WO2024095372A1 - サーボモータの電源システム - Google Patents

サーボモータの電源システム Download PDF

Info

Publication number
WO2024095372A1
WO2024095372A1 PCT/JP2022/040914 JP2022040914W WO2024095372A1 WO 2024095372 A1 WO2024095372 A1 WO 2024095372A1 JP 2022040914 W JP2022040914 W JP 2022040914W WO 2024095372 A1 WO2024095372 A1 WO 2024095372A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
servo amplifier
voltage
switch
circuit
Prior art date
Application number
PCT/JP2022/040914
Other languages
English (en)
French (fr)
Inventor
慶太郎 稲垣
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/040914 priority Critical patent/WO2024095372A1/ja
Priority to TW112137650A priority patent/TW202423034A/zh
Publication of WO2024095372A1 publication Critical patent/WO2024095372A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

Definitions

  • This disclosure relates to a power supply system for a servo motor.
  • Servo amplifiers that drive servo motors in machines such as industrial robots and machine tools are equipped with a drive power supply that supplies power to drive the servo motor, and a control power supply that supplies power to the circuit that controls the servo amplifier.
  • the power supply system includes a servo amplifier, a power supply that can switch between at least two different voltage levels, a servo amplifier control circuit that is connected to the power supply and controls the servo amplifier, a switch that opens and closes an electrical path between the power supply and the servo amplifier, a voltage comparison circuit that compares the voltage output by the power supply with a predefined threshold value, and a switch control circuit that controls the opening and closing of the electrical path between the power supply and the servo amplifier by the switch depending on the comparison result by the voltage comparison circuit.
  • FIG. 1 is a circuit diagram illustrating a power supply system according to an embodiment of the present disclosure.
  • 2 is a circuit diagram showing a step-down chopper circuit provided in a servo amplifier control circuit in a power supply system according to an embodiment of the present disclosure.
  • 4 is a flowchart illustrating operations associated with opening and closing switches in a power supply system according to an embodiment of the present disclosure.
  • FIG. 1 is a circuit diagram showing a conventional power supply system in which a power supply for driving and a power supply for control are provided separately.
  • connection means “electrically connected.”
  • on of a switch means that the electric circuit in which the switch is provided is closed; that is, when the switch is turned on, the electric circuit in which the switch is provided is connected and closed.
  • off of a switch means that the electric circuit in which the switch is provided is opened; that is, when the switch is turned off, the electric circuit in which the switch is provided is interrupted and opened.
  • FIG. 1 is a circuit diagram illustrating a power supply system according to an embodiment of the present disclosure.
  • a case will be shown in which a three-phase AC motor 2 is driven by power supplied from a power supply system 1.
  • the motor 2 is a servo motor.
  • the motor 2 may be, for example, a synchronous motor or an induction motor.
  • Machines in which the motor 2 is installed include, for example, industrial robots and machine tools.
  • the power supply system 1 includes a servo amplifier 11, a power supply 12, a servo amplifier control circuit 13, a positive switch 14P, a negative switch 14N, a voltage comparison circuit 15, a switch control circuit 16, a positive potential detection unit 17P, a negative potential detection unit 17N, and a capacitor 18.
  • the power supply 12 outputs at least two different DC voltages in a switchable manner.
  • the power supply 12 include a variable voltage source having a battery and an output changeover switch, a variable voltage source having a battery and a variable resistor, and a PWM rectifier that converts AC power supplied from an AC power source into DC power and outputs it.
  • the power supply 12 is configured as a PWM rectifier, the power supply 12 is composed of a switching element and a bridge circuit of diodes connected in reverse parallel to the switching element, and each switching element is controlled to be turned on and off in response to a received command to output DC voltages of multiple different magnitudes.
  • switching elements include unipolar transistors such as FETs, bipolar transistors, IGBTs, thyristors, GTOs, etc. However, the type of switching element itself does not limit this embodiment, and other switching elements may be used.
  • the power supply 12 is configured to switch between two DC voltages, a high voltage (e.g., 48 V) and a low voltage (e.g., 24 V), the high voltage output by the power supply 12 is used as the drive voltage for the motor 2 and the drive voltage for the servo amplifier control circuit 13 when the motor 2 is driven by the servo amplifier 11.
  • the low voltage output by the power supply 12 is used as the drive voltage for the servo amplifier control circuit 13 when the motor 2 is not driven by the servo amplifier 11.
  • the high voltage and low voltage output by the power supply 12 are switched in conjunction with whether the motor 2 is driven or not.
  • the switching between whether the motor 2 is driven or not may be manually commanded by an operator using a control panel or the like, or may be commanded by a motor control unit (not shown) according to the operation program of the motor 2.
  • the power supply 12 may be configured to output two or more voltages, such as 100 V, 48 V, and 24 V.
  • the numerical values indicating the magnitude of the output voltage of the power supply 12 given here are merely examples, and other values may be used.
  • a capacitor 18 is connected between the positive DC power line 19P extending from the positive output terminal of the power supply 12 and the negative DC power line 19N extending from the negative output terminal.
  • the capacitor 18 has the function of suppressing the pulsation of the DC output of the power supply 12 and the function of storing DC power.
  • Examples of the capacitor 18 include an electrolytic capacitor and a film capacitor.
  • the servo amplifier 11 has an inverter consisting of a bridge circuit of switching elements.
  • switching elements include unipolar transistors such as FETs, bipolar transistors, IGBTs, thyristors, and GTOs.
  • the type of switching element itself does not limit this embodiment, and other switching elements may be used.
  • the switching element of the U-phase upper arm is Su1
  • the switching element of the U-phase lower arm is Su2.
  • the switching element of the V-phase upper arm is Sv1
  • the switching element of the V-phase lower arm is Sv2.
  • the switching element of the W-phase upper arm is Sw1
  • the switching element of the W-phase lower arm is Sw2.
  • the switching elements are configured with MOSFETs, but the embodiments of the present disclosure can be applied even if the switching elements are IGBTs, thyristors, GTOs, or transistors.
  • the switching elements are configured with IGBTs, the "drain” which is the current inflow terminal is replaced with the "collector”, and the “source” which is the current outflow terminal is replaced with the "emitter”, and the embodiments of the present disclosure are applied.
  • the switching element when configured as a transistor, the control terminal "gate” is replaced with “base”, the current inflow terminal “drain” is replaced with “collector”, and the current outflow terminal “source” is replaced with “emitter” in the embodiments of the present disclosure. Furthermore, when the switching element is configured as a thyristor or GTO, the current inflow terminal “drain” is replaced with “anode”, and the current outflow terminal “source” is replaced with "cathode” in the embodiments of the present disclosure.
  • the servo amplifier 11 performs power conversion between DC power and AC power, which is the drive power for the motor 2 or regenerative power, by driving each switching element on and off based on a PWM control method based on a switching command received from the servo amplifier control circuit 13. More specifically, the servo amplifier 11 performs switching operations on the internal switching elements based on the switching command received from the servo amplifier control circuit 13, and converts the DC power supplied from the power source 12 when the switches 14P and 14N are on into AC power having a desired frequency for driving the motor 2. As a result, the motor 2 operates based on, for example, variable frequency AC power.
  • regenerative power may be generated when the motor 2 decelerates, but the internal switching elements are switched based on the switching command received from the servo amplifier control circuit 13, and the AC regenerative power generated by the motor 2 is converted into DC power and returned to the DC side.
  • the servo amplifier control circuit 13 generates switching commands that control the on/off of each switching element and applies them to the gate terminal of each switching element.
  • the servo amplifier control circuit 13 controls the power conversion of the inverter in the servo amplifier 11 according to a predefined operating program, thereby controlling the motor 2 to operate according to a predetermined operating pattern.
  • the configuration of the servo amplifier control circuit 13 defined here is merely an example, and the configuration of the servo amplifier control circuit 13 may be defined to include terms such as a position command creation unit, a torque command creation unit, and a switching command creation unit.
  • the servo amplifier control circuit 13 is supplied with power from the power supply 12 via the positive side DC power line 19P and the negative side DC power line 19N. As described above, the power supply 12 outputs DC voltages of at least two different magnitudes in a switchable manner. Therefore, at least two different magnitudes of DC voltages are input to the servo amplifier control circuit 13. On the other hand, the drive voltage of each circuit in the servo amplifier control circuit 13 is always constant, regardless of the magnitude of the output voltage of the power supply 12. Therefore, the servo amplifier control circuit 13 is provided with a voltage conversion circuit that converts the voltage input from the power supply 12 into a drive voltage for driving the servo amplifier control circuit.
  • the power supply 12 is configured to switch between outputting a high voltage of 48V and a low voltage of 24V, then either 48V or 24V is input to the servo amplifier control circuit 13.
  • the voltage conversion circuit in the servo amplifier control circuit 13 converts the voltage of 48V or 24V input from the power supply 12 into a drive voltage (e.g., 5V or 10V) for driving the servo amplifier control circuit.
  • Examples of the voltage conversion circuit in the servo amplifier control circuit 13 include a step-down chopper circuit, a step-up chopper circuit, a step-up/step-down chopper circuit, and a combination circuit of a switching element and a voltage dividing resistor.
  • FIG. 2 is a circuit diagram showing a step-down chopper circuit provided in a servo amplifier control circuit in a power supply system according to an embodiment of the present disclosure.
  • the servo amplifier control circuit 13 is provided with a step-down chopper circuit including, for example, a switching element 31, a diode 32, and an inductor 33 as the voltage conversion circuit 21.
  • the switching element 31 include a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, and a GTO.
  • the type of the switching element 31 itself does not limit this embodiment, and other switching elements may be used.
  • the impedance of the circuit 40 in the servo amplifier control circuit 13 subsequent to the voltage conversion circuit 21 is Zin .
  • the input voltage Ein of the voltage conversion circuit 21 is, for example, a DC voltage of 48 V or 24 V supplied from the power source 12.
  • energy is stored in the inductor 33 when the switching element 31 is on, and the energy stored in the inductor 33 is released when the switching element 31 is off F.
  • an output voltage for example, 5 V or 10 V
  • a positive switch 14P and a negative switch 14N are provided as switches for opening and closing the electrical path between the power supply 12 and the servo amplifier 11. That is, a positive switch 14P for opening and closing the electrical path is provided in the electrical path between the positive DC power line 19P extending from the positive output terminal of the power supply 12 and the positive input terminal of the servo amplifier 11. A negative switch 14N for opening and closing the electrical path is provided in the electrical path between the negative DC power line 19N extending from the negative output terminal of the power supply 12 and the negative input terminal of the servo amplifier 11.
  • the positive switch 14P and the negative switch 14N receive an ON command from the switch control circuit 16, they perform a closing operation to close the electrical path between the power supply 12 and the servo amplifier 11.
  • the positive switch 14P and the negative switch 14N receive an OFF command from the switch control circuit 16, they perform an opening operation to open the electrical path between the power supply 12 and the servo amplifier 11.
  • the positive side potential detection unit 17P detects the positive side potential of the positive side DC power line 19P extending from the positive side output terminal of the power supply 12.
  • the negative side potential detection unit 17N detects the negative side potential of the negative side DC power line 19N extending from the negative side output terminal of the power supply 12.
  • the potential difference between the positive side potential of the positive side DC power line 19P and the negative side potential of the negative side DC power line 19N is the magnitude of the voltage output by the power supply 12.
  • the detection results by the positive side potential detection unit 17P and the negative side potential detection unit 17N are sent to the voltage comparison circuit 15.
  • the voltage comparison circuit 15 compares the voltage output by the power supply 12 with a predefined threshold. As described above, the power supply 12 outputs at least two different DC voltages in a switchable manner. The voltage comparison circuit 15 uses the threshold to determine which voltage value has been output from the power supply 12. The comparison result by the voltage comparison circuit 15 is sent to the switch control circuit 16. For example, if the power supply 12 is configured to switchably output a high voltage of 48V and a low voltage of 24V, the power supply 12 outputs either 48V or 24V. In this case, the threshold is set to, for example, 36V, and the voltage comparison circuit 15 compares the threshold 36V with the voltage output by the power supply 12, thereby making it possible to determine whether the power supply 12 has output 48V or 24V.
  • the voltage comparison circuit 15 determines that the power supply 12 has output a voltage of 24V, and if the voltage output by the power supply 12 is greater than the threshold value of 36V, the voltage comparison circuit 15 determines that the power supply 12 has output a voltage of 48V.
  • the numerical example shown here is merely an example, and other values may be used.
  • the threshold value may be stored in a rewritable storage unit (not shown) and rewritable by an external device, so that the threshold value can be changed to an appropriate value as necessary even after it has been set.
  • the switch control circuit 16 controls the opening and closing of the electrical path between the power supply 12 and the servo amplifier 11 by the positive switch 14P and the negative switch 14N depending on the comparison result by the voltage comparison circuit 15. More details are as follows.
  • the switch control circuit 16 transmits an OFF command to the positive switch 14P and the negative switch 14N.
  • the positive switch 14P and the negative switch 14N that received the OFF command perform an open operation and open the electric circuit between the power supply 12 and the servo amplifier 11.
  • a low voltage e.g., 24 V
  • the positive switch 14P and the negative switch 14N are in the open state, the voltage output from the power supply 12 is not input to the servo amplifier 11, but is input to the servo amplifier control circuit 13. Therefore, although the motor 2 is not driven, the servo amplifier control circuit 13 itself operates, so various processes including the state monitoring process of the motor 2 can be executed, and the safety of the machine is ensured.
  • the switch control circuit 16 sends an ON command to the positive side switch 14P and the negative side switch 14N.
  • the positive side switch 14P and the negative side switch 14N that have received the ON command perform a closing operation, closing the electrical path between the power supply 12 and the servo amplifier 11.
  • a high voltage e.g., 48V
  • the positive side switch 14P and the negative side switch 14N are in a closed state, the voltage output from the power supply 12 is input to the servo amplifier 11 and the servo amplifier control circuit 13, making it possible for the servo amplifier 11 to drive the motor 3.
  • the voltage comparison circuit 15 may have a comparator circuit, in which case the switch control unit 16 controls the positive switch 14P and the negative switch 14N based on the output of the converter circuit.
  • the voltage comparison circuit 15 may have a circuit configuration that combines a processor, a memory, and an analog-to-digital converter.
  • At least one processor which is an arithmetic processing device, is provided in the power supply system 1.
  • the arithmetic processing device include an IC, an LSI, a CPU, an MPU, and a DSP.
  • the arithmetic processing device may have a voltage comparison circuit 15, a switch control circuit 16, a motor control unit (not shown), and other processing circuits.
  • Each of these parts of the arithmetic processing device may be a functional module realized by a program executed on the processor. For example, when the voltage comparison circuit 15, the switch control circuit 16, the motor control unit, and other processing circuits are constructed in a program format, the functions of each part can be realized by operating the arithmetic processing device according to the program.
  • the programs for executing the processes of the voltage comparison circuit 15, the switch control circuit 16, the motor control unit, and other processing circuits may be provided in a form recorded on a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • a computer-readable recording medium such as a semiconductor memory, a magnetic recording medium, or an optical recording medium.
  • the voltage comparison circuit 15, the switch control circuit 16, the motor control unit, and other processing circuits may be realized as a semiconductor integrated circuit in which a program for realizing the functions of each part is written.
  • At least one memory that is a storage device is provided in the power supply system 1.
  • the memory may be, for example, a non-volatile memory that can be electrically erased and recorded, such as an EEPROM (registered trademark), or a random access memory that can be read and written at high speed, such as a DRAM or SRAM.
  • the storage device may also have a configuration such as an HDD or SSD.
  • the memory may store programs for operating the voltage comparison circuit 15, the switch control circuit 16, the motor control unit, and other processing circuits.
  • the memory may also store potential detection results obtained by the positive side potential detection unit 17P and the negative side potential detection unit 17N.
  • the memory may also store the comparison results by the voltage comparison circuit 15.
  • the memory may also store various data required when driving the motor.
  • FIG. 3 is a flow chart illustrating operations associated with opening and closing switches in a power supply system according to an embodiment of the present disclosure.
  • the power supply 12 outputs a voltage of at least two different DC voltage magnitudes.
  • the positive side potential detection unit 17P detects the positive side potential of the positive side DC power line 19P extending from the positive side output terminal of the power supply 12.
  • the negative side potential detection unit 17N detects the negative side potential of the negative side DC power line 19N extending from the negative side output terminal of the power supply 12. This detects the magnitude of the voltage output by the power supply 12.
  • the detection results by the positive side potential detection unit 17P and the negative side potential detection unit 17N are sent to the voltage comparison circuit 15.
  • step S102 the voltage comparison circuit 15 compares the voltage output by the power supply 12 with a predefined threshold value. If the voltage comparison circuit 15 determines in step S102 that the voltage output by the power supply 12 is equal to or lower than the threshold value, the process proceeds to step S103. If the voltage comparison circuit 15 does not determine in step S102 that the voltage output by the power supply 12 is equal to or lower than the threshold value (i.e., if the voltage output by the power supply 12 is determined to be higher than the threshold value), the process proceeds to step S104.
  • step S103 the switch control circuit 16 sends an OFF command to the positive switch 14P and the negative switch 14N.
  • the positive switch 14P and the negative switch 14N perform an opening operation, opening the electrical path between the power supply 12 and the servo amplifier 11. Because the positive switch 14P and the negative switch 14N are in the open state, the voltage output from the power supply 12 is not input to the servo amplifier 11, but is input to the servo amplifier control circuit 13. Therefore, although the motor 2 does not operate, the servo amplifier control circuit 13 itself does operate, and various processes including the process of monitoring the state of the motor 2 can be executed, ensuring the safety of the machine.
  • step S104 the switch control circuit 16 sends an ON command to the positive switch 14P and the negative switch 14N. Having received the ON command, the positive switch 14P and the negative switch 14N perform a closing operation, closing the electrical path between the power supply 12 and the servo amplifier 11. Because the positive switch 14P and the negative switch 14N are in a closed state, the voltage output from the power supply 12 is input to the servo amplifier 11 and the servo amplifier control circuit 13, enabling the servo amplifier 11 to drive the motor 3.
  • Figure 4 is a circuit diagram showing a conventional power supply system in which the power supply for the drive and the power supply for the control are provided separately.
  • a positive power switch 114P and a negative power switch 114N are provided on the output side of the drive power supply 112-1 to prevent power from being supplied to the servo amplifier 111 from the drive power supply 112-1 when the motor 2 is not being driven.
  • the positive power switch 114P is connected to the positive input terminal of the servo amplifier 111 via the positive drive power line 116P-1.
  • the negative power switch 114N is connected to the negative input terminal of the servo amplifier 111 via the negative drive power line 116N-1.
  • control power supply 112-2 is connected to the servo amplifier control circuit 113 via the positive control power line 116P-2 and negative control power line 116N-2, respectively.
  • a total of four power lines are required between the drive power supply 112-1 and control power supply 112-2 and the servo amplifier 111 and servo amplifier control circuit 113: the positive drive power line 116P-1, the negative drive power line 116N-1, the positive control power line 116P-2, and the negative control power line 116N-2.
  • a positive DC power line 19P and a negative DC power line 19N are required between the power supply 12 and the servo amplifier 11 and servo amplifier control circuit 13. Therefore, according to an embodiment of the present disclosure, not only is it possible to ensure the safety of the machine when the motor 2 is running and stopped, but it is also possible to reduce the amount of power wiring. For example, if the servo amplifier 11 is placed near the motor 2 in an industrial robot and the servo amplifier 11 is daisy-chained, the effect of reducing the amount of power wiring will be even greater.
  • a servo amplifier 11 A power source 12 that can switch between at least two different voltage levels; a servo amplifier control circuit 13 connected to a power source 12 and controlling the servo amplifier 11; switches 14P and 14N for opening and closing an electric path between the power source 12 and the servo amplifier 11; a voltage comparator circuit 15 that compares the voltage output by the power supply 12 with a predefined threshold value; a switch control circuit 16 for controlling the opening and closing of an electric path between the power supply 12 and the servo amplifier 11 by the switches 14P and 14N in response to a comparison result by the voltage comparison circuit 15;
  • a power supply system comprising: (Appendix 2) The power supply system described in Appendix 1, wherein the switch control circuit 16 controls the switches 14P and 14N to open the electrical path between the power supply 12 and the servo amplifier 11 when the voltage comparison circuit 15 determines that the voltage output by the power supply 12 is equal to or lower than a threshold value, and controls the switches 14P and 14N to close the electrical path between the power supply 12

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Amplifiers (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

電源システムは、サーボアンプと、少なくとも2種類の大きさの電圧を切り替え可能に出力する電源と、電源に接続され、サーボアンプを制御するサーボアンプ制御回路と、電源とサーボアンプとの間の電路を開閉するスイッチと、電源が出力する電圧と予め規定された閾値とを比較する電圧比較回路と、電圧比較回路による比較結果に応じて、スイッチによる電源とサーボアンプとの間の電路の開閉を制御するスイッチ制御回路と、を備える。

Description

サーボモータの電源システム
 本開示は、サーボモータの電源システムに関する。
 産業用ロボットや工作機械などの機械内のサーボモータを駆動するサーボアンプには、サーボモータを駆動するための電力を供給する動力用電源と、サーボアンプを制御する回路のための電力を供給する制御用電源とが設けられる。
特開2020-162193号公報 特開2012-135164号公報
 サーボアンプにより駆動される機械の安全を確保するために、サーボモータを駆動しないときは、駆動用電源による通電は遮断する一方で、サーボモータの状態を監視するために制御用電源による通電は確保する電源システムが望まれている。
 本開示の一態様によれば、電源システムは、サーボアンプと、少なくとも2種類の大きさの電圧を切り替え可能に出力する電源と、電源に接続され、サーボアンプを制御するサーボアンプ制御回路と、電源とサーボアンプとの間の電路を開閉するスイッチと、電源が出力する電圧と予め規定された閾値とを比較する電圧比較回路と、電圧比較回路による比較結果に応じて、スイッチによる電源とサーボアンプとの間の電路の開閉を制御するスイッチ制御回路と、を備える。
本開示の実施形態による電源システムを示す回路図である。 本開示の一実施形態による電源システム内のサーボアンプ制御回路に設けられる降圧チョッパ回路を示す回路図である。 本開示の実施形態による電源システムにおけるスイッチの開閉に関連する動作を示すフローチャートである。 動力用電源と制御用電源とを別個に設ける従来例による電源システムを示す回路図である。
 以下、実施形態のサーボモータの電源システムを、図面を参照して説明する。なお、以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は、省略する場合がある。ここで、「接続される」は、「電気的に接続される」ことを意味する。また、スイッチの「オン」は、当該スイッチが設けられた電路の閉(クローズ)を意味し、すなわちスイッチがオン動作することで、当該スイッチが設けられた電路が接続され閉(クローズ)状態になる。また、スイッチの「オフ」とは、当該スイッチが設けられた電路の開(オープン)を意味し、すなわちスイッチがオフ動作することで、当該スイッチが設けられた電路が遮断され開(オープン)状態になる。
<本開示の実施形態による電源システムの構成>
 図1は、本開示の実施形態による電源システムを示す回路図である。
 一例として、電源システム1から供給される電力により三相交流のモータ2を駆動する場合について示す。モータ2は、サーボモータである。モータ2は、例えば同期モータであっても誘導モータであってもよい。モータ2が設けられる機械には、例えば産業用ロボットや工作機械などがある。
 本開示の第1の実施形態によれば、電源システム1は、サーボアンプ11と、電源12と、サーボアンプ制御回路13と、正側スイッチ14Pと、負側スイッチ14Nと、電圧比較回路15と、スイッチ制御回路16と、正側電位検出部17Pと、負側電位検出部17Nと、コンデンサ18と、を備える。
 電源12は、少なくとも2種類の大きさの直流の電圧を切り替え可能に出力する。電源12の例としては、例えば、バッテリと出力切替えスイッチとを有する可変電圧源、バッテリと可変抵抗とを有する可変電圧源、及び、交流電源から供給された交流電力を直流電力に変換して出力するPWM整流器などがある。例えば、電源12がPWM整流器にて構成される場合、電源12は、スイッチング素子及びこれに逆並列に接続されたダイオードのブリッジ回路からなり、例えば受信した指令に応じて各スイッチング素子がオンオフ制御されて複数種類の大きさの直流電圧を出力する。スイッチング素子の例としては、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどがある。ただし、スイッチング素子の種類自体は本実施形態を限定するものではなく、その他のスイッチング素子であってもよい。
 例えば、電源12が、高電圧(例えば48V)及び低電圧(例えば24V)の2種類の大きさの直流電圧を切り替え可能に出力するものとして構成される場合、電源12が出力する高電圧は、サーボアンプ11によるモータ2の駆動時に、モータ2の駆動電圧及びサーボアンプ制御回路13の駆動電圧として用いられる。また、電源12が出力する低電圧は、サーボアンプ11によるモータ2の駆動を行わない時に、サーボアンプ制御回路13の駆動電圧として用いられる。なお、電源12が出力する高電圧と低電圧との切替えは、モータ2の駆動の有無に連動して行われる。モータ2の駆動の有無の切替えは、作業者によって制御操作盤等を用いて手動で指令操作される場合と、モータ2の動作プログラムに従ってモータ制御部(図示せず)によって指令される場合とがある。また、電源12については、例えば100V、48V及び24Vといったように、2種類以上の大きさを出力するものとして構成してもよい。なお、ここで挙げた電源12の出力電圧の大きさを示す数値は、あくまでも一例であって、これ以外の値であってもよい。
 電源12の正側出力端子からのびる正側直流電力線19Pと負側出力端子からのびる負側直流電力線19Nとの間には、コンデンサ18が接続される。コンデンサ18は、電源12の直流出力の脈動分を抑える機能、及び直流電力を蓄積する機能を有する。コンデンサ18の例としては、例えば電解コンデンサやフィルムコンデンサなどがある。
 サーボアンプ11は、スイッチング素子のブリッジ回路からなるインバータを有する。スイッチング素子の例としては、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどがある。ただし、スイッチング素子の種類自体は本実施形態を限定するものではなく、その他のスイッチング素子であってもよい。図1に示す例では、U相上側アームのスイッチング素子をSu1とし、U相下側アームのスイッチング素子をSu2としている。また、V相上側アームのスイッチング素子をSv1とし、V相下側アームのスイッチング素子をSv2としている。W相上側アームのスイッチング素子をSw1とし、W相下側アームのスイッチング素子をSw2としている。以下、一例として、スイッチング素子がMOSFETで構成される場合について説明するが、IGBT、サイリスタ、GTO、あるいはトランジスタであっても本開示の実施形態は適用可能である。またスイッチング素子をIGBTで構成する場合は、電流流入端子である「ドレイン」は「コレクタ」に、電流流出端子である「ソース」は「エミッタ」にそれぞれ読み替えられて本開示の実施形態が適用される。またスイッチング素子をトランジスタで構成する場合は、制御端子である「ゲート」は「ベース」に、電流流入端子である「ドレイン」は「コレクタ」に、電流流出端子である「ソース」は「エミッタ」にそれぞれ読み替えられて本開示の実施形態が適用される。また。スイッチング素子をサイリスタあるいはGTOで構成する場合は、電流流入端子である「ドレイン」は「アノード」に、電流流出端子である「ソース」は「カソード」にそれぞれ読み替えられて本開示の実施形態が適用される。
 サーボアンプ11は、サーボアンプ制御回路13から受信したスイッチング指令に基づき各スイッチング素子がPWM制御方式に基づいてオンオフ駆動されることにより、直流電力とモータ2の駆動電力もしくは回生電力である交流電力との間で電力変換する。より詳細には、サーボアンプ11は、サーボアンプ制御回路13から受信したスイッチング指令に基づき内部のスイッチング素子をスイッチング動作させ、スイッチ14P及び14Nのオン時に電源12から供給される直流電力を、モータ2を駆動するための所望の周波数を有する交流電力に変換する。これにより、モータ2は、例えば周波数可変の交流電力に基づいて動作する。また、モータ2の減速時には回生電力が発生することがあるが、サーボアンプ制御回路13から受信したスイッチング指令に基づき内部のスイッチング素子をスイッチング動作させ、モータ2で発生した交流の回生電力を直流電力へ変換して直流側へ戻す。
 サーボアンプ制御回路13は、各スイッチング素子のオンオフを制御するスイッチング指令を生成し、各スイッチング素子のゲート端子に印加する。サーボアンプ制御回路13は、予め規定された動作プログラムに従い、サーボアンプ11内のインバータの電力変換を制御することで、モータ2が所定の動作パターンに従って動作するよう制御する。なお、ここで定義したサーボアンプ制御回路13の構成はあくまでも一例であって、例えば、位置指令作成部、トルク指令作成部、及びスイッチング指令作成部などの用語を含めてサーボアンプ制御回路13の構成を規定してもよい。
 サーボアンプ制御回路13には、正側直流電力線19P及び負側直流電力線19Nを介して電源12から電力が供給される。上述のように、電源12は、少なくとも2種類の大きさの直流の電圧を切り替え可能に出力する。よって、サーボアンプ制御回路13には、少なくとも2種類の大きさの直流の電圧が入力されることになる。一方で、サーボアンプ制御回路13内の各回路の駆動電圧は、電源12の出力電圧の大きさにかかわらず、常に一定である。そこで、サーボアンプ制御回路13には、電源12から入力された電圧を、サーボアンプ制御回路を駆動するための駆動電圧に変換する電圧変換回路が設けられる。
 例えば、電源12が、高電圧である48Vと低電圧である24Vとを切り替え可能に出力するものとして構成される場合、サーボアンプ制御回路13には48V及び24Vのうちのいずれか一方が入力される。サーボアンプ制御回路13内の電圧変換回路は、電源12から入力された電圧48Vまたは24Vを、サーボアンプ制御回路を駆動するための駆動電圧(例えば5Vや10Vなど)に変換する。サーボアンプ制御回路13内の電圧変換回路の例としては、例えば、降圧チョッパ回路、昇圧チョッパ回路、昇降圧チョッパ回路、及び、スイッチング素子と分圧抵抗との組合せ回路などがある。
 一例として、サーボアンプ制御回路13内の電圧変換回路を降圧チョッパ回路で構成する例について説明する。図2は、本開示の一実施形態による電源システム内のサーボアンプ制御回路に設けられる降圧チョッパ回路を示す回路図である。図2に示すように、サーボアンプ制御回路13には、電圧変換回路21として、例えば、スイッチング素子31とダイオード32とインダクタ33とを備える降圧チョッパ回路が設けられる。スイッチング素子31の例としては、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどがある。ただし、スイッチング素子31の種類自体は本実施形態を限定するものではなく、その他のスイッチング素子であってもよい。
 図2では、サーボアンプ制御回路13において電圧変換回路21より後段にある回路40のインピーダンスをZinとしている。電圧変換回路21の入力電圧Einは、電源12から供給される例えば48Vまたは24Vの直流電圧である。電圧変換回路21において、スイッチング素子31のオン時にインダクタ33にエネルギーを蓄え、スイッチング素子31のオフF時にインダクタ33に蓄えられたエネルギーを放出する。スイッチング素子31のオン時間が長いほど、電圧変換回路21の出力電圧は高くなり、スイッチング素子31のオン時間が短いほど、電圧変換回路21の出力電圧は低くなる。スイッチング素子31のデューティ比を制御することで、サーボアンプ制御回路を駆動するための出力電圧(例えば5Vや10Vなど)が、電圧変換回路21から出力されることになる。
 図1に説明を戻す。電源12とサーボアンプ11との間の電路を開閉するスイッチとして、正側スイッチ14P及び負側スイッチ14Nが設けられる。すなわち、電源12の正側出力端子からのびる正側直流電力線19Pとサーボアンプ11の正側入力端子との間の電路には、当該電路を開閉する正側スイッチ14Pが設けられる。また、電源12の負側出力端子からのびる負側直流電力線19Nとサーボアンプ11の負側入力端子との間の電路には、当該電路を開閉する負側スイッチ14Nが設けられる。正側スイッチ14P及び負側スイッチ14Nは、スイッチ制御回路16からオン指令を受信したときは、閉動作を行い、電源12とサーボアンプ11との間の電路を閉成する。また、正側スイッチ14P及び負側スイッチ14Nは、スイッチ制御回路16からオフ指令を受信したときは、開動作を行い、電源12とサーボアンプ11との間の電路を開路する。
 正側電位検出部17Pは、電源12の正側出力端子からのびる正側直流電力線19Pにおける正側電位を検出する。負側電位検出部17Nは、電源12の負側出力端子からのびる負側直流電力線19Nにおける負側電位を検出する。正側直流電力線19Pにおける正側電位と負側直流電力線19Nにおける負側電位との電位差が、電源12が出力する電圧の大きさとなる。正側電位検出部17P及び負側電位検出部17Nによる検出結果は、電圧比較回路15に送られる。
 電圧比較回路15は、電源12が出力する電圧と予め規定された閾値とを比較する。上述のように、電源12は、少なくとも2種類の大きさの直流の電圧を切り替え可能に出力する。電圧比較回路15は、電源12からいずれの値の電圧が出力されたかを、閾値を用いて判定する。電圧比較回路15による比較結果は、スイッチ制御回路16に送られる。例えば、電源12が、高電圧である48Vと低電圧である24Vとを切り替え可能に出力するものとして構成される場合、電源12からは48V及び24Vのうちのいずれか一方が出力される。この場合、閾値を例えば36Vに設定し、電圧比較回路15において閾値36Vと電源12が出力する電圧とを比較することで、電源12が48Vと24Vとのうちのいずれを出力したかを判定することができる。すなわち、電圧比較回路15は、電源12が出力する電圧が閾値36V以下である場合は電源12が24V電圧を出力したと判定し、電源12が出力する電圧が閾値36Vより大きい場合は電源12が48V電圧を出力したと判定する。ここで示した数値例はあくまでも一例であって、これ以外の値であってもよい。なお、閾値については、書き換え可能な記憶部(図示せず)に記憶されて外部機器によって書き換え可能であってもよく、これによれば、閾値を一旦設定した後であっても、必要に応じて適切な値に変更することができる。
 スイッチ制御回路16は、電圧比較回路15による比較結果に応じて、正側スイッチ14P及び負側スイッチ14Nによる電源12とサーボアンプ11との間の電路の開閉を制御する。より詳しくは次の通りである。
 スイッチ制御回路16は、電圧比較回路15により電源12が出力する電圧が閾値以下であると判定された場合、正側スイッチ14P及び負側スイッチ14Nに対してオフ指令を送信する。オフ指令を受信した正側スイッチ14P及び負側スイッチ14Nは、開動作を行い、電源12とサーボアンプ11との間の電路を開路する。電源12が出力する電圧が閾値以下であると判定された場合は、モータ2の駆動を行わないことに対応するので電源12から低電圧(例えば24V)が出力されている。正側スイッチ14P及び負側スイッチ14Nが開状態にあることから、電源12から出力される電圧は、サーボアンプ11には入力されない一方、サーボアンプ制御回路13には入力される。したがって、モータ2は駆動されないがサーボアンプ制御回路13自体は動作するので、モータ2の状態監視処理を含む様々な処理を実行することができ、機械の安全が確保される。
 また、スイッチ制御回路16は、電圧比較回路15により電源12が出力する電圧が閾値より大きいと判定された場合、正側スイッチ14P及び負側スイッチ14Nに対してオン指令を送信する。オン指令を受信した正側スイッチ14P及び負側スイッチ14Nは、閉動作を行い、電源12とサーボアンプ11との間の電路を閉路する。電源12が出力する電圧が閾値より大きいと判定された場合は、モータ2の駆動を行うことに対応するので電源12から高電圧(例えば48V)が出力されている。正側スイッチ14P及び負側スイッチ14Nが閉状態にあることから、電源12から出力される電圧は、サーボアンプ11及びサーボアンプ制御回路13に入力され、サーボアンプ11によるモータ3の駆動が可能となる。
 上述の電圧比較回路15は、コンパレータ回路を有してもよく、この場合。コンバータ回路の出力に基づいてスイッチ制御部16は正側スイッチ14P及び負側スイッチ14Nを制御する。またあるいは、上述の電圧比較回路15は、演算処理装置とメモリとアナログディジタル変換器と組み合わせた回路構成を有してもよい。
 また、電源システム1内には、演算処理装置である少なくとも1つのプロセッサが設けられる。演算処理装置としては、例えばIC、LSI、CPU、MPU、DSPなどがある。演算処理装置は、電圧比較回路15、スイッチ制御回路16、モータ制御部(図示せず)及びその他の処理回路を有してもよい。演算処理装置が有するこれらの各部は、例えば、プロセッサ上で実行されるプログラムにより実現される機能モジュールであってもよい。例えば、電圧比較回路15、スイッチ制御回路16、モータ制御部及びその他の処理回路をプログラム形式で構築する場合は、演算処理装置をこのプログラムに従って動作させることで、各部の機能を実現することができる。電圧比較回路15、スイッチ制御回路16、モータ制御部及びその他の処理回路の各処理を実行するためのプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、電圧比較回路15、スイッチ制御回路16、モータ制御部及びその他の処理回路を、各部の機能を実現するプログラムを書き込んだ半導体集積回路として実現してもよい。
 また、電源システム1内には、記憶装置である少なくとも1つのメモリが設けられる。メモリとしては、例えばEEPROM(登録商標)などのような電気的に消去・記録可能な不揮発性メモリ、または、例えばDRAM、SRAMなどのような高速で読み書きのできるランダムアクセスメモリなどがある。また、記憶装置は、例えばHDDやSSDなどのような構成を有してもよい。メモリには、電圧比較回路15、スイッチ制御回路16、モータ制御部及びその他の処理回路を動作させるためのプログラムが格納されてもよい。また、メモリには、正側電位検出部17P及び負側電位検出部17Nにより取得された電位検出結果が格納されてもよい。また、メモリには、電圧比較回路15による比較結果が格納されてもよい。また、メモリには、モータ駆動の際に必要な各種データが格納されてもよい。
<本開示の実施形態による電源システムの動作>
 図3は、本開示の実施形態による電源システムにおけるスイッチの開閉に関連する動作を示すフローチャートである。
 電源12は、少なくとも2種類の大きさの直流の電圧のうち、いずれかの大きさの電圧を出力している。ステップS101において、正側電位検出部17Pは、電源12の正側出力端子からのびる正側直流電力線19Pにおける正側電位を検出する。負側電位検出部17Nは、電源12の負側出力端子からのびる負側直流電力線19Nにおける負側電位を検出する。これにより、電源12が出力する電圧の大きさが検出される。正側電位検出部17P及び負側電位検出部17Nによる検出結果は、電圧比較回路15に送られる。
 ステップS102において、電圧比較回路15は、電源12が出力する電圧と予め規定された閾値とを比較する。ステップS102において電圧比較回路15により電源12が出力する電圧が閾値以下であると判定された場合は、ステップS103へ進む。ステップS102において電圧比較回路15により電源12が出力する電圧が閾値以下であると判定されなかった場合(すなわち電源12が出力する電圧が閾値より大きいと判定された場合)は、ステップS104へ進む。
 ステップS103において、スイッチ制御回路16は、正側スイッチ14P及び負側スイッチ14Nに対してオフ指令を送信する。オフ指令を受信した正側スイッチ14P及び負側スイッチ14Nは、開動作を行い、電源12とサーボアンプ11との間の電路を開路する。正側スイッチ14P及び負側スイッチ14Nが開状態となることから、電源12から出力される電圧は、サーボアンプ11には入力されない一方、サーボアンプ制御回路13には入力される。したがって、モータ2は動作しないがサーボアンプ制御回路13自体は動作するので、モータ2の状態監視処理を含む様々な処理を実行することができ、機械の安全が確保される。
 ステップS104において、スイッチ制御回路16は、正側スイッチ14P及び負側スイッチ14Nに対してオン指令を送信する。オン指令を受信した正側スイッチ14P及び負側スイッチ14Nは、閉動作を行い、電源12とサーボアンプ11との間の電路を閉路する。正側スイッチ14P及び負側スイッチ14Nが閉状態となることから、電源12から出力される電圧は、サーボアンプ11及びサーボアンプ制御回路13に入力され、サーボアンプ11によるモータ3の駆動が可能となる。
 図4は、動力用電源と制御用電源とを別個に設ける従来例による電源システムを示す回路図である。
 動力用電源112-1と制御用電源112-2とを別個に設ける従来例による電源システム100では、モータ2の駆動を行わないときに動力用電源112-1から電力がサーボアンプ111に供給されないようにするために、動力用電源112-1の出力側に正側電源スイッチ114P及び負側電源スイッチ114Nが設けられる。正側電源スイッチ114Pは正側動力用電力線116P-1を介してサーボアンプ111の正側入力端子に接続される。負側電源スイッチ114Nは負側動力用電力線116N-1を介してサーボアンプ111の負側入力端子に接続される。また、制御用電源112-2の正側端子及び負側端子は、それぞれ正側制御用電力線116P-2及び負側制御用電力線116N-2を介してサーボアンプ制御回路113に接続される。このように、従来例によれば、動力用電源112-1及び制御用電源112-2とサーボアンプ111及びサーボアンプ制御回路113との間には、正側動力用電力線116P-1、負側動力用電力線116N-1、正側制御用電力線116P-2、及び負側制御用電力線116N-2といった、合計4本の電力線が必要である。
 これに対し、本開示の実施形態によれば、図1に示すように、電源12と、サーボアンプ11及びサーボアンプ制御回路13との間は、正側直流電力線19P及び負側直流電力線19Nの合計2本の電力線で済む。よって、本開示の実施形態によれば、モータ2の駆動時及び停止時の機械の安全確保のみならず、電力配線の削減も可能である。例えば、産業用ロボット内のモータ2の近傍にサーボアンプ11を配置し、サーボアンプ11をデイジーチェーン接続する場合は、電力配線の削減効果はより大きくなる。
 以上、本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本開示の趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組み合わせて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値又は数式が用いられている場合も同様である。
<付記>
 上記実施形態および変形例に関し、更に以下の付記を開示する。
(付記1)
 サーボアンプ11と、
 少なくとも2種類の大きさの電圧を切り替え可能に出力する電源12と、
 電源12に接続され、サーボアンプ11を制御するサーボアンプ制御回路13と、
 電源12とサーボアンプ11との間の電路を開閉するスイッチ14P及び14Nと、
 電源12が出力する電圧と予め規定された閾値とを比較する電圧比較回路15と、
 電圧比較回路15による比較結果に応じて、スイッチ14P及び14Nによる電源12とサーボアンプ11との間の電路の開閉を制御するスイッチ制御回路16と、
を備える、電源システム。
(付記2)
 スイッチ制御回路16は、電圧比較回路15により電源12が出力する電圧が閾値以下であると判定された場合、電源12とサーボアンプ11との間の電路を開路するようスイッチ14P及び14Nを制御し、電圧比較回路15により電源12が出力する電圧が閾値より大きいと判定された場合、電源12とサーボアンプ11との間の電路を閉路するようスイッチ14P及び14Nを制御する、付記1に記載の電源システム。
(付記3)
 サーボアンプ制御回路13は、電源12から入力された電圧を、サーボアンプ制御回路13を駆動するための駆動電圧に変換する電圧変換回路21を有する、付記1または2に記載の電源システム。
 1  電源システム
 2  モータ
 11  サーボアンプ
 12  電源
 13  サーボアンプ制御回路
 14P  正側スイッチ
 14N  負側スイッチ
 15  電圧比較回路
 16  スイッチ制御回路
 17P  正側電位検出部
 17N  負側電位検出部
 18  コンデンサ
 19P  正側直流電力線
 19N  負側直流電力線
 21  電圧変換回路
 31  スイッチング素子
 32  ダイオード
 33  インダクタ
 Su1、Su2、Sv1、Sv2、Sw1、Sw2  スイッチング素子

Claims (3)

  1.  サーボアンプと、
     少なくとも2種類の大きさの電圧を切り替え可能に出力する電源と、
     前記電源に接続され、前記サーボアンプを制御するサーボアンプ制御回路と、
     前記電源と前記サーボアンプとの間の電路を開閉するスイッチと、
     前記電源が出力する電圧と予め規定された閾値とを比較する電圧比較回路と、
     前記電圧比較回路による比較結果に応じて、前記スイッチによる前記電源と前記サーボアンプとの間の電路の開閉を制御するスイッチ制御回路と、
    を備える、電源システム。
  2.  前記スイッチ制御回路は、前記電圧比較回路により前記電源が出力する電圧が前記閾値以下であると判定された場合、前記電源と前記サーボアンプとの間の電路を開路するよう前記スイッチを制御し、前記電圧比較回路により前記電源が出力する電圧が前記閾値より大きいと判定された場合、前記電源と前記サーボアンプとの間の電路を閉路するよう前記スイッチを制御する、請求項1に記載の電源システム。
  3.  前記サーボアンプ制御回路は、前記電源から入力された電圧を、前記サーボアンプ制御回路を駆動するための駆動電圧に変換する電圧変換回路を有する、請求項1または2に記載の電源システム。
PCT/JP2022/040914 2022-11-01 2022-11-01 サーボモータの電源システム WO2024095372A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/040914 WO2024095372A1 (ja) 2022-11-01 2022-11-01 サーボモータの電源システム
TW112137650A TW202423034A (zh) 2022-11-01 2023-10-02 伺服馬達之電源系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040914 WO2024095372A1 (ja) 2022-11-01 2022-11-01 サーボモータの電源システム

Publications (1)

Publication Number Publication Date
WO2024095372A1 true WO2024095372A1 (ja) 2024-05-10

Family

ID=90930070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040914 WO2024095372A1 (ja) 2022-11-01 2022-11-01 サーボモータの電源システム

Country Status (2)

Country Link
TW (1) TW202423034A (ja)
WO (1) WO2024095372A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028893A (ja) * 1999-07-12 2001-01-30 Fanuc Ltd モータ制御装置
JP2020129904A (ja) * 2019-02-08 2020-08-27 株式会社アイエイアイ スイッチング電源装置およびそれを利用したモータ駆動制御システム
JP2022088018A (ja) * 2020-12-02 2022-06-14 ファナック株式会社 制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028893A (ja) * 1999-07-12 2001-01-30 Fanuc Ltd モータ制御装置
JP2020129904A (ja) * 2019-02-08 2020-08-27 株式会社アイエイアイ スイッチング電源装置およびそれを利用したモータ駆動制御システム
JP2022088018A (ja) * 2020-12-02 2022-06-14 ファナック株式会社 制御装置

Also Published As

Publication number Publication date
TW202423034A (zh) 2024-06-01

Similar Documents

Publication Publication Date Title
JP4842603B2 (ja) インバータ装置およびインバータ制御装置
JP2017175747A (ja) 電力変換装置
JP6426775B2 (ja) モータ駆動装置
WO2011016328A1 (ja) Dc-dcコンバータ回路
US20190115759A1 (en) Motor drive system including power storage device
JP6367744B2 (ja) 電力変換装置
JP5471998B2 (ja) ロボットシステム
JP2017118815A (ja) インバータ制御回路
JPWO2018135045A1 (ja) 電力変換装置、および電力変換システム
WO2007032238A1 (ja) 電力変換装置
JP2014075896A (ja) モータ制御装置及び空気調和機
JP6426783B2 (ja) パワー素子の異常検知機能を備えたモータ駆動装置
US20210159897A1 (en) Drive circuit
WO2024095372A1 (ja) サーボモータの電源システム
JP6824342B1 (ja) 電力変換装置の制御装置
US10924041B2 (en) Motor drive system including power storage device
JP7544608B2 (ja) マルチレベルインバータ
JP5879869B2 (ja) ロボットシステム
JP2017200308A (ja) 誘導性負荷用電源装置
JP4780305B2 (ja) インバータ装置
JP7250570B2 (ja) 制御装置、モータシステム、制御方法及びプログラム
JP4736641B2 (ja) 電圧変換装置及びその制御方法並びにハイブリッドシステム及びその制御方法
JP6908303B2 (ja) 電力変換装置
WO2024013889A1 (ja) 予備充電回路及びモータ駆動装置
US20230179120A1 (en) Apparatus for and method of enabling a two-stage inverter to switch between modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964393

Country of ref document: EP

Kind code of ref document: A1