WO2024095578A1 - 半導体装置とその製造方法 - Google Patents

半導体装置とその製造方法 Download PDF

Info

Publication number
WO2024095578A1
WO2024095578A1 PCT/JP2023/030751 JP2023030751W WO2024095578A1 WO 2024095578 A1 WO2024095578 A1 WO 2024095578A1 JP 2023030751 W JP2023030751 W JP 2023030751W WO 2024095578 A1 WO2024095578 A1 WO 2024095578A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
region
dummy
dummy trenches
trenches
Prior art date
Application number
PCT/JP2023/030751
Other languages
English (en)
French (fr)
Inventor
淳 大河原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024095578A1 publication Critical patent/WO2024095578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the technology disclosed in this specification relates to a semiconductor device and a manufacturing method thereof.
  • JP 2021-190657 A discloses a semiconductor device having a semiconductor substrate including an IGBT (insulated gate bipolar transistor) region and a diode region.
  • IGBT insulated gate bipolar transistor
  • an upper electrode is provided to cover the upper surface of the semiconductor substrate
  • a lower electrode is provided to cover the lower surface of the semiconductor substrate.
  • an IGBT structure is provided such that the upper electrode serves as an emitter electrode and the lower electrode serves as a collector electrode.
  • a diode structure is provided such that the upper electrode serves as an anode electrode and the lower electrode serves as a cathode electrode.
  • the diode structure is connected in inverse parallel to the IGBT structure, and can operate as a freewheeling diode.
  • multiple trench gates are provided in the IGBT region, and multiple dummy trenches are provided in the diode region.
  • a single boundary trench formed to be deeper than both the multiple trench gates and the multiple dummy trenches is provided at the boundary between the IGBT region and the diode region.
  • the boundary trench is provided to suppress the inflow of carriers from the IGBT region toward the diode region.
  • the semiconductor device disclosed in this specification may include a semiconductor substrate including an IGBT region and a diode region, a lower electrode provided on the lower surface of the semiconductor substrate, an upper electrode provided on the upper surface of the semiconductor substrate, a plurality of trench gates extending from the upper surface of the semiconductor substrate located in the IGBT region toward a deeper portion, a plurality of first dummy trenches extending from the upper surface of the semiconductor substrate located in the diode region toward a deeper portion, and a plurality of second dummy trenches extending from the upper surface of the semiconductor substrate located at the boundary between the IGBT region and the diode region toward a deeper portion.
  • Each of the second dummy trenches may be spaced apart from one another along a direction connecting the IGBT region and the diode region.
  • Each of the second dummy trenches may have a deep portion formed deeper than the trench gates and the first dummy trenches in at least a portion thereof.
  • This specification can also disclose a method for manufacturing the semiconductor device.
  • This manufacturing method may include a trench formation step of forming a plurality of trenches extending from the upper surface of the semiconductor substrate toward a deep portion thereof, in which the trench width of at least a portion of the trenches corresponding to the plurality of second dummy trenches is greater than the trench width of the trenches corresponding to the plurality of trench gates and the plurality of first dummy trenches.
  • the trenches corresponding to the plurality of trench gates, the plurality of first dummy trenches, and the plurality of second dummy trenches can be formed simultaneously.
  • FIG. 2 is a diagram illustrating a planar layout of an IGBT region and a diode region of the semiconductor device.
  • 2 is a cross-sectional view of a main portion showing features of one embodiment of a semiconductor device, and is a schematic cross-sectional view of a main portion corresponding to line II-II in FIG.
  • FIG. 1 is a diagram for explaining one method for realizing one embodiment of a semiconductor device, and is a diagram that typically shows a perspective view of a main part of a semiconductor device with an upper electrode removed.
  • FIG. 1 is a diagram for explaining one method for realizing one embodiment of a semiconductor device, and is a diagram that typically shows a perspective view of a main part of a semiconductor device with an upper electrode removed.
  • FIG. 1 is a diagram for explaining one method for realizing one embodiment of a semiconductor device, and is a diagram that typically shows a perspective view of a main part of a semiconductor device with an upper electrode removed.
  • FIG. 1 is a diagram for explaining one method
  • FIG. 1 is a diagram for explaining one method for realizing one embodiment of a semiconductor device, and is a diagram that typically shows a perspective view of a main part of a semiconductor device with an upper electrode removed.
  • 2 is a cross-sectional view of a main portion showing features of another embodiment of a semiconductor device, the cross-sectional view corresponding to line II-II in FIG. 1.
  • FIG. 2 is a cross-sectional view of a main portion showing features of another embodiment of a semiconductor device, the cross-sectional view corresponding to line II-II in FIG. 1.
  • FIG. 2 is a cross-sectional view of a main portion showing features of another embodiment of a semiconductor device, the cross-sectional view corresponding to line II-II in FIG. 1.
  • FIG. 1 is a diagram for explaining one method for realizing one embodiment of a semiconductor device, and is a diagram that typically shows a perspective view of a main part of a semiconductor device with an upper electrode removed.
  • 2 is a cross-sectional view of
  • the semiconductor device 1 includes a semiconductor substrate 10.
  • the semiconductor substrate 10 is not particularly limited, and may be, for example, a silicon carbide (SiC) substrate.
  • the thickness direction of the semiconductor substrate 10 is referred to as the z direction
  • a direction parallel to the upper surface of the semiconductor substrate 10 is referred to as the x direction
  • a direction parallel to the upper surface of the semiconductor substrate 10 and perpendicular to the x direction is referred to as the y direction.
  • the semiconductor substrate 10 may have, for example, two element regions 20 and a termination region 30 arranged around the element regions 20, although this is not particularly limited.
  • Each element region 20 is partitioned into an IGBT region 20A and a diode region 20B.
  • a structure for forming an IGBT is provided in the IGBT region 20A
  • a structure for forming a diode is provided in the diode region 20B.
  • the IGBT regions 20A and the diode regions 20B are alternately arranged along the y direction.
  • the direction connecting the IGBT regions 20A and the diode regions 20B and in which the IGBT regions 20A and the diode regions 20B are alternately arranged is also referred to as the IGBT-diode direction.
  • the semiconductor device 1 includes an upper electrode 42, a lower electrode 44, a plurality of trench gates 50 provided in the IGBT region 20A, a plurality of first dummy trenches 60 provided in the diode region 20B, and a plurality of second dummy trenches 70 provided in the boundary portion 20C.
  • the upper electrode 42 is provided to cover the upper surface 10a of the semiconductor substrate 10.
  • the lower electrode 44 is provided to cover the lower surface 10b of the semiconductor substrate 10. In this manner, the semiconductor device 1 is configured as a vertical device.
  • the upper electrode 42 functions as an emitter electrode of the IGBT structure and also functions as an anode electrode of the diode structure.
  • the lower electrode 44 functions as a collector electrode of the IGBT structure and also functions as a cathode electrode of the diode structure.
  • the semiconductor substrate 10 of the semiconductor device 1 has a p + type collector region 11, an n + type cathode region 12, an n-type region 13, a p-type region 14, an n + type emitter region 15, and a p + type contact region 16.
  • the collector region 11 is provided in the IGBT region 20A of the semiconductor substrate 10, and is disposed at a position of the semiconductor substrate 10 exposed to the lower surface 10b of the semiconductor substrate 10.
  • the collector region 11 is in ohmic contact with the lower electrode 44.
  • the cathode region 12 is provided in the diode region 20B of the semiconductor substrate 10, and is disposed at a position of the semiconductor substrate 10 exposed to the lower surface 10b of the semiconductor substrate 10.
  • the cathode region 12 is in ohmic contact with the lower electrode 44.
  • the collector region 11 is provided over the entire IGBT region 20A
  • the cathode region 12 is provided over the entire diode region 20B, at a position of the semiconductor substrate 10 exposed to the lower surface 10b of the semiconductor substrate 10.
  • the range in which the collector region 11 is provided is partitioned as the IGBT region 20A
  • the range in which the cathode region 12 is provided is partitioned as the diode region 20B.
  • the n-type region 13 is provided in both the IGBT region 20A and the diode region 20B.
  • the n-type region 13 is disposed between the collector region 11 and the p-type region 14, and functions as the drift region of the IGBT structure.
  • the n-type region 13 is disposed between the cathode region 12 and the p-type region 14, and functions as the low concentration region of the diode structure.
  • the p-type region 14 is provided in both the IGBT region 20A and the diode region 20B.
  • the p-type region 14 is disposed on the n-type region 13, and functions as the body region of the IGBT structure.
  • the p-type region 14 is disposed on the n-type region 13, and functions as the anode region of the diode structure.
  • the emitter regions 15 are provided in the IGBT region 20A and are distributed in positions of the semiconductor substrate 10 that are exposed on the upper surface 10a of the semiconductor substrate 10.
  • the emitter regions 15 are in ohmic contact with the upper electrode 42.
  • the emitter regions 15 are in contact with the side surface of the trench gate 50 and are separated from the n-type region 13 by the p-type region 14.
  • the portion of the p-type region 14 that separates the n-type region 13 and the emitter regions 15 and is in contact with the side surface of the trench gate 50 functions as a channel.
  • the contact regions 16 are provided in both the IGBT region 20A and the diode region 20B, and are distributed in positions of the semiconductor substrate 10 that are exposed on the upper surface 10a of the semiconductor substrate 10.
  • the contact regions 16 are in ohmic contact with the upper electrode 42.
  • the p-type region 14 is electrically connected to the upper electrode 42 via the contact regions 16.
  • the trench gates 50 are provided in the upper layer of the semiconductor substrate 10 located in the IGBT region 20A. When the semiconductor substrate 10 is viewed in plan, each of the trench gates 50 extends in the x direction and is arranged at intervals in the y direction. In this manner, the trench gates 50 are arranged in a stripe pattern. Each of the trench gates 50 is formed so as to extend from the upper surface 10a of the semiconductor substrate 10 through the p-type region 14 to reach the n-type region 13. Each of the trench gates 50 includes a gate insulating film 52 and a gate electrode 54 insulated from the semiconductor substrate 10 by the gate insulating film 52. The gate electrode 54 of each of the trench gates 50 is insulated from the upper electrode 42 by an interlayer insulating film.
  • the first dummy trenches 60 are provided in the upper layer of the semiconductor substrate 10 located in the diode region 20B. When the semiconductor substrate 10 is viewed in a plan view, each of the first dummy trenches 60 extends in the x direction and is arranged at intervals in the y direction. In this manner, the first dummy trenches 60 are arranged in a stripe pattern. Each of the first dummy trenches 60 is formed so as to extend from the upper surface 10a of the semiconductor substrate 10 through the p-type region 14 to reach the n-type region 13.
  • Each of the first dummy trenches 60 includes a dummy insulating film 62 and a dummy electrode 64 insulated from the semiconductor substrate 10 by the dummy insulating film 62.
  • the dummy electrode 64 of each of the first dummy trenches 60 is electrically connected to the upper electrode 42.
  • the second dummy trenches 70 are provided in the upper layer of the semiconductor substrate 10 located at the boundary 20C between the IGBT region 20A and the diode region 20B.
  • the boundary 20C is defined as a range extending a predetermined distance from the boundary between the IGBT region 20A and the diode region 20B (i.e., the boundary between the collector region 11 and the cathode region 12) toward each of the IGBT region 20A and the diode region 20B along the IGBT-diode direction (the y direction in this example).
  • the predetermined distance is not particularly limited, but may be, for example, 1/2 the film thickness of the n-type region 13 measured along the thickness direction of the semiconductor substrate 10 (the z direction in this example).
  • the width of the boundary 20C measured along the IGBT-diode direction may be the same as the film thickness of the n-type region 13.
  • the second dummy trenches 70 may be arranged in at least a part of the boundary 20C. In this example, multiple second dummy trenches 70 are arranged in both the IGBT region 20A and the diode region 20B of the boundary portion 20C.
  • each of the multiple second dummy trenches 70 extends in the x direction and is arranged at intervals in the y direction. In this manner, the multiple second dummy trenches 70 are arranged in a stripe pattern.
  • Each of the multiple second dummy trenches 70 is formed so as to extend from the upper surface 10a of the semiconductor substrate 10 through the p-type region 14 to reach the n-type region 13.
  • Each of the multiple second dummy trenches 70 includes a dummy insulating film 72 and a dummy electrode 74 insulated from the semiconductor substrate 10 by the dummy insulating film 72.
  • the dummy electrode 74 of each of the multiple second dummy trenches 70 is electrically connected to the upper electrode 42.
  • each of the second dummy trenches 70 has a deep portion 76 formed deeper than the trench gates 50 and the first dummy trenches 60.
  • each of the second dummy trenches 70 may be entirely configured deeper than the trench gates 50 and the first dummy trenches 60, or at least a portion of each of the second dummy trenches 70 may be configured deeper than the trench gates 50 and the first dummy trenches 60.
  • the second dummy trench 70 is entirely configured deeper than the trench gates 50 and the first dummy trenches 60, it can be said that the second dummy trench 70 is entirely configured with a deep portion 76.
  • the second dummy trenches 70 may be formed in a separate process from the trench gates 50 and the first dummy trenches 60. However, by forming the second dummy trenches 70 in the same process as the trench gates 50 and the first dummy trenches 60, the manufacturing costs can be reduced. With reference to Figures 3 to 5, the second dummy trenches 70 having a shape suitable for reducing manufacturing costs will be described.
  • the overall trench width 70W of the second dummy trench 70 is larger than the trench width 50W of the trench gate 50.
  • the trench width of the first dummy trench 60 is the same as the trench width 50W of the trench gate 50. Therefore, the trench width 70W of the second dummy trench 70 is larger than the trench width of the first dummy trench 60.
  • the trench width refers to the width in the short direction of the trench (the y direction in this example).
  • the manufacturing method of the semiconductor device 1 of the example shown in FIG. 3 includes a trench formation process including a step of forming a photomask on the semiconductor substrate 10 and a step of forming multiple trenches in the upper layer of the semiconductor substrate 10 exposed from the openings of the photomask by dry etching.
  • the photomask is patterned so that the trench width of the trench corresponding to the multiple second dummy trenches 70 is larger than the trench width of the trench corresponding to the multiple trench gates 50 and the multiple first dummy trenches 60.
  • the depth of the trench corresponding to the multiple second dummy trenches 70 can be made larger than the depth of the trench corresponding to the multiple trench gates 50 and the multiple first dummy trenches 60 by one etching using a single photomask.
  • each of the second dummy trenches 70 is formed so that the trench width at any position in the longitudinal direction is greater than the trench width of each of the trench gates 50 and the first dummy trenches 60.
  • each of the second dummy trenches 70 is configured to be deeper than the trench gates 50 and the first dummy trenches 60.
  • each of the second dummy trenches 70 is formed so that the trench width at a portion of the longitudinal direction is greater than the trench width of each of the trench gates 50 and the first dummy trenches 60.
  • each of the second dummy trenches 70 is configured so that a portion corresponding to a portion of the longitudinal direction is deeper than the trench gates 50 and the first dummy trenches 60.
  • deep portions 76 are formed in a portion of each of the second dummy trenches 70, and the deep portions 76 are distributed and arranged within the boundary portion 20C.
  • the depth of the trench corresponding to the deep portion 76 can be made greater than the depth of the trenches corresponding to the multiple trench gates 50 and the multiple first dummy trenches 60 by a single etching using a single photomask.
  • each of the linking dummy trenches 80 extends in the y direction and is arranged at intervals from one another in the x direction.
  • Each of the linking dummy trenches 80 is formed so as to extend from the upper surface of the semiconductor substrate 10 through the p-type region 14 to reach the n-type region 13.
  • Each of the linking dummy trenches 80 includes a dummy insulating film 82 and a dummy electrode 84 insulated from the semiconductor substrate 10 by the dummy insulating film 82.
  • the dummy electrode 84 of each of the linking dummy trenches 80 is electrically connected to the upper electrode 42.
  • Each of the multiple linking dummy trenches 80 is connected to each of the adjacent second dummy trenches 70 at both ends. Deep portions 76 are formed at the portions where the linking dummy trenches 80 are connected to the second dummy trenches 70, and the deep portions 76 are distributed and arranged within the boundary portion 20C.
  • trenches corresponding to the multiple trench gates 50, the multiple first dummy trenches 60, the multiple second dummy trenches 70, and the multiple linking dummy trenches 80 are simultaneously formed by one etching using a single photomask.
  • the effective trench width of the trench is large. Therefore, in the example of FIG. 5, the depth of the trench corresponding to the deep portion 76 can be made larger than the depth of the trench corresponding to the multiple trench gates 50 and the multiple first dummy trenches 60 by one etching using a single photomask.
  • the operation of the semiconductor device 1 will be described.
  • a voltage is applied between the lower electrode 44 and the upper electrode 42 so that the lower electrode 44 has a higher potential than the upper electrode 42.
  • the IGBT structure operates, when the voltage between the gate electrode 54 and the upper electrode 42 becomes higher than the threshold voltage, a channel is formed in the p-type region 14 that contacts the side of the trench gate 50, and electron carriers are injected from the emitter region 15 to the n-type region 13 through the channel. On the other hand, hole carriers are injected from the collector region 11 to the n-type region 13. This turns the IGBT structure on.
  • the channel on the side of the trench gate 50 disappears, and the IGBT structure in the IGBT region 20A turns off. In this way, in the mode in which the IGBT structure operates, the on and off of the IGBT structure is controlled according to the potential of the gate electrode 54 of the trench gate 50.
  • the diode structure In the mode in which the diode structure operates, a voltage is applied between the lower electrode 44 and the upper electrode 42 so that the upper electrode 42 is at a higher potential than the lower electrode 44. In this mode in which the diode structure operates, the gate electrode 54 is set to the potential of the upper electrode 42, and the channel on the side of the trench gate 50 disappears. In the mode in which the diode structure operates, the upper electrode 42 is at a higher potential than the lower electrode 44, so a return current flows through the pn diode composed of the p-type region 14, n-type region 13, and cathode region 12.
  • the hole carriers remaining in the n-type region 13 become high energy due to the high voltage of the inductive load, and may cause an avalanche in the process of the hole carriers being discharged to the upper electrode 42.
  • the semiconductor device 1 since at least a part of the second dummy trench 70 is formed deep, avalanche occurs preferentially at the bottom of the second dummy trench 70, and the occurrence of avalanche at the bottom of the trench gate 50 can be suppressed.
  • a plurality of second dummy trenches are arranged at intervals along the IGBT-diode direction at the boundary portion 20C.
  • the second dummy trench 70 is reliably arranged in the path through which the hole carriers remaining near the boundary between the IGBT region 20A and the diode region 20B are discharged.
  • avalanche can be preferentially generated at the boundary portion 20C, and the occurrence of avalanche at the bottom of the trench gate 50 can be suppressed.
  • destruction of the trench gate 50 due to avalanche is suppressed, and the semiconductor device 1 has improved tolerance when the IGBT structure is turned off.
  • the second dummy trenches 70 are unevenly arranged in the IGBT region 20A of the boundary portion 20C, and the first dummy trenches 60 are provided in the diode region 20B of the boundary portion 20C.
  • the second dummy trenches 70 are unevenly arranged in the diode region 20B of the boundary portion 20C, and the trench gate 50 is provided in the IGBT region 20A of the boundary portion 20C.
  • the second dummy trench 70 it is not necessary for only the second dummy trench 70 to be provided at the boundary portion 20C, and the trench gate 50 and the first dummy trench 60 may be provided at the boundary portion 20C as necessary. If multiple second dummy trenches 70 are provided at least in a portion of the boundary portion 20C, the same effect as the semiconductor device 1 described above can be obtained.
  • the second dummy trenches 70 may be disposed between the trench gate 50 and the first dummy trench 60, or may not be disposed between the trench gate 50 and the first dummy trench 60.
  • the first dummy trench 60 may be provided in the IGBT region 20A adjacent to the boundary portion 20C.
  • (Feature 2) 2. The semiconductor device according to claim 1, wherein the second dummy trenches are provided between the trench gates and the first dummy trenches.
  • each of the second dummy trenches is configured to be deeper than the trench gates and the first dummy trenches as a whole.
  • each of the second dummy trenches is configured so that a portion thereof is deeper than the trench gates and the first dummy trenches.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置1は、IGBT領域20Aに位置する複数のトレンチゲート50と、ダイオード領域20Bに位置する複数の第1ダミートレンチ60と、IGBT領域とダイオード領域の境界部20Cに位置する複数の第2ダミートレンチ70と、を備えている。複数の第2ダミートレンチの各々は、IGBT領域とダイオード領域を結ぶ方向に沿って相互に間隔を置いて配置されている。複数の第2ダミートレンチの各々は、少なくともその一部に、複数のトレンチゲートと複数の第1ダミートレンチよりも深く形成された深部分76を有する。

Description

半導体装置とその製造方法 関連出願の相互参照
 本出願は、2022年11月4日に出願された日本特許出願番号2022-177260号の関連出願であり、この日本特許出願に基づく優先権を主張するものであり、この日本特許出願に記載された全ての内容を、本明細書を構成するものとして援用する。
 本明細書が開示する技術は、半導体装置とその製造方法に関する。
 特開2021-190657号公報には、IGBT(insulated gate bipolar transistor)領域とダイオード領域を含む半導体基板を備えた半導体装置が開示されている。この半導体装置では、半導体基板の上面を被覆するように上部電極が設けられており、半導体基板の下面を被覆するように下部電極が設けられている。IGBT領域内には、上部電極がエミッタ電極になるとともに下部電極がコレクタ電極となるように、IGBT構造が設けられている。ダイオード領域内には、上部電極がアノード電極になるとともに下部電極がカソード電極となるように、ダイオード構造が設けられている。ダイオード構造は、IGBT構造に対して逆並列に接続されており、フリーホイーリングダイオードとして動作することができる。
 また、特開2021-190657号公報の半導体装置では、IGBT領域に複数のトレンチゲートが設けられており、ダイオード領域に複数のダミートレンチが設けられている。さらに、特開2021-190657号公報の半導体装置では、複数のトレンチゲートと複数のダミートレンチのいずれよりも深くなるように形成された単一の境界トレンチがIGBT領域とダイオード領域の境界に設けられている。境界トレンチは、IGBT領域からダイオード領域に向けてキャリアが流入するのを抑えるために設けられている。これにより、特開2021-190657号公報の半導体装置では、ダイオード構造のリカバリー動作時の耐量が増加するとされている。
 この種の半導体装置では、IGBT構造がターンオフしたときの耐量を向上させる技術も必要である。本明細書は、IGBT構造がターンオフしたときの耐量を向上させる技術を提供する。
 本明細書が開示する半導体装置は、IGBT領域とダイオード領域を含む半導体基板と、前記半導体基板の下面に設けられている下部電極と、前記半導体基板の上面に設けられている上部電極と、前記IGBT領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数のトレンチゲートと、前記ダイオード領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第1ダミートレンチと、前記IGBT領域と前記ダイオード領域の境界部に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第2ダミートレンチと、を備えてもよい。前記複数の第2ダミートレンチの各々は、前記IGBT領域と前記ダイオード領域を結ぶ方向に沿って相互に間隔を置いて配置されていてもよい。前記複数の第2ダミートレンチの各々は、少なくともその一部に、前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深く形成された深部分を有してもよい。この半導体装置によると、IGBT構造がターンオフしたときに、前記第2ダミートレンチの少なくとも一部が深く形成されているので前記第2ダミートレンチの底部で優先的にアバランシェが発生し、前記トレンチゲートの底部でのアバランシェの発生を抑制することができる。この結果、この半導体装置では、IGBT構造がターンオフしたときの耐量が向上する。
 本明細書はまた、上記半導体装置を製造する方法を開示することができる。この製造方法は、前記半導体基板の前記上面から深部に向けて延びる複数のトレンチを形成するトレンチ形成工程であって、前記複数の第2ダミートレンチに対応する前記トレンチの少なくとも一部のトレンチ幅が、前記複数のトレンチゲートと前記複数の第1ダミートレンチに対応する前記トレンチのトレンチ幅よりも大きい、トレンチ形成工程、を備えてもよい。この製造方法によると、前記複数のトレンチゲートと前記複数の第1ダミートレンチと前記複数の第2ダミートレンチの各々に対応したトレンチを同時に形成することができる。
半導体装置のIGBT領域とダイオード領域の平面レイアウトを模式的に示す図である。 半導体装置の1つの実施形態の特徴を示す要部断面図であり、図1のII-II線に対応した要部断面図を模式的に示す図である。 半導体装置の1つの実施形態を具現化する1つの手法を説明するための図であり、上部電極を取り除いた状態の半導体装置の要部斜視図を模式的に示す図である。 半導体装置の1つの実施形態を具現化する1つの手法を説明するための図であり、上部電極を取り除いた状態の半導体装置の要部斜視図を模式的に示す図である。 半導体装置の1つの実施形態を具現化する1つの手法を説明するための図であり、上部電極を取り除いた状態の半導体装置の要部斜視図を模式的に示す図である。 半導体装置の他の1つの実施形態の特徴を示す要部断面図であり、図1のII-II線に対応した要部断面図を模式的に示す図である。 半導体装置の他の1つの実施形態の特徴を示す要部断面図であり、図1のII-II線に対応した要部断面図を模式的に示す図である。 半導体装置の他の1つの実施形態の特徴を示す要部断面図であり、図1のII-II線に対応した要部断面図を模式的に示す図である。
 以下、図面を参照し、各実施形態について説明する。各実施形態を通して共通する構成要素については共通の符号を付し、その説明を省略する。また、図示明瞭化を目的として、繰り返し配置されている構成要素については、そのうちの一部のみに符号を付すことがある。
 図1に示すように、半導体装置1は、半導体基板10を備えている。半導体基板10は、特に限定されるものではないが、例えば炭化珪素(SiC)基板であってもよい。なお、以下では、半導体基板10の厚み方向をz方向といい、半導体基板10の上面に平行な一方向をx方向といい、半導体基板10の上面に平行かつx方向に直交する方向をy方向という。
 図1に示すように、半導体基板10は、特に限定されるものではないが、例えば2つの素子領域20と、素子領域20の周囲に配置されている終端領域30と、を備えていてもよい。素子領域20の各々は、IGBT領域20Aとダイオード領域20Bに区画されている。IGBT領域20A内にはIGBTを構成するための構造が設けられており、ダイオード領域20B内にはダイオードを構成するための構造が設けられている。素子領域20の各々において、IGBT領域20Aとダイオード領域20Bがy方向に沿って交互に配置されている。以下、IGBT領域20Aとダイオード領域20Bを結ぶ方向であって、IGBT領域20Aとダイオード領域20Bが交互に配置される方向をIGBT・ダイオード方向ともいう。
 図2に示すように、半導体装置1は、上部電極42と、下部電極44と、IGBT領域20Aに設けられている複数のトレンチゲート50と、ダイオード領域20Bに設けられている複数の第1ダミートレンチ60と、境界部20Cに設けられている複数の第2ダミートレンチ70と、を備えている。上部電極42は、半導体基板10の上面10aを被覆するように設けられている。下部電極44は、半導体基板10の下面10bを被覆するように設けられている。このように、半導体装置1は、縦型デバイスとして構成されている。上部電極42は、IGBT構造のエミッタ電極として機能するとともにダイオード構造のアノード電極としても機能する。下部電極44は、IGBT構造のコレクタ電極として機能するとともにダイオード構造のカソード電極としても機能する。
 半導体装置1の半導体基板10は、p+型のコレクタ領域11と、n+型のカソード領域12と、n型領域13と、p型領域14と、n+型のエミッタ領域15と、p+型のコンタクト領域16と、を備えている。
 コレクタ領域11は、半導体基板10のIGBT領域20Aに設けられており、半導体基板10のうち半導体基板10の下面10bに露出する位置に配置されている。コレクタ領域11は、下部電極44にオーミック接触している。カソード領域12は、半導体基板10のダイオード領域20Bに設けられており、半導体基板10のうち半導体基板10の下面10bに露出する位置に配置されている。カソード領域12は、下部電極44にオーミック接触している。このように、半導体基板10のうち半導体基板10の下面10bに露出する位置において、IGBT領域20Aの全体にコレクタ領域11が設けられており、ダイオード領域20Bの全体にカソード領域12が設けられている。換言すると、半導体基板10は、コレクタ領域11が設けられている範囲がIGBT領域20Aとして区画され、カソード領域12が設けられている範囲がダイオード領域20Bとして区画されている。
 n型領域13は、IGBT領域20Aとダイオード領域20Bに双方に設けられている。n型領域13は、IGBT領域20Aにおいて、コレクタ領域11とp型領域14の間に配置されており、IGBT構造のドリフト領域として機能する。n型領域13は、ダイオード領域20Bにおいて、カソード領域12とp型領域14の間に設けられており、ダイオード構造の低濃度領域として機能する。
 p型領域14は、IGBT領域20Aとダイオード領域20Bに双方に設けられている。p型領域14は、IGBT領域20Aにおいて、n型領域13上に配置されており、IGBT構造のボディ領域として機能する。p型領域14は、ダイオード領域20Bにおいて、n型領域13上に配置されており、ダイオード構造のアノード領域として機能する。
 エミッタ領域15は、IGBT領域20Aに設けられており、半導体基板10のうち半導体基板10の上面10aに露出する位置に分散して配置されている。エミッタ領域15は、上部電極42にオーミック接触している。エミッタ領域15は、トレンチゲート50の側面に接しており、p型領域14によってn型領域13から隔てられている。n型領域13とエミッタ領域15を隔てるp型領域14であってトレンチゲート50の側面に接する部分がチャネルとして機能する。
 コンタクト領域16は、IGBT領域20Aとダイオード領域20Bに双方に設けられており、半導体基板10のうち半導体基板10の上面10aに露出する位置に分散して配置されている。コンタクト領域16は、上部電極42にオーミック接触している。p型領域14は、コンタクト領域16を介して上部電極42に電気的に接続されている。
 複数のトレンチゲート50は、IGBT領域20Aに位置する半導体基板10の上層部に設けられている。複数のトレンチゲート50の各々は、半導体基板10を平面視したときに、x方向に延びているとともにy方向に相互に間隔を置いて配列されている。このように、複数のトレンチゲート50は、ストライプ状に配置されている。複数のトレンチゲート50の各々は、半導体基板10の上面10aからp型領域14を貫通してn型領域13に達するように形成されている。複数のトレンチゲート50の各々は、ゲート絶縁膜52と、ゲート絶縁膜52によって半導体基板10から絶縁されているゲート電極54と、を備えている。複数のトレンチゲート50の各々のゲート電極54は、層間絶縁膜によって上部電極42から絶縁されている。
 複数の第1ダミートレンチ60は、ダイオード領域20Bに位置する半導体基板10の上層部に設けられている。複数の第1ダミートレンチ60の各々は、半導体基板10を平面視したときに、x方向に延びているとともにy方向に相互に間隔を置いて配列されている。このように、複数の第1ダミートレンチ60は、ストライプ状に配置されている。複数の第1ダミートレンチ60の各々は、半導体基板10の上面10aからp型領域14を貫通してn型領域13に達するように形成されている。複数の第1ダミートレンチ60の各々は、ダミー絶縁膜62と、ダミー絶縁膜62によって半導体基板10から絶縁されているダミー電極64と、を備えている。複数の第1ダミートレンチ60の各々のダミー電極64は、上部電極42に電気的に接続されている。
 複数の第2ダミートレンチ70は、IGBT領域20Aとダイオード領域20Bの境界部20Cに位置する半導体基板10の上層部に設けられている。ここで、境界部20Cとは、IGBT領域20Aとダイオード領域20Bの境界(即ち、コレクタ領域11とカソード領域12の境界)からIGBT・ダイオード方向(この例ではy方向)に沿ってIGBT領域20Aとダイオード領域20Bの各々に向けて所定距離だけ広がった範囲として定義される。所定距離は、特に限定されるものではないが、例えば半導体基板10の厚み方向(この例ではz方向)に沿って測定されるn型領域13の膜厚の1/2であってもよい。したがって、IGBT・ダイオード方向に沿って測定される境界部20Cの幅は、n型領域13の膜厚と一致してもよい。複数の第2ダミートレンチ70は、この境界部20C内の少なくとも一部の領域に配置されていればよい。この例では、複数の第2ダミートレンチ70が、境界部20CのうちIGBT領域20Aとダイオード領域20Bの双方に配置されている。
 複数の第2ダミートレンチ70の各々は、半導体基板10を平面視したときに、x方向に延びているとともにy方向に相互に間隔を置いて配列されている。このように、複数の第2ダミートレンチ70は、ストライプ状に配置されている。複数の第2ダミートレンチ70の各々は、半導体基板10の上面10aからp型領域14を貫通してn型領域13に達するように形成されている。複数の第2ダミートレンチ70の各々は、ダミー絶縁膜72と、ダミー絶縁膜72によって半導体基板10から絶縁されているダミー電極74と、を備えている。複数の第2ダミートレンチ70の各々のダミー電極74は、上部電極42に電気的に接続されている。
 複数の第2ダミートレンチ70の各々の少なくとも一部は、複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深く形成された深部分76を有している。なお、後述するように、複数の第2ダミートレンチ70の各々は、その全体が複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深く構成されていてもよく、少なくとも一部が複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深く構成されていてもよい。第2ダミートレンチ70の全体が複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深く構成されている例では、第2ダミートレンチ70の全体が深部分76で構成されているということができる。
 複数の第2ダミートレンチ70は、複数のトレンチゲート50と複数の第1ダミートレンチ60とは別工程で形成してもよい。しかしながら、複数の第2ダミートレンチ70を複数のトレンチゲート50と複数の第1ダミートレンチ60と同一工程で形成することにより、製造コストを低減することができる。図3~図5を参照し、製造コストを低減するのに適した形態を有する複数の第2ダミートレンチ70について説明する。
 図3の例では、第2ダミートレンチ70の全体のトレンチ幅70Wが、トレンチゲート50のトレンチ幅50Wよりも大きい。なお、第1ダミートレンチ60のトレンチ幅はトレンチゲート50のトレンチ幅50Wと同一である。このため、第2ダミートレンチ70のトレンチ幅70Wは、第1ダミートレンチ60のトレンチ幅よりも大きい。ここで、トレンチ幅とは、トレンチの短手方向(この例ではy方向)の幅をいう。
 半導体基板10にトレンチを形成するとき、トレンチ幅が大きいトレンチではエッチングガスがトレンチ内に入り込み易くなり、エッチング速度が増加する。このため、単一のフォトマスクを用いた1回のエッチングでトレンチ幅が異なる複数のトレンチを形成する場合、深さの異なるトレンチが作り分けられる。したがって、図3に示す例の半導体装置1の製造方法は、半導体基板10上にフォトマスクを成膜するステップと、ドライエッチングによりフォトマスクの開口から露出する半導体基板10の上層部に複数のトレンチを形成するステップと、を含むトレンチ形成工程を備えている。フォトマスクは、複数の第2ダミートレンチ70に対応するトレンチのトレンチ幅が複数のトレンチゲート50と複数の第1ダミートレンチ60に対応するトレンチのトレンチ幅よりも大きくなるようにパターニングされる。これにより、単一のフォトマスクを用いた1回のエッチングによって複数の第2ダミートレンチ70に対応するトレンチの深さを複数のトレンチゲート50と複数の第1ダミートレンチ60に対応するトレンチの深さよりも大きくすることができる。
 図3の例では、複数の第2ダミートレンチ70の各々は、長手方向のいずれの位置におけるトレンチ幅も複数のトレンチゲート50と複数の第1ダミートレンチ60の各々のトレンチ幅よりも大きく形成されていた。これにより、複数の第2ダミートレンチ70の各々は、その全体が複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深くなるように構成されていた。この例に代えて、図4に示す例では、複数の第2ダミートレンチ70の各々は、長手方向の一部の位置におけるトレンチ幅が複数のトレンチゲート50と複数の第1ダミートレンチ60の各々のトレンチ幅よりも大きく形成されている。これにより、複数の第2ダミートレンチ70の各々は、その長手方向の一部の位置に対応した部分が複数のトレンチゲート50と複数の第1ダミートレンチ60よりも深くなるように構成されている。図4の例では、複数の第2ダミートレンチ70の各々の一部に深部分76が形成され、それら深部分76が境界部20C内に分散して配置されている。図4の例も、単一のフォトマスクを用いた1回のエッチングによって深部分76に対応するトレンチの深さを複数のトレンチゲート50と複数の第1ダミートレンチ60に対応するトレンチの深さよりも大きくすることができる。
 図5の例では、IGBT・ダイオード方向に隣り合う第2ダミートレンチ70の間に複数の連結ダミートレンチ80が設けられている。複数の連結ダミートレンチ80の各々は、半導体基板10を平面視したときに、y方向に延びているとともにx方向に相互に間隔を置いて配列されている。また、複数の連結ダミートレンチ80の各々は、半導体基板10の上面からp型領域14を貫通してn型領域13に達するように形成されている。複数の連結ダミートレンチ80の各々は、ダミー絶縁膜82と、ダミー絶縁膜82によって半導体基板10から絶縁されているダミー電極84と、を備えている。複数の連結ダミートレンチ80の各々のダミー電極84は、上部電極42に電気的に接続されている。
 複数の連結ダミートレンチ80の各々は、その両端が隣り合う第2ダミートレンチ70の各々に連結している。連結ダミートレンチ80が第2ダミートレンチ70に連結する部分に、深部分76が形成され、それら深部分76が境界部20C内に分散して配置されている。図5の例も、単一のフォトマスクを用いた1回のエッチングによって複数のトレンチゲート50と複数の第1ダミートレンチ60と複数の第2ダミートレンチ70と複数の連結ダミートレンチ80の各々に対応するトレンチが同時に形成される。連結ダミートレンチ80が第2ダミートレンチ70に連結する部分では、トレンチの実効的なトレンチ幅が大きくなる。このため、図5の例も、単一のフォトマスクを用いた1回のエッチングによって深部分76に対応するトレンチの深さを複数のトレンチゲート50と複数の第1ダミートレンチ60に対応するトレンチの深さよりも大きくすることができる。
 次に、半導体装置1の動作について説明する。IGBT構造が動作するモードでは、下部電極44が上部電極42よりも高い電位となるように、下部電極44と上部電極42の間に電圧が印加される。このIGBT構造が動作するモードでは、ゲート電極54と上部電極42の間の電圧が閾値電圧よりも高くなると、トレンチゲート50の側面に接するp型領域14にチャネルが形成され、そのチャネルを介してエミッタ領域15からn型領域13に電子キャリアが注入される。一方、コレクタ領域11からn型領域13に正孔キャリアが注入される。これにより、IGBT構造がオンとなる。ゲート電極54と上部電極42の間の電圧が閾値電圧よりも小さくなると、トレンチゲート50の側面のチャネルが消失し、IGBT領域20AのIGBT構造がオフとなる。このように、IGBT構造が動作するモードでは、トレンチゲート50のゲート電極54の電位に応じてIGBT構造のオンとオフが制御される。
 ダイオード構造が動作するモードは、上部電極42が下部電極44よりも高い電位となるように、下部電極44と上部電極42の間に電圧が印加される。このダイオード構造が動作するモードでは、ゲート電極54が上部電極42の電位に設定されており、トレンチゲート50の側面のチャネルは消失している。ダイオード構造が動作するモードでは、上部電極42が下部電極44よりも高い電位となっているので、p型領域14とn型領域13とカソード領域12で構成されるpnダイオードを介して還流電流が流れる。
 上記したIGBT構造が動作するモードにおいて、IGBT構造がターンオフすると、n型領域13に残留する正孔キャリアが誘導性負荷の高電圧によって高エネルギーとなり、正孔キャリアが上部電極42に排出される過程でアバランシェを引き起こすことがある。半導体装置1では、第2ダミートレンチ70の少なくとも一部が深く形成されているので、第2ダミートレンチ70の底部で優先的にアバランシェが発生し、トレンチゲート50の底部でのアバランシェの発生を抑制することができる。特に、半導体装置1では、複数の第2ダミートレンチが境界部20CにおいてIGBT・ダイオード方向に沿って間隔を置いて配置されている。このため、半導体装置1では、IGBT領域20Aとダイオード領域20Bの境界近傍に残留する正孔キャリアが排出される経路に第2ダミートレンチ70が確実に配置されている。これにより、半導体装置1では、境界部20Cにおいてアバランシェを優先的に発生させることができ、トレンチゲート50の底部でのアバランシェの発生を抑制することができる。この結果、アバランシェによるトレンチゲート50の破壊が抑制されるので、半導体装置1では、IGBT構造がターンオフするときの耐量が向上する。
 以下、他の実施形態の半導体装置について説明する。これら実施形態の半導体装置も上記した半導体装置1と同様の作用効果を有することができる。
 図6の半導体装置2では、境界部20CのうちIGBT領域20Aに第2ダミートレンチ70が偏在して配置されており、境界部20Cのうちダイオード領域20Bに第1ダミートレンチ60が設けられている。
 図7の半導体装置3では、境界部20Cのうちダイオード領域20Bに第2ダミートレンチ70が偏在して配置されており、境界部20CのうちIGBT領域20Aにトレンチゲート50が設けられている。
 図6と図7の例に示すように、境界部20Cには第2ダミートレンチ70のみが設けられている必要はなく、境界部20Cにはトレンチゲート50と第1ダミートレンチ60が必要に応じて設けられていてもよい。複数の第2ダミートレンチ70が境界部20C内の少なくとも一部に設けられていれば、上記した半導体装置1と同様の作用効果を有することができる。
 また、複数の第2ダミートレンチ70は、トレンチゲート50と第1ダミートレンチ60の間に配置されていてもよいし、トレンチゲート50と第1ダミートレンチ60の間に配置されていなくてもよい。例えば、図8に示すように、境界部20Cに隣接するIGBT領域20Aに第1ダミートレンチ60が設けられていてもよい。
 以下、本明細書で開示される技術の特徴を整理する。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものである。
(特徴1)
 IGBT領域(20A)とダイオード領域(20B)を含む半導体基板(10)と、
 前記半導体基板の下面(10b)に設けられている下部電極(44)と、
 前記半導体基板の上面(10a)に設けられている上部電極(42)と、
 前記IGBT領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数のトレンチゲート(50)と、
 前記ダイオード領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第1ダミートレンチ(60)と、
 前記IGBT領域と前記ダイオード領域の境界部(20C)に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第2ダミートレンチ(70)と、を備えており、
 前記複数の第2ダミートレンチの各々は、前記IGBT領域と前記ダイオード領域を結ぶ方向に沿って相互に間隔を置いて配置されており、
 前記複数の第2ダミートレンチの各々は、少なくともその一部に、前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深く形成された深部分(76)を有する、半導体装置。
(特徴2)
 前記複数の第2ダミートレンチは、前記複数のトレンチゲートと前記複数の第1ダミートレンチの間に設けられている、特徴1に記載の半導体装置。
(特徴3)
 前記複数の第2ダミートレンチのうち一部の第2ダミートレンチは、前記境界部のうち前記IGBT領域に配置されており、
 前記複数の第2ダミートレンチのうち他の第2ダミートレンチは、前記境界部のうち前記ダイオード領域に配置されている、特徴1又は2に記載の半導体装置。
(特徴4)
 前記複数の第2ダミートレンチの各々は、その全体が前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深くなるように構成されている、特徴1~3のいずれか1つに記載の半導体装置。
(特徴5)
 前記複数の第2ダミートレンチの各々は、その一部が前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深くなるように構成されている、特徴1~3のいずれか1つに記載の半導体装置。
(特徴6)
 前記複数の第2ダミートレンチの各々の前記深部分は、前記複数のトレンチゲートと前記複数の第1ダミートレンチのトレンチ幅よりも広いトレンチ幅を有する、特徴1~5のいずれか1つに記載の半導体装置。
(特徴7)
 隣り合う第2ダミートレンチの間を伸びている連結ダミートレンチ(80)をさらに備えており、
 前記複数の第2ダミートレンチの各々の前記深部分は、前記連結ダミートレンチと連結する部分に位置する、特徴5に記載の半導体装置。
 以上、実施形態について詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。

Claims (8)

  1.  IGBT領域(20A)とダイオード領域(20B)を含む半導体基板(10)と、
     前記半導体基板の下面(10b)に設けられている下部電極(44)と、
     前記半導体基板の上面(10a)に設けられている上部電極(42)と、
     前記IGBT領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数のトレンチゲート(50)と、
     前記ダイオード領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第1ダミートレンチ(60)と、
     前記IGBT領域と前記ダイオード領域の境界部(20C)に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第2ダミートレンチ(70)と、を備えており、
     前記複数の第2ダミートレンチの各々は、前記IGBT領域と前記ダイオード領域を結ぶ方向に沿って相互に間隔を置いて配置されており、
     前記複数の第2ダミートレンチの各々は、少なくともその一部に、前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深く形成された深部分(76)を有する、半導体装置。
  2.  前記複数の第2ダミートレンチは、前記複数のトレンチゲートと前記複数の第1ダミートレンチの間に設けられている、請求項1に記載の半導体装置。
  3.  前記複数の第2ダミートレンチのうち一部の第2ダミートレンチは、前記境界部のうち前記IGBT領域に配置されており、
     前記複数の第2ダミートレンチのうち他の第2ダミートレンチは、前記境界部のうち前記ダイオード領域に配置されている、請求項1に記載の半導体装置。
  4.  前記複数の第2ダミートレンチの各々は、その全体が前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深くなるように構成されている、請求項1に記載の半導体装置。
  5.  前記複数の第2ダミートレンチの各々は、その一部が前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深くなるように構成されている、請求項1に記載の半導体装置。
  6.  前記複数の第2ダミートレンチの各々の前記深部分は、前記複数のトレンチゲートと前記複数の第1ダミートレンチのトレンチ幅よりも広いトレンチ幅を有する、請求項1~5のいずれか一項に記載の半導体装置。
  7.  隣り合う第2ダミートレンチの間を伸びている連結ダミートレンチ(80)をさらに備えており、
     前記複数の第2ダミートレンチの各々の前記深部分は、前記連結ダミートレンチと連結する部分に位置する、請求項5に記載の半導体装置。
  8.  IGBT領域(20A)とダイオード領域(20B)を含む半導体基板(10)と、
     前記半導体基板の下面(10b)に設けられている下部電極(44)と、
     前記半導体基板の上面(10a)に設けられている上部電極(42)と、
     前記IGBT領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数のトレンチゲート(50)と、
     前記ダイオード領域に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第1ダミートレンチ(60)と、
     前記IGBT領域と前記ダイオード領域の境界部(20C)に位置する前記半導体基板の前記上面から深部に向けて延びている複数の第2ダミートレンチ(70)と、を備えており、
     前記複数の第2ダミートレンチの各々は、前記IGBT領域と前記ダイオード領域を結ぶ方向に沿って相互に間隔を置いて配置されており、
     前記複数の第2ダミートレンチの各々は、少なくともその一部に、前記複数のトレンチゲートと前記複数の第1ダミートレンチよりも深く形成された深部分(76)を有する、半導体装置の製造方法であって、
     前記半導体基板の前記上面から深部に向けて延びる複数のトレンチを形成するトレンチ形成工程であって、前記複数の第2ダミートレンチに対応する前記トレンチの少なくとも一部のトレンチ幅が、前記複数のトレンチゲートと前記複数の第1ダミートレンチに対応する前記トレンチのトレンチ幅よりも大きい、トレンチ形成工程、を備える、半導体装置の製造方法。
PCT/JP2023/030751 2022-11-04 2023-08-25 半導体装置とその製造方法 WO2024095578A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177260 2022-11-04
JP2022177260A JP2024067299A (ja) 2022-11-04 2022-11-04 半導体装置とその製造方法

Publications (1)

Publication Number Publication Date
WO2024095578A1 true WO2024095578A1 (ja) 2024-05-10

Family

ID=90930157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030751 WO2024095578A1 (ja) 2022-11-04 2023-08-25 半導体装置とその製造方法

Country Status (2)

Country Link
JP (1) JP2024067299A (ja)
WO (1) WO2024095578A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177221A (ja) * 2009-05-15 2009-08-06 Seiko Instruments Inc 縦形mosトランジスタの製造方法
WO2019116696A1 (ja) * 2017-12-14 2019-06-20 富士電機株式会社 半導体装置
JP2020043237A (ja) * 2018-09-11 2020-03-19 株式会社デンソー 半導体装置
JP2021190657A (ja) * 2020-06-04 2021-12-13 三菱電機株式会社 半導体装置
JP2022015861A (ja) * 2020-07-10 2022-01-21 三菱電機株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177221A (ja) * 2009-05-15 2009-08-06 Seiko Instruments Inc 縦形mosトランジスタの製造方法
WO2019116696A1 (ja) * 2017-12-14 2019-06-20 富士電機株式会社 半導体装置
JP2020043237A (ja) * 2018-09-11 2020-03-19 株式会社デンソー 半導体装置
JP2021190657A (ja) * 2020-06-04 2021-12-13 三菱電機株式会社 半導体装置
JP2022015861A (ja) * 2020-07-10 2022-01-21 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP2024067299A (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
CN106688083B (zh) 半导体装置
JP6003961B2 (ja) 半導体装置
US8232593B2 (en) Power semiconductor device
JPWO2018220879A1 (ja) 半導体装置
KR20150066517A (ko) 반도체 장치
JP6616878B2 (ja) 半導体装置
CN110692140A (zh) 半导体装置
KR102173473B1 (ko) Mos-바이폴라 소자
JP2010232335A (ja) 絶縁ゲートバイポーラトランジスタ
US20220384578A1 (en) Semiconductor device
JP2023139265A (ja) 半導体装置
US11264475B2 (en) Semiconductor device having a gate electrode formed in a trench structure
US20240063267A1 (en) Semiconductor device and method for producing same
JP2017191817A (ja) スイッチング素子の製造方法
JP2008177297A (ja) 半導体装置
WO2024095578A1 (ja) 半導体装置とその製造方法
US20220216331A1 (en) Semiconductor device and method for designing thereof
US20240055498A1 (en) Semiconductor device and method for producing same
US11101373B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
GB2592928A (en) Insulated gate switched transistor
JP4802430B2 (ja) 半導体素子
US20240136436A1 (en) silicon carbide semiconductor device
KR102334327B1 (ko) 전력 반도체 소자 및 그 제조 방법
US20230369483A1 (en) Semiconductor device and manufacturing method of semiconductor device
US20220384577A1 (en) Semiconductor device and method for designing thereof