CN111822019B - 加氢精制催化剂的制备方法 - Google Patents

加氢精制催化剂的制备方法 Download PDF

Info

Publication number
CN111822019B
CN111822019B CN201910297485.8A CN201910297485A CN111822019B CN 111822019 B CN111822019 B CN 111822019B CN 201910297485 A CN201910297485 A CN 201910297485A CN 111822019 B CN111822019 B CN 111822019B
Authority
CN
China
Prior art keywords
catalyst
aging
mixed solution
hours
weight concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910297485.8A
Other languages
English (en)
Other versions
CN111822019A (zh
Inventor
方向晨
王海涛
徐学军
牛世坤
刘东香
王继锋
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201910297485.8A priority Critical patent/CN111822019B/zh
Publication of CN111822019A publication Critical patent/CN111822019A/zh
Application granted granted Critical
Publication of CN111822019B publication Critical patent/CN111822019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J35/393
    • B01J35/394
    • B01J35/615
    • B01J35/633
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Abstract

本发明公开了一种加氢精制催化剂的制备方法。该方法包括:(i)将第一磷酸钠碱性溶液与含Ni、W、Mg、Al组分的混合溶液A并流加入反应罐中进行成胶反应,得到浆液Ⅰ,然后进行老化;(ii)将第二磷酸钠碱性溶液与含W、Mo、Zr、Al组分的混合溶液B与并流加入老化后的浆液Ⅰ中进行成胶反应,得到浆液Ⅱ,然后进行老化;(iii)将步骤(ii)所得的物料经干燥、成型、洗涤,再经干燥、焙烧得到加氢精制催化剂。采用本发明方法制备的催化剂可在柴油馏分超深度加氢脱硫、脱氮反应中应用,具有较高的加氢脱硫和加氢脱氮反应活性,特别是处理高氮高硫含量的柴油原料。

Description

加氢精制催化剂的制备方法
技术领域
本发明涉及一种加氢催化剂的制备方法,特别是一种体相加氢精制催化剂的制备方法。
背景技术
目前,原油日趋重质化和劣质化,加之世界经济的持续发展和环保法规的日益严格,需要生产大量轻质清洁燃料。开发和使用超低硫甚至无硫汽、柴油是当今世界范围内清洁燃料发展的趋势。采用传统的加氢脱硫催化剂通过增加反应苛刻度如提高反应温度、氢分压或是降低反应空速等,也可以实现柴油的深度脱硫甚至超深度脱硫,但反应温度的上升会导致产品颜色的变差和催化剂寿命缩短,而降低空速则意味着处理量的减少。对于现有的加氢装置而言,其设计压力已固定,提高氢分压的幅度是有限的。因此,当前通过采用更高脱硫活性的催化剂是深度脱硫的重要手段之一。
在石油馏分中含有多种结构和不同分子量的含硫化合物,但在超深度脱硫阶段(硫含量低于50µg/g),主要是脱除4,6-二甲基二苯并噻吩类等有取代基的含硫化合物。由于与硫原子紧邻的甲基使硫原子与催化剂的活性中心之间产生了空间位阻,硫原子不易接近反应的活性中心,因而导致反应速率大幅度下降。
传统负载型加氢催化剂受到载体孔结构的限制,活性金属负载量一般不超过30wt%,负载型催化剂所能提供的活性中心数量有限,尽管可对活性中心的数量和类型分布进行优化调整,但由于活性中心数量的极限瓶颈无法突破,大幅度提高加氢活性的空间有限,很难满足炼厂对生产国Ⅴ柴油产品的需求。体相法制备的加氢催化剂大部分由活性金属组分构成,可以摆脱金属含量的限制,可任意调变催化剂中各活性组分的比例,提高催化剂的加氢性能,由于体相催化剂具有优异的加氢活性,可以在不提高装置反应苛刻度的条件下,直接生产满足国Ⅴ标准的无硫柴油产品,原装置无需改造,并可以提高装置的处理量,降低炼厂的生产成本,实现节能增效。
体相加氢催化剂分为硫化态体相加氢催化剂和氧化态体相加氢催化剂。氧化态体相催化剂制备工艺相对简单、成本低,已经工业应用,它主要采用共沉淀法制备,以活性金属组分为主,其通常为第ⅥB族金属元素(Mo、W)和第Ⅷ族金属元素(Ni),活性金属原子相互交错,为反应物分子提供反应空间,活性金属暴露在催化剂表面,为反应物分子提供反应活性中心。负载型催化剂由较低活性一类活性中心与较高活性的二类活性中心混合组成的,而体相催化剂活性中心基本全部为二类活性中心,体相催化剂主要是通过增加催化剂上的活性中心的密度从而大大地提高其催化活性。Chianelli等提出辐缘-棱边模型来解释非负载催化剂活性中心的产生,模型将MoS2/WS2晶粒外层边缘的棱边活性位称为辐缘位,提供加氢中心,将MoS2/WS2晶粒内层的棱边活性位称为棱边位,提供氢解中心。因此,催化剂的加氢和氢解活性与活性位的分布密切相关。
在反应过程中,反应物分子只有在它接近的催化剂表面发生反应,采用现有的共沉淀法制备的催化剂表面活性金属分散不均匀,同时不同加氢活性金属无序分布造成活性金属之间没有良好的协调作用,体相催化剂中高含量的金属容易发生金属颗粒过度堆积,这样减少了活性相生成,使活性金属不能成为加氢活性中心,影响催化剂的活性金属的利用率,而且也提高催化剂的使用成本。
CN1951561A公开了采用共沉淀制备加氢催化剂的方法,催化剂采用活性金属Ni、W组分与沉淀剂并流共沉淀生成NixWyOz复合氧化物前身物,在上述过程中,可以加入铝盐溶液,也可以成胶后直接加入氢氧化铝,然后与MoO3打浆混合、过滤、成型、活化为最终催化剂。该方法制备体相催化剂过程中,氧化钼与NixWyOz复合氧化物直接打浆混合,导致活性金属过度堆积,减少了活性相的数量,降低了活性金属的利用率。
CN201410062726.8公开了一种非负载型高活性加氢催化剂的制备方法。该方法是先配制含有至少一种第VIII族金属化合物和至少一种第VIB族金属化合物的酸性溶液A,和含有至少一种硅源或铝源的碱性溶液B,将两种溶液缓慢混合进入沉淀反应器中,在温度20~120℃、pH值7~12之间进行共沉淀反应,得到浆液,将浆液进行老化、抽滤、洗涤、干燥、成型和焙烧处理,得到催化剂。该方法没有采用常规的碱性沉淀剂,而是采用含一种硅源或铝源的碱性溶液B做沉淀剂,该方法虽然改变了沉淀剂,但没有改变体相催化剂的活性金属分散性,活性相数量没有明显增加,金属的利用率仍有待提高。
CN102049265A公开的体相加氢催化剂,在共沉过程中加入碳酸氢铵,CN102451703A公开的体相加氢催化剂,在共沉过程中加入二氧化碳,生成碳酸盐或碳酸氢盐,上述方法均是利用其在焙烧过程中放出一定量的气体,在气体的冲击作用下,增大催化剂的孔容、比表面积。该方法虽然在气体的冲击作用下,在扩孔的同时使部分金属活性位暴露在催化剂的表面,但催化剂孔在气体作用下易塌陷,因此,对提高活性金属分散性的作用是有限的。
CN201510212110.9公开了一种体相加氢精制催化剂及其制备方法。该方法采用正加法制备镍铝混合沉淀物,采用并流沉淀法制备钨、钼和铝混合沉淀物,再将两者混合后老化过滤后得到的金属混合物在适宜的条件下水蒸汽处理并加入尿素,水热处理后的物料经干燥、成型、焙烧得到催化剂。该方法所得的体相催化剂中表相活性金属含量高,容易过度堆积,从而影响活性相堆积垛层的形貌和分散性。
现有的共沉法制备体相催化剂技术中,不同沉淀方式、成胶条件均会对催化剂活性金属的配合方式,加氢活性金属的分布以及不同加氢活性金属之间相互作用关系有很大的影响,也会导致硫化后的体相催化剂中MoS2/WS2的形貌出现明显的不同。
发明内容
针对现有技术的不足,本发明提供了一种加氢精制催化剂的制备方法。该方法制备的催化剂是一种体相加氢精制催化剂,有效活性相更多,相互之间的促进作用更强,具有较高加氢脱硫和加氢脱氮反应性能,适宜在柴油馏分超深度加氢脱硫、脱氮反应中应用,特别适用于处理高氮高硫含量的柴油原料。
在馏分油超深度加氢脱硫反应环境下,馏分油中存在的有机含氮化合物对加氢脱硫反应产生明显的抑制作用,加氢脱硫活性随着原料中的氮含量增加而降低,这是因为馏分油中的含氮化合物和含硫化合物在催化剂活性位上发生竞争吸附,含氮化合物的吸附能力较强,占据了催化剂上的活性位,使含硫化合物难以接近,抑制了加氢脱硫反应,所以在处理含氮量高的重质柴油生产超低硫产品时,催化剂需要具有优异的加氢脱氮活性,催化剂的加氢脱氮活性提高,氮含量降低后,与含硫化合物发生竞争吸附的含氮化合物减少,含硫化合物更容易、也更多地吸附在催化剂活性位上,促进了加氢脱硫反应。因此,提高催化剂的加氢脱氮活性对提高体相催化剂的超深度加氢脱硫活性有极其重要的作用。
本发明提供的加氢精制催化剂的制备方法,包括:
(i)将第一磷酸钠碱性溶液与含Ni、W、Mg、Al组分的混合溶液A并流加入反应罐中进行成胶反应,得到浆液Ⅰ,然后进行老化;
(ii)将第二磷酸钠碱性溶液与含W、Mo、Zr、Al组分的混合溶液B与并流加入老化后的浆液Ⅰ中进行成胶反应,得到浆液Ⅱ,然后进行老化;
(iii)将步骤(ii)所得的物料经第一干燥、成型、洗涤,再经干燥、焙烧得到加氢精制催化剂。
本发明加氢精制催化剂的制备方法中,根据需要,将步骤(iii)所述的加氢精制催化剂进行硫化,制成硫化态加氢精制催化剂。
在步骤(i)中的混合溶液A为酸性溶液,其中,Ni以NiO计的重量浓度为3~100g/L,优选为5~80g/L,W以WO3计的重量浓度为2~60g/L,优选为5~50g/L,Al以Al2O3计的重量浓度为2~60g/L,优选为3~50g/L,Mg以MgO计的重量浓度为1~45g/L,优选为2~35g/L。在步骤(ii)中的混合溶液B为酸性溶液,其中,W以WO3计的重量浓度为2~70g/L,优选为4~60g/L,Mo以MoO3计的重量浓度2~80g/L,优选为3~60g/L,Al以Al2O3计的重量浓度为1~50g/L,优选为2~40g/L,Zr以ZrO2计的重量浓度为1~40g/L,优选为2~35g/L。在配制混合溶液A时,一般采用的镍源可以为硫酸镍、硝酸镍、氯化镍中的一种或几种;一般采用的钨源为偏钨酸铵,一般铝源可以为硝酸铝、硫酸铝、氯化铝和乙酸铝等中的一种或几种,一般采用的镁源可以为氯化镁、硝酸镁中一种或几种。在配制混合溶液B时,一般采用的钨源为偏钨酸铵,钼源为钼酸铵,铝源可以为硝酸铝、硫酸铝、氯化铝和乙酸铝等中的一种或几种,一般采用的锆源可以为硝酸锆、氯化锆、氧氯化锆等中的一种或多种。
步骤(i)通过混合溶液A引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中加氢活性金属的重量的25%~80%,优选为30%~75%。步骤(ii)通过混合溶液B引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中活性加氢金属重量的20%~75%,优选为25%~70%。
步骤(i)所述的第一磷酸钠溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为0.3~5.0:1,优选为0.5~4.5:1。
步骤(ii)所述的第二磷酸钠溶液中磷酸钠的量与混合溶液B中钨和钼的摩尔比为0.3~4.0:1,优选为0.4~3.5:1。
步骤(i)中,所述成胶反应的反应条件为:反应温度为20~90℃,优选为30~70℃,pH值控制为6.0~9.0,优选为6.5~8.2,成胶时间为0.2~2.0小时,优选为0.3~1.5小时。
步骤(i)中,所述的老化条件如下:老化温度为40~90℃,优选为50~80℃,老化时pH值控制为6.0~8.0,优选为6.5~7.5,老化时间为0.1~1.0小时,优选为0.2~0.8小时。老化在搅拌下进行,优选的搅拌条件如下:搅拌转速为100~300转/分,优选为150~250转/分。
步骤(ii)中,所述成胶反应的反应条件为:反应温度为20~90℃,优选为30~80℃,pH值控制为7.5~11.0,优选为7.5~9.5,成胶时间为0.5~4.0小时,优选为1.0~3.0小时。
步骤(ii)中所述的老化条件如下:老化温度为40~90℃,优选为50~80℃,老化时pH值控制为7.5~11.0,优选为8.0~10.0,老化时间为1.5~6.0小时,优选为2.0~5.0小时。老化在搅拌下进行,优选的搅拌条件如下:搅拌转速为300~500转/分,优选为300~450转/分。
步骤(ii)所述老化的pH值比步骤(i)所述老化的pH值至少高0.5,优选至少高1.0。
步骤(iii)所述的干燥、成型和洗涤可以采用本领域常规方法进行。成型前的干燥条件如下:在40~250℃干燥1~48小时,优选为50~180℃干燥4~36小时。成型过程中,可以不加入常规的成型助剂比如胶溶酸(盐酸、硝酸、硫酸、乙酸、草酸等中一种或几种)、助挤剂(田菁粉、炭黑、石墨粉、柠檬酸等中的一种或几种)等,直接成型。洗涤一般是采用去离子水或含有可分解盐类(如醋酸铵、氯化铵、硝酸铵等)溶液洗涤,洗至中性。
步骤(iii)在成型之后,所采用的干燥和焙烧可以采用本领域常规条件,成型后的干燥条件如下:在40~250℃干燥1~48小时,焙烧条件如下:在350~650℃焙烧1~24小时,优选成型后的干燥条件如下:在50~180℃干燥4~36小时,焙烧条件如下:在400~600℃焙烧2~12小时。
本发明加氢精制催化剂的制备方法中,催化剂的形状可以根据需要为片状、球状、圆柱条及异形条(三叶草、四叶草),最好是圆柱条及异形条(三叶草、四叶草)。催化剂的直径可以是0.8~2.0mm的细条及>2.5mm的粗条。
本发明步骤(iii)所得的加氢精制催化剂为氧化态的体相加氢精制催化剂,在使用前可采用常规方法进行硫化。所述的硫化是将活性金属W、Ni和Mo的氧化物转化为相应的硫化物。所述的硫化方法可以采用湿法硫化,也可以采用干法硫化。本发明中采用的硫化方法为湿法硫化,硫化剂为常规硫化所用的含硫物质,可以为有机含硫物质,也可以为无机含硫物质,比如硫磺、二硫化碳、二甲基二硫等中的一种或多种,硫化油为烃类和/或馏分油,其中烃类为环己烷、环戊烷、环庚烷等中的一种或多种,馏分油为煤油、常一线柴油,常二线柴油等中的一种或多种。硫化剂的用量为使加氢精制催化剂中各活性金属的硫化度不低于80%,可以根据实际进行调整,硫化剂的用量可以为加氢精制催化剂中各活性金属完全硫化的理论需硫量的80%~200%,优选为100%~150%。预硫化条件为:温度230~ 370℃、氢气压力2.0~10MPa、液时体积空速0.3~6.0h-1、硫化时间3~24h,优选为:温度250~ 350℃、氢气压力3.0~8.0MPa、液时体积空速1.0~3.0h-1、硫化时间5~16h。
本发明所述的硫化,是将活性金属组分W、Ni和Mo的氧化物转化为相应的硫化物,即得硫化态加氢精制催化剂;所述催化剂中各活性金属的硫化度不低于80%。
本发明的加氢精制催化剂,以氧化态加氢精制催化剂的重量为基准,加氢活性金属组分Ni、W和Mo以氧化物计的总含量为40%~80%,优选为45%~78%,P组分以氧化物计的含量为2%~20%,优选为3%~18%,镁以氧化镁计的含量为2%~15%,优选为3%~12%,锆以氧化锆计的含量为2%~13%,优选为3%~10%,氧化铝含量为5%~45%,优选为8%~40%。
本发明方法制备的加氢精制催化剂中,W/Mo的摩尔比为1:10~8:1,优选为1:8~5:1,Ni/(Mo+W)摩尔比为1:12~12:1,优选为1:8~8:1。
本发明方法制备的加氢精制催化剂为体相加氢精制催化剂,其组成包括加氢活性金属组分WO3、NiO和MoO3以及氧化铝,经硫化后,MoS2/WS2的平均堆积层数为6.0~9.0层,优选为6.5~9.0层,MoS2/WS2的片层平均晶片片层长度为4.0~6.5nm,优选为4.5~6.0nm。
本发明方法制备的加氢精制催化剂的孔径分布如下:直径为3nm以下的孔所占的孔容占总孔容的5%~30%,直径为3~10nm的孔所占孔容占总孔容的50%~80%,直径为10~15nm的孔所占的孔容占总孔容的7%~25%,直径为15nm以上的孔容占总孔容的为5%~20%。
本发明方法制备的加氢精制催化剂,经硫化后,MoS2/WS2堆积层数如下:平均堆积层数为6.0~9.0层,优选为6.5~9.0层,堆积层数为7.0~9.0的片层数占总片层数53%~82%,优选为60%~80%;片层平均长度为4.0~6.5nm,优选为4.5~6.0nm,片层长度为4.0~6.0nm的片层数占总片层数50.0%~85.0%,优选为62.0%~80.0%。
本发明方法制备的加氢精制催化剂,经硫化后,MoS2/WS2堆积层数分布具体如下:层数小于4.0层的片层数占总片层数1%~7%,层数为4.0至小于7.0的片层数占总片层数4%~22%,层数为7.0~9.0的片层数占总片层数53%~82%,层数大于9.0层的片层数占总片层数6%~18%。
本发明方法制备的加氢精制催化剂,经硫化后,MoS2/WS2片层长度分布具体如下:长度小于2.0nm的片层数占总片层数1.0%~10.0%,长度为2.0至小于4.0nm的片层数占总片层数5.0%~20.0%,长度为4.0~6.0nm的片层数占总片层数50.0%~85.0%,长度为大于6.0至8.0nm的片层数占总片层数5.0%~18.0%,长度大于8.0nm的片层数占总片层数0.2%~4.0%。
本发明方法制备的加氢精制催化剂的性质如下:比表面积为180~500m2/g,孔容为0.20~0.80Ml/g。
本发明方法制备的加氢精制催化剂中,MoS2/WS2堆积垛的层数高,长度小,尤其集中在层数为6.0~9.0层,片层长度为4.0~6.5nm,生成的有效活性相更多,相互之间的促进作用更强,活性更高,同时孔分布适宜,机械强度高,具有较高加氢脱硫和加氢脱氮反应性能,适宜在柴油馏分超深度加氢脱硫、脱氮反应中应用,特别是处理高氮含量的柴油原料。
本发明制备加氢精制催化剂的方法,是先将含部分W、Ni、Mg、Al和第一磷酸钠碱性溶液并流进行共沉淀反应,所得浆液进行第一次初步老化,生成W、Ni、Mg、Al、P氧化物的前驱物,再将剩余的W、Al以及Mo、Zr 的混合溶液B和第二磷酸钠碱性溶液并流加入上述老化的浆液中,然后进行第二次深度老化制备钨、钼、镍、镁、锆、磷和铝混合沉淀物,最终制成催化剂。通过对制备步骤和制备条件的综合控制,在钨、钼、镍、镁、锆和铝混合沉淀物颗粒长大的过程中,先前沉积的金属氧化物前驱物中的加氢活性金属对在后沉积的加氢活性金属有一定的锚定作用,并使不同加氢活性金属在催化剂中有序地沉积,控制金属氧化物颗粒增长的速度和活性金属之间相互接触的几率,WO3和MoO3生成物的颗粒大小适宜并使其分布得到良好的控制,增加硫化后体相催化剂中MoS2/WS2的堆积层数、降低片层长度,优化了活性相的形貌,生成的有效活性相更多,相互之间的促进作用更强,活性更高。进一步地,本发明制备加氢精制催化剂的方法,第一步反应中加镁,可使生成的金属氧化物从紧密连接的层状结构改变为较松散的层状结构,硫化后产生更多的活性相。第二步反应中加锆,可使第二步沉淀的活性金属进一步分散,更有利于优化活性相分布。本发明加氢精制催化剂的制备方法,磷与加氢活性金属间形成的中间体,有利于改善助剂与加氢活性金属间的配合作用,而且还能提高成型物的粘结性,在不加入成型助剂的情况下即可直接成型,这样不但具有良好的机械强度,而且孔结构的分布更合理,加氢活性金属形成更多的高活性相,特别适用于高氮含量的柴油加氢精制过程,具有优异的加氢脱氮性能,进而实现劣质的高硫和氮含量的柴油的深度脱硫和脱氮。
本发明催化剂的制备方法,采用了磷酸钠做为沉淀剂,成型过程中不加入成型助剂(常用胶溶剂为硝酸),避免制备过程中氨氮对环境的污染,满足目前催化剂绿色生产的需要。
该催化剂特别适宜用作轻质馏分油的超深度加氢脱硫和脱氮反应中,具有较高的加氢脱硫和加氢脱氮活性,尤其在加工处理高氮高硫含量的重质柴油时具有更高的加氢脱氮和脱硫活性。所述重质柴油馏分中的硫含量为1000~20000µg/g,其中噻吩及其衍生物中硫的含量占原料总硫含量的60wt%~85wt%,氮含量为200~2000µg/g,其中咔唑及其衍生物中氮的含量占原料总氮含量的60wt%~80wt%。
具体实施方式
本发明中,比表面积和孔容采用低温液氮吸附法测定,机械强度采用侧压法测定。本发明中,体相催化剂中的MoS2/WS2的堆积层数、片层长度是通过透射电镜测定的,其中对于W-Ni-Mo催化剂经硫化后,能够形成堆积层的是活性相MoS2和WS2,本发明中以MoS2/WS2形式来表示活性相。本发明的加氢精制催化剂经硫化后,是指由非硫化态加氢精制催化剂硫化为硫化态加氢精制催化剂,即指硫化态加氢精制催化剂。
本发明中,wt%为质量分数,v%为体积分数。本发明中,硫化度采用X 射线光电子能谱仪(XPS) 进行测定,硫化态活性金属的含量占该活性金属总含量的百分比即为该活性金属的硫化度。
实施例1
分别将氯化镍、偏钨酸铵、氯化镁、氯化铝溶液加入装有去离子水的溶解罐1,配制成混合溶液A,混合溶液A中Ni以NiO计的重量浓度为28g/L,W以WO3计的重量浓度为18g/L,Al以Al2O3计的重量浓度为10g/L,Mg以MgO计的重量浓度为6g/L。分别将偏钨酸铵、钼酸铵、氧氯化锆、氯化铝溶液加入装有去离子水的溶解罐2,配制成混合溶液B,溶液B中W以 WO3计的重量浓度为30g/L,Mo以MoO3计重量浓度为36g/L,Al以Al2O3计的重量浓度为8.4g/L,Zr以ZrO2计的重量浓度为10g/L。将去离子水加入反应罐中,将第一磷酸钠碱性溶液和混合溶液A并流加入反应罐中,第一磷酸钠碱性溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为3.9:1,成胶温度保持在60℃,并流成胶反应过程中pH值控制在7.8,成胶时间控制在50分钟,生成含沉淀物浆液I。将得到沉淀物浆液I在搅拌下老化,搅拌速度为220转/分,老化温度75℃,老化pH值控制在7.0,老化0.8小时。老化结束后,将混合溶液B、第二磷酸钠碱性溶液并流加入浆液I中,第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼总量的摩尔比为2.8:1,成胶温度保持在60℃,并流成胶反应过程中pH值控制在7.8,成胶时间控制在2.0小时,得到浆液Ⅱ,将沉淀物浆液Ⅱ在搅拌条件下老化,搅拌速度为330转/分,老化温度75℃,pH值控制在8.2,老化时间3.0小时,将老化后的浆液过滤,滤饼在120℃干燥8小时,碾压,无成型助剂情况下,挤条成型。室温下用去离子水洗涤5次。然后湿条在80℃干燥10小时,500℃焙烧4小时,得到加氢精制催化剂A。其中,通过混合溶液A引入的镍、钨重量占加氢精制催化剂A中镍、钨、钼的重量的62.3%。催化剂组成、孔分布及主要性质见表1。
实施例2
按照实施例1的方法,按表1中的催化剂B的组分含量配比,向溶解罐1内加入氯化镍、偏钨酸铵、氯化镁、硝酸铝配制混合溶液A,混合溶液A中Ni以NiO计的重量浓度为22g/L,W以WO3计的重量浓度为20g/L,Al以Al2O3计的重量浓度为11g/L,Mg以MgO计的重量浓度为6.6g/L。分别将偏钨酸铵、钼酸铵、氧氯化锆、硝酸铝溶液加入装有去离子水的溶解罐2,配制成混合溶液B,溶液B中W以 WO3计的重量浓度为9.4g/L,Mo以MoO3计重量浓度为16g/L,Al以Al2O3计的重量浓度为5.4g/L,Zr以ZrO2计的重量浓度为7.5g/L。将去离子水加入反应罐中将磷酸钠溶液A和混合溶液A并流加入反应罐中,第一磷酸钠碱性溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为3.5,成胶温度保持在55℃,并流成胶反应过程中pH值控制在7.5,成胶时间控制在1.2小时,生成含浆液I。将得到沉淀物浆液I在搅拌下老化,搅拌速度为200转/分,老化温度75℃,老化pH值控制在7.4,老化0.7小时。老化结束后,将混合溶液B、第二磷酸钠碱性溶液并流加入浆液I中,第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼总量的摩尔比为2.0,成胶温度保持在58℃,并流成胶反应过程中pH值控制在8.3,成胶时间控制在2.6小时,反应结束后得到浆液Ⅱ,将沉淀物浆液Ⅱ在搅拌条件下老化,搅拌速度为400转/分,老化时间4.0小时,老化温度78℃,老化pH值控制在8.8。将老化后的浆液过滤,滤饼在100℃干燥13小时,然后挤条成型,用去离子水洗涤4次,湿条在80℃干燥13小时,在540℃焙烧5小时,得到最终加氢精制催化剂B,其中,通过混合溶液A引入的镍、钨重量占加氢精制催化剂B中镍、钨、钼的重量的61.6%。组成、孔分布及主要性质见表1。
实施例3
按照实施例1的方法,按表1中的催化剂C的组分含量配比,向溶解罐1内加入硝酸镍、偏钨酸铵、氯化镁、氯化铝溶液,配制混合溶液A,混合溶液A中Ni以NiO计的重量浓度为18g/L,W以WO3计的重量浓度为16g/L,Al以Al2O3计的重量浓度为11g/L,Mg以MgO计的重量浓度为9g/L。分别将偏钨酸铵、钼酸铵、氧氯化锆、氯化铝溶液加入装有去离子水的溶解罐2,配制成混合溶液B,溶液B中W以 WO3计的重量浓度为13.6g/L,Mo以MoO3计重量浓度为12g/L,Al以Al2O3计的重量浓度为6g/L,Zr以ZrO2计的重量浓度为5.3g/L。将去离子水加入反应罐中,将磷酸钠溶液A和混合溶液A并流加入反应罐中,第一磷酸钠溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为4.1,成胶温度保持在55℃,并流成胶反应过程中pH值控制在7.0,成胶时间控制在1.1小时,生成含浆液I。将得到沉淀物浆液I在搅拌下老化,搅拌速度为195转/分,老化温度77℃,老化pH值控制在6.9,老化0.5小时。老化结束后,将混合溶液B、第二磷酸钠碱性溶液并流加入浆液I中,第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼总量的摩尔比为3.0,成胶温度保持在52℃,并流成胶反应过程中pH值控制在8.6,成胶时间控制在2.3小时,反应结束后得到沉淀物浆液Ⅱ,将沉淀物浆液Ⅱ在搅拌条件下老化,搅拌速度为440转/分,老化时间4.3小时,老化温度75℃,老化pH值控制在8.4。将老化后的浆液过滤,滤饼在80℃干燥16小时,然后挤条成型,用水洗涤6次,湿条在70℃干燥16小时,在530℃焙烧5小时,得到最终加氢精制催化剂C,其中,通过混合溶液A引入的镍、钨重量占加氢精制催化剂C中镍、钨、钼的重量的53.6%。组成、孔分布及主要性质见表1。
实施例4
按照实施例1的方法,按表1中的催化剂D的组分含量配比,向溶解罐1内加入氯化镍、偏钨酸铵、氯化镁、氯化铝溶液,配制混合溶液A,混合溶液A中Ni以NiO计的重量浓度为20g/L,W以WO3计的重量浓度为30g/L,Al以Al2O3计的重量浓度为10.7g/L,Mg以MgO计的重量浓度为9.3g/L。分别将偏钨酸铵、钼酸铵、氧氯化锆、氯化铝溶液加入装有去离子水的溶解罐2,配制成混合溶液B,溶液B中W以 WO3计的重量浓度为12.6g/L,Mo以MoO3计重量浓度为18g/L,Al以Al2O3计的重量浓度为7.5g/L,Zr以ZrO2计的重量浓度为6g/L。将去离子水加入反应罐中,将第一磷酸钠碱性溶液和混合溶液A并流加入反应罐中,第一磷酸钠碱性溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为3.3,成胶温度保持在52℃,并流成胶反应过程中pH值控制在7.4,成胶时间控制在1.3小时,生成含浆液I。将得到的沉淀物浆液I搅拌下老化,搅拌速度为235转/分,老化温度79℃,老化pH值控制在6.7,老化0.5小时。老化结束后,将混合溶液B、第二磷酸钠碱性溶液并流加入浆液I中,第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼总量的摩尔比为2.1,成胶温度保持在48℃,并流成胶反应过程中pH值控制在8.1,成胶时间控制在3.0小时,反应结束后得到浆液Ⅱ,将沉淀物浆液Ⅱ搅拌下老化,搅拌速度为415转/分,老化时间4.7小时,老化温度75℃,老化pH值控制在8.5。将老化后的浆液过滤,滤饼在90℃干燥13小时,然后挤条成型,用去离子水洗涤5次,湿条在80℃干燥12小时,在520℃焙烧6小时,得到最终加氢精制催化剂D,其中,通过混合溶液A引入的镍、钨重量占加氢精制催化剂D中镍、钨、钼的重量的59.5%,。组成、孔分布及主要性质见表1。
比较例1
按CN1951561A公开的方法,具体过程如下:
将氯化镍、氯化铝溶液和偏钨酸铵、配制溶于去离子水,配制成混合溶液,其中Ni以NiO计的重量浓度为28g/L,W以WO3计的重量浓度为46g/L,Al 以Al2O3计的重量浓度为38g/L。将500mL去离子水加入反应罐中,将浓度为10wt%氨水和混合溶液并流加入反应罐中进行成胶,成胶温度保持在60℃,结束时pH值控制在7.8,成胶时间控制在3.0小时,生成沉淀物浆液。然后进行老化,老化时间3.8小时,老化温度75℃,老化时pH值控制在7.8,过滤后,在滤饼中加入去离子水、氢氧化铝和三氧化钼,打浆、混合均匀后,过滤,滤饼在120℃干燥8小时,碾压,挤条成型。室温下用去离子水洗涤5次。然后湿条在80℃干燥10小时,500℃焙烧4小时,得到催化剂E。催化剂组成、孔分布及主要性质见表1。
比较例2
按实施例1的催化剂组成,将氯化铝溶液、氯化镍、钼酸铵和偏钨酸铵配制溶于去离子水,配制成混合溶液,其中Ni以NiO计的重量浓度为28g/L,W以WO3计的重量浓度为46g/L,Mo以MoO3计的重量浓度为27g/L,Al 以Al2O3计的重量浓度为38g/L。将浓度为10wt%氨水和混合溶液并流加入反应罐中进行成胶,成胶温度保持在60℃,结束时pH值控制在7.8,成胶时间控制在3.0小时,生成含钨、镍、钼、铝沉淀物浆液。然后进行老化,老化时间3.8小时,老化温度75℃,老化时pH值控制在8.0,过滤后,滤饼在120℃干燥8小时,碾压,挤条成型。室温下用去离子水洗涤5次。然后湿条在80℃干燥10小时,500℃焙烧4小时,得到催化剂F。催化剂组成、孔分布及主要性质见表1。
比较例3
按照CN201510212110.9公开的催化剂制备方法,向溶解罐1内加入氯化铝、氯化镍溶液,配制工作溶液A,混合溶液A中Ni以NiO计的重量浓度为28g/L,Al 以Al2O3计的重量浓度为19g/L。向溶解罐2内加入氯化铝、偏钨酸铵和钼酸铵配制工作溶液B,混合溶液B中W以WO3计的重量浓度为30g/L,Mo以MoO3计重量浓度为36g/L,Al 以Al2O3计的重量浓度为26g/L。将浓度为10wt%氨水在搅拌下加入溶液A,成胶温度保持在60℃,结束时pH值控制在7.8,成胶时间控制在50分钟,生成含镍、铝沉淀物浆液I。将500mL去离子水加入反应罐中,将浓度为10wt%氨水和溶液B并流加入反应罐中,成胶温度保持在60℃,并流成胶反应过程中pH值控制在7.8,成胶时间控制在2.0小时,生成含钨、钼、铝沉淀物浆液II。将上述两种含沉淀浆液混合后老化,老化时间3.8小时,老化温度75℃,老化结束时pH值控制在7.8,然后过滤,滤饼在含有尿素的水蒸汽下进行水热处理,水热处理条件:尿素和活性金属原子总量的摩尔比为3:1,温度为230℃,压力为3.5MPa,处理时间为4小时,水热处理后的物料在120℃干燥8小时,碾压,挤条成型。室温下用去离子水洗涤5次。然后湿条在80℃干燥10小时,500℃焙烧4小时,得到催化剂G。催化剂组成、孔分布及主要性质见表1。
比较例4
按CN102049265A公开的催化剂制备方法,向溶解罐内加入氯化铝、氯化镍、偏钨酸铵配制酸性工作溶液A,取100g碳酸氢铵配成摩尔浓度为2.0mol/L的溶液。向反应罐内加入500mL水,温度升至60℃。在搅拌的情况下,将溶液A、碳酸氢铵水溶液和浓度为10wt%氨水并流加入反应罐内成胶,成胶温度60℃,成胶时间3.0小时,成胶过程浆液的pH值为7.8。成胶结束后老化3.8小时,老化结束时pH值为8.0。然后过滤,得到的滤饼,加入三氧化钼,打浆搅拌均匀,过滤,滤饼在120℃干燥8小时,碾压,挤条成型。室温下用去离子水洗涤5次。然后湿条在80℃干燥10小时,500℃焙烧4小时,得到催化剂H。催化剂组成、孔分布及主要性质见表1。
实施例5
本实施例为硫化态催化剂中WS2/MoS2片层平均长度和平均堆积垛层数的测定。对所制备的体相催化剂的TEM照片进行了统计分析,统计面积约为20000nm2,统计的WS2/MoS2片层总数超过400个。根据计算公式(1)和(2)对体相催化剂WS2/MoS2片层平均长度和平均堆积垛层数进行统计计算,结果列于表3。
Figure DEST_PATH_IMAGE002
(1)
Figure DEST_PATH_IMAGE004
(2)
式(1)、(2)中,L A 为WS2/MoS2片层平均长度,L i 为WS2/MoS2片层长度,nm;n i 为长度为L i 的WS2/MoS2片层数目,N A 为WS2/MoS2平均堆积层数;N i 为WS2/MoS2堆积层数,m i 为堆积层数为N i 的WS2/MoS2片层数目。
采用本发明催化剂A、B、C、D和比较例催化剂E、F、G、H,在加氢微型反应器上进行硫化,催化剂的装填体积为10Ml,硫化剂为CS2,硫化油为环己烷,CS2的用量为理论需硫量的110%。预硫化条件为:温度320℃、氢气压力6.0Mpa、空速2.0h-1、时间10h。
实施例6
本实施例为本发明催化剂活性评价实验,并与比较例催化剂进行对比。采用本发明加氢精制催化剂A、B、C、D和比较例催化剂E、F、G、H,在200Ml小型加氢装置上进行对比评价试验,为了进一步评价催化剂脱氮的能力,因此选择了氮含量高、加工难度大的大港催化柴油为试验原料,原料主要性质见表4。催化剂活性评价工艺条件:氢分压为6.4MPa,反应温度为360℃,液时体积空速为2.0h-1,氢油体积比为500:1,评价结果见表5。采用气相色谱-原子发射光谱检测器(GC-AED)检测加氢精制油中硫化物类型和氮化物类型,结果见表6和表7。
从表2可见,与比较例催化剂相比,本发明催化剂在活性金属量基本没有改变的情况下, MoS2/WS2的平均堆积层数增多,平均片层长度降低,加氢活性中心数目明显增多。从表3可以看出,本发明催化剂经硫化后,MoS2/WS2的堆积层数主要集中在6.0~9.0层,片层长度主要集中在4.0~6.5nm。从表4可以看出,催化剂活性评价使用原料油氮含量高,这也将增大原料油的超深度加氢脱硫的难度。从表5-表7的评价结果看出,本发明催化剂具有优异的加氢脱氮活性,在脱除1,8-DMCB和1,4,8-TMCB大分子氮化物时显示出高的加氢活性,有利于提高催化剂的加氢脱硫活性。本发明催化剂用于加工处理轻质馏分油,尤其是用于处理氮含量高、加工难度大的劣质柴油馏分时,具有优异的超深度加氢脱硫和脱氮性能,并改善了柴油的十六烷值。
表1 实施例和比较例制备的催化剂组成及性质
催化剂编号 A B C D E F G H
NiO,wt% 19 20 16 15 19 19 19 19
WO<sub>3</sub>,wt% 35 27 30 33 35 35 35 35
MoO<sub>3</sub>,wt% 18 15 14 15 18 18 18 18
P<sub>2</sub>O<sub>5</sub>,wt% 8 10 12 11 - - - -
MgO 4 6 8 7 - - - -
ZrO<sub>2</sub> 5 7 6 5 - - - -
Al<sub>2</sub>O<sub>3</sub>,wt% 余量 余量 余量 余量 余量 余量 余量 余量
比表面积,m<sup>2</sup>/g 214 210 207 204 175 179 219 225
孔容,mL/g 0.329 0.321 0.315 0.308 0.271 0.273 0.325 0.334
机械强度,N/mm 16.8 17.3 17.9 18.6 16.7 17.2 15.8 14.7
孔分布,%
<3nm 11.23 11.38 11.53 11.12 65.16 63.81 11.51 20.18
3nm~10nm 65.93 65.55 65.42 65.34 20.27 21.69 61.52 40.56
10nm~15nm 10.19 10.51 10.63 10.86 8.03 9.12 23.47 30.24
>15nm 12.65 12.56 12.42 12.68 6.54 5.38 3.50 9.02
表2 体相催化剂中MoS2/WS2的平均堆积层数和平均片层长度
催化剂编号 平均堆叠层数N<sub>A</sub> 平均长度L<sub>A</sub>,nm
A 8.59 4.62
B 8.52 4.65
C 8.48 4.67
D 8.46 4.70
E 4.88 7.92
F 5.03 8.01
G 5.97 7. 85
H 5.93 7. 62
表3 体相催化剂中MoS2/WS2的堆积层数和片层长度的分布
催化剂编号 A B C D E F G H
片层数分布,%
<4.0层 3.13 3.19 3.22 3.27 30.22 32.56 24.98 20.56
4.0至小于7.0层 8.11 8.29 8.34 8.18 66.22 64.98 71.26 74.26
7.0~9.0层 76.44 76.41 76.22 76.36 3.56 2.46 3.76 5.18
>9.0层 12.32 12.11 12.22 12.19 - - - -
长度分布,%
<2.0nm 5.18 5.26 5.19 5.39 1.19 1.23 1.09 1.54
2.0至小于4.0nm 12.80 12.87 12.84 12.91 4.58 5.26 4.98 4.74
4.0~6.0nm 76.98 76.61 76.85 76.66 8.27 8.56 8.69 8.19
大于6.0至8.0nm 4.30 4.41 4.43 4.27 65.17 64.21 65.59 66.58
>8.0nm 0.74 0.85 0.69 0.77 20.79 20.74 19.65 18.95
表4 原料油主要性质
项目 分析结果
密度(20℃),g/cm<sup>3</sup> 0.9025
馏程范围,℃ 162-375
S,µg/g 5026
N,µg/g 1024
表5 催化剂活性评价结果
催化剂编号 A B C D
生成油密度(20℃),g/cm<sup>3</sup> 0.8691 0.8693 0.8694 0.8693
馏程范围,℃ 165-370 167-371 169-370 171-371
S,µg/g 6.0 6.2 6.5 6.8
N,µg/g 5.2 5.3 5.6 5.9
续表5 催化剂活性评价结果
催化剂编号 E F G H
生成油密度(20℃),g/cm<sup>3</sup> 0.8856 0.8883 0.8804 0.8812
馏程范围,℃ 173-374 172-374 176-373 175-373
S,µg/g 265.6 260.2 217.5 228.6
N,µg/g 78.2 74.8 60.9 62.1
表6 加氢精制油中不同硫化物的含量
催化剂编号 A B C D E
加氢精制油中硫含量,µg/g 6.0 6.2 6.5 6.8 265.6
C<sub>1</sub>-DBT,µg/g 0 0 0 0 48.3
4-MDBT,µg/g 1.3 1.3 1.4 1.3 69.2
6-MDBT,µg/g 1.1 1.2 1.3 1.5 65.6
4,6-DMDBT,µg/g 3.6 3.7 3.8 4.0 82.5
续表6
催化剂编号 F G H
加氢精制油中硫含量,µg/g 260.2 217.5 228.6
C<sub>1</sub>-DBT,µg/g 40.7 33.4 37.8
4-MDBT,µg/g 61.5 54.9 56.5
6-MDBT,µg/g 68.4 56.3 60.3
4,6-DMDBT,µg/g 89.6 72.9 74.0
表7 加氢精制油中不同氮化物的含量
催化剂编号 A B C D E
加氢精制油中氮含量,µg/g 5.2 5.3 5.6 5.9 78.2
1- MCB,µg/g 1.1 1.0 1.0 1.1 28.3
1,8-DMCB,µg/g 1.3 1.4 1.5 1.7 34.9
1,4,8-TMCB,µg/g 2.8 2.9 3.1 3.1 15.0
续表7
催化剂编号 F G H
加氢精制油中氮含量,µg/g 74.8 60.9 62.1
1-MCB,µg/g 24.2 18.1 17.8
1,8-DMCB,µg/g 35.3 28.3 29.5
1,4,8-TMCB,µg/g 15.3 14.5 14.8
注:加氢脱氮主要难脱的含氮化合物为分子较大、有空间位阻的咔唑(CB),1-甲基咔唑(1-MCB),1,8-二甲基咔唑(1,8-DMCB),1,4,8-三甲基咔唑(1,4,8-TMCB)等。

Claims (31)

1.一种加氢精制催化剂的制备方法,其特征在于,包括以下步骤:
(i)将第一磷酸钠碱性溶液与含Ni、W、Mg、Al组分的混合溶液A并流加入反应罐中进行成胶反应,得到浆液Ⅰ,然后进行老化;
(ii)将第二磷酸钠碱性溶液与含W、Mo、Zr、Al组分的混合溶液B并流加入老化后的浆液Ⅰ中进行成胶反应,得到浆液Ⅱ,然后进行老化;
(iii)将步骤(ii)所得的物料经干燥、成型、洗涤,再经干燥、焙烧得到加氢精制催化剂。
2.按照权利要求1所述的方法,其特征在于,将步骤(iii)所述的加氢精制催化剂进行硫化,即制得硫化态加氢精制催化剂。
3.按照权利要求1所述的方法,其特征在于,在步骤(i)中的混合溶液A为酸性溶液,其中,Ni以NiO计的重量浓度为3~100g/L,W以WO3计的重量浓度为2~60g/L,Al以Al2O3计的重量浓度为2~60g/L,Mg以MgO计的重量浓度为1~45g/L;在步骤(ii)中的混合溶液B为酸性溶液,其中,W以WO3计的重量浓度为2~70g/L,Mo以MoO3计的重量浓度2~80g/L,Al以Al2O3计的重量浓度为1~50g/L,Zr以ZrO2计的重量浓度为1~40g/L。
4.按照权利要求3所述的方法,其特征在于,在步骤(i)中的混合溶液A为酸性溶液,其中,Ni以NiO计的重量浓度为5~80g/L,W以WO3计的重量浓度为5~50g/L,Al以Al2O3计的重量浓度为3~50g/L,Mg以MgO计的重量浓度为2~35g/L;在步骤(ii)中的混合溶液B为酸性溶液,其中,W以WO3计的重量浓度为4~60g/L,Mo以MoO3计的重量浓度为3~60g/L,Al以Al2O3计的重量浓度为2~40g/L,Zr以ZrO2计的重量浓度为2~35g/L。
5.按照权利要求1所述的方法,其特征在于,步骤(i)通过混合溶液A引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中加氢活性金属的重量的25%~80%;步骤(ii)通过混合溶液B引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中活性加氢金属重量的20%~75%。
6.按照权利要求5所述的方法,其特征在于,步骤(i)通过混合溶液A引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中加氢活性金属的重量的30%~75%;步骤(ii)通过混合溶液B引入加氢活性金属的重量占步骤(iii)所得加氢精制催化剂中活性加氢金属重量的25%~70%。
7.按照权利要求1所述的方法,其特征在于,步骤(i)所述的第一磷酸钠碱性溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为0.3~5.0:1;步骤(ii)所述的第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼的摩尔比为0.3~4.0:1。
8.按照权利要求7所述的方法,其特征在于,步骤(i)所述的第一磷酸钠碱性溶液中磷酸钠的量与混合溶液A中钨和镍总量的摩尔比为0.5~4.5:1;步骤(ii)所述的第二磷酸钠碱性溶液中磷酸钠的量与混合溶液B中钨和钼的摩尔比为0.4~3.5:1。
9.按照权利要求1所述的方法,其特征在于,步骤(i)中,所述成胶反应的反应条件为:反应温度为20~90℃,pH值控制为6.0~9.0,成胶时间为0.2~2.0小时。
10.按照权利要求9所述的方法,其特征在于,步骤(i)中,所述成胶反应的反应条件为:反应温度为30~70℃,pH值控制为6.5~8.2,成胶时间为0.3~1.5小时。
11.按照权利要求1所述的方法,其特征在于,步骤(i)中,所述的老化条件如下:老化温度为40~90℃,老化时pH值控制为6.0~8.0,老化时间为0.1~1.0小时;老化在搅拌下进行,搅拌条件如下:搅拌转速为100~300转/分。
12.按照权利要求11所述的方法,其特征在于,步骤(i)中,所述的老化条件如下:老化温度为50~80℃,老化时pH值控制为6.5~7.5,老化时间为0.2~0.8小时;搅拌转速为150~250转/分。
13.按照权利要求1所述的方法,其特征在于,步骤(ii)中,所述成胶反应的反应条件为:反应温度为20~90℃,pH值控制为7.5~11.0,成胶时间为0.5~4.0小时。
14.按照权利要求13所述的方法,其特征在于,步骤(ii)中,所述成胶反应的反应条件为:反应温度为30~80℃,pH值控制为7.5~9.5,成胶时间为1.0~3.0小时。
15.按照权利要求1或11所述的方法,其特征在于,步骤(ii)中所述的老化条件如下:老化温度为40~90℃,老化时pH值控制为7.5~11.0,老化时间为1.5~6.0小时;老化在搅拌下进行,搅拌条件如下:搅拌转速为300~500转/分。
16.按照权利要求15所述的方法,其特征在于,步骤(ii)中所述的老化条件如下:老化温度为50~80℃,老化时pH值控制为8.0~10.0,老化时间为2.0~5.0小时;搅拌转速为300~450转/分。
17.按照权利要求15所述的方法,其特征在于,步骤(ii)所述老化的pH值比步骤(i)所述老化的pH值至少高0.5。
18.按照权利要求17所述的方法,其特征在于,步骤(ii)所述老化的pH值比步骤(i)所述老化的pH值至少高1.0。
19.按照权利要求1所述的方法,其特征在于,步骤(iii)中,成型前的干燥条件如下:在40~250℃干燥1~48小时;成型后的干燥条件如下:在40~250℃干燥1~48小时,焙烧条件如下:在350~650℃焙烧1~24小时。
20.按照权利要求19所述的方法,其特征在于,步骤(iii)中,成型前的干燥条件如下:在50~180℃干燥4~36小时;成型后的干燥条件如下:在50~180℃干燥4~36小时,焙烧条件如下:在400~600℃焙烧2~12小时。
21.按照权利要求1所述的方法,其特征在于,所述的加氢精制催化剂,以氧化态加氢精制催化剂的重量为基准,加氢活性金属组分Ni、W和Mo以氧化物计的总含量为40%~80%,P组分以氧化物计的含量为2%~20%,镁以氧化镁计的含量为2%~15%,锆以氧化锆计的含量为2%~13%,氧化铝含量为5%~45%。
22.按照权利要求21所述的方法,其特征在于,所述的加氢精制催化剂,以氧化态加氢精制催化剂的重量为基准,加氢活性金属组分Ni、W和Mo以氧化物计的总含量为45%~78%,P组分以氧化物计的含量为3%~18%,镁以氧化镁计的含量为3%~12%,锆以氧化锆计的含量为3%~10%,氧化铝含量为8%~40%。
23.按照权利要求1所述的方法,其特征在于,所述的加氢精制催化剂,W/Mo的摩尔比为1:10~8:1,Ni/(Mo+W)摩尔比为1:12~12:1。
24.按照权利要求23所述的方法,其特征在于,所述的加氢精制催化剂,W/Mo的摩尔比为1:8~5:1,Ni/(Mo+W)摩尔比为1:8~8:1。
25.按照权利要求1所述的方法,其特征在于,所述的加氢精制催化剂的孔径分布如下:直径为3nm以下的孔所占的孔容占总孔容的5%~30%,直径为3~10nm的孔所占孔容占总孔容的50%~80%,直径为10~15nm的孔所占的孔容占总孔容的7%~25%,直径为15nm以上的孔容占总孔容的为5%~20%。
26.按照权利要求2所述的方法,其特征在于,所述的硫化采用湿法硫化,硫化剂为有机含硫物质和/或无机含硫物质;硫化油为烃类和/或馏分油;硫化剂的用量为使加氢精制催化剂中各活性金属的硫化度不低于80%,预硫化条件为:温度为230~370℃、氢气压力为2.0~10MPa、液时体积空速为0.3~6.0h-1、硫化时间为3~24h。
27.按照权利要求2所述的方法,其特征在于,硫化采用的硫化剂选自硫磺、二硫化碳、二甲基二硫中的一种或多种。
28.按照权利要求26所述的方法,其特征在于,所述烃类为环己烷、环戊烷、环庚烷中的一种或多种,所述馏分油为煤油、常一线柴油、常二线柴油中的一种或多种。
29.按照权利要求26所述的方法,其特征在于,预硫化条件为:温度为250~ 350℃、氢气压力为3.0~8.0MPa、液时体积空速为1.0~3.0h-1、硫化时间为5~16h。
30.按照权利要求1或2所述的方法,其特征在于,所述加氢精制催化剂,经硫化后,MoS2/WS2堆积层数如下:平均堆积层数为6.0~9.0层,堆积层数为7.0~9.0的片层数占总片层数53%~82%;片层平均长度为4.0~6.5nm,片层长度为4.0~6.0nm的片层数占总片层数50.0%~85.0%。
31.按照权利要求30所述的方法,其特征在于,所述加氢精制催化剂,经硫化后,MoS2/WS2堆积层数如下:平均堆积层数为6.5~9.0层,堆积层数为7.0~9.0的片层数占总片层数60%~80%;片层平均长度为4.5~6.0nm,片层长度为4.0~6.0nm的片层数占总片层数62.0%~80.0%。
CN201910297485.8A 2019-04-15 2019-04-15 加氢精制催化剂的制备方法 Active CN111822019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910297485.8A CN111822019B (zh) 2019-04-15 2019-04-15 加氢精制催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910297485.8A CN111822019B (zh) 2019-04-15 2019-04-15 加氢精制催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN111822019A CN111822019A (zh) 2020-10-27
CN111822019B true CN111822019B (zh) 2022-11-11

Family

ID=72914520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910297485.8A Active CN111822019B (zh) 2019-04-15 2019-04-15 加氢精制催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111822019B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280004A (en) * 1991-10-24 1994-01-18 Idemitsu Kosan Co., Ltd. Hydrodesulfurizing catalyst composition and method of preparing same
CN102361692A (zh) * 2009-03-23 2012-02-22 吉坤日矿日石能源株式会社 加氢精制用催化剂及其制造方法、烃油的加氢精制方法
CN103157497A (zh) * 2013-04-08 2013-06-19 南开大学 一种双金属磷化物加氢精制催化剂的制备方法
JP2015157248A (ja) * 2014-02-24 2015-09-03 Jx日鉱日石エネルギー株式会社 減圧軽油の水素化精製用触媒およびその製造方法
CN106179381A (zh) * 2015-04-30 2016-12-07 中国石油化工股份有限公司 加氢精制催化剂的制法
CN106221771A (zh) * 2016-08-19 2016-12-14 锡山区绿春塑料制品厂 一种焦化粗苯加氢脱硫工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280004A (en) * 1991-10-24 1994-01-18 Idemitsu Kosan Co., Ltd. Hydrodesulfurizing catalyst composition and method of preparing same
CN102361692A (zh) * 2009-03-23 2012-02-22 吉坤日矿日石能源株式会社 加氢精制用催化剂及其制造方法、烃油的加氢精制方法
CN103157497A (zh) * 2013-04-08 2013-06-19 南开大学 一种双金属磷化物加氢精制催化剂的制备方法
JP2015157248A (ja) * 2014-02-24 2015-09-03 Jx日鉱日石エネルギー株式会社 減圧軽油の水素化精製用触媒およびその製造方法
CN106179381A (zh) * 2015-04-30 2016-12-07 中国石油化工股份有限公司 加氢精制催化剂的制法
CN106221771A (zh) * 2016-08-19 2016-12-14 锡山区绿春塑料制品厂 一种焦化粗苯加氢脱硫工艺

Also Published As

Publication number Publication date
CN111822019A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN110038580B (zh) 加氢精制催化剂的制法
CN109692685B (zh) 加氢精制催化剂的制备方法
CN103372450A (zh) 一种fcc汽油加氢预处理催化剂及其制备方法
CN110038581B (zh) 一种制备加氢精制催化剂的方法
CN110038584B (zh) 制备加氢精制催化剂的方法
CN110038622B (zh) 一种加氢裂化催化剂及其制法
CN111822019B (zh) 加氢精制催化剂的制备方法
CN100478423C (zh) 催化裂化汽油选择性加氢脱硫催化剂及其制备方法
CN110038597B (zh) 加氢精制催化剂的制备方法
CN109692692B (zh) 一种加氢精制催化剂的制备方法
CN110038633B (zh) 一种加氢裂化催化剂及其生产方法
CN110038620B (zh) 制备加氢裂化催化剂的方法
CN103801333B (zh) 一种载硫型加氢催化剂的制备方法
CN110038621B (zh) 加氢裂化催化剂的生产方法
CN110038583B (zh) 一种加氢精制催化剂的制备方法
CN110038585B (zh) 一种加氢精制催化剂的制法
CN109692686B (zh) 一种加氢精制催化剂及其制备方法
CN111822006B (zh) 体相加氢精制催化剂及其制备方法
CN109692693B (zh) 一种加氢精制催化剂及其制法
CN110038619B (zh) 一种加氢裂化催化剂的生产方法
JP7169348B2 (ja) 分解ナフサストリームの選択的水素化脱硫のための触媒、その調製方法、及び分解ナフサの選択的水素化脱硫のためのプロセス
CN109692712B (zh) 加氢精制催化剂及其制备方法
CN110038582B (zh) 一种加氢裂化催化剂的制法
CN110038617B (zh) 一种加氢裂化催化剂及其制备方法
CN110038596B (zh) 加氢裂化催化剂及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231102

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.