WO2024090565A1 - 歯科用象牙細管封鎖材 - Google Patents

歯科用象牙細管封鎖材 Download PDF

Info

Publication number
WO2024090565A1
WO2024090565A1 PCT/JP2023/038913 JP2023038913W WO2024090565A1 WO 2024090565 A1 WO2024090565 A1 WO 2024090565A1 JP 2023038913 W JP2023038913 W JP 2023038913W WO 2024090565 A1 WO2024090565 A1 WO 2024090565A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
manufactured
dentinal tubule
dispersion
weight
Prior art date
Application number
PCT/JP2023/038913
Other languages
English (en)
French (fr)
Inventor
直也 上村
和子 北
祐輔 林
英充 笠原
Original Assignee
株式会社メディボ
丸尾カルシウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メディボ, 丸尾カルシウム株式会社 filed Critical 株式会社メディボ
Publication of WO2024090565A1 publication Critical patent/WO2024090565A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/54Filling; Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/74Fillers comprising phosphorus-containing compounds

Definitions

  • the present invention relates to a dentinal tubule sealant that seals affected areas of dentinal tubules in teeth.
  • Sensitivity occurs when the gums recede, the tooth is damaged, or the dentin of a tooth with open dentinal tubules is exposed.
  • the gums are receded and the dentinal tubules are stimulated by brushing, temperature, rubbing, cold air, etc.
  • the fluid filling the dentinal tubules shifts. This movement stimulates the pulp nerves connected to the dentinal tubules, causing pain. It is thought that sealing the affected areas where the dentinal tubules open is an effective way to reduce pain.
  • a dentinal tubule sealant is disclosed in Patent Document 1.
  • This dentinal tubule sealant is a blend of tetracalcium phosphate particles, calcium hydrogen phosphate particles, calcium carbonate particles, and a non-aqueous dispersant.
  • This dentinal tubule sealant When this dentinal tubule sealant is applied to teeth, it comes into contact with mouth rinse and saliva and is converted into apatite, improving the durability and storage stability of the dentinal tubule sealant.
  • this dentinal tubule sealant is said to be effective only when it is blended in specific ranges, such as 5 to 75 parts by weight of tetracalcium phosphate particles, 10 to 70 parts by weight of calcium hydrogen phosphate particles, and 2 to 50 parts by weight of calcium carbonate particles, per 100 parts by weight of the total of tetracalcium phosphate particles, calcium hydrogen phosphate particles, and calcium carbonate particles.
  • the dentinal tubule sealant in the specific blend amount described in Patent Document 1 is converted to apatite on contact with mouthrinse or saliva.
  • the time that this dentinal tubule sealant is in contact with normal mouthrinse or saliva is short, making it difficult for this sealant to be sufficiently converted to apatite, and it is not possible to fundamentally solve the problem of the sealant being easily peeled off by brushing teeth, etc.
  • An object of the present invention is to provide a dentinal tubule sealant which is applied to an affected area of dentinal tubules and which is converted into apatite in a short period of time and is not easily peeled off by brushing teeth or the like.
  • the first invention relates to a dental dentinal tubule sealant that is characterized by being composed of two materials: a dispersion base material (X) containing calcium carbonate, and a calcification reaction accelerator (Y) containing a phosphate compound.
  • the second invention relates to a dental dentinal tubule sealant characterized in that the calcium carbonate satisfies the following formula (a):
  • the third invention relates to a dental dentinal tubule sealant characterized in that the calcium carbonate satisfies the following formulas (b) and (c): (a) 1.5 ⁇ Sx ⁇ 50 ( m2 /g) (b) 0.05 ⁇ Dx50 ⁇ 5 ( ⁇ m) (c) 0.1 ⁇ D ⁇ 100 ⁇ 100 ( ⁇ m) however, Sx: BET specific surface area (m 2 /g) measured with a BET specific surface area measuring device (Macsorb, a fully automatic specific surface area measuring device manufactured by Mountec Co., Ltd.).
  • Dx50 Median diameter ( ⁇ m) measured using a laser diffraction particle size distribution analyzer (Microtrac MT-3300EXII manufactured by Microtrac Bell Co., Ltd.).
  • Dx100 Maximum particle size ( ⁇ m) measured using a laser diffraction particle size distribution analyzer (Microtrac MT-3300EXII).
  • the fourth invention relates to a dental dentinal tubule sealant, characterized in that the phosphoric acid compound contained in the mineralization reaction accelerator (Y) is at least one selected from dimetal hydrogen phosphates and metal dihydrogen phosphates.
  • Calcium carbonate contained in the dispersion base material (X), which is one of the components of the dental dentinal tubule sealant of the present invention, is used for the purpose of sealing affected areas of dentinal tubules.
  • Calcium carbonate is not particularly limited as long as it is effective in sealing dentinal tubules, and examples include heavy calcium carbonate and light calcium carbonate.
  • Heavy calcium carbonate can be obtained by crushing and classifying natural limestone.
  • Light calcium carbonate can be obtained by, for example, adding water to quicklime obtained by burning limestone to prepare milk of lime, and then conducting the carbon dioxide gas generated during the burning of the limestone into the milk of lime to cause a reaction between the two.
  • finer particles are called colloidal calcium carbonate.
  • General light calcium carbonate produced by a synthesis method similar to colloidal calcium carbonate has a spindle shape.
  • colloidal calcium carbonate is preferable for the purpose of sealing dentinal tubules because it has few fine particles and coarse particles and has excellent particle uniformity.
  • the amount of calcium carbonate contained in the dispersion base (X) is not particularly limited, but is usually 5 to 70% by weight of the entire dispersion base (X). If it is less than 5% by weight, it is difficult to obtain the effect of the dentinal tubule sealant that is the objective of this invention, and if it exceeds 70% by weight, there is a possibility that problems will occur in the dispersion stability of the dispersion base (X). Therefore, it is more preferably 20 to 60% by weight, and most preferably 30 to 50% by weight.
  • constituent materials other than calcium carbonate in the dispersion base material (X) of the present invention it is preferable to use water-soluble materials that are highly compatible with calcium carbonate, but at the same time have low reactivity with calcium carbonate, and have wettability, viscosity-increasing properties, or dispersibility, so that they can be easily applied to the affected area of dentinal tubules.
  • Examples of water-soluble materials (humectants) with moisturizing properties include polyhydric alcohols, sugar alcohols, and polysaccharides.
  • Examples of polyhydric alcohols that can be used include glycerin (GC), propylene glycol (PPG), 1,3-butylene glycol (1,3-BG), and polyethylene glycol (PEG).
  • Examples of sugar alcohols that can be used include sorbitol, xylitol, maltitol, and lactitol.
  • Examples of polysaccharides that can be used include carrageenan, xanthan gum, locust bean gum, tara gum, guar gum, tamarind seed gum, psyllium seed gum, xanthan gum, and gum arabic sugar.
  • thickening properties examples include celluloses such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and hydroxypropyl cellulose (HPMC) and their salts.
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • HPMC hydroxypropyl cellulose
  • a water-soluble material with dispersion stability for example, an anionic surfactant, a nonionic surfactant, a cationic surfactant, or an amphoteric surfactant can be used.
  • anionic surfactant for example, sodium polyacrylate can be used.
  • sodium alkyl sulfate specifically, sodium lauryl sulfate or sodium myristyl sulfate can be used.
  • N-acyl sodium sarcosine specifically, N-lauroyl sodium sarcosine or N-myristoyl sodium sarcosine can be used.
  • sodium ⁇ -olefin sulfonate can also be used.
  • nonionic surfactants for example, sugar alcohol fatty acid esters, specifically, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, or sucrose fatty acid esters can be used.
  • nonionic surfactants for example, glycerin fatty acid esters, polyglycerin fatty acid esters, polyoxyethylene glycerin fatty acid esters, polyethylene glycol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene polyoxypropylene copolymers, or polyoxyethylene alkyl phenyl ethers can be used.
  • cationic surfactants for example, alkyl ammonium or alkyl benzyl ammonium salts can be used.
  • betaine acetate imidazolinium betaine, or lecithin can be used as the amphoteric surfactant.
  • the above-mentioned constituent materials can be mixed in one or more types.
  • the dispersion base material (X) may contain one or more constituent materials other than calcium carbonate.
  • the amount of these constituent materials is usually 1 to 50% by weight of the entire composition of the dispersion base material (X). Furthermore, these constituent materials may be directly applied to the surface of the calcium carbonate as necessary.
  • the pH value of the dispersion substrate (X) of the present invention is not particularly limited, but is preferably 7 to 12 in terms of dispersion stability, promotion of the calcification reaction, and inhibition of oral bacterial proliferation. If it is less than 7, problems may arise with the dispersion stability as a component of the dispersion substrate (X). On the other hand, if it exceeds 12, problems may arise with the stability over time and flavor of the dispersion substrate (X) due to the influence of residual alkaline substances such as calcium hydroxide, so it is more preferably 7.5 to 11.5, and most preferably 8.5 to 11.
  • the phosphate compound contained in the calcification reaction accelerator (Y) of the present invention is not particularly limited as long as it is capable of promoting the calcification reaction of calcium carbonate contained in the dispersion base material (X) safely and efficiently on the teeth when applied to the teeth, and examples thereof include dimetallic hydrogen phosphates or metal dihydrogen phosphates, or hydrates thereof.
  • dimetallic hydrogen phosphates for example, disodium monohydrogen phosphate or dipotassium monohydrogen phosphate can be used, and as metal dihydrogen phosphates, monolithium dihydrogen phosphate, monosodium dihydrogen phosphate, and monopotassium dihydrogen phosphate can be used.
  • trisodium phosphate, tripotassium phosphate, and hydrates thereof can be used.
  • the above-mentioned phosphate compounds may be used alone or in combination of two or more.
  • disodium monohydrogen phosphate, potassium monohydrogen phosphate, sodium dihydrogen phosphate, and potassium dihydrogen phosphate are preferred from the viewpoints of low irritation to teeth and promotion of mineralization.
  • the amount of these phosphoric acid compounds is usually 0.01 to 10.0% by weight of the entire composition of the mineralization reaction accelerator (Y). If it is less than 0.01% by weight, it is difficult to obtain the effect of the dentinal tubule sealant that is the objective of the present invention, and if it exceeds 10% by weight, there is a possibility that problems will occur with the dispersion stability as a dispersion base material (X). Therefore, it is more preferably 0.05 to 5% by weight, and most preferably 0.1 to 1% by weight.
  • the constituent materials other than the phosphoric acid compounds in the calcification reaction accelerator (Y) of the present invention are not particularly limited as long as they are water-soluble materials that have high compatibility with phosphoric acid compounds, low reactivity with phosphoric acid compounds, and wettability and/or viscosity.
  • Examples include polyhydric alcohols, celluloses, and sugar alcohols.
  • Examples of polyhydric alcohols that can be used include glycerin, propylene glycol, 1,3-butylene glycol, and polyethylene glycol.
  • Examples of celluloses that can be used include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and hydroxypropyl cellulose (HPMC).
  • sugar alcohols examples include sorbitol, xylitol, maltitol, and lactitol.
  • the above-mentioned constituent materials other than the phosphoric acid compounds can be blended in one or more types.
  • the blended amount is usually 1 to 50% by weight of the entire composition.
  • the dental dentinal tubule sealant of the present invention is prepared by applying a dispersion base material (X) containing calcium carbonate to the affected area of dentinal tubules, and then applying a top coat of a calcification reaction accelerator (Y) containing a phosphoric acid compound, which causes the calcification reaction to form apatite in a short period of time, thereby obtaining a dentinal tubule sealant that is not easily peeled off even with tooth brushing, etc.
  • the object of the present invention as a dental dentinal tubule sealant is fully achieved, but to obtain even greater effects, it is preferable that the calcium carbonate contained in the dispersion base material (X) further satisfies the following formula (a) or (b) and (c). It is even more preferable that it satisfies formula (a), formula (b), and formula (c).
  • Dx50 Median diameter ( ⁇ m) measured using a laser diffraction particle size distribution analyzer (Microtrac MT-3300EXII manufactured by Microtrac Bell Co., Ltd.)
  • Dx100 Maximum particle size ( ⁇ m) measured using a laser diffraction particle size distribution analyzer (Microtrac MT-3300EXII manufactured by Microtrac Bell Co., Ltd.)
  • Formula (a) represents the value measured by the BET specific surface area (Sx) of calcium carbonate by the nitrogen adsorption method, and is preferably 1.5 to 50 m 2 /g. Since the opening diameter of human dentinal tubules is about 1 ⁇ m and that of cows is several ⁇ m, if the BET specific surface area (Sx) is less than 1.5, the calcium carbonate is too large and the sealing ability to the affected part of the dentinal tubules may be impaired. On the other hand, if it exceeds 50 m 2 /g, the calcium carbonate is too fine and may affect the balance of the blending amount as a component of the dispersion base material (X). Therefore, it is preferably 5 to 50 m 2 /g, and more preferably 10 to 40 m 2 /g.
  • the BET specific surface area was measured under the following conditions. ⁇ Conditions for measuring BET specific surface area> 0.2 to 0.3 g of calcium carbonate powder was placed in a BET specific surface area measuring device (Macsorb, a fully automatic specific surface area measuring device manufactured by Mountec Co., Ltd.), and a heat treatment was carried out at 200° C. for 5 minutes in a mixed gas atmosphere of nitrogen and helium as a pretreatment, and then low-temperature and low-humidity physical adsorption was carried out in a liquid nitrogen environment, and the specific surface area was measured.
  • a BET specific surface area measuring device Macsorb, a fully automatic specific surface area measuring device manufactured by Mountec Co., Ltd.
  • Equation (b) represents the median diameter (Dx) measured by laser diffraction particle size distribution as an index for knowing the dispersion state of calcium carbonate that can be used in the dispersion base material (X), and is preferably 0.05 to 5 ⁇ m. If the median diameter (Dx50) is less than 0.05 ⁇ m, it is difficult to maintain dispersion in terms of stability over time as the dispersion base material (X) of the present invention, and there is a possibility that the blend balance with the dispersion base material (X) will be affected. On the other hand, if it exceeds 5 ⁇ m, it is likely to cause problems of peeling from the viewpoint of sealing the opening diameter of the dentinal tubules. Therefore, it is more preferably 0.07 to 3 ⁇ m, and most preferably 0.10 to 2 ⁇ m.
  • Equation (c) represents the maximum particle size (Dx100) actually measured by laser diffraction particle size distribution as an index for knowing the state of the coarse particle size of calcium carbonate that can be used in the dispersion base material (X), and is preferably 0.1 to 100 ⁇ m. If the maximum particle size (Dx100) is less than 0.1 ⁇ m, it may affect the stability over time and the blend balance of the dispersion base material (X) of the present invention. On the other hand, if it exceeds 100 ⁇ m, it is likely to cause peeling problems from the viewpoint of sealing the opening diameter of the dentinal tubules. Therefore, it is more preferably 1 to 50 ⁇ m, and most preferably 2 to 25 ⁇ m.
  • the laser diffraction particle size distribution was measured under the following conditions.
  • ⁇ Laser diffraction particle size distribution measurement conditions As a pretreatment for the measurement, 0.1 to 0.3 g of calcium carbonate powder was added to a beaker (100 ml) and suspended in 50 ml of water solvent, and the suspension was irradiated with a tip-type ultrasonic disperser (Ultrasonic Homogenizer US-300T; manufactured by Nippon Seiki Seisakusho Co., Ltd.) at 300 ⁇ A for 1 minute, and then the measurement was performed with a laser diffraction particle size distribution device (Microtrac MT-3300EXII manufactured by Microtrac-Bell Corporation).
  • a tip-type ultrasonic disperser Ultrasonic Homogenizer US-300T; manufactured by Nippon Seiki Seisakusho Co., Ltd.
  • the calcium carbonate particles that can be used in the dental dentinal tubule sealant of the present invention further satisfy formula (d).
  • (d) 7 ⁇ P ⁇ 12 Px: pH value of calcium carbonate Formula (d) represents the pH value (Phx) of calcium carbonate particles that can be used in the composition of the dispersion substrate (X) of the present invention, and is preferably 7 to 12 in terms of dispersion stability and inhibition of dental caries bacteria. If it is less than 7, there is a possibility that a problem will occur in the dispersion stability as a component of the dispersion substrate (X).
  • a binder and/or a hypersensitivity suppressant may be added as necessary, provided that the efficacy of the dentinal tubule sealant is not impaired.
  • fluoride compounds, abrasives, sweeteners, flavorings and/or preservatives may be added.
  • the dispersion base material (X) containing calcium carbonate and the mineralization reaction accelerator (Y) containing a phosphate compound that constitute the dentinal tubule sealant of the present invention can be used, and it is preferable to use a mixer that can handle high viscosity.
  • the dentinal tubule sealant of the present invention which is composed of two materials, a dispersion base material (X) containing a specific calcium carbonate and a phosphate compound (Y), makes it difficult for carbonate apatite, which is calcified and formed in the affected area of the dentin tubules in a short period of time, to be detached from the dentin and dentinal tubules by brushing or rinsing with lukewarm water, thereby suppressing the symptoms of dentin hypersensitivity.
  • a dispersion base material X
  • Y a phosphate compound
  • 1 is a scanning electron microscope (SEM) image of a dentinal tubule test piece after sealing in Example 2 of the present invention.
  • 1 is a scanning electron microscope (SEM) image of a dentinal tubule test specimen after brushing the dentinal tubule test specimen after sealing in Application Example 2 of the present invention.
  • 1 is a scanning electron microscope (SEM) image of a dentinal tubule test piece after sealing in Comparative Application Example 5.
  • 13 is a scanning electron microscope (SEM) image of a dentinal tubule test piece after brushing the dentinal tubule test piece after sealing in Comparative Application Example 5.
  • Example 1 Preparation of calcium carbonate for dispersion base material (X)" Carbon dioxide gas (concentration 100%) was passed through 1,800 liters of lime milk with a specific gravity of 1.050 and a temperature of 10°C at a flow rate of 80 m 3 /min to carbonize the mixture until the pH reached 9.0, thereby obtaining a calcium carbonate water suspension.
  • the calcium carbonate water suspension at a temperature of 25°C after carbonation was heated to 50°C, stirred for 12 hours, and then dehydrated using a filter press to obtain a dehydrated cake with a calcium carbonate solid content concentration of 48% by weight.
  • the calcium carbonate water suspension was dehydrated using a filter press, and the press cake was dried using a paddle dryer (manufactured by Nara Machinery Co., Ltd.) and crushed using a dry pulverizer grinder (manufactured by Hosokawa Micron Co., Ltd.) to obtain a calcium carbonate powder.
  • the calcium carbonate had a BET specific surface area (Sx) of 30 m 2 /g.
  • the calcium carbonate powder was used, and 5 parts by weight of gum arabic (AG; manufactured by Sumitomo Pharma Food & Chemical Co., Ltd.) as a dispersion stabilizer and water were added to 100 parts by weight of calcium carbonate solids, and the mixture was stirred to prepare a food additive slurry with a calcium carbonate solids concentration of 40% by weight.
  • the slurry was wet-pulverized using a wet pulverizer Dyno Mill KD Pilot Type (manufactured by Willy & Bachofen Co., Ltd.), and then dried and powdered using an airflow DMR dryer (manufactured by Hosokawa Micron Co., Ltd.).
  • the BET specific surface area (Sx) of the calcium carbonate powder was 26 m 2 /g, the median diameter was 0.16 ⁇ m, and the maximum particle diameter was 0.5 ⁇ m.
  • the powder values of the calcium carbonate used in the dispersion base material (X), including other powder values, are shown in Table 1.
  • Example 2 In the "Preparation of calcium carbonate" of Example 1, except that the dispersion stabilizer was changed from gum arabic to sodium polyacrylate (PA; manufactured by Toagosei Co., Ltd.), a calcium carbonate powder having a BET specific surface area (Sx) of 24 m2 /g, a median diameter of 0.34 ⁇ m, and a maximum particle diameter of 11.0 ⁇ m was obtained in the same manner as in Example 1. Other powder values are shown in Table 1.
  • Example 3 In the "Preparation of calcium carbonate" of Example 1, except that the treatment step of gum arabic as a dispersion stabilizer was omitted and untreated calcium carbonate powder was used, a calcium carbonate powder having a BET specific surface area (Sx) of 30 m2 /g, a median diameter of 8.40 ⁇ m and a maximum particle diameter of 104.7 ⁇ m was obtained in the same manner as in Example 1. Other powder values are shown in Table 1.
  • Example 4 In the "Preparation of calcium carbonate" of Example 1, the calcium carbonate water suspension at 25°C after carbonation was heated to 50°C and stirred, and then calcium carbonate particles were grown by the Ostwald ripening method, and the amount of the dispersion stabilizer was changed to 1% by weight.
  • a calcium carbonate powder having a BET specific surface area (Sx) of 12 m2 /g, a median diameter of 0.28 ⁇ m, and a maximum particle diameter of 1.4 ⁇ m was obtained in the same manner as in Example 1, except that the amount of the dispersion stabilizer was changed to 1% by weight.
  • Other powder values are shown in Table 1.
  • Example 5 In the "Preparation of calcium carbonate" of Example 1, except that dehydration was performed using a filter press immediately after carbonation without raising the temperature, a calcium carbonate powder having a BET specific surface area (Sx) of 43 m2 /g, a median diameter of 0.67 ⁇ m, and a maximum particle diameter of 116.0 ⁇ m was obtained in the same manner as in Example 2. Other powder values are shown in Table 1.
  • Example 6 The calcium carbonate for the dispersion base material (X) was changed to a commercially available light calcium carbonate (manufactured by Maruo Calcium Co., Ltd.). The treatment process of the dispersion stabilizer is omitted. Other powder values are shown in Table 1.
  • Example 7 The calcium carbonate for the dispersion base material (X) was changed to a commercially available heavy calcium carbonate (Super S; manufactured by Maruo Calcium Co., Ltd.). The treatment process of the dispersion stabilizer was omitted. Other powder values are shown in Table 1.
  • Comparative Example 1 For the dispersion base material (X), a commercially available tricalcium phosphate (manufactured by Taihei Chemical Industry Co., Ltd.) was used instead of calcium carbonate. Other powder values are shown in Table 3.
  • the calcification reaction accelerator (Y) containing a phosphoric acid compound for Application Examples 1 to 7 and Application Comparative Example 1 was prepared by the following procedure.
  • a phosphate buffer solution 1.44 parts by weight of Na 2 HPO 4 (disodium hydrogen phosphate; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 0.24 parts by weight of KH 2 PO 4 (potassium dihydrogen phosphate; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 8.0 parts by weight of NaCl (sodium chloride; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 0.8 parts by weight of KCl (potassium chloride; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 1,000 parts by weight of purified water (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were mixed and stirred in advance for 15 minutes using a universal mixer (manufactured by Dalton Co., Ltd.)
  • GC glycolin; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • CMC-Na sodium carboxymethylcellulose; manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • purified water manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the pH of the calcification reaction promoter (Y) was 8.1.
  • the main characteristic values of the regulator amounts are shown in Tables 2 and 4.
  • The percentage of blocked dentinal tubules is 80-90%. ⁇ : The percentage of blocked dentinal tubules is 70-80%. ⁇ : The percentage of blocked dentinal tubules is 50-70%. ⁇ : The percentage of blocked dentinal tubules is less than 50%.
  • Figure 2 shows an SEM photograph (5,000x magnification) of a test piece after dentinal tubule sealing in Application Example 2
  • Figure 3 shows an SEM photograph (5,000x magnification) of a test piece after brushing with a toothbrush after dentinal tubule sealing in Application Example 2. From Figure 3, it was confirmed that the sealing of the dentinal tubules was maintained even after brushing.
  • Scoring criteria 3 points: The pain caused by hypersensitivity symptoms was completely relieved and symptoms improved. 2 points: Slight pain due to hypersensitivity symptoms is felt, but symptoms have improved compared to before use. 1 point: The pain caused by hypersensitivity symptoms remains the same as before use, and symptoms have not improved. Evaluation criteria: ⁇ : 2.5 points or more and 3.0 points or less; ⁇ : 2.0 points or more and less than 2.5 points; ⁇ : 1.5 points or more and less than 2.0 points; ⁇ : Less than 1.5 points
  • Comparative application example 2 Calcium carbonate was prepared in the same manner as in Application Example 2, and 5.42 parts by weight of acetic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 12.31 parts by weight of sodium acetate trihydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 1,000 parts by weight of purified water (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were mixed and stirred in advance for 15 minutes using a universal mixer (manufactured by Dalton Co., Ltd.) to prepare calcification accelerator (Y).
  • a universal mixer manufactured by Dalton Co., Ltd.
  • Comparative Application Example 3 Calcium carbonate was prepared in the same manner as in Application Example 2, and 2.1 parts by weight of citric acid monohydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 16.91 parts by weight of sodium citrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 1,000 parts by weight of purified water (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were mixed and stirred in advance for 15 minutes using a universal mixer (manufactured by Dalton Co., Ltd.) to prepare calcification accelerator (Y).
  • a universal mixer manufactured by Dalton Co., Ltd.
  • Comparative Application Example 5 A commercially available dentin hypersensitivity inhibitor (organic fine particle type) was used to evaluate the sealing ability of dentin tubules and the effect of inhibiting dentin hypersensitivity in the same manner as in Application Example 2. The evaluation results are shown in Table 4. As reference photographs, Fig. 4 shows an SEM observation photograph (5,000x) of the test piece after sealing of the dentin tubules in Application Comparative Example 5, and Fig. 5 shows an SEM observation photograph (5,000x) of the test piece after brushing with a toothbrush after sealing of the dentin tubules in Application Comparative Example 5. It was confirmed that the sealing ability of the dentin tubules was impaired by brushing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dental Preparations (AREA)

Abstract

象牙細管患部に塗布される象牙細管封止剤のアパタイトへの石灰化反応の短時間化と、当該アパタイトが歯磨き等で容易に剥離され難くするため、特定の炭酸カルシウムを含む分散基材(X)を象牙細管患部に塗布した後、リン酸系化合物を含む石灰化反応促進材(Y)を上塗りする。

Description

歯科用象牙細管封鎖材
 本発明は、歯の象牙細管患部を封鎖する象牙細管封鎖材に関する。
 知覚過敏は、歯肉が下がったり、歯が損傷したり、象牙細管が開口している歯の象牙質が露出したりすることによって起こる。歯肉が下がっている状態で、歯磨き、温度、擦過、冷風などによって象牙細管が刺激されると、象牙細管を満たしている内容液が移動する。この移動によって象牙細管に繋がる歯髄神経が刺激されることで痛みを感じる。痛みを抑えるには、象牙細管の開口部患部を封鎖することが有効であると考えられている。
 象牙細管封鎖材の一例が特許文献1に開示されている。この象牙細管封鎖材は、リン酸四カルシウム粒子、リン酸水素カルシウム粒子、炭酸カルシウム粒子及び非水系分散剤を配合したものである。この象牙細管封鎖材を歯に塗布すると、この封鎖材が口すすぎ液や唾液と接触し、アパタイトに転化し、象牙細管封鎖性の耐久性と保存安定性が向上する。また、この象牙細管封鎖材の効果は、リン酸四カルシウム粒子、リン酸水素カルシウム粒子及び炭酸カルシウム粒子の合計100重量部に対してリン酸四カルシウム粒子が5~75重量部、リン酸水素カルシウム粒子が10~70重量部、炭酸カルシウム粒子が2~50重量部と、特定の範囲量で配合した場合に限り、有効とされている。
特許第6333821号公報
 特許文献1の特定の配合量の象牙細管封鎖材は、口すすぎ液や唾液との接触によって、アパタイトに転化する。この象牙細管封鎖材が通常の口すすぎ液や唾液と接触する時間は短時間であり、この封鎖材が充分にアパタイトに転化することは難しく、歯磨き等により剥離しやすいという問題を根本的に解決することができない。
 本発明は、象牙細管患部に塗布される象牙細管封鎖材のアパタイトへの転化を短時間で行い、歯磨き等によって容易に剥離され難い象牙細管封鎖材を提供することを目的とする。
課題を解決するための手段
 本発明者らは、上記課題を鑑み研究を積み重ねた結果、炭酸カルシウム粒子を含む分散基材(X)と、リン酸系化合物を含む石灰化反応促進材(Y)との2材が反応して成ることにより、これらの問題が解決できることを見出し、本発明を完成するに至った。
 即ち、第1の本発明は、炭酸カルシウムを含む分散基材(X)と、リン酸系化合物を含む石灰化反応促進材(Y)の2材から成ることを特徴する歯科用象牙細管封鎖材を内容とする。
 第2の本発明は、炭酸カルシウムが下記の式(a)を満足することを特徴とする歯科用象牙細管封鎖材を内容とする。第3の本発明は、炭酸カルシウムが下記の式(b)及び(c)を満足することを特徴とする歯科用象牙細管封鎖材を内容とする。
(a) 1.5≦Sx≦50(m/g)
(b) 0.05 ≦Dx50≦5(μm)
(c) 0.1 ≦Dx100≦100(μm)
但し、
Sx:BET比表面積測定装置(株式会社 マウンテック社製全自動比表面積測定装置Macsorb)にて測定したBET比表面積(m/g)。
Dx50:レーザー回折式粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)におけるメジアン径(μm)。
Dx100:レーザー回折式粒度分布測定装置(マイクロトラックMT-3300EXII)における最大粒子径(μm)。
 第4の本発明は、石灰化反応促進材(Y)に含まれるリン酸系化合物が、リン酸水素二金属塩及びリン酸二水素金属塩から選択される少なくとも1種であることを特徴とする歯科用象牙細管封鎖材を内容とする。
 以下本発明の詳細を具体的に説明する。
 本発明の歯科用象牙細管封鎖材構成要素の一つである、分散基材(X)に含まれる炭酸カルシウムは、象牙細管患部を封鎖する目的で使われる。
 炭酸カルシウムとしては、象牙細管の封鎖性に効果があれば、特に限定されるものでなく、例えば、重質炭酸カルシウムまたは軽質炭酸カルシウムを例示することができる。重質炭酸カルシウムは、天然の石灰石を粉砕・分級して得るものとすることができる。軽質炭酸カルシウムは、例えば、石灰石を焼成して得た生石灰に水を加えて石灰乳を作製し、上記石灰石の焼成時に出る炭酸ガスを上記石灰乳に導通して、両者を反応させて得るものとすることができる。また軽質炭酸カルシウムの中でも、より細かな粒子をコロイド炭酸カルシウムと呼ぶ。コロイド炭酸カルシウムと類似の合成方法で製造された一般的な軽質炭酸カルシウムは形状が紡錘形状である。例えば製紙用に用いた場合、パルプから抜け落ちず当該用途に使用できるものを軽質炭酸カルシウムと呼び、抜け落ちて使えないものをコロイド炭酸カルシウムと呼んで区別される。本発明では、象牙細管封鎖性の目的用途において、コロイド炭酸カルシウムは微粒子や粗粒子が少なく粒子の均一性に優れている点で好ましい。
 分散基材(X)に含まれる炭酸カルシウム配合量は、特に限定されるものでないが、通常分散基材(X)全体の5~70重量%である。5重量%未満であると、本発明の目的である象牙細管封鎖材の効果が得られ難く、70重量%を超えると、分散基材(X)としての分散安定性に問題を生じる可能性がある。従って、より好ましくは20~60重量、最も好ましくは30~50重量%である。
 本発明の分散基材(X)における炭酸カルシウム以外の構成材料としては、象牙細管患部への塗布が容易であるように、炭酸カルシウムとの相溶性が高く、一方で炭酸カルシウムとの反応性が低く、湿潤性、増粘性または分散性がある水溶性材料を好ましく用いることができる。
 湿潤性がある水溶性材料(湿潤剤)としては、多価アルコール類、糖アルコールまたは多糖類が例示できる。多価アルコール類としては、例えば、グリセリン(GC)、プロピレングリコール(PPG)、1、3-ブチレングリコール(1,3-BG)またはポリエチレングリコール(PEG)等の多価アルコールを使用することができる。糖アルコールとしては、例えば、ソルビット、キシリット、マルチットまたはラクチット等の糖アルコールを使用することができる。多糖類としては、例えばカラギーナン、キサンタンガム、ローカストビーンガム、タラガム、グァーガム、タマリンドシードガム、サイリウムシードガム、キサンタンガムまたはアラビアガム糖等を使用することができる。
 増粘性がある水溶性材料(増粘剤)としては、例えば、カルボキシルメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)またはヒドロキシプロピルセルロース(HPMC)のセルロース類及びその塩を例示することができる。
 分散安定性がある水溶性材料(分散安定剤)としては、例えば、アニオン系界面活性剤、非イオン系界面活性剤、カチオン系界面活性剤または両イオン系界面活性剤を使用することができる。
 アニオン系界面活性剤としては、例えばポリアクリル酸ナトリウムを使用することができる。この他に、アニオン系界面活性剤としては、アルキル硫酸ナトリウム、具体的には、ラウリル硫酸ナトリウムまたはミリスチル硫酸ナトリウムを使用することができる。さらに、アニオン系界面活性剤としては、N-アシルサルコシンナトリウム、具体的には、N-ラウロイルサルコシンナトリウムまたはN-ミリストイルサルコシンナトリウムを使用することができる。また、アニオン系界面活性剤としては、α-オレフィンスルフォン酸ナトリウムも使用することができる。
 非イオン系界面活性剤としては、例えば、糖アルコール脂肪酸エステル類、具体的には、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルまたはショ糖脂肪酸エステルを使用することができる。この他に、非イオン系界面活性剤としては、例えば、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレン共重合体またはポリオキシエチレンアルキルフェニルエーテルを使用することができる。
 カチオン系界面活性剤としては、例えば、アルキルアンモニウムまたはアルキルベンジルアンモニウム塩を使用することができる。
 両イオン系界面活性剤としては、例えば、酢酸ベタイン、イミダゾリニウムベタインまたはレシチンを使用することができる。
 前記した構成材料は、1種又は2種以上を配合することができる。
 分散基材(X)における炭酸カルシウム以外の構成材料は、1種または2種以上を配合することができる。これら構成材料の配合量は、通常、分散基材(X)の構成全体の1~50重量%である。また、これら構成材料は、必要によって炭酸カルシウムへ直接表面処理しても差し支えない。
 本発明の分散基材(X)のpH値は特に限定するものではないが、7~12であることが分散安定性、石灰化反応促進及び口腔内細菌増殖抑制の面で好ましい。7未満の場合、分散基材(X)の構成要素としての分散安定性に問題が生じる可能性がある。一方、12を超えると、残存している水酸化カルシウム等のアルカリ性物質の影響で、分散基材(X)の経時安定性や風味に問題を生じる可能性があるため、より好ましくは7.5~11.5、最も好ましくは8.5~11である。
 本発明の石灰化反応促進材(Y)に含まれるリン酸系化合物としては、分散基材(X)に含まれる炭酸カルシウムが、歯への塗布により、歯に安全に効率良く炭酸カルシウムと石灰化反応が促進するものであれば、特に限定されるものではなく、例えば、リン酸水素二金属塩またはリン酸二水素金属塩、またはこれらの水和物を例示することができる。リン酸水素二金属塩としては、例えばリン酸一水素二ナトリウムまたはリン酸一水素二カリウムを使用することができ、リン酸二水素金属塩としては、リン酸二水素一リチウム、リン酸二水素一ナトリウム、リン酸二水素一カリウムを使用することができる。この他に、リン酸三ナトリウム、リン酸三カリウム及びこれら水和物を使用することができる。
 上述した各リン酸系化合物は、1種又は2種以上を配合することができる。中でも、歯への低刺激性と石灰化促進性の観点から、リン酸一水素二ナトリウム、リン酸一水素カリウム、リン酸二水素一ナトリウム及びリン酸二水素一カリウムが好適である。
 これらリン酸系化合物の配合量は、通常、石灰化反応促進材(Y)の構成全体の0.01~10.0重量%である。0.01重量%未満であると、本発明の目的である象牙細管封鎖材の効果が得られにくく、10重量%を超えると、分散基材(X)としての分散安定性に問題を生じる可能性がある。従って、より好ましくは0.05~5重量%、最も好ましくは0.1~1重量%である。
 本発明の石灰化反応促進材(Y)におけるリン酸系化合物以外の構成材料としては、リン酸系化合物との相溶性が高く、一方でリン酸系化合物との反応性が低く、湿潤性及び/または増粘性がある水溶性材料であれば、特に限定されるものでない。例えば、多価アルコール類、セルロース類または糖アルコールなどが例示できる。多価アルコール類としては、例えばグリセリン、プロピレングリコール、1、3-ブチレングリコールまたはポリエチレングリコールを使用することができる。セルロース類としては、例えばカルボキシルメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)またはヒドロキシプロピルセルロース(HPMC)を使用することができる。糖アルコールとしては、例えばソルビット、キシリット、マルチット、ラクチットを使用することができる。上記のリン酸系化合物以外の構成物質は、1種又は2種以上を配合することができる。また、その配合量は通常、組成全体の1~50重量%である。
 本発明の歯科用象牙細管封鎖材は、炭酸カルシウムを含む分散基材(X)を象牙細管患部へ塗布した後、リン酸系化合物を含む石灰化反応促進材(Y)を上塗りすることにより、アパタイトへの石灰化反応を短時間で行い、歯磨き等でも容易に剥離され難い象牙細管封鎖材を得ることができる。
 以上により、本発明の歯科用象牙細管封鎖材としての目的は十分に達成されるが、より一層の効果を得るには、分散基材(X)に含まれる炭酸カルシウムは、更に下記の式(a)を満足するか、(b)及び(c)を満足することが好ましい。式(a)と式(b)と式(c)を満足することがさらに好ましい。
 (a) 1.5≦Sx≦50(m/g)
 (b) 0.05≦Dx50≦5(μm)
 (c) 0.1≦Dx100≦100(μm)
但し、
Sx:BET比表面積測定装置(株式会社 マウンテック社製全自動比表面積測定装置Macsorb)にて測定したBET比表面積(m/g)。
Dx50:レーザー回折式粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)におけるメジアン径(μm)
Dx100:レーザー回折式粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)における最大粒子径(μm)
 式(a)は、炭酸カルシウムの窒素吸着法によるBET比表面積(Sx)で測定した数値を表し、1.5~50m/gであるがことが好ましい。ヒトの象牙細管の開口径は約1μm、ウシの開口径は数μmであるため、BET比表面積(Sx)が1.5未満の場合、炭酸カルシウムが大き過ぎるために、象牙細管患部への封鎖性が損なわれる可能性がある。一方、50m/gを超えると、炭酸カルシウムが細かすぎるために分散基材(X)の構成要素として配合量バランスに影響が出る可能性がある。従って好ましくは5~50m/g、さらに好ましくは10~40m/gである。
 なお、BET比表面積の測定方法に関しては、下記の条件で測定した。
<BET比表面積の測定条件>
 炭酸カルシウム粉末0.2~0.3gをBET比表面積測定装置(株式会社 マウンテック社製全自動比表面積測定装置Macsorb)にセットし、前処理として窒素とヘリウムの混合ガス雰囲気下で200℃で5分間の加熱処理を行った後、液体窒素の環境下で低温低湿物理吸着を行い、比表面積を測定した。
 式(b)は、分散基材(X)に用いることができる炭酸カルシウムの分散状態を知る指標としてレーザー回折式粒度分布による実測したメジアン径(Dx)を表し、0.05~5μmであることが好ましい。メジアン径(Dx50)が0.05μm未満の場合、本発明の分散基材(X)として経時安定的の面で、分散保持し難く、また分散基材(X)との配合バランスに影響が出る可能性がある。一方、5μmを超える場合、象牙細管の開口径封鎖の観点から剥離の原因の問題になり易い。従って、より好ましくは0.07~3μm、最も好ましくは0.10~2μmである。
 式(c)は、分散基材(X)に用いることができる炭酸カルシウムの粗大粒子径の存在状態を知る指標としてレーザー回折式粒度分布による実測した最大粒子径(Dx100)を表し、0.1~100μmであることが好ましい。最大粒子径(Dx100)が0.1μm未満の場合、本発明の分散基材(X)として経時安定的や配合バランスの面で影響が出る可能性がある。一方、100μmを超える場合、象牙細管の開口径封鎖の観点から剥離の原因の問題になり易い。従って、より好ましくは1~50μm、最も好ましくは2~25μmである。
 なお、レーザー回折式粒度分布の測定方法に関しては、下記の条件で測定した。
<レーザー回折式粒度分布の測定条件>
 測定の前処理としてビーカー(100ml)に炭酸カルシウム粉末料0.1~0.3gと水溶媒50mlを加え懸濁させ、チップ式超音波分散機(超音波ホモジナイザUS-300T ;株式会社日本精機製作所製)で300μAの条件で1分間照射した後、レーザー回折式粒度分布装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)にて測定した。
 本発明の歯科用象牙細管封鎖材で用いることができる炭酸カルシウム粒子は、さらに式(d)を満足することが好ましい。
(d) 7≦Px≦12
但し、
Px:炭酸カルシウムのpH値
式(d)は、本発明の分散基材(X)の構成で用いることができる炭酸カルシウム粒子のpH値(Phx)を表し、7~12であることが分散安定性や虫歯菌抑制の面で好ましい。7未満の場合、分散基材(X)の構成要素としての分散安定性に問題が生じる可能性がある。一方、12を超えると、残存している水酸化カルシウム等のアルカリ性物質の影響で、分散基材(X)の経時安定性や風味に問題を生じる可能性があるため、より好ましくは7.5~11.5、最も好ましくは8.5~11である。
 また、本発明の象牙細管封鎖材の効能を阻害しない範囲で、必要に応じて、象牙細管封鎖材の特性を向上させるため、粘結剤及び/または知覚過敏抑制剤等を添加してもよい。さらには、フッ化化合物、研磨剤、 甘味料、香料及び/または防腐剤等を配合してもよい。
 本発明の象牙細管封鎖材として構成される炭酸カルシウムを含む分散基材(X)と、リン酸系化合物を含む石灰化反応促進材(Y)の2材の調整及び、各種添加剤等を配合する調整には、例えば、市販の混合ミキサー、タンブラー混合機または静止型混合機などを使用することができ、高粘性対応混合機の使用が好ましい。
 以上のように、本発明の特定の炭酸カルシウムを含む分散基材(X)と、リン酸系化合物(Y)の2材から成る象牙細管封鎖材により、象牙細管患部に短時間で石灰化形成された炭酸アパタイトは、象牙質および象牙細管からブラッシングやぬるま湯での水洗で脱離され難くすることができ、知覚過敏症状を抑えることができる。
象牙細管試験片の走査電子顕微鏡(SEM)像(5,000倍)である。 本発明の応用実施例2で封鎖後の象牙細管試験片の走査電子顕微鏡(SEM)像である。 本発明の応用実施例2で封鎖後の象牙細管試験片をブラッシングした後の象牙細管試験片の走査電子顕微鏡(SEM)像である。 応用比較例5で封鎖後の象牙細管試験片の走査電子顕微鏡(SEM)像である。 応用比較例5で封鎖後の象牙細管試験片をブラッシングした後の象牙細管試験片の走査電子顕微鏡(SEM)像である。
 以下、本発明を実施例、比較例に基づいて更に具体的に説明するが、本発明はこれら実施例、比較例により何ら制限されるものではない。
実施例1
 「分散基材(X)用炭酸カルシウムの調整」
 比重1.050、温度10℃の石灰乳1,800リッターに、炭酸ガス(濃度100%)を80m/minの流速で導通し、pH9.0まで炭酸化を行い、炭酸カルシウム水懸濁液を得た。炭酸化後の温度25℃の炭酸カルシウム水懸濁液を、50℃に昇温し、12時間撹拌後、フィルタープレスを用いて脱水し、炭酸カルシウム固形分濃度が48重量%の脱水ケーキを得た。次に得られた脱水ケーキに再度水を加え撹拌し、脱水前の炭酸カルシウム水懸濁液と同一濃度の炭酸カルシウム水懸濁液を得た。該炭酸カルシウム水懸濁液のpHは11.5であった。この炭酸カルシウム水懸濁液にpHが7.0になるまで再度炭酸ガスを導通した。該炭酸カルシウム水懸濁液をフィルタープレスにて脱水し、そのプレスケーキをパドルドライヤー(株式会社奈良機械製作所製)を用いて乾燥し、乾式パルペライザー粉砕機(ホソカワミクロン株式会社製)を用いて解砕し、炭酸カルシウム粉体を得た。該炭酸カルシウムのBET比表面積(Sx)は30m/gであった。
 前記した炭酸カルシウム粉体を用い、炭酸カルシウム固形分100重量部に対し、分散安定剤としてアラビアガム(AG;住友ファーマフード&ケミカル株式会社製)を5重量部及び水を添加し、攪拌混合を行い、炭酸カルシウム固形分濃度が40重量%の食品添加剤スラリーを調製し、このスラリーを湿式粉砕機ダイノーミルKDパイロット型(ウィリー・エ・バッコーフェン社製)を用いて湿式粉砕を行った後、気流式DMR乾燥機(ホソカワミクロン株式会社製)を用い、乾粉化した。該炭酸カルシウム粉体のBET比表面積(Sx)は26m/g、メジアン径は0.16μm、最大粒子径は0.5μmであった。その他の粉体値を含めた分散基材(X)で用いる炭酸カルシウムの粉体値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例2
 実施例1の「炭酸カルシウムの調整」において、分散安定剤をアラビアガムからポリアクリル酸ナトリウム(PA;東亞合成株式会社製)に変更した以外は、実施例1と同様の方法でBET比表面積(Sx)24m/g、メジアン径は0.34μm、最大粒子径は11.0μmの炭酸カルシウムの粉体を得た。その他の粉体値を含めて表1に示す。
実施例3
 実施例1の「炭酸カルシウムの調整」において、分散安定剤のアラビアガムの処理工程を省き、無処理の炭酸カルシウム粉体に変更した以外は、実施例1と同様の方法でBET比表面積(Sx)30m/g、メジアン径8.40μm、最大粒子径104.7μmの炭酸カルシウムの粉体を得た。その他の粉体値を含めて表1に示す。
実施例4
 実施例1の「炭酸カルシウムの調整」において、炭酸化後の温度25℃の炭酸カルシウム水懸濁液を、50℃に昇温攪拌後、オストワルド熟成法により炭酸カルシウム粒子成長させたことと、分散安定剤の量を1重量%に変更した以外は、実施例1と同様の方法でBET比表面積(Sx)12m/g、メジアン径0.28μm、最大粒子径1.4μmの炭酸カルシウムの粉体を得た。その他の粉体値を含めて表1に示す。
実施例5
 実施例1の「炭酸カルシウムの調整」において、炭酸化後に昇温することなく直ぐにフィルタープレスで脱水を行った以外は、実施例2と同様の方法でBET比表面積(Sx)43m/g、メジアン径0.67μm、最大粒子径116.0μmの炭酸カルシウムの粉体を得た。その他の粉体値を含めて表1に示す。
実施例6
 分散基材(X)用の炭酸カルシウムとして、市販の軽質炭酸カルシウム(丸尾カルシウム株式会社製)に変更した。分散安定剤の処理工程は省略している。その他の粉体値を含めて表1に示す。
実施例7
 分散基材(X)用の炭酸カルシウムを、市販の重質炭酸カルシウム(スーパーS;丸尾カルシウム株式会社製)に変更した。分散安定剤の処理工程は省略している。その他の粉体値を含めて表1に示す。
比較例1
 分散基材(X)用として、炭酸カルシウムではなく市販のリン酸三カルシウム(太平化学産業株式会社製)を使用した。その他の粉体値を表3に示す。
Figure JPOXMLDOC01-appb-T000002
応用実施例1~7、応用比較例1
 「炭酸カルシウムを含む分散基材(X)の調整」
前記した実施例1~7の分散基材(X)の炭酸カルシウム及び、比較例1のリン酸三カルシウムを各々455重量部に対し、粘性付与剤としてPEG(ポリエチレングリコール600;富士フィルム和光純薬株式会社製)25重量部を、万能混合攪拌機(株式会社ダルトン製)にて15分間(室温)、予め混合撹拌した。次に、湿潤剤としてGC(グリセリン;富士フィルム和光純薬製)260重量部、増粘剤としてCMC-Na(カルボキシルメチルセルロースナトリウム;富士フィルム和光純薬株式会社製)10重量部、精製水250重量部(富士フィルム和光純薬株式会社製)を、予め炭酸カルシウムを混合撹拌した万能混合攪拌機に投入し、さらに15分間混合撹拌して、応用実施例1~7及び、応用比較例1用の分散基材(X)を調整した。主な調整剤量特性値を表2及び表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
「リン酸系化合物を含む石灰化反応促進材(Y)の調整」
 応用実施例1~7及び、応用比較例1用のリン酸系化合物を含む石灰化反応促進材(Y)は、下記の手順で調整した。リン酸緩衝液として、NaHPO(リン酸水素二ナトリウム;富士フィルム和光純薬株式会社製)1.44重量部、KHPO(リン酸二水素カリウム;富士フィルム和光純薬株式会社製)0.24重量部、 NaCl(塩化ナトリム;富士フィルム和光純薬株式会社製)8.0重量部、KCl(塩化カリウム;富士フィルム和光純薬株式会社製)0.8重量部と、精製水(富士フィルム和光純薬株式会社製)1,000重量部を、万能混合攪拌機(株式会社ダルトン製)にて15分間、予め混合撹拌した。次に、GC(グリセリン;富士フィルム和光純薬株式会社製)30重量部、CMC-Na(カルボキシルメチルセルロースナトリウム;富士フィルム和光純薬株式会社製)3.2重量部、精製水(富士フィルム和光純薬株式会社製)16.8重量部を、予めリン酸緩衝液に混合撹拌した万能混合攪拌機に投入し、さらに15分間混合撹拌して、石灰化促進材(Y)を得た。石灰化反応促進材(Y)のpHは8.1であった。主な調整剤量特性値を表2及び、表4に示す。
<象牙細管封鎖性試験>
 (I)牛歯象牙質試験片の作製
2~3齢のウシ切歯を、切縁から歯根根尖方向へ2-3mmの位置で硬組織精密低速切断機アイソメット(盟和商事株式会社製)を用いて注水下で水平的に切断し、得られた卵円形の歯片を4分割した後、表面を#800から#1500までの耐水研磨紙で順次研磨し、3%EDTA-2Na中で超音波洗浄を2分間、その後精製水中で超音波洗浄させて象牙細管開口を伴う象牙質試験片とした。
参考写真として図1に試験片のSEM観察写真(5,000倍)を示す。
 (II)象牙細管の封鎖試験
 上記で得られた象牙質試験片の歯面に、応用実施例1~7及び応用比較例1で調整した分散基材(X)をマイクロブラシレギュラー(フィード株式会社製)で塗布した。さらに上記で調整した石灰化反応促進材(Y)を、塗布された分散基材(X)へ上塗りするようにマイクロブラシレギュラーで塗布し、5分間静置後、精製水で軽く歯面を洗い流し、象牙細管の封鎖性を下記の基準で評価した。
 更に、歯ブラシによるブラッシング(スクラビング法)を20回行い、その後ぬるま湯(37℃)で30秒水洗した後の象牙細管の封鎖性についても下記の基準で評価し、象牙細管封鎖性の維持、持続性に関する評価結果を表2及び表4に示す。
[象牙細管封鎖性試験評価基準]
  ◎:象牙細管封鎖状態の割合が80~90%である
  〇:象牙細管封鎖状態の割合が70~80%である
  △:象牙細管封鎖状態の割合が50~70%である
  ×:象牙細管封鎖状態の割合が50%未満である
 参考写真として図2に応用実施例2で象牙細管封鎖後の試験片のSEM観察写真(5,000倍)と、図3に応用実施例2で象牙細管封鎖後の試験片の歯ブラシによるブラッシング後の試験片のSEM観察写真(5,000倍)を示す。図3より、ブラッシング後でも象牙細管の封鎖性は維持されていることが認められた。
(III)官能性試験
(1)知覚過敏抑制効果の評価方法
 応用実施例1~7及び応用比較例1について知覚過敏症状のある10人を用いた官能試験により評価した。分散基材(X)をマイクロブラシレギュラー(フィード株式会社製)で知覚過敏症状のある歯の歯面に塗布した。さらに上記で調整した石灰化反応促進材(Y)を、塗布された分散基材(X)へ上塗りするように上記マイクロブラシレギュラーで塗布し、1分間静置後、水道水で軽くすすぐ施術を5回施し、一週間後の知覚過敏症状を下記の基準で判定し、10人の平均点を算出し、下記の評価基準で知覚過敏症状を抑制する効果を評価した。知覚過敏抑制効果の評価結果を表2及び表4に示す。
 評点基準
  3点:知覚過敏症状による痛みを全く感じなくなり、症状が改善した。
  2点:知覚過敏症状による痛みを僅かに感じるが、使用前と比較して症状が改善した。
  1点:知覚過敏症状による痛みを使用前と変わらず感じ、症状の改善がない。
  評価基準
  ◎:2.5点以上3.0点以下
  ○:2.0点以上2.5点未満
  △:1.5点以上2.0点未満
  ×:1.5点未満
 (2)使用感(におい、味)評価方法
 前述した(1)知覚過敏抑制効果の評価試験と同時に、応用実施例1~7及び応用比較例1について、被験者10人による使用感(におい・味)評価を行った。上記施術時、口腔内を水道水ですすいだ直後に、におい、味についてのアンケートを実施した。下記の評点基準に基づき、におい及び味について判定し、10人の平均点を算出し、下記の評価基準を用いて不快なにおい及び味(金属味、苦味及び渋味のなさ)を評価した。におい及び味に関する評価結果を表2及び表4に示す。
 [におい]
 評点基準
  1:不快な臭いを非常に感じる
  2:不快な臭いをかなり感じる
  3:不快な臭いをやや感じるが問題ないレベル
  4:不快な臭いをほとんど感じない
  5:不快な臭いを感じない
 評価基準
  ◎:10人の平均点が3.5点以上である
  ○:10人の平均点が2.5点以上3.5点未満である
  △:10人の平均点が2点以上2.5点未満である
  ×:10人の平均点が2点未満である
 [味]
 評点基準
  1:金属味、苦味、渋味のいずれかを非常に感じる
  2:金属味、苦味、渋味のいずれかをかなり感じる
  3:金属味、苦味、渋味のいずれかをやや感じるが問題ないレベル
  4:金属味、苦味、渋味をほとんど感じない
  5:金属味、苦味、渋味を感じない
 評価基準
  ◎:10人の平均点が3.5点以上である
  ○:10人の平均点が2.5点以上3.5点未満である
  △:10人の平均点が2点以上2.5点未満である
  ×:10人の平均点が2点未満である
 (3)保存安定性試験
 応用実施例1~7及び応用比較例1の分散基材(X)及び石灰化促進材(Y)のペースト20gを各々プラスチック製サンプル管に精秤し、25℃にて静置した。その保存安定性について、以下の評価基準に従い評価した。保存安定性評価結果を表2及び表4に示す。
 評価基準
A:調製後3ヶ月を超えて、良好なペースト性状を維持している。
B:調製後1~3ヶ月において、良好なペースト性状を維持している。
C:調製後2週間~1ヶ月未満において、良好なペースト性状を維持している。
D:調製1日後には硬化或いは増粘しておりペースト状態を維持できない。
応用実施例8
 「炭酸カルシウムを含む分散基材(X)の調整」において、応用実施例2の分散基材(X)の炭酸カルシウムを710重量部に増量した他、表2に示した調整量で分散基材(X)を調整した以外は、応用実施例2と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定性を評価した。評価結果を表2に示す。
応用実施例9
 応用実施例2の「炭酸カルシウムを含む分散基材(X)の調整」において、分散基材(X)の炭酸カルシウムを300重量部に減量した他、表2に示した調整量で分散基材(X)を調整した以外は、応用実施例2と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定性を評価した。評価結果を表2に示す。
応用実施例10
 応用実施例2の「炭酸カルシウムを含む分散基材(X)の調整」において、分散基材(X)の炭酸カルシウムを45重量部に減量した他、表2に示した調整量で分散基材(X)を調整した以外は、応用実施例2と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定性を評価した。評価結果を表2に示す。
応用比較例2
 応用実施例2と同じに炭酸カルシウムを調整し、石灰化促進材(Y)の酸緩衝液として、酢酸(富士フィルム和光純薬株式会社製)5.42重量部、酢酸ナトリウム三水和物(富士フィルム和光純薬株式会社製)12.31重量部、精製水(富士フィルム和光純薬株式会社製)1,000重量部を、万能混合攪拌機(株式会社ダルトン製)にて15分間、予め混合撹拌した以外は、応用実施例1と同様の方法で石灰化促進材(Y)の調整し、応用実施例2と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定正を評価した。評価結果を表4に示す。
応用比較例3
 応用実施例2と同じに炭酸カルシウムを調整し、石灰化促進材(Y)の酸緩衝液として、クエン酸一水和物(富士フィルム和光純薬株式会社製)2.1重量部、クエン酸ナトリウム(富士フィルム和光純薬株式会社製)16.91重量部、精製水(富士フィルム和光純薬株式会社製)1,000重量部を、万能混合攪拌機(株式会社ダルトン製)にて15分間、予め混合撹拌した以外は、応用実施例1と同様の方法で石灰化促進材(Y)の調整し、応用実施例1と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定正を評価した。評価結果を表4に示す。
応用比較例4
 応用実施例2と同じに炭酸カルシウムを調整し、石灰化促進材(Y)の酸緩衝液として、炭酸水素ナトリウム(富士フィルム和光純薬株式会社製)0.27重量部、炭酸ナトリウム(富士フィルム和光純薬株式会社製)2.42重量部、精製水(富士フィルム和光純薬株式会社製)1,000重量部を、万能混合攪拌機(株式会社ダルトン製)にて15分間、予め混合撹拌した以外は、応用実施例1と同様の方法で石灰化促進材(Y)の調整し、応用実施例1と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果、使用感(におい及び味)並びに保存安定正を評価した。評価結果を表4に示す。
応用比較例5
 市販の知覚過敏抑制剤(有機微粒子系)を使用し、応用実施例2と同様の方法で、象牙細管の封鎖性、知覚過敏抑制効果を評価した。評価結果を表4に示す。参考写真として図4に応用比較例5で象牙細管封鎖後の試験片のSEM観察写真(5,000倍)と、図5に応用比較例5で象牙細管封鎖後の試験片の歯ブラシによるブラッシング後のSEM観察写真(5,000倍)を示す。ブラッシングにより、象牙細管の封鎖性が損なわれているのが確認された。
 応用実施例と応用比較例の評価より、本実施例で調整した歯科用象牙細管封鎖材は、隙間を十分に埋めていることが観察され、剥離されることなく、ほぼ維持されていることが認められた。

Claims (4)

  1.  炭酸カルシウムを含む分散基材(X)と、リン酸系化合物を含む石灰化反応促進材(Y)の2材から成ることを特徴する歯科用象牙細管封鎖材。
  2.  炭酸カルシウムが下記の式(a)を満足することを特徴する請求項1項記載の歯科用象牙細管封鎖材。
    (a) 1.5≦Sx≦50(m/g)
    但し、
    Sx:BET比表面積測定装置(株式会社 マウンテック社製全自動比表面積測定装置Macsorb)にて測定したBET比表面積(m/g)。
  3.  炭酸カルシウムが下記の式(b)及び(c)を満足することを特徴する請求項1項記載の歯科用象牙細管封鎖材。
    (b) 0.05≦Dx50≦5(μm)
    (c) 0.1≦Dx100≦100(μm)
    但し、
    Dx50:レーザー回折式粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)におけるメジアン径(μm)
    Dx100:レーザー回折式粒度分布測定装置(マイクロトラック・ベル株式会社製マイクロトラックMT-3300EXII)における最大粒子径(μm)。
  4.  石灰化反応促進材(Y)に含まれるリン酸系化合物が、リン酸水素二金属塩、リン酸二水素金属塩から選択される少なくとも1種であることを特徴とする請求項1項に記載の歯科用象牙細管封鎖。
PCT/JP2023/038913 2022-10-27 2023-10-27 歯科用象牙細管封鎖材 WO2024090565A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172489 2022-10-27
JP2022-172489 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090565A1 true WO2024090565A1 (ja) 2024-05-02

Family

ID=90831049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038913 WO2024090565A1 (ja) 2022-10-27 2023-10-27 歯科用象牙細管封鎖材

Country Status (1)

Country Link
WO (1) WO2024090565A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036106A (ja) * 1996-07-26 1998-02-10 Taihei Kagaku Sangyo Kk 多孔質塊状炭酸アパタイトおよびその製造方法
JP2007176862A (ja) * 2005-12-28 2007-07-12 Lion Corp 口腔用組成物
WO2010113801A1 (ja) * 2009-03-30 2010-10-07 クラレメディカル株式会社 歯牙石灰化剤及びその製造方法
WO2015019600A1 (ja) * 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
WO2015019601A1 (ja) * 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 象牙細管封鎖材
WO2015046491A1 (ja) * 2013-09-30 2015-04-02 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
JP2016044131A (ja) * 2014-08-20 2016-04-04 学校法人近畿大学 歯科治療用シート
WO2016067622A1 (ja) * 2014-10-30 2016-05-06 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
JP2017508812A (ja) * 2014-03-21 2017-03-30 オムヤ インターナショナル アーゲー 歯を脱感作するための表面反応炭酸カルシウム
JP2018535998A (ja) * 2015-12-04 2018-12-06 オムヤ インターナショナル アーゲー 歯の再石灰化及びホワイトニングのための口腔ケア組成物
JP2019528850A (ja) * 2016-09-08 2019-10-17 カール ライビンガー メディツィンテクニック ゲーエムベーハー ウント コー. カーゲーKarl Leibinger Medizintechnik GmbH & Co. KG ミクロ構造の粒子を有するカルシウム塩を含有する複合粉末を含むインプラント

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036106A (ja) * 1996-07-26 1998-02-10 Taihei Kagaku Sangyo Kk 多孔質塊状炭酸アパタイトおよびその製造方法
JP2007176862A (ja) * 2005-12-28 2007-07-12 Lion Corp 口腔用組成物
WO2010113801A1 (ja) * 2009-03-30 2010-10-07 クラレメディカル株式会社 歯牙石灰化剤及びその製造方法
WO2015019600A1 (ja) * 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
WO2015019601A1 (ja) * 2013-08-06 2015-02-12 クラレノリタケデンタル株式会社 象牙細管封鎖材
WO2015046491A1 (ja) * 2013-09-30 2015-04-02 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
JP2017508812A (ja) * 2014-03-21 2017-03-30 オムヤ インターナショナル アーゲー 歯を脱感作するための表面反応炭酸カルシウム
JP2016044131A (ja) * 2014-08-20 2016-04-04 学校法人近畿大学 歯科治療用シート
WO2016067622A1 (ja) * 2014-10-30 2016-05-06 クラレノリタケデンタル株式会社 1材型の象牙細管封鎖材
JP2018535998A (ja) * 2015-12-04 2018-12-06 オムヤ インターナショナル アーゲー 歯の再石灰化及びホワイトニングのための口腔ケア組成物
JP2019528850A (ja) * 2016-09-08 2019-10-17 カール ライビンガー メディツィンテクニック ゲーエムベーハー ウント コー. カーゲーKarl Leibinger Medizintechnik GmbH & Co. KG ミクロ構造の粒子を有するカルシウム塩を含有する複合粉末を含むインプラント

Similar Documents

Publication Publication Date Title
JP5816352B2 (ja) 象牙質知覚過敏抑制剤の製造方法
JP5816549B2 (ja) 生体活性ガラスを用いたフッ化物取り込みを良くするための組成物及び方法
JP5838524B2 (ja) 象牙質知覚過敏抑制材及びその製造方法
JP6101712B2 (ja) 多成分系口腔ケア組成物
KR890002020B1 (ko) 피로포스페이트로 코팅된 탄산칼슘 치아 연마제의 제조방법
US6989142B2 (en) Precipitated calcium carbonate
JP5506782B2 (ja) 歯面修復材
TW200803907A (en) Biologically active nanoparticles of a carbonate-substituted hydroxyapatite, process for their preparation and compositions incorporating the same
JP2013163656A (ja) 歯磨剤
TW201618745A (zh) 牙齒抗敏組合物
CN108743424B (zh) 一种用于牙齿再矿化的口腔护理组合物
JP6716554B2 (ja) 歯科用研磨ペースト及び歯科用クリーニングペースト
JP6981243B2 (ja) 歯磨剤組成物
WO2024090565A1 (ja) 歯科用象牙細管封鎖材
JP6333821B2 (ja) 象牙細管封鎖材
JP2020105106A (ja) 口腔用組成物
JP2008184436A (ja) 知覚過敏抑制性歯科用研磨材組成物
JP2017105755A (ja) 練歯磨組成物
JP2007505863A (ja) 可溶性カルシウム金属イオン封鎖剤を含む組成物
CN104363886B (zh) 口腔用组合物
JP5834355B2 (ja) 知覚過敏抑制剤及びその製造方法
WO2015019600A1 (ja) 生体硬組織修復用硬化性リン酸カルシウム組成物並びに骨修復材料及び各種歯科材料
JP5665465B2 (ja) 象牙細管封鎖剤
TWI842814B (zh) 口腔用組合物
JP7281423B2 (ja) 口腔用組成物