
S3、将所述二次处理钛片浸没于含有一定浓度的葡萄糖与硝酸铅的混合溶液中一定时间,取出后烘干,得到三次处理钛片;
该步骤中,所述三次处理钛片在沿着原十字磨痕的方向具有取向的弯折柔性。
S4、将所述三次处理钛片在空气氛围下进行一次焙烧,在隔绝氧气氛围下进行二次焙烧,冷却完毕后,即得柔性催化片。
将所述柔性催化片固定于阴/阳极之上时,固定方式不限,如采用焊接,保证柔性催化片的底部与集流体无缝接触且无法分离即可,阴极和阳极的柔性催化片的固定及排布方式保持一致。
优选地,S1中,所述钛片为矩形,且所述钛片的高与宽的比例为0.8~1.5;所述钛片采用砂纸或砂轮进行打磨,且打磨的方向为十字打磨,即分别沿所述钛片的宽与高的方向粗磨1次,打磨后清水清洗,晾干待用,如此可保证打磨后的钛片表面出现十字磨痕;所述砂纸为200~400目。
优选地,S1中,所述混合溶液中,硫酸的浓度为0.25~0.95mol/L,异丙醇的浓度为0.15~0.4mol/L,氟化铵的浓度为0.025~0.088mol/L,高氯酸的浓度为0.08~0.40mol/L。
优选地,S1中,所述阳极氧化反应中,通电电压为30~80V,反应时间为2~18h,反应过程中底部磁力搅拌,搅拌转速为300~600rpm,烘干温度为50~85℃,烘干时间为6~12h。
优选地,S2中,所述混合溶液中,高氯酸的浓度为0.5~0.8mol/L,磷酸的质量分数为5~8wt%,氢氟酸的浓度为0.04~0.1mol/L,硝酸的质量分数为1~3wt%;所述混合溶液的温度为30~45℃,所述初处理钛片的浸泡时间为20~60min,烘干温度为50~80℃。
优选地,S3中,所述混合溶液中,葡萄糖的浓度为3~10g/L,硝酸铅的浓度为6~10g/L;所述二次处理钛片的浸渍时间为1~3min,烘干温度为50~80℃。
优选地,S4中,所述一次焙烧中,温度为240~260℃,时间为0.5~1h;所述二次焙烧中,温度为390~410℃,时间为0.5~2h;升温和降温速度均为1~6℃/min。
优选地,所述柔性催化片阵列为等间距平行布置,间距为柔性催化片的高度的1/3~2/3。
优选地,所述阳极的柔性催化片与阴极的柔性催化片一一相对布置,且相互无接触,整体相距一定距离,相距的最小距离为柔性催化片的高度的1/4~1/3。
优选地,所述进出水系统包括进水泵、电磁阀、原水箱、进水管、回流管及连接件。
本发明所提供的水力自适应电化学半柔性反应装置在运行过程中,可利用柔性催化片的形变产生不同水力条件(如流速)下的反应特性。
如图1、2所示,在低流速进水条件下,柔性催化片产生弱形变,以边缘高密度电荷放电反应为主,控制直流电压60~180V(也可使用脉冲放电,电压300~1000V,放电频率50~120Hz),可实现水中无机-有机络合键的破坏从而达到污染物的解络释放。
如图1、2所示,在高流速进水条件下,柔性催化片产生强形变,以表面的块状催化反应簇的催化氧化反应为主,控制电流密度5~50mA/cm 2(集流体面积),可实现水中游离态(负电)有机物的捕获与催化降解。
此外,通过水流条件的改变或多个电化学半柔性反应装置的串/并联,可达到水中目标污染物的解络与降解。其中,所述低流速水力条件与高流速水力条件没有明显界限,一般的,能够使所述柔性催化片产生平均不大于15°倾角的水力条件,可认为是较低流速的水力条件,其他则是高流速水力条件。
本发明所提供的水力自适应电化学半柔性反应装置的运行模式可包括但并不限于以下几种:
模式一:单一电化学半柔性反应装置模式
如图3所示,通过单一电化学半柔性反应装置与进水流速的调控,实现电化学半柔性反应装置破络过程与降解过程的切换。当进水中存在大量络合物,需要破络,则可开启进水回流电磁阀,加大进水泵的回流,从而减少进入电化学半柔性反应装置的流速、降低柔性催化片的偏转角,利于将电荷聚集于柔性催化片的边缘,产生放电破络现象。当进水中络合物较少,主要为游离态有机分子或离子态的有机物,则可关闭或者调小进水回流,增加进入电化学半柔性反应装置的流速,加大柔性催化片的偏转角,利于将电荷分散于柔性催化片面上的块状催化反应簇上,加大电荷与水中有机物的接触几率,实现催化降解过程。
模式二:多电化学半柔性反应装置混合模式
如图4所示,当废水中污染物需要完成先破络后降解,则可将电化学半柔性反应装置进行串联使用,前置装置发生低流速状态下的破络反应,出水通过泵的流速提升转变 为高流速状态,进入后置装置,发生高流速下的降解反应。串联中的每个子单元,还可以添加多个装置并联使用,以满足不同的水处理需求。
相对于现有技术,本发明的有益效果为:
1、本发明提出的水力自适应电化学半柔性反应装置,解决了传统固定式电化学反应装置功能单一,应对复杂废水出现灵活性与适应性受限问题,具体地,解决了电化学催化氧化反应装置针对有机物-阳离子络合的复杂废水,无法有效解决络合体的破络,导致出现界面传质受限而降解效率下降,以及传统电化学装置难以达到“破络”与“降解”功能的灵活调配问题。
2、本发明提出的柔性催化片,其为宏观的矩形外形,沿着十字磨痕方向具有取向柔性。十字磨痕凹处为水流通道,可以允许水流通过,增强催化片与废水的传质面积。十字磨痕凸起处为块状催化反应簇,可以在高流速下产生电荷分布,增大与污染物的接触面积,实现高效的污染物催化降解。该柔性催化片具有十字柔性特点,是实现水力自适应电化学半柔性反应的关键材料。
3、本发明提出的水力自适应电化学半柔性反应装置,能够根据不同废水及其中污染物的存在形式与处理需求,通过简单调控进水流速实现不同功能,方法简单。此外,通过反应的串/并联可以实现多个功能的联协使用,应用场景灵活,功能完善且易用。
附图说明
图1为本发明的水力自适应电化学半柔性反应装置在不同流速下的内部运行状态图。
图2为本发明中柔性催化片的两种存在形式及电荷分布情况示意图。
图3为本发明中单一电化学半柔性反应装置模式示意图。
图4为本发明中多电化学半柔性反应装置混合模式示意图。
图5为本发明实施例的局部结构示意图。
图6为本发明实施例中十字磨痕的结构示意图。
图7为本发明实施例中柔性催化片倾角的示意图。
其中,1、柔性催化片;2、磨痕凹陷处;3、磨痕凸起处。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
实施例1
一种水力自适应电化学半柔性反应装置,包括阳极、阴极、电源和进出水系统,如图3、5所示,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连,所述进出水系统包括原水箱,原水箱的出口与进水管相连接,进水管上设有进水泵,原水箱的进口与回流管相连接,回流管上设有电磁阀;所述阳极和阴极均具有集流体和柔性催化片阵列,柔性催化片阵列焊接固定于所述集流体上,且柔性催化片1的催化面与进出水方向垂直布置。
柔性催化片1为具有催化活性的柔性片状结构,所述集流体为非柔性,所述阴极和阳极的集流体均为钛材料。所述柔性催化片阵列为等间距平行布置,相邻两片柔性催化片的距离为5cm。所述阳极的柔性催化片1与阴极的柔性催化片1一一相对布置,且相互无接触,相距的最小距离为5cm。
其中,柔性催化片1的制备方法包括下述步骤:
S1、选取厚度为100μm的钛片,裁剪成适当矩形尺寸,所述钛片的高与宽的比例为0.8(高×宽=12cm×15cm),依次用5%丙酮和清水清洗后,晾干待用;采用200目砂纸在矩形钛片的两面分别打磨,打磨的方向为十字打磨,使钛片具有十字磨痕,如图6所示,2为磨痕凹陷处,3为磨痕凸起处。
将具有十字磨痕的钛片浸没于含有一定浓度的硫酸、异丙醇、氟化铵和高氯酸的混合溶液中,以钛片为阳极,以不锈钢片为阴极,阳极和阴极的为间距1.5cm,通电进行阳极氧化反应,将反应后的钛片取出,洗净后烘干,得到初处理钛片;所述混合溶液中,硫酸的浓度为0.3mol/L,异丙醇的浓度为0.2mol/L,氟化铵的浓度为0.05mol/L,高氯酸的浓度为0.20mol/L;所述阳极氧化反应中,通电电压为60V,反应时间为6h,反应过程中底部磁力搅拌,搅拌转速为300rpm,烘干温度为65℃,烘干时间为8h。
S2、将所述初处理钛片浸没于含有高氯酸、磷酸、氢氟酸和硝酸的混合溶液中一定 时间,取出后烘干,得到二次处理钛片;所述混合溶液中,高氯酸的浓度为0.5mol/L,磷酸的质量分数为6wt%,氢氟酸的浓度为0.07mol/L,硝酸的质量分数为2wt%;所述混合溶液的温度为35℃,所述初处理钛片的浸泡时间为35min,烘干温度为65℃。
S3、将所述二次处理钛片浸没于含有一定浓度的葡萄糖与硝酸铅的混合溶液中一定时间,取出后烘干,得到三次处理钛片;所述混合溶液中,葡萄糖的浓度为5g/L,硝酸铅的浓度为8g/L;所述二次处理钛片的浸渍时间为2min,烘干温度为60℃。
S4、将所述三次处理钛片放置于马弗炉内,在空气氛围下进行一次焙烧,在隔绝氧气氛围下进行二次焙烧,冷却完毕后,即得柔性催化片;所述一次焙烧中,温度为250℃,时间为0.5h;所述二次焙烧中,温度为400℃,时间为1h;升温和降温速度均为3℃/min。
试验例1
采用实施例1中的柔性催化片制备方式与电极装配方式,控制进水流速从0开始不断增加,测定进水流速对柔性催化片倾角(如图7所示)的影响,结果如下表所示:
序号 进水流速(m/s) 柔性催化片倾角(°)
1 0 0
2 1 3
3 3 5
4 5 7
5 10 13
6 15 18
7 20 22
8 25 23
9 30 23.5
试验例2
采用实施例1中的柔性催化片制备方式与电极装配方式,进水中污染物为对苯二甲酸(200mg/L),阳离子为三价铁离子(100mg/L),二者以对苯二甲酸-铁离子的络合态存在。如图3所示,进水流速为5cm/s(低流速),直流电压为100V,水力停留时 间为50min,结果为:破络效率达98.8%,降解率为7%。
试验例3
采用实施例1中的柔性催化片制备方式与电极装配方式,进水中污染物为对苯二甲酸(200mg/L)。如图3所示,进水流速为20cm/s(高流速),电流密度为20mA/cm 2,水力停留时间为12min,结果为:降解效率达92%。
实施例2
一种水力自适应电化学半柔性反应装置,包括阳极、阴极、电源和进出水系统,如图5所示,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连,所述进出水系统包括原水箱,原水箱的出口与进水管相连接,进水管上设有进水泵,原水箱的进口与回流管相连接,回流管上设有电磁阀;所述阳极和阴极均具有集流体和柔性催化片阵列,柔性催化片阵列固定于所述集流体上,且柔性催化片1的催化面与进出水方向垂直布置。
柔性催化片为具有催化活性的柔性片状结构,所述集流体为非柔性,所述阴极和阳极的集流体均为钛材料。所述柔性催化片阵列为等间距平行布置,相邻两片柔性催化片的距离为5cm。所述阳极的柔性催化片1与阴极的柔性催化片1一一相对布置,且相互无接触,相距的最小距离为5cm。
其中,柔性催化片1的制备方法包括下述步骤:
S1、选取厚度为100μm的钛片,裁剪成适当矩形尺寸,所述钛片的高与宽的比例为0.8(高×宽=12cm×15cm),依次用5%丙酮和清水清洗后,晾干待用;采用300目砂纸在矩形钛片的两面分别打磨,打磨的方向为十字打磨,使钛片具有十字磨痕,如图6所示,2为磨痕凹陷处,3为磨痕凸起处。
将具有十字磨痕的钛片浸没于含有一定浓度的硫酸、异丙醇、氟化铵和高氯酸的混合溶液中,以钛片为阳极,以不锈钢片为阴极,阳极和阴极的为间距1cm,通电进行阳极氧化反应,将反应后的钛片取出,洗净后烘干,得到初处理钛片;所述混合溶液中,硫酸的浓度为0.25mol/L,异丙醇的浓度为0.15mol/L,氟化铵的浓度为0.025mol/L,高氯酸的浓度为0.08mol/L;所述阳极氧化反应中,通电电压为30V,反应时间为2h, 反应过程中底部磁力搅拌,搅拌转速为400rpm,烘干温度为50℃,烘干时间为6h。
S2、将所述初处理钛片浸没于含有高氯酸、磷酸、氢氟酸和硝酸的混合溶液中一定时间,取出后烘干,得到二次处理钛片;所述混合溶液中,高氯酸的浓度为0.6mol/L,磷酸的质量分数为5wt%,氢氟酸的浓度为0.04mol/L,硝酸的质量分数为1wt%;所述混合溶液的温度为30℃,所述初处理钛片的浸泡时间为20min,烘干温度为50℃。
S3、将所述二次处理钛片浸没于含有一定浓度的葡萄糖与硝酸铅的混合溶液中一定时间,取出后烘干,得到三次处理钛片;所述混合溶液中,葡萄糖的浓度为3g/L,硝酸铅的浓度为6g/L;所述二次处理钛片的浸渍时间为1min,烘干温度为50℃。
S4、将所述三次处理钛片在空气氛围下进行一次焙烧,在隔绝氧气氛围下进行二次焙烧,冷却完毕后,即得柔性催化片;所述一次焙烧中,温度为240℃,时间为0.8h;所述二次焙烧中,温度为390℃,时间为0.5h;升温和降温速度均为1℃/min。
实施例3
一种水力自适应电化学半柔性反应装置,包括阳极、阴极、电源和进出水系统,如图5所示,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连,所述进出水系统包括原水箱,原水箱的出口与进水管相连接,进水管上设有进水泵,原水箱的进口与回流管相连接,回流管上设有电磁阀;所述阳极和阴极均具有集流体和柔性催化片阵列,柔性催化片阵列固定于所述集流体上,且柔性催化片1的催化面与进出水方向垂直布置。
柔性催化片1为具有催化活性的柔性片状结构,所述集流体为非柔性,所述阴极和阳极的集流体均为钛材料。所述柔性催化片阵列为等间距平行布置,相邻两片柔性催化片的距离为5cm。所述阳极的柔性催化片1与阴极的柔性催化片1一一相对布置,且相互无接触,相距的最小距离为5cm。
其中,柔性催化片1的制备方法包括下述步骤:
S1、选取厚度为100μm的钛片,裁剪成适当矩形尺寸,所述钛片的高与宽的比例为0.8(高×宽=12cm×15cm),依次用5%丙酮和清水清洗后,晾干待用;采用400目砂纸在矩形钛片的两面分别打磨,打磨的方向为十字打磨,使钛片具有十字磨痕,如图 6所示,2为磨痕凹陷处,3为磨痕凸起处。
将具有十字磨痕的钛片浸没于含有一定浓度的硫酸、异丙醇、氟化铵和高氯酸的混合溶液中,以钛片为阳极,以不锈钢片为阴极,阳极和阴极的为间距2cm,通电进行阳极氧化反应,将反应后的钛片取出,洗净后烘干,得到初处理钛片;所述混合溶液中,硫酸的浓度为0.95mol/L,异丙醇的浓度为0.4mol/L,氟化铵的浓度为0.088mol/L,高氯酸的浓度为0.40mol/L;所述阳极氧化反应中,通电电压为80V,反应时间为18h,反应过程中底部磁力搅拌,搅拌转速为600rpm,烘干温度为85℃,烘干时间为12h。
S2、将所述初处理钛片浸没于含有高氯酸、磷酸、氢氟酸和硝酸的混合溶液中一定时间,取出后烘干,得到二次处理钛片;所述混合溶液中,高氯酸的浓度为0.8mol/L,磷酸的质量分数为8wt%,氢氟酸的浓度为0.1mol/L,硝酸的质量分数为3wt%;所述混合溶液的温度为45℃,所述初处理钛片的浸泡时间为60min,烘干温度为80℃。
S3、将所述二次处理钛片浸没于含有一定浓度的葡萄糖与硝酸铅的混合溶液中一定时间,取出后烘干,得到三次处理钛片;所述混合溶液中,葡萄糖的浓度为10g/L,硝酸铅的浓度为10g/L;所述二次处理钛片的浸渍时间为3min,烘干温度为80℃。
S4、将所述三次处理钛片在空气氛围下进行一次焙烧,在隔绝氧气氛围下进行二次焙烧,冷却完毕后,即得柔性催化片;所述一次焙烧中,温度为260℃,时间为1h;所述二次焙烧中,温度为410℃,时间为2h;升温和降温速度均为6℃/min。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明的专利保护范围之内。

Claims (10)

  1. 一种水力自适应电化学半柔性反应装置,其特征在于,包括阳极、阴极、电源和进出水系统,所述阳极与阴极呈镜像平行布置,并分别与电源的正极和负极相连;所述阳极和阴极均具有集流体和柔性催化片阵列,所述柔性催化片阵列固定于所述集流体上,且所述柔性催化片的催化面与进出水方向垂直布置。
  2. 如权利要求1所述的水力自适应电化学半柔性反应装置,其特征在于,所述柔性催化片的制备方法包括下述步骤:
    S1、将具有十字磨痕的钛片浸没于含有一定浓度的硫酸、异丙醇、氟化铵和高氯酸的混合溶液中,以钛片为阳极,以不锈钢片为阴极,通电进行阳极氧化反应,将反应后的钛片取出,洗净后烘干,得到初处理钛片;
    S2、将所述初处理钛片浸没于含有高氯酸、磷酸、氢氟酸和硝酸的混合溶液中一定时间,取出后烘干,得到二次处理钛片;
    S3、将所述二次处理钛片浸没于含有一定浓度的葡萄糖与硝酸铅的混合溶液中一定时间,取出后烘干,得到三次处理钛片;
    S4、将所述三次处理钛片在空气氛围下进行一次焙烧,在隔绝氧气氛围下进行二次焙烧,冷却完毕后,即得柔性催化片。
  3. 如权利要求2所述的水力自适应电化学半柔性反应装置,其特征在于,S1中,所述钛片为矩形,且所述钛片的高与宽的比例为0.8~1.5;所述钛片采用砂纸或砂轮进行打磨,且打磨的方向为十字打磨,所述砂纸为200~400目。
  4. 如权利要求2或3所述的水力自适应电化学半柔性反应装置,其特征在于,S1中,所述混合溶液中,硫酸的浓度为0.25~0.95mol/L,异丙醇的浓度为0.15~0.4mol/L,氟化铵的浓度为0.025~0.088mol/L,高氯酸的浓度为0.08~0.40mol/L。
  5. 如权利要求2或3所述的水力自适应电化学半柔性反应装置,其特征在于,S1中,所述阳极氧化反应中,通电电压为30~80V,反应时间为2~18h,反应过程中底部磁力搅拌,搅拌转速为300~600rpm,烘干温度为50~85℃,烘干时间为6~12h。
  6. 如权利要求2或3所述的水力自适应电化学半柔性反应装置,其特征在于,S2中,所述混合溶液中,高氯酸的浓度为0.5~0.8mol/L,磷酸的质量分数为5~8wt%, 氢氟酸的浓度为0.04~0.1mol/L,硝酸的质量分数为1~3wt%;所述混合溶液的温度为30~45℃,所述初处理钛片的浸泡时间为20~60min,烘干温度为50~80℃。
  7. 如权利要求2或3所述的水力自适应电化学半柔性反应装置,其特征在于,S3中,所述混合溶液中,葡萄糖的浓度为3~10g/L,硝酸铅的浓度为6~10g/L;所述二次处理钛片的浸渍时间为1~3min,烘干温度为50~80℃。
  8. 如权利要求2或3所述的水力自适应电化学半柔性反应装置,其特征在于,S4中,所述一次焙烧中,温度为240~260℃,时间为0.5~1h;所述二次焙烧中,温度为390~410℃,时间为0.5~2h;升温和降温速度均为1~6℃/min。
  9. 如权利要求1或2所述的水力自适应电化学半柔性反应装置,其特征在于,所述柔性催化片阵列为等间距平行布置,间距为柔性催化片的高度的1/3~2/3。
  10. 如权利要求1或2所述的水力自适应电化学半柔性反应装置,其特征在于,所述阳极的柔性催化片与阴极的柔性催化片一一相对布置,且相互无接触,相距的最小距离为柔性催化片的高度的1/4~1/3。
PCT/CN2022/130997 2022-11-10 2022-11-10 一种水力自适应电化学半柔性反应装置 WO2024098309A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130997 WO2024098309A1 (zh) 2022-11-10 2022-11-10 一种水力自适应电化学半柔性反应装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130997 WO2024098309A1 (zh) 2022-11-10 2022-11-10 一种水力自适应电化学半柔性反应装置

Publications (1)

Publication Number Publication Date
WO2024098309A1 true WO2024098309A1 (zh) 2024-05-16

Family

ID=91031563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130997 WO2024098309A1 (zh) 2022-11-10 2022-11-10 一种水力自适应电化学半柔性反应装置

Country Status (1)

Country Link
WO (1) WO2024098309A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495989A (zh) * 2014-12-24 2015-04-08 武汉大学 一种用于深度处理胺肟化生产废水的电化学氧化装置
CN208577477U (zh) * 2018-06-22 2019-03-05 四川捷途环保服务有限公司 一种流域治理可变形电极装置
US20210039969A1 (en) * 2018-04-19 2021-02-11 Eisenhuth Gmbh & Co. Kg Electrochemical Precipitation Reactor With a Moving Electrode
CN112678921A (zh) * 2020-12-14 2021-04-20 北京科技大学 一种污水处理用高性能多孔钛柔性膜的制备方法
CN112934208A (zh) * 2021-02-09 2021-06-11 南京理工大学 一种基底材料及其制备方法
CN113213614A (zh) * 2021-02-09 2021-08-06 南京理工大学 一种水体净化系统及净化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495989A (zh) * 2014-12-24 2015-04-08 武汉大学 一种用于深度处理胺肟化生产废水的电化学氧化装置
US20210039969A1 (en) * 2018-04-19 2021-02-11 Eisenhuth Gmbh & Co. Kg Electrochemical Precipitation Reactor With a Moving Electrode
CN208577477U (zh) * 2018-06-22 2019-03-05 四川捷途环保服务有限公司 一种流域治理可变形电极装置
CN112678921A (zh) * 2020-12-14 2021-04-20 北京科技大学 一种污水处理用高性能多孔钛柔性膜的制备方法
CN112934208A (zh) * 2021-02-09 2021-06-11 南京理工大学 一种基底材料及其制备方法
CN113213614A (zh) * 2021-02-09 2021-08-06 南京理工大学 一种水体净化系统及净化方法

Similar Documents

Publication Publication Date Title
CN111533223A (zh) 一种FeS2阴极非均相电芬顿水处理方法
CN113264573B (zh) 一种双极性电极及其制备方法、及废水处理系统
WO2020052096A1 (zh) 一种三维有序多孔二氧化钌膜电极及其制备方法
JPS6311054B2 (zh)
CN104047043A (zh) TiO2/SnO2半导体双层复合膜光阳极的制备方法
CN114409028B (zh) 一种用于废水处理的三维粒子电极及其制备方法
CN110624560A (zh) 一种用于光-芬顿联合催化的FeVO4/TiO2多孔催化剂膜层材料及其制备方法
CN104817190A (zh) 一种利用太阳能降污产氢的生物电化学装置及方法
WO2024098309A1 (zh) 一种水力自适应电化学半柔性反应装置
CN106745538B (zh) 一种从次磷酸盐废水中回收单质磷的方法
CN111547821A (zh) 一种高催化活性Ti/TiO2NT/NiO-C/PbO2电极及其电催化降解孔雀石绿的方法
JP4290454B2 (ja) ガス拡散電極の製造方法、電解槽及び電解方法
CN108298645A (zh) 适用于脱硫废水处理的涂层电极及其制备方法
CN106809918B (zh) 一种碳纳米管修饰二氧化铅电极及其制备方法
CN106350835B (zh) 一种电解锰电解工序中稀土阳极板的制作方法
CN115520941B (zh) 一种水力自适应电化学半柔性反应装置
CN103388122B (zh) 一种不锈钢表面TiO2渗镀层的制备方法
WO2021017104A1 (zh) 一种钛基尺寸稳定型阳极的基体刻蚀方法
CN113233549A (zh) 一种纳米二氧化铅电极及其制备方法和应用
CN109534479B (zh) 一种非均相芬顿催化剂催化活性再激活的方法和应用
Su et al. Study on photoelectrocatalytic of three-dimensional electrode using TiO2 coatings particle electrode
CN111943327A (zh) 用于酸性废水处理的具有RuO2-IrO2中间层的电极材料及制备方法
CN114195297B (zh) 基于柔性铝空气电池的自供电重金属回收装置和方法
TWI616022B (zh) 超音波震盪提升液流電池碳氈效能之方法
CN106745555A (zh) 一种电吸附去除水中铝离子的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964783

Country of ref document: EP

Kind code of ref document: A1