WO2024093335A1 - 一种散热结构及电子设备 - Google Patents

一种散热结构及电子设备 Download PDF

Info

Publication number
WO2024093335A1
WO2024093335A1 PCT/CN2023/105697 CN2023105697W WO2024093335A1 WO 2024093335 A1 WO2024093335 A1 WO 2024093335A1 CN 2023105697 W CN2023105697 W CN 2023105697W WO 2024093335 A1 WO2024093335 A1 WO 2024093335A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
film
magnetic
heat dissipation
dissipation structure
Prior art date
Application number
PCT/CN2023/105697
Other languages
English (en)
French (fr)
Inventor
韦隆和
丘永琪
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024093335A1 publication Critical patent/WO2024093335A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings

Definitions

  • the present application relates to the field of heat dissipation technology, and in particular to a heat dissipation structure and electronic equipment.
  • magnetic devices such as inductors and transformers as examples. They are important devices for achieving power conversion. These magnetic devices usually include a magnetic core and copper wire wound on the magnetic core. In order to achieve insulation of the copper wire, an insulating film is often added to the copper wire. The overall thickness of the copper wire wrapped on the magnetic core is relatively large, which makes the heat dissipation path from the magnetic core to the heat sink longer. In addition, due to the low thermal conductivity of magnetic materials, the heat generated at the magnetic core is difficult to diffuse outward. This results in a large temperature difference between the inner and outer copper wires of the magnetic device in a windless scene, and the heat dissipation at the magnetic core often becomes a bottleneck for the heat dissipation of these magnetic devices.
  • the present application provides a heat dissipation structure and an electronic device, so as to improve the heat dissipation efficiency of the heat dissipation structure and thus enhance the performance of the electronic device.
  • the present application provides a heat dissipation structure, which may include a circuit board, a magnetic device, a heat sink and a heat conducting medium, and the magnetic device may be located between the circuit board and the heat sink.
  • the magnetic device may include a magnetic core and a film-wrapped wire, the magnetic core includes a fixedly connected stopper and a central magnetic column, the film-wrapped wire is wound around the central magnetic column, and the film-wrapped wire is electrically connected to the circuit board.
  • the heat dissipation structure at least part of the side of the stopper may be provided with a heat conducting film.
  • the temperature uniformity of the magnetic device can be effectively improved, thereby solving the problem of local high temperature of the magnetic device and reducing the risk of overheating of the magnetic core.
  • the heat conducting medium may be provided between the magnetic device and the heat sink, and the heat conducting medium is in thermal contact with at least part of the magnetic device and the heat sink, so that the heat generated by the magnetic device can be transferred to the heat conducting medium and then transferred to the heat sink for heat dissipation, which can effectively improve the heat dissipation efficiency of the heat dissipation structure.
  • a thermally conductive film may also be disposed on the surface of the central magnetic column, and the film-wrapped wire is in thermal contact with the thermally conductive film. In this way, the heat generated by the film-wrapped wire and the central magnetic column can be conducted to the thermally conductive film, which can further improve the temperature uniformity of the magnetic device.
  • the film-wrapped wire and the thermally conductive film can be alternately wound around the central magnetic column, which can help increase the contact area between the film-wrapped wire and the thermally conductive film, thereby improving the temperature uniformity at the central magnetic column and effectively improving the heat dissipation efficiency of the heat dissipation structure.
  • the specific type of heat-conducting medium is not limited, and an exemplary one may be a thermally conductive adhesive.
  • the thermally conductive adhesive can at least partially cover the thermally conductive film, thereby facilitating the conduction of heat between the thermally conductive film and the thermally conductive adhesive. It is understandable that since the thermally conductive film provided on the magnetic core can improve its temperature uniformity, this can effectively reduce the amount of thermally conductive adhesive used while improving the heat dissipation efficiency of the heat dissipation structure, thereby reducing the cost of the heat dissipation structure.
  • the thermally conductive adhesive can cover at least a portion of the thermally conductive film and at least a portion of the magnetic core and at least a portion of the film-wrapped wire, which is beneficial to improving the temperature uniformity of the magnetic device.
  • the thermally conductive film may also be disposed on a surface of the stopper portion facing the heat sink, which can effectively increase the area of the thermally conductive film disposed on the magnetic core, thereby achieving the purpose of improving the temperature uniformity of the magnetic core.
  • the present application does not limit the specific type of the thermally conductive film, which can be exemplified by a metal film with good thermal conductivity such as copper foil, or a non-metal film with good thermal conductivity such as graphite film.
  • the present application also provides a heat dissipation structure, which may include a circuit board, a magnetic device, a heat sink and a heat-conducting medium, and the magnetic device may be located between the circuit board and the heat sink.
  • the magnetic device may include a magnetic core and a film-wrapped wire, the magnetic core includes a fixedly connected stopper and a central magnetic column, the film-wrapped wire is wound around the central magnetic column, and the film-wrapped wire is electrically connected to the circuit board.
  • this heat dissipation structure at least a portion of the surface of the central magnetic column may be provided with a thermally conductive film.
  • the temperature uniformity of the magnetic device can be effectively improved.
  • the problem of local high temperature of the magnetic device can be solved to reduce the risk of overheating of the magnetic core.
  • the heat conducting medium can be arranged between the magnetic device and the heat sink, and the heat conducting medium is in thermal contact with at least part of the magnetic device and the heat sink, so that the heat generated by the magnetic device can be transferred to the heat conducting medium and then transferred to the heat sink for heat dissipation, which can effectively improve the heat dissipation efficiency of the heat dissipation structure.
  • the film-wrapped wire and the thermally conductive film can be alternately wound around the central magnetic column, which can help increase the contact area between the film-wrapped wire and the thermally conductive film, thereby improving the temperature uniformity at the central magnetic column and effectively improving the heat dissipation efficiency of the heat dissipation structure.
  • the present application also provides a heat dissipation structure, which may include a circuit board, a magnetic device, a heat sink and a heat conducting medium, and the magnetic device may be located between the circuit board and the heat sink.
  • the magnetic device may include a magnetic core and a film-wrapped wire, the magnetic core includes a fixedly connected stopper and a central magnetic column, the film-wrapped wire is wound around the central magnetic column, and the film-wrapped wire is electrically connected to the circuit board.
  • a heat-conducting film is arranged between the film-wrapped wire and the central magnetic column, and the film-wrapped wire and the heat-conducting film are alternately wound around the central magnetic column.
  • the heat-conducting medium can be arranged between the magnetic device and the heat sink, and the heat-conducting medium and at least part of the magnetic device and the heat sink are in thermal contact, so the heat generated by the magnetic device can be transferred to the heat-conducting medium and then transferred to the heat sink for heat dissipation, which can effectively improve the heat dissipation efficiency of the heat dissipation structure.
  • the present application further provides an electronic device, which may include a housing and a heat dissipation structure as in the first aspect, and the heat dissipation structure may be disposed in the housing.
  • the heat dissipation structure of the electronic device has good heat dissipation performance, thereby improving the performance of the electronic device, which is conducive to improving the product competitiveness of the electronic device.
  • FIG1 is a schematic diagram of a layout structure of a magnetic device provided in the present application.
  • FIG2 is a schematic diagram of a heat dissipation structure of an existing magnetic device provided by the present application.
  • FIG3 is a schematic diagram of a heat dissipation structure of another existing magnetic device provided by the present application.
  • FIG4 is a schematic diagram of a heat dissipation structure provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a partial structure of the magnetic device in FIG4 ;
  • FIG6 is a cross-sectional view of a heat dissipation structure provided by another embodiment of the present application.
  • FIG7 is a cross-sectional view of a heat dissipation structure provided by another embodiment of the present application.
  • FIG8 is a schematic diagram of a partial structure of the magnetic device in FIG7 ;
  • FIG9 is a cross-sectional view of a heat dissipation structure provided by another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a partial structure of the magnetic device in FIG. 9 .
  • 103-thermal conductive medium 103a-thermal conductive pad; 103b-thermal conductive adhesive; 104-magnetic air gap;
  • the heat dissipation structure can be applied to, but is not limited to, magnetic devices such as inductors and transformers for realizing power conversion.
  • the magnetic device can generally include a magnetic core and a film-wrapped wire, and the film-wrapped wire is wound around the magnetic core.
  • the film-wrapped wire can be a cable with a copper wire in the middle and an insulating film wrapped on the outside.
  • FIG. 1 is a schematic diagram of the layout structure of a magnetic device provided in an embodiment of the present application.
  • the magnetic device 1 can generally be disposed on a circuit board 2 and electrically connected to the circuit board 2.
  • the circuit board 2 can be exemplarily a printed circuit board (PCB) so that it can play a stable bearing role for the magnetic device 1.
  • PCB printed circuit board
  • the layout on the circuit board 2 also increases. The more compact the circuit board 2 is, the higher the heat flux density of the circuit board 2 is. Good heat dissipation measures will be beneficial to the realization of the function of the magnetic device 1, thereby effectively improving the performance of the electronic equipment and enhancing the competitiveness of the product.
  • FIG 2 is a schematic diagram of the heat dissipation structure of an existing magnetic device 1 provided in an embodiment of the present application.
  • the magnetic device 1 can be located between the circuit board 2 and the radiator 3, and the magnetic device 1 is attached to the radiator 3 through the thermal pad 103a.
  • the thermal pad 103a can also absorb assembly tolerances. The process of this heat dissipation solution is simple and the cost is low.
  • the temperature difference of the magnetic device 1 is large along the direction from the circuit board 2 to the radiator 3, which is mainly reflected in the temperature of the part of the magnetic device 1 close to the circuit board 2, which is greater than the temperature of the part of the magnetic device 1 close to the radiator 3. If it only relies on single-sided heat dissipation, its heat dissipation capacity is poor.
  • FIG3 is a schematic diagram of the heat dissipation structure of another existing magnetic device 1 provided in an embodiment of the present application.
  • the temperature uniformity of the magnetic device 1 is improved by filling the gap between the film-wrapped wire 102 of the magnetic device 1 and the magnetic core 101 and between the magnetic device 1 and the radiator 3 with thermal conductive adhesive 103b, and at the same time, the thermal resistance between the magnetic device 1 and the radiator 3 can be effectively reduced, thereby meeting the heat dissipation requirements of the magnetic device 1.
  • the thermal conductivity of the thermal conductive adhesive 103b itself is not high, and in the application scenario of high heat consumption, the temperature difference of the magnetic device 1 is still large, and the circuit board 2 is still prone to overheating.
  • the heat dissipation structure provided by the present application is intended to solve the above-mentioned problem, by adding a heat-conducting film to the magnetic device to improve the overall temperature uniformity of the magnetic device, thereby improving the heat dissipation efficiency of the magnetic device, which is beneficial to improving the product performance of the electronic device to which the heat dissipation structure is applied.
  • FIG. 4 is a schematic diagram of the structure of a heat dissipation structure provided in an embodiment of the present application.
  • the heat dissipation structure may include a circuit board 2, a magnetic device 1, and a heat sink 3, wherein the circuit board 2 may be a PCB, the magnetic device 1 is electrically connected to the circuit board 2, and the magnetic device 1 is located between the circuit board 2 and the heat sink 3.
  • the magnetic device 1 may include a magnetic core 101 and a film-wrapped wire 102.
  • the magnetic core 101 refers to a structure formed by a magnetic material, and illustratively, it may be a magnetic metal oxide structure formed by sintering various iron oxide mixtures.
  • FIG. 5 is a schematic diagram of the partial structure of the magnetic device 1 in FIG. 4 .
  • the magnetic core 101 may include a stopper 1011 and a central magnetic column 1012, and the stopper 1011 is fixedly connected to the central magnetic column 1012.
  • the shape and size of the stopper 1011 and the central magnetic column 1012 are not limited, and the shapes of the two may be the same or different, and the sizes of the two may be the same or different, which are not specifically limited in the present application.
  • the stopper 1011 may be a cylindrical structure
  • the central magnetic column 1012 may also be a cylindrical structure
  • the cross-sectional circular radius of the stopper 1011 is greater than the cross-sectional circular radius of the central magnetic column 1012.
  • the cross-sectional shape of the magnetic core 101 may be, but is not limited to, a T-shape.
  • the stopper 1011 and the central magnetic column 1012 may be structures with regular cross-section shapes such as cylindrical shapes, or may be structures with irregular cross-section shapes, which are not specifically limited in the present application.
  • the magnetic core 101 may be an integrally formed structure, that is, the central magnetic column 1012 and the stopper 1011 are formed by one process, which can make the structure of the magnetic core 101 more stable and simplify the forming process of the magnetic core 101.
  • the central magnetic column 1012 and the stopper 1011 may also be two separately formed structures, which are then fixedly connected by sintering or other methods.
  • the film-wrapped wire 102 can be wound around the central magnetic column 1012, and the stopper 1011 of the magnetic core 101 can play a role of limiting the film-wrapped wire 102, so as to limit the setting position of the film-wrapped wire 102 on the magnetic core 101, and prevent the film-wrapped wire 102 from falling off the magnetic core 101.
  • the cross-sectional area of the stopper 1011 can be larger than the cross-sectional area of the central magnetic column 1012.
  • one or at least two film-wrapped wires 102 can be wound around each magnetic core 101, which can be set according to the specific application scenario and is not limited here.
  • each film-wrapped wire 102 can be used as interfaces of the power device for electrical connection with the circuit board 2.
  • the connection between the two ends of each film-wrapped wire 102 and the circuit board 2 can realize the fixed connection between the power device and the circuit board 2, so there is no need to set an additional structure for the fixed connection between the power device and the circuit board 2, which can simplify the overall structure of the heat dissipation structure.
  • a thermally conductive film 1013 may be provided on the surface of the magnetic core 101.
  • the thermally conductive film 1013 may be in direct contact with the surface of the magnetic core 101, or a thermally conductive material may be filled between the thermally conductive film 1013 and the surface of the magnetic core 101 so that the thermally conductive film 1013 and the surface of the magnetic core 101 are in indirect contact.
  • the heat-conducting film 1013 When the heat-conducting film 1013 is specifically arranged on the magnetic core 101, reference may be made to FIGS. 4 and 5.
  • the heat-conducting film 1013 may be arranged on the stopper 1011 of the magnetic core 101, and may be arranged on at least a portion of the side surface of the stopper 1011.
  • the side surface of the stopper 1011 is the surface of the stopper 1011 that is away from the central magnetic column 1012. Arranging the heat-conducting film 1013 on the side surface of the stopper 1011 can make the arrangement of the heat-conducting film 1013 more convenient.
  • the specific material of the thermally conductive film 1013 is not limited. It can be, for example, a metal film with good thermal conductivity such as copper foil, or a non-metallic film with good thermal conductivity such as graphite film.
  • the thermally conductive film 1013 can be arranged on the entire surface of the side of the stopper 1011 to make the temperature uniformity of the magnetic device 1 better. In some other possible embodiments of the present application, the thermally conductive film 1013 can also be arranged locally on the side of the stopper 1011.
  • a continuous sheet-like thermally conductive film 1013 can be arranged on a partial area of the side of the stopper 1011 in the direction from the heat sink 3 to the circuit board 2; or, the thermally conductive film 1013 can also be arranged as a strip structure, and the strip-like thermally conductive film 1013 can extend in the direction from the heat sink 3 to the circuit board 2.
  • the thermally conductive film 1013 can be a plurality of strips, and the plurality of thermally conductive films 1013 are arranged side by side at intervals.
  • the uniform temperature requirement of the magnetic device 1 can be met while reducing the amount of the thermally conductive film 1013 used, thereby reducing the cost of the heat dissipation structure.
  • the heat-conducting film 1013 can be arranged on the top surface of the stopper 1011 in addition to being arranged on the side surface of the stopper 1011.
  • the top surface of the stopper 1011 can be the surface of the stopper 1011 facing the heat sink 3.
  • the heat-conducting film 1013 can be arranged on the entire surface of the top surface of the stopper 1011 to effectively improve the temperature uniformity performance of the magnetic core 101.
  • the heat-conducting film 1013 can also be arranged on a part of the top surface of the stopper 1011.
  • the heat-conducting film 1013 can be in the form of a sheet or a strip, etc., which is not specifically limited in the present application, so as to achieve the purpose of improving the temperature uniformity performance of the magnetic core 101 while reducing the amount of the heat-conducting film 1013, thereby reducing the cost of the heat dissipation structure.
  • the types of the heat-conducting films 1013 disposed on the side and top surfaces of the stopper 1011 may be the same or different.
  • the heat-conducting films 1013 disposed on the side and top surfaces of the stopper 1011 may be connected or not, which is not specifically limited in the present application.
  • a heat-conducting medium 103 may be provided in the heat dissipation structure.
  • the heat-conducting medium 103 may be provided between the magnetic device 1 and the radiator 3, and the heat-conducting medium 103 is in thermal contact with at least part of the magnetic device 1 and the radiator 3.
  • the present application does not limit the specific type of the heat-conducting medium 103, as long as it has good thermal conductivity.
  • the heat dissipation structure provided by the embodiment shown in FIG.
  • the heat-conducting medium 103 may be a heat-conducting adhesive 103b, which may be filled in the gap between the magnetic device 1 and the radiator 3, so that the heat-conducting adhesive 103b can coat at least part of the magnetic core 101, at least part of the thermally conductive film 1013, and at least part of the film-wrapped wire 102, while also achieving adhesion of the entire magnetic device 1 to the surface of the radiator 3.
  • the heat generated by the magnetic device 1 can be conducted to the thermally conductive adhesive 103b through the thermally conductive film 1013, and then conducted to the radiator 3 through the thermally conductive adhesive 103b for heat dissipation. Since the thermally conductive film 1013 has good thermal conductivity, the heat dissipation structure can effectively improve the thermal conductivity efficiency of the magnetic device 1. In addition, the thermally conductive adhesive 103b filled between the magnetic device 1 and the radiator 3 can effectively reduce the thermal resistance between the magnetic device 1 and the radiator 3, which can meet the heat dissipation requirements of the magnetic device 1.
  • the filling amount of the thermal conductive adhesive 103b in the heat dissipation structure is not limited, and it can be adjusted according to the structure of the magnetic device 1, the heat dissipation requirements of the magnetic device 1, and the space between the magnetic device 1 and the heat sink 3. As long as the heat generated by the magnetic device 1 can be transferred to the heat sink 3 for heat dissipation after being conducted to the thermal conductive adhesive 103b.
  • the thermal conductive film 1013 is provided on the magnetic core 101, the temperature uniformity of the magnetic core 101 can be improved, which can effectively reduce the amount of thermal conductive adhesive 103b, thereby reducing the cost of the heat dissipation structure.
  • the heat-conducting medium 103 can also be a thermal pad 103a.
  • FIG. 6, is a schematic diagram of the structure of the heat dissipation structure provided by another embodiment of the present application.
  • the thermal pad 103a can be arranged between the magnetic device 1 and the heat sink 3, and at least part of the magnetic device 1 and the heat sink 3 are both in contact with the thermal pad 103a.
  • the thermal film 1013 arranged on the stopper 1011 of the magnetic core 101 can be in thermal contact with the thermal pad 103a, so that the heat generated by the magnetic device 1 can be conducted to the thermal pad 103a through the thermal film 1013, so as to be conducted to the heat sink 3 through the thermal pad 103a for heat dissipation, so as to improve the heat dissipation efficiency of the magnetic device 1.
  • the thermally conductive film 1013 can be provided on at least a portion of the surface of the central magnetic column 1012.
  • the material of the thermally conductive film 1013 can be, but is not limited to, a metal film with good thermal conductivity such as copper foil, or a non-metallic film with good thermal conductivity such as graphite film. It is worth noting that in order for the magnetic device 1 to work normally, when the thermally conductive film 1013 is a metal film, the thermally conductive film 1013 should be kept away from the magnetic air gap of the magnetic device 1. 104 to set up.
  • a thermally conductive film 1013 may be provided on the entire surface of the central magnetic column 1012 to improve the temperature uniformity of the magnetic device 1.
  • a thermally conductive film 1013 may also be provided on a part of the surface of the central magnetic column 1012.
  • a continuous strip-shaped thermally conductive film 1013 may be provided on a part of the surface of the central magnetic column 1012 in the axial direction of the central magnetic column 1012.
  • the strip-shaped thermally conductive film 1013 may be provided along the circumference of the central magnetic column 1012.
  • a heat-conducting film 1013 can be first formed on the surface of the central magnetic column 1012, and then the film-wrapped wire 102 can be wound around the central magnetic column 1012. At this time, the film-wrapped wire 102 can also be in thermal contact with the heat-conducting film 1013, so that the heat generated at the film-wrapped wire 102 can also be conducted to the heat-conducting film 1013.
  • a heat-conducting medium 103 may also be provided between the magnetic device 1 and the heat sink 3, and the heat-conducting medium 103 may be exemplarily a heat-conducting adhesive 103b.
  • the specific configuration of the heat-conducting adhesive 103b may refer to the embodiment shown in FIG. 4 above, for example, the heat-conducting adhesive 103b is in heat-conducting contact with at least part of the magnetic device 1 and the heat sink 3, etc., which will not be described in detail here.
  • the heat-conducting medium 103 may also be a heat-conducting pad 103a, which may be specifically configured with reference to the embodiment shown in FIG. 6 above, which will not be described in detail here.
  • the heat dissipation structure provided by the embodiment shown in FIG. 7 and FIG. 8 can effectively improve the temperature uniformity at the center magnetic column 1012, and can make the heat generated by the magnetic device 1 be transferred to the thermal conductive adhesive 103b through the thermal conductive film 1013, and then transferred to the heat sink 3 through the thermal conductive adhesive 103b for heat dissipation, which can effectively improve the heat dissipation efficiency of the heat dissipation structure. Since the thermal conductive film 1013 is provided on the center magnetic column 1012, the temperature uniformity of the magnetic core 101 can be improved, which can effectively reduce the amount of thermal conductive adhesive 103b, thereby reducing the cost of the heat dissipation structure. In addition, the heat dissipation structure provided by this embodiment can also help reduce the local high temperature of the magnetic device 1, such as the temperature of the side of the magnetic device 1 close to the circuit board 2, thereby reducing the risk of overheating at the circuit board 2.
  • a thermally conductive film 1013 may be provided on the surfaces of the stopper 1011 and the central magnetic column 1012 of the magnetic core 101.
  • the thermally conductive film 1013 on the surface of the stopper 1011 may be provided with reference to the embodiment shown in FIG. 4
  • the thermally conductive film 1013 on the surface of the central magnetic column 1012 may be provided with reference to the embodiment shown in FIG. 7 , which will not be described in detail here.
  • the film-wrapped wire 102 may generally include metal wires, and during the operation of the magnetic device 1, the metal wires in the film-wrapped wire 102 may serve as channels for current flow, so a large amount of heat is generated. Based on this, the heat dissipation efficiency of the magnetic device 1 can be improved by quickly conducting away the heat generated by the film-wrapped wire 102.
  • FIG9 and FIG10 FIG9 being a cross-sectional view of a heat dissipation structure provided in another possible embodiment of the present application, and FIG10 being a schematic diagram of a partial structure of the magnetic device 1 in FIG9.
  • the film-wrapped wire 102 and the thermally conductive film 1013 are alternately wound on the central magnetic column 1012, and there are many specific implementation methods.
  • a circle of thermally conductive film 1013 can be wound along the circumference of the central magnetic column 1012, and then a circle of film-wrapped wire 102 can be wound, wherein the thermally conductive film 1013 can be located between the film-wrapped wire 102 and the central magnetic column 1012, and then the above winding sequence is repeated until the thermally conductive film 1013 and the film-wrapped wire 102 are wound on the entire central magnetic column 1012.
  • a circle of film-wrapped wire 102 can also be wound on the central magnetic column 1012 first, and then the thermally conductive film 1013 can be wound.
  • the winding sequence of the film-wrapped wire 102 and the thermally conductive film 1013 is not limited in the present application.
  • a heat-conducting medium 103 may also be provided between the magnetic device 1 and the heat sink 3, and the heat-conducting medium 103 may be exemplarily a heat-conducting adhesive 103b.
  • the specific configuration of the heat-conducting adhesive 103b may refer to the embodiment shown in FIG. 4 above, for example, the heat-conducting adhesive 103b is in heat-conducting contact with at least part of the magnetic device 1 and the heat sink 3, etc., which will not be described in detail here.
  • the heat-conducting medium 103 may also be a heat-conducting pad 103a, which may be specifically configured with reference to the embodiment shown in FIG. 6 above, which will not be described in detail here.
  • the central magnetic column 1012 and the film-wrapped wire 102 can be in contact with the heat-conducting film 1013.
  • the heat-conducting film 1013 and the film-wrapped wire 102 are interlaced and wound around the central magnetic column 1012, the contact area between the film-wrapped wire 102 and the heat-conducting film 1013 can be effectively increased.
  • the heat generated by the central magnetic column 1012 and the film-wrapped wire 102 can also be conducted to the heat-conducting glue 103b through the heat-conducting film 1013, and then conducted to the radiator 3 through the heat-conducting glue 103b for heat dissipation, which can effectively improve the heat dissipation efficiency of the heat dissipation structure.
  • the heat-conducting film 1013 is provided on the central magnetic column 1012, the temperature uniformity of the magnetic core 101 can be improved, which can effectively reduce the amount of the heat-conducting glue 103b, thereby reducing the cost of the heat dissipation structure.
  • the heat dissipation structure provided in this embodiment can also help reduce the local high temperature of the magnetic device 1, such as the temperature of the side of the magnetic device 1 close to the circuit board 2, thereby reducing the risk of overheating at the circuit board 2.
  • a heat-conducting film 1013 may also be provided on the surface of the stopper 1011 of the magnetic core 101 and/or the surface of the central magnetic column 1012.
  • the heat-conducting film 1013 on the surface of the stopper 1011 may be provided with reference to the embodiment shown in FIG. 4, and the heat-conducting film 1013 on the surface of the central magnetic column 1012 may be provided with reference to the embodiment shown in FIG. 7, which will not be described in detail here.
  • the temperature uniformity of the magnetic core 101 can be effectively improved, which can be beneficial to improving the temperature uniformity of the entire magnetic core 101.
  • the temperature uniformity of the magnetic core 101 is improved, which can also effectively reduce the risk of overheating of the magnetic core 101, so as to improve the reliability of the operation of the magnetic device 1.
  • the overheating of the magnetic core 101 refers to the phenomenon of temperature runaway after the magnetic core 101 is magnetically saturated at high temperature.
  • the heat dissipation module provided in the above-mentioned embodiments of the present application can be applied to various possible electronic devices.
  • the present application does not limit the specific type of the electronic device.
  • it can be a power supply device such as a charging pile or an inverter, or a communication device such as a server or a storage device, or other electronic devices such as a vehicle and household appliances.
  • the electronic device may include a housing, and the heat dissipation structure may be arranged on the housing.
  • the heat dissipation structure of the electronic device has good heat dissipation performance, and the power density of the heat dissipation structure is high, so that the performance of the electronic device can be improved.
  • the number of devices arranged on the circuit board 2 per unit area can be large, which is conducive to the miniaturization design of the heat dissipation structure, thereby realizing the miniaturization design of the electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种散热结构及电子设备。该散热结构可以包括电路板、磁性器件、散热器和导热介质,磁性器件可位于电路板和散热器之间。其中,磁性器件可包括磁芯和膜包线,磁芯包括固定连接的止挡部和中心磁柱,膜包线缠绕于中心磁柱,且膜包线与电路板电连接。在该散热结构中,止挡部的侧面的至少部分可设置有导热膜,其可有效的提高磁性器件的均温性,以解决磁性器件的局部高温的问题。另外,导热介质可设置于磁性器件与散热器之间,且导热介质与磁性器件的至少部分和散热器导热接触,则磁性器件产生的热量可传导至导热介质后传递给散热器进行散热,其可有效的提高散热结构的散热效率,从而使设置有该散热结构的电子设备的性能得以提升。

Description

一种散热结构及电子设备
相关申请的交叉引用
本申请要求在2022年11月02日提交中国专利局、申请号为202211362569.3、申请名称为“一种散热结构及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及一种散热结构及电子设备。
背景技术
随着电子技术的发展,电子设备中功率器件的密度持续提升,电路板上的功率器件的布局越来越紧凑,这就使得电路板上的热流密度也越来越大。如果没有很好的散热措施,会使功率器件的应用场景受限,同时也会限制电子设备产品性能的发挥。
以电感和变压器等磁性器件为例,其是实现功率变换的重要器件。这些磁性器件通常可包括磁芯和绕制于磁芯上的铜线。而为了实现铜线的绝缘,往往会为铜线增加绝缘膜,则包覆于磁芯上的铜线的整体厚度较大,从而使磁芯到散热器的散热路径较长。另外,又由于磁性材料的导热系数低,则磁芯处产生的热很难向外扩散。这就导致在无风场景下,磁性器件的内外层铜线间温差较大,磁芯处的散热往往成为这些磁性器件散热的瓶颈。
发明内容
本申请提供了一种散热结构及电子设备,以使提高散热结构的散热效率,从而提升电子设备的性能。
第一方面,本申请提供了一种散热结构,该散热结构可以包括电路板、磁性器件、散热器和导热介质,磁性器件可位于电路板和散热器之间。其中,磁性器件可包括磁芯和膜包线,磁芯包括固定连接的止挡部和中心磁柱,膜包线缠绕于中心磁柱,且膜包线与电路板电连接。在该散热结构中,止挡部的侧面的至少部分可设置有导热膜。通过在止挡部的侧面设置导热膜可有效的提高磁性器件的均温性,从而可以解决磁性器件的局部高温的问题,以降低磁芯超温的风险。另外,导热介质可设置于磁性器件与散热器之间,且导热介质与磁性器件的至少部分·和散热器导热接触,则磁性器件产生的热量可传导至导热介质后传递给散热器进行散热,其可有效的提高散热结构的散热效率。
导热膜除了可以设置于止挡部的侧面以外,在本申请一个可能的实现方式中,还可以在中心磁柱的表面设置有导热膜,并使膜包线与导热膜导热接触。这样可使膜包线以及中心磁柱产生的热量均传导至导热膜,其可进一步提升磁性器件的均温性。
另外,在将导热膜设置于中心磁柱与膜包线之间时,还可以使膜包线与导热膜交替绕制于中心磁柱。其可有利于增大膜包线与导热膜的接触面积,这样可在改善中心磁柱处的均温性的同时,还可以有效的提高散热结构的散热效率。
在本申请中,不对导热介质的具体类型进行限定,其示例性的可为导热胶。通过在磁性器件和散热器之间填充导热胶,可以使导热胶将导热膜的至少部分包覆,从而便于实现导热膜与导热胶之间的热量的传导。可以理解的是,由于磁芯设置的导热膜可提升其均温性,这样可以在提高散热结构的散热效率的同时,还可有效的减少导热胶的用量,从而可降低散热结构的成本。
导热胶在将导热膜的至少部分进行包覆的同时,还可以将磁芯的至少部分以及膜包线的至少部分包覆,其有利于磁性器件的均温性的提升。
在本申请一个可能的实现方式中,导热膜还可以设置于止挡部的朝向散热器的一侧表面。这样可有效的增大磁芯上设置的导热膜的面积,从而达到提升磁芯的均温性的目的。
本申请不对导热膜的具体类型进行限定,其示例性的可以为铜箔等导热性能较好的金属薄膜。或者,也可以为石墨膜等导热性能较好的非金属薄膜。
第二方面,本申请还提供一种散热结构,该散热结构可以包括电路板、磁性器件、散热器和导热介质,磁性器件可位于电路板和散热器之间。其中,磁性器件可包括磁芯和膜包线,磁芯包括固定连接的止挡部和中心磁柱,膜包线缠绕于中心磁柱,且膜包线与电路板电连接。在该散热结构中,中心磁柱的表面的至少部分可设置有导热膜。通过在中心磁柱的表面设置导热膜可有效的提高磁性器件的均温性, 从而可以解决磁性器件的局部高温的问题,以降低磁芯超温的风险。另外,导热介质可设置于磁性器件与散热器之间,且导热介质与磁性器件的至少部分和散热器导热接触,则磁性器件产生的热量可传导至导热介质后传递给散热器进行散热,其可有效的提高散热结构的散热效率。
另外,在将导热膜设置于中心磁柱与膜包线之间时,还可以使膜包线与导热膜交替绕制于中心磁柱。其可有利于增大膜包线与导热膜的接触面积,这样可在改善中心磁柱处的均温性的同时,还可以有效的提高散热结构的散热效率。
第三方面,本申请还提供一种散热结构,该散热结构可以包括电路板、磁性器件、散热器和导热介质,磁性器件可位于电路板和散热器之间。其中,磁性器件可包括磁芯和膜包线,磁芯包括固定连接的止挡部和中心磁柱,膜包线缠绕于中心磁柱,且膜包线与电路板电连接。在该散热结构中,膜包线和中心磁柱之间设置有导热膜,且膜包线与导热膜交替绕制于中心磁柱。通过将膜包线与导热膜交替绕制于中心磁柱,可使导热膜与膜包线的接触面积较大,其可有效的提高磁性器件的均温性,从而可以解决磁性器件的局部高温的问题,以降低磁芯超温的风险。另外,导热介质可设置于磁性器件与散热器之间,且导热介质与磁性器件的至少部分和散热器导热接触,则磁性器件产生的热量可传导至导热介质后传递给散热器进行散热,其可有效的提高散热结构的散热效率。
第四方面,本申请还提供一种电子设备,该电子设备可以包括壳体以及如第一方面的散热结构,该散热结构可设置于壳体内。该电子设备的散热结构的散热性能较好,从而可以使电子设备的性能得以提升,其有利于提升电子设备的产品竞争力。
附图说明
图1为本申请提供的一种磁性器件的布局结构示意图;
图2为本申请提供的一种现有的磁性器件的散热结构示意图;
图3为本申请提供的另一种现有的磁性器件的散热结构示意图;
图4为本申请一实施例提供的散热结构的结构示意图;
图5为图4中磁性器件的局部结构示意图;
图6为本申请另一实施例提供的散热结构的剖视图;
图7为本申请另一实施例提供的散热结构的剖视图;
图8为图7中磁性器件的局部结构示意图;
图9为本申请另一实施例提供的散热结构的剖视图;
图10为图9中磁性器件的局部结构示意图。
附图标记:
1-磁性器件;101-磁芯;1011-止挡部;1012-中心磁柱;1013-导热膜;102-膜包线;
103-导热介质;103a-导热垫;103b-导热胶;104-磁气隙;
2-电路板;3-散热器。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。另外,本说明书中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了方便理解本申请实施例提供的散热结构,下面首先说明一下其应用场景。该散热结构可以但不限于应用于电感和变压器等用于实现功率变换的磁性器件中。磁性器件通常可以包括磁芯和膜包线,膜包线绕制于磁芯。其中,膜包线可以为中间为铜线,外部包裹绝缘膜的线缆。
参照图1,图1为本申请实施例提供的一种磁性器件的布局结构示意图。磁性器件1通常可设置于电路板2,并与电路板2电连接。其中,电路板2示例性的可为印制电路板(printed circuit board,PCB),以使其能够对磁性器件1起到稳定的承载作用。随着电子设备的功率密度的提升,电路板2上的布局也 越来越紧凑,这就导致电路板2的热流密度越来越高。而良好的散热措施将有利于磁性器件1功能的实现,从而可有效的提升电子设备的性能,提高产品的竞争力。
针对磁性器件1的散热,目前也有一些解决方案。参照图2,图2为本申请实施例提供的一种现有的磁性器件1的散热结构示意图。在该散热结构中,磁性器件1可位于电路板2和散热器3之间,且磁性器件1通过导热垫103a与散热器3相贴合。导热垫103a除了具有较好的导热性能外,还能够起到吸收装配公差的作用。该散热方案的工艺简单,且成本较低。但是,由于磁性器件1的磁芯101和膜包线102的导热系数低,沿由电路板2到散热器3的方向上,磁性器件1的温差较大,主要体现在磁性器件1的靠近电路板2的部分的温度,大于磁性器件1的靠近散热器3的部分的温度,则仅依靠单面散热,其散热能力较差。
为了减小磁性器件1的温差,可参照图3,图3为本申请实施例提供的另一种现有的磁性器件1的散热结构示意图。在该散热结构中,通过在磁性器件1的膜包线102与磁芯101以及磁性器件1与散热器3之间的间隙处填充导热胶103b的方式来改善磁性器件1的均温性,同时可有效的降低磁性器件1与散热器3之间的热阻,从而满足磁性器件1的散热需求。但是,导热胶103b本身的导热系数不高,且在高热耗的应用场景下,磁性器件1的温差仍然较大,则电路板2仍易出现超温的问题。
本申请提供的散热结构旨在解决上述问题,以通过在磁性器件中增加导热膜的方式,提高磁性器件整体的均温性,从而使磁性器件的散热效率得以提升,其有利于提升应用有该散热结构的电子设备的产品性能。下面将结合附图和具体实施例对本申请作进一步地详细描述。
参照图4,图4为本申请一实施例提供的散热结构的结构示意图。该散热结构可以包括电路板2、磁性器件1和散热器3,其中,电路板2可为PCB,磁性器件1与电路板2电连接,且磁性器件1位于电路板2和散热器3件之间。磁性器件1可以包括磁芯101和膜包线102,在本申请中,磁芯101是指由磁性材料形成的结构,示例性的,其可由各种氧化铁混合物烧结形成的一种磁性金属氧化物结构。
可参照图5,图5为图4中磁性器件1的局部结构示意图。在本申请中,磁芯101可以包括止挡部1011以及中心磁柱1012,止挡部1011与中心磁柱1012固定连接。在本申请中,不对止挡部1011与中心磁柱1012的形状尺寸进行限定,二者的形状可以相同也可以不同,且二者的尺寸可以相同也可以不同,在本申请中不对其作具体限定。示例性的,止挡部1011可为圆柱状结构,中心磁柱1012也可为圆柱状结构,且止挡部1011的截面圆半径,大于中心磁柱1012的截面圆半径。另外,在沿垂直于止挡部1011和中心磁柱1012的方向上,磁芯101的截面形状可以但不限于为T型。止挡部1011和中心磁柱1012除了可为圆柱状等具有规则形状的截面的结构外,还可以为一些可能的具有非规则形状截面的结构,在本申请中不对其作具体的限定。
在一个可能的实施例中,磁芯101可为一体成型结构,即中心磁柱1012与止挡部1011通过一道工艺形成,这样可以使磁芯101的结构较为稳定,并可简化磁芯101的成型工艺。在其它一些可能的实施例中,中心磁柱1012与止挡部1011还可以为两个分别成型的结构,再通过烧结等方式固定连接。
膜包线102可缠绕于中心磁柱1012,则磁芯101的止挡部1011可对膜包线102起到限位止挡的作用,以对膜包线102在磁芯101上的设置位置进行限位,并可避免膜包线102从磁芯101上脱落。在本申请中,为了使止挡部1011能够对膜包线102起到限位的作用,可使止挡部1011的截面积大于中心磁柱1012的截面积。另外,每个磁芯101上可缠绕一根或者至少两根膜包线102,其可根据具体的应用场景进行设置,在此不进行限定。
可以理解的是,在将膜包线102缠绕于磁芯101后,每根膜包线102的两个线头可作为功率器件的接口,以用于与电路板2进行电连接。另外,每根膜包线102的两个线头与电路板2的连接即可实现功率器件与电路板2的固定连接,则无需为功率器件与电路板2之间的固定连接设置额外的结构,其可使该散热结构的整体结构得以简化。
在本申请中,为了提高散热结构的均温性,可在磁芯101的表面设置导热膜1013。其中,导热膜1013可以与磁芯101的表面直接接触,或者也可以在导热膜1013与磁芯101的表面之间填充导热材料,以使导热膜1013与磁芯101的表面之间间接接触。
在磁芯101上具体进行导热膜1013的设置时,可继续参照图4和图5,在图4和图5所示的实施例中,导热膜1013可设置于磁芯101的止挡部1011,示例性的可设置于止挡部1011的侧面的至少部分。其中,止挡部1011的侧面为止挡部1011的背离中心磁柱1012的表面。将导热膜1013设置于止挡部1011的侧面可使导热膜1013的设置较为便利。
在本申请中,不对导热膜1013的具体材质进行限定,其示例性的可为铜箔等导热性能较好的金属薄膜,也可以为石墨膜等导热性能较好的非金属薄膜。另外,在本申请一个可能的实施例中,可以在止挡部1011的侧面的整面均设置导热膜1013,以使磁性器件1的均温性较佳。在本申请其它一些可能的实施例中,还可以在止挡部1011的侧面的局部设置导热膜1013,示例性的,在沿散热器3到电路板2的方向上,可以在止挡部1011的侧面的部分区域设置连续的片状的导热膜1013;或者,还可以将导热膜1013设置为条状结构,该条状的导热膜1013可沿散热器3到电路板2的方向延伸,另外,还可以使导热膜1013为多条,该多条导热膜1013间隔并排排列。通过在止挡部1011的侧面的局部设置导热膜1013,可以在满足磁性器件1的均温要求的同时,还可以减少导热膜1013的用量,从而降低散热结构的成本。
可继续参照图4和图5,在本申请中,导热膜1013除了可设置于止挡部1011的侧面以外,还可以设置于止挡部1011的顶面。其中,止挡部1011的顶面可为止挡部1011的朝向散热器3的表面。在止挡部1011的顶面具体进行导热膜1013的设置时,在本申请一个可能的实施例中,可以在止挡部1011的顶面的整面均设置导热膜1013,以有效的提高磁芯101的均温性能。在本申请另外一些可能的实施例中,还可以在止挡部1011的顶面的局部设置导热膜1013,此时,导热膜1013可呈片状或者条状等,在本申请中不进行具体限定,以在能够达到提高磁芯101的均温性能的目的的同时,还可以减少导热膜1013的用量,从而降低散热结构的成本。
可以理解的是,在本申请中,设置于止挡部1011的侧面和顶面的导热膜1013的种类可以相同,也可以不同。另外,设置于止挡部1011的侧面和顶面的导热膜1013可以连接,也可以不连接,在本申请中不对其进行具体限定。
为了使磁芯101处产生的热量能够传导至散热器3,散热结构中还可以设置有导热介质103,该导热介质103可设置于磁性器件1与散热器3之间,且导热介质103与磁性器件1的至少部分和散热器3导热接触。本申请对导热介质103的具体类型不进行限定,只要其具有较好的导热性能即可。例如,在本申请图4所示的实施例提供的散热结构中,导热介质103可为导热胶103b,该导热胶103b可以填充于磁性器件1与散热器3之间的缝隙处,从而使导热胶103b在将磁芯101的至少部分、导热膜1013的至少部分以及膜包线102的至少部分进行包覆的同时,还可以实现整个磁性器件1与散热器3表面的粘接。
采用本申请该实施例提供的散热结构,磁性器件1产生的热量可以通过导热膜1013传导至导热胶103b,进而通过导热胶103b传导至散热器3进行散热。由于导热膜1013的导热性能较好,因此采用该散热结构,可有效的提高磁性器件1的导热效率。另外,填充于磁性器件1与散热器3之间的导热胶103b,可以有效的降低磁性器件1与散热器3之间的热阻,其可满足磁性器件1的散热需求。
可以理解的是,在本申请中,不对散热结构中导热胶103b的填充量进行限定,其具体可根据磁性器件1的结构、磁性器件1的散热要求以及磁性器件1与散热器3件的空间等进行调整。只要能够使磁性器件1产生的热量传导至导热胶103b后,可传递给散热器3进行散热即可。另外,由于在磁芯101上设置导热膜1013可使磁芯101的均温性得以提升,这样可以有效的减少导热胶103b的用量,从而可降低散热结构的成本。
在本申请一个可能的实施例中,导热介质103还可以为导热垫103a,具体实施时,可参照图6,图6为本申请另一个实施例提供的散热结构的结构示意图。其中,导热垫103a可以设置于磁性器件1与散热器3之间,并且磁性器件1的至少部分和散热器3均与导热垫103a相贴合。在该实施例中,可以使设置于磁芯101的止挡部1011上的导热膜1013,尤其是设置于止挡部1011的侧面的导热膜1013与导热垫103a导热接触,从而使磁性器件1产生的热量能够通过导热膜1013传导至导热垫103a,以通过导热垫103a传导至散热器3进行散热,以提高磁性器件1的散热效率。
由上述实施例的介绍可以知道,通过在磁芯101的表面设置导热性能较好的导热膜1013,可有效的提高磁性器件1的均温性,从而可利于实现磁性器件1的散热。基于此,导热膜1013除了可以设置于磁芯101的止挡部1011外,还可以设置于磁芯101的其它部位。参照图7和图8,图7为本申请另一个可能的实施例提供的散热结构的剖视图,图8为图7中磁性器件1的局部结构示意图。在该实施例中,导热膜1013可设置于中心磁柱1012的表面的至少部分。其中,导热膜1013的材质可以但不限于为铜箔等导热性能较好的金属薄膜,也可以为石墨膜等导热性能较好的非金属薄膜。值得注意的是,为使磁性器件1能够正常工作,当导热膜1013为金属薄膜时,应使导热膜1013避开磁性器件1的磁气隙 104进行设置。
在图7和图8所示的实施例中,可以在中心磁柱1012的整个表面均设置有导热膜1013,以使磁性器件1的均温性较佳。在本申请其它一些可能的实施例中,还可以在中心磁柱1012的表面的局部设置导热膜1013,示例性的,在沿中心磁柱1012的轴向方向上,可以在中心磁柱1012的表面的部分区域设置连续的带状的导热膜1013,该带状的导热膜1013可沿中心磁柱1012的周向进行设置。
可以理解的是,图7和图8所示的散热结构在具体设置时,可以先在中心磁柱1012的表面形成导热膜1013,然后再将膜包线102缠绕于中心磁柱1012。此时,膜包线102也可与导热膜1013导热接触,从而使膜包线102处产生的热量也可以传导至导热膜1013。
可继续参照图7,在磁性器件1与散热器3之间也可以设置有导热介质103,该导热介质103示例性的可为导热胶103b。其中,导热胶103b的具体设置方式可参照上述图4所示的实施例,例如导热胶103b与磁性器件1的至少部分和散热器3导热接触等,在此不再进行赘述。另外,导热介质103还可以为导热垫103a,其可参照上述图6所示的实施例进行具体设置,在此不进行赘述。
采用图7和图8所示的实施例提供的散热结构,可有效的改善中心磁柱1012处的均温性,并且可使磁性器件1产生的热量通过导热膜1013传导至导热胶103b,进而通过导热胶103b传导至散热器3进行散热,其可有效的提高散热结构的散热效率。又由于在中心磁柱1012设置导热膜1013可使磁芯101的均温性得以提升,这样可以有效的减少导热胶103b的用量,从而可降低散热结构的成本。另外,采用该实施例提供的散热结构,还可有利于降低磁性器件1的局部高温,例如磁性器件1的靠近电路板2一侧的温度,从而可降低电路板2处超温的风险。
可以理解的是,在本申请一些可能的实施例中,还可以在磁芯101的止挡部1011和中心磁柱1012的表面均设置有导热膜1013。其中,止挡部1011表面的导热膜1013可参照图4所示的实施例进行设置,中心磁柱1012表面的导热膜1013可参照图7所示的实施例进行设置,在此不进行赘述。通过在磁芯101的止挡部1011和中心磁柱1012均设置导热膜1013,可有效的提高磁芯101的均温性,从而可有利于提高整个磁性器件1的散热效率。
又考虑到膜包线102通常可包括金属线,且在磁性器件1工作的过程中,膜包线102中的金属线可作为电流流通的通道,故其会产生大量的热。基于此,可通过将膜包线102产生的热快速的导出,来提高磁性器件1的散热效率。具体实施时,可参照图9和图10,图9为本申请另一个可能的实施例提供的散热结构的剖视图,图10为图9中磁性器件1的局部结构示意图。在该实施例中,膜包线102与导热膜1013交错绕制于中心磁柱1012,其具体的实现方式可以有多种,示例性的,可以先沿中心磁柱1012的周向绕制一圈的导热膜1013,然后再绕制一圈膜包线102,其中导热膜1013可位于膜包线102和中心磁柱1012之间,之后重复上述的绕制顺序直至在整个中心磁柱1012上完成导热膜1013和膜包线102的绕制。在本申请其它一些可能的实施例中,还可以先在中心磁柱1012上绕制一圈膜包线102,然后再进行导热膜1013的绕制,在本申请中不对膜包线102和导热膜1013的绕制顺序进行限定。
可继续参照图9,在磁性器件1与散热器3之间也可以设置有导热介质103,该导热介质103示例性的可为导热胶103b。其中,导热胶103b的具体设置方式可参照上述图4所示的实施例,例如导热胶103b与磁性器件1的至少部分和散热器3导热接触等,在此不再进行赘述。另外,导热介质103还可以为导热垫103a,其可参照上述图6所示的实施例进行具体设置,在此不进行赘述。
采用图9和图10所示的实施例提供的散热结构,可以使中心磁柱1012与膜包线102均与导热膜1013接触。另外,由于导热膜1013与膜包线102交错绕制于中心磁柱1012,其可以有效的增大膜包线102与导热膜1013的接触面积。这样,可在有效的改善中心磁柱1012处的均温性的同时,还可以使中心磁柱1012与膜包线102产生的热量通过导热膜1013传导至导热胶103b,进而通过导热胶103b传导至散热器3进行散热,其可有效的提高散热结构的散热效率。又由于在中心磁柱1012设置导热膜1013可使磁芯101的均温性得以提升,这样可以有效的减少导热胶103b的用量,从而可降低散热结构的成本。另外,采用该实施例提供的散热结构,还可有利于降低磁性器件1的局部高温,例如磁性器件1的靠近电路板2一侧的温度,从而可降低电路板2处超温的风险。
在本申请一些可能的实施例中,在膜包线102与导热膜1013交错绕制于中心磁柱1012的同时,还可以在磁芯101的止挡部1011和/或中心磁柱1012的表面设置有导热膜1013。其中,止挡部1011表面的导热膜1013可参照图4所示的实施例进行设置,中心磁柱1012表面的导热膜1013可参照图7所示的实施例进行设置,在此不进行赘述。这样,可有效的提高磁芯101的均温性,从而可有利于提高整个 磁性器件1的散热效率。另外,磁芯101的均温性得到提升,也可以有效的降低磁芯101超温的风险,以提高磁性器件1工作的可靠性。其中,磁芯101超温是指在高温下磁芯101磁饱和后出现的温度失控的现象。
本申请上述实施例提供的散热模块可以应用于各种可能的电子设备,本申请对电子设备的具体类型不做限制,例如可以为充电桩或逆变器等电源设备,也可以为服务器或者存储器等通信设备,还可以为车辆、家居设备等其它电子设备。该电子设备除了包括散热结构外,可以包括一壳体,散热结构可设置于该壳体。该电子设备的散热结构的散热性能较好,并且散热结构的功率密度较高,这样可以使电子设备的性能得以提升。另外,由于采用本申请上述实施例提供的散热结构,可使单位面积的电路板2上设置的器件的数量较多,其有利于实现散热结构的小型化设计,从而可实现电子设备的小型化设计。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种散热结构,其特征在于,包括电路板、磁性器件、散热器和导热介质,所述磁性器件位于所述电路板和所述散热器之间,其中:
    所述磁性器件包括磁芯和膜包线,所述磁芯包括止挡部和中心磁柱,所述止挡部和所述中心磁柱固定连接,所述膜包线缠绕于所述中心磁柱,且所述膜包线与所述电路板电连接;
    所述止挡部的侧面的至少部分设置有导热膜,其中,所述侧面为所述止挡部的背离所述中心磁柱的表面;
    所述导热介质设置于所述磁性器件与所述散热器之间,且所述导热介质与所述磁性器件的至少部分和所述散热器导热接触。
  2. 如权利要求1所述的散热结构,其特征在于,所述中心磁柱的表面的至少部分设置有所述导热膜,所述膜包线与所述导热膜导热接触。
  3. 如权利要求1或2所述的散热结构,其特征在于,所述膜包线与所述中心磁柱之间设置有所述导热膜,且所述膜包线与所述导热膜交错绕制于所述中心磁柱。
  4. 如权利要求1~3任一项所述的散热结构,其特征在于,所述导热介质为导热胶,所述导热胶将所述导热膜的至少部分包覆。
  5. 如权利要求4所述的散热结构,其特征在于,所述导热胶将所述磁芯的至少部分以及所述膜包线的至少部分包覆。
  6. 如权利要求1~5任一项所述的散热结构,其特征在于,所述止挡部的朝向所述散热器的表面设置有所述导热膜。
  7. 如权利要求1~6任一项所述的散热结构,其特征在于,所述导热膜为铜箔或石墨膜。
  8. 一种散热结构,其特征在于,包括电路板、磁性器件、散热器和导热介质,所述磁性器件位于所述电路板和所述散热器之间,其中:
    所述磁性器件包括磁芯和膜包线,所述磁芯包括止挡部和中心磁柱,所述止挡部和所述中心磁柱固定连接,所述中心磁柱的表面的至少部分设置有所述导热膜;所述膜包线缠绕于所述中心磁柱,且所述膜包线与所述导热膜导热接触;
    所述导热介质设置于所述磁性器件与所述散热器之间,且所述导热介质与所述磁性器件的至少部分和所述散热器导热接触。
  9. 如权利要求8所述的散热结构,其特征在于,所述膜包线与所述中心磁柱之间设置有所述导热膜,且所述膜包线与所述导热膜交错绕制于所述中心磁柱。
  10. 一种散热结构,其特征在于,包括电路板、磁性器件、散热器和导热介质,所述磁性器件位于所述电路板和所述散热器之间,其中:
    所述磁性器件包括磁芯和膜包线,所述磁芯包括止挡部和中心磁柱,所述止挡部和所述中心磁柱固定连接,所述膜包线与所述中心磁柱之间设置有导热膜,且所述膜包线与所述导热膜交错绕制于所述中心磁柱;
    所述导热介质设置于所述磁性器件与所述散热器之间,且所述导热介质与所述磁性器件的至少部分和所述散热器导热接触。
  11. 一种电子设备,其特征在于,包括壳体以及如权利要求1~10任一项所述的散热结构,所述散热结构设置于所述壳体内。
PCT/CN2023/105697 2022-11-02 2023-07-04 一种散热结构及电子设备 WO2024093335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211362569.3 2022-11-02
CN202211362569.3A CN115831550A (zh) 2022-11-02 2022-11-02 一种散热结构及电子设备

Publications (1)

Publication Number Publication Date
WO2024093335A1 true WO2024093335A1 (zh) 2024-05-10

Family

ID=85526237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105697 WO2024093335A1 (zh) 2022-11-02 2023-07-04 一种散热结构及电子设备

Country Status (2)

Country Link
CN (1) CN115831550A (zh)
WO (1) WO2024093335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115831550A (zh) * 2022-11-02 2023-03-21 华为数字能源技术有限公司 一种散热结构及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411209A (zh) * 2018-11-07 2019-03-01 深圳振华富电子有限公司 片式电感器
CN110660563A (zh) * 2019-10-12 2020-01-07 台达电子企业管理(上海)有限公司 磁性组件及电源模块
CN213988539U (zh) * 2020-12-30 2021-08-17 成都金之川电子有限公司 一种高效散热磁芯
CN115831550A (zh) * 2022-11-02 2023-03-21 华为数字能源技术有限公司 一种散热结构及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411209A (zh) * 2018-11-07 2019-03-01 深圳振华富电子有限公司 片式电感器
CN110660563A (zh) * 2019-10-12 2020-01-07 台达电子企业管理(上海)有限公司 磁性组件及电源模块
CN213988539U (zh) * 2020-12-30 2021-08-17 成都金之川电子有限公司 一种高效散热磁芯
CN115831550A (zh) * 2022-11-02 2023-03-21 华为数字能源技术有限公司 一种散热结构及电子设备

Also Published As

Publication number Publication date
CN115831550A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024093335A1 (zh) 一种散热结构及电子设备
WO2022051915A1 (zh) 电极组件、电化学装置及电子装置
US20150310976A1 (en) Magnetic element
US8310334B2 (en) Surface mount resistor
TWI463724B (zh) 導熱結構
TWM377062U (en) Electronic device with a heat insulating structure
WO2021248952A1 (zh) 一种加热片及电池模组
US10867741B2 (en) Pseudo edge-wound winding using single pattern turn
US3656035A (en) Heat pipe cooled capacitor
JP2002008738A (ja) 電源ユニット又はバッテリー充電装置
TWM460508U (zh) 電子遮蔽蓋散熱結構
CN114203393A (zh) 一种电动车充电器用变压器骨架
JPH11144771A (ja) 電池の放熱装置
JP6478264B2 (ja) コンデンサ
CN216698036U (zh) 变压器结构和电源组
CN214068517U (zh) 平面变压器
TW200522090A (en) Over-current protection apparatus
CN216511789U (zh) 预锂化极片散热组件及收卷装置
JP2002075613A (ja) 誘導加熱装置用加熱コイル
CN216698037U (zh) 平面变压器和电源
CN216597231U (zh) 一种电脑主机用一体成型电感
CN217643144U (zh) 一种电源适配器及电子设备
CN218568985U (zh) 电池包
CN218568502U (zh) 一种发电机用高耐热性漆包铜扁线
TWI736041B (zh) 內建散熱通道的變壓器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884274

Country of ref document: EP

Kind code of ref document: A1