WO2024093760A1 - 复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法 - Google Patents

复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法 Download PDF

Info

Publication number
WO2024093760A1
WO2024093760A1 PCT/CN2023/126515 CN2023126515W WO2024093760A1 WO 2024093760 A1 WO2024093760 A1 WO 2024093760A1 CN 2023126515 W CN2023126515 W CN 2023126515W WO 2024093760 A1 WO2024093760 A1 WO 2024093760A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
composite oxide
content
scavenger
sulfide
Prior art date
Application number
PCT/CN2023/126515
Other languages
English (en)
French (fr)
Inventor
刘丽
杨成敏
陈晓贞
郑步梅
尹晓莹
Original Assignee
中国石油化工股份有限公司
中石化(大连)石油化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(大连)石油化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024093760A1 publication Critical patent/WO2024093760A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the invention relates to the technical field of oil hydrogenation, and in particular to a composite oxide and a silicon scavenger, a preparation method and application thereof, and a method for treating silicon-containing oil.
  • CN201410809089.6 discloses a desiliconization catalyst for coking gasoline and a preparation method thereof .
  • the catalyst uses Al2O3 - TiO2 - B2O3 composite oxide as a carrier and Ni-Mo-W - Ce as an active component.
  • the Al2O3 - TiO2 - B2O3 carrier used has a TiO2 content of 10-20% by weight, a B2O3 content of 3%-10% by weight, and the rest is Al2O3 .
  • the NiO content in the active component is 1.2-3.9 %
  • the MoO3 content is 4.2-9.5%
  • the WO3 content is 5-15%
  • the CeO2 content is 1.5-2.5%
  • the rest is the carrier
  • the catalyst is calcined in a water vapor atmosphere, has a specific pore size and a large pore volume, can effectively adsorb and remove impurity silicon, and protect the subsequent coking gasoline main hydrorefining catalyst.
  • the oil silicon scavenger includes a carrier and hydrogenation active components, the hydrogenation active components are metal sulfides of group VIII, metal oxides of group VIB and metal oxides of group VIII; based on the total weight of the silicon scavenger, the metal sulfides of group VIII are 0.1wt%-12.2wt%, the metal oxides of group VIB are 0.5wt%-17.2wt%, the metal oxides of group VIII are 0.1wt%-9.0wt%, and the carrier is 61.6%-90.3%.
  • the preparation method comprises the following contents: (1) impregnating the silicon scavenger carrier with an impregnation liquid containing metals of group VIII, then drying, and sulfurizing the dried material; (2) impregnating the material after sulfurization in step (1) with an impregnation liquid containing metals of groups VIB and VIII, and then drying and roasting in an inert atmosphere to obtain an oil silicon scavenger.
  • the silicon capture catalyst provided in the above patent application has a certain silicon capture capacity, but the silicon capture amount and silicon capture capacity still need to be further improved.
  • the present invention provides a composite oxide and a silicon capture agent, a preparation method and application thereof, and a treatment method for silicon-containing oil products.
  • the composite oxide and silicon capture agent provided by the present invention have an increased surface hydroxyl content and an increased silicon holding capacity.
  • a first aspect of the present invention provides a composite oxide, which comprises alumina and pseudo-boehmite, wherein the pseudo-boehmite is supported on the outer surface of alumina, and the surface hydroxyl content of the composite oxide is 1000-2500 ⁇ mol/g.
  • the second aspect of the present invention provides a method for preparing a composite oxide, which comprises introducing pseudo-boehmite onto alumina and then drying to obtain the composite oxide, wherein the surface hydroxyl content of the composite oxide is 1000-2500 ⁇ mol/g.
  • the third aspect of the present invention provides a silicon scavenger, characterized in that the silicon scavenger comprises alumina, pseudo-boehmite and an active component, and the active component comprises a metal sulfide of Group VIB and a metal sulfide of Group VIII;
  • the surface hydroxyl content of the silicon scavenger is 1000-2000 ⁇ mol/g.
  • a fourth aspect of the present invention provides a method for preparing a silicon scavenger, the method comprising the following steps:
  • the fifth aspect of the present invention provides a silicon scavenger prepared by the method described in the fourth aspect.
  • the sixth aspect of the present invention provides the use of the composite oxide described in the first aspect or the silicon scavenger described in the third aspect or the fifth aspect in the treatment of silicon-containing oil products.
  • a seventh aspect of the present invention provides a method for treating a silicon-containing oil product, the method comprising: contacting the silicon-containing oil product with the composite oxide described in the first aspect or the silicon scavenger described in the third aspect or the fifth aspect under hydrogenation treatment conditions.
  • the present invention has the following advantages:
  • the composite oxide and silicon scavenger provided by the present invention contain pseudo-boehmite components, which provide abundant surface hydroxyl groups for the composite oxide and silicon scavenger, thereby improving their silicon holding capacity.
  • the Group VIB metal sulfide and the Group VIII metal sulfide are loaded on an alumina carrier, and the pseudo-boehmite is loaded on the Group VIB metal sulfide, the Group VIII metal sulfide and the alumina carrier.
  • This can increase the contact area between the pseudo-boehmite and the Group VIII metal and the Group VIB metal, improve the synergistic effect between the hydrogenation performance and the silicon capturing performance of the silicon scavenger, improve the silicon holding capacity of the silicon scavenger, and at the same time reduce the carbon deposition of the silicon scavenger to prevent the carbon deposition from occupying the silicon capturing active sites.
  • the silicon scavenger of the present invention is in a vulcanized state and does not require vulcanization treatment during use, thereby preventing temperature runaway during the vulcanization process.
  • FIG1 is an XRD spectrum of the silicon scavenger prepared in Example 1;
  • FIG2 is a SEM image of the composite alumina prepared in Example 8.
  • FIG. 3 is an XRD spectrum of the composite alumina prepared in Example 8.
  • a first aspect of the present invention provides a composite oxide, which comprises alumina and pseudo-boehmite, wherein the pseudo-boehmite is supported on the outer surface of alumina, and the surface hydroxyl content of the composite oxide is 1000-2500 ⁇ mol/g.
  • the surface hydroxyl content of the composite oxide is 1500-2000 ⁇ mol/g, for example, 1500 ⁇ mol/g, 1600 ⁇ mol/g, 1700 ⁇ mol/g, 1800 ⁇ mol/g, 1900 ⁇ mol/g, 2000 ⁇ mol/g.
  • the pseudo-boehmite is supported on the outer surface of alumina, which can be observed by SEM. As shown in FIG2 , the pseudo-boehmite particles cover the surface of alumina particles.
  • the pseudo-boehmite is supported on the outer surface of alumina without being calcined, which prevents the aggregation of pseudo-boehmite particles and causes a decrease in the surface hydroxyl content, thereby improving its silicon capacity.
  • the composite oxide provided by the invention has a higher surface hydroxyl content and better silicon-containing capacity.
  • the present invention can use FTIR (infrared spectroscopy) to analyze the hydroxyl content of the sample.
  • the FTIR test conditions include: after the sample is ground, it is pressed into a ⁇ 13mm self-supporting sheet, placed on the in-situ pool sample holder, and pre-treated. The treatment temperature was 250°C.
  • the experiment used Nicolet 6700 Fourier transform infrared spectrometer, 32 scans, 4 cm -1 resolution, 4000-650 cm -1 measurement, and MCT/A detector. All infrared experimental results were normalized according to the sample mass, and the area of the hydroxyl peak corresponding to 3670-3740 cm -1 was calculated.
  • the proportion of aluminum element is 47.3-52.8%, preferably 48.5-52%.
  • the Al content in the composite oxide can be measured by ICP, and the equipment used is OPTIMA 7000 DV atomic emission spectrometer produced by PE.
  • 0.1g of sample is dissolved in a mixed solution with a volume ratio of 3HCl: 1HNO3 , and then the mixed solution is diluted with deionized water to a certain volume so that the content of the element to be measured in the solution is between 1-10ppm, and then the measurement is performed.
  • diffraction peaks exist at 14.5° ⁇ 0.05°, 28.2° ⁇ 0.05°, and 49.2° ⁇ 0.05°.
  • the above three diffraction peaks correspond to the (020), (120), and (200) crystal planes of pseudo-boehmite, respectively.
  • the diffraction peak position " ⁇ 0.05°" represents the test error of different instruments.
  • XRD characterization is carried out using a D/max-2500 X-ray diffraction instrument from RIGAKU, Japan, with a Cu target, a K ⁇ radiation source, a graphite monochromator, a tube voltage of 20-60 kV, a tube current of 10-300 mA, a scanning range of 10°-70°, a step size of 0.01°, and a scanning rate of 1°/min.
  • the content of pseudo-boehmite is 1-50%, preferably 1-40%, more preferably 2-30%, for example, it can be 2%, 5%, 10%, 15%, 20%, 25%, 30%, and further preferably 5-15%.
  • the content of pseudo-boehmite in the composite oxide can be obtained by thermogravimetric analysis of the composite oxide, specifically, a NETZSCH STA 449 F3 thermogravimetric analyzer produced by NETZSCH, Germany, is used to program the temperature from 30°C to 800°C in an air atmosphere, the heating rate is 5°C/min, and the air flow rate is 50mL/min, the content of pseudo-boehmite is calculated according to the weight loss of the composite oxide.
  • the content of pseudo-boehmite in the composite oxide is a%/[(0.5 to 2) ⁇ 18.02%] ⁇ 100%, where the structure of pseudo-boehmite is Al 2 O 3 ⁇ (0.5-2)H 2 O.
  • the structure of pseudo-boehmite is Al 2 O 3 ⁇ (0.5-2)H 2 O.
  • Those skilled in the art can confirm the content of pseudo-boehmite according to the amount of crystal water in the pseudo-boehmite.
  • the content of pseudo-boehmite in the composite oxide can also be calculated by the weight difference before and after the introduction of pseudo-boehmite during the preparation process.
  • the specific surface area of the composite oxide is 300-450m2 /g, preferably 380-450m2 /g, for example, 380m2 /g, 390m2 /g, 400m2/g, 410m2 /g, 420m2 /g, 430m2 / g, 440m2 /g, 450m2 /g.
  • the composite oxide has an increased specific surface area and surface hydroxyl content, and has a higher silicon capacity.
  • N2 adsorption/desorption is used to analyze the specific surface area of the sample.
  • the N2 adsorption/desorption test conditions are as follows: the catalyst is loaded into a sample tube, and the ASAP 2420 nitrogen physical adsorption instrument of MICROMERITICS, USA, is used to perform N2 adsorption and desorption tests at 77K.
  • the present invention does not have any special limitation on the shape of the composite oxide, and can be adaptively selected according to the specific application scenario.
  • the particle size of the composite oxide is 0.5-5 mm, preferably 1-3.5 mm.
  • the particle size has the conventional interpretation in the art, and has slightly different interpretations according to different shapes.
  • the particle size refers to the maximum straight-line distance between any two different points on the particle;
  • the shape of the composite oxide is regular, such as cylindrical
  • the particle size refers to the diameter of its cross section, such as spherical
  • the particle size refers to its diameter, such as multi-leaf clover
  • the particle size refers to its circumscribed circle diameter.
  • the aluminum oxide there is no particular limitation on the aluminum oxide, and it can be any aluminum oxide commonly used in the art.
  • the aluminum oxide can also contain a doping element, and the doping element can be at least one of phosphorus, silicon, boron, fluorine, sodium, etc.
  • the amount of the doping element added can be a conventional amount, preferably accounting for 1:1 of the carrier mass. 0.5%-6% of the amount.
  • the second aspect of the present invention provides a method for preparing a composite oxide, which comprises introducing pseudo-boehmite onto alumina and then drying to obtain the composite oxide, wherein the surface hydroxyl content of the composite oxide is 1000-2500 ⁇ mol/g.
  • the selection range of the surface hydroxyl content, specific surface area and proportion of aluminum element of the composite oxide can be the same as that of the first aspect, and the present invention will not be repeated here.
  • the method of introducing pseudo-boehmite onto alumina comprises: in the presence of alumina, an aluminum source and a precipitant are subjected to a precipitation reaction, followed by aging and drying.
  • the aluminum source and the precipitant are mixed with alumina for a precipitation reaction, and the pseudo-boehmite obtained by the precipitation reaction can be loaded on the outer surface of alumina.
  • the amount of alumina, aluminum source and precipitant is such that the content of pseudo-boehmite in the prepared composite oxide is 1-50%, preferably 1-40%, more preferably 2-30%, and most preferably 5-15%, based on the total weight of the composite oxide.
  • the amount of alumina, aluminum source and precipitant can appropriately select according to the target pseudo-boehmite content.
  • the aluminum source of the present invention can be various aluminum sources for preparing pseudo-boehmite in the art, preferably, the aluminum source is an acidic aluminum salt or a basic aluminum salt. Those skilled in the art can appropriately select a precipitant that matches the specific type of the aluminum source.
  • the aluminum source is an acidic aluminum salt
  • the precipitant is selected from at least one of NaOH, NH 4 OH and NaAlO 2.
  • the acidic aluminum salt is selected from at least one of Al 2 (SO 4 ) 3 , AlCl 3 and Al(NO 3 ) 3 .
  • the aluminum source is a basic aluminum salt
  • the precipitant is CO 2
  • the basic aluminum salt is NaAlO 2 .
  • the aluminum source and the precipitant are each independently in the form of a solution. supply.
  • the aluminum source concentration calculated as aluminum oxide is 0.5 g/mL-10 g/mL, preferably 0.5 g/mL-2 g/mL.
  • the concentration of the precipitant is 0.5 g/mL-10 g/mL, preferably 0.5 g/mL-5 g/mL.
  • the present invention has no particular limitation on the method of introducing the aluminum source and the precipitant, and various methods conventionally used in the art may be used.
  • the aluminum source solution and the precipitant solution may be added to the alumina in parallel.
  • the conditions for the precipitation reaction can be selected in a wide range.
  • the conditions for the precipitation reaction include: pH value of 7.5-11, temperature of 50-95° C., and time of 30-120 min.
  • the present invention has a wide range of selection of aging conditions.
  • the aging conditions include: pH value of 7.5-11, temperature of 50-90°C, and time of 3-24 hours.
  • the pH of the aging reaction can be adjusted by adding acid or alkali.
  • the present invention has no particular limitation on the types of the acid and alkali, and can be various choices conventionally used in the art.
  • the steps of separating, washing and drying the aged product after the aging reaction are further included.
  • the separation may be a well-known technique in the art, such as a method of filtering or centrifugal separation.
  • the washing and drying methods may be methods commonly used in the preparation of pseudo-boehmite, for example, the washing agent may be water, and the drying may be at least one of oven drying, forced air drying, spray drying and flash drying.
  • the drying conditions include: a drying temperature of 90-300°C and a drying time of 2-12 hours.
  • the third aspect of the present invention provides a silicon scavenger, the silicon scavenger comprising alumina, pseudo-boehmite and an active component, the active component comprising a metal sulfide of Group VIB and a metal sulfide of Group VIII;
  • the surface hydroxyl content of the silicon scavenger is 1000-2000 ⁇ mol/g.
  • the surface hydroxyl content of the silicon scavenger is 1200-1800 ⁇ mol/g, for example, 1200 ⁇ mol/g, 1300 ⁇ mol/g, 1400 ⁇ mol/g, 1500 ⁇ mol/g, 1600 ⁇ mol/g, 1700 ⁇ mol/g, 1800 ⁇ mol/g.
  • the test method for the surface hydroxyl content of the silicon scavenger of the present invention is the same as described above and will not be repeated here.
  • the aluminum content is 34.8-51%, more preferably 39.1-48.6%, for example, 35%, 37%, 40%, 42%, 45%, 47%, 48%.
  • the method for testing the content of Al in the silicon scavenger is the same as described above and will not be repeated here.
  • diffraction peaks exist at 14.5° ⁇ 0.05°, 28.2° ⁇ 0.05°, and 49.2° ⁇ 0.05°.
  • the above three diffraction peaks correspond to the (020), (120), and (200) crystal planes of pseudo-boehmite, respectively.
  • the presence of pseudo-boehmite in the silicon scavenger of the present invention can be determined by XRD characterization.
  • the specific surface area of the silicon scavenger is 250-420m2 /g, more preferably 300-400m2 /g, for example, 300m2 /g, 310m2 /g, 320m2 /g, 330m2/g, 340m2 /g, 350m2 / g, 360m2 /g, 370m2 /g, 380m2 /g, 390m2 /g, 400m2 /g.
  • the silicon scavenger has an increased specific surface area and surface hydroxyl content, and has a higher silicon holding capacity.
  • the VIB group metal sulfide and the VIII group metal sulfide are loaded on an alumina carrier, and the pseudo-boehmite is loaded on the VIB group metal sulfide, the VIII group metal sulfide and the alumina carrier.
  • the use of this preferred embodiment can increase the contact surface between the pseudo-boehmite and the VIII group metal and the VIB group metal, improve the synergistic effect of the hydrogenation performance and silicon capture performance of the silicon capture agent, improve the silicon capacity of the silicon capture agent, and at the same time reduce the carbon deposition of the silicon capture agent to prevent the carbon deposition from occupying the silicon capture active site.
  • the VIB group metal sulfide and the VIII group metal sulfide are supported on an alumina carrier, and the pseudo-boehmite is supported on the VIB group metal sulfide, the VIII group metal sulfide and the alumina carrier.
  • the content of pseudo-boehmite is 3-20%, preferably 5-15%, more preferably 5-10%, for example 5%, 6%, 7%, 8%, 9%, 10%.
  • the content of pseudo-boehmite in the silicon scavenger can be obtained by thermogravimetric analysis, specifically using a NETZSCH STA 449 F3 thermogravimetric analyzer produced by NETZSCH, Germany, in an argon atmosphere.
  • the temperature is programmed to rise from 30°C to 800°C in an argon atmosphere at a heating rate of 5°C/min and an argon flow rate of 50 mL/min, and the content of pseudo-boehmite is calculated according to the weight loss of the silicon scavenger.
  • the content of pseudo-boehmite in the silicon scavenger is a%/[(0.5 to 2) ⁇ 18.02%] ⁇ 100%, where the structure of pseudo-boehmite is Al 2 O 3 ⁇ (0.5-2)H 2 O.
  • the structure of pseudo-boehmite is Al 2 O 3 ⁇ (0.5-2)H 2 O.
  • Those skilled in the art can confirm the content of pseudo-boehmite according to the amount of crystal water in the pseudo-boehmite.
  • the content of pseudo-boehmite in the silicon scavenger can also be calculated by the weight difference before and after the introduction of pseudo-boehmite during the preparation process.
  • the content of the Group VIB metal calculated as sulfide is 2-20%, preferably 5-15%, and the content of the Group VIII metal calculated as sulfide is 1-10%, preferably 2-8%.
  • the content of the Group VIB metal calculated as sulfide and the content of the Group VIII metal calculated as sulfide in the silicon scavenger are obtained by ICP testing and then converting oxides into sulfides.
  • the Group VIB metal is preferably molybdenum and/or tungsten, and the Group VIII metal is preferably nickel and/or cobalt.
  • the Group VIB metal sulfide is molybdenum sulfide (MoS 2 ) and/or tungsten sulfide (WS 2 ), and the Group VIII metal sulfide is nickel sulfide (NiS) and/or cobalt sulfide (CoS).
  • the content of the VIB group metal sulfide is 1.6-18%, more preferably 4-12%, and the content of the VIII group metal sulfide is 0.8-9%, more preferably 1.5-5%.
  • the contents of the metal sulfides of Group VIB and Group VIII in the silicon scavenger can be jointly characterized by inductively coupled plasma (ICP) and XPS spectroscopy. Specifically, the total contents of the metals of Group VIB and Group VIII in the silicon scavenger are first characterized by ICP, and then the contents of metal elements of different valence states in the silicon scavenger are quantitatively characterized by XPS spectroscopy.
  • ICP inductively coupled plasma
  • XPS spectroscopy quantitatively characterized by XPS spectroscopy.
  • the measurement conditions of the XPS spectroscopy include: the vacuum degree of the analysis chamber; ⁇ 5 ⁇ 10 -10 mbar; vacuum degree of preparation chamber ⁇ 1 ⁇ 10 -7 mbar; dual anode sensitivity 4.5 ⁇ 10 6 , energy resolution 1.0eV; monochromator sensitivity 1.4 ⁇ 10 5 , energy resolution 0.5eV.
  • XPSPEAK Version 4.0 was used to fit and separate the energy spectra of Mo3d, W4f, Co2p, and Ni2p, and the contents of metal elements of different valence states in the silicon capture agent were calculated based on the peak areas.
  • the content of aluminum oxide is 50-96%, preferably 62-88%, for example, 62%, 65%, 68%, 70%, 72%, 75%, 78%, 80%, 82%, 85%, 88%.
  • a fourth aspect of the present invention provides a method for preparing a silicon scavenger, the method comprising the following steps:
  • the impregnation method is not particularly limited, and can be equal volume impregnation or supersaturated impregnation.
  • the VIB group metal compound and the VIII group metal compound can be simultaneously introduced into the alumina support by co-impregnation, or can be introduced into the alumina support separately by step-by-step impregnation, and there is no particular limitation on the order of introduction of the two.
  • the Group VIB metal compound and the Group VIII metal compound are introduced into the alumina support by co-impregnation.
  • the method comprises impregnating the impregnation solution containing the VIB group metal compound and the VIII group metal compound into the alumina carrier, and then drying.
  • the drying conditions preferably include: temperature of 20-120°C and time of 4-16 hours.
  • the present invention has a wide range of solvents for the impregnation solution, as long as it can provide the required environment for impregnation, for example, it can be water.
  • the present invention has a wide range of selection for the types of VIB group metal compounds and Group VIII metal compounds, based on the subsequent conversion into respective metal sulfides.
  • the Group VIB metal compound is a phosphate and/or ammonium salt of a Group VIB metal; preferably, the Group VIII metal compound is selected from at least one of nitrates, carbonates, phosphates, sulfates, basic carbonates and acetates of Group VIII metals.
  • the calcination conditions in step (1) include: a calcination temperature of 300-600° C. and a calcination time of 3-6 hours.
  • the present invention has no particular limitation on the sulfurization in step (1), and can be carried out by conventional methods in the art, as long as the active metal in the oxidized hydrogenation catalyst obtained by calcination is converted into a sulfurized state.
  • a known sulfurization method can be used, and the sulfurization is preferably dry sulfurization or wet sulfurization.
  • the dry sulfurization and wet sulfurization in the present invention have conventional definitions in the art.
  • the vulcanization conditions include: vulcanization pressure of 3.2-6.4 MPa, vulcanization temperature of 250-400° C., vulcanization time of 4-12 h, and hydrogen flow rate of 2-25 mL ⁇ min -1 ⁇ g -1 .
  • the dry vulcanizing agent used in the dry vulcanization is hydrogen sulfide.
  • the sulfide gas used in the dry vulcanization includes hydrogen sulfide and hydrogen.
  • the volume content of hydrogen sulfide in the sulfide gas is 1-10%.
  • the wet vulcanizing agent used in the wet vulcanization is at least one of carbon disulfide, dimethyl disulfide, methyl sulfide and n-butyl sulfide.
  • the vulcanizing liquid used in the wet vulcanization includes the wet vulcanizing agent and an organic solvent.
  • the organic solvent is selected from at least one of cyclohexane, n-heptane, aviation kerosene and diesel.
  • the mass fraction of the wet vulcanizing agent in the vulcanizing liquid can be selected in a wide range, preferably 2%-7%, more preferably 4%-6%.
  • the flow rate of the vulcanizing liquid is preferably 0.5-5mL ⁇ h -1 ⁇ g -1 , preferably 1-4mL ⁇ h -1 ⁇ g -1 .
  • the amount of the silicon scavenger precursor, the aluminum source and the precipitant is such that the content of pseudo-boehmite in the prepared silicon scavenger is 3-20% based on the total weight of the silicon scavenger, preferably 5-15%, more preferably 5-10%.
  • the content of the pseudo-boehmite can be calculated based on the weight difference between the silicon scavenger precursor and the final silicon scavenger.
  • the amount of the alumina carrier, the VIB group metal compound and the VIII group metal compound, the aluminum source and the precipitant is such that in the prepared silicon trap, the content of the VIB group metal calculated as sulfide is 2-20%, preferably 5-15%, the content of the VIII group metal calculated as sulfide is 1-10%, preferably 2-8%, and the content of the alumina carrier is 50-96%, preferably 62-88%, based on the total weight of the silicon trap.
  • the amount of the VIB group metal compound, the VIII group metal compound, the aluminum source and the precipitant can appropriately select the amount of the VIB group metal compound, the VIII group metal compound, the aluminum source and the precipitant according to this requirement.
  • the selection range of the types of the aluminum source and the precipitant is as described in the second aspect above, and the present invention will not be repeated here.
  • the selection range of the conditions for the precipitation reaction and aging is as described in the second aspect above, and the present invention will not be repeated here.
  • the precipitation reaction and aging in step (2) are carried out under an inert atmosphere.
  • the inert atmosphere can be provided by an inert gas.
  • the inert gas includes but is not limited to at least one of nitrogen, helium, argon and neon.
  • the steps of separating, washing and drying the aged product after the aging reaction are further included.
  • the separation may be a well-known technique in the art, such as a method of filtering or centrifugal separation.
  • the washing and drying methods may be methods commonly used in the preparation of pseudo-boehmite, for example, the washing agent may be water, and the drying may be at least one of oven drying, forced air drying, spray drying and flash drying.
  • the drying conditions include: a drying temperature of 90-300°C and a drying time of 2-12 hours.
  • the fifth aspect of the present invention provides a silicon scavenger prepared by the method described in the fourth aspect.
  • the sixth aspect of the present invention provides the use of the composite oxide described in the first aspect or the silicon scavenger described in the third aspect or the fifth aspect in the treatment of silicon-containing oil products.
  • the composite oxide provided by the present invention has an improved silicon-containing capacity and is suitable for desiliconization of silicon-containing oil products.
  • the silicon-scavenging agent provided by the present invention not only has an improved silicon-containing capacity, but also has an improved hydrogenation performance, preventing carbon deposits of the silicon-scavenging agent from occupying silicon-scavenging active sites, and has a synergistic effect of improved hydrogenation performance and silicon-scavenging performance.
  • a seventh aspect of the present invention provides a method for treating a silicon-containing oil product, the method comprising: contacting the silicon-containing oil product with the composite oxide described in the first aspect or the silicon scavenger described in the third aspect or the fifth aspect under hydrogenation treatment conditions.
  • the present invention has a wide selection range for the silicone-containing oil products.
  • the treatment method provided by the present invention is applicable to the desiliconization treatment of most silicone-containing oil products.
  • the silicone-containing oil products have a silicon content of 1-1000 ⁇ g/g. It is further preferred that the silicon-containing compound in the silicone-containing oil products is selected from siloxanes and/or silanes.
  • the siloxane includes a compound containing a Si-O-Si bond, which may be chain-shaped and/or cyclic.
  • the siloxane may include but is not limited to tetramethylcyclotetrasiloxane and trimethylcyclotrisiloxane.
  • the silicon-containing oil product is selected from at least one of straight-run naphtha, straight-run diesel, jet fuel, wax oil, coking dry gas, coking naphtha and coking diesel.
  • the hydroprocessing conditions include: pressure of 2-10 MPa, reaction temperature of 220-400°C, preferably 220-350°C, hydrogen/oil volume ratio of 200-800:1, and volume space velocity of 1-10 h -1 .
  • the silicon scavenger does not need to be vulcanized before use and can be used directly.
  • the content of pseudo-boehmite is measured by thermogravimetric analysis.
  • the specific test method and conditions are as described in the specific implementation method of the present invention.
  • the surface hydroxyl content of the composite oxide and the silicon scavenger was obtained by FTIR (infrared spectroscopy).
  • FTIR infrared spectroscopy
  • the specific surface area of the sample was analyzed by N 2 -adsorption/desorption.
  • the N 2 -adsorption/desorption test conditions were as follows: the catalyst was loaded into a sample tube, and the ASAP 2420 nitrogen physical adsorption instrument from MICROMERITICS, USA, was used to perform N 2 adsorption and desorption tests at 77K.
  • the contents of Group VIB metal sulfides and Group VIII metal sulfides in the silicon scavenger can be jointly characterized by inductively coupled plasma ICP and XPS energy spectrum.
  • the specific test methods and conditions are described in the specific implementation method of the present invention.
  • the XRD spectrum of silicon scavenger C-1 is shown in FIG1 , which has diffraction peaks at 14.5°, 28.2°, and 49.2°, and the three diffraction peaks correspond to the (020), (120), and (200) crystal planes of pseudo-boehmite, respectively.
  • the impregnation solution containing ammonium metatungstate and nickel nitrate was impregnated into an alumina carrier (the carrier shape was spherical and the particle size was 1.8 mm) in equal volumes, dried at 120°C for 4 hours, calcined at 500°C for 3 hours, and then
  • the catalyst precursor was obtained by sulfurization treatment with hydrogen containing 2.5 volume % H 2 S at a sulfurization temperature of 360° C., a sulfurization pressure of 4.2 MPa, and a sulfurization time of 4 h, and then cooled to room temperature in a N 2 atmosphere.
  • Example 1 The method of Example 1 is followed, except that in step (1), no sulfidation treatment is performed, and in step (2), sulfidation treatment is performed after pseudo-boehmite is loaded.
  • the sulfidation conditions are: sulfidation treatment is performed using aviation kerosene containing 3% carbon disulfide, the sulfidation temperature is 360°C, the sulfidation pressure is 4.0 MPa, and the sulfidation time is 6 hours, thereby obtaining a comparative silicon capture agent DC-1.
  • Example 1 The method of Example 1 is followed, except that a calcination process is added after drying in step (2), and the calcination conditions are 450° C. in a nitrogen atmosphere for 3 hours to obtain a comparative silicon capture agent DC-2.
  • Example 1 The method of Example 1 is followed, except that step (2) is not included, to obtain a comparative silicon capture agent DC-3.
  • the amounts of MoS 2 , WS 2 , NiS and CoS in Table 2 refer to the contents of Group VIB metal sulfides and Group VIII metal sulfides based on the total weight of the silicon scavenger.
  • This test example is used to illustrate the silicon scavenging activity of the silicon scavenger provided by the present invention on coker naphtha.
  • the raw oil used for evaluation is coking naphtha provided by a refinery of Sinopec, and its main properties are as follows: sulfur content is 3442 ⁇ g/g, nitrogen content is 89 ⁇ g/g, initial distillation point is 90°C, final distillation point is 220°C, density is 0.7982g/ cm3 , silicide types are tetramethylcyclotetrasiloxane and trimethylcyclotrisiloxane, and the silicon content is 125 ⁇ g/g in terms of Si.
  • a 200mL fixed bed hydrogenation device was used to evaluate the hydrogenation performance and silicon capture capacity of silicon capture agents C-1 to C-7 and comparative silicon capture agents DC-1 to DC-3, and the loading amount of the silicon capture agent was 50mL.
  • the evaluation reaction conditions are: operating pressure 3.0MPa, reaction temperature 250°C, hydrogen/oil volume ratio 200:1, volume space velocity 5.0h -1 , and the hydrodesulfurization, hydrodenitrogenation and desiliconization rates of the silicon scavenger after 50h of operation are shown in Table 3.
  • the silicon scavenger was operated for 300h, the silicon scavenger was unloaded and then calcined at 500°C in air atmosphere for 3h.
  • the SiO 2 content in the silicon scavenger was analyzed by XRF, and the evaluation results are shown in Table 4.
  • the calculation method of silicon content is (SiO 2 content tested by XRF)/(1-(SiO 2 content tested by XRF))*100.
  • the silicon trapping agent of the present invention has high hydrodesulfurization and denitrification activities, and also has high desiliconization and silicon containing capacity.
  • Aluminum sulfate solution (with an aluminum oxide content of 0.9 g/mL) and sodium aluminate solution (with an aluminum oxide content of 0.9 g/mL) were added simultaneously into alumina (cylindrical in shape, with a particle size (cross-sectional diameter) of 1.5 mm), and the temperature was controlled at 70°C and the pH value was 8.5. A coprecipitation reaction occurred for 50 minutes, and aging was continued at 70°C and pH value of 8.5 for 4 hours. After filtration and washing, the composite oxide AO-1 was obtained by drying at 110°C for 3 hours.
  • the SEM of composite oxide AO-1 is shown in FIG2 , from which it can be seen that pseudo-boehmite particles cover the surface of alumina particles.
  • the XRD pattern of the composite oxide AO-1 is shown in FIG3 .
  • the composite oxide has diffraction peaks at 14.5°, 28.2°, and 49.2°, and the three diffraction peaks correspond to the (020), (120), and (200) crystal planes of pseudo-boehmite, respectively.
  • Aluminum nitrate solution (with an aluminum oxide content of 1.0 g/mL) and sodium aluminate solution (with an aluminum oxide content of 0.9 g/mL) were added to alumina (same as in Example 8) in parallel, and the temperature was controlled to 80°C and the pH value was 7.5. A coprecipitation reaction occurred for 60 minutes, and aging was continued at 80°C and pH 8.0 for 2 hours. After filtering and washing, the composite oxide AO-2 was obtained by drying at 110°C for 3 hours.
  • Aluminum sulfate solution (wherein the aluminum oxide content is 1.8 g/mL) and sodium hydroxide solution are added to aluminum oxide (same as in Example 8) in parallel, and the temperature is controlled to be 70°C and the pH value is 7.5. The coprecipitation reaction occurs for 90 minutes, and aging is continued at 70°C and pH value is 8.0 for 2 hours. After filtering and washing, it is dried at 110°C for 3 hours. Composite oxide AO-3 was obtained.
  • This test example is used to illustrate the silicon-capturing activity of the composite oxide provided by the present invention on silicide.
  • the raw oil used for evaluation is refined naphtha mixed with tetramethylcyclosiloxane, with a sulfur content of 0.6 ⁇ g/g, a nitrogen content of 0.3 ⁇ g/g, an initial boiling point of 90°C, a final boiling point of 200°C, a density of 0.7312g/ cm3 , and a silicon content of 125 ⁇ g/g in terms of Si.
  • a 200mL fixed bed hydrogenation device was used to evaluate the silicon capture capacity of composite oxides AO-1 to AO-3, and the loading amount of the composite oxides was 50mL.
  • the evaluation reaction conditions are: operating pressure 3.0MPa, reaction temperature 250°C, hydrogen/oil volume ratio 200:1, volume space velocity 5.0h -1 , after running for 300h, the composite oxide is unloaded, and then calcined at 500°C in air atmosphere for 3h, and the SiO 2 content in the composite oxide is analyzed by XRF, and the evaluation results are shown in Table 6.
  • the calculation method of silicon content is (SiO 2 content tested by XRF)/(1-(SiO 2 content tested by XRF))*100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及油品加氢技术领域,公开了一种复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法,所述复合氧化物包括氧化铝和拟薄水铝石,所述拟薄水铝石负载于氧化铝外表面,复合氧化物的表面羟基含量为1000-2500μmol/g。所述捕硅剂包括氧化铝、拟薄水铝石和活性组分,所述活性组分包括第VIB族金属硫化物和第VIII族金属硫化物;所述捕硅剂的表面羟基含量为1000-2000μmol/g。本发明提供的复合氧化物和捕硅剂具有提高的表面羟基含量,具有提高的容硅能力。

Description

复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法
相关申请的交叉引用
本申请要求2022年10月31日提交的中国专利申请202211345464.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及到油品加氢技术领域,具体涉及一种复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法。
背景技术
目前,仍有大量的延迟焦化装置处理重质劣质油,在处理过程中会用到消泡剂,导致焦化干气、焦化石脑油、焦化柴油等产物中含有一定量的硅,而硅对焦化产物后续处理的催化剂造成中毒,导致催化剂的永久性失活。因此,焦化干气、焦化石脑油、焦化柴油等加氢处理过程都需要装填捕硅催化剂。
CN201410809089.6公开了一种焦化汽油脱硅催化剂及其制备方法。该催化剂以Al2O3-TiO2-B2O3复合氧化物为载体,以Ni-Mo-W-Ce为活性组分。所使用的Al2O3-TiO2-B2O3载体,按重量百分比计TiO2含量为10~20%,B2O3含量为3%~10%,其余为Al2O3。按催化剂的重量百分比计,其活性组分中NiO含量为1.2~3.9%,MoO3含量为4.2~9.5%,WO3含量为5~15%,CeO2含量为1.5~2.5%,其余为载体;该催化剂在水蒸气的氛围中焙烧,具备特定孔径、较大孔容,能有效的吸附脱除杂质硅,保护后续的焦化汽油主加氢精制催化剂。
CN201911020775.4公开了一种油品捕硅剂及其制备方法。油品捕硅剂包括载体 和加氢活性组分,加氢活性组分为第VIII族金属硫化物、第VIB族金属氧化物和第VIII族金属氧化物;以捕硅剂的总重量为基准,第VIII族金属硫化物为0.1wt%-12.2wt%,第VIB族金属氧化物为0.5wt%-17.2wt%,第VIII族金属氧化物计为0.1wt%-9.0wt%,载体为61.6%~90.3%。制备方法包括如下内容:(1)用含第VIII族金属的浸渍液浸渍捕硅剂载体,然后干燥处理,干燥后的物料进行硫化处理;(2)用含第VIB族和第族金属的浸渍液浸渍到步骤(1)硫化后的物料,然后在惰性气氛下,进行干燥和焙烧,得到油品捕硅剂。
上述专利申请提供的捕硅催化剂具有一定的捕硅能力,但捕硅量和捕硅能力仍需要进一步提高。
发明内容
为了克服现有捕硅催化剂的捕硅量和捕硅能力仍需要进一步提高的问题,本发明提供一种复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法,本发明提供的复合氧化物和捕硅剂具有提高的表面羟基含量,具有提高的容硅能力。
本发明第一方面提供一种复合氧化物,该复合氧化物包括氧化铝和拟薄水铝石,所述拟薄水铝石负载于氧化铝外表面,复合氧化物的表面羟基含量为1000-2500μmol/g。
本发明第二方面提供一种复合氧化物的制备方法,该方法包括将拟薄水铝石引入至氧化铝上,然后进行干燥得到复合氧化物,所述复合氧化物的表面羟基含量为1000-2500μmol/g。
本发明第三方面提供一种捕硅剂,其特征在于,所述捕硅剂包括氧化铝、拟薄水铝石和活性组分,所述活性组分包括第VIB族金属硫化物和第VIII族金属硫化物;
所述捕硅剂的表面羟基含量为1000-2000μmol/g。
本发明第四方面提供一种捕硅剂的制备方法,该方法包括以下步骤:
(1)通过浸渍法向氧化铝载体引入第VIB族金属化合物和第VIII族金属化合物,然后进行焙烧和硫化,得到捕硅剂前驱体;
(2)在所述捕硅剂前驱体的存在下,将铝源和沉淀剂进行沉淀反应,然后进行老化、干燥。
本发明第五方面提供上述第四方面所述方法制得的捕硅剂。
本发明第六方面提供上述第一方面所述复合氧化物或者第三方面或第五方面所述捕硅剂在含硅油品的处理中的应用。
本发明第七方面提供一种含硅油品的处理方法,该方法包括:在加氢处理条件下,将含硅油品与上述第一方面所述复合氧化物或者第三方面或第五方面所述捕硅剂接触。
与现有技术相比,本发明具有如下优势:
(1)本发明提供的复合氧化物、捕硅剂中含有拟薄水铝石组分,为复合氧化物、捕硅剂提供丰富的表面羟基,从而提高其容硅能力。
(2)优选情况下,本发明的捕硅剂中第VIB族金属硫化物和第VIII族金属硫化物负载于氧化铝载体上,拟薄水铝石负载于第VIB族金属硫化物、第VIII族金属硫化物和氧化铝载体上,可以提高拟薄水铝石与第VIII族金属、第VIB族金属之间的接触面,提高捕硅剂的加氢性能与捕硅性能的协同作用,提高捕硅剂的容硅能力,同时还可以降低捕硅剂的积碳,防止积碳占据捕硅活性位。
(3)本发明的捕硅剂为硫化状态,在使用过程中不需要硫化处理,防止硫化过程的飞温。
附图说明
图1为实施例1制备的捕硅剂的XRD谱图;
图2为实施例8制备的复合氧化铝的SEM图;
图3为实施例8制备的复合氧化铝的XRD谱图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,除非另有其他明确说明,否则百分比、百分含量均以质量计。
本发明第一方面提供一种复合氧化物,该复合氧化物包括氧化铝和拟薄水铝石,所述拟薄水铝石负载于氧化铝外表面,复合氧化物的表面羟基含量为1000-2500μmol/g。
优选地,复合氧化物的表面羟基含量为1500-2000μmol/g,例如为1500μmol/g、1600μmol/g、1700μmol/g、1800μmol/g、1900μmol/g、2000μmol/g。
本发明所述复合氧化物中,所述拟薄水铝石负载于氧化铝外表面可以通过SEM观察得到。如图2所示,拟薄水铝石颗粒覆盖在氧化铝颗粒表面。
本发明提供的复合氧化物中,所述拟薄水铝石负载于氧化铝外表面后,不经过焙烧,防止了拟薄水铝石颗粒的聚集造成表面羟基含量的降低,从而提高其容硅能力。
本发明提供的复合氧化物具有较高表面羟基含量,具有更好的容硅能力。
本发明可以采用FTIR(红外光谱)分析样品的羟基含量,所述的FTIR的测试条件包括:样品经研磨后,压制成Φ13mm的自支撑片,放到原位池样品架上,预处 理温度为250℃。实验采用Nicolet 6700傅里叶变换红外光谱仪,扫描次数32次,分辨率4cm-1,4000-650cm-1测量,检测器为MCT/A。根据样品质量对所有红外实验结果进行归一化处理,计算3670-3740cm-1对应的羟基峰的面积。
优选地,以复合氧化物的总重量为基准,铝元素所占的比例为47.3-52.8%,优选为48.5-52%。
在本发明中,复合氧化物中的Al元素含量可以通过ICP测得,所用设备为PE公司生产OPTIMA 7000 DV型原子发射光谱仪。将0.1g样品溶解在体积比为3HCl:1HNO3的混合溶液中,后将混合溶液用去离子水稀释至某一体积,使溶液中待测元素的含量在1-10ppm之间,然后进行测定。
根据本发明,优选地,所述复合氧化物的XRD谱图中,在14.5°±0.05°、28.2°±0.05°、49.2°±0.05°存在衍射峰。本发明中,上述三个衍射峰分别对应拟薄水铝石的(020)、(120)、(200)晶面。需要说明的是,XRD谱图中,衍射峰位置“±0.05°”表示的是不同仪器的测试误差。
本发明所述复合氧化物中的拟薄水铝石的存在可以通过XRD表征确定。
在本发明中,XRD表征采用日本RIGAKU公司的D/max-2500X射线衍射仪器,Cu靶,Kα辐射源,石墨单色器,管电压为20-60kV,管电流为10-300mA,在扫描范围10°-70°,步长0.01°,扫描速率1°/min的条件下进行。
根据本发明的一种优选实施方式,以复合氧化物总重量为基准,拟薄水铝石含量为1-50%,优选为1-40%,更优选为2-30%,例如可以为2%、5%、10%、15%、20%、25%、30%,进一步优选为5-15%。
在本发明中,所述复合氧化物中,拟薄水铝石的含量可以根据复合氧化物的热重分析方法测试得到,具体地采用德国耐驰生产的NETZSCH STA 449 F3热重分析仪器,在空气气氛中从30℃程序升温至800℃,升温速率为5℃/min,空气流速为 50mL/min,根据复合氧化物的失重量计算拟薄水铝石的含量。例如,复合氧化物的失重量为a%,那么复合氧化物中的拟薄水铝石含量为a%/[(0.5至2)×18.02%]×100%,这里拟薄水铝石的结构为Al2O3·(0.5-2)H2O。本领域技术人员可以根据拟薄水铝石中结晶水的量确认拟薄水铝石的含量。
在本发明中,所述复合氧化物中,拟薄水铝石的含量还可以通过制备过程中拟薄水铝石引入前后重量差计算得到。
根据本发明的一种优选实施方式,所述复合氧化物的比表面积为300-450m2/g,优选为380-450m2/g,例如为380m2/g、390m2/g、400m2/g、410m2/g、420m2/g、430m2/g、440m2/g、450m2/g。在该种优选实施方式下,复合氧化物具有提高的比表面积和表面羟基含量,具有更高的容硅能力。
在本发明中,采用N2-吸附/脱附分析样品的比表面积,所述N2-吸附/脱附测试条件:催化剂装到样品管中,采用美国MICROMERITICS公司的ASAP 2420氮气物理吸附仪,在77K温度下进行N2吸附和脱附测试。
本发明对所述复合氧化物的形状没有特别的限定,可以根据具体应用场景进行适应性选择。优选地,所述复合氧化物的粒径为0.5-5mm,优选为1-3.5mm。在本发明中,所述粒径具有本领域的常规释义,根据不同形状具有略有不同的释义,例如所述复合氧化物的形状为不规则形状时,所述粒径是指颗粒上的任意两个不同点之间的最大直线距离;所述复合氧化物的形状为规则形状,例如为圆柱形时,粒径指的是其横截面的直径,例如为球形时,所述粒径指其直径,例如为多叶草形时,所述粒径指其外接圆直径。
本发明中,对所述氧化铝没有特别的限定,可以为本领域常规使用的各种氧化铝。所述氧化铝中还可以含有掺杂元素,所述掺杂元素例如可以为磷、硅、硼、氟、钠等元素中的至少一种。所述掺杂元素的添加量可以为常规添加量,优选占载体质 量的0.5%-6%。
本发明第二方面提供一种复合氧化物的制备方法,该方法包括将拟薄水铝石引入至氧化铝上,然后进行干燥得到复合氧化物,所述复合氧化物的表面羟基含量为1000-2500μmol/g。
根据本发明提供的方法,所述复合氧化物的表面羟基含量、比表面积以及铝元素所占的比例的选择范围可以同第一方面,本发明在此不再赘述。
根据本发明的一种优选实施方式,将拟薄水铝石引入至氧化铝上的方法包括:在氧化铝存在下,将铝源和沉淀剂进行沉淀反应,然后进行老化、干燥。在该种优选实施方式下,将铝源和沉淀剂与氧化铝混合进行沉淀反应,能够将沉淀反应得到的拟薄水铝石负载于氧化铝外表面。
优选地,所述氧化铝、铝源和沉淀剂的用量使得制得的复合氧化物中,以复合氧化物的总重量为基准,拟薄水铝石含量为1-50%,优选为1-40%,更优选为2-30%,最优选为5-15%。本领域技术人员可以根据目标拟薄水铝石含量适当选择氧化铝、铝源和沉淀剂的用量。
本发明所述铝源可以为本领域制备拟薄水铝石的各种铝源,优选地,所述铝源为酸性铝盐或碱性铝盐。本领域技术人员可以根据铝源的具体种类,适当选择与之匹配的沉淀剂。
优选地,所述铝源为酸性铝盐,沉淀剂选自NaOH、NH4OH和NaAlO2中的至少一种。进一步优选地,所述酸性铝盐选自Al2(SO4)3、AlCl3和Al(NO3)3中的至少一种。
优选地,所述铝源为碱性铝盐,沉淀剂为CO2。进一步优选地,所述的碱性铝盐为NaAlO2
根据本发明的一种具体实施方式,所述铝源和沉淀剂各自独立地以溶液的形式 提供。
优选地,铝源溶液中,以氧化铝计的铝源浓度为0.5g/mL-10g/mL,优选为0.5g/mL-2g/mL。
优选地,沉淀剂溶液中,沉淀剂浓度为0.5g/mL-10g/mL,优选为0.5g/mL-5g/mL。
本发明对所述铝源和沉淀剂引入的方式没有特别的限定,可以为本领域常规使用的各种方式,例如,可以为将铝源溶液和沉淀剂溶液以并流方式加入到氧化铝中。
本发明中,对所述沉淀反应的条件选择范围较宽,优选地,所述沉淀反应的条件包括:pH值为7.5-11,温度为50-95℃,时间为30-120min。
本发明对所述老化的条件选择范围较宽,优选地,所述老化的条件包括:pH值为7.5-11,温度为50-90℃,时间为3-24小时。在本发明中,所述老化反应的pH可以通过加入酸或碱调节老化反应的pH,本发明对所述酸、碱的种类没有特别的限定,可以为本领域常规使用的各种选择。
根据本发明提供的方法,优选还包括在老化反应后,对老化产物进行分离、洗涤和干燥的步骤。所述分离可以为本领域的公知技术,如过滤或离心分离的方法。所述洗涤和干燥的方法可以为制备拟薄水铝石中常用的方法,例如,所述洗涤用剂可以为水,所述干燥可以为烘干、鼓风干燥、喷雾干燥和闪蒸干燥中的至少一种。优选地,干燥条件包括:干燥温度为90-300℃,干燥时间为2-12小时。
本发明第三方面提供一种捕硅剂,所述捕硅剂包括氧化铝、拟薄水铝石和活性组分,所述活性组分包括第VIB族金属硫化物和第VIII族金属硫化物;
所述捕硅剂的表面羟基含量为1000-2000μmol/g。
优选地,所述捕硅剂的表面羟基含量为1200-1800μmol/g,例如为1200μmol/g、1300μmol/g、1400μmol/g、1500μmol/g、1600μmol/g、1700μmol/g、1800μmol/g。本发明所述捕硅剂的表面羟基含量的测试方法同上文所述,在此不再赘述。
根据本发明,优选地,以捕硅剂的总重量为基准,铝元素含量为34.8-51%,进一步优选为39.1-48.6%,例如为35%、37%、40%、42%、45%、47%、48%。在本发明中,所述捕硅剂中Al元素的含量测试方法同上文所述,在此不再赘述。
根据本发明,优选地,所述捕硅剂的XRD谱图中,在14.5°±0.05°、28.2°±0.05°、49.2°±0.05°存在衍射峰。同样的,上述三个衍射峰分别对应拟薄水铝石的(020)、(120)、(200)晶面。本发明所述捕硅剂中的拟薄水铝石的存在可以通过XRD表征确定。
优选地,所述捕硅剂的比表面积为250-420m2/g,进一步优选为300-400m2/g,例如为300m2/g、310m2/g、320m2/g、330m2/g、340m2/g、350m2/g、360m2/g、370m2/g、380m2/g、390m2/g、400m2/g。在该种优选实施方式下,捕硅剂具有提高的比表面积和表面羟基含量,具有更高的容硅能力。
根据本发明的一种优选实施方式,所述第VIB族金属硫化物和第VIII族金属硫化物负载于氧化铝载体上,所述拟薄水铝石负载于第VIB族金属硫化物、第VIII族金属硫化物和氧化铝载体上。采用该种优选实施方式可以提高拟薄水铝石与第VIII族金属、第VIB族金属之间的接触面,提高捕硅剂的加氢性能与捕硅性能的协同作用,提高捕硅剂的容硅能力,同时还可以降低捕硅剂的积碳,防止积碳占据捕硅活性位。
所述第VIB族金属硫化物和第VIII族金属硫化物负载于氧化铝载体上,所述拟薄水铝石负载于第VIB族金属硫化物、第VIII族金属硫化物和氧化铝载体上。
根据本发明,优选地,以捕硅剂的总重量为基准,拟薄水铝石含量为3-20%,优选为5-15%,更优选为5-10%,例如为5%、6%、7%、8%、9%、10%。
在本发明中,所述捕硅剂中,拟薄水铝石的含量可以根据热重分析方法测试得到,具体地采用德国耐驰生产的NETZSCH STA 449 F3热重分析仪器,在氩气气 氛中从30℃程序升温至800℃,升温速率为5℃/min,氩气流速为50mL/min,根据捕硅剂的失重量计算拟薄水铝石的含量。例如,捕硅剂的失重量为a%,那么捕硅剂中的拟薄水铝石含量为a%/[(0.5至2)×18.02%]×100%,这里拟薄水铝石的结构为Al2O3·(0.5-2)H2O。本领域技术人员可以根据拟薄水铝石中结晶水的量确认拟薄水铝石的含量。
在本发明中,所述捕硅剂中,拟薄水铝石的含量还可以通过制备过程中拟薄水铝石引入前后重量差计算得到。
根据本发明,优选地,以捕硅剂的总重量为基准,以硫化物计的第VIB族金属的含量为2-20%,优选为5-15%,以硫化物计的第VIII族金属的含量为1-10%,优选为2-8%。
在本发明中,所述捕硅剂中,以硫化物计的第VIB族金属的含量和以硫化物计的第VIII族金属的含量通过ICP测试然后从氧化物换算为硫化物得到。
本发明中,所述第VIB族金属优选为钼和/或钨,所述第VIII族金属优选为镍和/或钴。
优选地,所述第VIB族金属硫化物为硫化钼(MoS2)和/或硫化钨(WS2),第VIII族金属硫化物为硫化镍(NiS)和/或硫化钴(CoS)。
根据本发明的一种优选实施方式,以捕硅剂的总重量为基准,第VIB族金属硫化物的含量为1.6-18%,进一步优选为4-12%,第VIII族金属硫化物的含量为0.8-9%,进一步优选为1.5-5%。
所述捕硅剂中,第VIB族金属硫化物和第VIII族金属硫化物的含量通过电感耦合等离子体ICP和XPS能谱可联合表征得到,具体地,首先通过ICP表征出捕硅剂中第VIB族金属的总含量和第VIII族金属的总含量,然后通过XPS能谱仪定量表征捕硅剂中不同价态金属元素的含量。所述XPS能谱的测量条件包括:分析室真空度 ≤5×10-10mbar;制备室真空度≤1×10-7mbar;双阳极灵敏度4.5×106,能量分辨1.0eV;单色器灵敏度1.4×105,能量分辨0.5eV。采用XPSPEAK Version 4.0分别对Mo3d、W4f、Co2p、Ni2p能谱进行拟合分峰,并且根据峰面积计算得到捕硅剂中不同价态金属元素的含量。
根据本发明,以捕硅剂的总重量为基准,氧化铝的含量为50-96%,优选为62-88%,例如为62%、65%、68%、70%、72%、75%、78%、80%、82%、85%、88%。
本发明第四方面提供一种捕硅剂的制备方法,该方法包括以下步骤:
(1)通过浸渍法向氧化铝载体引入第VIB族金属化合物和第VIII族金属化合物,然后进行焙烧和硫化,得到捕硅剂前驱体;
(2)在所述捕硅剂前驱体的存在下,将铝源和沉淀剂进行沉淀反应,然后进行老化、干燥。
在本发明提供的方法中,对所述浸渍法没有特别的限定,可以为等体积浸渍,也可以为过饱和浸渍。所述第VIB族金属化合物和第VIII族金属化合物可以通过共浸渍同时引入氧化铝载体,也可以通过分步浸渍,分别引入氧化铝载体,对二者引入的顺序没有特别的限定。
优选地,所述第VIB族金属化合物和第VIII族金属化合物通过共浸渍引入氧化铝载体。
根据本发明提供的方法,优选地,该方法包括将含有第VIB族金属化合物和第VIII族金属化合物的浸渍液浸渍于氧化铝载体,然后进行干燥。所述干燥的条件优选包括:温度为20-120℃,时间为4-16小时。
其中,浸渍液配制方法为本领域技术人员熟知。
本发明对浸渍液中的溶剂选择范围较宽,只要能够提供浸渍所需环境即可,例如可以为水。
本发明对VIB族金属化合物和第VIII族金属化合物的种类选择范围较宽,以后续能够转化为各自的金属硫化物为基准,优选地,所述的第VIB族金属化合物为第VIB族金属的磷酸盐和/或铵盐;优选地,所述第VIII族金属化合物选自第VIII族金属的硝酸盐、碳酸盐、磷酸盐、硫酸盐、碱式碳酸盐和醋酸盐中的至少一种。
优选地,步骤(1)所述焙烧的条件包括:焙烧温度为300-600℃,焙烧时间为3-6小时。
本发明对步骤(1)所述硫化没有特别的限定,可以采用本领域常规方法进行,只要使焙烧得到的氧化态加氢催化剂中的活性金属转化为硫化态即可,可采用公知的硫化方法,优选所述硫化为干法硫化或湿法硫化。本发明所述干法硫化、湿法硫化具有本领域常规释义。
优选地,所述硫化的条件包括:硫化压力为3.2-6.4MPa,硫化温度为250-400℃,硫化时间为4-12h,氢气的流量为2-25mL·min-1·g-1
根据本发明的一种优选实施方式,所述干法硫化采用的干法硫化剂为硫化氢。具体地,所述干法硫化采用的硫化气包括硫化氢和氢气。优选地,硫化气中,硫化氢的体积含量为1-10%。
根据本发明的一种优选实施方式,所述湿法硫化采用的湿法硫化剂为二硫化碳、二甲基二硫醚、甲基硫醚和正丁基硫醚中的至少一种。具体地,所述湿法硫化采用的硫化液包括所述湿法硫化剂和有机溶剂。优选地,所述有机溶剂选自环己烷、正庚烷、航空煤油和柴油中的至少一种。对所述硫化液中湿法硫化剂的质量分数选择范围较宽,优选为2%-7%,更优选为4%-6%。优选硫化液的流量为0.5-5mL·h-1·g-1,优选1-4mL·h-1·g-1
根据本发明的一种优选实施方式,所述捕硅剂前驱体、铝源和沉淀剂的用量使得制得的捕硅剂中,以捕硅剂的总重量为基准,拟薄水铝石含量为3-20%,优选为 5-15%,更优选为5-10%。根据本发明提供的方法,所述拟薄水铝石的含量可以根据捕硅剂前驱体和最后制得的捕硅剂的重量差计算得到。
根据本发明的一种优选实施方式,所述氧化铝载体、第VIB族金属化合物和第VIII族金属化合物以及铝源和沉淀剂的用量使得制得的捕硅剂中,以捕硅剂的总重量为基准,以硫化物计的第VIB族金属的含量为2-20%,优选为5-15%,以硫化物计的VIII族金属的含量为1-10%,优选为2-8%,氧化铝载体的含量为50-96%,优选为62-88%。本领域技术人员根据该要求,可以适当选择第VIB族金属化合物、第VIII族金属化合物、铝源和沉淀剂的用量。
在本发明提供的捕硅剂的制备方法中,所述铝源和沉淀剂的种类的选择范围如上文第二方面所述,本发明在此不再赘述。
在本发明提供的捕硅剂的制备方法中,所述沉淀反应和老化的条件选择范围如上文第二方面所述,本发明在此不再赘述。
优选地,所述步骤(2)所述沉淀反应和老化在惰性气氛下进行。所述惰性气氛可以由惰性气体提供。在本发明中,所述惰性气体包括但不限于氮气、氦气、氩气和氖气中的至少一种。
根据本发明提供的方法,优选还包括在老化反应后,对老化产物进行分离、洗涤和干燥的步骤。所述分离可以为本领域的公知技术,如过滤或离心分离的方法。所述洗涤和干燥的方法可以为制备拟薄水铝石中常用的方法,例如,所述洗涤用剂可以为水,所述干燥可以为烘干、鼓风干燥、喷雾干燥和闪蒸干燥中的至少一种。优选地,干燥条件包括:干燥温度为90-300℃,干燥时间为2-12小时。
本发明第五方面提供上述第四方面所述方法制得的捕硅剂。
本发明第六方面提供上述第一方面所述复合氧化物或者第三方面或第五方面所述捕硅剂在含硅油品的处理中的应用。
本发明提供的复合氧化物具有提高的容硅能力,适用于含硅油品的脱硅处理。本发明提供的捕硅剂不但具有提高的容硅能力,还具有提高的加氢性能,防止捕硅剂的积碳占据捕硅活性位,具有提高的加氢性能与捕硅性能的协同作用。
本发明第七方面提供一种含硅油品的处理方法,该方法包括:在加氢处理条件下,将含硅油品与上述第一方面所述复合氧化物或者第三方面或第五方面所述捕硅剂接触。
本发明对所述含硅油品的选择范围较宽,本发明提供的处理方法适用于多数含硅油品的脱硅处理,优选地,所述含硅油品中,硅含量为1-1000μg/g,进一步优选所述含硅油品中的含硅化合物选自硅氧烷、和/或硅烷。
在本发明中,所述硅氧烷包括含有Si-O-Si键的化合物,其可以为链状和/或环状。所述硅氧烷可以包括但不限于四甲基环四硅氧烷、三甲基环三硅氧烷。
优选地,所述含硅油品选自直馏石脑油、直馏柴油、航煤、蜡油、焦化干气、焦化石脑油和焦化柴油中的至少一种。
根据本发明的一种优选实施方式,所述加氢处理条件包括:压力为2-10MPa,反应温度为220-400℃,优选为220-350℃,氢/油体积比为200-800:1,体积空速为1-10h-1
根据本发明,所述捕硅剂在使用前,无需硫化,可以直接使用。
下面结合实施例及对比例来进一步说明本发明方法的制备过程和产品性能,但以下实施例不构成对本发明方法的限制。
以下实施例和对比例中,拟薄水铝石的含量通过热重分析法测试得到,具体测试方法和条件如本发明具体实施方式部分所述。
复合氧化物和捕硅剂的表面羟基含量采用FTIR(红外光谱)分析得到,具体测 试方法和条件如本发明具体实施方式部分所述。
各元素含量分析通过ICP测得,具体测试方法和条件如本发明具体实施方式部分所述。
采用N2-吸附/脱附分析样品的比表面积,所述N2-吸附/脱附测试条件:催化剂装到样品管中,采用美国MICROMERITICS公司的ASAP 2420氮气物理吸附仪,在77K温度下进行N2吸附和脱附测试。
捕硅剂中,第VIB族金属硫化物和第VIII族金属硫化物的含量通过电感耦合等离子体ICP和XPS能谱可联合表征得到,具体测试方法和条件如本发明具体实施方式部分所述。
实施例1
(1)将含七钼酸铵和硝酸镍的浸渍液,等体积浸渍到氧化铝载体(载体形状为圆柱型,粒径(横截面直径)为1.5mm),浸渍后在110℃干燥3小时,400℃焙烧3小时,然后采用含有1.5体积%H2S的氢气进行硫化处理,硫化温度为330℃,硫化压力为3.2MPa,硫化时间为5h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硫酸铝溶液(其中氧化铝含量为0.9g/mL)和偏铝酸钠溶液(其中氧化铝含量为0.9g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为70℃,pH值为8.5,发生共沉淀反应30min,继续在70℃、pH值为8.5条件下老化4小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中110℃干燥3小时得到捕硅剂C-1。
捕硅剂中各组分含量、比表面积和表面羟基含量列于表1和表2。
捕硅剂C-1的XRD谱图如图1所示,其在14.5°、28.2°、49.2°存在衍射峰,三个衍射峰分别对应拟薄水铝石的(020)、(120)、(200)晶面。
实施例2
(1)将含七钼酸铵和硝酸钴的浸渍液,等体积浸渍到氧化铝载体(载体形状为圆柱型,粒径(横截面直径)为2.0mm),浸渍后在120℃干燥5小时,450℃焙烧4小时,然后采用含有1.5体积%H2S的氢气进行硫化处理,硫化温度为340℃,硫化压力为3.6MPa,硫化时间为5h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硫酸铝溶液(其中氧化铝含量为1.2g/mL)和氢氧化钠溶液并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.5,发生共沉淀反应90min,继续在80℃、pH值为8.5条件下老化4小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中100℃干燥4小时得到捕硅剂C-2。
实施例3
(1)将含七钼酸铵、硝酸镍和硝酸钴的浸渍液,等体积浸渍到氧化铝载体(载体形状为三叶草型,粒径(外接圆直径)为1.5mm),浸渍后在120℃干燥4小时,500℃焙烧3小时,然后采用含有1.5体积%H2S的氢气进行硫化处理,硫化温度为360℃,硫化压力为4.2MPa,硫化时间为6h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硝酸铝溶液(其中氧化铝含量为0.9g/mL)和偏铝酸钠溶液(其中氧化铝含量为0.9g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.5,发生共沉淀反应50min,继续在80℃、pH值为8.5条件下老化3小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中100℃干燥5小时得到捕硅剂C-3。
实施例4
(1)将含偏钨酸铵和硝酸镍的浸渍液,等体积浸渍到氧化铝载体(载体形状为球型,粒径为1.8mm),浸渍后在120℃干燥4小时,500℃焙烧3小时,然后采用 含有2.5体积%H2S的氢气进行硫化处理,硫化温度为360℃,硫化压力为4.2MPa,硫化时间为4h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将氯化铝溶液(其中氧化铝含量为1.5g/mL)和偏铝酸钠溶液(其中氧化铝含量为1.5g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.5,发生共沉淀反应60min,继续在80℃、pH值为8.5条件下老化3小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中130℃干燥5小时得到捕硅剂C-4。
实施例5
(1)将含偏钨酸铵和硝酸钴的浸渍液,等体积浸渍到氧化铝载体(载体形状为圆柱型,粒径(横截面直径)为1.5mm),浸渍后在120℃干燥4小时,500℃焙烧3小时,然后采用含有3wt%二硫化碳的航煤进行硫化处理,硫化温度为340℃,硫化压力为4.0MPa,硫化时间为6h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硫酸铝溶液(其中氧化铝含量为1.8g/mL)和偏铝酸钠溶液(其中氧化铝含量为1.8g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.0,发生共沉淀反应50min,继续在80℃、pH值为8.0条件下老化3小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中100℃干燥5小时得到捕硅剂C-5。
实施例6
(1)将含偏钨酸铵、硝酸镍和硝酸钴的浸渍液,等体积浸渍到氧化铝载体(载体形状为四叶草型,粒径(外接圆直径)为1.5mm),浸渍后在120℃干燥4小时,500℃焙烧3小时,然后采用含有3wt%二硫化碳的航煤进行硫化处理,硫化温度为350℃,硫化压力为4.0MPa,硫化时间为6h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硫酸铝溶液(其中氧化铝含量为1.8g/mL)和偏铝酸钠溶液(其中氧化铝含量为1.8g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.5,发生共沉淀反应80min,继续在80℃、pH值为8.5条件下老化3小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中100℃干燥5小时得到捕硅剂C-6。
实施例7
(1)将含偏钨酸铵、七钼酸铵和硝酸镍的浸渍液,等体积浸渍到氧化铝载体(载体形状为圆柱型,粒径(横截面直径)为1.7mm),浸渍后在120℃干燥4小时,400℃焙烧3小时,然后采用含有3wt%二硫化碳的航煤进行硫化处理,硫化温度为360℃,硫化压力为4.0MPa,硫化时间为6h,然后在N2气氛中降至室温,得到催化剂前驱体。
(2)将硫酸铝溶液(其中氧化铝含量为1.0g/mL)和偏铝酸钠溶液(其中氧化铝含量为1.0g/mL)并流加入到步骤(1)制备的催化剂前驱体中,并控制温度为80℃,pH值为8.5,发生共沉淀反应60min,继续在80℃、pH值为8.5条件下老化3小时,经过过滤、洗涤,沉淀和老化过程在氮气气氛中进行,在氮气气氛中100℃干燥5小时得到捕硅剂C-7。
对比例1
按照实施例1的方法,不同的是,步骤(1)中不硫化处理,步骤(2)中负载拟薄水铝石后进行硫化处理,硫化条件为:采用含有3%二硫化碳的航煤进行硫化处理,硫化温度为360℃,硫化压力为4.0MPa,硫化时间为6h,得到对比捕硅剂DC-1。
对比例2
按照实施例1的方法,不同的是,步骤(2)在干燥后增加焙烧过程,焙烧条件为氮气气氛中450℃焙烧3小时,得到对比捕硅剂DC-2。
对比例3
按照实施例1的方法,不同的是,不包括步骤(2),得到对比捕硅剂DC-3。
表1
注:表1中Mo、W、Ni、Co的量以各自的硫化物计。
表2

注:表2中MoS2、WS2、NiS、CoS的量指的是,以捕硅剂的总重量为基准,第VIB族金属硫化物、第VIII族金属硫化物的含量。
测试例1
本测试例用于说明本发明提供的捕硅剂对于焦化石脑油的捕硅活性。
采用的评价原料油是由中石化某炼厂提供的焦化石脑油原料,其主要性质如下:硫含量为3442μg/g,氮含量为89μg/g,初馏点为90℃,终馏点为220℃,密度为0.7982g/cm3,硅化物类型为四甲基环四硅氧烷、三甲基环三硅氧烷,以Si计,硅含量为125μg/g。采用200mL的固定床加氢装置分别对捕硅剂C-1至C-7、对比捕硅剂DC-1至DC-3进行加氢性能和捕硅能力评价,捕硅剂的装填量为50mL。
评价反应条件为:操作压力3.0MPa,反应温度250℃,氢/油体积比200:1,体积空速是5.0h-1,运行50h时捕硅剂的加氢脱硫、加氢脱氮和脱硅率见表3。捕硅剂运行300h后,将捕硅剂卸出,然后在空气气氛中500℃焙烧3h,采用XRF分析捕硅剂中的SiO2含量,评价结果见表4。容硅量的计算方法为(XRF测试的SiO2含量)/(1-(XRF测试的SiO2含量))*100。
表3

表4
从表3和表4可见,本发明的捕硅剂具有较高的加氢脱硫和脱氮活性,同时具有较高的脱硅和容硅能力。
以下实施例用于说明本发明提供的复合氧化物的制备。
实施例8
将硫酸铝溶液(其中氧化铝含量为0.9g/mL)和偏铝酸钠溶液(其中氧化铝含量为0.9g/mL)并流加入到氧化铝(形状为圆柱型,粒径(横截面直径)为1.5mm)中,并控制温度为70℃,pH值为8.5,发生共沉淀反应50min,继续在70℃、pH值为8.5条件下老化4小时,经过过滤、洗涤后,在110℃干燥3小时得到复合氧化物AO-1。
复合氧化物中各组分含量、比表面积和表面羟基含量列于表5。
复合氧化物AO-1的SEM见图2所示,从图2可以看出拟薄水铝石颗粒覆盖在氧化铝颗粒表面。
复合氧化物AO-1的XRD图如图3所示,从图3可以看出,复合氧化物在14.5°、28.2°、49.2°存在衍射峰,三个衍射峰分别对应拟薄水铝石的(020)、(120)、(200)晶面。
实施例9
将硝酸铝溶液(其中氧化铝含量为1.0g/mL)和偏铝酸钠溶液(其中氧化铝含量为0.9g/mL)并流加入到氧化铝(同实施例8)中,并控制温度为80℃,pH值为7.5,发生共沉淀反应60min,继续在80℃、pH值为8.0条件下老化2小时,经过过滤、洗涤后,在110℃干燥3小时得到复合氧化物AO-2。
复合氧化物中各组分含量、比表面积和表面羟基含量列于表5。
实施例10
将硫酸铝溶液(其中氧化铝含量为1.8g/mL)和氢氧化钠溶液并流加入到氧化铝(同实施例8)中,并控制温度为70℃,pH值为7.5,发生共沉淀反应90min,继续在70℃、pH值为8.0条件下老化2小时,经过过滤、洗涤后,在110℃干燥3小时 得到复合氧化物AO-3。
复合氧化物中各组分含量、比表面积和表面羟基含量列于表5。
表5
测试例2
本测试例用于说明本发明提供的复合氧化物对硅化物的捕硅活性。
采用的评价原料油是由精制石脑油掺兑四甲基环硅氧烷,其中硫含量为0.6μg/g,氮含量为0.3μg/g,初馏点为90℃,终馏点为200℃,密度为0.7312g/cm3,以Si计,硅含量为125μg/g。采用200mL的固定床加氢装置分别对复合氧化物AO-1至AO-3进行捕硅能力评价,复合氧化物的装填量为50mL。
评价反应条件为:操作压力3.0MPa,反应温度250℃,氢/油体积比200:1,体积空速是5.0h-1,运行300h后,将复合氧化物卸出,然后在空气气氛中500℃焙烧3h,采用XRF分析复合氧化物中的SiO2含量,评价结果见表6。容硅量的计算方法为(XRF测试的SiO2含量)/(1-(XRF测试的SiO2含量))*100。
表6

Claims (20)

  1. 一种复合氧化物,其特征在于,该复合氧化物包括氧化铝和拟薄水铝石,所述拟薄水铝石负载于氧化铝外表面,复合氧化物的表面羟基含量为1000-2500μmol/g。
  2. 根据权利要求1所述的复合氧化物,其中,
    复合氧化物的表面羟基含量为1500-2000μmol/g;
    优选地,以复合氧化物的总重量为基准,铝元素所占的比例为47.3-52.8%,优选为48.5-52%。
  3. 根据权利要求1或2所述的复合氧化物,其中,
    所述复合氧化物的XRD谱图中,在14.5°±0.05°、28.2°±0.05°、49.2°±0.05°存在衍射峰;
    和/或,以复合氧化物总重量为基准,拟薄水铝石含量为1-50%,优选为1-40%,更优选为2-30%;
    和/或,所述复合氧化物的比表面积为300-450m2/g;
    和/或,所述复合氧化物的粒径为0.5-5mm,优选为1-3.5mm。
  4. 一种复合氧化物的制备方法,该方法包括将拟薄水铝石引入上,然后进行干燥得到复合氧化物,所述复合氧化物的表面羟基含量为1000-2500μmol/g;
    优选地,以复合氧化物的总重量为基准,铝元素所占的比例为47.3-52.8%,优选为48.5-52%。
  5. 根据权利要求4所述的制备方法,其中,
    将拟薄水铝石引入至氧化铝上的方法包括:在氧化铝存在下,将铝源和沉淀剂进行沉淀反应,然后进行老化、干燥;
    优选地,所述氧化铝、铝源和沉淀剂的用量使得制得的复合氧化物中,以复合氧化物的总重量为基准,拟薄水铝石含量为1-50%,优选为1-40%,更优选为2-30%;
    优选地,所述铝源为酸性铝盐或碱性铝盐;进一步优选地,所述酸性铝盐选自Al2(SO4)3、AlCl3和Al(NO3)3中的至少一种;和/或,所述的碱性铝盐为NaAlO2
    优选地,所述铝源为酸性铝盐,沉淀剂选自NaOH、NH4OH和NaAlO2中的至少一种;和/或,所述铝源为碱性铝盐,沉淀剂为CO2
    优选地,所述沉淀反应的条件包括:pH值为7.5-11,温度为50-95℃,时间30-120min;
    优选地,所述老化的条件包括:pH值为7.5-11,温度为50-90℃,时间为3-24小时。
  6. 一种捕硅剂,其特征在于,所述捕硅剂包括氧化铝、拟薄水铝石和活性组分,所述活性组分包括第VIB族金属硫化物和第VIII族金属硫化物;
    所述捕硅剂的表面羟基含量为1000-2000μmol/g。
  7. 根据权利要求6所述的捕硅剂,其中,所述捕硅剂的表面羟基含量为1200-1800μmol/g;
    优选地,以捕硅剂的总重量为基准,铝元素含量为34.8-51%,进一步优选为39.1-48.6%。
  8. 根据权利要求6或7所述的捕硅剂,其中,所述捕硅剂的XRD谱图中,在14.5°±0.05°、28.2°±0.05°、49.2°±0.05°存在衍射峰;
    优选地,所述捕硅剂的比表面积为250-420m2/g。
  9. 根据权利要求6-8中任意一项所述的捕硅剂,其中,所述第VIB族金属硫化物和第VIII族金属硫化物负载于氧化铝载体上,所述拟薄水铝石负载于第VIB族金属硫化物、第VIII族金属硫化物和氧化铝载体上。
  10. 根据权利要求6-9中任意一项所述的捕硅剂,其中,
    以捕硅剂的总重量为基准,拟薄水铝石含量为3-20%,优选为5-15%;
    和/或,以捕硅剂的总重量为基准,以硫化物计的第VIB族金属的含量为2-20%,优选为5-15%,以硫化物计的第VIII族金属的含量为1-10%,优选为2-8%;
    和/或,所述第VIB族金属硫化物为硫化钼和/或硫化钨,第VIII族金属硫化物为硫化镍和/或硫化钴;
    和/或,以捕硅剂的总重量为基准,氧化铝的含量为50-96%,优选为62-88%。
  11. 一种捕硅剂的制备方法,该方法包括以下步骤:
    (1)通过浸渍法向氧化铝载体引入第VIB族金属化合物和第VIII族金属化合物,然后进行焙烧和硫化,得到捕硅剂前驱体;
    (2)在所述捕硅剂前驱体的存在下,将铝源和沉淀剂进行沉淀反应,然后进行老化、干燥。
  12. 根据权利要求11所述的方法,其中,所述捕硅剂前驱体、铝源和沉淀剂的用量使得制得的捕硅剂中,以捕硅剂的总重量为基准,拟薄水铝石含量为3-20%,优选为5-15%。
  13. 根据权利要求11所述的方法,其中,所述氧化铝载体、第VIB族金属化合物和第VIII族金属化合物以及铝源和沉淀剂的用量使得制得的捕硅剂中,以捕硅剂的总重量为基准,以硫化物计的第VIB族金属的含量为2-20%,优选为5-15%,以硫化物计的VIII族金属的含量为1-10%,优选为2-8%,氧化铝的含量为50-96%,优选为62-88%。
  14. 根据权利要求11-13中任意一项所述的方法,其中,
    所述第VIB族金属化合物为VIB族金属的磷酸盐和/或铵盐;
    和/或,所述第VIII族金属化合物选自第VIII族金属的硝酸盐、碳酸盐、磷酸盐、硫酸盐、碱式碳酸盐和醋酸盐中的至少一种;
    优选地,步骤(1)所述焙烧的条件包括:焙烧温度为300-600℃,焙烧时间为 3-6小时。
  15. 根据权利要求11-14中任意一项所述的方法,其中,步骤(1)所述硫化为干法硫化或湿法硫化;
    优选地,干法硫化采用的干法硫化剂为硫化氢,湿法硫化采用的湿法硫化剂为二硫化碳、二甲基二硫醚、甲基硫醚和正丁基硫醚中的至少一种;
    优选地,步骤(1)所述硫化的条件包括:硫化压力为3.2-6.4MPa,硫化温度为250-400℃,硫化时间为4-12h,氢气的流量为2-25mL·min-1·g-1
  16. 根据权利要求11-15中任意一项所述的方法,其中,所述铝源为酸性铝盐或碱性铝盐;优选地,所述酸性铝盐选自Al2(SO4)3、AlCl3和Al(NO3)3中的至少一种;和/或,所述的碱性铝盐为NaAlO2
    优选地,所述铝源为酸性铝盐,沉淀剂选自NaOH、NH4OH和NaAlO2中的至少一种;和/或,所述铝源为碱性铝盐,沉淀剂为CO2
    优选地,所述沉淀反应的条件包括:pH值为7.5-11,温度为50-95℃,时间30-120min;
    优选地,所述老化的条件包括:pH值为7.5-11,温度为50-90℃,时间为3-24小时;
    优选地,所述步骤(2)所述沉淀反应和老化在惰性气氛下进行。
  17. 权利要求11-16中任意一项所述的方法制得的捕硅剂。
  18. 权利要求1-3中任意一项所述的复合氧化物或者权利要求6-10、17中任意一项所述的捕硅剂在含硅油品的处理中的应用。
  19. 一种含硅油品的处理方法,该方法包括:在加氢处理条件下,将含硅油品与权利要求1-3中任意一项所述的复合氧化物或者权利要求6-10、17中任意一项所述的捕硅剂接触;
    优选地,所述含硅油品中,硅含量为1-1000μg/g,优选所述含硅油品中的含硅化合物选自硅氧烷和/或硅烷;
    优选地,所述含硅油品选自直馏石脑油、直馏柴油、航煤、蜡油、焦化干气、焦化石脑油和焦化柴油中的至少一种。
  20. 根据权利要求19所述的方法,其中,所述加氢处理条件包括:压力为2-10MPa,反应温度为220-400℃,氢/油体积比为200-800:1,体积空速为1-10h-1
PCT/CN2023/126515 2022-10-31 2023-10-25 复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法 WO2024093760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211345464.7 2022-10-31
CN202211345464.7A CN117943064A (zh) 2022-10-31 2022-10-31 一种捕硅剂,其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2024093760A1 true WO2024093760A1 (zh) 2024-05-10

Family

ID=90790949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126515 WO2024093760A1 (zh) 2022-10-31 2023-10-25 复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法

Country Status (3)

Country Link
CN (1) CN117943064A (zh)
TW (1) TW202419154A (zh)
WO (1) WO2024093760A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250149A (ja) * 2011-05-31 2012-12-20 Jgc Catalysts & Chemicals Ltd 酸化燐含有金属担持結晶性シリコアルミノフォスフェート成型体触媒およびその製造方法
CN108014840A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 含分子筛的水合氧化铝组合物和成型体及制备方法和应用以及催化剂和制备方法
CN112705225A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种油品捕硅剂及其制备方法
CN112705213A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种加氢脱硅催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250149A (ja) * 2011-05-31 2012-12-20 Jgc Catalysts & Chemicals Ltd 酸化燐含有金属担持結晶性シリコアルミノフォスフェート成型体触媒およびその製造方法
CN108014840A (zh) * 2016-10-31 2018-05-11 中国石油化工股份有限公司 含分子筛的水合氧化铝组合物和成型体及制备方法和应用以及催化剂和制备方法
CN112705225A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种油品捕硅剂及其制备方法
CN112705213A (zh) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 一种加氢脱硅催化剂及其制备方法

Also Published As

Publication number Publication date
CN117943064A (zh) 2024-04-30
TW202419154A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
EP1773969B1 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
CN1147773A (zh) 高活性催化剂
KR20140079304A (ko) 바나듐을 포함하는 잔사 수소처리 촉매 및 잔사 수소전환 공정에서의 그의 용도
CN111939921A (zh) 一种加氢处理催化剂及其制备方法和应用
WO2024093760A1 (zh) 复合氧化物和捕硅剂及其制备方法和应用以及含硅油品的处理方法
CN112705225B (zh) 一种油品捕硅剂及其制备方法
CN107961773B (zh) 一种加氢脱硫催化剂及其制备方法和硫化态加氢脱硫催化剂的制备方法
US5494875A (en) Alumina-containing carrier and hydrofining catalyst for hydrocarbon oils
Dik et al. Hydrocracking of Vacuum Gasoil on NiMoW/AAS-Al 2 O 3 Trimetallic Catalysts: Effect of the W: Mo Ratio
CN116020476B (zh) 一种加氢预处理催化剂及其制备方法和应用
CN112691671B (zh) 镍催化剂及其制备方法
CN112705213B (zh) 一种加氢脱硅催化剂及其制备方法
CN118002157A (zh) 一种捕硅催化剂,其制备方法及应用
CN108654636B (zh) 一种负载型三金属催化剂及其制备方法和催化环烷烃氢解开环方法
CN114433187B (zh) 多级孔催化剂的后修饰方法、由该方法得到的加氢裂化催化剂及其应用
CN114452965B (zh) 一种加氢处理催化剂及其制备方法和应用
CN114453012B (zh) 加氢裂化催化剂的制备方法及加氢裂化催化剂和应用
CN114433185B (zh) 一种加氢裂化催化剂
CN112705224B (zh) 一种加氢脱硫催化剂及其制备方法
CN111822006B (zh) 体相加氢精制催化剂及其制备方法
CN111822019B (zh) 加氢精制催化剂的制备方法
CN117960210A (zh) 一种捕硅催化剂的制备方法
CN117244556A (zh) 氧化铝载体及其制备方法、及包含该氧化铝载体的预加氢催化剂
CN117960152A (zh) 一种高容硅能力的捕硅剂及其制备方法
CN117960188A (zh) 一种捕硅催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884692

Country of ref document: EP

Kind code of ref document: A1