WO2024087576A1 - 冲击电动工具 - Google Patents

冲击电动工具 Download PDF

Info

Publication number
WO2024087576A1
WO2024087576A1 PCT/CN2023/092890 CN2023092890W WO2024087576A1 WO 2024087576 A1 WO2024087576 A1 WO 2024087576A1 CN 2023092890 W CN2023092890 W CN 2023092890W WO 2024087576 A1 WO2024087576 A1 WO 2024087576A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission housing
guide
power tool
transmission
housing
Prior art date
Application number
PCT/CN2023/092890
Other languages
English (en)
French (fr)
Inventor
陈果
王鹏飞
Original Assignee
江苏东成工具科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211340737.9A external-priority patent/CN115648129B/zh
Application filed by 江苏东成工具科技有限公司 filed Critical 江苏东成工具科技有限公司
Publication of WO2024087576A1 publication Critical patent/WO2024087576A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force

Definitions

  • the present invention relates to the technical field of electric tools, and in particular to an impact electric tool such as a hammer or pick.
  • Hammer and pick impact power tools (such as electric hammers, electric picks, etc.) achieve hammering and chiseling functions by compressing gas to impact the drill bit.
  • the reaction force generated on the working surface will cause the tool to vibrate greatly, especially heavy-duty impact power tools, which have large impact energy and produce large vibrations.
  • the tool itself is heavy. When users use the tool for horizontal operations, they have to overcome the weight of the tool itself and withstand the vibration caused by the reaction force generated by the tool, which seriously affects the user experience.
  • Existing impact power tools such as China Invention Patent Publication No. CN101244556B, disclose a handheld power tool, which allows the outer cover shell to move forward and backward relative to the basic shell by providing a first support device, and offsets the vibration between the basic shell and the outer cover shell by providing a first spring device. Although it can offset the vibration caused by the reaction force of the impact power tool, it still cannot solve the problem that users need to overcome the weight of the tool itself when using the heavy impact power tool for horizontal operations.
  • an object of the present invention is to provide an impact power tool that is comfortable to use.
  • an impact power tool including a main body housing, a motor arranged in the main body housing, a working head driven by the motor, and a transmission mechanism for transmitting the power of the motor to the working head, the transmission mechanism including a transmission housing and A transmission assembly is arranged in the transmission housing, and the impact power tool also includes a balance block.
  • the balance block is movably arranged on the transmission housing so that the balance block can bear the backward component and the upward component of the reaction force of the transmission housing, and a space for the balance block to move is formed in the main body housing.
  • the balancing block is arranged at the rear end of the transmission housing and at least partially covers the transmission housing.
  • a further improved solution is: a first guide mechanism is provided between the balancing block and the transmission housing, and the first guide mechanism guides the balancing block to move along a direction intersecting with the axial direction of the main engine housing.
  • the first guide mechanism includes two first guide grooves and two first guide pins corresponding to each other, the two first guide grooves are parallel to each other and are respectively arranged on the two sides of the balance block, and the two first guide pins are respectively arranged on the two sides of the transmission housing.
  • a further improved solution is that the angle between the extension direction of the two first guide grooves and the axial direction of the main housing is 30-60°.
  • a further improved solution is that the two first guide grooves are arranged on the balancing block in a mirror-symmetrical manner.
  • a further improved solution is that the two first guide pins are detachably arranged on the transmission housing.
  • a further improved solution is: a second guide mechanism is provided between the balancing block and the transmission housing, and the second guide mechanism guides the balancing block to move axially along the main engine housing.
  • the second guide mechanism includes at least one second guide groove and at least one second guide pin, the second guide pin extends axially along the main housing and is arranged on the upper surface of the balance block, and the second guide pin is arranged on the upper surface of the transmission housing.
  • a further improvement is that an elastic element is provided between the second guide pin and the balancing weight to support the balancing weight downward.
  • the elastic element includes a spring sleeved on the second guide pin, one end of the spring abuts against the second guide pin, and the other end of the spring abuts against the balance pin. on the upper surface of the block.
  • the second guide mechanism includes three second guide grooves and three second guide pins corresponding to each other, and the three second guide grooves or second guide pins are respectively located on the three vertices of an isosceles triangle.
  • a further improvement is that the second guide pin is detachably arranged on the transmission housing.
  • the present invention also provides another impact power tool, including a main body housing, a motor arranged in the main body housing, a working head driven by the motor, and a transmission mechanism for transmitting power of the motor to the working head, the transmission mechanism including a transmission housing and a transmission assembly arranged in the transmission housing, the impact power tool also includes a balance block, the balance block is movably arranged on the transmission housing, so that the balance block bears the backward component and the upward component of the reaction force of the transmission housing, at least one elastic element supporting the balance block downward is arranged between the transmission housing and the balance block, and the projection of the center of gravity of the balance block in the vertical direction is located on the geometric figure formed by the elastic element.
  • a further improved solution is: three elastic elements supporting the balancing block downward are arranged between the transmission housing and the balancing block, and the three elastic elements are respectively located on three vertices of an isosceles triangle.
  • the present invention has the following beneficial effects: the impact power tool provided by the present invention, by arranging a movable balance block on the transmission housing, can not only absorb the vibration caused by the reaction force of the transmission housing, but also offset part of the gravity of the impact power tool, so that the impact power tool is perceived to be lighter in horizontal operation and is more comfortable to use.
  • FIG1 is a cross-sectional schematic diagram of an impact power tool according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the installation of a transmission housing and a balancing block according to an embodiment of the present invention
  • FIG. 3 is a top view of the installation of the transmission housing and the balancing block according to an embodiment of the present invention
  • FIG4 is an exploded schematic diagram of the installation of a transmission housing and a balancing block according to an embodiment of the present invention
  • FIG5 is an exploded schematic diagram of the installation of an elastic element according to an embodiment of the present invention.
  • FIG6 is an exploded schematic diagram of the installation of another elastic element according to an embodiment of the present invention.
  • FIG. 7 is an exploded schematic diagram of the installation of another elastic element according to an embodiment of the present invention.
  • 100 main engine housing; 200, motor; 210, armature shaft; 211, driving gear; 220, transmission shaft; 300, transmission mechanism; 310, transmission housing; 320, transmission assembly; 321, gear assembly; 3211, transmission gear; 3212, eccentric wheel; 3213, connecting rod; 3214, eccentric pin; 322, impact assembly; 3221, cylinder; 3222, piston; 3223, hammer; 3224, striker; 400, balancing weight; 410, first guide mechanism; 411, first guide groove; 412, first guide pin; 413, first rubber gasket; 420, second guide mechanism; 421, second guide groove; 422, second guide pin; 423, second rubber gasket; 424, third rubber gasket; 430, shoulder; 440, elastic element.
  • orientation or positional relationship such as “upper”, “lower”, “left”, “right”, “front”, “back”, etc., are based on the orientation or positional relationship shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, and do not indicate or imply that the device/element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore cannot be understood as limiting the present invention.
  • the types of impact power tools vary according to the type of working head.
  • the working head may be a hammer drill or a pick head
  • the impact power tool may be an electric hammer or an electric pick, etc.
  • FIG. 1 shows an impact power tool according to the present invention.
  • it can be an electric hammer, which includes a main body housing 100, a motor 200 arranged in the main body housing 100, a working head driven by the motor 200 (not shown), and a transmission mechanism 300 for transmitting the power of the motor 200 to the working head.
  • the transmission mechanism 300 includes a transmission housing 310 and a transmission assembly 320 arranged in the transmission housing 310.
  • the transmission assembly 320 includes a gear assembly 321 and an impact assembly 322.
  • the gear assembly 321 is used to transmit the power of the motor 200 to the impact assembly 322.
  • the impact assembly 322 is used to intermittently impact the working head, and the working head transmits energy to the material to be crushed to achieve the crushing function.
  • the gear assembly 321 includes a transmission gear 3211 driven to rotate by the motor 200, an eccentric wheel 3212 connected to the transmission gear 3211, and a connecting rod 3213 connected to the eccentric wheel 3212 and driven to reciprocate by the eccentric wheel 3212.
  • a driving gear 211 is provided at one end of the armature shaft 210 of the motor 200, and the transmission gear 3211 and the eccentric wheel 3212 are fixed at both ends of a transmission shaft 220 parallel to the armature shaft 210 of the motor 200, wherein the transmission gear 3211 is meshed with the driving gear 211 to transmit the power of the motor 200 to the transmission shaft 220.
  • a bearing supporting the transmission shaft 220 is provided on both sides of the transmission gear 3211 on the transmission shaft 220.
  • An eccentric pin 3214 is provided on the eccentric wheel 3212, and the connecting rod 3213 is fixedly connected to the eccentric wheel 3212 through the eccentric pin 3214.
  • the eccentric wheel 3212 may also be directly fixed to the armature shaft 210 of the motor 200 .
  • the impact assembly 322 includes a cylinder 3221, a piston 3222 slidably mounted in the cylinder 3221 and connected to the connecting rod 3213, a hammer 3223 disposed in the cylinder 3221 and driven by the piston 3222 to reciprocate, and a striker rod 3224 disposed in the cylinder 3221 and bearing the impact of the hammer 3223.
  • the hammer 3223 intermittently impacts the striker rod 3224 during the reciprocating motion, and the end of the striker rod 3224 away from the hammer 3223 intermittently impacts the working head, thereby realizing the reciprocating motion of the working head and the hammering action.
  • the transmission gear 3211 when the impact power tool is used, after the motor 200 is started, the transmission gear 3211 is driven to rotate, the transmission gear 3211 drives the eccentric wheel 3212 to rotate, and the eccentric pin 3214 provided on the eccentric wheel 3212 rotates along the axis of the eccentric wheel 3212, driving the connecting rod 3213 to reciprocate along the axial direction of the cylinder 3221.
  • 3213 then drives piston 3222 to achieve reciprocating motion.
  • piston 3222 reciprocates in cylinder 3221, it compresses the air cushion between piston 3222 and hammer 3223, thereby transferring the energy of piston 3222 to hammer 3223 through the air cushion, causing hammer 3223 to reciprocate.
  • hammer 3223 When hammer 3223 reciprocates, it intermittently impacts striker rod 3224, which in turn impacts the working head, thereby outputting the energy of the entire machine.
  • the reaction force generated is transmitted to the transmission housing 310 through the working head. Since the transmission housing 310 is fixed in the main housing 100, a reaction force is also generated on the main housing 100.
  • the vibration of the electric hammer caused by the reaction force will bring discomfort to the operator and lead to work fatigue.
  • the operator of a heavy electric hammer when working horizontally, must not only overcome the weight of the electric hammer itself, but also withstand the vibration caused by the reaction force generated by the electric hammer, which seriously affects the operator's experience.
  • a balancing block 400 is movably provided on the transmission housing 310, and the balancing block 400 bears the backward component and the upward component of the reaction force of the transmission housing 310.
  • a space for the balancing block 400 to move is formed in the main body housing 100, so that the balancing block 400 does not contact the inner surface of the main body housing 100.
  • the backward component and the upward component of the reaction force refer to the backward component and the upward component of the reaction force when the reaction force acts on the balancing block 400.
  • the balancing block 400 can move in the front-to-back direction relative to the transmission housing 310 when the backward component is applied, and the balancing block 400 can move in the up-down direction relative to the transmission housing 310 when the upward component is applied.
  • the balancing weight 400 is disposed at the rear end of the transmission housing 310 and at least partially covers the transmission housing 310 .
  • the balancing weight 400 is constructed as a cap-like structure and is installed on the transmission housing 310 from above the transmission housing 310.
  • the projection of the balancing weight 400 in the vertical direction is partially or entirely located on the upper surface of the transmission housing 310. Limited by the internal space of the host housing 100, in this embodiment, the projection of the balancing weight 400 in the vertical direction is entirely located on the upper surface of the transmission housing 310. In this way, the requirements for the internal space of the host housing 100 can be reduced, and the internal space of the host housing 100 can be reduced.
  • the size of the main body housing 100 is convenient for reducing the overall size of the electric hammer and improving the user experience.
  • a first guide mechanism 410 and a second guide mechanism 420 are arranged between the transmission housing 310 and the balancing block 400.
  • the first guide mechanism 410 guides the balancing block 400 to move along a direction intersecting the axial direction of the main housing 100
  • the second guide mechanism 420 guides the balancing block 400 to move along the axial direction of the main housing 100.
  • the first guide mechanism 410 includes two first guide grooves 411 and two first guide pins 412 corresponding to each other.
  • the two first guide grooves 411 are parallel to each other and are respectively arranged on two sides of the balancing block 400.
  • the two first guide pins 412 are respectively arranged on two sides of the transmission housing 310.
  • the balancing block 400 can move relative to the transmission housing 310 by the first guide pins 412 moving in the first guide grooves 411.
  • the angle between the extension direction of the two first guide grooves 411 and the axial direction of the host housing 100 is 30 to 60 degrees.
  • the angle between the extension direction of the two first guide grooves 411 and the axial direction of the host housing 100 is 30 degrees. In other embodiments, the angle between the extension direction of the two first guide grooves 411 and the axial direction of the host housing 100 can also be 45 degrees or 60 degrees.
  • the two first guide grooves 411 are arranged on the balancing block 400 in a mirror-symmetrical manner. In this way, the balancing block 400 can stably move relative to the transmission housing 310. In other embodiments, the two first guide grooves 411 may not be arranged in a mirror-symmetrical manner. For example, the projection of one of the first guide grooves 411 on the side of the balancing block 400 where the other first guide groove 411 is located partially overlaps with or does not overlap with the other first guide groove 411.
  • two first guide pins 412 are detachably arranged on the transmission housing 310.
  • a threaded hole is provided on the transmission housing 310, and an external thread is provided on the first guide pin 412.
  • the first guide pin 412 is configured as a cylindrical pin body perpendicular to the side of the transmission housing 310.
  • the first guide pin 412 is also sleeved with a first rubber gasket 413, which is arranged between the balance block 400 and the transmission housing 310 to play a role in buffering and reducing the wear of the workpiece.
  • the second guide mechanism 420 includes at least one second guide groove 421 and at least one second guide pin 422, the second guide pin 422 extends axially along the main housing 100 and is arranged on the upper surface of the balance block 400, and the second guide pin 422 is arranged on the upper surface of the transmission housing 310.
  • the second guide mechanism 420 includes three second guide grooves 421 and three second guide pins 422 corresponding to each other.
  • the three second guide grooves 421 or the second guide pins 422 are respectively located at three vertices of an isosceles triangle.
  • two shoulders 430 extending forward are provided on the balancing block 400, and the two shoulders 430 are arranged in mirror symmetry, and each shoulder 430 is provided with a second guide groove 421, and the other second guide groove 421 passes through the midpoint of the line connecting the two shoulders 430 along the extension line extending forward axially of the host housing 100. In this way, the balancing block 400 can stably move relative to the transmission housing 310.
  • two second guide pins 422 are detachably arranged on the transmission housing 310.
  • a threaded hole is provided on the transmission housing 310, and an external thread is provided on the second guide pin 422.
  • the second guide pin 422 is rotated to separate it from the transmission housing 310, and then the balancing block 400 is installed on the transmission housing 310, and then the second guide pin 422 is passed through the second guide groove 421 and tightened to the transmission housing 310.
  • the second guide pin 422 is set as a cylindrical pin body perpendicular to the upper surface of the transmission housing 310.
  • the second guide pin 422 is also sleeved with a second rubber gasket 423, which is arranged between the balancing block 400 and the transmission housing 310 to play a role in buffering and reducing the wear of the workpiece.
  • a support is provided between the second guide pin 422 and the balance block 400 to support the balance block 400 downward.
  • the elastic element 440 is provided to offset the tendency of the balancing weight 400 to move upward, so as to absorb the vibration caused by the reaction force of the transmission housing 310.
  • the elastic element 440 includes a spring sleeved on the second guide pin 422, one end of the spring abuts against the second guide pin 422, and the other end of the spring abuts against the upper surface of the balance block 400.
  • the spring may be, for example, a compression spring, a butterfly spring, or the like.
  • a third rubber gasket 424 is sleeved on the second guide pin 422 .
  • the third rubber gasket 424 is arranged between the balancing block 400 and the elastic element 440 to play a role in buffering and reducing the wear of the workpiece.
  • the present invention also relates to another impact power tool.
  • the impact power tool still takes an electric hammer as an example, which includes a main body housing 100, a motor 200 arranged in the main body housing 100, a working head driven by the motor 200, and a transmission mechanism 300 for transmitting the power of the motor 200 to the working head.
  • the transmission mechanism 300 includes a transmission housing 310 and a transmission assembly 320 arranged in the transmission housing 310, and also includes a balancing block 400.
  • the balancing block 400 is movably arranged on the transmission housing 310, so that the balancing block 400 bears the backward component and the upward component of the reaction force of the transmission housing 310.
  • At least one elastic element 440 is arranged between the transmission housing 310 and the balancing block 400 to support the balancing block 400 downward, and the projection of the center of gravity G of the balancing block 400 in the vertical direction is located on the geometric figure formed by the elastic element 440.
  • three elastic elements 440 are provided between the transmission housing 310 and the balancing block 400 to support the balancing block 400 downward.
  • the three elastic elements 440 are respectively located at the three vertices of an isosceles triangle.
  • the projection of the center of gravity G of the balancing block 400 in the vertical direction is located on the isosceles triangle.
  • the isosceles triangle can be understood as a geometric figure formed by the elastic elements 440.
  • the force of the three elastic elements 440 supporting the balancing block 400 downward can cover the center of gravity of the balancing block 400, so that the balancing block 400 is not prone to tilt in the front-to-back direction or the left-to-right direction during the upward movement relative to the transmission housing 310, so as to ensure that the balancing block 400 moves upward in a roughly stable posture.
  • the force for the upward movement of the balancing block 400 is generated by the first guide pin 412 acting on the edge of the first guide slot 411. Since the first guide slot 411 extends in a direction intersecting the axial direction of the host housing 100, as the first guide pin 412 moves in the first guide slot 411, the force application point of the first guide pin 412 on the first guide slot 411 also moves.
  • the force application point moves to a position close to the lower rear of the balancing block 400, it is easy to cause the balancing block 400 to tilt in the front-to-back direction during the movement. If the tilt angle is too large, it is easy to cause the balancing block 400 to be stuck relative to the transmission housing 310. Therefore, by limiting the position of the center of gravity G of the balancing block 400 and the elastic element 440 in space, the occurrence of such tilting can be avoided to a large extent, ensuring smooth movement of the balancing block 400.
  • a single elastic element 440 is provided between the transmission housing 310 and the balancing block 400 to support the balancing block 400 downwards.
  • the projection of the center of gravity G of the balancing block 400 in the vertical direction is located on the outline of the elastic element 440.
  • the outline of the elastic element 440 can be understood as a geometric figure formed by the elastic element 440.
  • the force of the single elastic element 440 supporting the balancing block 400 downwards can cover the center of gravity of the balancing block 400, so that the balancing block 400 is not prone to tilt in the front-to-back direction or the left-to-right direction during the process of moving upward relative to the transmission housing 310, so as to ensure that the balancing block 400 moves upward in a roughly stable posture.
  • the size of a single elastic element 440 is set to be larger than the size of three elastic elements 440, thereby increasing the contact surface between the single elastic element 440 and the balancing block 400.
  • the single elastic element 440 is set on the middle axis of the balancing block 400.
  • two elastic elements 440 are provided between the transmission housing 310 and the balancing block 400 to support the balancing block 400 downward.
  • the projection of the center of gravity G of the balancing block 400 in the vertical direction is located on the line connecting the two elastic elements 440.
  • the line connecting the two elastic elements 440 can be understood as a geometric figure formed by the elastic elements 440.
  • the two elastic elements 440 are The force of the elastic element 440 supporting the balancing block 400 downward can cover the center of gravity of the balancing block 400, so that the balancing block 400 is not prone to tilt in the front-to-back direction or the left-to-right direction during the upward movement relative to the transmission housing 310, thereby ensuring that the balancing block 400 moves upward in a roughly stable posture.
  • the size of the two elastic elements 440 is larger than the size of the three elastic elements 440, and the size of the two elastic elements 440 can be smaller than the size of the single elastic element 440, so as to increase the contact surface between the two elastic elements 440 and the balancing block 400.
  • the two elastic elements 440 can be arranged on the middle axis of the balancing block 400 or be arranged in a mirror-symmetrical manner with the middle axis of the balancing block 400 as the symmetry axis.
  • the working head can generate a reaction force on the main body housing 100 due to the reaction of the material.
  • the reaction force of the main body housing 100 is transmitted to the transmission housing 310 fixed in the main body housing 100.
  • the balance block 400 is guided by the second guide pin 422 on the transmission housing 310 and can move forward and backward relative to the transmission housing 310.
  • the elastic element 440 on the second guide pin 422 can offset the upward movement trend of the balance block 400.
  • the first guide pin 412 on the side of the transmission housing 310 is located in the inclined first guide groove 411 on the balance block 400.
  • the first guide groove 411 When the impact force in the front-to-back direction received by the transmission housing 310 is transmitted to the balance block 400, the first guide groove 411 will form an upward component force on the balance block 400 to push the balance block 400 upward, and the impact force is absorbed by the elastic element 440. While absorbing the impact force in the front-to-back direction, an upward component force will be generated to offset part of the gravity of the impact power tool, so that the impact power tool is perceived to be lighter in horizontal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

本发明涉及一种冲击电动工具,包括主机壳体、设置于所述主机壳体内的马达、由所述马达驱动的工作头、以及将所述马达的动力传递至所述工作头的传动机构,所述传动机构包括传动壳体和设置于所述传动壳体内的传动组件,所述冲击电动工具还包括平衡块,所述平衡块可移动地设置于所述传动壳体上,使得所述平衡块承接所述传动壳体反作用力的向后分量和向上分量,所述主机壳体内形成有供所述平衡块移动的空间。本发明能够提高冲击电动工具使用的舒适性。

Description

冲击电动工具 [技术领域]
本发明涉及电动工具技术领域,尤其涉及一种锤镐类的冲击电动工具。
[背景技术]
锤镐类冲击电动工具(如电锤、电镐等)是通过对气体的压缩冲击钻头来实现锤击、凿击功能的,工作面产生的反作用力会使工具产生较大的振动,特别是重型冲击电动工具,其冲击能量较大,产生的振动也较大,加之工具本身的重量较大,用户在使用工具进行水平作业时,既要克服工具本身的重量,又要承受工具产生的反作用力引起的振动,严重影响了用户体验。
现有的冲击电动工具,如中国发明专利公告第CN101244556B号公开了一种手持式工具机,其通过设置第一支撑装置使得外罩壳体可相对于基本壳体前后移动,并通过设置第一弹簧装置使得基本壳体与外罩壳体之间的振动被抵消。其虽然能够抵消冲击电动工具的反作用力引起的振动,但是仍然无法解决用户在使用重型冲击电动工具进行水平作业时需要克服工具本身重量的问题。
鉴于此,确有必要提供一种改进的冲击电动工具,以克服现有技术存在的缺陷。
[发明内容]
针对现有技术的不足,本发明的目的在于提供一种使用舒适的冲击电动工具。
本发明解决现有技术问题所采用的技术方案是:一种冲击电动工具,包括主机壳体、设置于所述主机壳体内的马达、由所述马达驱动的工作头、以及将所述马达的动力传递至所述工作头的传动机构,所述传动机构包括传动壳体和 设置于所述传动壳体内的传动组件,所述冲击电动工具还包括平衡块,所述平衡块可移动地设置于所述传动壳体上,使得所述平衡块承接所述传动壳体反作用力的向后分量和向上分量,所述主机壳体内形成有供所述平衡块移动的空间。
进一步改进方案为:所述平衡块设置于所述传动壳体的后端并至少部分覆盖于所述传动壳体上。
进一步改进方案为:所述平衡块与所述传动壳体之间设置有第一导向机构,所述第一导向机构引导所述平衡块沿着相交于所述主机壳体轴向的方向移动。
进一步改进方案为:所述第一导向机构包括一一对应的两个第一导向槽和两个第一导向销,两个所述第一导向槽相互平行并分别设置于所述平衡块的两个侧面上,两个所述第一导向销分别设置于所述传动壳体的两个侧面上。
进一步改进方案为:两个所述第一导向槽的延伸方向与所述主机壳体轴向的夹角为30~60°。
进一步改进方案为:两个所述第一导向槽镜像对称地设置于所述平衡块上。
进一步改进方案为:两个所述第一导向销可拆卸地设置于所述传动壳体上。
进一步改进方案为:所述平衡块与所述传动壳体之间设置有第二导向机构,所述第二导向机构引导所述平衡块沿着所述主机壳体轴向移动。
进一步改进方案为:所述第二导向机构包括至少一个第二导向槽和至少一个第二导向销,所述第二导向销沿着所述主机壳体轴向延伸并设置于所述平衡块的上表面上,所述第二导向销设置于所述传动壳体的上表面上。
进一步改进方案为:所述第二导向销与所述平衡块之间设有向下支撑所述平衡块的弹性元件。
进一步改进方案为:所述弹性元件包括套设于所述第二导向销上的弹簧,所述弹簧的一端抵接在所述第二导向销上,所述弹簧的另一端抵接在所述平衡 块的上表面上。
进一步改进方案为:所述第二导向机构包括一一对应的三个第二导向槽和三个第二导向销,三个所述第二导向槽或第二导向销分别位于一个等腰三角形的三个顶点上。
进一步改进方案为:所述第二导向销可拆卸地设置于所述传动壳体上。
本发明还提供另一种冲击电动工具,包括主机壳体、设置于所述主机壳体内的马达、由所述马达驱动的工作头、将所述马达的动力传递至所述工作头的传动机构,所述传动机构包括传动壳体和设置于传动壳体内的传动组件,所述冲击电动工具还包括平衡块,所述平衡块可移动地设置于所述传动壳体上,使得所述平衡块承接所述传动壳体反作用力的向后分量和向上分量,所述传动壳体与所述平衡块之间设置有至少一个向下支撑所述平衡块的弹性元件,所述平衡块的重心在竖直方向上的投影位于所述弹性元件构成的几何图形上。
进一步改进方案为:所述传动壳体与所述平衡块之间设置有三个向下支撑所述平衡块的弹性元件,三个所述弹性元件分别位于一个等腰三角形的三个顶点上。
与现有技术相比,本发明具有如下有益效果:本发明提供的冲击电动工具,通过在传动壳体上设置可移动的平衡块,不但可以吸收由传动壳体的反作用力引起的振动,而且可以抵消部分冲击电动工具的重力,使冲击电动工具在水平作业中感知重量更轻,使用更加舒适。
[附图说明]
下面结合附图对本发明的具体实施方式做进一步详细的说明:
图1是本发明实施例的冲击电动工具的剖面示意图;
图2是本发明实施例的传动壳体与平衡块的安装剖面示意图;
图3是本发明实施例的传动壳体与平衡块的安装俯视图;
图4是本发明实施例的传动壳体与平衡块的安装分解示意图;
图5是本发明实施例的一种弹性元件的安装分解示意图;
图6是本发明实施例的另一种弹性元件的安装分解示意图;
图7是本发明实施例的另一种弹性元件的安装分解示意图。
图中附图标记的含义:
100、主机壳体;200、马达;210、电枢轴;211、主动齿轮;220、传动轴;300、传动机构;310、传动壳体;320、传动组件;321、齿轮组件;3211、传动齿轮;3212、偏心轮;3213、连杆;3214、偏心销;322、冲击组件;3221、气缸;3222、活塞;3223、撞锤;3224、撞杆;400、平衡块;410、第一导向机构;411、第一导向槽;412、第一导向销;413、第一橡胶垫圈;420、第二导向机构;421、第二导向槽;422、第二导向销;423、第二橡胶垫圈;424、第三橡胶垫圈;430、肩部;440、弹性元件。
[具体实施方式]
在本发明中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。例如下述的“上”、“下”、“左”、“右”、“前”、“后”等指示方位或位置关系的词语仅基于附图所示的方位或位置关系,仅为了便于描述本发明和简化描述,而不是指示或暗示所指的装置/元件必须具有特定的方位或以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面结合附图和实施方式对本发明作进一步详细说明。
根据工作头类型的不同,冲击电动工具的类型不同,如工作头可以是锤钻或镐头,相应地冲击电动工具可以是电锤或电镐等。
请参阅图1所示,为本发明涉及的一种冲击电动工具,该冲击电动工具例 如可以为电锤,其包括主机壳体100、设置于主机壳体100内的马达200、由马达200驱动的工作头(未图示)、以及将马达200的动力传递至工作头的传动机构300,传动机构300包括传动壳体310和设置于传动壳体310内的传动组件320,传动组件320包括齿轮组件321和冲击组件322,齿轮组件321用于将马达200的动力传递给冲击组件322,冲击组件322用于间隙地撞击工作头,工作头将能量传递给需要破碎的材料以实现破碎功能。
请继续参阅图1所示,在本实施例中,齿轮组件321包括由马达200带动旋转的传动齿轮3211、与传动齿轮3211传动连接的偏心轮3212、与偏心轮3212连接的由偏心轮3212带动做往复运动的连杆3213。具体地,马达200的电枢轴210的一端设有主动齿轮211,传动齿轮3211和偏心轮3212固定在一平行于马达200的电枢轴210的传动轴220的两端,其中传动齿轮3211与主动齿轮211啮合以将马达200的动力传递给传动轴220。传动轴220上在传动齿轮3211的两侧分别设有一处支撑传动轴220的轴承。偏心轮3212上设置有偏心销3214,连杆3213通过偏心销3214与偏心轮3212实现固定连接。在其他实施例中,偏心轮3212也可以直接固定于马达200的电枢轴210。
冲击组件322包括气缸3221、滑动地配接在气缸3221内的与连杆3213连接的活塞3222、设置在气缸3221内的由活塞3222驱动作往复运动的撞锤3223、以及设置于气缸3221内的承受撞锤3223冲击的撞杆3224。撞锤3223往复运动时间隙性地冲击撞杆3224,撞杆3224的远离撞锤3223的一端间隙地冲击工作头,实现工作头的往复运动,从而实现锤击动作。
具体地,冲击电动工具使用时,马达200启动后,带动传动齿轮3211旋转,传动齿轮3211带动偏心轮3212旋转,设置在偏心轮3212上的偏心销3214随着偏心轮3212的轴线旋转,带动连杆3213沿气缸3221的轴向往复运动,连杆 3213再带动活塞3222实现往复运动。活塞3222在气缸3221内往复运动时压缩活塞3222与撞锤3223之间的气垫,从而把活塞3222的能量通过气垫传递给撞锤3223,使得撞锤3223作往复运动。撞锤3223作往复运动时间隙性地冲击撞杆3224,撞杆3224再撞击工作头,从而将整机能量输出。
电锤在破碎材料时,通过工作头将产生的反作用力传递到传动壳体310上,由于传动壳体310固定在主机壳体100内,因此主机壳体100上也会产生反作用力,反作用力引起的电锤振动会给操作者带来不适,导致工作疲劳;尤其重型电锤的操作者,在水平作业时,既要克服电锤本身自重,又要承受电锤锤击产生的反作用力引起的振动,严重影响了操作者的使用体验。
请参阅图1至图4所示,传动壳体310上可移动地设置有一平衡块400,平衡块400承接传动壳体310反作用力的向后分量和向上分量,主机壳体100内形成有供平衡块400移动的空间,使得平衡块400与主机壳体100的内表面不接触。其中,反作用力的向后分量和向上分量,指的是反作用力作用到平衡块400上时可以分解为向后的分力和向上的分力,平衡块400在受到向后的分力时可相对于传动壳体310在前后方向上移动,平衡块400在受到向上的分力时可相对于传动壳体310在上下方向上移动。
在本实施例中,平衡块400设置于传动壳体310的后端并至少部分覆盖于传动壳体310上。
具体地,平衡块400构成为一类似于帽的结构从传动壳体310的上方安装到传动壳体310上,平衡块400在竖直方向上的投影部分或全部位于传动壳体310的上表面上。受主机壳体100内部空间的限制,在本实施例中,平衡块400在竖直方向上的投影全部位于传动壳体310的上表面上,通过这种方式,可以降低对主机壳体100内部空间的要求,通过减小主机壳体100内部空间来减小 主机壳体100的尺寸,便于减小电锤的整体尺寸,提升用于体验。
请继续参阅图2至图4所示,在本实施例中,传动壳体310与平衡块400之间设置有第一导向机构410和第二导向机构420,第一导向机构410引导平衡块400沿着相交于主机壳体100轴向的方向移动,第二导向机构420引导平衡块400沿着主机壳体100轴向移动。
具体地,第一导向机构410包括一一对应的两个第一导向槽411和两个第一导向销412,两个第一导向槽411相互平行并分别设置于平衡块400的两个侧面上,两个第一导向销412分别设置于传动壳体310的两个侧面上。通过第一导向销412在第一导向槽411内移动,使得平衡块400可相对于传动壳体310移动。其中,为使得第一导向销412能够在第一导向槽411内顺畅地移动,两个第一导向槽411的延伸方向与主机壳体100轴向的夹角为30~60°。在本实施例中,两个第一导向槽411的延伸方向与主机壳体100轴向的夹角为30°。在其他实施例中,两个第一导向槽411的延伸方向与主机壳体100轴向的夹角还可以为45°或60°。
在本实施例中,两个第一导向槽411镜像对称地设置于平衡块400上。通过这种方式,使得平衡块400能够稳定地相对于传动壳体310移动。在其他实施例中,两个第一导向槽411也可以不作镜像对称设置,例如,其中一个第一导向槽411在另一个第一导向槽411所在的平衡块400的侧面上的投影与另一个第一导向槽411部分重合或不重合。
在本实施例中,为方便平衡块400的拆装,两个第一导向销412可拆卸地设置于传动壳体310上。例如,传动壳体310上开设有螺纹孔,第一导向销412上设置有外螺纹。在需要安装平衡块400时,通过转动第一导向销412使其与传动壳体310分离,然后将平衡块400安装到传动壳体310上,再将第一导向 销412穿过第一导向槽411并拧紧到传动壳体310上即可。在本实施例中,第一导向销412设置为垂直于传动壳体310侧面的圆柱形销体。第一导向销412上还套设有第一橡胶垫圈413,第一橡胶垫圈413设置于平衡块400与传动壳体310之间,起到缓冲和减少工件磨损的作用。
具体地,第二导向机构420包括至少一个第二导向槽421和至少一个第二导向销422,第二导向销422沿着主机壳体100轴向延伸并设置于平衡块400的上表面上,第二导向销422设置于传动壳体310的上表面上。
在本实施例中,第二导向机构420包括一一对应的三个第二导向槽421和三个第二导向销422,三个第二导向槽421或第二导向销422分别位于一个等腰三角形的三个顶点上。
具体地,平衡块400上设置有两个向前延伸的肩部430,两个肩部430呈镜像对称设置,每个肩部430上设置有一个第二导向槽421,另一个第二导向槽421沿着主机壳体100轴向向前延伸的延长线穿过两个肩部430连线的中点。通过这种方式,使得平衡块400能够稳定地相对于传动壳体310移动。
在本实施例中,为方便平衡块400的拆装,两个第二导向销422可拆卸地设置于传动壳体310上。例如,传动壳体310上开设有螺纹孔,第二导向销422上设置有外螺纹。在需要安装平衡块400时,通过转动第二导向销422使其与传动壳体310分离,然后将平衡块400安装到传动壳体310上,再将第二导向销422穿过第二导向槽421并拧紧到传动壳体310上即可。在本实施例中,第二导向销422设置为垂直于传动壳体310上表面的圆柱形销体。第二导向销422上还套设有第二橡胶垫圈423,第二橡胶垫圈423设置于平衡块400与传动壳体310之间,起到缓冲和减少工件磨损的作用。
在本实施例中,第二导向销422与平衡块400之间设有向下支撑平衡块400 的弹性元件440。通过设置弹性元件440,能够抵消平衡块400想向上运动的趋势,以吸收传动壳体310反作用力引起的振动。
具体地,弹性元件440包括套设于第二导向销422上的弹簧,弹簧的一端抵接在第二导向销422上,弹簧的另一端抵接在平衡块400的上表面上。弹簧例如可以为压缩弹簧、蝶形弹簧等。
进一步地,在第二导向销422上还套设有第三橡胶垫圈424,第三橡胶垫圈424设置于平衡块400与弹性元件440之间,起到缓冲和减少工件磨损的作用。
请继续参阅图1和图4所示,本发明还涉及另一种冲击电动工具,该冲击电动工具依旧以电锤为例,其包括主机壳体100、设置于主机壳体100内的马达200、由马达200驱动的工作头、将马达200的动力传递至工作头的传动机构300,传动机构300包括传动壳体310和设置于传动壳体310内的传动组件320,还包括平衡块400,平衡块400可移动地设置于传动壳体310上,使得平衡块400承接传动壳体310反作用力的向后分量和向上分量,传动壳体310与平衡块400之间设置有至少一个向下支撑平衡块400的弹性元件440,平衡块400的重心G在竖直方向上的投影位于弹性元件440构成的几何图形上。
请参阅图5所示,在本实施例中,传动壳体310与平衡块400之间设置有三个向下支撑平衡块400的弹性元件440,三个弹性元件440分别位于一个等腰三角形的三个顶点上,此时,平衡块400的重心G在竖直方向上的投影位于该等腰三角形上,此时,该等腰三角形可以理解为由弹性元件440构成的几何图形。通过这种方式,使得三个弹性元件440向下支撑平衡块400的力可以覆盖平衡块400的重心,使得平衡块400在相对于传动壳体310向上移动的过程中不易出现前后方向或左右方向上的倾斜,以保证平衡块400大致以稳定的姿态向上移动。
尤其在本发明中,平衡块400向上移动的力是通过第一导向销412作用在第一导向槽411的边缘产生的,由于第一导向槽411沿着相交于主机壳体100轴向的方向延伸,随着第一导向销412在第一导向槽411中移动,第一导向销412在第一导向槽411上的施力点也在移动,当施力点移动至靠近平衡块400下后方的位置时,很容易造成平衡块400在移动过程中出现在前后方向上的倾斜,若倾斜角度过大,则很容易造成平衡块400相对于传动壳体310移动的卡滞。因此,通过对平衡块400的重心G与弹性元件440在空间上位置的限制,能够很大程度上避免这种倾斜的发生,保证平衡块400顺畅地移动。
请参阅图6所示,在其他实施例中,传动壳体310与平衡块400之间设置有单个向下支撑平衡块400的弹性元件440,此时,平衡块400的重心G在竖直方向上的投影位于该弹性元件440的轮廓上,此时,该弹性元件440的轮廓可以理解为由弹性元件440构成的几何图形。通过这种方式,使得单个弹性元件440向下支撑平衡块400的力可以覆盖平衡块400的重心,使得平衡块400在相对于传动壳体310向上移动的过程中不易出现前后方向或左右方向上的倾斜,以保证平衡块400大致以稳定的姿态向上移动。
具体地,为保证单个弹性元件440也能起到有效的支撑作用,设置单个弹性元件440的尺寸大于设置三个弹性元件440的尺寸,以此增大单个弹性元件440与平衡块400的接触面。并且为防止平衡块400在移动过程中在左右方向上倾斜,单个弹性元件440设置于平衡块400的中间轴线上。
请参阅图7所示,在其他实施例中,传动壳体310与平衡块400之间设置有两个向下支撑平衡块400的弹性元件440,此时,平衡块400的重心G在竖直方向上的投影位于两个弹性元件440的连线上,此时,两个弹性元件440的连线可以理解为由弹性元件440构成的几何图形。通过这种方式,使得两个弹 性元件440向下支撑平衡块400的力可以覆盖平衡块400的重心,使得平衡块400在相对于传动壳体310向上移动的过程中不易出现前后方向或左右方向上的倾斜,以保证平衡块400大致以稳定的姿态向上移动。
具体地,为保证两个弹性元件440也能起到有效的支撑作用,设置两个弹性元件440的尺寸大于设置三个弹性元件440的尺寸,并且,设置两个弹性元件440的尺寸可小于设置单个弹性元件440的尺寸,以此增大两个弹性元件440与平衡块400的接触面。并且为防止平衡块400在移动过程中在左右方向上倾斜,两个弹性元件440可设置于平衡块400的中间轴线上或以平衡块400的中间轴线为对称轴呈镜像对称设置。
当操作者使用本发明的冲击电动工具破碎材料时,工作头受材料的反作用在主机壳体100可以上产生反作用力,主机壳体100的反作用力传递到固定在主机壳体100内的传动壳体310上,平衡块400受传动壳体310上第二导向销422导向可相对传动壳体310前后运动,第二导向销422上的弹性元件440可以抵消平衡块400向上的运动趋势,传动壳体310侧面的第一导向销412位于平衡块400上倾斜的第一导向槽411内,当传动壳体310受到的前后方向的冲击力传递到平衡块400上时,第一导向槽411将会对平衡块400形成向上的分力以推动平衡块400上行,并使冲击力被弹性元件440吸收,在吸收前后方向的冲击力的同时,将会产生向上分力以抵消部分冲击电动工具的重力,使冲击电动工具在水平作业中感知重量更轻。
本发明不局限于上述具体实施方式。本领域普通技术人员可以很容易地理解到,在不脱离本发明原理和范畴的前提下,本发明的冲击电动工具还有很多的替代方案。本发明的保护范围以权利要求书的内容为准。

Claims (15)

  1. 一种冲击电动工具,包括主机壳体、设置于所述主机壳体内的马达、由所述马达驱动的工作头、以及将所述马达的动力传递至所述工作头的传动机构,所述传动机构包括传动壳体和设置于所述传动壳体内的传动组件,其特征在于:所述冲击电动工具还包括平衡块,所述平衡块可移动地设置于所述传动壳体上,使得所述平衡块承接所述传动壳体反作用力的向后分量和向上分量,所述主机壳体内形成有供所述平衡块移动的空间。
  2. 根据权利要求1所述的冲击电动工具,其特征在于:所述平衡块设置于所述传动壳体的后端并至少部分覆盖于所述传动壳体上。
  3. 根据权利要求1所述的冲击电动工具,其特征在于:所述平衡块与所述传动壳体之间设置有第一导向机构,所述第一导向机构引导所述平衡块沿着相交于所述主机壳体轴向的方向移动。
  4. 根据权利要求3所述的冲击电动工具,其特征在于:所述第一导向机构包括一一对应的两个第一导向槽和两个第一导向销,两个所述第一导向槽相互平行并分别设置于所述平衡块的两个侧面上,两个所述第一导向销分别设置于所述传动壳体的两个侧面上。
  5. 根据权利要求4所述的冲击电动工具,其特征在于:两个所述第一导向槽的延伸方向与所述主机壳体轴向的夹角为30~60°。
  6. 根据权利要求4所述的冲击电动工具,其特征在于:两个所述第一导向槽镜像对称地设置于所述平衡块上。
  7. 根据权利要求4所述的冲击电动工具,其特征在于:两个所述第一导向销可拆卸地设置于所述传动壳体上。
  8. 根据权利要求1所述的冲击电动工具,其特征在于:所述平衡块与所述传动壳体之间设置有第二导向机构,所述第二导向机构引导所述平衡块沿着所述 主机壳体轴向移动。
  9. 根据权利要求8所述的冲击电动工具,其特征在于:所述第二导向机构包括至少一个第二导向槽和至少一个第二导向销,所述第二导向销沿着所述主机壳体轴向延伸并设置于所述平衡块的上表面上,所述第二导向销设置于所述传动壳体的上表面上。
  10. 根据权利要求9所述的冲击电动工具,其特征在于:所述第二导向销与所述平衡块之间设有向下支撑所述平衡块的弹性元件。
  11. 根据权利要求10所述的冲击电动工具,其特征在于:所述弹性元件包括套设于所述第二导向销上的弹簧,所述弹簧的一端抵接在所述第二导向销上,所述弹簧的另一端抵接在所述平衡块的上表面上。
  12. 根据权利要求9所述的冲击电动工具,其特征在于:所述第二导向机构包括一一对应的三个第二导向槽和三个第二导向销,三个所述第二导向槽或第二导向销分别位于一个等腰三角形的三个顶点上。
  13. 根据权利要求9所述的冲击电动工具,其特征在于:所述第二导向销可拆卸地设置于所述传动壳体上。
  14. 一种冲击电动工具,包括主机壳体、设置于所述主机壳体内的马达、由所述马达驱动的工作头、将所述马达的动力传递至所述工作头的传动机构,所述传动机构包括传动壳体和设置于传动壳体内的传动组件,其特征在于:所述冲击电动工具还包括平衡块,所述平衡块可移动地设置于所述传动壳体上,使得所述平衡块承接所述传动壳体反作用力的向后分量和向上分量,所述传动壳体与所述平衡块之间设置有至少一个向下支撑所述平衡块的弹性元件,所述平衡块的重心在竖直方向上的投影位于所述弹性元件构成的几何图形上。
  15. 根据权利要求14所述的冲击电动工具,其特征在于:所述传动壳体与所述平 衡块之间设置有三个向下支撑所述平衡块的弹性元件,三个所述弹性元件分别位于一个等腰三角形的三个顶点上。
PCT/CN2023/092890 2022-10-29 2023-05-09 冲击电动工具 WO2024087576A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211340737.9 2022-10-29
CN202211340737.9A CN115648129B (zh) 2022-10-29 冲击电动工具

Publications (1)

Publication Number Publication Date
WO2024087576A1 true WO2024087576A1 (zh) 2024-05-02

Family

ID=84994362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092890 WO2024087576A1 (zh) 2022-10-29 2023-05-09 冲击电动工具

Country Status (1)

Country Link
WO (1) WO2024087576A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415768A1 (de) * 2002-10-31 2004-05-06 Atlas Copco Electric Tools GmbH Schwingungstilger
CN101412213A (zh) * 2007-10-19 2009-04-22 喜利得股份公司 具有振荡平衡质量的手工工具机
CN101795826A (zh) * 2007-09-07 2010-08-04 罗伯特·博世有限公司 具有通过平衡器件减振的把手的手持式工具机
EP2241409A1 (en) * 2009-04-17 2010-10-20 HILTI Aktiengesellschaft Hand-held power tool with vibration-compensating mass
CN101965247A (zh) * 2008-03-12 2011-02-02 罗伯特·博世有限公司 手持式工具机
CN102510792A (zh) * 2009-09-24 2012-06-20 罗伯特·博世有限公司 具有附加振荡器的连杆驱动装置
CN102667221A (zh) * 2009-11-25 2012-09-12 罗伯特·博世有限公司 受控制的振荡阻尼器
CN202556373U (zh) * 2012-03-21 2012-11-28 南京德朔实业有限公司 往复电动工具平衡机构
CN105555485A (zh) * 2013-09-12 2016-05-04 喜利得股份公司 手持式工具机
CN115648129A (zh) * 2022-10-29 2023-01-31 江苏东成工具科技有限公司 冲击电动工具

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415768A1 (de) * 2002-10-31 2004-05-06 Atlas Copco Electric Tools GmbH Schwingungstilger
CN101795826A (zh) * 2007-09-07 2010-08-04 罗伯特·博世有限公司 具有通过平衡器件减振的把手的手持式工具机
CN101412213A (zh) * 2007-10-19 2009-04-22 喜利得股份公司 具有振荡平衡质量的手工工具机
CN101965247A (zh) * 2008-03-12 2011-02-02 罗伯特·博世有限公司 手持式工具机
EP2241409A1 (en) * 2009-04-17 2010-10-20 HILTI Aktiengesellschaft Hand-held power tool with vibration-compensating mass
CN102510792A (zh) * 2009-09-24 2012-06-20 罗伯特·博世有限公司 具有附加振荡器的连杆驱动装置
CN102667221A (zh) * 2009-11-25 2012-09-12 罗伯特·博世有限公司 受控制的振荡阻尼器
CN202556373U (zh) * 2012-03-21 2012-11-28 南京德朔实业有限公司 往复电动工具平衡机构
CN105555485A (zh) * 2013-09-12 2016-05-04 喜利得股份公司 手持式工具机
CN115648129A (zh) * 2022-10-29 2023-01-31 江苏东成工具科技有限公司 冲击电动工具

Also Published As

Publication number Publication date
CN115648129A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
RU2388590C2 (ru) Приводной инструмент
US8261854B2 (en) Reciprocating tool
JP4573637B2 (ja) 往復動式作業工具
US20080277128A1 (en) Impact tool with vibration control mechanism
US20120118598A1 (en) Impact tool
JP5294726B2 (ja) 手持式作業工具
JP2014231126A (ja) 往復動式作業工具
JP5767511B2 (ja) 往復動式作業工具
US7938196B2 (en) Hand-held power tool with vibration-compensating mass
JP5126574B2 (ja) 往復動工具
WO2007105742A1 (en) Electrically-driven power tool
JP2017001148A (ja) 打撃工具
EP1510298B1 (en) Power tool
JP6397337B2 (ja) 電動工具
US20120227995A1 (en) Connecting Rod Drive Comprising an Additional Oscillator
WO2024087576A1 (zh) 冲击电动工具
JP6772597B2 (ja) 作業工具
CN115648129B (zh) 冲击电动工具
EP2241409B1 (en) Hand-held power tool with vibration-compensating mass
CN112427967B (zh) 电动工具
JP2022122765A (ja) 打撃工具
JP2024011112A (ja) 打撃工具
JP5783498B2 (ja) 電動工具
JP2006136972A (ja) 往復作動式作業工具
WO2015000129A1 (zh) 用于进行冲击作业的冲击装置以及工具机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881170

Country of ref document: EP

Kind code of ref document: A1