WO2024088180A1 - 一种皮芯型复合纤维及其制备方法和应用 - Google Patents

一种皮芯型复合纤维及其制备方法和应用 Download PDF

Info

Publication number
WO2024088180A1
WO2024088180A1 PCT/CN2023/125755 CN2023125755W WO2024088180A1 WO 2024088180 A1 WO2024088180 A1 WO 2024088180A1 CN 2023125755 W CN2023125755 W CN 2023125755W WO 2024088180 A1 WO2024088180 A1 WO 2024088180A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphite
composite fiber
nano
dispersion
Prior art date
Application number
PCT/CN2023/125755
Other languages
English (en)
French (fr)
Inventor
郑龙辉
张原野
王号朋
王剑磊
吴立新
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Publication of WO2024088180A1 publication Critical patent/WO2024088180A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent

Definitions

  • the present invention mainly relates to the technical field of fiber-related, and specifically designs a sheath-core composite fiber and a preparation method and application thereof.
  • Graphene is a honeycomb crystal with a single two-dimensional carbon atom layer and is the thinnest known two-dimensional carbon nanomaterial.
  • Graphene's unique large ⁇ conjugated system gives it excellent physical and chemical properties, such as ultra-high specific surface area, excellent electrical and thermal conductivity, special optical properties, and excellent mechanical properties. These properties make graphene materials have broad application prospects in the fields of energy, electronics, coatings, fibers, etc.
  • the large-scale preparation of graphene is the key to its application. Although there are many methods for preparing graphene, including epitaxial growth, mechanical exfoliation, electrochemical exfoliation, chemical vapor deposition, etc., they all have limitations to varying degrees. For example, the Hummers method requires a strong oxidant that is not environmentally friendly and will destroy the structure of graphene, while the chemical vapor deposition method has harsh preparation conditions and high production costs, which greatly restricts the actual industrial application of graphene.
  • the modified fiber is prepared by in-situ polymerization, but since the fiber polymerization stage requires a special polymerization environment such as low water content and high vacuum, the addition of nano-graphene can easily interfere with the polymerization reaction, greatly limiting the polymerization degree of the fiber, resulting in reduced product quality. Therefore, it is of great significance to develop a multifunctional graphene composite fiber with good mechanical strength.
  • a method for preparing a composite fiber comprising the following steps:
  • step (3) adding a metal source to the graphene dispersion obtained in step (2) to obtain a metal-loaded graphene dispersion;
  • a composite fiber is prepared by melt spinning.
  • the carbon nanospheres in step (1), can be prepared using monosaccharides as raw materials and by a hydrothermal method.
  • the raw material for preparing the nano-carbon spheres is monosaccharide, and the monosaccharide is selected from at least one of glucose, fructose, galactose, etc.
  • the reaction temperature of the hydrothermal method is 100-300°C, for example 160-200°C, exemplified by 100°C, 120°C, 130°C, 150°C, 160°C, 180°C, 200°C, 220°C, 240°C, 260°C, 280°C, 300°C.
  • the concentration of monosaccharide is 1-60 mg/mL, for example 10-50 mg/mL, exemplified by 1 mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL, 50 mg/mL, 60 mg/mL.
  • the reaction time of the hydrothermal method is 5-10 h, such as 6-8 h, exemplified by 5 h, 6 h, 7 h, 8 h, 9 h, 10 h.
  • the graphite is selected from at least one of natural flake graphite, expanded graphite, graphite powder, etc. Further, the graphite is in the form of powder, for example, the mesh size of the graphite powder is 80 to 5000 mesh, exemplarily 80, 200, 300, 325, 500, 750, 1000, 1200, 1500, 2000, 3000, 4000 or 5000 mesh.
  • the concentration of graphite in the pretreated nano-carbon sphere/graphite dispersion is 1-50 mg/mL, for example 5-25 mg/mL, exemplified by 1 mg/mL, 5 mg/mL, 10 mg/mL, 25 mg/mL, 30 mg/mL, 40 mg/mL, 50 mg/mL.
  • step (1) may specifically be: (1a) preparing nanocarbon spheres by a hydrothermal method, adding graphite to a nanocarbon sphere aqueous solution to obtain a pretreated nanocarbon sphere/graphite dispersion.
  • step (1) may also be: (1b) adding graphite and monosaccharide to water for mixing, and then performing hydrothermal treatment to prepare the monosaccharide into nanocarbon spheres, thereby obtaining a pretreated nanocarbon sphere/graphite dispersion.
  • a high shear dispersing emulsifier may be used for mixing.
  • the processing time of the high shear dispersing emulsifier is 1-100 min, such as 5 to 50 min, exemplified by 5 min, 25 min, 50 min, 75 min, and 100 min.
  • the rotation speed of the high shear dispersing emulsifier is 1000-15000 rpm, such as 5000-10000 rpm, exemplified by 5000 rpm, 8000 rpm, and 10000 rpm.
  • step (1) may also be: (1c) adding graphite and monosaccharide to water, performing hydrothermal treatment to prepare the monosaccharide into nano-carbon spheres, and then mixing to obtain a pretreated nano-carbon sphere/graphite dispersion.
  • step (1c) ultrasonic mixing can be used.
  • step (2) the pretreated nano-carbon sphere/graphite dispersion is added to a shearing device with an ultra-high shear rate for exfoliation to obtain a graphene dispersion.
  • the shearing equipment with ultra-high shear rate includes but is not limited to: a microfluidizer and the like.
  • step (2) may specifically be: exfoliating the pretreated nano-carbon sphere/graphite dispersion in a microfluidizer, wherein the specific process is: firstly passing the pretreated nano-carbon sphere/graphite dispersion through a 200-400 ⁇ m (exemplarily 200 ⁇ m, 300 ⁇ m or 400 ⁇ m) nozzle for 1-5 cycles (exemplarily 1 cycle, 3 cycles or 5 cycles) at a pressure of 3000-5000 psi (exemplarily 3000 psi, 4000 psi or 5000 psi); and then passing the pretreated nano-carbon sphere/graphite dispersion through a 100-200 ⁇ m (exemplarily 100 ⁇ m, 150 ⁇ m or 200 ⁇ m) nozzle for 1-50 cycles (exemplarily 3 cycles, 5 cycles or 7 cycles) at a pressure of 15000-22000 psi (exemplarily 15000 psi, 18000 psi or 22000 psi).
  • the specific process is: firstly passing the pretreated nano-
  • the stripping time is 10-100 minutes.
  • the metal source is selected from at least one of the following substances or a solution containing the substance: silver nitrate, copper nitrate, zinc nitrate.
  • the metal source is selected from a silver nitrate solution, and its concentration is 0.1 to 1 mol/L, such as 0.1 to 0.5 mol/L, exemplarily 0.1 mol/L, 0.3 mol/L, 0.5 mol/L.
  • the drying is, for example, selected from freeze drying.
  • the freeze drying time is 1 to 96 hours, for example, 24 hours, 48 hours, 72 hours.
  • the freeze drying temperature is -50°C to -10°C, exemplarily -30°C.
  • the mass fraction of graphene in the modified graphene masterbatch is 0.005-0.8%, such as 0.1-0.5%, and exemplified by 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%.
  • the polymer material is selected from
  • the polymer used to prepare the fiber is, for example, at least one selected from nylon, polyester, and spandex, and examples thereof are polyester and nylon 6.
  • the mass fraction of the sheath component in the total mass of the composite fiber is 10-30%, such as 10-20%, exemplified by 10%, 15%, 20%.
  • the present invention also provides a composite fiber, which comprises a skin layer and a core layer.
  • the mass fraction of the skin layer in the composite fiber is 10% to 30%, for example, 10%, 20%, or 30%.
  • the core layer comprises a polymer material, and the polymer material has the meaning as described above.
  • the skin layer is selected from modified graphene masterbatch.
  • the modified graphene masterbatch comprises a graphene-loaded metal composite and the polymer material.
  • the mass fraction of the graphene-loaded metal composite in the modified graphene masterbatch is 0.005-0.8%, such as 0.1-0.5%, and exemplarily 0.1%, 0.2%, 0.3%, 0.4%, 0.5%.
  • the polymer materials in the core layer and the skin layer are preferably the same polymer materials.
  • the polymer materials in the skin layer and the core layer are both selected from at least one of nylon, polyester, and spandex, exemplarily polyester and nylon 6.
  • the graphene-supported metal composite comprises nanometal or metal ions, and modified graphene.
  • the nanometal or metal ions are selected from at least one of Ag, Cu, and Zn.
  • the modified graphene is prepared by the following method: nano-carbon balls and graphite are mixed to obtain the modified graphene, wherein the nano-carbon balls are loaded on the surface of the graphene.
  • the nano metal or metal ion is in-situ deposited on the modified
  • the nano-metal or metal ion loading amount is not specifically limited in the present invention, and any amount known in the art can be used.
  • the modified graphene has 1 to 10 layers and a lateral size of 0.5 to 10 ⁇ m.
  • the nano carbon spheres are prepared by a hydrothermal method using monosaccharides as raw materials.
  • the monosaccharide is selected from at least one of glucose, fructose, galactose and the like.
  • the graphite is selected from at least one of natural flake graphite, expanded graphite, graphite powder, etc. Further, the graphite is in the form of powder, for example, the mesh number of the graphite powder is 80 mesh to 5000 mesh.
  • the breaking strength of the composite fiber is greater than 3 cN/dtex, for example, 3.1 to 6 cN/dtex, and for example, 3.5 cN/dtex, 4 cN/dtex, 5 cN/dtex, or 6 cN/dtex.
  • the specific resistance of the composite fiber is less than 1 ⁇ 10 7 ⁇ cm, for example, 1 ⁇ 10 6 to 9.5 ⁇ 10 6 ⁇ cm.
  • the composite fiber has excellent antistatic and/or antibacterial functions.
  • the composite fiber is obtained by the above preparation method.
  • the present invention also provides application of the composite fiber, for example, application in the field of functional textiles.
  • the present invention uses graphite as a raw material, nano-carbon spheres prepared by a monosaccharide hydrothermal method as a stripping aid, and water as a dispersion medium, and prepares nano-carbon sphere-modified graphene in one step by a microfluidizer.
  • This method does not require pretreatment with strong acids, strong oxidants, etc., and is a green, environmentally friendly, and simple process route;
  • nanocarbon sphere-modified graphene is directly prepared during the exfoliation process, which not only maintains the complete structure of graphene, but also the rich functional groups on the surface of carbon spheres give graphene excellent dispersibility;
  • nano-metals or metal ions are deposited in situ to prepare graphene-loaded metal composites, thereby further avoiding stacking between graphenes and making the nano-metals or metal ions evenly dispersed on the graphene surface;
  • the present invention uses a modified graphene masterbatch obtained by compounding a graphene-loaded metal composite with a polymer material as the skin layer and a polymer material as the core layer, and prepares a composite fiber by melt spinning, thereby maintaining the inherent mechanical strength of the fiber and reducing the amount of functional body added;
  • the composite fiber prepared by the present invention has excellent antistatic, antibacterial and other functions and has application prospects.
  • FIG1 is an infrared spectrum of carbon sphere modified graphene and graphene loaded nanosilver composite in Example 1.
  • FIG. 2 is an EDX spectrum of the graphene-supported nanosilver composite in Example 1.
  • FIG3 is an XRD spectrum of the graphene-supported nanosilver composite in Example 1.
  • FIG4 is a digital photograph of the graphene dispersions prepared in Example 1 and Comparative Example 1 after being left for one week.
  • FIG5 is a TEM of the nano-carbon ball-modified graphene prepared in Example 1.
  • FIG. 6 is a microscope photograph of the sheath-core composite fiber prepared in Example 1.
  • FIG. 7 is a SEM image of the fibers prepared in Example 1 and Comparative Example 3.
  • FIG. 8 is a SEM image of a cross section of the core-sheath composite fiber of Example 1.
  • the preparation method of the core-skin composite fiber is as follows:
  • a sheath-core composite fiber with a sheath layer accounting for 30% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • fructose and water are mixed to prepare a fructose/water solution with a concentration of 30 mg/mL; 750 mesh graphite powder is added to the fructose/water solution to prepare a fructose/graphite dispersion with a concentration of 10 mg/mL; the fructose/graphite dispersion is shear-mixed at a speed of 8000 rpm using a high shear dispersing emulsifier for 25 minutes, and then hydrothermally treated at 200° C. for 7 hours to prepare fructose into nanocarbon spheres, thereby obtaining a pretreated nanocarbon sphere/graphite dispersion;
  • a sheath-core composite fiber with a sheath layer accounting for 30% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • a sheath-core composite fiber with a sheath layer accounting for 10% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • a sheath-core composite fiber with a sheath layer accounting for 20% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • a sheath-core composite fiber with a sheath layer accounting for 30% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • expanded graphite and glucose are added to water to prepare an expanded graphite/glucose dispersion, wherein the concentration of the expanded graphite is 5 mg/mL and the concentration of the glucose is 50 mg/mL, and the dispersion is shear-mixed at 5000 rpm using a high shear dispersing emulsifier for 50 min; the dispersion is kept warm at 170° C. for 6 h to prepare the glucose into nano-carbon spheres, thereby obtaining a pretreated nano-carbon sphere/graphite dispersion;
  • a sheath-core composite fiber with a sheath layer accounting for 20% by mass was prepared by a melt spinning machine.
  • the preparation method of the core-skin composite fiber is as follows:
  • the preparation method of Comparative Example 1 is basically the same as that of Example 1, except that: when preparing graphene, no nano-carbon balls are added, that is, no glucose is added in step (1) and only water is used as the medium to obtain a pretreated graphite dispersion; in step (2), the pretreated graphite dispersion is prepared by the same process as in Example 1 to obtain a graphene dispersion, wherein the graphene is not modified by nano-carbon balls; the remaining steps are the same as in Example 1 to prepare a skin-core composite fiber.
  • the preparation method of the composite fiber is as follows:
  • Comparative Example 2 The preparation method of Comparative Example 2 is basically the same as that of Example 1, with the only difference being that in step (6), both the sheath component and the core component are modified graphene polyester masterbatch, that is, the modified graphene polyester masterbatch with a graphene content of 0.1% in step (5) is directly spun to obtain a composite fiber.
  • polyester fiber The preparation method of polyester fiber is as follows:
  • Comparative Example 3 The preparation method of Comparative Example 3 is basically the same as that of Example 1, except that in step (6), no modified graphene masterbatch is added, that is, the sheath component and the core component are both prepared from polyester chips to obtain polyester fibers.
  • FIG1 is an infrared spectra of the carbon ball modified graphene sample and the graphene loaded nanosilver composite sample in Example 1 of the present invention.
  • Figure 2 is an EDX spectrum of the graphene-supported nanosilver composite in Example 1 of the present invention. From the EDX spectrum, it can be seen that the surface of the graphene-supported nanosilver composite sample contains C, O, and Ag elements.
  • FIG3 is an XRD spectrum of graphene loaded with nanosilver in Example 1 of the present invention. It can be seen from the XRD spectrum that after y reacts with silver nitrate, four obvious diffraction peaks appear at 38.1°, 44.4°, 64.6° and 77.5°, which correspond to the (111), (200), (220) and (311) crystal planes of the silver fcc structure (JCPDS No. 04-0783). It is further judged that silver is loaded on the surface of the carbon sphere.
  • FIG4 is a digital photograph of the graphene dispersion prepared in step (2) of Example 1 of the present invention and Comparative Example 1 after being placed for one week. It can be seen that after being placed for one week, the graphene dispersion prepared in Example 1 has no obvious sedimentation and still has very good dispersibility, while the graphene dispersion prepared in Comparative Example 1 has already shown obvious stratification, which is mainly due to the fact that in Example 1, carbon nanospheres are used as a stripping aid, which act together with graphene to obtain carbon sphere-modified graphene, thereby giving graphene excellent dispersibility, which is due to the rich functional groups on the surface of the carbon nanospheres.
  • Figure 5 is a TEM of carbon ball-modified graphene prepared in Example 1 of the present invention. It can be seen that the nano carbon balls are uniformly adsorbed on the graphene surface.
  • Figure 6 is a microscopic photograph of the sheath-core composite fiber prepared in Example 1. It can be seen from the microscopic photograph that the sheath layer and the core layer present an obvious sheath-core structure under light due to their different compositions.
  • Figure 7 is a SEM image of the fibers prepared in Example 1 and Comparative Example 3.
  • the polyester masterbatch prepared with the graphene-loaded nanosilver composite as the skin layer has a rough surface of the composite fiber, while the skin layer is The surface of polyester fiber prepared from polyester chips is relatively smooth.
  • Figure 8 is a SEM image of the cross section of the sheath-core composite fiber prepared in Example 1. It can be seen from the cross section that the interface bonding between the sheath layer and the core layer is very good, and there is no defect between them.
  • the skin layer of Comparative Example 1 uses a masterbatch obtained from graphene that has not been modified with nanocarbon balls. Since graphene is easy to stack and agglomerate, the performance of the composite fiber prepared from it is worse.
  • Comparing Example 1 and Comparative Example 2 it can be seen that the present invention adopts the design of the skin-core structure to greatly maintain the breaking strength of the polyester fiber, while the breaking strength of the modified graphene masterbatch is very low when it is directly spun; Comparing Examples 1-6 and Comparative Example 3, the graphene-loaded nanosilver composite is introduced into the fiber as a functional body, which reduces the specific resistance of the fiber, has good antistatic properties, and has a good antibacterial effect, and its antibacterial rate reaches more than 92%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种皮芯型复合纤维及其制备方法和应用。所述皮芯型复合纤维是以改性石墨烯母粒为皮层,高分子材料为芯层经熔融纺丝制备得到。所述皮芯型复合纤维的制备方法具有绿色环保、工艺简单适用性广等特点,适合于工业化生产。所述纤维兼具抗静电、抗菌功能,且力学强度好,在功能性纺织领域有着广阔的应用前景。

Description

一种皮芯型复合纤维及其制备方法和应用
本申请要求享有2022年10月28日向中国国家知识产权局提交的,专利申请号为202211338799.6,发明名称为“一种皮芯型复合纤维及其制备方法和应用”的在先申请的优先权权益。所述在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明主要涉及纤维相关技术领域,具体设计一种皮芯型复合纤维及其制备方法和应用。
背景技术
石墨烯是具有单个二维碳原子层的蜂巢状晶体,是目前已知最薄的二维碳纳米材料。石墨烯独特的大π共轭体系使其具有优异的物理化学特性,如超高的比表面积、优良的导电导热性、特殊的光学性能以及优异的力学性能。这些性能使得石墨烯材料在能源、电子、涂料、纤维等领域都具有广阔的应用前景。
石墨烯的规模化制备是其走向应用的关键。尽管石墨烯的制备方法有很多种,包括外延生长法、机械剥离法、电化学剥离法、化学气相沉积法等,但均存在着不同程度的局限性,例如,Hummers法需要强氧化剂而不环保,且会破坏石墨烯的结构,而化学气相沉积法制备条件苛刻、生产成本高等,这些使得石墨烯在实际产业化应用中受到极大的限制。
近年来,在纺织领域,许多研究成果已经明确证明了石墨烯能显著提高聚合物的各种性能,包括机械性能、导热导电和阻隔性能等。功能性石墨烯纤维的制备主要有以下三个途径:一是通过物理或者化学的方式对纤维表面进行加工处理,从而使石墨烯负载在纤维表面,这种方法制备的功能性纤维由于石墨 烯与纤维之间的作用力差,因此在耐水洗方面存在明显不足,易使纤维的功能性失效;二是通过共混或复合纺丝时加入石墨烯,进而达到对纤维改性的目的,但由于石墨烯自身存在强烈的团聚效应,在共混时难以在剪切和搅拌作用下重新分散,容易在纤维中形成缺陷,降低了纤维的力学强度,使纺丝过程中出现断丝、毛丝现象,而且石墨烯的添加量很有限,难于充分发挥石墨烯的特性;三是采用原位聚合方法制备改性纤维,但由于纤维聚合阶段需要低含水量、高真空等特殊聚合环境,纳米级石墨烯的加入很容易干扰聚合反应的进行,极大地限制了纤维的聚合度,导致产品质量降低。因此,开发一种力学强度好、多功能的石墨烯复合纤维具有重要意义。
发明内容
为了改善上述技术问题,本发明提供的技术方案如下:
一种复合纤维的制备方法,所述制备方法包括如下步骤:
(1)将纳米碳球、石墨、水混合,制备预处理的纳米碳球/石墨分散液;
(2)将步骤(1)中得到的预处理的纳米碳球/石墨分散液进行剥离,制备石墨烯分散液;
(3)在步骤(2)得到的石墨烯分散液中加入金属源,得到负载金属的石墨烯分散液;
(4)将步骤(3)得到的负载金属的石墨烯分散液进行干燥,得到石墨烯负载金属复合物;
(5)将步骤(4)得到的石墨烯负载金属复合物与高分子材料进行熔融共混制备改性石墨烯母粒;
(6)以步骤(5)得到的改性石墨烯母粒为皮组分,以高分子材料为芯组分,经熔融纺丝制备得到复合纤维。
根据本发明的实施方案,步骤(1)中,所述纳米碳球可以以单糖为原料并利用水热法制备得到。
根据本发明的实施方案,步骤(1)中,制备所述纳米碳球的原料为单糖,所述单糖选自葡萄糖、果糖、半乳糖等中的至少一种。
根据本发明的实施方案,水热法的反应温度为100-300℃,例如160-200℃,示例性为100℃、120℃、130℃、150℃、160℃、180℃、200℃、220℃、240℃、260℃、280℃、300℃。
根据本发明的实施方案,水热法中,单糖的浓度为1-60mg/mL,例如10-50mg/mL,示例性为1mg/mL、5mg/mL、10mg/mL、20mg/mL、30mg/mL、40mg/mL、50mg/mL、60mg/mL。
根据本发明的实施方案,水热法的反应时间为5-10h,例如6-8h,示例性为5h、6h、7h、8h、9h、10h。
根据本发明的实施方案,步骤(1)中,所述石墨选自天然鳞片石墨、膨胀石墨、石墨粉等中的至少一种。进一步地,所述石墨的形态为粉体,例如石墨粉的目数为80目到5000目,示例性地为80、200、300、325、500、750、1000、1200、1500、2000、3000、4000或5000目。
根据本发明的实施方案,步骤(1)中,所述预处理的纳米碳球/石墨分散液中的石墨的浓度为1-50mg/mL,例如5-25mg/mL,示例性为1mg/mL、5mg/mL、10mg/mL、25mg/mL、30mg/mL、40mg/mL、50mg/mL。
根据本发明的实施方案,步骤(1)具体可以为:(1a)利用水热法制备纳米碳球,将石墨加入到纳米碳球水溶液中,得到预处理的纳米碳球/石墨分散液。
根据本发明的实施方案,步骤(1)还可以为:(1b)将石墨和单糖加入到水中进行混合,然后进行水热处理,将单糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液。优选地,步骤(1b)中,可以采用高剪切分散乳化机混合。
根据本发明的实施方案,步骤(1b)中,所述高剪切分散乳化机的处理时间为1-100min,例如5~50min,示例性为5min、25min、50min、75min、100min。
根据本发明的实施方案,步骤(1b)中,所述高剪切分散乳化机的转速为1000-15000rpm,例如5000~10000rpm,示例性为5000rpm、8000rpm、10000rpm。
根据本发明的实施方案,步骤(1)还可以为:(1c)将石墨和单糖加入到水中,进行水热处理,将单糖制备成纳米碳球,然后进行混合,得到预处理的纳米碳球/石墨分散液。
优选地,步骤(1c)中,可以采用超声的方式混合。
根据本发明的实施方案,步骤(2)中,将所述预处理的纳米碳球/石墨分散液加入具有超高剪切速率的剪切设备内进行剥离,得到石墨烯分散液。
优选地,所述具有超高剪切速率的剪切设备包括但不限于:微射流均质机等。
根据本发明的实施方案,步骤(2)具体可以为:对所述预处理的纳米碳球/石墨分散液在微射流均质机中进行剥离,其具体过程为:先将预处理的纳米碳球/石墨分散液通过200-400μm(示例性为200μm、300μm或400μm)喷嘴循环1-5次(示例性循环1次、3次或5次),压强为3000-5000psi(示例性为3000psi、4000psi或5000psi);再将其通过100-200μm(示例性为100μm、150μm或200μm)喷嘴循环1-50次(示例性循环3次、5次或7次),压强为15000~22000psi(示例性为15000psi、18000psi或22000psi)。
根据本发明的实施方案,步骤(2)中,所述剥离时间为10-100min。
根据本发明的实施方案,步骤(3)中,所述金属源选自下述至少一种物质或含有该物质的溶液:硝酸银、硝酸铜、硝酸锌。
示例性地,所述金属源选自硝酸银溶液,其浓度为0.1~1mol/L,例如0.1~0.5mol/L,示例性为0.1mol/L、0.3mol/L、0.5mol/L。
根据本发明的实施方案,步骤(4)中,所述干燥例如选自冷冻干燥。优选地,所述冷冻干燥的时间为1~96h,例如为24h、48h、72h。冷冻干燥的温度为-50℃~-10℃,示例性地为-30℃。
根据本发明的实施方案,步骤(5)中,所述改性石墨烯母粒中石墨烯的质量分数为0.005-0.8%,例如0.1-0.5%,示例性为0.1%、0.2%、0.3%、0.4%、0.5%。
根据本发明的实施方案,步骤(5)中,所述高分子材料选自本领域常用的 制备纤维的聚合物,例如选自锦纶、涤纶、氨纶中的至少一种,示例性为聚酯、尼龙6。
根据本发明的实施方案,步骤(6)中,所述的复合纤维中,皮组分占所述复合纤维的总质量的质量分数为10-30%,例如10-20%,示例性为10%、15%、20%。
本发明还提供一种复合纤维,所述复合纤维包括皮层和芯层。
根据本发明的实施方案,所述皮层占所述复合纤维的质量分数为10%~30%,例如为10%、20%、30%。
根据本发明的实施方案,所述芯层包括高分子材料,所述高分子材料具有如上文所述含义。
根据本发明的实施方案,所述皮层选自改性石墨烯母粒。优选地,所述改性石墨烯母粒包括石墨烯负载金属复合物和所述高分子材料。优选地,所述石墨烯负载金属复合物占所述改性石墨烯母粒的质量分数为0.005-0.8%,例如0.1-0.5%,示例性为0.1%、0.2%、0.3%、0.4%、0.5%。
根据本发明的实施方案,为了使所述复合纤维的皮层和芯层具有比较好的界面相容性,所述芯层和皮层中的高分子材料优选为相同的高分子材料。示例性地,所述皮层和芯层中的高分子材料均选自锦纶、涤纶、氨纶中的至少一种,示例性为聚酯、尼龙6。
根据本发明的实施方案,所述石墨烯负载金属复合物包括纳米金属或者金属离子,和改性石墨烯。优选地,所述纳米金属或者金属离子选自Ag、Cu、Zn中的至少一种。
根据本发明的实施方案,所述改性石墨烯通过下述方法制备得到:将纳米碳球、石墨混合后得到所述改性石墨烯,其中,所述纳米碳球负载在石墨烯的表面。
根据本发明的实施方案,所述纳米金属或者金属离子原位沉积在所述改性 石墨烯上,优选原位沉积在所述纳米碳球上。本发明中对所述纳米金属或金属离子的负载量不作具体限定,可选用本领域已知的用量。
根据本发明的实施方案,所述改性石墨烯的层数为1-10层,横向尺寸为0.5-10μm。
根据本发明的实施方案,所述纳米碳球以单糖为原料通过水热法制备得到。
根据本发明的实施方案,所述单糖选自葡萄糖、果糖、半乳糖等中的至少一种。
根据本发明的实施方案,所述石墨选自天然鳞片石墨、膨胀石墨、石墨粉等中的至少一种。进一步地,所述石墨的形态为粉体,例如石墨粉的目数为80目到5000目。
根据本发明的实施方案,所述复合纤维的断裂强度大于3cN/dtex,例如为3.1~6cN/dtex,又例如为3.5cN/dtex、4cN/dtex、5cN/dtex、6cN/dtex。
根据本发明的实施方案,所述复合纤维的比电阻小于1×107Ω·cm,例如为1×106~9.5×106Ω·cm。
根据本发明的实施方案,所述复合纤维具有优异的抗静电和/或抗菌等功能。
根据本发明的实施方案,所述复合纤维通过上述制备方法得到。
本发明还提供上述复合纤维的应用,例如用于功能性纺织领域。
本发明的有益效果体现在:
(1)本发明以石墨为原料,单糖水热法制备的纳米碳球为剥离助剂,水作为分散介质,经微射流均质机一步制备纳米碳球改性的石墨烯,该方法不需要强酸、强氧化剂等预处理,是一种绿色环保、工艺简单的路线;
(2)利用纳米碳球与石墨烯之间的π-π共轭作用,在剥离过程中直接制备纳米碳球改性的石墨烯,不仅能保持石墨烯的完整结构,而且碳球表面丰富的官能团,赋予了石墨烯优异的分散性;
(3)充分利用纳米碳球的表面结构特性,原位沉积纳米金属或金属离子,制备石墨烯负载金属复合物,进一步避免了石墨烯之间发生堆叠,同时使纳米金属或金属离子均匀地分散在石墨烯表面;
(4)本发明以石墨烯负载金属复合物与高分子材料复合得到的改性石墨烯母粒作为皮层,以高分子材料作为芯层,经熔融纺丝制备复合纤维,保持了纤维固有的力学强度,并降低了功能体的添加量;
(5)本发明制备的复合纤维具有优异的抗静电、抗菌等功能,具有应用前景。
附图说明
图1实施例1中碳球改性石墨烯和石墨烯负载纳米银复合物的红外光谱图。
图2为实施例1中石墨烯负载纳米银复合物的EDX谱图。
图3为实施例1中石墨烯负载纳米银复合物的XRD谱图。
图4为实施例1和对比例1制备的石墨烯分散液放置一周后的数码照片。
图5为实施例1制备的纳米碳球改性石墨烯的TEM。
图6为实施例1制备的皮芯型复合纤维的显微镜照片。
图7为实施例1和对比例3制备的纤维的SEM图。
图8为实施例1的皮芯型复合纤维断面的SEM图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例1
皮芯型复合纤维的制备方法如下:
(1)首先将325目石墨粉和葡萄糖加入到水中,配制石墨粉/葡萄糖分散液,石墨粉的浓度为25mg/mL,葡萄糖的浓度为10mg/mL,使用高剪切分散乳化机以8000rpm转速将上述分散液剪切混合5min;在180℃下保温7h,将葡萄糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过300μm的喷嘴循环1次,压强为5000psi;再将其通过100μm的喷嘴循环3次,压强为18000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.5mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为72h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与聚酯切片(美国杜邦公司,FC02BK507,下同)进行熔融共混制备石墨烯含量为0.1%的改性石墨烯聚酯母粒;
(6)以石墨烯含量为0.1%的改性石墨烯聚酯母粒为皮组分,以聚酯切片为芯组分,经熔融纺丝机制备皮层占质量分数为30%的皮芯型复合纤维。
实施例2
皮芯型复合纤维的制备方法如下:
(1)将果糖和水混合,制备浓度为30mg/mL的果糖/水溶液;将750目石墨粉加入到上述果糖/水溶液中,配制浓度为10mg/mL的果糖/石墨分散液;使用高剪切分散乳化机以8000rpm转速将果糖/石墨分散液剪切混合25min,然后在200℃下水热处理7h,将果糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过300μm 的喷嘴循环3次,压强为4000psi;再将其通过150μm的喷嘴循环3次,压强为18000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.1mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为72h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与尼龙6切片(巴陵石化,BL3240H,下同)进行熔融共混制备石墨烯含量为0.5%的改性石墨烯尼龙6母粒;
(6)以石墨烯含量为0.5%的改性石墨烯尼龙6母粒为皮组分,以尼龙6切片为芯组分,经熔融纺丝机制备皮层占质量分数为30%的皮芯型复合纤维。
实施例3
皮芯型复合纤维的制备方法如下:
(1)将葡萄糖和水混合,制备浓度为50mg/mL的葡萄糖/水溶液,在160℃下保温6h,制备浓度为50mg/mL的纳米碳球/水溶液;将1200目石墨粉加入到上述纳米碳球/水溶液中,配制浓度为5mg/mL的纳米碳球/石墨分散液;搅拌至体系均匀,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过250μm的喷嘴循环3次,压强为5000psi;再将其通过100μm的喷嘴循环5次,压强为18000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.3mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为24h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与聚酯切片进行熔融共混制备石墨烯含量为0.3%的改性石墨烯聚酯母粒;
(6)以石墨烯含量为0.3%的改性石墨烯聚酯母粒为皮组分,以聚酯切片为芯组分,经熔融纺丝机制备皮层占质量分数为10%的皮芯型复合纤维。
实施例4
皮芯型复合纤维的制备方法如下:
(1)首先将2000目石墨粉和半乳糖加入到水中,半乳糖的浓度为10mg/mL,石墨粉的浓度为25mg/mL;在180℃下保温7h,将半乳糖制备成纳米碳球,再进行5min的超声处理将其混合,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过200μm的喷嘴循环5次,压强为5000psi;再将其通过100μm的喷嘴循环7次,压强为22000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.5mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为48h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与尼龙6切片进行熔融共混制备石墨烯含量为0.1%的改性石墨烯尼龙6母粒;
(6)以石墨烯含量为0.1%的改性石墨烯尼龙6母粒为皮组分,以尼龙6切片为芯组分,经熔融纺丝机制备皮层占质量分数为20%的皮芯型复合纤维。
实施例5
皮芯型复合纤维的制备方法如下:
(1)首先将天然鳞片石墨和果糖加入到水中,配制天然鳞片石墨/果糖分散液,天然鳞片石墨的浓度为5mg/mL,果糖的浓度为30mg/mL,使用高剪切分散乳化机以5000rpm转速将上述分散液剪切混合50min;在160℃下保温8h,将果糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过250μm的喷嘴循环5次,压强为3000psi;再将其通过150μm的喷嘴循环3次,压强为15000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.1mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为48h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与聚酯切片进行熔融共混制备石墨烯含量为0.1%的改性石墨烯聚酯母粒;
(6)以石墨烯含量为0.1%的改性石墨烯聚酯母粒为皮组分,以聚酯切片为芯组分,经熔融纺丝机制备皮层占质量分数为30%的皮芯型复合纤维。
实施例6
皮芯型复合纤维的制备方法如下:
(1)首先将膨胀石墨和葡萄糖加入到水中,配制膨胀石墨/葡萄糖分散液,膨胀石墨的浓度为5mg/mL,葡萄糖的浓度为50mg/mL,使用高剪切分散乳化机以5000rpm转速将上述分散液剪切混合50min;在170℃下保温6h,将葡萄糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液;
(2)将预处理的纳米碳球/石墨分散液加入微射流均质机中,先通过250μm的喷嘴循环3次,压强为5000psi;再将其通过150μm的喷嘴循环5次,压强为18000psi,得到石墨烯分散液,其中,石墨烯为经纳米碳球改性后的石墨烯;
(3)在100mL石墨烯分散液中加入10mL的0.1mol/L硝酸银溶液,得到负载纳米银的石墨烯分散液;
(4)将负载纳米银的石墨烯分散液进行冷冻干燥,冷冻干燥的时间为72h,温度为零下30℃,得到石墨烯负载纳米银复合物;
(5)将石墨烯负载纳米银复合物与聚酯切片进行熔融共混制备石墨烯含量 为0.2%的改性石墨烯聚酯母粒;
(6)以石墨烯含量为0.2%的改性石墨烯聚酯母粒为皮组分,以聚酯切片为芯组分,经熔融纺丝机制备皮层占质量分数为20%的皮芯型复合纤维。
对比例1
皮芯型复合纤维的制备方法如下:
对比例1的制备方法基本与实施例1相同,区别在于:在制备石墨烯时,不加入纳米碳球,即步骤(1)中不加入葡萄糖只以水为介质得到预处理的石墨分散液;步骤(2)中将预处理的石墨分散液采用与实施例1中相同工艺制备得到石墨烯分散液,其中,石墨烯未经纳米碳球改性;其余步骤同实施例1,制备得到皮芯型复合纤维。
对比例2
复合纤维的制备方法如下:
对比例2的制备方法基本与实施例1相同,区别仅在于:步骤(6)中,皮组分和芯组分均是改性石墨烯聚酯母粒,即将步骤(5)中的石墨烯含量为0.1%的改性石墨烯聚酯母粒直接进行纺丝,得到复合纤维。
对比例3
聚酯纤维的制备方法如下:
对比例3的制备方法基本与实施例1相同,区别在于:步骤(6)中,不加入改性石墨烯母粒,即皮组分和芯组分均采用聚酯切片制备得到聚酯纤维。
测试例
取实施例1中步骤(2)经纳米碳球改性后的石墨烯样品(记为碳球改性石墨烯)和步骤(4)的石墨烯负载纳米银复合物样品(记为石墨烯负载纳米银), 分别测试其的红外光谱。图1为本发明实施例1中碳球改性石墨烯样品和石墨烯负载纳米银复合物样品的红外光谱图。从中可以看出,经碳球改性后的石墨烯中3400cm-1左右对应于―OH的吸收峰,2925cm-1附近的小峰是由C-H伸缩振动造成,1697cm-1对应C=O的伸缩振动,1651cm-1是由共扼烯烃骨架振动造成的,1508cm-1峰的存在可能为苯环骨架振动,这些官能团说明了纳米碳球的官能团以―OH、C=O为主,水热过程中发生了脱水缩合和芳环化过程;而与硝酸银反应之后,在1604cm-1出现了COO-的伸缩振动吸收峰,可以初步判断,其在碳球表面发生了氧化还原反应。
图2为本发明实施例1中石墨烯负载纳米银复合物的EDX谱图。由EDX谱图可知,石墨烯负载纳米银复合物样品表面含有C、O、Ag元素。
图3为本发明实施例1中石墨烯负载纳米银的XRD谱图。由XRD谱图可知,y与硝酸银反应之后,在38.1°、44.4°、64.6°和77.5°处出现了四个明显的衍射峰,这些衍射峰分别对应于银fcc结构的(111)、(200)、(220)和(311)晶面(JCPDS No.04-0783)。进一步判断,在碳球表面负载了银。
图4为本发明实施例1和对比例1步骤(2)中制备的石墨烯分散液放置1周后的数码照片。从中可以看出,放置一周后,实施例1制备的石墨烯分散液未见明显的沉降,仍具有非常好的分散性,而对比例1制备的石墨烯分散液已经出现了明显的分层现象,这主要源于实施例1是以纳米碳球作为剥离助剂,与石墨烯共同作用得到碳球改性的石墨烯,从而赋予石墨烯优异的分散性,这得益于纳米碳球表面丰富的功能性基团。
图5为本发明实施例1制备的碳球改性石墨烯的TEM。可见,纳米碳球均匀地吸附在石墨烯表面。
图6为实施例1制备的皮芯型复合纤维的显微镜照片。从中可以看出,皮层和芯层因为组成不同,在光线下呈现明显的皮芯结构。
图7为实施例1和对比例3制备的纤维的SEM图。对比可以发现,以石墨烯负载纳米银复合物制备的聚酯母粒为皮层,其复合纤维为粗糙的表面,而皮层以 聚酯切片制备的聚酯纤维,其表面比较光滑。
图8为实施例1制备的皮芯型复合纤维断面的SEM图。从中可以看出,皮层和芯层之间界面结合性非常好,之间没有出现缺陷。
从表1中可以看出,与实施例1相比,对比例1的皮层采用未经纳米碳球改性的石墨烯得到的母粒,由于石墨烯容易堆叠团聚,将其制备得到复合纤维的性能更差。对比实施例1和对比例2可知,本发明采用皮芯结构的设计,极大地保持了聚酯纤维的断裂强度,而以改性石墨烯母粒直接纺丝,其断裂强度非常低;对比实施例1-6和对比例3,在纤维中引入石墨烯负载纳米银复合物作为功能体,降低了纤维的比电阻,具有很好的抗静电性能,同时具有很好的抗菌效果,其抗菌率均达到92%以上。
表1纤维的性能
以上对本发明示例性的实施方式进行了说明。但是,本申请的保护范围不拘囿于上述实施方式。本领域技术人员在本发明的精神和原则之内,所做的任 何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合纤维的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)将纳米碳球、石墨、水混合,制备预处理的纳米碳球/石墨分散液;
    (2)将步骤(1)中得到的预处理的纳米碳球/石墨分散液进行剥离,制备石墨烯分散液;
    (3)在步骤(2)得到的石墨烯分散液中加入金属源,得到负载金属的石墨烯分散液;
    (4)将步骤(3)得到的负载金属的石墨烯分散液进行干燥,得到石墨烯负载金属复合物;
    (5)将步骤(4)得到的石墨烯负载金属复合物与高分子材料进行熔融共混制备改性石墨烯母粒;
    (6)以步骤(5)得到的改性石墨烯母粒为皮组分,以高分子材料为芯组分,经熔融纺丝制备得到复合纤维。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述纳米碳球以单糖为原料并利用水热法制备得到。
    优选地,步骤(1)中,制备所述纳米碳球的原料为单糖,所述单糖选自葡萄糖、果糖、半乳糖中的至少一种。
    优选地,水热法的反应温度为100-300℃。
    优选地,水热法中,单糖的浓度为1-60mg/mL。
    优选地,水热法的反应时间为5-10h。
    优选地,步骤(1)中,所述石墨选自天然鳞片石墨、膨胀石墨、石墨粉中的至少一种。
    优选地,步骤(1)中,所述预处理的纳米碳球/石墨分散液中的石墨的浓度为1-50mg/mL。
  3. 根据权利要求1或2所述的制备方法,其特征在于,步骤(1)具体为:(1a)利用水热法制备纳米碳球,将石墨加入到纳米碳球水溶液中,得到预处理的纳米碳球/石墨分散液。
    优选地,步骤(1)为:(1b)将石墨和单糖加入到水中进行混合,然后进行水热处理,将单糖制备成纳米碳球,得到预处理的纳米碳球/石墨分散液。优选地,步骤(1b)中,可以采用高剪切分散乳化机混合。
    优选地,步骤(1b)中,所述高剪切分散乳化机的处理时间为1-100min。
    优选地,步骤(1b)中,所述高剪切分散乳化机的转速为1000-15000rpm。
    优选地,步骤(1)为:(1c)将石墨和单糖加入到水中,进行水热处理,将单糖制备成纳米碳球,然后进行混合,得到预处理的纳米碳球/石墨分散液。
    优选地,步骤(1c)中,可以采用超声的方式混合。
  4. 根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(2)中,将所述预处理的纳米碳球/石墨分散液加入具有超高剪切速率的剪切设备内进行剥离,得到石墨烯分散液。
    优选地,步骤(2)具体为:对所述预处理的纳米碳球/石墨分散液在微射流均质机中进行剥离,其具体过程为:先将预处理的纳米碳球/石墨分散液通过200-400μm喷嘴循环1-5次,压强为3000-5000psi;再将其通过100-200μm喷嘴循环1-50次,压强为15000~22000psi。
    优选地,步骤(2)中,所述剥离时间为10-100min。
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于,步骤(3)中,所述金属源选自下述至少一种物质或含有该物质的溶液:硝酸银、硝酸铜、硝酸锌。
    优选地,步骤(4)中,所述干燥选自冷冻干燥。优选地,所述冷冻干燥的 时间为1~96h。优选地,所述冷冻干燥的温度为-50℃~-10℃。
    优选地,步骤(5)中,所述改性石墨烯母粒中石墨烯的质量分数为0.005-0.8%。
    优选地,步骤(6)中,所述复合纤维中,皮组分占所述复合纤维的总质量的质量分数为10-30%。
  6. 一种复合纤维,其特征在于,所述复合纤维包括皮层和芯层。
  7. 根据权利要求7所述的复合纤维,其特征在于,所述皮层占所述复合纤维的质量分数为1%~30%。
    优选地,所述芯层包括所述高分子材料。
  8. 根据权利要求6或7所述的复合纤维,其特征在于,所述皮层选自改性石墨烯母粒。优选地,所述改性石墨烯母粒包括石墨烯负载金属复合物和所述高分子材料。优选地,所述石墨烯负载金属复合物占所述改性石墨烯母粒的质量分数为0.005-0.8%。
    优选地,所述石墨烯负载金属复合物包括纳米金属或金属离子,和改性石墨烯。优选地,所述纳米金属或金属离子选自Ag、Cu、Zn中的至少一种。
    优选地,所述纳米金属或金属离子原位沉积在所述改性石墨烯上,优选原位沉积在所述纳米碳球上。
    优选地,所述改性石墨烯的层数为1-10层,横向尺寸为0.5-10μm。
    优选地,所述纳米碳球以单糖为原料通过水热法制备得到。
  9. 根据权利要求6-8任一项所述的复合纤维,其特征在于,所述复合纤维的断裂强度大于3cN/dtex。
    优选地,所述复合纤维的比电阻小于1×107Ω·cm。
    优选地,所述复合纤维具有优异的抗静电和/或抗菌功能。
  10. 权利要求6-9任一项所述的复合纤维的应用。
PCT/CN2023/125755 2022-10-28 2023-10-20 一种皮芯型复合纤维及其制备方法和应用 WO2024088180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338799.6A CN115613161A (zh) 2022-10-28 2022-10-28 一种皮芯型复合纤维及其制备方法和应用
CN202211338799.6 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024088180A1 true WO2024088180A1 (zh) 2024-05-02

Family

ID=84876997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125755 WO2024088180A1 (zh) 2022-10-28 2023-10-20 一种皮芯型复合纤维及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115613161A (zh)
WO (1) WO2024088180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115613161A (zh) * 2022-10-28 2023-01-17 中国科学院福建物质结构研究所 一种皮芯型复合纤维及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077772A (ko) * 2010-12-31 2012-07-10 주식회사 효성 그래핀-폴리아미드 전도성 복합섬유 및 그 제조방법
CN104587918A (zh) * 2015-01-30 2015-05-06 河海大学 一种银纳米粒子修饰碳球/石墨烯复合气凝胶材料及其制备方法与应用
CN105002595A (zh) * 2015-07-21 2015-10-28 中国科学院宁波材料技术与工程研究所 一种含部分还原石墨烯的高分子复合功能纤维及其制备方法
CN105293581A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钼/石墨烯/碳纳米球复合材料及其制备方法
CN107699983A (zh) * 2017-11-03 2018-02-16 山东圣泉新材料股份有限公司 一种皮芯多孔型防蚊抗菌纤维及其制备方法
CN107938021A (zh) * 2017-10-18 2018-04-20 福建恒安卫生材料有限公司 一种抗菌纤维、制备方法与一次性吸湿制品面层用抗菌非织造布
CN115613161A (zh) * 2022-10-28 2023-01-17 中国科学院福建物质结构研究所 一种皮芯型复合纤维及其制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385705B2 (ja) * 2014-01-10 2018-09-05 丸祥電器株式会社 極細炭素繊維を含有する球状複合銀微粒子の製造方法
KR101503637B1 (ko) * 2014-01-24 2015-03-19 주식회사 효성 심초구조의 편평형 이형단면 복합사의 제조방법 및 그에 의하여 제조된 심초구조의 편평형 이형단면 복합사
CN105206801B (zh) * 2015-08-21 2018-05-18 中南大学 一种锂离子电池用硅碳复合负极材料的制备方法
CN105200547B (zh) * 2015-10-19 2018-06-01 南通强生石墨烯科技有限公司 一种石墨烯-涤纶纳米复合纤维的制备方法
CN105525381B (zh) * 2015-10-27 2018-03-06 济南圣泉集团股份有限公司 一种含有石墨烯的复合聚酯纤维、其制备方法和用途
CN106637489B (zh) * 2016-12-30 2019-03-29 天津工业大学 具有热电效应的聚合物皮芯复合纤维及其制备方法与应用
DE112018001356T5 (de) * 2017-03-15 2019-11-28 Shandong Shengquan New Materials Co., Ltd. Modifiziertes Faserprodukt, Herstellungsverfahren dafür und Verwendung davon
CN107022114B (zh) * 2017-05-26 2018-12-07 成都新柯力化工科技有限公司 一种超高分子量聚乙烯专用石墨烯微球母料及制备方法
CN107164835B (zh) * 2017-06-30 2019-12-13 山东圣泉新材料股份有限公司 一种石墨烯聚合物纤维及其制备方法
US20190292722A1 (en) * 2018-03-20 2019-09-26 Nanotek Instruments, Inc. Process for graphene-mediated metallization of fibers, yarns, and fabrics
KR101966189B1 (ko) * 2018-08-02 2019-04-05 천창범 원적외선 방사체와 탄소나노물질을 포함하는 시스/코어형 기능성 섬유의 제조방법
CN113005555A (zh) * 2021-03-10 2021-06-22 南通强生石墨烯科技有限公司 一种石墨烯发光锦纶复合纤维及其制备方法
CN113430713B (zh) * 2021-05-21 2022-12-27 深圳鹏汇功能材料有限公司 一种具有电磁屏蔽性能的复合板及其制备方法
CN113322532B (zh) * 2021-06-24 2023-02-03 北京服装学院 一种结构色纤维及其制备方法
CN115029814A (zh) * 2022-04-29 2022-09-09 常州典尚纺织服饰有限公司 具有抗病毒病菌和远红外防护保健功能的纤维及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120077772A (ko) * 2010-12-31 2012-07-10 주식회사 효성 그래핀-폴리아미드 전도성 복합섬유 및 그 제조방법
CN104587918A (zh) * 2015-01-30 2015-05-06 河海大学 一种银纳米粒子修饰碳球/石墨烯复合气凝胶材料及其制备方法与应用
CN105002595A (zh) * 2015-07-21 2015-10-28 中国科学院宁波材料技术与工程研究所 一种含部分还原石墨烯的高分子复合功能纤维及其制备方法
CN105293581A (zh) * 2015-10-25 2016-02-03 复旦大学 一种硫化钼/石墨烯/碳纳米球复合材料及其制备方法
CN107938021A (zh) * 2017-10-18 2018-04-20 福建恒安卫生材料有限公司 一种抗菌纤维、制备方法与一次性吸湿制品面层用抗菌非织造布
CN107699983A (zh) * 2017-11-03 2018-02-16 山东圣泉新材料股份有限公司 一种皮芯多孔型防蚊抗菌纤维及其制备方法
CN115613161A (zh) * 2022-10-28 2023-01-17 中国科学院福建物质结构研究所 一种皮芯型复合纤维及其制备方法和应用

Also Published As

Publication number Publication date
CN115613161A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
Ren et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption
Peng et al. The introduction of amino termination on Ti3C2 MXene surface for its flexible film with excellent property
WO2024088180A1 (zh) 一种皮芯型复合纤维及其制备方法和应用
CN108245682B (zh) 酸度、光热响应型介孔MXene纳米片药物载体及制法
CN104755661B (zh) 碳纤维制造方法、该方法所用的前体材料和所得的碳纤维
CN101683978B (zh) 一种制备银纳米颗粒修饰的碳纳米管的方法
CN103524785A (zh) 一种石墨烯/SiO2复合材料及其制备方法与应用
Zhu et al. In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance
CN101654243A (zh) 一种功能纳米石墨烯的制备方法
CN105400157A (zh) 一种提高石墨烯在聚合物基体中分散性的方法
CN102581267A (zh) 一种银-石墨烯复合材料及便捷生产银-石墨烯复合材料的方法
Zhang et al. Flexible SiC-CNTs hybrid fiber mats for tunable and broadband microwave absorption
CN108492907B (zh) 纳米金属修饰的石墨烯导电材料及其制备方法
CN111792669B (zh) 一种TiO2纳米棒/多层石墨烯复合材料及制备方法
CN110255546B (zh) 一种液体橡胶剥离鳞片石墨制备石墨烯的方法
CN1807233A (zh) 制备高分散短碳纳米管的化学剪切方法
KR20210128176A (ko) 그래핀-탄소나노튜브 복합체의 제조방법
Wang et al. Preparation and photocatalytic activity of cuprous oxide/carbon nanofibres composite films
Du et al. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials
CN106987925B (zh) 一种基于离子交换的功能化石墨烯制备方法
CN109762221B (zh) 一种氧化石墨烯负载埃洛石改性丁苯橡胶及其制备方法
Houshi et al. Low-temperature, rapid preparation of functionalized graphene platelets
Sun et al. Mussel-like carbon fiber/MnO2 nanosheet heterostructures for mechanically strong carbon fiber/polyamide composites with excellent electromagnetic interference shielding
CN111979437B (zh) 金属/碳纳米管复合材料及其制备方法
CN1772805B (zh) 聚合物/无机纳米粒子/膨胀石墨三相纳米复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881758

Country of ref document: EP

Kind code of ref document: A1