WO2024092881A1 - 耐高低温抗振动防隔热材料及其制备方法 - Google Patents

耐高低温抗振动防隔热材料及其制备方法 Download PDF

Info

Publication number
WO2024092881A1
WO2024092881A1 PCT/CN2022/132104 CN2022132104W WO2024092881A1 WO 2024092881 A1 WO2024092881 A1 WO 2024092881A1 CN 2022132104 W CN2022132104 W CN 2022132104W WO 2024092881 A1 WO2024092881 A1 WO 2024092881A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistant
woven fabric
vibration
temperature
low temperature
Prior art date
Application number
PCT/CN2022/132104
Other languages
English (en)
French (fr)
Inventor
王国辉
何巍
付继伟
张飞霆
陈红波
孙逸轩
潘旭
王筱宇
Original Assignee
北京宇航系统工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京宇航系统工程研究所 filed Critical 北京宇航系统工程研究所
Publication of WO2024092881A1 publication Critical patent/WO2024092881A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F130/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F130/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F130/08Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/04Homopolymers or copolymers of monomers containing silicon

Definitions

  • the invention relates to a high and low temperature resistant, vibration resistant and heat-insulating material and a preparation method thereof, belonging to the technical field of low temperature insulation materials and high temperature heat protection materials, and also belonging to the technical field of fiber material preparation and foam rubber materials.
  • Liquid rockets have become the mainstream of rockets because of their greater thrust and better operating costs.
  • Liquid rockets are generally composed of power units, rocket body structures, and control systems.
  • the main fuels of liquid rockets are: liquid hydrogen, hydrazine, methylhydrazine, unsymmetrical dimethylhydrazine, kerosene, alcohol, etc.; liquid oxidizers mainly include liquid oxygen, nitrogen tetroxide, hydrogen peroxide, nitric acid, etc.
  • these fuel/oxidizer combinations the most commonly used are liquid hydrogen/liquid oxygen, kerosene/liquid oxygen, methane/liquid oxygen, unsymmetrical dimethylhydrazine/liquid oxygen, etc.
  • cryogenic liquids such as liquid oxygen and liquid hydrogen
  • the internal temperature of the rocket will drop rapidly, especially the surface of tank components such as liquid oxygen and liquid hydrogen, and the surface of instruments close to the tank.
  • the outer surface of the tank and the equipment near the tank is coated with a low thermal conductivity insulation material, such material is generally foamed polyurethane, and the thickness of the insulation material is usually not less than 10 mm and the density is 0.35 g/cm 3 .
  • the high temperature of the engine tail flame is higher than 2000°C, which has a significant radiation heating effect on the inside of the rocket.
  • the radiation heat in some places produces a high temperature of more than 1300°C.
  • the outer surface of the instrument insulation material is usually wrapped with a flexible rubber-type heat-proof material. This type of rubber material usually has a density of 1.4-1.5g/ cm3 and has very good flexibility at room temperature, which makes the installation process simple.
  • This porous ceramic/glass not only has very good heat resistance at high temperatures, but also has extremely low thermal conductivity due to the porous structure, which makes the heat transfer to the inside slow.
  • the surface temperature of the instrument does not change more than 30°C.
  • the thickness of the heat protection material is usually not less than 4mm.
  • the rocket experiences violent vibration from static to dynamic, which has a great destructive effect on various materials and structures in the rocket body.
  • the low temperature during fuel/liquid oxygen filling causes the insulation material and heat protection material to become significantly more brittle due to the temperature drop.
  • the insulation material and heat protection material may break/fragment themselves or even lose their insulation/heat protection functions.
  • high-temperature resistant metal wire or high-temperature resistant rope is usually used for bundling.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a high and low temperature resistant, vibration resistant and heat-insulating material, which has the excellent properties of low density, low temperature insulation, high temperature heat protection and vibration resistance.
  • Another object of the present invention is to provide a method for preparing a high and low temperature resistant, vibration resistant and heat-insulating material.
  • a method for preparing a high and low temperature resistant, vibration resistant and heat-insulating material comprising:
  • a borosilicate mixed powder consisting of metasilicic acid, water-soluble silicon dioxide, boric acid and borax is added with water at room temperature to form a colloid by using a colloid-forming agent, fiber filaments are prepared by using the colloid-forming agent, and a fiber non-woven fabric is prepared from the fiber filaments, and the fiber non-woven fabric is subjected to high-temperature treatment to obtain a porous borosilicate glass fiber non-woven fabric;
  • Phenyl divinyl chlorosilane is reacted with methylboric acid to generate borosiloxane, and the borosiloxane is subjected to an addition reaction with a phosphorus-containing compound to obtain a raw rubber;
  • porous borosilicate glass fiber non-woven fabric is treated with a supersaturated sodium bicarbonate solution so that the surface of the porous borosilicate glass fiber non-woven fabric is covered with sodium bicarbonate crystals, and the sodium bicarbonate crystals account for 5 to 15% of the mass of the porous borosilicate glass fiber non-woven fabric;
  • the rubber raw rubber, free radical initiator, fumed silica and boric acid are uniformly mixed to form a raw rubber mixture; the raw rubber mixture is coated or soaked in the porous borosilicate glass fiber non-woven fabric treated with a supersaturated sodium bicarbonate solution, and a porous fiber-reinforced foam rubber composite material is obtained after vulcanization.
  • the gelling agent is prepared by starch and carboxymethyl chitosan in a mass ratio of 10:1 to 1:1.
  • the gelling agent also includes sodium bicarbonate powder accounting for 5% to 10% of the total mass of starch and carboxymethyl chitosan.
  • the molar ratio of silicon atoms in the silicon-containing substance to boron atoms in the boron-containing substance in the borosilicate mixed powder is 0.5 to 2.0:1; the average particle size of the borosilicate mixed powder is less than 1 micron; the volume ratio of the gelling agent to the borosilicate mixed powder is 0.20 to 0.35:1.
  • the method for preparing the high and low temperature resistant, vibration resistant and heat insulating material also includes preparing fiber filaments using the colloid and forming them under the action of airflow and then immersing them in water to form a fiber non-woven fabric.
  • the colloid is used to spray out fiber filaments with a diameter of 3 to 10 ⁇ m using a textile machine, and then formed under the action of airflow and immersed in 75-95°C water to form a fiber non-woven fabric.
  • the high-temperature treatment of the fiber non-woven fabric includes: introducing an inert gas into a muffle furnace, heating the temperature from room temperature to 190-200°C at a heating rate of 0.5-1.5°C/min, and then heating the temperature to 840-860°C at a heating rate of 1.5-2.5°C/min, keeping the temperature for 10-30 minutes, and naturally cooling the temperature to room temperature.
  • the porous borosilicate glass fiber non-woven fabric has a thickness of 2 to 3 mm and an apparent density of 0.3 to 0.6 g/cm3.
  • the phosphorus-containing compound includes 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • the phenyldivinylchlorosilane reacts with methylboric acid to generate borosiloxane, the reaction temperature is 90-110°C, and the reaction is carried out for 5-8 hours under the protection of inert gas; the borosiloxane is subjected to an addition reaction with a phosphorus-containing compound, the reaction temperature is 100-120°C, and the reaction time is 4-6 hours.
  • the phenyldivinylchlorosilane reacts with methylboric acid to generate borosiloxane using sodium hydroxide as a catalyst; the borosiloxane and the phosphorus-containing compound undergo an addition reaction under platinum catalysis.
  • the porous borosilicate glass fiber non-woven fabric is treated with a supersaturated sodium bicarbonate solution, including: soaking the porous borosilicate glass fiber non-woven fabric in a supersaturated sodium bicarbonate solution, then taking it out and air-drying it naturally, spraying the non-woven fabric with a supersaturated sodium bicarbonate solution evenly, air-drying it naturally again, and spraying the supersaturated sodium bicarbonate solution again, ..., until the sodium bicarbonate crystals cover the entire surface of the non-woven fabric, and the sodium bicarbonate crystals account for 5 to 15% of the mass of the non-woven fabric.
  • the raw rubber mixture contains, by mass, 100 parts of raw rubber, 0.5-1.5 parts of free radical initiator, 10-20 parts of fumed silica, and 5-15 parts of boric acid.
  • the vulcanization temperature is 80 to 120° C. and the time is 10 to 15 minutes.
  • a high and low temperature resistant, vibration resistant and heat-insulating material is obtained by adopting the above preparation method.
  • a high and low temperature resistant, vibration resistant and heat-insulating material which is obtained by coating or soaking a raw rubber mixture on a porous borosilicate glass fiber non-woven fabric covered with sodium bicarbonate crystals and then vulcanizing it;
  • the porous borosilicate glass fiber non-woven fabric is prepared by using a gelling agent to add water to metasilicic acid, water-soluble silica, boric acid, and borax to form a colloid, further preparing fiber filaments, fiber non-woven fabrics and high-temperature treatment;
  • the raw rubber mixture includes rubber raw rubber, a free radical initiator, fumed silica and boric acid;
  • the rubber raw rubber is obtained by reacting phenyl divinyl chlorosilane with methylboric acid to generate borosiloxane, and the borosiloxane is then subjected to an addition reaction with a phosphorus-containing compound to obtain it;
  • the sodium bicarbonate crystals account for 5-15% of the mass of the porous
  • the gelling agent includes starch and carboxymethyl chitosan in a mass ratio of 10:1 to 1:1, and sodium bicarbonate powder accounting for 5% to 10% of the total mass of starch and carboxymethyl chitosan.
  • the molar ratio of silicon atoms in the silicon-containing substance to boron atoms in the borosilicate mixed powder composed of metasilicic acid, water-soluble silica, boric acid and borax is 0.5 to 2.0:1; the volume ratio of the gelling agent to the borosilicate mixed powder is 0.20 to 0.35:1.
  • the vulcanization temperature is 80-120°C, and the time is 10-15 minutes;
  • the high temperature treatment includes: introducing inert gas into the muffle furnace, heating from room temperature to 190-200°C at a heating rate of 0.5-1.5°C/min, and then heating to 840-860°C at a heating rate of 1.5-2.5°C/min, keeping warm for 10-30 minutes, and naturally cooling to room temperature.
  • the raw rubber mixture comprises, by mass, 100 parts of raw rubber, 0.5 to 1.5 parts of free radical initiator, 10 to 20 parts of fumed silica and 5 to 15 parts of boric acid.
  • the present invention has at least the following beneficial effects:
  • the present invention first prepares porous fibers and makes porous fiber non-woven fabrics, and the fluffy structure is convenient for combining with rubber. Then, a new rubber raw rubber material is synthesized.
  • the raw rubber contains phosphorus, which is beneficial to the flame retardant performance of the final material in a high temperature environment. If it burns quickly, the final ceramic/glass generated ratio will be reduced. The improved flame retardant performance is helpful to increase the final ceramic/glass ratio.
  • the rubber raw rubber monomer contains hydroxyl groups, which is beneficial to the combination of gas-phase silica and boric acid with the raw rubber. The addition of these two substances is to increase the final ratio of ceramics. At the same time, the addition of gas-phase silica improves the strength of the rubber.
  • the composite material has the excellent properties of low density, low-temperature thermal insulation, high-temperature heat protection and vibration resistance.
  • the porous fiber-reinforced foam rubber composite material prepared by the present invention not only has good low-temperature thermal insulation and vibration resistance, but also is converted into a porous high-temperature resistant ceramic/glass material during a high-temperature process, and has good temperature resistance and low thermal conductivity, that is, it has a good thermal insulation effect at low temperatures and will not be cracked by low temperatures, and has a good heat protection and insulation effect at high temperatures, and at the same time has very good vibration resistance.
  • FIG1 is an electron microscope photograph of the porous fibers and the porous fiber nonwoven fabric prepared in Example 1 of the present invention.
  • FIG. 2 is an infrared test spectrum of the raw rubber prepared in Example 1 of the present invention.
  • the preparation method of the high and low temperature resistant, anti-vibration and anti-heat-insulating material in the embodiment of the present invention comprises the following steps:
  • the gelling agent is compounded with starch, carboxymethyl chitosan and sodium bicarbonate powder, the mass ratio of starch to carboxymethyl chitosan is 10:1 to 1:1, and the sodium bicarbonate powder accounts for 5% to 10% of the total mass of starch and carboxymethyl chitosan.
  • Metasilicic acid, water-soluble silicon dioxide, boric acid and borax are added with water at room temperature to form a colloid.
  • Metasilicic acid and water-soluble silica, boric acid and borax the molar ratio of silicon atoms in silicon-containing substances to boron atoms in boron-containing substances is 0.5-2.0:1, these four powders are ground into boron-silicon mixed powders with an average particle size of less than 1 micron in a planetary ball mill.
  • the volume ratio of the gelling agent to the boron-silicon mixed powder is 0.20-0.35.
  • deionized water is gradually added under mechanical stirring to form a colloid, and then a textile machine is used to spray out fiber filaments with a diameter of 3-10 ⁇ m (preferably 5 ⁇ m) and quickly formed into a non-woven fabric under the action of airflow, and then immersed in 75-95°C water to shape into a fluffy non-woven fabric.
  • the non-woven fabric is taken out of the water and placed on a wire board for natural drying, and then placed in a muffle furnace with inert gas protection, and heated from room temperature to 190-200°C at a rate of 0.5-1.5°C/min, and then heated to 840-860°C at a rate of 1.5-2.5°C/min, and kept warm for 10-30 minutes, and naturally cooled to room temperature to obtain a fluffy porous borosilicate glass fiber non-woven fabric with a thickness of 2-3 mm and an apparent density of 0.3-0.6 g/cm 3 .
  • the present invention utilizes a gelling agent compounded from starch, carboxymethyl chitosan and sodium bicarbonate, which is a colloid at room temperature but can be quickly shaped in water at 70-100°C.
  • Metasilicic acid, water-soluble silicon dioxide, boric acid and borax are added with water at room temperature to form a colloid using the compounded gelling agent, and then fiber filaments are prepared by a spinning machine, quickly formed into a web by a high-speed airflow, and then immersed in water at 75-95°C to quickly shape into a fiber non-woven fabric, and the fiber non-woven fabric is taken out of the water and naturally air-dried.
  • the amount of pores left in the fiber itself after the removal of the gelling agent cannot meet the actual needs.
  • the strength of the borosilicate glass fiber filaments prepared at the current stage under high temperature is not enough, mainly because the fluidity of the borosilicate glass is weak at high temperature, resulting in low bonding strength between each other.
  • sodium bicarbonate is added to the gelling agent in the aqueous solution. Sodium bicarbonate increases the viscosity of starch and carboxymethyl chitosan colloids, and promotes the formation of holes during the decomposition process.
  • the borosilicate glass fiber non-woven fabric obtained after high temperature treatment can be made into a fluffy structure as required, with very good strength and uniform gaps.
  • Phenyl divinyl chlorosilane and methylboric acid are reacted to generate borosiloxane, and the reaction conditions are 90-110°C, sodium hydroxide catalysis, and inert gas protection for 5-8 hours.
  • the structural formulas of phenyl divinyl chlorosilane (Structure 1) and methylboric acid (Structure 2) are shown below:
  • borosiloxane is subjected to addition reaction with a phosphorus-containing compound to obtain a viscous light yellow liquid.
  • the reaction conditions are platinum catalysis and 100-120°C for 4-6 hours.
  • the phosphorus-containing compound is 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the structural formula (structural formula 3) is as follows:
  • the raw rubber obtained by the reaction is the monomer material for the subsequent preparation of foamed rubber, and its structural formula (Structural Formula 4) is as follows:
  • a hydroxyl group is still retained on the boron element in order to achieve good compatibility with the added boron-containing and silicon-containing substances in the future.
  • the introduction of phosphorus element is to improve the flame retardant properties of the rubber material and thus increase the proportion of the final porous ceramic.
  • the porous fiber cloth is soaked in a supersaturated sodium bicarbonate solution, then taken out and naturally air-dried, the supersaturated sodium bicarbonate solution is evenly sprayed on the porous fiber cloth, and then naturally air-dried again, and then the supersaturated sodium bicarbonate solution is sprayed again until the surface of the porous fiber cloth shows obvious white sodium bicarbonate crystals, and the crystals cover the entire porous fiber surface.
  • sodium bicarbonate accounts for 5-15% of the weight of the porous fiber.
  • the role of sodium bicarbonate is mainly to act as a foaming agent in the later rubber vulcanization process, and in the high-temperature thermal protection process, the generated sodium oxide is further decomposed to promote the formation of borosilicate glass and the improvement of its strength.
  • the raw rubber, free radical initiator, fumed silica and boric acid are mixed uniformly at low temperature to form a raw rubber mixture, wherein the raw rubber is 100 parts by weight, the free radical initiator is 0.5-1.5 parts by weight, the fumed silica is 10-20 parts by weight and the boric acid is 5-15 parts by weight.
  • the raw rubber mixture is brushed on the porous fiber cloth, and the fiber cloth is completely immersed in the raw rubber mixture.
  • the raw rubber mixture is just completely soaked and covers the fiber cloth, and then placed in an oven for high-temperature drying, so that the sodium bicarbonate on the fiber cloth is quickly decomposed to generate carbon dioxide during the vulcanization of the raw rubber mixture into rubber, and finally the porous fiber non-woven fabric is reinforced with foam rubber composite material.
  • the vulcanization process conditions are: 80-120°C vulcanization for 10-15 minutes.
  • the porous fiber non-woven fabric is sewn on the instrument shape metal mold, and then coated with the raw rubber mixture, and then subjected to high temperature vulcanization reaction to generate foam rubber.
  • the porous fiber reinforced foam rubber composite material is mainly cut into sheet samples with a thickness of 10 mm to test density, low temperature vibration resistance, low temperature thermal insulation performance and high temperature heat resistance performance.
  • the porous fiber non-woven fabric is sewn onto the metal mold of the instrument shape, and then coated with the raw rubber mixture, and then subjected to a high-temperature vulcanization reaction to generate a foam rubber composite material.
  • a sheet sample with a thickness of 10mm is made. First, the density test is performed, and the sheet sample is cut into 100mm ⁇ 100mm sheets. After weighing, the density is calculated by dividing the mass by the volume; the second is to measure the low-temperature freezing cracking performance.
  • the sample with a size of 100mm ⁇ 100mm ⁇ 10mm is immersed in liquid nitrogen for 10 minutes, and then ultrasonic vibration is turned on for 5 minutes, and then the sample is taken out to observe whether there is any fragmentation; the aluminum alloy barrel with a wall thickness of 3mm, an inner diameter of 300mm, and a wall height of 600mm is wrapped with a 10mm thick porous fiber non-woven fabric reinforced foam rubber composite. Materials.
  • a composite material is prepared directly on the outside of the aluminum alloy barrel wall. Liquid nitrogen is slowly added into the aluminum alloy barrel continuously.
  • thermocouples Two PT100 thermocouples are inserted in parallel in the middle of the insulation layer, that is, at a position equal to the inner and outer surfaces of the insulation layer - the distance from the aluminum alloy in contact with the low-temperature liquid nitrogen is equal to the distance from the air environment. The average value of the two is taken. For comparison, a 10mm thick insulation layer is prepared on the other side of the barrel wall using traditional insulation materials and thermocouples of the same type are attached.
  • the ignition heat flux of the first-stage rocket is the largest, and its average heat flux intensity after ignition is 200kw/ m2 and the flight time is generally about 70s.
  • the heat flux of the ignition of the engine above the first stage has little effect on the rocket and is generally not considered.
  • 240kw/ m2 is used to test the temperature change on the back side of a 100mm ⁇ 100mm ⁇ 10mm sample, and the test time is 80s.
  • a traditional thermal insulation material sample of 100mm ⁇ 100mm ⁇ 10mm is used to make thermal insulation material and the surface is coated with 4mm heat-proof material to test the temperature change on the back side of the thermal insulation material.
  • the present invention prepares a low thermal conductivity high and low temperature resistant material, that is, this material has a good heat insulation effect at low temperature and will not be frozen and cracked by low temperature, and has a good heat protection and heat insulation effect at high temperature, and has very good anti-vibration performance.
  • the specific idea of the invention is: in order to improve the thermal insulation effect, the thermal conductivity of the material must be reduced, and a low-density foam material is prepared; and the foam material is very easy to break during the vibration process at low temperature.
  • a fiber material reinforced foam material is prepared.
  • the fiber material is equivalent to a "thermal bridge"/"cold bridge” in the foam material, which significantly increases the apparent thermal conductivity of the foam material, so that the thermal insulation effect is significantly reduced.
  • a porous fiber material is prepared; in order to improve the temperature resistance of the porous fiber reinforced foam material, that is, to have good thermal protection performance, the porous fiber reinforced foam material can be converted into a high-temperature resistant ceramic/glass material at high temperature.
  • porous fiber is first prepared and made into porous fiber non-woven fabric, and the fluffy structure is convenient for combining with rubber, and then, a new rubber raw rubber material is synthesized, and the raw rubber contains phosphorus element, which is conducive to the flame retardant performance of the final material in a high temperature environment. If rapid combustion will reduce the proportion of the final ceramic/glass generated, the flame retardant performance is improved and helps to improve the proportion of the final ceramic/glass.
  • the rubber raw rubber monomer contains hydroxyl groups, which will be conducive to the combination of fumed silica and boric acid with the raw rubber, and the addition of these two substances is to improve the proportion of the final ceramic generated. At the same time, the addition of fumed silica improves the rubber strength.
  • the rubber raw rubber is brushed onto the fluffy porous fiber non-woven fabric, and then processed into a porous fiber reinforced foam rubber composite material through high temperature, and then various performance tests are carried out on this composite material.
  • the first step is to prepare the porous fiber cloth.
  • the mass ratio of starch and carboxymethyl chitosan is 5:1, and 5% sodium bicarbonate powder is added to form a gelling agent.
  • Metasilicic acid and water-soluble silica, boric acid and borax the molar ratio of silicon atoms in silicon-containing substances to boron atoms in boron-containing substances is 1.0:1, and the volume ratio of the gelling agent to the borosilicate mixed powder (weighed by a measuring cylinder) is 0.27:1.
  • deionized water is gradually added under mechanical stirring to form a colloid, which is then sprayed out by a textile machine.
  • the non-woven fabric is taken out of the water and placed on a wire board for natural drying, then placed in a muffle furnace with inert gas protection, and heated from room temperature to 200°C at a rate of 1°C/min, then heated to 850°C at a rate of 2°C/min, kept warm for 20 minutes, and cooled naturally to room temperature to obtain a fluffy porous borosilicate glass fiber non-woven fabric.
  • This non-woven fabric is made into a fluffy structure as required, usually with a thickness of 2 to 3 mm and a fiber diameter of about 2 microns, as shown in Figure 1.
  • the extrusion nozzle diameter is 5 microns, because the boron and silicon-containing substances in the colloid are relatively low in the starch carboxymethyl chitosan colloid, and the diameter is reduced due to shrinkage after drying and high-temperature treatment, and the apparent density is 0.45g/ cm3 .
  • the second step is the preparation of raw rubber.
  • phenyl divinyl chlorosilane is reacted with methylboric acid to generate borosiloxane.
  • the chemical reaction equation is shown in the above reaction equation 1.
  • the reaction conditions are 100°C, sodium hydroxide catalysis, and inert gas protection. After 6 hours of reaction, it is repeatedly washed with water and then reacted with a phosphorus-containing compound to obtain a viscous light yellow liquid.
  • the reaction conditions are platinum catalysis, 110°C for 5 hours, and the chemical reaction equation is shown in the above reaction equation 2. This is the raw rubber of the rubber, that is, the monomer material for the subsequent preparation of foamed rubber.
  • the infrared test results are shown in Figure 2, which is the infrared spectrum of the rubber monomer (as shown in the above structural formula 4).
  • the characteristic absorption peaks at 2800-3000cm -1 are -CH 2 and -CH 3 stretching vibration peaks
  • the characteristic absorption peak at 1589cm -1 is the skeleton vibration peak of the benzene ring
  • 1361.5cm -1 is the stretching vibration absorption peak of BO-Si bond.
  • the infrared analysis results show that the organic monomer, as shown in the above structural formula 4, has been successfully synthesized.
  • the third step is the preparation of porous fiber reinforced foam material.
  • the porous fiber surface shows obvious white sodium bicarbonate crystals, and the crystals cover the entire porous fiber surface. After treatment, sodium bicarbonate accounts for 10% of the porous fiber weight.
  • 100 parts of rubber raw rubber, 1 part of free radical initiator, 15 parts of fumed silica and 10 parts of boric acid are mixed evenly at low temperature to form a raw rubber mixture.
  • the raw rubber mixture is applied to the porous fiber cloth, and the fiber cloth is completely immersed in the raw rubber mixture, and then placed in an oven at 100°C for vulcanization for 12 minutes to generate a porous fiber reinforced foam rubber composite material.
  • the fourth step is performance testing.
  • sheet samples with a thickness of 10mm are made.
  • the density test is carried out.
  • the porous fiber reinforced foam rubber composite material is cut into 100mm ⁇ 100mm sheet samples. After weighing, the density is calculated by dividing the mass by the volume to be 0.15g/ cm3 .
  • the low-temperature freezing cracking performance is measured.
  • the sample with a size of 100mm ⁇ 100mm ⁇ 10mm is immersed in liquid nitrogen for 10 minutes, and then ultrasonic vibration is turned on for 5 minutes. The sample is then taken out for observation and no fragmentation is found.
  • the traditional thermal insulation material is immersed in liquid nitrogen and vibrated and then taken out and found to be obviously broken into small pieces.
  • Heat protection performance test After 80s of the 240kw/ m2 test, the temperature on the back of the sample increased by 15°C. Although the control sample had a 4mm thick heat protection material more than the sample of the present invention, the final temperature rise was 13°C, and the most critical heat insulation coating collapsed completely. This is because the inner surface temperature of the 4mm heat protection material exceeded the temperature of the polyurethane and gradually collapsed. The heat protection performance shows that although the thickness is 4mm thinner, the heat protection performance is better than traditional heat protection materials.
  • the first step is the preparation of porous fiber cloth.
  • the mass ratio of starch and carboxymethyl chitosan is 10:1 and 10% sodium bicarbonate powder is added to compound the gelling agent.
  • Metasilicic acid and water-soluble silica, boric acid and borax the molar ratio of silicon atoms in silicon-containing substances to boron atoms in boron-containing substances is 0.5:1
  • the volume ratio of the gelling agent to the borosilicate mixed powder is 0.20:1
  • the non-woven fabric is immersed in 75°C water for shaping. After shaping and drying, the non-woven fabric is placed in a muffle furnace and inert gas protection is introduced.
  • the temperature is raised from room temperature to 200°C at a rate of 0.5°C/min, and then the temperature is raised to 850°C at a rate of 1.5°C/min. Keep warm for 10 minutes and cool naturally to room temperature to obtain a fluffy porous borosilicate glass fiber non-woven fabric with an apparent density of 0.6g/cm3.
  • the final fiber diameter after shaping is about 2 microns.
  • the second step is the preparation of rubber raw rubber.
  • Phenyl divinyl chlorosilane is reacted with methylboric acid to generate borosiloxane, as shown in chemical reaction equation 1.
  • the reaction conditions are 90°C, sodium hydroxide catalysis, and inert gas protection. After 5 hours of reaction, it is repeatedly washed with water and then reacted with a phosphorus-containing compound (such as the above structural formula 3), as shown in chemical reaction equation 2.
  • the reaction conditions are platinum catalysis. After reacting at 100°C for 4 hours, a viscous light yellow liquid is obtained, which is the rubber raw rubber (monomer).
  • the third step is the preparation of porous fiber reinforced foam material.
  • sodium bicarbonate accounts for 5% of the weight of the porous fiber.
  • 100 parts of raw rubber, 0.5 parts of free radical initiator, 10 parts of fumed silica and 5 parts of boric acid are mixed at low temperature to form a raw rubber mixture.
  • the raw rubber mixture is applied on the porous fiber cloth, and the fiber cloth is completely immersed in the raw rubber mixture, and then put into an oven for vulcanization at 80°C for 10 minutes to generate a porous fiber reinforced foam rubber composite material.
  • the fourth step is performance testing.
  • the porous fiber reinforced foam rubber composite material is cut into 100mm ⁇ 100mm ⁇ 10mm size.
  • the mass and volume are measured and the density is calculated to be 0.19g/cm 3 , which is significantly lower than the traditional thermal insulation material 0.35g/cm 3.
  • the traditional thermal insulation material is 4mm and the density is 1.5g/cm 3
  • the average density of the traditional thermal insulation and thermal insulation material is 0.68g/cm 3 , and it is 4mm thicker than the current invention. Therefore, the current invention has a very obvious effect on the overall weight reduction of rocket thermal insulation.
  • Heat protection performance test After 80s of 240kw/ m2 test, the temperature of the back of the sample increased by 18°C. Although the comparative sample had 4mm thicker heat protection material than the sample of the present invention, the final temperature rise was 13°C. The most critical heat insulation coating collapsed completely. This is because the inner surface temperature of the 4mm heat protection material exceeded the temperature that the polyurethane could withstand and gradually collapsed. The heat protection performance shows that although the thickness is 4mm thinner, the heat protection performance is better than that of traditional heat protection materials.
  • the gelling agent is compounded with starch and carboxymethyl chitosan in a mass ratio greater than 10:1 and 10% sodium bicarbonate powder. Because starch is more of a setting agent, that is, it quickly sets in water after coming out of the spinning machine, the starch content is higher than 10:1, which makes the setting speed too fast, the outer surface of the fiber is set while the inner surface is not set, and the fiber is slowly dissolved in water and is prone to breakage. In addition, the main role of carboxymethyl chitosan in the gelling agent is to increase viscosity and reduce the starch setting speed in water, that is, reduce the fiber setting speed.
  • the volume ratio of the gelling agent to the borosilicate mixed powder is lower than 0.20, because the amount of the gelling agent is too low, the entire mixture is mainly composed of boron and silicon phases, and it is not easy to become a colloid with higher viscosity, that is, the fiber is not easy to form.
  • the heating rate from room temperature to 200°C is lower than 0.5°C/min, the decomposition rate of sodium bicarbonate is too low, the volatilization rate of generated gas is low, the formed pores are too small, and the fiber density is large, which is significantly higher than 0.6g/ cm3 .
  • the heating rate from 200°C to 850°C is less than 1.5°C/min, which has little effect on the performance, but it is too time-consuming. However, if the temperature is kept at 850°C for less than 10 minutes, the borosilicate glass will not have enough softening and reaction time, resulting in the fiber being brittle and easy to break.
  • the borosiloxane is generated by reacting phenyl divinyl chlorosilane with methylboric acid.
  • the reaction temperature is lower than 90°C and the reaction rate is slow.
  • the addition reaction temperature of borosiloxane and phosphorus-containing compounds is lower than 100°C and the reaction system is in a semi-solid state, which is not easy to react effectively.
  • the raw rubber mixture is brushed on a porous fiber cloth and placed in an oven.
  • the vulcanization temperature is lower than 80°C and it takes a longer time to complete the vulcanization.
  • the slow release of gas does not easily form a foam structure, and the vulcanization time is less than 10 minutes.
  • the raw rubber mixture is not easy to effectively vulcanize into foam rubber.
  • the first step is to prepare the porous fiber cloth.
  • the mass ratio of starch and carboxymethyl chitosan is 1:1 and 7% sodium bicarbonate powder is added to form a gelling agent.
  • Metasilicic acid and water-soluble silica, boric acid and borax the molar ratio of silicon atoms in silicon-containing substances to boron atoms in boron-containing substances is 2.0, the volume ratio of the gelling agent to the borosilicate mixed powder is 0.35, and the non-woven fabric is immersed in 95°C water for shaping. After shaping and drying, the non-woven fabric is placed in a muffle furnace and inert gas protection is introduced.
  • the temperature is raised from room temperature to 200°C at a rate of 1.5°C/min, and then the temperature is raised to 850°C at a rate of 2.5°C/min, and then kept warm for 30 minutes, and naturally cooled to room temperature to obtain a fluffy porous borosilicate glass fiber non-woven fabric with a thickness of 2 to 3mm and an apparent density of 0.3g/ cm3 .
  • the second step is the preparation of rubber raw material.
  • Phenyl divinyl chlorosilane reacts with methylboric acid to generate borosiloxane, as shown in the chemical reaction equation 1.
  • the reaction temperature is 110°C and the sodium hydroxide is used as the catalyst for the reaction time.
  • the borosiloxane is then repeatedly washed with water and reacted with a phosphorus-containing compound.
  • the platinum catalyst is used to react at 120°C for 6 hours to obtain a viscous light yellow liquid, which is the rubber raw material.
  • the third step is to prepare the porous fiber reinforced foam material, wherein the sodium bicarbonate accounts for 15% of the weight of the porous fiber.
  • 100 parts of raw rubber, 1.5 parts of free radical initiator, 20 parts of fumed silica and 15 parts of boric acid are mixed evenly at low temperature to form a raw rubber mixture, which is then applied to the porous fiber cloth and vulcanized in an oven at 120°C for 15 minutes to form a porous fiber reinforced foam rubber composite material.
  • the fourth step is performance testing.
  • the porous fiber reinforced foam rubber composite material is cut into 100mm ⁇ 100mm ⁇ 10mm size.
  • the mass and volume are measured and the density is calculated to be 0.11g/ cm3 , which is significantly lower than the traditional thermal insulation material 0.35g/ cm3 . If the traditional thermal insulation material is 4mm and the density is 1.5g/ cm3 , the average density of the traditional thermal insulation and thermal insulation material is 0.68g/ cm3 , and it is 4mm thicker than the current invention. Therefore, the current invention has a very obvious effect on the overall weight reduction of rocket thermal insulation.
  • Heat protection performance test After 80s of testing at 240kw/ m2, the temperature of the back of the sample increased by 9°C. Although the comparison sample had 4mm thicker heat protection material than the sample of the present invention, the final temperature rise was 13°C. The most critical heat insulation coating collapsed completely. This is because the inner surface temperature of the 4mm heat protection material exceeded the temperature that the polyurethane could withstand and gradually collapsed. The heat protection performance shows that although the thickness is 4mm thinner, the heat protection performance is better than that of traditional heat protection materials.
  • the gelling agent compounded with a mass ratio of starch to carboxymethyl chitosan of less than 1:1 is because starch acts more as a setting agent, that is, it quickly sets in water after coming out of the spinning machine.
  • the low starch content of 1:1 makes the setting speed too slow, resulting in the fiber not being finally set and being easily dissolved by water.
  • the volume ratio of the gelling agent to the borosilicate mixed powder is lower than 0.35, because the amount of gelling agent is too high, the boron-containing substances and silicon-containing substances in the fiber are separated from each other. During high-temperature treatment, the two elements may not be able to contact and react. After the gelling agent is decomposed, the final fiber becomes a powder, that is, the fiber is not easy to shape.
  • the temperature of non-woven fabrics immersed in water is higher than 95°C. Because the starch on the surface of the fiber is quickly formed while the starch inside is not formed, the fiber itself has poor strength and the fiber is easily broken during the natural air drying process.
  • the heating rate from room temperature to 200°C is higher than 1.5°C/min, the sodium bicarbonate decomposes too quickly, the gas volatilizes at a high rate, and the jet effect causes the fiber to break easily.
  • the heating rate from 200°C to 850°C is higher than 2.5°C/min, the borosilicate element in the fiber reacts for a short time, especially when the temperature is kept at 850°C for more than 30 minutes, the excessive softening of the borosilicate glass fiber easily causes the fiber to collapse and stack together completely, and the density of the non-woven fabric is too high.
  • the reaction speed is too fast when the reaction temperature is higher than 110°C, forming more oligomers or other products, which affects the final raw rubber properties. If the reaction time is too long, for example, more than 8 hours, the reaction will be over. When the temperature of the addition reaction of borosiloxane and phosphorus-containing compounds is higher than 120°C, the reaction system is prone to be too intense.
  • Sodium bicarbonate accounts for more than 15% of the weight of the porous fiber. Too much sodium bicarbonate produces a lot of gas, which causes a large amount of foam to pass through, reducing the thermal insulation and heat protection performance.
  • the free radical initiator is higher than 1.5 parts because the initiator dosage is too large, resulting in a too fast reaction and low foaming rate; 20 parts of fumed silica and 15 parts of boric acid are mixed evenly at low temperature to form a raw rubber mixture, and the raw rubber mixture is brushed on the porous fiber cloth and placed in an oven at 120°C for vulcanization for 15 minutes to generate a porous fiber reinforced foam rubber composite material.
  • fumed silica and boric acid mainly play a reinforcing role. At the same time, they become the main components of borosilicate glass in the high temperature stage. Adding too much of these two powders will cause the raw rubber to be too viscous and difficult to brush. In the foaming process, because there are too many inorganic powders and the viscosity is too high, the foaming rate is low, which is not conducive to the subsequent thermal insulation performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

提供耐高低温抗振动防隔热材料及其制备方法,首先制备多孔纤维并制成多孔纤维无纺布,蓬松结构便于与橡胶结合,然后,合成橡胶生胶材料,生胶中包含磷元素,有利于最终材料在高温环境中的阻燃性能,如果快速燃烧会降低最终陶瓷/玻璃生成的比例,阻燃性能提高有助于提高最终陶瓷/玻璃的比例,橡胶生胶单体中含有羟基,有利于气相二氧化硅和硼酸与生胶结合,加入二氧化硅和硼酸以提高最终生成陶瓷的比例;同时,气相二氧化硅添加提高橡胶强度;最后将橡胶生胶涂刷到蓬松多孔纤维无纺布上,然后经过高温处理成多孔纤维增强泡沫橡胶复合材料,该复合材料兼具低密度、低温隔热、高温防热和抗振动性能。

Description

耐高低温抗振动防隔热材料及其制备方法
本申请要求于2022年10月31日提交中国专利局、申请号为202211351418.8、发明名称为“一种耐高低温抗振动防隔热材料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种耐高低温抗振动防隔热材料及其制备方法,属于低温隔热材料和高温热防护材料技术领域,也属于纤维材料制备和发泡橡胶材料技术领域。
背景技术
运载火箭从发动机角度划分为固体火箭和液体火箭,因为液体火箭推力更大且具有更好的运行成本而成为目前火箭中的主流。液体火箭一般由动力装置、箭体结构和控制系统等部件组成。液体火箭主要的燃料有:液氢、肼、甲基肼、偏二甲肼、煤油、酒精等;液体氧化剂主要有液氧、四氧化二氮、过氧化氢、硝酸等。在这些燃料/氧化剂组合中,最常用的是液氢/液氧、煤油/液氧、甲烷/液氧、偏二甲肼/液氧等。火箭在发射之前,进行燃料和氧化剂加注过程中,尤其是液氧,液氢等低温液体的加注,必然导致火箭内部温度快速降低,尤其是液氧、液氢等贮箱部件的表面以及靠近贮箱的仪器表面。为了降低周围环境热量向液氢、液氧等低温贮箱传递,也为了保护火箭内部靠近贮箱的仪器别因温度过低而失效。通常,在贮箱和贮箱附近仪器的外表面涂覆低热导率的隔热材料,这类材料一般为发泡聚氨酯,通常隔热材料厚度不低于10mm,密度0.35g/cm 3
而火箭发动机点火之后,发动机尾焰高于2000℃的高温对火箭内部产生明显的辐射加热作用,个别位置辐射热产生1300℃以上的高温,为了保护火箭内部仪器部件安全运行,通常在仪器隔热材料的外表面再包裹柔性橡胶类防热材 料。这类橡胶材料,通常密度在1.4~1.5g/cm 3,在室温状态具有非常好的柔韧性,这使得安装操作过程简单,在火箭点火之后尾焰产生的辐射热流使得柔性橡胶防热材料快速转化成多孔陶瓷/玻璃结构,这种多孔陶瓷/玻璃在高温下不但具有非常好的耐温性能,而且因为多孔结构导致自身热导率极低,使得热量向内传递较慢,在有限的飞行时间内,仪器表面温度变化不超过30℃,通常热防护材料厚度不低于4mm。
此外,火箭在点火起飞的瞬间,从静态到动态,火箭经历猛烈振动,这种振动对箭体内各种材料和结构产生极大的破坏作用。例如:燃料/液氧加注时的低温导致隔热材料和防热材料因温度降低而脆性显著增加,在这种剧烈振动过程中,可能产生自身破裂/碎裂,甚至是失去隔热/防热功能。为了保证两种材料在火箭点火后猛烈振动过程中与仪器间保持良好的结构稳定性,通常,采用耐高温金属丝或耐高温绳索进行捆绑。这些年来航天工作者,一直在寻找一种简单且便捷的新材料,即、一种材料同时解决:低温隔热、高温防热和抗振动性能,这只需要在仪器表面喷涂或包裹一层材料,不但节省了操作工序,且提高了整体防护的可靠性,此外,因为火箭运载成本的限制,这种材料还要具有非常低的相对密度。但是,到目前为止,仍没有满足实际需要的新材料,即,没有找到同时耐低温且耐高温、低密度抗振材料。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种耐高低温抗振动防隔热材料,该隔热材料同时兼具低密度、低温隔热、高温防热和抗振动性能的优异性能。
本发明的另外一个目的在于提供一种耐高低温抗振动防隔热材料的制备方法。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种耐高低温抗振动防隔热材料的制备方法,包括:
采用成胶剂将偏硅酸、水溶性二氧化硅、硼酸和硼砂组成的硼硅混合粉体 在室温状态下加水制作成胶体,采用所述成胶体制备纤维丝,并由纤维丝制备纤维无纺布,将所述纤维无纺布进行高温处理,得到多孔硼硅酸盐玻璃纤维无纺布;
采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,将所述硼硅氧烷与含磷化合物进行加成反应,得到橡胶生胶;
采用碳酸氢钠过饱和溶液对所述多孔硼硅酸盐玻璃纤维无纺布进行处理,使所述多孔硼硅酸盐玻璃纤维无纺布表面覆盖碳酸氢钠结晶,且碳酸氢钠结晶占多孔硼硅酸盐玻璃纤维无纺布质量的5~15%;
将所述橡胶生胶、自由基引发剂、气相二氧化硅和硼酸混合均匀形成生胶混合物;将所述生胶混合物涂覆或浸泡所述碳酸氢钠过饱和溶液处理后的多孔硼硅酸盐玻璃纤维无纺布,硫化后得到多孔纤维增强泡沫橡胶复合材料。
在上述耐高低温抗振动防隔热材料的制备方法中,所述成胶剂为淀粉和羧甲基壳聚糖按照质量比为10:1~1:1配制而成。
在上述耐高低温抗振动防隔热材料的制备方法中,所述成胶剂中还包括占淀粉和羧甲基壳聚糖总质量5%~10%的碳酸氢钠粉末。
在上述耐高低温抗振动防隔热材料的制备方法中,所述硼硅混合粉体中含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5~2.0:1;所述硼硅混合粉体的平均粒径小于1微米;所述成胶剂与硼硅混合粉体的体积比为0.20~0.35:1。
在上述耐高低温抗振动防隔热材料的制备方法中,还包括,采用所述成胶体制备纤维丝并在气流作用下成形后浸泡在水中定型成纤维无纺布。
在上述耐高低温抗振动防隔热材料的制备方法中,采用所述成胶体利用纺织机喷出直径3~10μm的纤维丝,并在气流作用下成形后浸泡在75-95℃水中定型成纤维无纺布。
在上述耐高低温抗振动防隔热材料的制备方法中,所述纤维无纺布高温处理包括:在马弗炉中通入惰性气体,以升温速度0.5~1.5℃/min从室温到 190~200℃,再以升温速度1.5~2.5℃/min到840~860℃,保温10~30min,自然降温到室温。
在上述耐高低温抗振动防隔热材料的制备方法中,所述多孔硼硅酸盐玻璃纤维无纺布厚度为2~3mm,表观密度为0.3~0.6g/cm3。
在上述耐高低温抗振动防隔热材料的制备方法中,所述含磷化合物包括9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物。
在上述耐高低温抗振动防隔热材料的制备方法中,所述苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,反应温度为90~110℃,惰性气体保护下反应5~8h;所述硼硅氧烷与含磷化合物进行加成反应,反应温度为100~120℃,反应时间为4~6h。
在上述耐高低温抗振动防隔热材料的制备方法中,所述苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷采用氢氧化钠作为催化剂;所述硼硅氧烷与含磷化合物在铂催化下进行加成反应。
在上述耐高低温抗振动防隔热材料的制备方法中,采用碳酸氢钠过饱和溶液对所述多孔硼硅酸盐玻璃纤维无纺布进行处理,包括:将多孔硼硅酸盐玻璃纤维无纺布浸泡在碳酸氢钠过饱和溶液中,然后取出自然风干后,向所述无纺布均匀喷洒碳酸氢钠过饱和溶液后,再次自然风干后,再次喷碳酸氢钠过饱和溶液,……,直到碳酸氢钠结晶覆盖整个无纺布表面,且碳酸氢钠结晶占无纺布质量的5~15%。
在上述耐高低温抗振动防隔热材料的制备方法中,所述生胶混合物中,以质量份计,橡胶生胶100份、自由基引发剂0.5~1.5份、气相二氧化硅10~20份、硼酸5~15份。
在上述耐高低温抗振动防隔热材料的制备方法中,所述硫化温度为80~120℃,时间为10~15min。
一种耐高低温抗振动防隔热材料,采用上述制备方法得到。
一种耐高低温抗振动防隔热材料,由表面覆盖碳酸氢钠结晶的多孔硼硅酸 盐玻璃纤维无纺布涂覆或浸泡生胶混合物后经硫化得到;所述多孔硼硅酸盐玻璃纤维无纺布通过采用成胶剂将偏硅酸、水溶性二氧化硅、硼酸、硼砂加水制作成胶体,进一步制备纤维丝、纤维无纺布以及高温处理得到;所述生胶混合物包括橡胶生胶、自由基引发剂、气相二氧化硅和硼酸;所述橡胶生胶由苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,硼硅氧烷再与含磷化合物进行加成反应得到;所述碳酸氢钠结晶占多孔硼硅酸盐玻璃纤维无纺布质量的5~15%。
在上述耐高低温抗振动防隔热材料中,所述成胶剂包括质量比为10:1~1:1的淀粉和羧甲基壳聚糖,以及占淀粉和羧甲基壳聚糖总质量5%~10%的碳酸氢钠粉体。
在上述耐高低温抗振动防隔热材料中,所述偏硅酸、水溶性二氧化硅、硼酸、硼砂组成的硼硅混合粉体中含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5~2.0:1;所述成胶剂与硼硅混合粉体的体积比为0.20~0.35:1。
在上述耐高低温抗振动防隔热材料中,所述硫化温度为80~120℃,时间为10~15min;所述高温处理包括:在马弗炉中通入惰性气体,以升温速度0.5~1.5℃/min从室温到190~200℃,再以升温速度1.5~2.5℃/min到840~860℃,保温10~30min,自然降温到室温。
在上述耐高低温抗振动防隔热材料中,所述生胶混合物中,以质量份计,橡胶生胶100份、自由基引发剂0.5~1.5份、气相二氧化硅10~20份、硼酸5~15份。
本发明与现有技术相比至少包含如下有益效果:
本发明首先制备多孔纤维并制成多孔纤维无纺布,蓬松结构便于与橡胶结合,然后,合成全新的橡胶生胶材料,生胶中包含磷元素,有利于最终材料在高温环境中的阻燃性能,如果快速燃烧会降低最终陶瓷/玻璃生成的比例,阻燃性能提高有助于提高最终陶瓷/玻璃的比例,橡胶生胶单体中含有羟基,有利于气相二氧化硅和硼酸与生胶结合,外加这两种物质是为了提高最终生成陶瓷的 比例;同时,气相二氧化硅添加提高橡胶强度;最后将橡胶生胶涂刷到蓬松多孔纤维无纺布上,然后经过高温处理成多孔纤维增强泡沫橡胶复合材料,该复合材料兼具低密度、低温隔热、高温防热和抗振动性能的优异性能。
本发明制备的多孔纤维增强泡沫橡胶复合材料,不但具有良好的低温隔热和抗振动性能,还在高温过程中转化成多孔耐高温陶瓷/玻璃类材料,具有很好的耐温性能和低的热导率,即在低温状态时起到良好的隔热作用且不会被低温冻裂,在高温状态是起到良好的防热和隔热作用,同时具有非常好的抗振动性能。
附图说明
图1为本发明实施例1中制备的多孔纤维及多孔纤维无纺布电镜照片;
图2为本发明实施例1中制备的橡胶生胶红外测试谱图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明实施例中耐高低温抗振动防隔热材料的制备方法包括如下步骤:
步骤(一)、多孔纤维布制备
利用淀粉、羧甲基壳聚糖以及碳酸氢钠粉体复配成的成胶剂,淀粉和羧甲基壳聚糖的质量比为10:1~1:1,碳酸氢钠粉占淀粉和羧甲基壳聚糖总质量5%~10%。用复配成胶剂将偏硅酸,水溶性二氧化硅、硼酸和硼砂在室温状态下加水制作成胶体,
偏硅酸和水溶性二氧化硅,硼酸和硼砂,含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5~2.0:1,这四样粉体在行星球磨机研磨成平均粒径1微米以下的硼硅混合粉体。成胶剂与硼硅混合粉体的体积比(量筒称量)为0.20~0.35,两种粉体混合后在机械搅拌下逐渐添加去离子水形成胶体后用纺织机喷出直径3~10μm(优选5μm)的纤维丝并在气流作用下迅速成无纺布形后浸泡在75-95℃水中定型成蓬松无纺布。
无纺布从水中取出放在丝板上自然干燥后,放在马弗炉中通入惰性气体保 护,以升温速度0.5~1.5℃/min从室温到190~200℃,再以升温速度1.5~2.5℃/min到840~860℃,保温10~30min,自然降温到室温,得到蓬松多孔硼硅酸盐玻璃纤维无纺布,厚度2~3mm,且表观密度为0.3~0.6g/cm 3
本发明利用淀粉、羧甲基壳聚糖和碳酸氢钠复配成的成胶剂,这种复配的成胶剂在室温下是胶体,但在70-100℃水中能快速定型。用复配成胶剂将偏硅酸,水溶性二氧化硅、硼酸和硼砂在室温状态下加水制作成胶体,然后,通过纺丝机制备出纤维丝并通过高速气流迅速成网后浸泡在75-95℃水中迅速定型成纤维无纺布,将纤维无纺布从水中取出后自然风干。为了制得多孔纤维,只是成胶剂的脱除后纤维本身留下的孔隙的量无法满足实际需要,同时,高温状态下现阶段制备的硼硅酸玻璃纤维丝的强度不够,主要是因为高温时这种硼硅酸玻璃的流动性较弱导致彼此之间结合强度低,在本发明中为了提高纤维本身孔隙率和提高硼硅酸玻璃的强度,通过成胶剂中添加碳酸氢钠,在水溶液中,碳酸氢钠提高淀粉和羧甲基壳聚糖胶体的黏度,在分解过程中会促进孔洞的形成,在更高温度分解剩下的氧化钠促进硼硅酸盐玻璃的形成和强度的提高。纤维无纺布从水中取出自然干燥后,高温处理后得到的硼硅酸盐玻璃纤维无纺布,这种无纺布根据需要制成蓬松结构,具有非常好的强度和均匀缝隙。
步骤(二)、橡胶生胶制备
采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,反应条件为90~110℃,氢氧化钠催化,惰性气体保护反应5~8小时。如下所示为苯基二乙烯基氯硅烷(结构式1)与甲基硼酸(结构式2)的结构式:
Figure PCTCN2022132104-appb-000001
Figure PCTCN2022132104-appb-000002
化学反应方程式如下反应式1所示:
Figure PCTCN2022132104-appb-000003
硼硅氧烷反复水洗之后再与含磷化合物加成反应得到粘稠的淡黄色液体,反应条件是铂催化,100~120℃反应4~6小时。含磷化合物为9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物,结构式(结构式3)如下:
Figure PCTCN2022132104-appb-000004
化学反应方程式如下反应式2所示:
Figure PCTCN2022132104-appb-000005
反应得到橡胶的生胶,也就是后续制备发泡橡胶的单体材料,结构式(结构式4)如下所示:
Figure PCTCN2022132104-appb-000006
其中,硼元素上仍保留一个羟基是为了后续与外加含硼含硅物质良好的相容。此外,磷元素的引入是为了提高橡胶材料的阻燃性能进而提高最终生成多孔陶瓷的比例。
步骤(三)、多孔纤维增强发泡材料制备
首先,将多孔纤维布浸泡在碳酸氢钠过饱和溶液中,然后取出自然风干后,向多孔纤维布均匀喷洒碳酸氢钠过饱和溶液后,再次自然风干后,再次喷碳酸氢钠过饱和溶液,直到多孔纤维布表面呈现明显碳酸氢钠白色结晶,且结晶覆盖整个多孔纤维表面为止,处理后碳酸氢钠占多孔纤维重量5~15%,碳酸氢钠的作用主要是后期橡胶硫化过程中做发泡剂,且在高温热防护过程中,进一步分解生成的氧化钠,促进硼硅酸盐玻璃的形成和强度的提高。
其次,将橡胶生胶、自由基引发剂、气相二氧化硅和硼酸在低温下混合均匀形成生胶混合物。其中以质量份数计,橡胶生胶为基准100份、自由基引发剂0.5~1.5份、气相二氧化硅10~20份和硼酸5~15份。
将生胶混合物涂刷在多孔纤维布上,并且使纤维布完全进入生胶混合物中,通常,生胶混合物刚好完全浸透并包覆住纤维布为止,然后放入烘箱中高温干燥,使得生胶混合物硫化成橡胶过程中纤维布上的碳酸氢钠快速分解生成二氧化碳,最终多孔纤维无纺布增强泡沫橡胶复合材料,硫化的工艺条件为:80~120℃硫化10~15分钟。
步骤(四)、多孔纤维增强泡沫橡胶复合材料性能测试:
在实际产品生产过程中,是将多孔纤维无纺布缝合在仪器外形金属模具上,然后涂覆生胶混合物后,进行高温硫化反应生成泡沫橡胶。为了进行性能测试, 本发明中,主要是将多孔纤维增强泡沫橡胶复合材料裁剪成厚度为10mm片状样品,测试密度,低温抗振性能,低温隔热性能和高温防热性能等。
具体的工艺步骤为:
将多孔纤维无纺布缝合在仪器外形金属模具上,然后涂覆生胶混合物后,进行高温硫化反应生成泡沫橡胶复合材料。为了进行性能测试,在本发明实施例中,制作成厚度为10mm片状样品,首先是密度测试,剪裁成100mm×100mm片状样品,称量后用质量除以体积计算出密度;其次是测低温冻裂性能,将尺寸为100mm×100mm×10mm的样品放入液氮中浸泡10分钟后开启超声振动5分钟,然后取出样品观察是否有碎裂现象;壁厚3mm、内径300mm、壁高600mm的铝合金圆桶外表包裹厚度10mm多孔纤维无纺布增强泡沫橡胶复合材料,为了验证隔热的效果,直接在铝合金筒壁外侧制备复合材料,持续向铝合金圆桶内缓慢加入液氮,在隔热层中间位置,即距离隔热层内外表面相等的位置——距离低温的液氮接触的铝合金和距离空气环境的距离相等,平行插入2个PT100热电偶,两者取平均值,为了对比,桶壁另外一侧采用传统隔热材料制备厚度10mm隔热层并且贴上相同方式的热电偶;火箭发射过程中,一级火箭点火热流最大,其点火后平均热流强度为200kw/m 2且飞行时间一般为70s左右,一级以上部段发动机点火的热流对火箭影响较小,一般不予考虑。在本发明中采用240kw/m 2测试100mm×100mm×10mm试样背面温度变化,测试时间长度为80s,为了对比,采用传统隔热材料样品100mm×100mm×10mm做成隔热材料并在表面包覆4mm防热材料后测试隔热材料背面温度变化。
本发明制备一种低热导率耐高低温材料,即这种材料在低温状态时起到良好的隔热作用且不会被低温冻裂,在高温状态是起到良好的防热和隔热作用,同时具有非常好的抗振动性能。具体的发明思路是:为了提高隔热效果必须降低材料的热导率,而制备低密度的泡沫材料;而泡沫材料极易在低温状态下振动过程中发生碎裂现象,为了提高多孔材料的抗振动性能,而制备纤维材料增强泡沫材料。而纤维材料在泡沫材料中相当于“热桥”/“冷桥”,显著增加了泡沫 材料表观热导率,使得隔热效果显著降低,为此,制备多孔纤维材料;为了提高多孔纤维增强泡沫材料的耐温性能,即,具有良好的热防护性能,多孔纤维增强泡沫材料在高温状态下能转化成耐高温的陶瓷/玻璃类材料。
在本发明中,首先制备多孔纤维并制成多孔纤维无纺布,蓬松结构便于与橡胶结合,然后,合成全新的橡胶生胶材料,生胶中包含磷元素,这有利于最终材料在高温环境中的阻燃性能,如果快速燃烧会降低最终陶瓷/玻璃生成的比例,阻燃性能提高有助于提高最终陶瓷/玻璃的比例,橡胶生胶单体中含有羟基,这将有利于气相二氧化硅和硼酸的与生胶结合,外加这两种物质是为了提高最终生成陶瓷的比例。同时,气相二氧化硅添加提高橡胶强度。最后将橡胶生胶涂刷到蓬松多孔纤维无纺布上,然后经过高温处理成多孔纤维增强泡沫橡胶复合材料,然后对这种复合材料进行各项性能测试。
实施例1
第一步,多孔纤维布制备,淀粉和羧甲基壳聚糖质量比为5:1加5%的碳酸氢钠粉体复配成的成胶剂。偏硅酸和水溶性二氧化硅,硼酸和硼砂,含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为1.0:1,成胶剂与硼硅混合粉体的体积比(量筒称量)为0.27:1,两种粉体混合后在机械搅拌下逐渐添加去离子水形成胶体后用纺织机喷出,在气流作用下迅速成无纺布形后浸泡在78℃水中定型成蓬松无纺布。无纺布从水中取出放在丝板上自然干燥后,放在马弗炉中通入惰性气体保护,在室温到200℃升温速度1℃/min,此后升温速度2℃/min到850℃后,保温20分钟,自然降温到室温,得到蓬松多孔硼硅酸盐玻璃纤维无纺布,这种无纺布根据需要制成蓬松结构,通常厚度2~3mm,纤维直径大约2微米,见图1所示。而挤出喷嘴直径为5微米,这是因为在胶体中含硼、含硅物质在淀粉羧甲基壳聚糖胶体中含量较低,烘干和高温处理后收缩导致直径降低,且表观密度为0.45g/cm 3
第二步,橡胶生胶制备,在当前发明中,采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,化学反应方程式如上反应式1所示,反应条件为100℃, 氢氧化钠催化,惰性气体保护反应6小时后,反复水洗之后再与含磷化合物加成反应得到粘稠的淡黄色液体,反应条件是铂催化,110℃反应5小时,化学反应方程式如上反应式2所示,这是橡胶的生胶,也就是后续制备发泡橡胶的单体材料,红外测试结果见图2所示,图2为橡胶单体(如上结构式4)的红外光谱。由图可知,2800-3000cm -1处的特征吸收峰为-CH 2,-CH 3伸缩振动峰,1589cm -1处特征吸收峰为苯环的骨架振动峰,1478cm -1处存在P-C的吸收峰,1235cm -1处为P=O伸缩振动峰;1613cm -1处为Si-CH=CH 2的特征吸收峰。1361.5cm -1为B-O-Si键的伸缩振动吸收峰,红外分析结果表明,有机单体,如上结构式4,被成功合成出来。
第三步,多孔纤维增强发泡材料制备,首先,多孔纤维表面呈现明显碳酸氢钠白色结晶,且结晶覆盖整个多孔纤维表面,处理后碳酸氢钠占多孔纤维重量10%。其次,以橡胶生胶为基准100份、自由基引发剂1份、气相二氧化硅15份和硼酸10份在低温下混合均匀形成生胶混合物,将生胶混合物涂刷在多孔纤维布上,并且使纤维布完全进入生胶混合物中,然后放入烘箱中100℃硫化12分钟,生成多孔纤维增强泡沫橡胶复合材料。
第四步,性能测试,为了进行性能测试,制作成厚度为10mm片状样品,首先是密度测试,将多孔纤维增强泡沫橡胶复合材料剪裁成100mm×100mm片状样品,称量后用质量除以体积计算出密度为0.15g/cm 3,其次是测低温冻裂性能,将尺寸为100mm×100mm×10mm的样品放入液氮中浸泡10分钟后开启超声振动5分钟,然后取出样品观察没有发现碎裂现象,而为了对比传统隔热材料在液氮中浸泡并振动后取出发现明显碎裂成小块。
为了进一步对比分析,只用生胶混合物发泡成泡沫橡胶,泡沫成型工艺和低温冻裂性能测试与前两种样品测试同批次进行,不同的是,没有多孔纤维增强,从液氮中取出发现泡沫橡胶有明显破裂现象,这说明多孔纤维起到了非常好的抗低温冻裂性能。低温隔热性能测试结果:试样从加入液氮后43分钟后开始缓慢降低温度,在202分钟后温度达到了的-101℃,而对比试样是从15分钟后 开始降低温度,并且在88分钟达到稳定的-138℃。当前发明的样品与传统样品对比结果表明,隔热性能提高了几乎1.5倍。防热性能测试:240kw/m 2测试80s后试样背面温度升高了15℃,尽管对比试样比本发明试样多了4mm厚的防热材料,但是最终温升为13℃,最为关键的隔热涂层完全坍塌,这是因为4mm防热材料内表面温度超过了聚氨酯承受温度并逐渐坍塌。防热性能表明,尽管厚度薄了4mm,但是防热性能好于传统的防热材料。
实施例2
第一步,多孔纤维布制备,淀粉和羧甲基壳聚糖质量比为10:1并加10%的碳酸氢钠粉体复配成的成胶剂。偏硅酸和水溶性二氧化硅,硼酸和硼砂,含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5:1,成胶剂与硼硅混合粉体的体积比为0.20:1,无纺布浸泡在75℃水中定型。定型干燥后无纺布放在马弗炉中通入惰性气体保护,在室温到200℃升温速度0.5℃/min,此后升温速度1.5℃/min到850℃后,保温10分钟,自然降温到室温,得到蓬松多孔硼硅酸盐玻璃纤维无纺布,且表观密度为0.6g/cm3,最终定型后的纤维直径约2微米。
第二步,橡胶生胶制备,采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,见化学反应方程式1所示,反应条件为90℃,氢氧化钠催化,惰性气体保护反应5小时后,反复水洗之后再与含磷化合物(如上结构式3)加成反应,见化学反应方程式2所示,反应条件是铂催化,100℃反应4小时后得到粘稠的淡黄色液体,这是橡胶的生胶(单体)。
第三步,多孔纤维增强发泡材料制备,首先,碳酸氢钠占多孔纤维重量5%。其次,以橡胶生胶为基准100份、自由基引发剂0.5份、气相二氧化硅10份和硼酸5份在低温下混合均匀形成生胶混合物,将生胶混合物涂刷在多孔纤维布上,并且使纤维布完全进入生胶混合物中,然后放入烘箱中80℃硫化10分钟,生成多孔纤维增强泡沫橡胶复合材料。
第四步,性能测试,裁剪多孔纤维增强泡沫橡胶复合材料尺寸为 100mm×100mm×10mm测量质量和体积计算出密度为0.19g/cm 3,该密度明显低于传统隔热材料0.35g/cm 3。如果计算传统防热材料4mm,密度1.5g/cm 3,传统隔热和防热材料平均密度为0.68g/cm 3,并且比当前发明的材料厚4mm。所以,当前发明对火箭防隔热整体减重效果非常明显。
观测低温冻裂性能:100mm×100mm×10mm多孔纤维增强泡沫橡胶复合材料样品在液氮中浸泡10分钟后开启超声振动5分钟,然后取出观察样品没有发生碎裂现象,为了对比,100mm×100mm×10mm聚氨酯泡沫在液氮中浸泡10分钟后开启超声振动5分钟,然后取出样品后发现样品明显破碎成小块。低温隔热性能测试结果:试样从加入液氮后29分钟后开始缓慢降低温度,在163分钟后温度达到了的-107℃,而对比试样是从15分钟后开始降低温度,并且在88分钟达到稳定的-138℃。当前发明的样品与传统样品对比结果表明,隔热性能提高了几乎1倍。
防热性能测试:240kw/m 2测试80s后试样背面温度升高了18℃,尽管对比试样比本发明试样多了4mm厚的防热材料,但是最终温升为13℃,最为关键的隔热涂层完全坍塌,这是因为4mm防热材料内表面温度超过了聚氨酯承受温度并逐渐坍塌。防热性能表明,尽管厚度薄了4mm,但是防热性能好于传统的防热材料。
结果分析:淀粉与羧甲基壳聚糖质量比大于10:1并加10%的碳酸氢钠粉复配成的成胶剂,因为淀粉更多的作用是定型剂,即从纺丝机出来后在水中快速定型,淀粉含量高于10:1使得定型速度过快,纤维外表面定型而内表面还没有定型,最终纤维在水溶缓慢容易发生断裂。并且羧甲基壳聚糖在成胶剂中主要作用是提高黏度,和在水中起到降低淀粉定型速度,即,降低纤维定型速度。
含硅物质中的硅原子与含硼物质中硼原子摩尔量的比低于0.5时,纤维高温成型的时候,因为硅含量偏低不容易形成稳定的硼硅酸盐玻璃相,使得纤维具有比较高的脆性,在自然冷却过程容易逐渐断裂,后续使用过程中也容易断裂。
成胶剂与硼硅混合粉体的体积比低于0.20时,因为成胶剂量过低,整个混合 物以含硼和含硅相为主,不容易成为黏度较高的胶体,即纤维不容易成型。
无纺布浸泡在水中的温度低于75℃,因为淀粉无法快速变质定型而容易出现逐渐被溶解的情况,导致纤维不容易成型。
从室温到200℃升温速度低于0.5℃/min,碳酸氢钠分解速度太低,产生气体挥发速度低,形成的孔隙太小,纤维密度大,明显高于0.6g/cm 3
从200℃到850℃升温速度低于1.5℃/min,对性能影响不大,就是太耗费时间了,但在850℃保温低于10分钟,硼硅酸盐玻璃之间因为没有足够的软化和反应时间而导致制成的纤维脆易断裂。
采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,反应温度低于90℃反应发生速度缓慢,硼硅氧烷与含磷化合物(附图加成反应温度低于100℃,反应体系呈现半固体状态不容易进行有效反应。
碳酸氢钠占多孔纤维重量低于5%时因为产生气体有限无法形成较好的多孔结构的纤维。其次,以橡胶生胶为基准100份、自由基引发剂低于0.5份时因为硫化反应时间较短使得泡沫橡胶硫化程度不够;气相二氧化硅和硼酸在当前工作中主要是补强作用,同时在高温阶段成为硼硅酸盐玻璃的主要组分,如果不添加这两种粉,高温阶段无法形成硼硅酸盐玻璃,因为,乙烯基硼硅氧烷中碳含量较高最终产生二氧化碳气体导致无法形成硼硅酸盐玻璃,此外,添加量低于当前实施例的比例,也会导致最终纤维强度不足,和抗高温性能不佳。
将生胶混合物涂刷在多孔纤维布上,放入烘箱中硫化温度低于80℃,需要更长的时间才能硫化完成,但是气体缓慢释放不容易形成泡沫结构,并且硫化时间低于10分钟,生胶混合物不容易有效硫化成泡沫橡胶。
实施例3
第一步,多孔纤维布制备,淀粉和羧甲基壳聚糖质量比为1:1并加7%碳酸氢钠粉复配成的成胶剂。偏硅酸和水溶性二氧化硅,硼酸和硼砂,含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为2.0,成胶剂与硼硅混合粉体的体积比 为0.35,无纺布浸泡在95℃水中定型。定型干燥后无纺布放在马弗炉中通入惰性气体保护,在室温到200℃升温速度1.5℃/min,此后升温速度2.5℃/min到850℃后,保温30分钟,自然降温到室温,得到蓬松多孔硼硅酸盐玻璃纤维无纺布,厚度2~3mm,且表观密度为0.3g/cm 3
第二步,橡胶生胶制备,苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,见化学反应方程式1所示,反应温度110℃氢氧化钠催化反应时间8小时,然后反复水洗硼硅氧烷再与含磷化合物加成反应,铂催化在120℃反应6小时后得到粘稠的淡黄色液体,这是橡胶的生胶。
第三步,多孔纤维增强发泡材料制备,碳酸氢钠占多孔纤维重量15%。其次,以橡胶生胶为基准100份、自由基引发剂1.5份、气相二氧化硅20份和硼酸15份在低温下混合均匀形成生胶混合物,将生胶混合物涂刷在多孔纤维布上,并且放入烘箱中120℃硫化15分钟,生成多孔纤维增强泡沫橡胶复合材料。
第四步,性能测试,裁剪多孔纤维增强泡沫橡胶复合材料尺寸为100mm×100mm×10mm测量质量和体积计算出密度为0.11g/cm 3,这密度明显低于传统隔热材料0.35g/cm 3。如果计算上传统防热材料4mm,密度1.5g/cm 3,传统隔热和防热材料平均密度为0.68g/cm 3,并且比当前发明的材料厚4mm。所以,当前发明对火箭防隔热整体减重效果非常明显。
观测低温冻裂性能:100mm×100mm×10mm多孔纤维增强泡沫橡胶复合材料样品在液氮中浸泡10分钟后开启超声振动5分钟,然后取出观察样品没有发生碎裂现象.为了对比,100mm×100mm×10mm聚氨酯泡沫在液氮中浸泡10分钟后开启超声振动5分钟,然后取出样品后发现样品明显破碎成小块。
低温隔热性能测试结果:试样从加入液氮后56分钟后开始缓慢降低温度,在247分钟后温度达到了的-91℃,而对比试样是从15分钟后开始降低温度,并且在88分钟达到稳定的-138℃。当前发明的样品与传统样品对比结果表明,隔热性能提高了几乎2倍。
防热性能测试:240kw/m 2测试80s后试样背面温度升高了9℃,尽管对比试 样比本发明试样多了4mm厚的防热材料,但是最终温升为13℃,最为关键的隔热涂层完全坍塌,这是因为4mm防热材料内表面温度超过了聚氨酯承受温度并逐渐坍塌。防热性能表明,尽管厚度薄了4mm,但是防热性能好于传统的防热材料。
结果分析:淀粉与羧甲基壳聚糖质量比小于1:1复配成的成胶剂,因为淀粉更多的作用是定型剂,即从纺丝机出来后在水中快速定型,淀粉含量低1:1使得定型速度过慢,导致纤维没有最终定型而容易被水溶解。
含硅物质中的硅原子与含硼物质中硼原子摩尔量的比高于2.0时,纤维高温成型的时候,因为硼含量偏低不容易形成稳定的硼硅酸盐玻璃相,使得纤维在高温阶段不容易成型且在自然冷却过程容易逐渐断裂。
成胶剂与硼硅混合粉体的体积比低于0.35时,因为成胶剂量太高,纤维中含硼物质和含硅物质之间相互分开,在高温处理时可能导致两种元素无法接触发生反应,成胶剂分解后导致最终纤维成为粉体,即纤维不容易成型。
无纺布浸泡在水中的温度高于95℃,因为纤维表层淀粉快速定型而内部淀粉没有定型,使得纤维自身强度差,取出自然风干过程中纤维容易碎裂。
从室温到200℃升温速度高于1.5℃/min,碳酸氢钠分解速度太快,产生气体挥发速度高,形成喷射作用导致纤维丝容易断裂。从200℃到850℃升温速度高于2.5℃/min,纤维内硼硅元素反应时间短,尤其是在850℃保温高于30分钟,硼硅酸盐玻璃纤维过度软化容易导致纤维完全坍缩堆叠在一起,无纺布的密度过大。
采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,反应温度高于110℃时反应速度过快,形成更多的低聚物或其他产物,影响最终生胶性能,反应时间过长,例如超过8小时早就反应结束了。硼硅氧烷与含磷化合物加成反应温度高于120℃,反应体系容易过于激烈。
碳酸氢钠占多孔纤维重量高于15%,由于碳酸氢钠太多产生多量的气体,使得泡沫形成大量的通过,降低隔热和防热性能。其次,以橡胶生胶为基准100 份、自由基引发剂高于1.5份因为引发剂量太大导致反应过快成泡率偏低;气相二氧化硅20份和硼酸15份在低温下混合均匀形成生胶混合物,将生胶混合物涂刷在多孔纤维布上,并且放入烘箱中120℃硫化15分钟,生成多孔纤维增强泡沫橡胶复合材料。
气相二氧化硅和硼酸在当前工作中主要是补强作用,同时在高温阶段成为硼硅酸盐玻璃的主要组分,添加这两种粉过多,导致生胶黏度太大不容易涂刷,且发泡过程中,因为无机粉体太多黏度太大,导致成泡率偏低,不利于后续隔热性能。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (20)

  1. 一种耐高低温抗振动防隔热材料的制备方法,其特征在于,包括:
    采用成胶剂将偏硅酸、水溶性二氧化硅、硼酸和硼砂组成的硼硅混合粉体在室温状态下加水制作成胶体,采用所述成胶体制备纤维丝,并由纤维丝制备纤维无纺布,将所述纤维无纺布进行高温处理,得到多孔硼硅酸盐玻璃纤维无纺布;
    采用苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,将所述硼硅氧烷与含磷化合物进行加成反应,得到橡胶生胶;
    采用碳酸氢钠过饱和溶液对所述多孔硼硅酸盐玻璃纤维无纺布进行处理,使所述多孔硼硅酸盐玻璃纤维无纺布表面覆盖碳酸氢钠结晶,且碳酸氢钠结晶占多孔硼硅酸盐玻璃纤维无纺布质量的5~15%;
    将所述橡胶生胶、自由基引发剂、气相二氧化硅和硼酸混合均匀形成生胶混合物;将所述生胶混合物涂覆或浸泡所述碳酸氢钠过饱和溶液处理后的多孔硼硅酸盐玻璃纤维无纺布,硫化后得到多孔纤维增强泡沫橡胶复合材料。
  2. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述成胶剂为淀粉和羧甲基壳聚糖按照质量比为10:1~1:1配制而成。
  3. 根据权利要求2所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述成胶剂中还包括占淀粉和羧甲基壳聚糖总质量5%~10%的碳酸氢钠粉末。
  4. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述硼硅混合粉体中含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5~2.0:1;
    所述硼硅混合粉体的平均粒径小于1微米;
    所述成胶剂与硼硅混合粉体的体积比为0.20~0.35:1。
  5. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,还包括,采用所述成胶体制备纤维丝并在气流作用下成形后浸泡在水中 定型成纤维无纺布。
  6. 根据权利要求5所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,采用所述成胶体利用纺织机喷出直径3~10μm的纤维丝,并在气流作用下成形后浸泡在75-95℃水中定型成纤维无纺布。
  7. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述纤维无纺布高温处理包括:在马弗炉中通入惰性气体,以升温速度0.5~1.5℃/min从室温到190~200℃,再以升温速度1.5~2.5℃/min到840~860℃,保温10~30min,自然降温到室温。
  8. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述多孔硼硅酸盐玻璃纤维无纺布厚度为2~3mm,表观密度为0.3~0.6g/cm3。
  9. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述含磷化合物包括9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物。
  10. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于,所述苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,反应温度为90~110℃,惰性气体保护下反应5~8h;
    所述硼硅氧烷与含磷化合物进行加成反应,反应温度为100~120℃,反应时间为4~6h。
  11. 根据权利要求1或10所述的耐高低温抗振动防隔热材料的制备方法,其特征在于:所述苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷采用氢氧化钠作为催化剂;
    所述硼硅氧烷与含磷化合物在铂催化下进行加成反应。
  12. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于:采用碳酸氢钠过饱和溶液对所述多孔硼硅酸盐玻璃纤维无纺布进行处理,包括:将多孔硼硅酸盐玻璃纤维无纺布浸泡在碳酸氢钠过饱和溶液中,然后取出自然风干后,向所述无纺布均匀喷洒碳酸氢钠过饱和溶液后,再次自然 风干后,再次喷碳酸氢钠过饱和溶液,……,直到碳酸氢钠结晶覆盖整个无纺布表面,且碳酸氢钠结晶占无纺布质量的5~15%。
  13. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于:所述生胶混合物中,以质量份计,橡胶生胶100份、自由基引发剂0.5~1.5份、气相二氧化硅10~20份、硼酸5~15份。
  14. 根据权利要求1所述的耐高低温抗振动防隔热材料的制备方法,其特征在于:所述硫化温度为80~120℃,时间为10~15min。
  15. 一种耐高低温抗振动防隔热材料,其特征在于,采用权利要求1~14任一项所述的制备方法得到。
  16. 一种耐高低温抗振动防隔热材料,其特征在于,由表面覆盖碳酸氢钠结晶的多孔硼硅酸盐玻璃纤维无纺布涂覆或浸泡生胶混合物后经硫化得到;
    所述多孔硼硅酸盐玻璃纤维无纺布通过采用成胶剂将偏硅酸、水溶性二氧化硅、硼酸、硼砂加水制作成胶体,进一步制备纤维丝、纤维无纺布以及高温处理得到;
    所述生胶混合物包括橡胶生胶、自由基引发剂、气相二氧化硅和硼酸;所述橡胶生胶由苯基二乙烯基氯硅烷与甲基硼酸反应生成硼硅氧烷,硼硅氧烷再与含磷化合物进行加成反应得到;
    所述碳酸氢钠结晶占多孔硼硅酸盐玻璃纤维无纺布质量的5~15%。
  17. 根据权利要求16所述的耐高低温抗振动防隔热材料,其特征在于,所述成胶剂包括质量比为10:1~1:1的淀粉和羧甲基壳聚糖,以及占淀粉和羧甲基壳聚糖总质量5%~10%的碳酸氢钠粉体。
  18. 根据权利要求16所述的耐高低温抗振动防隔热材料,其特征在于,所述偏硅酸、水溶性二氧化硅、硼酸、硼砂组成的硼硅混合粉体中含硅物质中的硅原子与含硼物质中硼原子摩尔量的比为0.5~2.0:1;
    所述成胶剂与硼硅混合粉体的体积比为0.20~0.35:1。
  19. 根据权利要求16所述的耐高低温抗振动防隔热材料,其特征在于,所 述硫化温度为80~120℃,时间为10~15min;
    所述高温处理包括:在马弗炉中通入惰性气体,以升温速度0.5~1.5℃/min从室温到190~200℃,再以升温速度1.5~2.5℃/min到840~860℃,保温10~30min,自然降温到室温。
  20. 根据权利要求16所述的耐高低温抗振动防隔热材料,其特征在于,所述生胶混合物中,以质量份计,橡胶生胶100份、自由基引发剂0.5~1.5份、气相二氧化硅10~20份、硼酸5~15份。
PCT/CN2022/132104 2022-10-31 2022-11-16 耐高低温抗振动防隔热材料及其制备方法 WO2024092881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351418.8 2022-10-31
CN202211351418.8A CN115627007B (zh) 2022-10-31 2022-10-31 一种耐高低温抗振动防隔热材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024092881A1 true WO2024092881A1 (zh) 2024-05-10

Family

ID=84909362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132104 WO2024092881A1 (zh) 2022-10-31 2022-11-16 耐高低温抗振动防隔热材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115627007B (zh)
WO (1) WO2024092881A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119422A (en) * 1977-08-18 1978-10-10 Pittsburgh Corning Corporation Pulverulent borosilicate composition and a method of making a cellular borosilicate body therefrom
JPH04173833A (ja) * 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性樹脂組成物
CN101700978A (zh) * 2009-11-11 2010-05-05 哈尔滨工业大学 SiBCN(O)陶瓷材料的制备方法
CN103130454A (zh) * 2011-11-29 2013-06-05 航天特种材料及工艺技术研究所 一种低热导率硅橡胶泡沫材料及其制备方法
CN111732730A (zh) * 2020-05-07 2020-10-02 北京宇航系统工程研究所 一种耐高温硼硅橡胶生胶及其合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249780A (ja) * 2008-04-09 2009-10-29 Fuji Corp 耐熱性断熱材
CN104591782B (zh) * 2014-12-18 2016-09-07 南京工业大学 MoSi2-BSG涂覆氧化锆纤维板一体化隔热材料及其制备方法
CN106608730A (zh) * 2015-10-26 2017-05-03 沈阳拓荆科技有限公司 碳基Si-C-O气凝胶隔热复合材料及其制备方法
CN112266269B (zh) * 2020-09-15 2022-05-03 航天特种材料及工艺技术研究所 一种隔热材料的原位制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119422A (en) * 1977-08-18 1978-10-10 Pittsburgh Corning Corporation Pulverulent borosilicate composition and a method of making a cellular borosilicate body therefrom
JPH04173833A (ja) * 1990-11-07 1992-06-22 Natl Space Dev Agency Japan<Nasda> 軽量断熱性樹脂組成物
CN101700978A (zh) * 2009-11-11 2010-05-05 哈尔滨工业大学 SiBCN(O)陶瓷材料的制备方法
CN103130454A (zh) * 2011-11-29 2013-06-05 航天特种材料及工艺技术研究所 一种低热导率硅橡胶泡沫材料及其制备方法
CN111732730A (zh) * 2020-05-07 2020-10-02 北京宇航系统工程研究所 一种耐高温硼硅橡胶生胶及其合成方法

Also Published As

Publication number Publication date
CN115627007B (zh) 2024-03-26
CN115627007A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
CN108641361B (zh) 一种纤维增强的有机硅气凝胶隔热复合材料及其制备方法
CN101698591B (zh) 一种纤维复合炭气凝胶材料的制备方法
CN106966742B (zh) 含界面相的氧化铝纤维增强莫来石陶瓷及其制备方法
CN107337474A (zh) 一种碳基轻质热防护材料及其制备方法和应用
CN109053207A (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN111285699B (zh) 一种轻质可重复使用的防隔热材料及其制备方法
CN108249944B (zh) 一种SiO2基复合材料的制备方法
CN110951210A (zh) 高强度纳米孔可陶瓷化烧蚀防热复合材料及其制备方法
CN109851336A (zh) 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法
CN112374917B (zh) 一种高温陶瓷涂层及其制备方法
Zhang et al. Facile preparation of a phenyl-reinforced flexible silica aerogel with excellent thermal stability and fire resistance
Sun et al. Fabrication of flame-retardant and smoke-suppressant isocyanate-based polyimide foam modified by silica aerogel thermal insulation and flame protection layers
CN113816720A (zh) 一种pbo纤维制品复合气凝胶高性能隔热材料及其制备方法
CN114455978B (zh) 一种纤维增强型莫来石配比氧化物改性酚醛树脂气凝胶复合材料及其制备方法
JP2001507328A (ja) 窒化ホウ素コーティングで被覆された布帛予備成形体、それを組み込んだ複合材料およびその製造方法
CN113896539A (zh) 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法
WO2024092881A1 (zh) 耐高低温抗振动防隔热材料及其制备方法
KR20180080454A (ko) 산소량이 감소된 고성능 탄화규소섬유의 제조방법
CN108840698B (zh) 一种多孔c/c复合材料及制备方法
RU2412134C1 (ru) Способ получения керамического композиционного изделия
CN112940445B (zh) 一种陶瓷微球改性碳纤维预制体增强硅氧碳-酚醛复合材料及其制备方法
CN116023756A (zh) 一种低密度耐烧蚀模压预浸料及其制备方法
Hao et al. Oxidation behavior of microwave absorbing SiCf/Si3N4 composites by incorporating self-healing phase
CN114149270A (zh) 耐烧蚀复合材料及其制备方法和应用
CN113149680A (zh) 一种碳纤维强化硅硼碳氮基陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964179

Country of ref document: EP

Kind code of ref document: A1