WO2024090673A1 - 식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법 - Google Patents

식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법 Download PDF

Info

Publication number
WO2024090673A1
WO2024090673A1 PCT/KR2022/020387 KR2022020387W WO2024090673A1 WO 2024090673 A1 WO2024090673 A1 WO 2024090673A1 KR 2022020387 W KR2022020387 W KR 2022020387W WO 2024090673 A1 WO2024090673 A1 WO 2024090673A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextran
aqueous
peg
cell culture
exosomes
Prior art date
Application number
PCT/KR2022/020387
Other languages
English (en)
French (fr)
Inventor
전수환
이규화
이다혜
류윤
윤수빈
김지훈
김지혜
Original Assignee
주식회사 휴에버그린팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 휴에버그린팜 filed Critical 주식회사 휴에버그린팜
Publication of WO2024090673A1 publication Critical patent/WO2024090673A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/34Size selective separation, e.g. size exclusion chromatography, gel filtration, permeation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Definitions

  • the present invention relates to a method for separating and purifying aqueous biphasic exosomes.
  • the in situ recovery method of continuously separating and purifying the product during the production process is used in the production process. It will be advantageous to In addition, because the production price of biotechnology products can greatly depend on the downstream process, interest in in situ recovery is growing.
  • Efficient recovery of secondary metabolites will bring about beneficial effects such as maintaining cell activity, preventing product inhibition, simplifying the separation process, and increasing product production.
  • various methods for effective removal and extraction of produced secondary metabolites there is also a method of adding an artificial receptor capable of accepting secondary metabolites to the culture medium. Culture through this method is called biphasic culture, and the receptor at this time is called second phase.
  • ideal systems are divided into liquid-liquid ideal systems, liquid-solid ideal systems, and aqueous ideal systems (Buitelaar and Tramper, 1992).
  • the priority conditions for a second phase to be used in biphasic culture are that it must be capable of autoclaving, and an excellent second phase must have low toxicity to cells and be able to selectively bind to the desired product without changing the medium composition. You can. In addition, after recovery from the culture medium, it must be able to be easily separated from the bound product.
  • the aqueous biphasic system is a system formed by the mixing of two hydrophilic polymer aqueous solutions of a critical concentration or the mixing of one polymer aqueous solution and a salt aqueous solution, and is an incompatible and immiscible biphasic system (Kaul and Mattiasson, 1991).
  • Polyethylene glycol (PEG) and dextran are mainly used as polymer materials that make up the aqueous phase system, and phosphate or sulfate are mainly used as salts.
  • various polymer materials shown in Table 1 can form aqueous biphasic systems (Albertsson and Tjerneld, 1994). This system can be used for separation and purification of target substances based on differences in distribution coefficients of the target substances (Albertsson, 1971).
  • Aqueous biphasic systems usually contain 80-95% moisture and thus exhibit excellent biological compatibility (Hooker and Lee, 1990; Albertsson and Hahn-Hagerdal, 1990). Therefore, it is not toxic to cells, so direct cultivation of organisms is possible within this system, and it can stabilize biochemical substances such as enzymes and proteins that are prone to denaturation in organic solvents, thus minimizing the decomposition of products that can occur in the aqueous system. It may be possible.
  • Nonionic Dextran-poly(ethylene glycol) PEG
  • Dextran-poly(ethylene glycol propylene glycol copolymer) Ucon
  • Dextran-poly(vinyl alcohol) PVA
  • PVA Dextran-ethylhydroxyethyl cellulose
  • PVP Benzoyldextran
  • PEG Hydroxypropyl starch-PEG
  • PVA-PEG Maltodextrin-PEG Pullulan-PEG Poly(vinyl methyl ether)-PEG
  • Ionic Dextran sulfate-PEG Carboxymethyl dextran-PEG Dextran sulfate-poly(styrene sulfonate) Dextran sulfate-DEAE-
  • aqueous biphasic system discovered in 1896 by Beijerinck by adding gelatin to agar or soluble starch and observing phase separation in which most of the agar or starch was distributed to the lower layer and most of the gelatin to the upper layer, was first applied to biotechnology by Albertsson in 1956. (Albertsson, 1985). Since then, it has been continuously used to separately recover intracellular organelles or isolate various biochemical substances for biological research on the cellular side, and in recent years, it has been the main target material for biotechnology and biological industry related to genetic engineering, cell fusion, and cell culture. As much research is being conducted on mass purification of phosphoproteins, extraction using an aqueous phase system is being considered as a method for this.
  • the distribution of the target biochemical is determined by the characteristics of the aqueous biphasic system and is influenced by factors that affect the composition of the biphasic system (Brooks and Jones, 1994).
  • the partition coefficient (K) is defined as the concentration ratio of the target solute in the two phases (C top / C bottom ), and can be influenced by various environmental factors as presented in the following equation (Kaul and Mattiasson, 1991).
  • ln K ln K e + ln K h + ln K b + ln K s + ln K c
  • charge e, electric charge
  • hydrophobicity h, hydrophobicity
  • biospecificity b, biospecificity
  • size s, size
  • structural characteristics c, conformational effects
  • molecules of considerable size such as viruses or complete cells, show distribution biased toward one phase when distributed in an aqueous phase.
  • small-sized molecules such as peptides or amino acids tend to distribute evenly into two phases and exhibit a distribution coefficient close to 1.
  • the introduction of an aqueous phase into this process may be very useful (Zijlstra et al., 1996; Mattiasson, 1983).
  • an aqueous biphasic system is applied to extractive bioconversion, the biological compatibility of the system makes it possible for the biocatalyst to be immobilized in the form of small particles within the system and facilitates the control of various enzyme-related reactions (Kaul and Mattiasson, 1991).
  • the biggest feature of this process is not the increase in reaction rate, but that the process can continue until the reaction is completed.
  • the distribution of substances in an aqueous phase composed of PEG and dextran is such that relatively strongly hydrophobic substances are distributed into the PEG-rich upper phase, and relatively hydrophilic substances are distributed into the dextran-rich lower phase, making it possible to perform an in situ recovery process. is judged (Mattiasson, 1983; Kaul and Mattiasson, 1986).
  • the added substrate is a biological transformation process that adversely affects the biocatalyst and leads to low product yield
  • the substrate can be slowly supplied using fed-batch culture or the solubility of the hydrophobic substrate can be increased by using an organic solvent or surfactant to increase the solubility of the hydrophobic substrate.
  • the problem to be solved by the present invention is to provide a method for simultaneously separating and purifying exosomes during cell culture using an aqueous phase system when culturing plant cells.
  • the present invention provides a method for simultaneously isolating and purifying exosomes during plant cell culture using an aqueous phase system.
  • the exosome co-cultivation and isolation method of the present invention includes the steps of (S1) mixing PEG and Dextran to prepare an aqueous biphasic system containing a PEG layer and a Dextran layer; (S2) preparing a cell culture suspension by mixing plant cells and background solution and adding it to the aqueous phase system; (S3) culturing the plant cells to generate exosomes; and (S4) separating the Dextran layer.
  • the exosome co-culture and isolation method may further include, after step S4, (S5) extracting exosomes from the separated Dextran layer through size exclusion chromatography. there is.
  • the exosome co-culture and isolation method may use PEG having a weight average molecular weight of 250 to 100,000.
  • the exosome co-culture and isolation method may use Dextran having a weight average molecular weight of 5,000 to 2,000,000.
  • the aqueous phase system in the exosome co-cultivation and isolation method, can be used containing 2 to 10% (w/v) of PEG and 2 to 20% (w/v) of Dextran.
  • the plant cells may use cells or tissues of one or two or more types of plants selected from ginseng, centella, yew, turnip, and tangerine.
  • the present invention is a method that enables culture and separation simultaneously by adopting an aqueous phase system.
  • exosome production and separation processes can be performed simultaneously, and process efficiency can be greatly increased when using an aqueous phase system, as concentration in the dextran layer occurs compared to the process of separating exosomes secreted in the culture medium after existing culture. there is.
  • the present invention is highly efficient in maintaining the stability and function of the produced exosomes by selecting the polymers PEG and dextran as constituent materials in forming an ideal aqueous phase system at low concentration.
  • the present invention not only makes it possible to lower the concentration of the system when forming an aqueous phase system with the polymer PEG and crude dextran, but also significantly reduces the production and separation and purification costs required for the process because the price of the constituent polymer, crude dextran, is very low. can do.
  • Figure 1 is a plant cell culture growth curve according to an embodiment of the present invention.
  • Figure 2 shows the results of size exclusion chromatography according to an embodiment of the present invention.
  • Figure 3 shows the results of Nanoparticle Tracking Analysis according to an embodiment of the present invention.
  • the exosome co-cultivation and isolation method of the present invention includes the steps of (S1) mixing PEG and Dextran to prepare an aqueous biphasic system containing a PEG layer and a Dextran layer; (S2) preparing a cell culture suspension by mixing plant cells and background solution and adding it to the aqueous phase system; (S3) culturing the plant cells to generate exosomes; and (S4) separating the Dextran layer.
  • exosome production and separation processes can be performed simultaneously, and process efficiency can be greatly increased when using an aqueous phase system, as concentration in the dextran layer occurs compared to the process of separating exosomes secreted in the culture medium after existing culture. there is.
  • the present invention is highly efficient in maintaining the stability and function of the produced exosomes by selecting high molecular weight PEG and dextran as constituent materials in forming an ideal aqueous phase system at low concentration.
  • the present invention not only makes it possible to lower the concentration of the system when forming an aqueous phase system with PEG 20,000 and crude dextran, but also significantly reduces the production and separation and purification costs required for the process because the price of crude dextran, a component polymer, is very low. can do.
  • step S1 prepare an aqueous biphasic system containing a PEG layer and a Dextran layer by mixing PEG and Dextran (step S1).
  • Polyethylene glycol (PEG) is a general term for a mixture of ethylene oxide polymer and water, and its general molecular formula is H(OCH 2 CH 2 ) n OH, where n is 4 or more. This name is used by adding a number to dal, and the number indicates the approximate molecular weight.
  • Dextran is H( C 6 H 10 O 5 ) It accumulates in the culture medium.
  • the enzymes possessed by these bacteria decompose sucrose and polymerize the residue, D-glucose, using fructose (D-fructose) as a nutrient.
  • the aqueous phase system uses a mixture of PEG and dextran in the background solution.
  • the exosome co-cultivation and isolation method may use PEG having a weight average molecular weight of 250 to 100,000.
  • the exosome co-cultivation and isolation method may use Dextran having a weight average molecular weight of 5,000 to 2,000,000.
  • the aqueous phase system in the exosome co-cultivation and isolation method, can be used containing 2 to 10% (w/v) of PEG and 2 to 20% (w/v) of Dextran. If PEG is less than 2% (w/v), there is a disadvantage that it is difficult to form an aqueous biphasic layer, and if it exceeds 10% (w/v), there is a problem that the polymer may precipitate and affect culture and separation. do.
  • Dextran is less than 2% (w/v), there is a disadvantage that it is difficult to form an aqueous biphasic layer, and if it exceeds 20% (w/v), there is a problem that the polymer may precipitate and affect culture and separation. do.
  • step S2 plant cells and background solution are mixed to prepare a cell culture suspension and added to the aqueous phase system.
  • the exosome co-culture and isolation method can be used as an exosome co-culture and isolation method, wherein the blank solution includes MS (Murashige and Skoog) medium.
  • the background solution may further include 2,4-dichlorophenoxyacetic acid, sucrose, or a mixture thereof.
  • the blank solution in the exosome co-cultivation and isolation method, can be used as a medium containing the necessary composition for cell culture, such as MS, SH, AA, and N6.
  • the types of plant cells are not limited, but the plant cells may be cells or tissues of one or two or more plants selected from ginseng, centella, yew, turnip, and tangerine.
  • the plant cells may be Create exosomes by culturing (step S3).
  • Exosomes are a type of EVs (extra cellular vesicles), which are vesicles released by cells to the outside of the cell. They are nanometers secreted by eukaryotic cells to exchange information between cells. , 10 -9 cm) in size. Exosomes located inside the MVB (multivesicular body) generated within the cell are released out of the cell by fusion between the MVB and the cell wall. Exosomes contain proteins, lipids, and nucleic acids (DNA, RNA) similar to those inside the parent cell, so they are widely applied in various fields as an avatar of cells.
  • EVs extra cellular vesicles
  • the Dextran layer is separated to extract the exosomes contained in the Dextran layer.
  • exosomes can be extracted from the separated Dextran layer through size exclusion chromatography (step S5).
  • Chromatography is a method of separating and analyzing the components of a mixture sample using differences in mobility within the medium. It has this name because it was designed for the purpose of separating plant pigments.
  • Size exclusion chromatography is also called gel permeation chromatography. Materials pass through the column at different speeds depending on their size, and this is a chromatography technique that utilizes this. Small molecules enter the pores formed in the resin in the column and become trapped, making the elution rate relatively slow. On the other hand, large molecules have a relatively low probability of entering the resin, so they elute quickly along the mobile phase. Compared to other chromatographic techniques, it has the advantage that it involves almost no process to denature the protein structure.
  • fraction of size exclusion chromatography in which exosomes exist, it can be further purified using ion exchange chromatography or hydrophobic interaction chromatography.
  • the polymers used in the aqueous phase separation confirmation experiment were PEG and Dextran, with weight average molecular weights of 35,000 and 40,000, respectively.
  • the PEG used was Poly(ethylene glycol) product (94646-250G-F) from Sigma-Aldrich, and Dextran was Dextran from Leuconostoc spp. from Sigma-Aldrich.
  • the product (31389-25G) was used.
  • MS murashige and skoog
  • the MS medium used was Murashige & Skoog medium (M0222.0050) from Duchefa Biochemie.
  • a suitable medium among the growth medium and production medium for plant cell culture as a background solution prepare an aqueous solution of various polymer substances at the desired concentration (w/v), and then mix them in various combinations and mass-to-volume ratios to prepare an aqueous phase system. Ginseng cells were adopted, and exosome production was confirmed during culture.
  • aqueous polymer solutions of various concentrations were prepared with PEG and dextran of various molecular weights using 3% sucrose added to MS1D medium as a background solution.
  • Ginseng exosomes were added to the aqueous phase obtained by mixing these aqueous solutions in various combinations, then stirred sufficiently and left to stand at room temperature.
  • Ginseng cell culture was performed using the optimal PEG/crude dextran ratio derived from the above experiment, the portion excluding the crude dextran layer containing exosomes was removed, and size exclusion chromatography was performed using the obtained crude dextran layer. .
  • the size exclusion fraction containing exosomes was recovered, and the exosomes were analyzed using nanoparticle tracking analysis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 식물세포배양시 수성이상계를 이용한 세포배양 동시 엑소좀 분리, 정제 방법을 제공한다. 이를 통하여 배양 공정시, 엑소좀 생산과 분리 공정을 동시 수행 가능하며, 기존 배양 후 배양액에 분비된 엑소좀을 분리하는 공정보다 수성이상계 이용 시 덱스트란층으로의 농축이 일어나 공정효율이 매우 높아질 수 있다. 본 발명은 생산된 엑소좀의 안정성과 기능을 유지하는데 있어, 저농도의 이상적인 수성이상계를 형성하는데는 고분자 PEG와 dextran을 구성 물질로 선정하여 효율이 우수하다.

Description

식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법
본 발명은 수성이상계 엑소좀 분리 정제 방법에 대한 것이다.
생물공학을 통해 생산되는 많은 제품들의 대부분은 다른 화학 합성에 의해 생산되는 생산물에 비하여 낮은 수율을 가지며 희석된 상태로 존재하기 때문에 생산과정중 생성물을 계속적으로 분리하고 정제하는 in situ recovery 방법이 생산공정에 유리할 것이다. 뿐만 아니라 생물공학 제품의 생산가격이 downstream 공정에 따라 크게 좌우될 수 있으므로 in situ recovery에 대한 관심은 더욱 커지는 추세이다.
생물공학 제품들이 가지는 위와 같은 특징은 식물세포배양을 통해 이차대사산물을 생산하는 경우에도 마찬가지로 나타나며, 생성된 대사산물의 배출 형태는 세포주에 따라 다양하다(Buitelaar와 Tramper, 1992). 이차대사산물의 분비는 물리적이거나 화학적인 조건 변화에 의해 영향을 받기도 한다. 식물세포에서 생산되는 이차대사산물의 대부분은 세포 자체에 독성을 가지므로 이차대사산물의 축적은 세포 생장을 저해하는 결과를 초래하게 된다. 게다가 생산된 물질로 인해 배지의 환경이 바람직하지 못한 방향으로 바뀔 수 있으며 원하는 산물이 효소 또는 비효소적인 반응에 의해 다른 물질로 전환되거나 분해될 수도 있다. 따라서 세포 생장을 억제하지 않으면서 목적산물의 수율을 증대시킬 수 있는 효과적인 이차대사산물의 농축과 회수에 관련한 방법을 모색하는 것은 이차대사산물 생산의 상업화에 있어 매우 중요한 일이 될 것이다.
이차대사산물의 효율적인 회수는 세포의 활성 유지, product inhibition 방지, 분리공정의 간소화, 그리고 생산물의 생산 증대 등과 같은 좋은 효과를 가져올 것이다. 생산된 이차대사산물의 효과적인 제거와 추출을 위한 여러 방법들 중에는 이차대사산물을 수용할 수 있는 인공적인 수용체를 배양액에 첨가시키는 방법도 있다. 이러한 방법을 통한 배양을 이상계 배양이라고 부르며, 이때의 수용체를 second phase라 한다. 이상계는 second phase의 종류에 따라 액체-액체 이상계, 액체-고체 이상계, 그리고 수성이상계로 나뉘게 된다(Buitelaar와 Tramper, 1992).
이상계 배양에 이용될 second phase가 갖추어야 할 우선적인 조건은 가압증기멸균이 가능해야 한다는 점이며, 세포에 대해 독성이 적고 배지 조성을 변화시키지 않으면서 원하는 산물과 선택적으로 결합할 수 있어야 우수한 second phase라 할 수 있다. 또한 배양액으로부터 회수된 후에는 결합되었던 생산물과 쉽게 분리될 수 있어야만 한다.
In situ recovery 공정에 이상계를 도입하게 되면 보다 효율적인 공정의 운전이 가능해질 것이다. 특히, 생물을 이용하는 생물공정의 경우라면 도입되는 이상계가 생물 자체에 미치게 되는 영향을 간과할 수는 없다. 따라서 다른 이상계에 비해 생물학적 친화성이 우수한 수성이상계를 본 연구의 시스템으로 채택하였다.
수성이상계는 한계 농도 이상의 두 가지 친수성 고분자 수용액의 혼합이나 한 가지 고분자 수용액과 염 수용액의 혼합에 의해 형성되는 시스템으로서 비상용성(incompatibe)의 서로 섞이지 않는 이상계로 되어 있다(Kaul과 Mattiasson, 1991). 수성이상계를 구성하는 고분자 물질로는 polyethylene glycol(PEG)과 dextran이, 염으로는 phosphate나 sulfate가 주로 쓰인다. 그 밖에도 Table 1에서 제시하는 다양한 고분자 물질들이 수성이상계를 형성할 수 있다(Albertsson과 Tjerneld, 1994). 이러한 시스템은 대상물질의 분배계수 차에 의해 목적물질의 분리정제에 사용될 수 있다(Albertsson, 1971).
수성이상계는 보통 80-95%의 수분을 함유하고 있기 때문에 우수한 생물학적 친화성을 보인다(Hooker와 Lee, 1990; Albertsson과 Hahn-Hagerdal, 1990). 따라서 세포에 독성을 미치지 않아 본 시스템내에서 생물의 직접적인 배양이 가능하며, 유기용매내에서 변성되기 쉬운 효소나 단백질 같은 생화학 물질 등을 안정화시킬 수 있으므로 미수계에서 일어날 수 있는 생성물의 분해를 최소화 할 수도 있다. 또한 두 상간의 계면장력이 물과 유기용매의 혼합물에 비하여 0.1 dyne/cm로 매우 낮기 때문에 미약한 교반으로도 쉽게 emulsion이 형성되어 두 상사이의 접촉면적이 커져 물질전달이 우수하며 고분자 물질의 분리에서도 분배 평형을 이룰 수 있다(Albertsson과 Tjerneld, 1994; Kaul과 Mattiasson, 1991; Mattiasson, 1983). 그리고 가압증기멸균이 가능할 뿐만 아니라 각 상으로부터의 손쉬운 생성물의 회수로 인해 생물공학적인 이용에 적합한 시스템으로 여겨진다(Zijlstra 등, 1996; Kaul과 Mattiasson, 1991). 적절한 공정이 확립될 경우 scale-up이 용이하다는 장점도 지닌다(Kaul과 Mattiasson, 1991).
Various kinds of aqueous two-phase systems
System (polymer-polymer)
Nonionic Dextran-poly(ethylene glycol) (PEG)
Dextran-poly(ethylene glycol propylene glycol copolymer) (Ucon)
Dextran-poly(vinyl alcohol) (PVA)
Dextran-ethylhydroxyethyl cellulose
Dextran-benzoyldextran
Dextran-hydroxypropyl dextran
Dextran-Ficoll
Dextran-polyvinylpyrrolidone (PVP)
Benzoyldextran-PEG
Hydroxypropyl starch-PEG
PVA-PEG
Maltodextrin-PEG
Pullulan-PEG
Poly(vinyl methyl ether)-PEG
Ionic Dextran sulfate-PEG
Carboxymethyl dextran-PEG
Dextran sulfate-poly(styrene sulfonate)
Dextran sulfate-DEAE-dextran
PVA-acrylic copolymers
Poly(acrylic acid)-PEG
Poly(acrylamide)-PVP
Salt-polymer Potassium phosphate-PEG
Ammonium sulfate-PEG
Potassium citrate-PEG
Magnesium sulfate-PEG
1896년 Beijerinck이 agar 또는 가용성 전분에 젤라틴을 첨가시켜 대부분의 agar 또는 starch는 하층에, 대부분의 젤라틴은 상층으로 분포하는 상분리를 관찰함으로써 발견된 수성이상계는, 1956년 Albertsson에 의해 생물공학적으로 처음 응용되었다(Albertsson, 1985). 그 후 세포 측면의 생물학적 연구를 위해 세포내 소기관을 따로 회수하거나 여러 생화학 물질들을 분리해 내는데 지속적으로 이용되어 왔으며 근래에 와서는 유전공학이나 세포융합, 세포배양과 관련한 생물공학과 생물산업의 주된 대상물질인 단백질의 대량정제법에 관한 많은 연구가 진행되면서 수성이상계를 이용한 추출이 이에 대한 하나의 방법으로 고려되고 있다. 이러한 추세의 결과로 효소, 박테리아, 곰팡이 등을 이용한 생물학적 변환에 이를 적용한 시도가 다수 보고되었다(Buitelaar 등, 1992; Kaul과 Mattiasson, 1991; Ilieva 등, 1996). 한편 식물세포와 관련하여서는 두 가지의 수용성 고분자인 PEG와 dextran을 혼합하여 얻은 수성이상계에서 Nicotiana tabacum을 배양시켜 세포 생장과 이차대사산물의 생산에서 좋은 결과를 얻은 바 있으며, 배양기간의 연장을 위해 동물세포배양에 수성이상계를 이용한 예도 있다(Hooker와 Lee, 1990; Zijlstra 등, 1996).수성이상계를 생물학적인 물질을 분리하는데 이용할 경우, 목적 생화학 물질의 분배는 수성이상계의 특성에 의해서 결정되며 이상계 구성에 영향을 미치는 인자들에 의해 영향을 받는다(Brooks와 Jones, 1994). 분배계수(K)는 두 상에서의 목적 용질의 농도비(Ctop/Cbottom)로 정의되며, 다음의 식에서 제시된 바와 같이 다양한 환경인자에 의해 영향을 받을 수 있다(Kaul과 Mattiasson, 1991).
ln K = ln Ke + ln Kh + ln Kb + ln Ks + ln Kc
즉, 전하(e, electric charge), 소수성(h, hydrophobicity), 생특이성(b, biospecificity), 크기(s, size), 그리고 구조학적인 특징(c, conformational effects) 등이 물질 분배에 영향을 미치는 주요 인자가 될 수 있다(King, 1992).
일반적으로 소수성이 강한 분자는 PEG 또는 비슷한 성질의 고분자 물질이 분포하는 상으로 분배되며, 분배하고자 하는 분자가 강한 친수성을 보일 경우는 대개 polysaccharide성의 물질이 분포하는 상으로 분배된다. 분배는 두 상을 구성하는 고분자 물질간의 분자량 차에 의해서 직접 영향을 받는다. 즉, 동일 물질의 분배에서도 시스템을 구성하는 고분자 물질간의 분자량 차가 커질수록 대상물질의 분배계수는 1로부터 크게 벗어나 분배가 두 상 중 한 상으로 치우치는 경향을 나타내게 된다. 또한 분배되는 물질의 크기가 커지는 경우에도 분배계수는 1과 멀어지게 된다. 이러한 분배경향으로 인해 바이러스나 완전한 세포처럼 상당한 크기를 가진 분자는 수성이상계에서 분배될 시 한쪽 상으로 치우쳐 분포하는 분배결과를 보인다. 그러나 peptide나 amino acid와 같이 작은 크기의 분자들은 두 상으로 고르게 분포하는 분배 경향을 보이며 1에 근접한 분배계수를 나타낸다.
최근 미생물 발효나 동물세포배양에서는 배양과 동시에 목적산물을 분리,정제할 수 있는 복합 생물공정(integrated bioprocessing) 즉, resin이나 유기용매 또는 수성이상계를 이용하여 in situ recovery를 행하는 연구가 활발히 진행되고 있다. 이에 비해 식물세포배양에서의 복합 생물공정을 이용한 연구는 아직 미미한 상태이다. 특히, 생물공정에 대해 여러 장점을 지니고 있는 수성이상계에서의 식물세포배양에 관한 연구는 더욱 그러한 상황이었으나 1990년에 이르러 수성이상계에서 식물세포배양을 처음 시도한 후 꾸준한 연구 진행을 보이고 있다. 1990년 Hooker와 Lee는 Nicotiana tabacum 현탁배양에 수성이상계를 도입하여 세포의 생장을 관찰하였으며, 1992년 Buitelaar 연구팀은 수성이상계에서의 Tagetes patula hairy root의 생장과 이차대사산물의 생산성에 대한 연구를 수행하였다(Hooker와 Lee, 1990; Buitelaar 등, 1992). 1995년 Ilieva 연구팀에서는 Nicotiana tabacum 1507과 Lavandula vera MM의 두 세포주를 수성이상계에서 배양시켜 우수한 생장과 phenolic compound의 과생산을 관찰하였다(Ilieva 등, 1995). 그리고 1996년에는 수성이상계에서의 Nicotiana tabacum 1507 배양을 통해 생산된 phosphohydrolytic enzyme의 활성에 대한 연구가 수행된 바 있다(Ilieva 등, 1996). 이와 같이 식물세포배양의 중요성과 수성이상계의 장점을 결합한 연구는 목적산물의 생산성 증진에 도움을 주는 결과를 초래할 뿐만 아니라 학문적으로도 새로운 정보를 제공하는 좋은 과제가 될 것으로 판단한다.
생성물이 생산공정에 있어 ‘product inhibition'을 초래한다면, 이러한 공정으로의 수성이상계의 도입은 매우 유용한 일이 될 것이다(Zijlstra 등, 1996; Mattiasson, 1983). 수성이상계를 extractive bioconversion에 응용하게 되면, 시스템이 가지는 생물학적 친화성으로 인해 생촉매가 시스템내에서 작은 입자 형태로 고정화되는 것이 가능해지며 다양한 효소 관련 반응들의 조절이 용이해진다(Kaul과 Mattiasson, 1991). 이러한 공정의 가장 큰 특징은 반응 속도의 증가가 아니라 공정이 반응의 종결까지 지속될 수 있다는 점이다.
PEG와 dextran으로 구성된 수성이상계에서의 물질 분배는 상대적으로 강한 소수성의 물질은 PEG가 풍부한 윗상으로, 상대적으로 강한 친수성을 지니는 물질은 dextran이 풍부한 아랫상으로 분배되므로 in situ recovery 공정의 수행이 가능할 것으로 판단된다(Mattiasson, 1983; Kaul과 Mattiasson, 1986). 또한 첨가하는 기질이 생촉매에 악영향을 미쳐 생성물의 낮은 수율을 유도하는 생물학적 변환 공정이라면, 유가식 배양을 이용하여 기질을 서서히 공급하거나 유기용매 또는 계면활성제를 사용하여 소수성 기질의 용해도를 높임으로써 세포에 의한 기질의 이용률을 증가시켜 직접적인 기질첨가에 의해 초래되는 문제점들을 해결해 나갈 수 있을 것이다. 그리고 product inhibition이 야기되는 경우에는, 생성물을 생성 즉시 제거시키는 in situ recovery 방법을 도입하는 것이 매우 바람직하리라 사료된다. 이 때 in situ recovery의 수행 시스템으로 수성이상계를 도입하여 배양 과정 중 생성물을 원하는 한 상으로 분배시키는 것이 가능하게 된다면, 생성물에 의한 feedback inhibition을 억제하여 목적산물의 생산성 증대를 도모할 수 있으리라 기대된다.
[선행기술문헌]
선행기술문헌 1. 대한민국 등록특허 제10-2294264호 (2021.08.20)
따라서 본 발명이 해결하고자 하는 과제는, 식물세포배양시 수성이상계를 이용한 세포배양 동시 엑소좀 분리, 정제 방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 식물세포배양시 수성이상계를 이용한 세포배양 동시 엑소좀 분리, 정제 방법을 제공한다.
본 발명의 엑소좀 동시 배양 및 분리 방법은 (S1) PEG 및 Dextran을 혼합하여 PEG층과 Dextran층을 포함하는 수성이상계를 준비하는 단계; (S2) 식물 세포 및 바탕액을 혼합하여 세포배양현탁액을 제조하여 상기 수성이상계에 첨가하는 단계; (S3) 상기 식물 세포를 배양하여 엑소좀을 생성하는 단계; 및 (S4) 상기 Dextran층을 분리하는 단계;를 포함한다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 S4 단계 이후에, (S5) 상기 분리된 Dextran층에서 크기 배제 크로마토그래피를 통하여 엑소좀을 추출하는 단계;를 더 포함할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 PEG는 중량평균분자량이 250 내지 100,000인 것을 사용할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 Dextran은 중량평균분자량이 5,000 내지 2,000,000인 것을 사용할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 수성이상계는 PEG 2 내지 10 %(w/v) 및 Dextran 2 내지 20 %(w/v)를 포함하는 것을 사용할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 식물세포는 인삼, 병풀, 주목, 순무 및 감귤 중에서 선택된 1종 또는 2종 이상의 식물의 세포 또는 조직을 사용할 수 있다.
본 발명은 수성이상계를 채택하여 배양과 분리를 동시에 가능하게 하는 방법이다.
이를 통하여 배양 공정 시, 엑소좀 생산과 분리 공정을 동시 수행 가능하며, 기존 배양 후 배양액에 분비된 엑소좀을 분리하는 공정보다 수성이상계 이용 시 덱스트란층으로의 농축이 일어나 공정효율이 매우 높아질 수 있다.
본 발명은 생산된 엑소좀의 안정성과 기능을 유지하는데 있어, 저농도의 이상적인 수성이상계를 형성하는데는 고분자 PEG와 dextran을 구성 물질로 선정하여 효율이 우수하다.
또한, 본 발명은 고분자 PEG와 crude dextran으로 수성이상계를 형성하는 경우에는 시스템의 저농도화가 가능해질 뿐만 아니라 구성 고분자인 crude dextran의 가격이 매우 저렴하기 때문에 공정에 소요되는 생산 및 분리정제 비용을 월등히 절감할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은 본 발명의 일 실시예에 따른 식물세포 배양 성장곡선이다.
도 2는 본 발명의 일 실시예에 따른 Size exclusion chromatography 결과이다.
도 3는 본 발명의 일 실시예에 따른 Nanoparticle Tracking Analysis 결과이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 엑소좀 동시 배양 및 분리 방법은 (S1) PEG 및 Dextran을 혼합하여 PEG층과 Dextran층을 포함하는 수성이상계를 준비하는 단계; (S2) 식물 세포 및 바탕액을 혼합하여 세포배양현탁액을 제조하여 상기 수성이상계에 첨가하는 단계; (S3) 상기 식물 세포를 배양하여 엑소좀을 생성하는 단계; 및 (S4) 상기 Dextran층을 분리하는 단계;를 포함한다.
이를 통하여 배양 공정시, 엑소좀 생산과 분리 공정을 동시 수행 가능하며, 기존 배양 후 배양액에 분비된 엑소좀을 분리하는 공정보다 수성이상계 이용 시 덱스트란층으로의 농축이 일어나 공정효율이 매우 높아질 수 있다.
본 발명은 생산된 엑소좀의 안정성과 기능을 유지하는데 있어, 저농도의 이상적인 수성이상계를 형성하는데는 고분자량의 PEG와 dextran을 구성 물질로 선정하여 효율이 우수하다.
또한, 본 발명은 PEG 20,000과 crude dextran으로 수성이상계를 형성하는 경우에는 시스템의 저농도화가 가능해질 뿐만 아니라 구성 고분자인 crude dextran의 가격이 매우 저렴하기 때문에 공정에 소요되는 생산 및 분리정제 비용을 월등히 절감할 수 있다.
먼저, PEG 및 Dextran을 혼합하여 PEG층과 Dextran층을 포함하는 수성이상계를 준비한다(S1 단계).
폴리에틸렌 글리콜(polyethylene glycol, PEG)은 산화에틸린 중합체와 물의 혼합물에 대한 총칭으로 일반적 분자식은 H(OCH2CH2)nOH이며, 이 중 n은 4, 또는 그이상이다. 이 명칭은 dal에 숫자를 붙여 사용하며, 숫자는 대략의 분자량을 지칭한다.
덱스트란(dextran)은 H(C6H10O5)xOH이며, 다당류의 하나로 D-글루코스의 중합체로, 슈크로스를 배양액으로 하여 로이코노스톡 메센테로이데스(Leuconostoc mesenteroides) 등의 세균을 배양하면 배양액 속에 축적된다. 즉, 이들 세균이 가진 효소가 슈크로스를 분해하여 과당(D-프럭토스)을 영양분으로 하여 잔기인 D-글루코스를 중합시킨 것이다.
상기 수성이상계는 바탕액에 PEG와 dextran을 혼합하여 사용한다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 PEG는 중량평균분자량이 250~100,000인 것을 사용할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 Dextran은 중량평균분자량이 5,000~2,000,000인 것을 사용할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 수성이상계는 PEG 2 내지 10 %(w/v) 및 Dextran 2 내지 20 %(w/v)를 포함하는 것을 사용할 수 있다. PEG가 2 %(w/v) 미만인 경우에는 수성이상계 층 형성이 어렵다는 단점이 있으며, 10 %(w/v)를 초과하는 경우에는 고분자가 석출되어 배양 및 분리에 영향을 미칠 수 있다는 문제점이 존재한다. Dextran이 2 %(w/v) 미만인 경우에는 수성이상계 층 형성이 어렵다는 단점이 있으며, 20 %(w/v)를 초과하는 경우에는 고분자가 석출되어 배양 및 분리에 영향을 미칠 수 있다는 문제점이 존재한다.
이후에, 식물 세포 및 바탕액을 혼합하여 세포배양현탁액을 제조하여 상기 수성이상계에 첨가한다(S2 단계).
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 바탕액은 상기 바탕액은 MS(Murashige and skoog) 배지를 포함하는 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법 것을 사용할 수 있다. 또한, 상기 바탕액은 2,4-디클로로페녹시아세트산(2,4-Dichlorophenoxyacetic acid), 수크로스(sucurose) 또는 이들의 혼합물을 더 포함할 수 있다.
본 발명의 일실시예에 따르면, 엑소좀 동시 배양 및 분리 방법은 상기 바탕액은 MS, SH, AA, N6 등 세포 배양에 필요한 배지조성을 함유한 것을 사용할 수 있다.
배지 이름 배지 조성
MS 배지 Ammonium nitrate
Boric acid
Calcium chloride anhydrous
Cobalt chloride 6H2O
Cupric sulfate 5H2O
Na2-EDTA
Ferrous sulfate 7H2O
Magnesium sulfate
Manganese sulfate H2O
Molybdic acid (sodium salt) 2H2O
Potassium iodide
Potassium nitrate
Potassium phosphate monobasic
Zinc sulfate 7H2O
N6 ( Chu )
배지
Ammonium sulfate
Boric acid
Calcium chloride anhydrous
Na2-EDTA
Ferrous sulfate 7H2O
Magnesium sulfate
Manganese sulfate H2O
Potassium iodide
Potassium nitrate
Potassium phosphate monobasic
Zinc sulfate 7H2O
SH 배지 Ammonium phosphate monobasic
Boric acid
Calcium chloride anhydrous
Cobalt chloride 6H2O
Cupric sulfate 5H2O
Na2-EDTA
Ferrous sulfate 7H2O
Magnesium sulfate
Manganese sulfate H2O
Molybdic acid (sodium salt) 2H2O
Potassium iodide
Potassium nitrate
Zinc sulfate 7H2O
상기 식물 세포로는 그 종류를 한정하는 것은 아니지만, 상기 식물세포는 인삼, 병풀, 주목, 순무 및 감귤 중에서 선택된 1종 또는 2종 이상의 식물의 세포 또는 조직을 사용할 수 있다.그리고, 상기 식물 세포를 배양하여 엑소좀을 생성한다(S3 단계).
엑소좀(exosome)은 세포(cell)가 세포 외부로 방출하는 소낭(vesicle)인 EVs(extra cellular vesicles)의 일종으로, 진핵생물체(eukaryotic cells)에서 세포 간 정보 교환을 위해 분비하는 나노미터(nanometer, 10-9 cm) 크기의 물질이다. 세포 내에 생성된 MVB(multivesicular body)의 내부에 위치한 엑소좀은 MVB와 세포벽의 융합(fusion)에 의해 세포 밖으로 배출된다. 엑소좀은 모체가 되는 세포 내부의 단백질(protein), 지질(lipids), 핵산(nucleic acids, DNA,RNA) 등을 유사하게 포함하고 있기에 세포의 아바타(avatar)로서 다양한 분야에 폭넓게 응용되고 있다.
마지막으로, 상기 Dextran층을 분리한다(S4 단계).
Dextran층에 함유된 엑소좀을 추출하기 위하여 Dextran층을 분리한다.
추가적으로, 상기 분리된 Dextran층에서 크기 배제 크로마토그래피를 통하여 엑소좀을 추출할 수 있다(S5 단계).
크로마토그래피는 혼합물의 시료에서 매질 내에서의 이동도 차이를 이용해서 그 성분을 분리, 분석하는 방법. 식물색소의 분리를 목적으로 고안했기 때문에 이러한 이름을 갖고 있다.
크기 배제 크로마토그래피는 젤 침투 크로마토그래피로도 부른다. 물질은 크기에 따라 컬럼을 통과하는 속도가 다른데, 이를 이용한 크로마토그래피 기법이다. 작은 분자는 컬럼 속 레진에 형성된 구멍에 들어가 갇히게 되며, 상대적으로 용출 속도가 느리게 된다. 반면에 크기가 큰 분자는 상대적으로 레진 속에 들어갈 확률이 적으므로 이동상을 따라 빠르게 용출이 된다. 다른 크로마토그래피 기법에 비해 단백질의 구조를 변성시키는 과정이 거의 포함되어 있지 않다는 장점을 지닌다.
엑소좀이 존재하는 크기 배제 크로마토그래피의 Fraction을 이용하여 Ion exchange chromatography 또는 hydrophobic interaction chromatography를 이용하여 추가 정제할 수 있다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
수성이상계 상분리 확인
수성이상계 상분리 확인 실험에 이용된 고분자는 PEG와 Dextran을 사용하였으며, 각각 중량평균분자량이 35,000과 40,000인 것을 사용하였다. 상기 PEG는 Sigma-Aldrich사의 Poly(ethylene glycol) 제품(94646-250G-F)을 사용하였고, Dextran은 Sigma-Aldrich사의 Dextran from Leuconostoc spp. 제품(31389-25G)을 사용하였다. 식물세포배양에 사용하기위해 바탕액은 MS(murashige and skoog)배지에 2,4-D(2,4-Dichlorophenoxyacetic acid) 1mg/L 및 sucrose 3%(w/v) 첨가한 배지로 실험을 진행하였다. MS배지는 Duchefa Biochemie사의 Murashige & Skoog medium(M0222.0050) 제품을 사용하였다.
두 고분자 용액을 섞었을 때 적절한 농도가 형성되어 상분리가 될 수 있도록 PEG와 Dextran을 바탕액에 혼합하여 각각 6%(w/v), 14%(w/v) 되도록 하여 상분리를 하였다.
수성이상계 준비, 식물세포 배양 확인
식물세포배양용 생장배지와 생산배지 중 적합한 배지를 바탕액으로 채택하여 다양한 고분자 물질을 원하는 농도(w/v)의 수용액으로 제조한 다음 여러 조합과 질량 대 부피비로 혼합시켜 수성이상계를 준비 후, 인삼 세포를 채택하여, 배양 동시 엑소좀 생산을 확인하였다.
- 100ml 삼각플라스크에 설정한 비율과 맞도록 PEG와 Crude dextran을 혼합하여 총 20ml volume으로 층 분리가 일어나도록 준비
- 1ml의 인삼의 세포배양현탁액을 첨가하여 shaking incubator에서 배양
- 3일 주기로 세포의 wet cell weight, dry cell weight을 측정
- 측정된 무게를 기반으로 성장곡선을 그려 최적화된 PEG/Crude dextran 비율을 확인
엑소좀 분배계수(K) 측정
최적의 분배계수가 얻어지는 수성이상계를 찾기 위해 바탕액으로 MS1D 배지에 3% sucrose 첨가한 것을 사용하여 여러 분자량의 PEG와 dextran으로 다양한 농도의 고분자 수용액들을 제조하였다.
다양한 분자량의 PEG 고분자와 dextran 고분자를 각기 여러 농도로 제조한 다음 혼합시켜 얻은 시스템들의 완전한 상분리에 요구되는 시간을 확인하였다.
이 수용액들을 여러 조합으로 혼합시켜 얻은 수성이상계에 인삼의의 엑소좀을 첨가한 다음 충분히 교반하여 상온에서 정치하였다.
완전한 상분리가 확인되면 윗상과 아랫상을 계면의 손상없이 일정량으로 각각 취하여 각 상에 포함된 목적물질의 농도(Ctop, Cbottom)를 측정하여, 이러한 각 상에서의 물질 농도로부터 분배계수를 계산하였다.
K = Ctop/Cbottom
구분 T40 T500 T2000
3% 7% 3% 7% 3% 7%
PEG300 3% 0 0 2 3 2 3
5% 0 1 2 3 2 3
7% 0 2 2 3 2 3
15% 1 2 2 3 3 3
PEG1450 3% 0 1 1 2 1 2
5% 0 1 2 2 2 2
7% 0 2 3 3 3 3
15% 3 3 4 4 4 4
PEG3350 3% 0 2 2 2 2 2
5% 0 2 3 3 3 3
7% 2 2 3 4 3 4
15% 3 3 4 4 4 4
PEG8000 3% 1 2 2 2 2 2
5% 2 3 2 3 2 3
7% 2 3 3 3 3 4
15% 3 3 4 4 4 4
PEG20000 3% 1 2 2 2 2 3
5% 2 2 2 3 3 3
7% 2 3 3 3 3 3
15% 3 3 3 4 3 4
구분 Kvolume Kexosome
6% PEG 35,000
/ 14% dextran 40,000
1 0.294
수성이상계 세포배양 후 엑소좀 2차 고순도 분리정제 공정
상기 실험으로 도출된 최적의 PEG/Crude dextran 비율을 이용하여 인삼 세포 배양을 진행하였으며, 엑소좀이 존재하는 Crude dextran 층을 제외한 부분을 제거하고, 얻어낸 Crude dextran 층을 이용하여 Size exclusion chromatography를 진행하였다.
엑소좀이 존재하는 Size exclusion fraction을 회수하고, Nanoparticle tracking analysis를 이용하여 엑소좀을 분석하였다.
구분 평균값(nm) 최빈값 수농도(particle/ml)
엑소좀 201.3 162.4 3.3 Х1010

Claims (6)

  1. (S1) 폴리에틸렌 글리콜(polyethylene glycol, PEG) 및 덱스트란(dextran)을 혼합하여 PEG층과 Dextran층을 포함하는 수성이상계를 준비하는 단계;
    (S2) 식물 세포 및 바탕액을 혼합하여 세포배양현탁액을 제조하여 상기 수성이상계에 첨가하는 단계;
    (S3) 상기 식물 세포를 배양하여 엑소좀을 생성하는 단계; 및
    (S4) 상기 Dextran층을 분리하는 단계;를 포함하는 엑소좀 동시 배양 및 분리 방법.
  2. 제1항에 있어서,
    상기 S4 단계 이후에,
    (S5) 상기 분리된 Dextran층에서 크기 배제 크로마토그래피를 통하여 엑소좀을 추출하는 단계;를 더 포함하는 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법.
  3. 제1항에 있어서,
    상기 PEG는 중량평균분자량이 250 내지 100,000인 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법.
  4. 제1항에 있어서,
    상기 Dextran은 중량평균분자량이 5,000 내지 2,000,000인 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법.
  5. 제1항에 있어서,
    상기 수성이상계는 PEG 2 내지 10 %(w/v) 및 Dextran 2 내지 20 %(w/v)를 포함하는 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법.
  6. 제1항에 있어서,
    상기 식물세포는 인삼, 병풀, 주목, 순무 및 감귤 중에서 선택된 1종 또는 2종 이상의 식물의 세포 또는 조직인 것을 특징으로 하는 엑소좀 동시 배양 및 분리 방법.
PCT/KR2022/020387 2022-10-24 2022-12-14 식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법 WO2024090673A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220137354 2022-10-24
KR10-2022-0137354 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090673A1 true WO2024090673A1 (ko) 2024-05-02

Family

ID=90831052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020387 WO2024090673A1 (ko) 2022-10-24 2022-12-14 식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법

Country Status (2)

Country Link
KR (1) KR20240057303A (ko)
WO (1) WO2024090673A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761680B1 (ko) * 2015-03-31 2017-08-23 포항공과대학교 산학협력단 수용액 이상계를 이용한 세포 밖 소포체의 분리방법
WO2021230847A1 (en) * 2020-05-11 2021-11-18 Yeditepe Universitesi A method of producing plant-derived exosomes
US20220288506A1 (en) * 2019-08-07 2022-09-15 Postech Academy-Industry Foundation Method for isolating bio nanoparticles by using aqueous two-phase system separation composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761680B1 (ko) * 2015-03-31 2017-08-23 포항공과대학교 산학협력단 수용액 이상계를 이용한 세포 밖 소포체의 분리방법
US20220288506A1 (en) * 2019-08-07 2022-09-15 Postech Academy-Industry Foundation Method for isolating bio nanoparticles by using aqueous two-phase system separation composition
WO2021230847A1 (en) * 2020-05-11 2021-11-18 Yeditepe Universitesi A method of producing plant-derived exosomes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONGMIN KIM, HYUNWOO SHIN, JIYOON KIM, JUNHO KIM, JAESUNG PARK: "Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System", PLOS ONE, vol. 10, no. 6, 19 June 2015 (2015-06-19), pages 1 - 16, XP055504906, DOI: 10.1371/journal.pone.0129760 *
YEJING WENG, ZHIGANG SUI, YICHU SHAN, YECHEN HU, YUANBO CHEN, LIHUA ZHANG, YUKUI ZHANG: "Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling", ANALYST, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 141, 1 January 2016 (2016-01-01), UK , pages 4640 - 4646, XP055279313, ISSN: 0003-2654, DOI: 10.1039/C6AN00892E *

Also Published As

Publication number Publication date
KR20240057303A (ko) 2024-05-02

Similar Documents

Publication Publication Date Title
DE69632324T2 (de) Pna-dna-chimäre und pna-synthone zu deren herstellung
CN101622357B (zh) 微生物发酵产物的制造方法
CN108298780B (zh) 一种处理含油污泥的生物清洗剂及使用方法
CZ20023356A3 (cs) Způsob přípravy ansamitocinu
WO2023008787A1 (ko) 미세 조류 유래 엑소좀 유사체 및 이의 제조 방법
WO2024090673A1 (ko) 식물세포배양시 수성이상계를 이용한 세포배양 동시 고순도 엑소좀 대량분리, 정제 방법
WO2022234966A1 (ko) 소포로리피드 정제 방법
JPH04352783A (ja) 12員環マクロライド系化合物
CN105154424B (zh) 一种固定化环脂肽脱酰酶的制备方法及其应用
PL108863B1 (en) Method of producing maytansinol and derivatives thereof
JPS625990A (ja) 抗生物質およびその製造方法
EP1320625B1 (de) Polykondensation von organischen siliciumverbindungen
JPS62263196A (ja) 14−ハイドロキシエリスロマイシン誘導体およびその製造方法
CN113215064B (zh) 一株产美沙达唑类化合物的黏细菌及其应用
EP3901285A1 (en) Process for extracting double-stranded dna
Schütte et al. Isolation techniques
KR880001638B1 (ko) 항종양성 항생물질 루조펩틴 e₂ 및 그 제조방법
JPS59170092A (ja) 新規抗生物質ss8201d及びその製造法
JP2928613B2 (ja) 光学活性アミン類の製造方法
WO2010032919A1 (ko) 은 이온 용액 추출을 이용한 불포화 알킬기를 가진 락톤 화합물 정제방법
JPH0436276A (ja) 抗生物質ma―638―2―b、その製造方法および抗生物質ma―638―2―bを有効成分とする抗腫瘍剤
JPH0625095B2 (ja) 抗生物質sf−2415物質およびその製造法
JPH0639480B2 (ja) 新規マクロライド系抗生物質m119
CN115521934A (zh) 一种基于胆固醇修饰的脂质立方相核酸结晶方法
DE10103652A1 (de) Magnetische Polyvinylalkoholpartikel mit modifizierter Oberfläche zur Isolierung und Reinigung von Nucleinsäuren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963634

Country of ref document: EP

Kind code of ref document: A1