WO2024094136A1 - 雾化器和电子雾化装置 - Google Patents

雾化器和电子雾化装置 Download PDF

Info

Publication number
WO2024094136A1
WO2024094136A1 PCT/CN2023/129401 CN2023129401W WO2024094136A1 WO 2024094136 A1 WO2024094136 A1 WO 2024094136A1 CN 2023129401 W CN2023129401 W CN 2023129401W WO 2024094136 A1 WO2024094136 A1 WO 2024094136A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
atomizer
section
hole
tubular element
Prior art date
Application number
PCT/CN2023/129401
Other languages
English (en)
French (fr)
Inventor
苏良杰
胡瑞龙
黄文强
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222963221.1U external-priority patent/CN219108740U/zh
Priority claimed from CN202211390555.2A external-priority patent/CN117981921A/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024094136A1 publication Critical patent/WO2024094136A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures

Definitions

  • the embodiments of the present invention relate to the field of atomization technology, and in particular to an atomizer and an electronic atomization device.
  • the atomizer of the electronic atomizer device has a built-in heating element, which is powered by a battery to generate heat, causing the liquid matrix near the heating element to evaporate and form an aerosol.
  • a negative pressure is formed in the liquid storage tank, and air intake is required to compensate for the pressure.
  • the cylindrical ceramic atomizers on the market usually adopt the structure of ceramic wrapped with cotton, that is, cotton is wrapped on the outer surface of the cylindrical ceramic heating body to guide and lock the liquid.
  • This method makes it difficult to automate the process, and manual assembly leads to poor production stability.
  • the aerosol when using the traditional ceramic core structure without cotton, after inhalation, the aerosol often forms condensate after the temperature drops and accumulates in the central hole of the ceramic, causing blockage and poor user experience.
  • the main technical problem solved by the present application is to provide an atomizer and an electronic atomization device to solve the problem of pore blockage caused by condensed cold liquid inside the porous body.
  • the first technical solution adopted by the present application is to provide an atomizer.
  • the atomizer includes a proximal end and a distal end that are separated from each other in the longitudinal direction, an air inlet, a liquid storage cavity, a porous body, a through hole, and a heating element.
  • the air inlet is located at the proximal end.
  • the liquid storage cavity is used to store a liquid matrix.
  • the porous body is in fluid communication with the liquid storage cavity to at least partially receive or absorb the liquid matrix.
  • the porous body comprises a first end near the proximal end and a second end near the distal end.
  • the through hole comprises a first section near the first end and a second section near the second end; wherein the cross-sectional area of the second section at the second end is larger than the cross-sectional area near the first section.
  • the heating element is coupled to the porous body and arranged adjacent to the through hole to heat at least part of the liquid matrix of the porous body to generate an aerosol.
  • the heating element is arranged to at least partially surround the first section and avoid the second section.
  • the second technical solution adopted in the present application is to provide an atomizer.
  • the atomizer includes a liquid storage chamber, an atomizing assembly, at least one inhalation port, an air inlet, and an air flow channel.
  • the liquid storage chamber is used to store a liquid matrix.
  • the atomizing assembly is used to atomize the liquid matrix to generate an aerosol.
  • the air flow channel is located between the air inlet and the air inlet.
  • the air inlet, the air inlet, and the air flow channel are arranged to define an air flow path from the air inlet to the air inlet via the atomizing assembly to transfer the aerosol to the air inlet.
  • the atomizing assembly includes a porous body and a heating element.
  • the porous body is in fluid communication with the liquid storage chamber to at least partially receive or absorb the liquid matrix.
  • the porous body includes a through hole surrounding or defining at least a portion of the air flow channel.
  • the through hole includes an inlet end for air entry, an outlet end for outputting the aerosol, a first section near the outlet end, and a second section near the inlet end; the cross-sectional area of at least part of the second section decreases in a direction close to the first section.
  • the heating element is combined with the porous body and arranged adjacent to the through hole to heat at least part of the liquid matrix in the porous body to generate an aerosol.
  • the heating element is arranged to at least partially surround the first section and avoid the second section.
  • the third technical solution adopted in the present application is: to provide an atomizer.
  • the atomizer includes a proximal end and a distal end that are separated from each other in the longitudinal direction, a liquid storage chamber, a first tubular element, a heating element, a porous body, and an elastic element.
  • the liquid storage chamber is used to store a liquid matrix.
  • the first tubular element at least partially extends in the liquid storage chamber along the longitudinal direction of the atomizer.
  • the heating element is located in the first tubular element to heat the liquid matrix to generate an aerosol.
  • the porous body is located in the first tubular element and is configured to extend and arrange along the axial direction of the first tubular element.
  • the porous body includes a first part and a second part arranged in sequence along the axial direction of the first tubular element; wherein the first part at least partially surrounds the heating element so as to at least partially avoid the heating element in the second part.
  • the elastic element at least partially elastically abuts between the first tubular element and the second part.
  • the first tubular element is elastically coupled to the second part at least through the elastic element so that the porous body is retained in the first tubular element.
  • the fourth technical solution adopted in the present application is to provide an atomizer.
  • the atomizer includes a proximal end and a distal end that are separated from each other in the longitudinal direction, an air inlet, a liquid storage chamber, a porous body, a through hole, and a heating element.
  • the air inlet is located at the proximal end.
  • the liquid storage chamber is used to store a liquid matrix.
  • the porous body is in fluid communication with the liquid storage chamber to at least partially receive or absorb the liquid matrix.
  • the porous body includes a first end near the proximal end and a second end near the distal end.
  • the through hole penetrates or extends from the first end of the porous body to the second end.
  • the through hole includes a first section near the first end and a second section near the second end.
  • the second section has a cross-sectional area of at least a portion greater than that of the first section.
  • the heating element is combined with the porous body and arranged adjacent to the through hole to heat at least a portion of the liquid matrix of the porous body to generate an aerosol.
  • the heating element is arranged to avoid the second section.
  • the fifth technical solution adopted in the present application is: to provide an atomizer.
  • the atomizer includes a proximal end and a distal end that are opposite to each other in the longitudinal direction, an air inlet, a liquid storage chamber, a porous body, a heating element and a first receiving element.
  • the air inlet is located at the proximal end.
  • the liquid storage chamber is used to store a liquid matrix.
  • the porous body is fluidly connected to the liquid storage chamber to receive or absorb the liquid matrix, and defines a through hole that penetrates the porous body.
  • the heating element is combined with the porous body and arranged adjacent to the through hole to heat at least part of the liquid matrix in the porous body to generate an aerosol.
  • the first receiving element is located between the porous body and the distal end to receive the aerosol condensate of the through hole.
  • the first receiving element is provided with at least one guide structure, which is arranged to extend from the first receiving element toward the through hole, and is used to guide the aerosol condensate in the through hole toward the first receiving element.
  • the sixth technical solution adopted by the present application is to provide an electronic atomization device, which includes any atomizer as described above and a power supply mechanism for supplying power to the atomizer.
  • the through hole of the atomizer provided by the present application runs through or extends from the first end of the porous body to the second end; the through hole includes a first section near the first end and a second section near the second end; wherein the cross-sectional area of the second section at the second end is larger than the cross-sectional area near the first section.
  • FIG1 is a schematic diagram of the three-dimensional structure of an electronic atomization device according to an embodiment of the present application.
  • FIG2 is a schematic diagram of the three-dimensional structure of the atomizer of the electronic atomization device shown in FIG1 ;
  • FIG3 is a schematic cross-sectional view of the atomizer shown in FIG2 ;
  • FIG4 is a schematic diagram of the cross-sectional structure of the porous body of the atomizer shown in FIG3 ;
  • FIG5 is a schematic diagram of the cross-sectional structure of a porous body of another embodiment of the electronic atomization device of the present application.
  • FIG6 is a partially enlarged schematic diagram of the atomizer shown in FIG2 ;
  • FIG7 is a schematic diagram of the three-dimensional structure of the porous body of the atomizer shown in FIG2 ;
  • FIG8 is a schematic diagram of a partial cross-sectional structure of the atomizer shown in FIG2 in another embodiment
  • FIG9 is a partially enlarged schematic diagram of the atomizer shown in FIG8 ;
  • FIG10 is a schematic diagram of the three-dimensional structure of the first receiving element of the atomizer shown in FIG8 ;
  • FIG. 11 is a schematic diagram of the three-dimensional structure of the second receiving element of the atomizer shown in FIG. 8 .
  • the electronic atomization device 1000 provided in the present application includes an atomizer 100 and a power supply mechanism 200 for powering the atomizer.
  • the electronic atomization device 1000 can be used for medical or other purposes.
  • the atomizer 100 can be used as a part of a split electronic atomization device 1000 to atomize the liquid matrix stored therein.
  • the power supply mechanism 200 is electrically connected to the atomizer 100, and a removable battery can be loaded inside it for easy replacement by the user.
  • the atomizer 100 includes a proximal end 1 and a distal end 2 that are separated from each other in the longitudinal direction, an air inlet 3 , a liquid storage chamber 4 , a porous body 5 , a through hole 6 , and a heating element 7 .
  • the inhalation port 3 is located at the proximal end 1.
  • the inhalation port 3 is the air outlet direction of the nebulizer 100, and the user inhales the aerosol formed by the atomization of the liquid matrix through the inhalation port 3.
  • the liquid storage chamber 4 is used to store a liquid matrix.
  • the liquid matrix may be a liquid containing medicine or other active ingredients.
  • the porous body 5 is in fluid communication with the liquid storage chamber 4 so as to at least partially receive or absorb the liquid matrix.
  • the porous body 5 includes a first end 51 close to the proximal end 1 and a second end 52 close to the distal end 2.
  • the porous body 5 can be a porous ceramic material with an open pore size and a high open porosity, which is made of high-quality raw materials such as corundum sand, silicon carbide, cordierite, etc., and is prepared through molding and a special high-temperature sintering process.
  • the porous body 5 has the advantages of high temperature resistance, high pressure resistance, acid, alkali and organic medium corrosion resistance, good biological inertness, controllable pore structure and high open porosity, long service life, and good product regeneration performance.
  • the porous body 5 can also be made of other different materials such as glass fiber.
  • the through hole 6 passes through or extends from the first end 51 of the porous body 5 to the second end 52.
  • the through hole 6 includes a first section 61 near the first end 51, and a second section 62 near the second end 52.
  • the cross-sectional area of the second section 62 at the second end 52 is larger than the cross-sectional area near the first section 61. Therefore, the condensate formed by the aerosol formed after the liquid matrix is atomized and the temperature is reduced is conducive to flowing out along the outer periphery of the second section 62 toward the distal end 2, so as to avoid the porous body 5 being blocked by the condensate and affecting the further atomization effect.
  • the cross-sectional area of the first section 61 is substantially constant.
  • the first section 61 may be configured to be a cylindrical shape with a uniform cross-sectional area.
  • the cross-sectional area of the second section 62 gradually decreases in a direction close to the first section 61.
  • the second section 62 may be configured to be in the shape of a bell mouth, and its cross-sectional area gradually decreases in a direction close to the first section 61.
  • the length of the first section 61 is greater than the length of the second section 62. Among them, the length of the first section 61 is 4-8 mm; and/or, the length of the second section 62 is 2-4 mm.
  • the length of the first section 61 is 4 mm, and the length of the second section 62 is 2 mm; or the length of the first section 61 is 6 mm, and the length of the second section 62 is 3 mm; or the length of the first section 61 is 8 mm, and the length of the second section 62 is 4 mm, etc.
  • the cross-sectional area of the second section 62 is substantially constant.
  • its shape can be configured as a cylindrical shape with a different bell mouth than the previous embodiment.
  • the first section 61 is a cylindrical shape with a uniform cross-sectional area
  • the second section 62 is a cylindrical shape with a uniform cross-sectional area but larger than the cross-sectional area of the first section 61.
  • first section 61 may also be referred to as a first subsection
  • second section 62 may also be referred to as a first subsection.
  • the first sub-segment has the same structure and function as the first segment 61
  • the second sub-segment has the same structure and function as the second segment 62 .
  • the heating element 7 is combined with the porous body 5 and arranged adjacent to the through hole 6, so as to heat at least part of the liquid matrix of the porous body 5 to generate an aerosol.
  • the heating element 7 is arranged to at least partially surround the first section 61 and avoid the second section 62. Therefore, the liquid matrix is concentrated in the first section 61 of the through hole and atomized to form an aerosol.
  • the heating element 7 may specifically include a heating wire 71, a first lead 72 and a second lead 73 connected to both ends of the heating wire 71.
  • the heating wire 71 is spirally wound around at least part of the inner wall of the first end 51 of the porous body 5 and avoids the second end 52, which is conducive to fully atomizing the liquid matrix absorbed by the porous body 5.
  • the heating wire 71 can also be arranged in different forms such as a grid, so as to fully heat and atomize liquid matrices with different physical and chemical properties.
  • the heating element 7 generates heat when powered on to atomize the liquid matrix infiltrated from the outside of the porous body 5, and is usually made of a metal wire (e.g., a nickel-chromium alloy, etc.).
  • the combination of the porous body 5 and the heating element 7 may also be referred to as an atomizing assembly, which is used to atomize the liquid matrix to generate an aerosol.
  • the atomizer 100 may further include a first tubular element 8, and the porous body 5 may further include an elastic element 9.
  • the first tubular element 8 at least partially extends in the liquid storage chamber 4 along the longitudinal direction of the atomizer 100.
  • the porous body 5 is accommodated or held in the first tubular element 8.
  • the porous body 5 may include a first portion 53 and a second portion 54.
  • the first portion 53 surrounds or defines a first section 61 of the through hole 6; the second portion 54 surrounds or defines a second section 62 of the through hole 6.
  • the first portion 53 and the second portion 54 may be formed in one piece by sintering or the like.
  • the gap between the outer wall of the bottom end of the first portion 53 and the inner wall of the first tubular element 8 is within 0.2 mm.
  • the elastic element 9 is at least partially elastically abutted between the first tubular element 8 and the second part 54.
  • the first tubular element 8 is elastically coupled to the second part 54 at least through the elastic element 9, so that the porous body is retained in the first tubular element 8.
  • the elastic element 9 is radially squeezed or compressed between the second part 54 and the first tubular element 8.
  • the first tubular element 8 is used to define or surround the transmission tube 81.
  • the transmission tube 81 is interconnected with the proximal end 1 and the distal end 2 of the nebulizer 100, so that the aerosol atomized in the porous body 5 can flow to the inhalation port 3 along the airflow path.
  • the elastic element 9 of the porous body 5 can be implemented as a flexible first seal.
  • the flexible first seal is at least partially located in the second portion 54 and the first tubular element 8 to provide a seal therebetween.
  • the material of the flexible first seal can be a soft material such as silicone, rubber, etc.
  • the porous body 5 can also include a flexible second seal 55.
  • the flexible second seal 55 is at least partially located between the first portion 53 and the first tubular element 8 to provide a seal therebetween.
  • the material of the flexible second seal 55 can also be a soft material such as silicone, rubber, etc. The cooperation of the flexible first seal and the flexible second seal 55 can avoid poor assembly such as pulling, flanging, and falling out when the porous body 5 is installed in the first tubular element 8.
  • the atomizer 100 may also include a first receiving element 1010.
  • the first receiving element 1010 is located between the port of the second end 52 and the distal end 2 of the second section 62 to receive the aerosol condensate.
  • the first receiving element 1010 is at least partially opposite or aligned with the through hole 6.
  • a first concave cavity 101 is provided on the surface of the first receiving element 1010 facing the through hole 6 and/or the porous body 5 to accommodate or maintain the received aerosol condensate to avoid long-term leakage and corrosion of other components.
  • a center hole 102 is also provided in the center area of the first receiving element 1010 toward the through hole 6 and/or the porous body 5.
  • the cross section of the center hole 102 gradually increases in the direction away from the through hole 6 and/or the porous body 5.
  • the shape of the center hole 102 can be a bell-mouth type, a cone type, etc. In this way, the condensate overflowing from the first cavity 101 can flow downward along the central hole 102 to prevent the central hole 102 of the first receiving element 1010 from being blocked.
  • the atomizer 100 may further include a nozzle assembly 11, a housing 12, and a base assembly 13.
  • the nozzle assembly 11 is used to define the proximal end 1 of the atomizer 100, and an air outlet 111 is provided inside the nozzle assembly 11.
  • the air outlet 111 is connected to the transmission tube 81, so that the aerosol flows out toward the proximal end 1 of the atomizer 100.
  • the housing 12 is connected to the other end of the nozzle assembly 11 away from the proximal end 1, and the base assembly 13 is connected to the other end of the housing 12 away from the nozzle assembly 11.
  • the inner wall of the housing 12 and the outer wall of the first tubular element 8 define the liquid storage chamber 4, and the two ends of the liquid storage chamber 4 are respectively blocked by the nozzle assembly 11 and the base assembly 13 to form a closed space.
  • the material of the housing 12 can be set to be transparent to facilitate the user to observe the content of the liquid matrix therein, and the liquid matrix can be replenished after it is consumed.
  • the outer circumference of the first tubular element 8 abutting against the second portion 54 of the porous body 5 may be provided with a plurality of wall holes 82.
  • the liquid matrix in the liquid storage chamber 4 may penetrate into the porous body 5 through the plurality of wall holes 82 to be further atomized to form an aerosol.
  • the number of the wall holes 82 is two, and each corresponds to the radial direction of the second portion 54 of the porous body 5.
  • the inner wall of the base component 13 is provided with an insulating ring 131, and the inner wall of the insulating ring 131 is sleeved with an electrode 132.
  • the first lead 72 and the second lead 73 can be connected to the electrode 132 and the conductive base component 13 respectively, so as to generate heat after power is turned on to atomize the liquid matrix into an aerosol.
  • the electrode 132 and the base assembly 13 are used to electrically connect the positive electrode and the negative electrode of the power supply mechanism 200, and the insulating ring 131 is used to insulate the electrode 132 and the base assembly 13 to prevent short circuit.
  • the nebulizer 100 further includes an air inlet 14 and an air flow channel 15 between the air inlet 14 and the air inlet 3.
  • the air inlet 14 is located at the distal end 2.
  • the air inlet 14 is the air inlet direction of the nebulizer 100.
  • the electrode 132 is configured as a hollow ring, and its inner wall is used to define the air inlet 133. Further, at least one second wall hole 134 is provided on the side wall of the electrode 132, so that the air entering the air inlet 133 enters the atomization assembly through the second wall hole 134.
  • the air inlet 14, the air inlet 3 and the air flow channel 15 are arranged to define an air flow path from the air inlet 14 to the air inlet 3 via the atomizer assembly, so as to transfer the aerosol to the air inlet 3.
  • the suction nozzle assembly 11 when the atomizer 100 is in use, the suction nozzle assembly 11 generates negative pressure in the outer shell 12, and the external atmosphere enters the air inlet hole 133 of the electrode 132 through the air inlet 14, and then enters the central hole 102 of the first receiving element 1010 through the second wall hole 134 of the electrode 132 along the path shown by the arrow R2 in FIG. 6; and continues along the path shown by the arrow R1 in FIG. 6, and then carries the aerosol generated by the porous body 5, and sequentially passes through the transmission tube 81 of the first tubular element 8 until it is sucked at the air outlet 111 of the suction nozzle assembly 11, forming a complete air flow channel 15.
  • the present application sets the through hole 6 of the atomizer 100 to penetrate or extend from the first end 51 of the porous body 5 to the second end 52.
  • the through hole 6 includes a first section 61 near the first end 51, and a second section 62 near the second end 52.
  • the cross-sectional area of the second section 62 at the second end 52 is larger than the cross-sectional area near the first section 61. Therefore, when the aerosol inside the porous body 5 is condensed, it can flow downward along the outer periphery of the through hole second section 62, thereby preventing the through hole 6 in the porous body 5 from being blocked, thereby affecting the atomization effect.
  • the liquid matrix used for atomization in existing electronic atomizers is usually in the form of fat or paste, and its viscosity at room temperature is generally 100,000-1,000,000 Pa.s. After the liquid matrix is atomized, a large amount of condensate will remain in the internal atomization components, such as the porous body, after the electronic atomizer is used. If there is no special structure to store or recover the condensate, it will clog the porous body at room temperature.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of an embodiment of the electronic atomization device of the present application.
  • the electronic atomization device 1000 provided in the present application includes an atomizer 100 and a power supply mechanism 200 for powering the atomizer.
  • the electronic atomization device 1000 can be used for medical or other purposes.
  • the atomizer 100 can be used as a part of a split electronic atomization device 1000 to atomize the liquid matrix stored therein.
  • the power supply mechanism 200 is electrically connected to the atomizer 100, and a removable battery can be loaded inside it for easy replacement by the user.
  • FIG8 is a schematic diagram of the cross-sectional structure of the atomizer shown in FIG2.
  • the atomizer 100 includes a proximal end 1 and a distal end 2 that are separated from each other in the longitudinal direction, an air inlet 3, a liquid storage chamber 4, a porous body 5, a heating element 7, and a first receiving element 1010.
  • the atomizer 100 also includes a second receiving element 1110, an air inlet 14, a second tubular element 80, a nozzle assembly 11, a housing 12, a base assembly 13, and an air flow channel 15.
  • the air inlet 3 is located at the proximal end 1.
  • the air inlet 14 is located at the distal end 2.
  • the nozzle assembly 11 is used to define the proximal end 1 of the atomizer 100.
  • the base assembly 13 is used to define the distal end 2 of the atomizer 100.
  • a cavity is provided inside the nozzle assembly 11, and the cavity is defined as the air inlet 3.
  • a cavity is also provided inside the nozzle assembly 11, and the cavity is defined as the air inlet 14.
  • the housing 12 is connected to one end of the nozzle assembly 11 away from the proximal end 1, and the base assembly 13 is tightly connected to the other end of the housing 12 away from the nozzle assembly 11.
  • the liquid storage chamber 4 is used to store a liquid matrix.
  • the liquid matrix can be a liquid containing a drug or other liquid matrix, and usually has different physical and chemical shapes. For example, some liquid matrices have a higher viscosity, while other liquid matrices have a lower viscosity.
  • the second tubular element 80 is disposed inside the housing 12, with one end of the second tubular element 80 being accommodated inside the nozzle assembly 11 and the other end of the second tubular element 80 being accommodated inside the base assembly 13.
  • the inner wall of the second tubular element 80 is used to define the air flow channel 15.
  • the air flow channel 15 is located between the air inlet 14 and the air suction port 3.
  • the inner wall of the shell 12 and the outer wall of the second tubular element 80 define the liquid storage chamber 4.
  • a sealing ring 111 is provided inside the suction nozzle assembly 11.
  • the sealing ring 111 is arranged around the outer periphery of the second tubular element 80, and one end is accommodated in the end of the suction nozzle assembly 11 away from the proximal end 1, and the other end extends to the inside of the shell 12 and abuts against the inner wall of the shell 12, thereby making the upper end 83 of the second tubular element 80 abutted to prevent unnecessary displacement.
  • the bottom end of the shell 12 is bent, and the edge extends to the lower end 84 of the second tubular element 80, thereby supporting the outer periphery of the lower end 84 of the second tubular element 80 to fix it. Therefore, the outer wall of the second tubular element 80 and the inner wall of the shell 12 form a closed liquid storage space 4.
  • the shell 12 can be set to a material such as transparent glass or resin to facilitate the user to observe the content of the liquid matrix therein, and it can be replenished after the liquid matrix is consumed.
  • Figure 9 is a partially enlarged schematic diagram of the nebulizer shown in Figure 8; and Figure 10 is a schematic diagram of the three-dimensional structure of the first receiving element of the nebulizer shown in Figure 8.
  • the first receiving element 1010 is located between the porous body 5 and the distal end 2, and is used to receive the aerosol condensate from the through hole 6.
  • the first receiving element 1010 is provided with at least one guide structure 1011. After the aerosol formed after the liquid matrix is atomized is cooled, it is easy to form condensate on the periphery of the porous body 5.
  • the guide structure 1011 is arranged to extend from the first receiving element 1010 toward the through hole 6, and is used to guide the aerosol condensate in the through hole 6 toward the first receiving element 1010.
  • the first receiving element 1010 is specifically arranged on the inner wall of the second tubular element 80 near the lower end 84. In other embodiments, the first receiving element 1010 may also be arranged at the bottom. The interior of the seat assembly 13.
  • the number of at least one guide structure 1011 is one. When the viscosity of the condensate is relatively low and the fluidity is relatively strong, only one guide structure 1011 may be selected. In other embodiments, the number of at least one guide structure 1011 may be multiple, such as two, three, four, etc.
  • the multiple guide structures 1011 are arranged to be spaced apart in the longitudinal direction of the first receiving element 1010. When the viscosity of the condensate is relatively high and the fluidity is relatively poor, multiple guide structures 1011 may be selected to improve the guiding efficiency.
  • the flow guiding structure 1011 is configured to be a column extending from the first receiving element 1010 toward the through hole 6.
  • the shape of the flow guiding structure 1011 may be a square column, a cylindrical column, an elliptical column, etc.
  • the cross-sectional area of the flow guiding structure 1011 may remain consistent.
  • the cross-sectional area of the flow guiding structure 1011 may be configured to gradually decrease toward the through hole 6 to facilitate guiding the condensate to flow rapidly.
  • the shape of the flow guiding structure 1011 is a square column with a uniform cross-sectional area.
  • the projection of the flow-guiding structure 1011 along the longitudinal direction of the atomizer 100 is located in the through hole 6. Since the condensate is partially suspended in the through hole 6 when flowing along the inner wall of the porous body 5, the flow-guiding structure 1011 is arranged so that the projection along the longitudinal direction of the atomizer 100 is located in the through hole 6 to facilitate receiving the condensate extending to the through hole 6.
  • the flow guiding structure 1011 is not in contact with the porous body 5 to form a gap.
  • a gap is maintained between the flow guiding structure 1011 and the second end 52 of the through hole 6 to define a capillary channel, so that the aerosol condensate is adsorbed from the second end 52 of the through hole 6 to the flow guiding structure 1011 by capillary action.
  • the gap between the flow guiding structure 1011 and the second end 52 of the through hole 6 is between 0.2 and 2 mm.
  • the distance of the gap is 0.2 mm, 0.3 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.5 mm, 1.8 mm, 2.0 mm.
  • the flow guiding structure 1011 can be arranged to directly contact the porous body 5, that is, there is no gap between the flow guiding structure 1011 and the porous body 5. In this way, the condensate can flow directly along the flow guiding structure 1011. For example, when the viscosity of the liquid matrix is large, the flow guiding structure 1011 can be arranged to directly contact the porous body 5.
  • a groove 1012 is defined on the surface of the first receiving element 1010 adjacent to the porous body 5 for containing or retaining aerosol condensate.
  • the condensate formed by the aerosol flows out in the direction toward the distal end 2 and flows into the groove 1012 under the guidance of the guide structure 1011, so as to prevent the porous body 5 from being blocked by the condensate and affecting the further atomization effect.
  • the first receiving element 1010 is provided with a first air hole 1013 which is arranged substantially coaxially with the through hole 6; and the diameter of at least part of the first air hole 1013 is smaller than the diameter of at least part of the through hole 6.
  • the first air hole 1013 allows air to enter the through hole 6 through the first air hole 1013 during use. In this way, when the condensate in the groove 1012 overflows due to excess, it can flow downward along the first air hole 1013 to prevent the first air hole 1013 of the first receiving element 1010 from being blocked.
  • a cross section of the first air hole 1013 The area gradually increases in the direction away from the porous body 5.
  • the shape of the first pore 1013 can be a bell-shaped, a cone-shaped, etc. The bell-shaped or cone-shaped shapes are conducive to accelerating the flow rate of the condensate.
  • the first receiving element 1010 is further provided with two avoidance grooves, through which the first lead wire 72 and the second lead wire 73 extend into the base assembly 13 respectively.
  • Figure 11 is a schematic diagram of the three-dimensional structure of the second receiving element of the atomizer shown in Figure 8.
  • the second receiving element 1110 is located between the first receiving element 1010 and the distal end 2, for receiving the aerosol condensate flowing out of the first air hole 1013.
  • the second receiving element 1110 is arranged at intervals with the first receiving element 1010.
  • the second receiving element 1110 is specifically arranged inside the base assembly 13.
  • the second receiving element 1110 can also be arranged on the inner wall of the second tubular element 80 near the lower end 84.
  • the first receiving element 1010 and the second receiving element 1110 are both arranged on the inner wall of the second tubular element 80 near the lower end 84, or the first receiving element 1010 and the second receiving element 1110 are both arranged inside the base assembly 13.
  • a second cavity 1111 is defined on the surface of the second receiving element 1110 adjacent to the first receiving element 1010 for containing or retaining aerosol condensate.
  • the condensate formed by the aerosol flows out in the direction toward the distal end 2, and flows into the groove 1012 under the guidance of the flow guide structure 1011.
  • the second cavity 1111 is arranged to be aligned with the side of the first receiving element 1010 facing the distal end, so that the condensate flowing out of the first air hole 1013 is received by the second cavity 1111, which plays a double role in preventing the porous body 5 from being blocked by the condensate.
  • the second receiving element 1110 is provided with a second air hole 1112 which is arranged substantially coaxially with the first air hole 1013; and the diameter of at least part of the second air hole 1112 is smaller than the diameter of at least part of the first air hole 1013.
  • the second air hole 1112 is used for air to enter the first air hole 1013 through the second air hole 1112, and then enter the through hole 6. In this way, when the condensate in the groove 1012 is excessive and overflows, it can flow down along the first air hole 1013 to the second concave cavity 1111, so as to prevent the first air hole 1013 of the first receiving element 1010 from being blocked.
  • the cross-sectional area of the second air hole 1112 gradually increases in the direction away from the first receiving element 1010.
  • the shape of the second air hole 1112 can be a bell-mouth type, a cone type, etc.
  • the bell-mouth type or the cone type is conducive to accelerating the flow of the condensate.
  • the second receiving element 1110 is also provided with two avoidance portions, which are aligned one by one with the two avoidance grooves provided in the first receiving element 1010 .
  • the first lead 72 and the second lead 73 extend into the base assembly 13 through the two avoidance grooves and the two avoidance portions respectively.
  • the inner wall of the base component 13 is provided with an insulating ring 131, and the inner wall of the insulating ring 131 is sleeved with an electrode 132.
  • the first lead 72 and the second lead 73 can be connected to the electrode 132 and the conductive base component 13 respectively, so as to generate heat to atomize the liquid matrix after power is turned on.
  • the electrode 132 and the base assembly 13 are used to electrically connect the positive electrode and the negative electrode of the power supply mechanism, and the insulating ring 131 is used to insulate the electrode 132 and the base assembly 13 to prevent short circuit.
  • the present application provides the atomizer 100 with a first receiving element 1010 to receive the aerosol condensate in the through hole 6.
  • the first receiving element 1010 is provided with at least one guide structure 1011, which is arranged to extend from the first receiving element 1010 toward the through hole 6, and can guide the aerosol condensate in the through hole 6 toward the first receiving element 1010, thereby preventing the through hole from being blocked.
  • the atomizer provided by the present application is provided with a first receiving element to receive the aerosol condensate in the through hole; and the first receiving element is provided with at least one guide structure, which is arranged to extend from the first receiving element toward the through hole.
  • the guide structure can guide the aerosol condensate in the through hole toward the first receiving element, thereby preventing the through hole from being blocked.

Landscapes

  • Nozzles (AREA)

Abstract

一种雾化器(100)和电子雾化装置(1000)。电子雾化装置(1000)包括雾化器(100)和电源机构(200)。雾化器(100)包括沿纵向方向相背离的近端(1))和远端(2)、吸气口(3)、储液腔(4)、多孔体(5)、通孔(6)、加热元件(7)。其中,吸气口(3)位于近端(1)。储液腔(4)用于存储液体基质。多孔体(5)包括靠近近端(1)的第一端(51)、以及靠近远端(2)的第二端(52)。通孔(6)包括靠近第一端(51)的第一区段(61)、以及靠近第二端(52)的第二区段(62);其中,第二区段(62)在第二端(52)处的横截面积大于在靠近第一区段(61)处的横截面积。加热元件(7)结合于多孔体(5)并毗邻通孔(6)布置,以用于加热多孔体(5)的至少部分液体基质生成气溶胶。加热元件(7)被布置成至少部分围绕第一区段(61)并避开第二区段(62),解决多孔体(5)内因冷液凝结而堵孔的问题。

Description

雾化器和电子雾化装置
相关申请的交叉参考
本申请要求于2022年11月4日提交中国专利局,申请号为202222963221.1,名称为“雾化器和电子雾化装置”、及于2022年11月4日提交中国专利局,申请号为202211390555.2,名称为“雾化器和电子雾化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及雾化技术领域,尤其涉及一种雾化器及电子雾化装置。
背景技术
电子雾化装置的雾化器内置加热元器件,通过电池供电发热,使发热体附近的液体基质挥发,形成气溶胶。当雾化器储液仓内液体基质形成气溶胶被吸出,储液仓内形成负压,需要进气补偿平衡压力。
目前,市面上的圆柱陶瓷雾化器通常采用陶瓷外包棉的结构形式,即在圆柱陶瓷发热体外表面包棉,以此来进行导液和锁液,这种方式会造成该工序很难做到自动化组装,而且人工组装带来生产的稳定性能差。导致产品一致性低,雾化效率低,TPM(Total Particulate Matter,总粒相物)不稳定,容易产生糊味或者漏液,降低口感。
而采用传统不包棉陶瓷芯结构往往在抽吸后,气溶胶在温度降低后形成冷凝液而累积在陶瓷中心孔,造成堵孔问题,用户体验较差。
申请内容
本申请主要解决的技术问题是提供一种雾化器和电子雾化装置,以解决其多孔体内部因凝结冷液而堵孔的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化器。该雾化器包括沿纵向方向相背离的近端和远端、吸气口、储液腔、多孔体、通孔、加热元件。其中,吸气口位于近端。储液腔用于存储液体基质。多孔体与储液腔流体连通进而至少部分接收或吸取液体基 质。该多孔体包括靠近近端的第一端、以及靠近远端的第二端。通孔包括靠近第一端的第一区段、以及靠近第二端的第二区段;其中,第二区段在第二端处的横截面积大于在靠近第一区段处的横截面积。加热元件结合于多孔体并毗邻通孔布置,以用于加热述多孔体的至少部分液体基质生成气溶胶。加热元件被布置成至少部分围绕第一区段并避开第二区段。
本申请采用的第二个技术方案是:提供一种雾化器。该雾化器包括储液腔、雾化组件、至少一个吸气口、进气口、气流通道。其中,储液腔用于存储液体基质。雾化组件用于雾化液体基质生成气溶胶。气流通道位于进气口与吸气口之间。进气口、吸气口和气流通道布置成限定从进气口经由雾化组件到吸气口的气流路径,以将气溶胶传递到吸气口。雾化组件包括多孔体和加热元件。多孔体与储液腔流体连通进而至少部分接收或吸取液体基质。该多孔体包括围绕或界定气流通道至少一部分的通孔。该通孔包括用于供空气进入的入口端、用于输出气溶胶的出口端,以及靠近出口端的第一区段、以及靠近入口端的第二区段;第二区段至少部分的横截面积沿靠近第一区段的方向减小。加热元件结合于多孔体并毗邻通孔布置,以用于加热多孔体内的至少部分液体基质生成气溶胶。加热元件被布置成至少部分围绕第一区段并避开第二区段。
本申请采用的第三个技术方案是:提供一种雾化器。该雾化器包括沿纵向方向相背离的近端和远端、储液腔、第一管状元件、加热元件、多孔体、弹性元件。储液腔用于存储液体基质。第一管状元件至少部分沿雾化器的纵向方向于储液腔内延伸。加热元件位于第一管状元件内,以用于加热液体基质生成气溶胶。多孔体位于第一管状元件内,并被构造成沿第一管状元件的轴向方向延伸布置。该多孔体包括沿第一管状元件的轴向方向依次布置的第一部分和第二部分;其中,第一部分至少部分围绕加热元件,以至少部分用于在第二部分避开加热元件。弹性元件至少部分弹性抵接于第一管状元件和第二部分之间。第一管状元件至少通过弹性元件弹性耦合于第二部分,以使所述多孔体保持在第一管状元件内。
本申请采用的第四个技术方案是:提供一种雾化器。该雾化器包括沿纵向方向相背离的近端和远端、吸气口、储液腔、多孔体、通孔、加热元件。其中,吸气口位于近端。储液腔用于存储液体基质。多孔体与储液腔流体连通进而至少部分接收或吸取液体基质。该多孔体包括靠近近端的第一端、以及靠近远端的第二端。通孔由多孔体的第一端贯穿或延伸至第二端。该通孔包括靠近第一端的第一区段、以及靠近第二端的 第二区段;其中,第二区段至少部分的横截面积大于第一区段的横截面积。加热元件结合于多孔体并毗邻通孔布置,以用于加热多孔体的至少部分液体基质生成气溶胶。加热元件被布置成避开所述第二区段。
本申请采用的第五个技术方案是:提供一种雾化器。该雾化器包括沿纵向方向相背离的近端和远端、吸气口、储液腔、多孔体、加热元件和第一承接元件。其中,吸气口位于近端。储液腔用于存储液体基质。多孔体与储液腔流体连通以接收或吸取液体基质,且界定有贯穿该多孔体的通孔。加热元件结合于多孔体并毗邻通孔布置,以用于加热多孔体内的至少部分液体基质生成气溶胶。第一承接元件位于多孔体和远端之间,以用于承接通孔的气溶胶冷凝液。第一承接元件设有至少一个导流结构,该导流结构被布置成由第一承接元件朝向通孔延伸,用于将通孔内的气溶胶冷凝液朝第一承接元件进行引导。
本申请采用的第六个技术方案是:提供一种电子雾化装置。该电子雾化装置包括如上所述的任一种雾化器、以及为该雾化器供电的电源机构。
本申请的有益效果是:区别于现有技术的情况,本申请提供的雾化器的通孔由多孔体的第一端贯穿或延伸至第二端;通孔包括靠近第一端的第一区段、以及靠近第二端的第二区段;其中,第二区段在第二端处的横截面积大于在靠近第一区段处的横截面积。多孔体内部的气溶胶冷凝时能够沿通孔第二区段外周向下流出,避免多孔体被堵塞,进而影响雾化效果。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请电子雾化装置一实施例立体结构示意图;
图2是图1所示的电子雾化装置的雾化器的立体结构示意图;
图3是图2所示的雾化器的剖面结构示意图;
图4是图3所示的雾化器的多孔体的剖面结构示意图;
图5是本申请电子雾化装置另一实施例的多孔体的剖面结构示意图;
图6是图2所示的雾化器的部分放大示意图;
图7是图2所示的雾化器的多孔体的立体结构示意图;
图8是图2所示雾化器在另一实施例中的局部剖面结构示意图;
图9是图8所示的雾化器的部分放大示意图;
图10是图8所示的雾化器的第一承接元件的立体结构示意图;
图11是图8所示的雾化器的第二承接元件的立体结构示意图。
附图标记说明:1000、电子雾化装置;100、雾化器;200、电源机构;1、近端;2、远端;3、吸气口;4、储液腔;5、多孔体;6、通孔;7、加热元件;8、第一管状元件;9、弹性元件;11、吸嘴组件;12、外壳,13、底座组件;14、进气口;15、气流通道;111、出气孔;51、第一端;52、第二端;53、第一部分;54、第二部分;55、柔性第二密封件;61、第一区段;62、第二区段;71、发热丝;72、第一引线;73、第二引线;81、传输管;82、壁孔;83、上端;84、下端;101、第一凹腔;102、中心孔;112、密封圈;131、绝缘环;132、电极;133、进气孔;134、第二壁孔;1010、第一承接元件;1110、第二承接元件;1011、导流结构;1012、凹槽;1013、第一气孔;1111、第二凹腔;1112、第二气孔。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本文中术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。此外,本文中的“多”表示两个或者多于两个。
以下本申请实施例描述电子雾化装置1000的示例性结构。
如图1所示,本申请提供的电子雾化装置1000包括雾化器100,以及为该雾化器供电的电源机构200。电子雾化装置1000可以用于医用或者其他用途。其中,雾化器100可以作为分体式的电子雾化装置1000的一部分,用于将储存于其内的液体基质雾化。电源机构200与雾化器100电连接,其内部可以装载可拆卸的电池,便于用户更换。
以下本申请实施例描述雾化器100的示例性结构。
如图2和图3所示,雾化器100包括沿纵向方向相背离的近端1和远端2、吸气口3、储液腔4、多孔体5、通孔6和加热元件7。
其中,吸气口3位于近端1。吸气口3为雾化器100的出气方向,用户通过吸气口3吸食液体基质被雾化所形成的气溶胶。
储液腔4用于存储液体基质。液体基质可以是含有药物或者其他活性成分的液体。
如图3所示,多孔体5与储液腔4流体连通进而至少部分接收或吸取液体基质。如图4所示,多孔体5包括靠近近端1的第一端51、以及靠近远端2的第二端52。多孔体5可以是以刚玉砂、碳化硅、堇青石等优质原料为主料、经过成型和特殊高温烧结工艺制备的一种具有开孔孔径、高开口气孔率的一种多孔性陶瓷材料,具有耐高温,高压、抗酸、碱和有机介质腐蚀,良好的生物惰性、可控的孔结构及高的开口孔隙率、使用寿命长、产品再生性能好等优点。多孔体5也可以由玻璃纤维等其他不同材料制成。
如图4所示,通孔6由多孔体5的第一端51贯穿或延伸至第二端52。通孔6包括靠近第一端51的第一区段61、以及靠近第二端52的第二区段62。其中,第二区段62在第二端52处的横截面积大于在靠近第一区段61处的横截面积。因此,液体基质被雾化后形成的气溶胶在温度降低之后形成的冷凝液利于沿着第二区段62的外周朝远端2的方向流出,避免多孔体5被冷凝液堵塞而影响进一步的雾化效果。
如图4所示,第一区段61的横截面积基本恒定。例如,在本实施例中,第一区段61可以被设置为横截面积一致的圆柱体形状。第二区段62的横截面积沿靠近第一区段61的方向逐渐减小。例如,在本实施例中,第二区段62可以被设置为喇叭口的形状,其横截面积沿靠近第一区段61的方向逐渐减小。进一步地,第一区段61的长度大于第二区段62的长度。其中,第一区段61的长度为4-8mm;和/或,第二区段62的长度为2-4mm。例如,在一些实施例中,第一区段61的长度为4mm,第二区段62的长度为2mm;或者第一区段61的长度为6mm,第二区段62的长度为3mm;或者第一区段61的长度为8mm,第二区段62的长度为4mm等。
如图5所示,在另一实施例中,第二区段62的横截面积基本恒定。例如,其形状可以配置为与前述实施例不同的喇叭口不同的圆柱体型。换言之,第一区段61为横截面积一致的圆柱体形状,而第二区段62为横截面积一致但大于第一区段61的横截面积的圆柱体形状。
在其他实施例中,第一区段61也可以称为第一子段,第二区段62 也可以称为第二子段。第一子段与第一区段61的结构和功能相同,第二子段与第二区段62的结构和功能相同。
如图4所示,加热元件7结合于多孔体5并毗邻通孔6布置,以用于加热多孔体5的至少部分液体基质生成气溶胶。加热元件7被布置成至少部分围绕第一区段61并避开第二区段62。因此,液体基质集中于通孔的第一区段61内被雾化形成气溶胶。
如图4所示,加热元件7具体可包括发热丝71、与发热丝71两端分别连接的第一引线72和第二引线73。该发热丝71呈螺旋状缠绕设置在该多孔体5的第一端51的至少部分内壁并避开第二端52,利于将多孔体5吸收的液体基质充分雾化。在其他实施例中,发热丝71也可以呈网格状等不同形式设置,以利于将不同理化性质的液体基质充分加热雾化。加热元件7在通电状态下发热,以将由多孔体5外部渗入的液体基质进行雾化,通常由金属丝(例如是镍铬合金等)制成。
其中,多孔体5和加热元件7的组合也可以称为雾化组件,用于雾化液体基质生成气溶胶。
如图3和图6所示,雾化器100还可以包括第一管状元件8,并且该多孔体5还可包括弹性元件9。该第一管状元件8至少部分沿雾化器100的纵向方向于储液腔4内延伸。多孔体5被容纳或保持于第一管状元件8内。
如图4所示,进一步地,多孔体5可以包括第一部分53和第二部分54。其中,第一部分53围绕或界定通孔6的第一区段61;第二部分54围绕或界定通孔6的第二区段62。可以通过结烧等方式将第一部分53和第二部分54一次性成型。其中,第一部分53的底端的外壁与第一管状元件8的内壁之间的间隙在0.2mm以内。如此,可避免换气气泡在第一部分53外壁和第一管状元件8内壁之间的间隙中长大,累积成大气泡影响储液腔4内部负压,进而影响液体基质向多孔体5渗入。
如图3和图6所示,弹性元件9至少部分弹性抵接于第一管状元件8和第二部分54之间。第一管状元件8至少通过弹性元件9弹性耦合于第二部分54,以使多孔体保持在第一管状元件8内。弹性元件9在第二部分54和第一管状元件8之间被沿径向挤压或压缩。进一步地,第一管状元件8用于界定或围绕传输管81。该传输管81与雾化器100的近端1和远端2相互连通,因而多孔体5内被雾化的气溶胶能够沿气流路径流动至吸气口3。
如图4和图7所示,在另一个实施例中,多孔体5的弹性元件9可实施为柔性第一密封件。该柔性第一密封件至少部分位于第二部分54 和第一管状元件8之间,以在它们之间提供密封。如此,多孔体5易于被固定于第一管状元件8之内而不发生位移。柔性第一密封件的材质可以是硅胶、橡胶等软性材料。进一步地,多孔体5还可以包括柔性第二密封件55。该柔性第二密封件55至少部分位于第一部分53和第一管状元件8之间,以在它们之间提供密封。柔性第二密封件55的材质同样可以是硅胶、橡胶等软性材料。柔性第一密封件和柔性第二密封件55的配合可避免多孔体5装入第一管状元件8内时出现拉扯、翻边、脱出等装配不良的情况。
如图2和图3所示,雾化器100还可以包括第一承接元件1010。该第一承接元件1010位于第二区段62在第二端52的端口与远端2之间,以用于承接气溶胶冷凝液。沿雾化器100的纵向方向,第一承接元件1010至少部分与通孔6相对或对准。第一承接元件1010朝向通孔6和/或多孔体5的表面上设置有第一凹腔101,以用于容纳或保持所承接的气溶胶冷凝液,避免长期漏液而腐蚀其他组件。第一承接元件1010朝向通孔6和/或多孔体5的中心区域还开设有中心孔102。中心孔102的横截面沿着远离通孔6和/或多孔体5的方向逐渐增大。例如,中心孔102的形状可以是喇叭口型、锥型等。如此,便于第一凹腔101内溢出的冷凝液沿中心孔102向下流,防止堵塞第一承接元件1010的中心孔102。
如图2和图3所示,雾化器100还可以包括吸嘴组件11、外壳12和底座组件13。其中,吸嘴组件11用于界定雾化器100的近端1,且其内部开设有出气孔111。该出气孔111与传输管81相连通,使得气溶胶朝向雾化器100的近端1方向流出。外壳12连接于吸嘴组件11远离近端1的另一端,底座组件13与外壳12远离吸嘴组件11的另一端连接。
外壳12的内壁和第一管状元件8的外壁界定储液腔4,且储液腔4的两端分别被吸嘴组件11和底座组件13封堵,以形成密闭的空间。外壳12的材质可以设置为透明的,以方便用户观测其内的液体基质的含量,待液体基质消耗完后可以补充。
第一管状元件8与多孔体5的第二部分54抵接的外周可以开设有若干个壁孔82。储液腔4内的液体基质可以通过若干个壁孔82向多孔体5渗透,以待进一步被雾化形成气溶胶。例如,在本实施例中,壁孔82的数量为两个,且分别对应于多孔体5的第二部分54的径向方向。
如图3所示,底座组件13内壁设置有绝缘环131,绝缘环131内壁套设有电极132。其中,第一引线72和第二引线73可分别与电极132和导电的底座组件13连接,以在通电后发热将液体基质雾化形成气溶 胶。电极132和底座组件13用于电连接电源机构200的正极和负极,绝缘环131用于将电极132和底座组件13绝缘,防止短路。
雾化器100还包括进气口14及位于所述进气口14与吸气口3之间的气流通道15。进气口14位于远端2。进气口14为雾化器100的进气方向。
其中,电极132被设置为中空的环状,其内壁用于界定进气孔133。进一步地,电极132的侧壁上设置有至少一个第二壁孔134,使得进气孔133进入的空气由第二壁孔134进入雾化组件。
进气口14、吸气口3和气流通道15布置成限定从进气口14经由雾化组件到吸气口3的气流路径,以将气溶胶传递到吸气口3。换言之,雾化器100在使用时,吸吮吸嘴组件11在外壳体12内产生负压,外部大气通过进气口14进入至电极132的进气孔133内,然后沿着图6中箭头R2所示路径,由电极132的第二壁孔134进气第一承接元件1010的中心孔102;继续沿着图6中箭头R1所示路径,再携带多孔体5生成的气溶胶,依次经第一管状元件8的传输管81,直至吸嘴组件11的出气孔111处被吸食,形成完整的气流通道15。
综上所述,本申请将雾化器100的通孔6设置成由多孔体5的第一端51贯穿或延伸至第二端52。该通孔6包括靠近第一端51的第一区段61、以及靠近第二端52的第二区段62。其中,第二区段62在第二端52处的横截面积大于在靠近第一区段61处的横截面积。因此,多孔体5内部的气溶胶冷凝时能够沿通孔第二区段62外周向下流出,避免多孔体5中通孔6被堵塞,进而影响雾化效果。
现有电子雾化器中用于雾化的液体基质通常呈脂或膏状,其常温粘稠度一般在100000-1000000pa.s。在使用电子雾化器后,液体基质被雾化后其内部雾化组件,例如多孔体,会残留较多的冷凝液。若无特殊结构储存或回收冷凝液,常温状态下会堵塞多孔体。
为解决这一技术问题,本申又一实施例公开了一种电子雾化装置1000。如图1所示,图1是本申请电子雾化装置一实施例立体结构示意图。本申请提供的电子雾化装置1000包括雾化器100,以及为该雾化器供电的电源机构200。电子雾化装置1000可以用于医用或者其他用途。其中,雾化器100可以作为分体式的电子雾化装置1000的一部分,用于将储存于其内的液体基质雾化。电源机构200与雾化器100电连接,其内部可以装载可拆卸的电池,便于用户更换。
以下本申请实施例描述雾化器100的示例性结构。
如图2和图8所示,图2是图1所示的电子雾化装置的雾化器的立 体结构示意图;图8是图2所示的雾化器的剖面结构示意图。该雾化器100包括沿纵向方向相背离的近端1和远端2、吸气口3、储液腔4、多孔体5、加热元件7、第一承接元件1010。雾化器100还包括第二承接元件1110、进气口14、第二管状元件80、吸嘴组件11、外壳12、底座组件13、气流通道15。
其中,吸气口3位于近端1。进气口14位于远端2。吸嘴组件11用于界定雾化器100的近端1。底座组件13用于界定雾化器100的远端2。吸嘴组件11的内部开设空腔,该空腔界定为吸气口3。吸嘴组件11的内部同样开设有空腔,该空腔界定为进气口14。外壳12连接于吸嘴组件11远离近端1的一端,底座组件13与外壳12远离吸嘴组件11的另一端紧密连接。
储液腔4用于存储液体基质。液体基质可以是含有药物的液体或其他液体基质,通常其理化形状不同。例如,一些液体基质的粘度较大,而其他液体基质的粘度较小。
第二管状元件80设置于外壳12的内部,且一端容置于吸嘴组件11的内部,另一端容置于底座组件13的内部。第二管状元件80的内壁用于界定气流通道15。气流通道15位于进气口14与吸气口3之间。
外壳12的内壁和第二管状元件80的外壁界定储液腔4。吸嘴组件11内部设置有密封圈111。该密封圈111围设于第二管状元件80的外周,且一端容置于吸嘴组件11远离近端1的一端,另一端延伸至外壳12内部且与外壳12内壁抵靠,进而使得第二管状元件80的上端83被抵靠,防止发生不必要的位移。外壳12的底端呈弯折状,且边缘延伸至第二管状元件80的下端84,进而支撑第二管状元件80的下端84的外周,使其被固定。因此,第二管状元件80的外壁和外壳12的内壁形成密闭的储液空间4。外壳12可以设置为透明玻璃或者树脂等材质,以方便用户观测其内的液体基质的含量,待液体基质消耗完后可以补充。
请继续结合图9和图10,其中,图9是图8所示的雾化器的部分放大示意图;图10是图8所示的雾化器的第一承接元件的立体结构示意图。第一承接元件1010位于多孔体5和远端2之间,以用于承接通孔6的气溶胶冷凝液。第一承接元件1010设有至少一个导流结构1011。液体基质被雾化后形成的气溶胶在温度降低之后,易在多孔体5外周形成冷凝液。该导流结构1011被布置成由第一承接元件1010朝向通孔6延伸,用于将通孔6内的气溶胶冷凝液朝第一承接元件1010进行引导。在本实施例中,第一承接元件1010具体设置在第二管状元件80的靠近下端84的内壁。在其他实施例中,第一承接元件1010也可以设置于底 座组件13的内部。在本实施例中,至少一个导流结构1011的数量是一个。当冷凝液的粘度较小流动性较强时,可以选择仅设置一个导流结构1011。在其他实施例中,少一个导流结构1011的数量可以是多个,例如两个,三个,四个等。多个导流结构1011被布置为沿第一承接元件1010的纵向相间隔。当冷凝液的粘度较大流动性较差时,可以选择设置多个导流结构1011,以提高引导效率。
导流结构1011被构造成是由第一承接元件1010朝向通孔6延伸的柱状。例如,导流结构1011的形状可以是方柱状、圆柱状、椭柱状等。在一些实施例中,导流结构1011的横截面积可以保持一致。在其他实施例中,导流结构1011的横截面积可以设置为朝通孔6的方向逐渐变小,以利于引导冷凝液迅速流动。在本实施例中,导流结构1011的形状为横截面积一致的方柱体。
导流结构1011沿雾化器100的纵向方向的投影部分位于通孔6内。由于冷凝液沿多孔体5的内壁流动时,部分悬挂于通孔6内,将导流结构1011布置成沿雾化器100的纵向方向的投影部分位于通孔6利于承接延伸至通孔6的冷凝液。
在本实施例中,导流结构1011与多孔体5是不接触的,以形成间隙。沿雾化器100的纵向方向,导流结构1011与通孔6的第二端52之间保持有间隙以界定形成毛细通道,以通过毛细作用将气溶胶冷凝液由通孔6的第二端52吸附至导流结构1011上。导流结构1011与通孔6的第二端52之间的间隙介于0.2~2mm。例如,间隙的距离为0.2mm、0.3mm、0.5mm、0.8mm、1.0mm、1.5mm、1.8mm、2.0mm。在其他实施例中,导流结构1011可以被布置成直接与多孔体5接触,也即导流结构1011与多孔体5之间无间隙。如此,冷凝液可以直接沿导流结构1011流动。例如,当液体基质的粘度较大时,可以选择将导流结构1011布置成直接与多孔体5接触。
第一承接元件1010毗邻多孔体5的表面上界定有凹槽1012,以用于容纳或保持气溶胶冷凝液。气溶胶形成的冷凝液沿着朝向远端2的方向流出,在导流结构1011的引导下流入凹槽1012,避免多孔体5被冷凝液堵塞而影响进一步的雾化效果。
第一承接元件1010上设有与通孔6基本同轴布置的第一气孔1013;且第一气孔1013至少部分的直径小于通孔6至少部分的直径。第一气孔1013在使用中供空气进入经由该第一气孔1013进入通孔6。如此,当凹槽1012内的冷凝液过多而溢出时,可以沿第一气孔1013向下流,防止堵塞第一承接元件1010的第一气孔1013。第一气孔1013的横截面 积沿远离多孔体5的方向逐渐变大。例如,第一气孔1013的形状可以是喇叭口型、锥型等。喇叭口型或锥型等形状有利于加快冷凝液的流速。
第一承接元件1010还开设有两个避让槽,第一引线72和第二引线73分别通过该两个避让槽伸入底座组件13。
请继续结合图8、图9和图11所示,其中,图11是图8所示的雾化器的第二承接元件的立体结构示意图。第二承接元件1110位于第一承接元件1010和远端2之间,以用于承接由第一气孔1013流出的气溶胶冷凝液。沿雾化器100的纵向方向,第二承接元件1110与第一承接元件1010间隔布置。在本实施例中,第二承接元件1110具体设置在底座组件13的内部。在其他实施例中,第二承接元件1110也可以设置于第二管状元件80的靠近下端84的内壁。换言之,第一承接元件1010和第二承接元件1110均设置于第二管状元件80的靠近下端84的内壁,或者第一承接元件1010和第二承接元件1110均设置于底座组件13的内部。
可选地,第二承接元件1110毗邻第一承接元件1010的表面上界定有第二凹腔1111,以用于容纳或保持气溶胶冷凝液。气溶胶形成的冷凝液沿着朝向远端2的方向流出,在导流结构1011的引导下流入凹槽1012,当凹槽1012内的冷凝液溢出时,沿着第一气孔1013的周向继续流动。第二凹腔1111被设置成与第一承接元件1010朝向远端的一侧对准,则第一气孔1013流出的冷凝液被第二凹腔1111承接,对于避免多孔体5被冷凝液堵塞起到双重保障的作用。
第二承接元件1110上设有与第一气孔1013基本同轴布置的第二气孔1112;且第二气孔1112至少部分的直径小于第一气孔1013至少部分的直径。第二气孔1112在使用中供空气进入经由该第二气孔1112进入第一气孔1013,进而进入通孔6。如此,当凹槽1012内的冷凝液过多而溢出时,可以沿第一气孔1013向下流至第二凹腔1111,防止堵塞第一承接元件1010的第一气孔1013。第二气孔1112的横截面积沿远离第一承接元件1010的方向逐渐变大。例如,第二气孔1112的形状可以是喇叭口型、锥型等。喇叭口型或锥型等形状有利于加快冷凝液的流动。
第二承接元件1110同样开设有两个避让部,该两个避让部与第一承接元件1010开设的两个避让槽一一对准,第一引线72和第二引线73分别通过该两个避让槽和两个避让部伸入底座组件13。
如图8和图9所示,底座组件13内壁设置有绝缘环131,绝缘环131内壁套设有电极132。其中,第一引线72和第二引线73可分别与电极132和导电的底座组件13连接,以在通电后发热将液体基质雾化 形成气溶胶。电极132和底座组件13用于电连接电源机构的正极和负极,绝缘环131用于将电极132和底座组件13绝缘,防止短路。
综上所述,本申请将雾化器100通过设置第一承接元件1010以承接通孔6内的气溶胶冷凝液。且第一承接元件1010设有至少一个导流结构1011,该导流结构1011被布置成由第一承接元件1010朝向通孔6延伸,能够将通孔6内的气溶胶冷凝液朝第一承接元件1010进行引导,进而避免通孔被堵塞。
区别于现有技术的情况,本申请提供的雾化器通过设置第一承接元件以承接通孔的气溶胶冷凝液;且,该第一承接元件设有至少一个导流结构,该导流结构被布置成由第一承接元件朝向通孔延伸。该导流结构能够将通孔内的气溶胶冷凝液朝第一承接元件进行引导,进而避免通孔被堵塞。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种雾化器,包括沿纵向方向相背离的近端和远端;其特征在于,还包括:
    吸气口,位于所述近端;
    储液腔,用于存储液体基质;
    多孔体,与所述储液腔流体连通进而至少部分接收或吸取液体基质;所述多孔体包括靠近所述近端的第一端、以及靠近所述远端的第二端;
    通孔,由所述多孔体的第一端贯穿或延伸至所述第二端;所述通孔包括靠近所述第一端的第一区段、以及靠近所述第二端的第二区段;其中,所述第二区段在所述第二端处的横截面积大于在靠近所述第一区段处的横截面积;
    加热元件,结合于所述多孔体并毗邻所述通孔布置,以用于加热所述多孔体的至少部分液体基质生成气溶胶;所述加热元件被布置成至少部分围绕所述第一区段并避开所述第二区段。
  2. 根据权利要求1所述的雾化器,其特征在于,所述第一区段的横截面积基本恒定。
  3. 根据权利要求1或2所述的雾化器,其特征在于,所述第二区段的横截面积沿靠近所述第一区段的方向逐渐减小。
  4. 根据权利要求1或2所述的雾化器,其特征在于,所述第一区段的长度大于所述第二区段的长度。
  5. 根据权利要求1或2所述的雾化器,其特征在于,还包括:
    第一管状元件,至少部分沿所述雾化器的纵向方向于所述储液腔内延伸;
    所述多孔体被容纳或保持于所述第一管状元件内。
  6. 根据权利要求5所述的雾化器,其特征在于,所述多孔体包括:
    第一部分,围绕或界定所述通孔的第一区段;
    第二部分,围绕或界定所述通孔的第二区段;
    弹性元件,至少部分弹性抵接于所述第一管状元件和所述第二部分之间;所述第一管状元件至少通过所述弹性元件弹性耦合于所述第二部分,以使所述多孔体保持在所述第一管状元件内。
  7. 根据权利要求1或2所述的雾化器,其特征在于,还包括:
    第一承接元件,位于所述多孔体与所述远端之间,以用于承接气溶胶冷凝液。
  8. 根据权利要求7所述的雾化器,其特征在于,所述第一承接元件设有至少一个导流结构,所述导流结构被布置成由所述第一承接元件朝向所述通孔延伸,用于将所述通孔内的气溶胶冷凝液朝所述第一承接元件进行引导。
  9. 根据权利要求8所述的雾化器,其特征在于,所述导流结构被构造成是由所述第一承接元件朝向所述通孔延伸的柱状。
  10. 根据权利要求7所述的雾化器,其特征在于,还包括第二承接元件,位于所述第一承接元件和所述远端之间,沿所述雾化器的纵向方向,所述第二承接元件与所述第一承接元件间隔布置。
  11. 根据权利要求7所述的雾化器,其特征在于,沿所述雾化器的纵向方向,所述第一承接元件至少部分与所述通孔相对或对准。
  12. 一种雾化器,包括沿纵向方向相背离的近端和远端;其特征在于,还包括:
    储液腔,用于存储液体基质;
    第一管状元件,至少部分沿所述雾化器的纵向方向于所述储液腔内延伸;
    加热元件,位于所述第一管状元件内,以用于加热液体基质生成气溶胶;
    多孔体,位于所述第一管状元件内,并被构造成沿所述第一管状元件的轴向方向延伸布置;所述多孔体包括沿所述第一管状元件的轴向方向依次布置的第一部分和第二部分;其中,
    所述第一部分至少部分围绕所述加热元件,所述第二部分避开所述加热元件;
    弹性元件,至少部分弹性抵接于所述第一管状元件和所述第二部分之间;所述第一管状元件至少通过所述弹性元件弹性耦合于所述第二部分,以使所述多孔体保持在所述第一管状元件内。
  13. 根据权利要求12所述的雾化器,其特征在于,还包括:
    通孔,由所述多孔体的第一部分贯穿或延伸至所述第二部分;所述通孔包括靠近所述第一部分的第一子段、以及靠近所述第二部分的第二子段;其中,所述第二子段在所述第二部分处的横截面积大于在靠近所述第一子段处的横截面积。
  14. 一种雾化器,包括沿纵向方向相背离的近端和远端;其特征在于,还包括:
    吸气口,位于所述近端;
    储液腔,用于存储液体基质;
    多孔体,与所述储液腔流体连通进而至少部分接收或吸取液体基质;所述多孔体包括靠近所述近端的第一端、以及靠近所述远端的第二端;
    通孔,由所述多孔体的第一端贯穿或延伸至所述第二端;所述通孔包括靠近所述第一端的第一区段、以及靠近所述第二端的第二区段;其中,所述第二区段至少部分的横截面积大于所述第一区段的横截面积;
    加热元件,结合于所述多孔体并毗邻所述通孔布置,以用于加热所述多孔体的至少部分液体基质生成气溶胶;所述加热元件被布置成避开所述第二区段。
  15. 一种电子雾化装置,包括雾化液体基质生成气溶胶的雾化器、以及为所述雾化器供电的电源机构;其特征在于,所述雾化器包括权利要求1至14任一项所述的雾化器。
PCT/CN2023/129401 2022-11-04 2023-11-02 雾化器和电子雾化装置 WO2024094136A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222963221.1U CN219108740U (zh) 2022-11-04 2022-11-04 雾化器和电子雾化装置
CN202211390555.2 2022-11-04
CN202222963221.1 2022-11-04
CN202211390555.2A CN117981921A (zh) 2022-11-04 2022-11-04 雾化器和电子雾化装置

Publications (1)

Publication Number Publication Date
WO2024094136A1 true WO2024094136A1 (zh) 2024-05-10

Family

ID=90929794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129401 WO2024094136A1 (zh) 2022-11-04 2023-11-02 雾化器和电子雾化装置

Country Status (1)

Country Link
WO (1) WO2024094136A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203952431U (zh) * 2014-05-23 2014-11-26 深圳市合元科技有限公司 电子烟用雾化器及电子烟
US20190274356A1 (en) * 2017-08-15 2019-09-12 Shenzhen First Union Technology Co., Ltd. Atomizer and electronic cigarette having same
CN209609872U (zh) * 2019-01-25 2019-11-12 深圳市博迪科技开发有限公司 一种具有防回油功能的雾化器及电子加热装置
CN112931974A (zh) * 2021-02-10 2021-06-11 深圳麦克韦尔科技有限公司 雾化器和雾化装置
CN113197366A (zh) * 2021-05-28 2021-08-03 惠州市新泓威科技有限公司 防止气流通道堵塞的雾化器
CN217446666U (zh) * 2021-12-24 2022-09-20 深圳市合元科技有限公司 陶瓷加热体、雾化器以及气溶胶生成装置
CN219108740U (zh) * 2022-11-04 2023-06-02 深圳市合元科技有限公司 雾化器和电子雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203952431U (zh) * 2014-05-23 2014-11-26 深圳市合元科技有限公司 电子烟用雾化器及电子烟
US20190274356A1 (en) * 2017-08-15 2019-09-12 Shenzhen First Union Technology Co., Ltd. Atomizer and electronic cigarette having same
CN209609872U (zh) * 2019-01-25 2019-11-12 深圳市博迪科技开发有限公司 一种具有防回油功能的雾化器及电子加热装置
CN112931974A (zh) * 2021-02-10 2021-06-11 深圳麦克韦尔科技有限公司 雾化器和雾化装置
CN113197366A (zh) * 2021-05-28 2021-08-03 惠州市新泓威科技有限公司 防止气流通道堵塞的雾化器
CN217446666U (zh) * 2021-12-24 2022-09-20 深圳市合元科技有限公司 陶瓷加热体、雾化器以及气溶胶生成装置
CN219108740U (zh) * 2022-11-04 2023-06-02 深圳市合元科技有限公司 雾化器和电子雾化装置

Similar Documents

Publication Publication Date Title
ES2867854T3 (es) Atomizador y cigarrillo electrónico del mismo
CN215992753U (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023077767A1 (zh) 一种电子雾化装置及电子雾化系统
CN213819836U (zh) 雾化器及电子雾化装置
CN213604379U (zh) 电子烟雾化器及电子烟
CN216701689U (zh) 一种发热体、雾化器及电子雾化装置
WO2023077765A1 (zh) 一种电子雾化装置及电子雾化系统
CN215684777U (zh) 雾化器及电子雾化装置
CN111449300A (zh) 电子雾化装置及其雾化器和雾化组件
US20220287367A1 (en) Electronic atomization device and atomizer and atomization assembly thereof
WO2024094136A1 (zh) 雾化器和电子雾化装置
CN219108740U (zh) 雾化器和电子雾化装置
WO2024087662A1 (zh) 雾化器及气溶胶发生装置
CN217446690U (zh) 雾化器及气溶胶发生装置
CN215347043U (zh) 电子雾化装置
CN117981921A (zh) 雾化器和电子雾化装置
CN206836201U (zh) 电子烟雾化芯及电子烟
CN220712931U (zh) 雾化器及电子雾化装置
WO2023116726A1 (zh) 陶瓷加热体、雾化器以及气溶胶生成装置
CN216059231U (zh) 一种雾化装置
CN217184836U (zh) 雾化器及气溶胶发生装置
WO2023056610A1 (zh) 雾化器及电子雾化装置
CN217429250U (zh) 雾化器及气溶胶生成装置
CN220274914U (zh) 雾化器及电子雾化装置
WO2023097618A1 (zh) 雾化组件及电子雾化装置