WO2024087494A1 - 一种耳机 - Google Patents

一种耳机 Download PDF

Info

Publication number
WO2024087494A1
WO2024087494A1 PCT/CN2023/083551 CN2023083551W WO2024087494A1 WO 2024087494 A1 WO2024087494 A1 WO 2024087494A1 CN 2023083551 W CN2023083551 W CN 2023083551W WO 2024087494 A1 WO2024087494 A1 WO 2024087494A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
receiving hole
sound receiving
emitting part
projection
Prior art date
Application number
PCT/CN2023/083551
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to US18/346,891 priority Critical patent/US11877111B1/en
Priority to US18/450,371 priority patent/US11930317B1/en
Priority to PCT/CN2023/126052 priority patent/WO2024088223A1/zh
Priority to CN202311386846.9A priority patent/CN117956366A/zh
Publication of WO2024087494A1 publication Critical patent/WO2024087494A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/127Non-planar diaphragms or cones dome-shaped
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials

Definitions

  • the present application relates to the field of acoustic technology, and in particular to a headset.
  • acoustic devices eg, headphones
  • electronic devices such as mobile phones and computers to provide users with an auditory feast.
  • a microphone is arranged on the earphone to pick up the user's voice.
  • the sound pickup effect of the microphone depends on its arrangement on the earphone. How to improve the sound pickup effect of the microphone while ensuring the sound output effect of the earphone is an urgent problem to be solved.
  • an earphone comprising: a sound-emitting part; an ear hook, configured to wear the sound-emitting part near the ear canal but not blocking the ear canal opening, and at least a part of the sound-emitting part extends into the concha cavity; and a microphone assembly, comprising at least a first microphone and a second microphone, the first microphone or the second microphone being arranged in the sound-emitting part or the ear hook, and the sound-emitting part or the ear hook being provided with a first sound receiving hole and a second sound receiving hole corresponding to the first microphone and the second microphone, respectively; wherein an extension line of a line connecting a projection of the first sound receiving hole on a user's sagittal plane and a projection of the second sound receiving hole on the sagittal plane has an intersection with a projection of an antihelix on the sagittal plane, a distance between the projection of the first sound receiving hole on the sagittal plane and the projection of the
  • an earphone comprising: a sound-emitting part; and an ear hook, which is configured to fix the sound-emitting part at a position near the ear canal but not blocking the ear canal opening, and the sound-emitting part at least partially covers the antihelix area; a microphone assembly, comprising at least a first microphone and a second microphone, the first microphone or the second microphone being arranged in the sound-emitting part or the ear hook, and the sound-emitting part or the ear hook being provided with a first sound receiving hole and a second sound receiving hole corresponding to the first microphone and the second microphone, respectively; wherein, an extension line of a line connecting a projection of the first sound receiving hole on a user's sagittal plane and a projection of the second sound receiving hole on the sagittal plane has an intersection with a projection of an inner contour of an auricle on the sagittal plane, a distance between the projection of the first sound receiving hole on the
  • FIG1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification.
  • FIG2 is an exemplary wearing diagram of an earphone according to some embodiments of this specification.
  • FIG3 is a schematic diagram of a wearing state in which the sound-emitting portion of an earphone is extended into the concha cavity according to some embodiments of the present specification
  • FIG4 is a schematic diagram of an acoustic model of a cavity-like structure according to some embodiments of this specification.
  • FIG5 is a schematic diagram of an exemplary structure of an earphone according to some embodiments of this specification.
  • FIG6 is an exemplary wearing diagram of an earphone according to some embodiments of this specification.
  • FIG7 is an exemplary wearing diagram of an earphone according to other embodiments of this specification.
  • FIG8 is a schematic diagram of a coordinate system established based on the long axis direction and the short axis direction of the sound-emitting part according to some embodiments of the present specification;
  • FIG. 9 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to some embodiments of the present specification.
  • FIG10 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of the present specification.
  • FIG11 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of the present specification.
  • FIG. 12 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of the present specification.
  • FIG13 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of the present specification.
  • FIG. 14 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of the present specification.
  • FIG15A is a schematic diagram of an exemplary structure of an earphone according to other embodiments of this specification.
  • FIG15B is a schematic diagram of an exemplary structure of an earphone according to other embodiments of this specification.
  • FIG16A is a schematic diagram of an exemplary coordinate system established according to a sound-producing part according to other embodiments of the present specification.
  • FIG16B is a schematic diagram of an exemplary coordinate system established according to a sound-producing part according to other embodiments of the present specification.
  • FIG17 is a schematic diagram showing an exemplary positional relationship between a first sound receiving hole, a second sound receiving hole and a user's mouth according to some embodiments of this specification;
  • FIG18 is an exemplary wearing diagram of an earphone according to other embodiments of the present specification.
  • FIG19 is an exemplary wearing diagram of an earphone according to other embodiments of the present specification.
  • FIG20 is an exemplary wearing diagram of an earphone according to other embodiments of this specification.
  • FIG21A is a schematic diagram of an exemplary wearing method of an earphone according to other embodiments of the present specification.
  • FIG. 21B is a schematic diagram of an angle between a line connecting the first sound receiving hole and the second sound receiving hole and an outer side surface of the sound-emitting part according to some embodiments of the present specification;
  • FIG22 is a schematic diagram of an exemplary structure of an earphone according to other embodiments of this specification.
  • FIG23 is a schematic diagram of an exemplary cross-sectional structure of a sound-emitting portion of an earphone according to other embodiments of this specification;
  • FIG24 is an exemplary wearing diagram of an earphone according to other embodiments of the present specification.
  • FIG. 25A is a schematic diagram of a frequency response curve corresponding to a case where the distance between the second projection point O and the intersection point C is 8 mm according to some embodiments of this specification;
  • FIG. 25B is a schematic diagram of a frequency response curve corresponding to a case where the distance between the second projection point O and the intersection point C is 6 mm according to some embodiments of this specification;
  • FIG. 25C is a schematic diagram of a frequency response curve corresponding to a case where the distance between the second projection point O and the intersection point C is 4 mm according to some embodiments of this specification;
  • FIG. 25D is a schematic diagram of a frequency response curve corresponding to a case where the distance between the second projection point O and the intersection point C is 2 mm according to some embodiments of this specification;
  • FIG26 is an exemplary wearing diagram of an earphone according to other embodiments of this specification.
  • FIG27 is an exemplary wearing diagram of an earphone according to other embodiments of the present specification.
  • FIG28A is a schematic diagram of an exemplary wearing method of an earphone according to other embodiments of the present specification.
  • FIG. 28B is a schematic diagram of the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the outer side surface of the sound emitting part according to some embodiments of the present specification.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification. As shown in FIG. 1 , FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • the ear 100 may include an external auditory canal 101, a concha cavity 102, a concha cylindrica 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a crus 109, an outer contour 1013, and an inner contour 1014.
  • the antihelix crus 1011, the antihelix crus 1012, and the antihelix 105 are collectively referred to as the antihelix region in the embodiments of the present specification.
  • the acoustic device can be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the concha cavity 102, the concha cylindrica 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to meet the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the acoustic device can be worn with the help of other parts of the ear 100 other than the external auditory canal 101.
  • the acoustic device can be worn with the help of parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the user's external auditory canal 101 can be "liberated".
  • the acoustic device headphone
  • the acoustic device will not block the user's external auditory canal 101, and the user can receive both the sound from the acoustic device and the sound from the environment (e.g., horn sounds, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed to be compatible with the ear 100 according to the structure of the ear 100, so that the sound-generating part of the acoustic device can be worn at different positions of the ear.
  • the earphone can include a suspension structure (e.g., an ear hook) and a sound-generating part.
  • the sound-generating part is physically connected to the suspension structure, and the suspension structure can be compatible with the shape of the auricle. Adaptation is performed to place the entire or partial structure of the sound-producing part of the ear in front of the crus helix 109 (for example, the area J surrounded by the dotted line in FIG1 ).
  • the entire or partial structure of the sound-producing part can be in contact with the upper part of the external auditory canal 101 (for example, the location where one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, and the helix 107 are located).
  • the entire or partial structure of the sound-producing part can be located in a cavity formed by one or more parts of the ear (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted line in FIG1 at least including the cymba concha 103 and the triangular fossa 104 and the area M2 at least including the cavum concha 102).
  • this manual will mainly use an ear model with a "standard" shape and size as a reference to further describe the wearing method of the acoustic device in different embodiments on the ear model.
  • a simulator containing a head and its (left and right) ears made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards can be used as a reference for wearing an acoustic device, thereby presenting a scenario in which most users normally wear an acoustic device.
  • the ear simulator can be any one of GRAS 45AC, GRAS 45BC, GRAS 45CC or GRAS 43AG.
  • the ear simulator can be any one of HMS II.3, HMS II.3 LN or HMS II.3LN HEC.
  • the data range measured in the embodiment of this specification is measured on the basis of GRAS 45BC KEMAR, but it should be understood that there may be differences between different head models and ear models, and the relevant data range may fluctuate by ⁇ 10% when using other models.
  • the ear model used as a reference can have the following relevant characteristics: the size of the projection of the auricle on the sagittal plane in the vertical axis direction can be in the range of 55-65mm, and the size of the projection of the auricle on the sagittal plane in the sagittal axis direction can be in the range of 45-55mm.
  • the projection of the auricle on the sagittal plane refers to the projection of the edge of the auricle on the sagittal plane.
  • the edge of the auricle is composed of at least the outer contour of the helix, the contour of the earlobe, the contour of the tragus, the intertragus notch, the antitragus cusp, the annular tragus notch, etc. Therefore, in the present application, descriptions such as "user wears", “in a wearing state” and “in a wearing state” may refer to the acoustic device described in the present application being worn on the ear of the aforementioned simulator. Of course, considering the individual differences among different users, the structure, shape, size, thickness, etc.
  • ear 100 may be differentially designed according to ears of different shapes and sizes. These differentiated designs may be manifested as characteristic parameters of one or more parts of the acoustic device (e.g., the sound-emitting part, ear hook, etc. described below) having different ranges of values to adapt to different ears.
  • characteristic parameters of one or more parts of the acoustic device e.g., the sound-emitting part, ear hook, etc. described below
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the front side of the ear mentioned in the present application refers to the side of the ear that is along the sagittal axis and is located toward the human face area. Observing the ear of the simulator along the direction of the human coronal axis, the front side outline diagram of the ear shown in FIG1 can be obtained.
  • the description of the ear 100 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • a person skilled in the art can make various changes and modifications based on the description of the present application.
  • a partial structure of the acoustic device can shield part or all of the external auditory canal 101. These changes and modifications are still within the scope of protection of the present application.
  • Fig. 2 is an exemplary wearing schematic diagram of the earphones shown in some embodiments of this specification.
  • the earphone 10 may include a sound-emitting portion 11 and a suspension structure 12.
  • the earphone 10 may wear the sound-emitting portion 11 on the user's body (e.g., the head, neck, or upper torso of the human body) through the suspension structure 12.
  • the suspension structure 12 may be an ear hook, and the sound-emitting portion 11 is connected to one end of the ear hook, and the ear hook may be arranged in a shape that matches the user's ear.
  • the ear hook may be an arc-shaped structure.
  • the suspension structure 12 may also be a clamping structure that matches the user's auricle, so that the suspension structure 12 may be clamped at the user's auricle.
  • the suspension structure 12 may include, but is not limited to, an ear hook, an elastic band, etc., so that the earphone 10 may be better hung on the user to prevent the user from falling during use.
  • the sound-emitting portion 11 can be worn on the user's body, and a speaker can be provided in the sound-emitting portion 11 to generate sound for input into the user's ear 100.
  • the earphone 10 can be combined with products such as glasses, headphones, head-mounted display devices, AR/VR helmets, etc. In this case, the sound-emitting portion 11 can be worn near the user's ear 100 in a hanging or clamping manner.
  • the sound-emitting portion 11 can be in the shape of a ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape, or a semicircle, so that the sound-emitting portion 11 can be directly hung on the user's ear 100.
  • At least a portion of the sound-emitting portion 11 may be located in the area J in front of the tragus of the user's ear 100 shown in FIG. 1 or the anterior and lateral side areas M1 and M2 of the auricle.
  • the following will provide an exemplary description in conjunction with different wearing positions (11A, 11B, and 11C) of the sound-emitting portion 11.
  • the anterior and lateral side of the auricle mentioned in the embodiments of this specification refers to the side of the auricle that is away from the head along the coronal axis
  • the posterior medial side of the auricle refers to the side of the auricle that is away from the head along the coronal axis.
  • the sound-emitting portion 11A is located on the side of the user's ear 100 along the sagittal axis direction facing the human facial area, that is, the sound-emitting portion 11A is located in the human facial area J on the front side of the ear 100.
  • a speaker is provided inside the shell of the sound-emitting portion 11A, and at least one sound outlet hole (not shown in FIG. 2 ) may be provided on the shell of the sound-emitting portion 11A, and the sound outlet hole may be located on the side wall of the shell of the sound-emitting portion facing or close to the user's external auditory canal 101, and the speaker may output sound to the user's external auditory canal 101 through the sound outlet hole.
  • the speaker may include a diaphragm, and the cavity inside the shell of the sound-emitting portion 11 is divided into at least a front cavity and a rear cavity by the diaphragm, and the sound outlet hole is acoustically coupled with the front cavity, and the vibration of the diaphragm drives the air in the front cavity to vibrate to generate air-conducted sound, and the air-conducted sound generated in the front cavity is transmitted to the outside through the sound outlet hole.
  • the shell of the sound-emitting part 11 may also include one or more pressure relief holes. The pressure relief holes may be located on the side wall of the shell adjacent to or opposite to the side wall where the sound outlet hole is located.
  • the pressure relief holes are acoustically coupled with the back cavity. When the diaphragm vibrates, it will also drive the air in the back cavity to vibrate and produce air-conducted sound.
  • the air-conducted sound generated in the back cavity can be transmitted to the outside through the pressure relief holes.
  • the speaker in the sound-emitting part 11A can output a sound with a phase difference (for example, opposite phase) through the sound outlet hole and the pressure relief hole.
  • the sound outlet hole may be located on the side wall of the shell of the sound-emitting part 11A facing the external auditory canal 101 of the user, and the pressure relief hole may be located on the side of the shell of the sound-emitting part 11 away from the external auditory canal 101 of the user.
  • the shell can act as a baffle to increase the sound path difference between the sound outlet hole and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101 and reduce the volume of far-field leakage sound.
  • the sound-emitting part 11 may have a long axis direction X and a short axis direction Y that are perpendicular to the thickness direction Z and orthogonal to each other.
  • the long axis direction X can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting part 11 (for example, the projection of the sound-emitting part 11 on the plane where its outer side surface is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle), and the short axis direction Y can be defined as the direction perpendicular to the long axis direction X in the shape of the projection of the sound-emitting part 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction Z can be defined as the direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body.
  • the long axis direction X and the short axis direction Y are still parallel or approximately parallel to the sagittal plane, and the long axis direction X can have a certain angle with the direction of the sagittal axis, that is, the long axis direction X is also tilted accordingly, and the short axis direction Y can have a certain angle with the direction of the vertical axis, that is, the short axis direction Y is also tilted, as shown in the wearing condition of the sound-emitting part 11B in FIG2 .
  • the whole or part of the structure of the sound-emitting part 11B can extend into the concha cavity, that is, the projection of the sound-emitting part 11B on the sagittal plane and the projection of the concha cavity on the sagittal plane have an overlapping part.
  • the specific content of the sound-emitting part 11B reference can be made to the content elsewhere in this specification, for example, FIG3 and its corresponding specification content.
  • the sound-emitting part 11 can also be in a horizontal state or an approximately horizontal state in the wearing state, as shown in the sound-emitting part 11C of FIG2 , the long axis direction X can be consistent or approximately consistent with the direction of the sagittal axis, both pointing to the front and back direction of the body, and the short axis direction Y can be consistent or approximately consistent with the direction of the vertical axis, both pointing to the up and down direction of the body.
  • the sound-emitting part 11C in an approximately horizontal state, which may mean that the angle between the long axis direction X of the sound-emitting part 11C shown in FIG2 and the sagittal axis is within a specific range (for example, not more than 20°).
  • the wearing position of the sound-emitting part 11 is not limited to the sound-emitting part 11A, the sound-emitting part 11B and the sound-emitting part 11C shown in FIG2 , and it only needs to satisfy the area J, the area M1 or the area M2 shown in FIG1 .
  • the whole or part of the structure of the sound-emitting part 11 may be located in the area J surrounded by the dotted line in FIG1 .
  • the whole or part of the structure of the sound-emitting part may contact the position where one or more parts of the ear 100 such as the crus 109 of the helix, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107 are located.
  • the entire or partial structure of the sound-producing part 11 can be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted line in Figure 1, which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 that includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • the earphone 10 may adopt any one of the following methods or a combination thereof.
  • the suspension structure 12 is configured as a contoured structure that fits at least one of the posterior medial side of the auricle and the head, so as to increase the contact area between the suspension structure 12 and the ear and/or the head, thereby increasing the resistance of the acoustic device 10 to falling off from the ear.
  • At least a portion of the suspension structure 12 is configured as an elastic structure so that it has a certain amount of deformation when being worn, so as to increase the positive pressure of the suspension structure 12 on the ear and/or the head, thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • at least a portion of the suspension structure 12 is configured to abut against the ear and/or the head when being worn, so as to form a reaction force that presses the ear, so that the sound-generating portion 11 is pressed against the anterior lateral side of the auricle (for example, the area M1 and the area M2 shown in FIG. 1 ), thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • the sound-emitting part 11 and the suspension structure 12 are configured to clamp the antihelix area and the area where the concha cavity is located from both sides of the front and rear inner sides of the auricle when the earphone is worn, thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • the sound-emitting part 11 or the structure connected thereto is configured to at least partially extend into the concha cavity 102, the concha 103, the triangular fossa 104 and the scaphoid 106, thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • the end FE (also referred to as the free end) of the sound-emitting portion 11 can extend into the concha cavity.
  • the sound-emitting portion 11 and the suspension structure 12 can be configured to jointly clamp the ear region corresponding to the concha cavity from the front and back sides of the ear region, thereby increasing the resistance of the earphone 10 to falling off the ear, thereby improving the stability of the earphone 10 in the worn state.
  • the end FE of the sound-emitting portion is pressed into the concha cavity in the thickness direction Z.
  • the end FE abuts against the concha cavity in the major axis direction X and/or the minor axis direction Y (for example, abuts against the inner wall of the opposite end FE of the concha cavity).
  • the end FE refers to the end portion of the sound-emitting part 11 that is arranged opposite to the fixed end connected to the suspension structure 12, and is also called the free end.
  • the sound-emitting part 11 may be a regular or irregular structure.
  • an exemplary description is given to further illustrate the end FE of the sound-emitting part 11.
  • the end wall surface of the sound-emitting part 11 is a plane.
  • the end FE of the sound-emitting part 11 is the end side wall of the sound-emitting part 11 that is arranged opposite to the fixed end connected to the suspension structure 12.
  • the end FE of the sound-emitting part 11 may refer to a specific area away from the fixed end obtained by cutting the sound-emitting part 11 along the YZ plane (the plane formed by the short axis direction Y and the thickness direction Z), and the ratio of the size of the specific area along the long axis direction X to the size of the sound-emitting part along the long axis direction X may be 0.05-0.2.
  • the listening volume at the listening position (for example, at the opening of the ear canal), especially the listening volume of the mid-low frequency, can be increased, while still maintaining a good far-field sound leakage cancellation effect.
  • the quasi-cavity structure can be understood as a semi-enclosed structure surrounded by the side wall of the sound-emitting part 11 and the concha cavity 102 structure.
  • the semi-enclosed structure makes the listening position (for example, at the opening of the ear canal) not completely sealed and isolated from the external environment, but has a leakage structure (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure for example, an opening, a gap, a pipe, etc.
  • one or more sound outlet holes may be provided on the side of the shell of the sound-emitting part 11 close to or facing the user's ear canal, and one or more pressure relief holes may be provided on the other side walls of the shell of the sound-emitting part 11 (for example, the side walls away from or away from the user's ear canal).
  • the sound outlet hole is acoustically coupled with the front cavity of the earphone 10, and the pressure relief hole is acoustically coupled with the back cavity of the earphone 10.
  • the sound-emitting part 11 includes a sound outlet hole and a pressure relief hole
  • the sound output by the sound outlet hole and the sound output by the pressure relief hole can be approximately regarded as two sound sources, and the sound phases of the two sound sources are opposite to form a dipole.
  • the cavity-like structure 402 may include a listening position and at least one sound source 401A.
  • “include” may mean that at least one of the listening position and the sound source 401A is inside the cavity-like structure 402, or at least one of the listening position and the sound source 401A is at the inner edge of the cavity-like structure 402.
  • the listening position may be equivalent to the ear canal opening of the ear, or may be an acoustic reference point of the ear, such as ERP, DRP, etc., or may be an entrance structure leading to the listener, etc.
  • the sound source 401B is located outside the cavity-like structure 402, and the sound sources 401A and 401B with opposite phases constitute a dipole.
  • the dipole radiates sound to the surrounding space respectively and causes interference and destructive phenomenon of sound waves, thereby achieving the effect of sound leakage cancellation. Since the sound path difference between the two sounds is relatively large at the listening position, the effect of sound cancellation is relatively insignificant, and a louder sound can be heard at the listening position than at other positions.
  • the sound source 401A since the sound source 401A is wrapped by the cavity-like structure 402, most of the sound radiated by it will reach the listening position by direct or reflected means. In contrast, in the absence of the cavity-like structure 402, most of the sound radiated by the sound source 401A will not reach the listening position. Therefore, the provision of the cavity-like structure 402 significantly increases the volume of the sound reaching the listening position. At the same time, only a small portion of the anti-phase sound radiated by the anti-phase sound source 401B outside the cavity-like structure 402 will enter the cavity-like structure 402 through the leakage structure 403 of the cavity-like structure 402.
  • the sound generated by the secondary sound source 401B' has a weak anti-phase cancellation effect on the sound source 401A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source 401A radiates sound to the outside through the leakage structure 402 of the cavity, which is equivalent to generating a secondary sound source 401A' at the leakage structure 402.
  • the intensity of the secondary sound source 401A' is equivalent to that of the sound source 401A.
  • the sound cancellation effect generated by the secondary sound source 401A' and the sound source 401B is equivalent to the sound cancellation effect generated by the sound source 401A and the sound source 401B. That is, under this type of cavity structure, a considerable sound leakage reduction effect is still maintained.
  • the outer wall surface of the shell of the sound-emitting part 11 is usually a plane or a curved surface, while the contour of the user's concha is an uneven structure.
  • a cavity-like structure connected to the outside world is formed between the sound-emitting part 11 and the contour of the concha.
  • the sound outlet hole is arranged at a position where the shell of the sound-emitting part faces the opening of the user's ear canal and close to the edge of the concha
  • the pressure relief hole is arranged at a position where the sound-emitting part 11 is away from or far away from the opening of the ear canal, so as to construct the acoustic model shown in Figure 4, so that the user can improve the listening position at the ear opening when wearing headphones, and reduce the sound leakage effect in the far field.
  • FIG. 5 is a schematic diagram of an exemplary structure of an earphone according to some embodiments of this specification.
  • the earphone 10 may include a sound-generating part 11 and a suspension structure 12.
  • the sound-generating part 11 of the earphone 10 may include a transducer and a housing for accommodating the transducer, wherein the transducer is a component that can receive an electrical signal and convert it into a sound signal for output.
  • the type of transducer may include a low-frequency (e.g., 30Hz-150Hz) speaker, a mid-low-frequency (e.g., 150Hz-500Hz) speaker, a mid-high-frequency (e.g., 500Hz-5kHz) speaker, a high-frequency (e.g., 5kHz-16kHz) speaker, or a full-frequency (e.g., 30Hz-16kHz) speaker, or any combination thereof, by frequency.
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of frequency, and different division methods may be used in different application scenarios.
  • a crossover point may be determined, the low frequency represents the frequency range below the crossover point, and the high frequency represents the frequency above the crossover point.
  • the crossover point may be any value within the audible range of the human ear, for example, 500Hz, 600Hz, 700Hz, 800Hz, 1000Hz, etc.
  • the transducer may include a diaphragm.
  • a front cavity (not shown) for transmitting sound is provided at the front side of the diaphragm in the housing.
  • the front cavity is acoustically coupled with the sound outlet hole, and the sound at the front side of the diaphragm can be emitted from the sound outlet hole through the front cavity.
  • a rear cavity (not shown) for transmitting sound is provided at the rear side of the diaphragm in the housing.
  • the rear cavity is acoustically coupled with the pressure relief hole, and the sound at the rear side of the diaphragm can be emitted from the pressure relief hole through the rear cavity.
  • the ear hook is used as an example of the suspension structure 12 in this specification.
  • the ear hook may include a first part 121 and a second part 122 connected in sequence, wherein the first part 121 may be hung between the posterior medial side of the user's auricle and the head, and the second part 122 may extend to the anterior lateral side of the auricle (the side of the auricle away from the human head along the coronal axis) and connect to the sound-emitting part 11, so that the sound-emitting part 11 is worn near the user's ear canal but does not block the ear canal opening.
  • the sound outlet hole may be provided on the side wall of the shell of the sound-emitting part 11 facing the auricle, so that the sound generated by the transducer is guided out of the shell and then transmitted to the ear canal opening of the user.
  • at least part of the sound-emitting part 11 may extend into the user's concha cavity (for example, the position of the sound-emitting part 11B relative to the ear shown in FIG2 ), thereby forming the aforementioned cavity-like structure, and increasing the listening volume at the ear canal opening.
  • the headset 10 may further include a microphone for collecting acoustic signals (such as user voice, environmental sound, etc.), and the microphone may be located in the ear hook or the sound-emitting portion, and the sound-emitting portion or the ear hook is provided with a sound receiving hole acoustically connected to the microphone.
  • the headset 10 may include a microphone assembly, and the microphone assembly may include a first microphone and a second microphone, and the first microphone and the second microphone may respectively collect sound signals at their corresponding positions, such as user voice, environmental sound, etc.
  • the first microphone and the second microphone may both be arranged in the sound-emitting portion 11.
  • the first microphone and the second microphone may also both be arranged in the ear hook.
  • one of the first microphone and the second microphone may be arranged in the ear hook, and the other may be arranged in the sound-emitting portion 11.
  • the first microphone (not shown in Figure 5) is located in the ear hook, and the ear hook is provided with a first sound receiving hole 1191 acoustically connected to the first microphone.
  • the second microphone (not shown in Figure 5) is located in the sound-emitting part 11, and the sound-emitting part 11 is provided with a second sound receiving hole 1192 acoustically connected to the second microphone.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 are not blocked so as to receive the sound information of the user speaking or the sound information of the outside world.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 can be a double-hole structure.
  • the number of the first sound receiving holes 1191 is two, and the first microphone corresponds to two first sound receiving holes 1191.
  • the two first sound receiving holes 1191 are connected inside the ear hook or the sound-emitting part.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 can balance the pressure between their outer sides (the outer surface of the ear hook or the sound-emitting part where the sound holes are located), and then transmit it to the inner sides of the first sound receiving hole 1191 and the second sound receiving hole 1192. Since the central axis of the inner side of the first sound receiving hole 1191 and the second sound receiving hole 1192 is perpendicular to the airflow direction, the pressure fluctuation will be reduced, and the wind noise caused by it will also be reduced accordingly.
  • the wind noise can be reduced.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 can be regular shapes or irregular shapes such as circular holes, square holes, elliptical holes, and diamond holes. Among them, the shape of the first sound receiving hole 1191 and the shape of the second sound receiving hole 1192 can be the same or different.
  • FIG. 6 is a schematic diagram of an exemplary wearing method of an earphone according to some embodiments of the present specification.
  • the earphone 10 when the earphone 10 is in a wearing state, at least a portion of the sound-emitting portion 11 may extend into the user's cavum concha.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 may point to the user's mouth so that the first microphone and the second microphone have a good sound receiving effect.
  • the first sound receiving hole 1191 in the wearing state, may be located at the position closest to the mouth on the earphone 10, thereby improving the sound receiving effect when the first microphone collects the sound emitted by the user's mouth.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 are both close to the user's mouth, so the sound emitted by the user's mouth is a near-field sound for the first microphone and the second microphone.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 are at different distances from the user's mouth, so there is a difference between the sound emitted by the user's mouth received by the first microphone and the second microphone (for example, the amplitude or phase of the sound is different).
  • the noise from the environment can be regarded as far-field sound for both the first microphone and the second microphone.
  • the first microphone and the second microphone receive basically the same noise (for example, the amplitude or phase of the sound is basically the same).
  • the signal received by the first microphone is subtracted from the signal received by the second microphone and then amplified, so as to obtain a better human voice effect after noise elimination. Based on this, a certain distance needs to be set between the first sound receiving hole 1191 and the second sound receiving hole 1192 for subsequent signal processing. Since the earphone 10 is in the wearing state, at least part of the sound-emitting part 11 extends into the concha cavity.
  • the second sound receiving hole 1192 may be closer to the antihelix, which will cause the antihelix to reflect the sound waves generated by the user's speech or the external sound waves when they are transmitted to the antihelix, especially in the frequency range of 3kHz-8kHz, resulting in the sound received by the second microphone being larger than the sound received by the first microphone, affecting the subsequent noise reduction and sound receiving effects.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 and the distance between the second sound receiving hole 1192 and the edge of the user's anti-auricular helix can be adjusted to ensure the noise reduction and sound receiving effects of the earphone.
  • the first sound receiving hole 1191 can have a first projection point P on the user's sagittal plane (e.g., the TS plane shown in FIG6 ), and the second sound receiving hole 1192 can have a second projection point O on the user's sagittal plane.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be reflected by the first distance OP between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane.
  • the extension line of the line connecting the first projection point P of the first sound receiving hole on the user's sagittal plane and the second projection point O of the second sound receiving hole on the sagittal plane has an intersection A with the projection of the user's antihelix on the sagittal plane, and the distance between the second sound receiving hole 1192 and the user's antihelix can be reflected by the second distance OA between the second projection point O of the second sound receiving hole 1192 on the sagittal plane and the intersection A.
  • the concha cavity refers to the concave area below the crus of the helix, that is, the edge of the concha cavity is at least composed of the side wall below the crus of the ear, the contour of the tragus, the intertragus notch, the antitragus cusp, the tragus notch, and the contour of the antihelix body corresponding to the concha cavity.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OA between the second projection point O and the intersection A is between 1.8-4.4.
  • the distance of the second sound receiving hole 1192 relative to the antihelix can be increased, and the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be increased to facilitate the subsequent signal processing.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OA between the second projection point O and the intersection A can be between 2.5-3.8.
  • the distance of the second sound receiving hole 1192 relative to the antihelix can be increased, and the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be increased, so as to facilitate the subsequent signal processing.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OA between the second projection point O and the intersection A can be between 2.8-3.5.
  • the distance of the second sound receiving hole 1192 relative to the antihelix can be further increased, and the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be further increased. More preferably, the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OA between the second projection point O and the intersection A can be between 3.0-3.3.
  • the first projection point P may refer to the centroid of the projection of the first sound receiving hole 1191 on the user's sagittal plane
  • the second projection point O may refer to the centroid of the projection of the second sound receiving hole 1192 on the user's sagittal plane.
  • the sound waves generated by the user's speech or the external sound waves will be reflected by the antihelix when they are transmitted to the antihelix, especially in the frequency range of 3kHz-8kHz, so that the sound received by the second microphone is larger than the sound received by the first microphone, affecting the subsequent noise reduction effect and sound receiving effect.
  • the limited size of the sound-emitting part 11 it is necessary to ensure that there is a large distance between the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 will become smaller, affecting the subsequent signal processing.
  • the distance between the second projection point O of the second sound receiving hole 1192 in the sagittal plane and the intersection point A can be made between 2mm-10mm.
  • the distance between the second sound receiving hole 1192 and the antihelix can be increased.
  • the distance between the second projection point O and the intersection A can be between 4mm-10mm.
  • the distance between the second sound receiving hole 1192 and the antihelix can be further increased.
  • the distance between the second projection point O and the intersection A can be between 6mm-10mm.
  • the reflection effect of the antihelix on the sound waves will hardly affect the second sound receiving hole 1192.
  • the distance between the second projection point O and the intersection A can be between 8mm-10mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 should not be too small.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 may be no less than 10 mm.
  • the size of the sound-emitting part 11 should not be too large.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 is limited by the size of the sound-emitting part 11. In some embodiments, the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 is no more than 50 mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be between 10 mm and 50 mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 mentioned here refers to the straight-line distance between the centers of the openings of the first sound receiving hole 1191 and the second sound receiving hole 1192 on the outer surface of the sound-emitting part 11 or the ear hook 12 (for example, the distance D12 shown in FIG. 5 ).
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be appropriately reduced, so that the size of the sound-emitting part 11 can be relatively small.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be between 20mm and 47mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be between 27 mm and 32 mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be 26 mm.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can also be reflected by the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 may be different from the distance between the first projection point P and the second projection point O, which is specifically manifested in that the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 is greater than the distance between the first projection point P and the second projection point O.
  • the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane can be between 8mm-48mm.
  • the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane can be between 18mm-45mm. More preferably, the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane can be between 25mm-30mm.
  • the distance between the first sound receiving hole 1191 and the user's mouth is smaller than the distance between the second sound receiving hole 1192 and the user's mouth, so as to facilitate subsequent signal processing.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane (e.g., the T-S plane shown in FIG6 )
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane
  • the third projection point Q is used to represent the projection of the user's mouth (e.g., the lip bead) on the user's sagittal plane
  • the user's mouth has a third projection point Q on the user's sagittal plane, wherein the distance between PQ is smaller than the distance between OQ.
  • the line connecting the first projection point P of the first sound receiving hole 1191 on the user's sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane roughly points to the third projection point Q of the user's mouth on the sagittal plane.
  • a directivity algorithm can be constructed based on the sound received by the first microphone and the second microphone to make the received user voice clearer.
  • the line PQ between the first projection point P and the third projection point Q can be at a certain angle relative to the line OQ between the second projection point O and the third projection point Q.
  • the angle between PQ and OQ can be less than 30°. In some embodiments, the angle between PQ and OQ can be 5°-25°. Preferably, the angle between PQ and OQ can be 8°-15°. Exemplarily, in some embodiments, the angle between PQ and OQ can be 0°, 3°, 9° or 15°, etc.
  • the first sound receiving hole 1191 may be provided at the second part 112 of the ear hook (the part of the ear hook close to the sound-emitting part). Specifically, in some embodiments, the first sound receiving hole 1191 may be provided near the connection between the second part 122 of the ear hook and the sound-emitting part 11. For example, the first sound receiving hole 1191 may be provided on the second part 122 of the ear hook or on the sound-emitting part 11. In this specification, the first sound receiving hole 1191 may be provided near the connection between the second part 122 of the ear hook and the sound-emitting part 11, which may be understood as the minimum distance between the first sound receiving hole 1191 and the connection being no greater than 4 mm.
  • the positional relationship of the first sound receiving hole 1191 relative to the second part 122 of the ear hook and the sound-emitting part 11 may also be characterized by the distance between the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection on the sagittal plane.
  • the minimum distance between the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection on the sagittal plane may be no greater than 4 mm.
  • the minimum distance between the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection on the sagittal plane may be no more than 3 mm.
  • the first sound receiving hole 1191 may also be provided at the connection between the sound-emitting part 11 and the second part 122 of the ear hook. At this time, the first sound receiving hole 1191 is closer to the user's mouth, and the sound receiving effect of the first microphone is better.
  • the sound-emitting part 11 and the second part 122 of the ear hook may be independent structures, and the two may be connected by splicing, inlaying, plugging, etc.
  • connection between the sound-emitting part 11 and the second part 122 of the ear hook may refer to the connection gap between the two.
  • the projection of the connection between the sound-emitting part 11 and the second part 122 of the ear hook on the sagittal plane refers to the projection of the connection gap between the two on the sagittal plane.
  • the first sound receiving hole 1191 is arranged near the connection between the sound-emitting part 11 and the second part 122 of the ear hook (for example, the first sound receiving hole 1191 is arranged on the second part 122 of the ear hook) to ensure that the first sound receiving hole 1191 is close to the user while not occupying the internal cavity space of the sound-emitting part 11, thereby facilitating the installation of the transducer and the routing of the internal circuits, and effectively improving production efficiency.
  • the size of the first sound receiving hole 1191 and the second sound receiving hole 1192 when the size of the first sound receiving hole 1191 and the second sound receiving hole 1192 is small, they can be approximately regarded as a point. In some embodiments, when the size of the first sound receiving hole 1191 and the second sound receiving hole 1192 is large, the distance between the first sound receiving hole 1191 and the connection between the sound-emitting part 11 and the second part 122 of the ear hook can be understood as the minimum distance between the center of the first sound receiving hole 1191 and the connection between the sound-emitting part 11 and the second part 122 of the ear hook.
  • the projection of the first sound receiving hole 1191 on the sagittal plane can be approximately regarded as a point
  • the minimum distance between the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection between the sound-emitting part 11 and the second part 122 of the ear hook on the sagittal plane refers to the distance between the first sound receiving hole 1191 and the connection between the sound-emitting part 11 and the second part 122 of the ear hook.
  • the minimum distance between the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection between the sound-emitting part 11 and the second part 122 of the ear hook on the sagittal plane refers to the minimum distance between the centroid of the projection of the first sound receiving hole 1191 on the sagittal plane and the projection of the connection on the sagittal plane.
  • the distance between the sound receiving hole and a side surface (for example, the inner side surface, the upper side surface) of the sound-emitting part 11 described elsewhere in this specification can be understood as the minimum distance from the center of the sound receiving hole to the side surface of the sound-emitting part 11.
  • first sound receiving hole 1191 and the second sound receiving hole 1192 shown in FIG. 5 are only exemplary.
  • the first sound receiving hole 1191 and/or the second sound receiving hole 1192 may be disposed at other unobstructed positions.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may be disposed together on the outer side of the sound-emitting portion 11.
  • the first sound receiving hole 1191 may be disposed on the outer side of the sound-emitting portion 11
  • the second sound receiving hole 1192 may be disposed on the upper side of the sound-emitting portion 11.
  • the inner side surface of the sound-emitting portion 11 may refer to the surface of the earphone 10 that is closest to the user's head when the earphone 10 is worn (refer to the inner side surface IS in Figures 15A and 15B), and the upper side surface of the sound-emitting portion 11 may refer to the surface of the earphone 10 that is farthest from the ground when the earphone 10 is worn (refer to the upper side surface US in Figures 15A and 15B).
  • a surface opposite to the inner side surface may be regarded as the outer side surface of the sound-emitting portion 10 (refer to the outer side surface OS in Figure 15A), and a surface opposite to the upper side surface may be regarded as the lower side surface of the sound-emitting portion 10 (refer to the lower side surface LS in Figure 15B).
  • each of the upper side surface, lower side surface, inner side surface and outer side surface of the sound-emitting portion 11 may be a plane and/or a non-plane. The specific distribution positions of the first sound receiving hole 1191 and the second sound receiving hole 1192 will be described below in conjunction with Figures 7 to 16B.
  • FIG. 7 is a schematic diagram of exemplary wearing of headphones according to other embodiments of the present specification.
  • the shape of the projection of the sound-emitting part 11 on the sagittal plane may include a long axis direction X and a short axis direction Y.
  • Fig. 8 is a schematic diagram of an exemplary coordinate system established according to the projection of the sound-emitting part on the sagittal plane shown in some embodiments of the present specification. Referring to Fig.
  • a coordinate system is established with the long axis direction X and the short axis direction Y, and the coordinates in the coordinate system are used to characterize the relative position of the first sound receiving hole 1191 relative to the sound-emitting part 11, wherein the Y axis is a tangent parallel to the short axis direction Y and tangent to the projection of the front side of the sound-emitting part 11 on the sagittal plane, and the X axis is a tangent parallel to the long axis direction X and tangent to the projection of the lower side of the sound-emitting part 11 on the sagittal plane.
  • the position of the Y-axis can be determined by the following method: first determine the projection of the sound-emitting part 11 on the sagittal plane; find the tangent line (referred to as "tangent line I") which is parallel to the short-axis direction Y and tangent to the projection of the posterior side of the sound-emitting part 11 on the sagittal plane; determine the center of the projection of the diaphragm or magnetic circuit assembly in the sound-emitting part 11 on the sagittal plane; find the symmetry line of the tangent line I about the center, and use the symmetry line as the straight line where the Y-axis is located.
  • tangent line I tangent line
  • the coordinates of the points in the coordinate system can be represented as YX.
  • the sound-emitting part 11 can be divided into 4 equal parts in the long axis direction X, and the sound-emitting part 11 can be divided into 4 equal parts in the short axis direction Y. In some embodiments, the sound-emitting part 11 can also be divided into other equal parts in the long axis direction X and the short axis direction Y.
  • the following uses the coordinate system as a reference to explain the sound reception conditions of the first sound receiving hole 1191 at different positions.
  • FIG9 is a schematic diagram of a sound receiving curve of a first sound receiving hole at different positions according to some embodiments of the present specification.
  • the corresponding positions can be determined, such as position 11, position 12, position 13, position 14, etc.
  • FIG9 shows that while the first microphone has a better sound receiving effect, it is ensured that the second sound receiving hole can maintain a specific distance from the first sound receiving hole and the second sound receiving hole can be as far away from the antihelix as possible, so that the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane in the long axis direction X is not greater than 0.75, that is, when the sound-emitting part 11 is divided into 4 equal parts along the long axis direction X, the first projection point P is located in the region of X ⁇ 3.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.5.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.3.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.2.
  • the first sound receiving hole 1191 is arranged at a position close to the front side of the sound-emitting part, and the position of the second sound receiving hole 1192 can also have more options, ensuring that the second sound receiving hole can maintain a specific distance from the first sound receiving hole and that the second sound receiving hole can be as far away from the antihelix as possible.
  • the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X is The ratio of the dimension of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may not be greater than 0.1.
  • the first sound receiving hole 1191 may also be located on the front side of the sound-emitting part 11. At this time, the first sound receiving hole 1191 is closer to the user's mouth in the horizontal direction, and the sound receiving effect of the first microphone is better.
  • the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X may refer to the distance between the first projection point P and the Y axis, that is, the distance between the first projection point P and the tangent along the short axis direction Y and tangent to the projection of the front side of the sound-emitting part 11 on the sagittal plane.
  • FIG10 is a schematic diagram of the sound receiving curve of the first sound receiving hole at different positions according to other embodiments of the present specification.
  • Y takes different values, the corresponding positions can be determined, such as position 11, position 21, position 31, position 41, etc.
  • FIG10 shows the sound receiving conditions of the first microphone located at positions 11, 21, 31, and 41, respectively.
  • the smaller the coordinate of the Y-axis and the closer to the user's mouth the better the sound receiving effect of the microphone.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y can be made not greater than 1.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 are both located on the sound-emitting part 11 if the first sound receiving hole 1191 is located at the maximum distance between the upper side or the front side of the sound-emitting part and the long axis direction X, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 cannot point to the user's mouth, which will affect the sound receiving effect.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y can be made not greater than 0.5, that is, when the sound-emitting part is divided into 4 equal parts along the short axis direction Y, the first projection point P is located in the area where Y ⁇ 2.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y may be no greater than 0.4.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y may be no greater than 0.3.
  • the first sound receiving hole 1191 is arranged at a position close to the lower side of the sound-emitting part, and more options are provided for the position of the second sound receiving hole 1192, ensuring that the second sound receiving hole can maintain a specific distance from the first sound receiving hole and that the line connecting the first sound receiving hole and the second sound receiving hole can be more accurately pointed to the user's mouth.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y can be less than or equal to 0.1.
  • the first sound receiving hole 1911 can be located on the lower side of the sound-emitting part 11. In this case, the first sound receiving hole 1191 is closer to the user's mouth in the vertical direction, and the sound receiving effect of the first microphone is better.
  • the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y can refer to the distance between the first projection point P and the X-axis, that is, the distance between the first projection point P and the tangent along the long axis direction X and tangent to the projection of the lower side of the sound-emitting part 11 on the sagittal plane.
  • FIG11 is a schematic diagram of the sound receiving curve of the second sound receiving hole at different positions according to other embodiments of the present specification.
  • the corresponding positions can be determined, such as position 41, position 42, position 43, position 44, etc.
  • FIG11 shows the sound receiving conditions at positions 41, 42, 43, and 44, respectively.
  • 4X As can be seen from FIG11, on 4X, as X increases, the distance from the second sound receiving hole to the user's antihelix becomes smaller, and the influence of the antihelix reflection becomes greater.
  • the sound receiving of the second microphone in the frequency band after 3kHz will be significantly raised, resulting in different changes in the second microphone before and after 3kHz. That is, if the second sound receiving hole 1192 is set at a position closer to the antihelix, the sound receiving effect of the second sound receiving hole 1192 after 3kHz will be stronger than that of the first sound receiving hole 1191, resulting in the first microphone and the second microphone to worsen the effect of picking up the sound of the user's mouth.
  • FIG12 is a schematic diagram of sound receiving curves when the sound receiving holes are located at different positions according to other embodiments of this specification.
  • the sound receiving effect of the microphone at position 21 is better than that of the microphones at positions 33, 34, 43, and 44.
  • the first sound receiving hole 1191 can be set at position 21, and the second sound receiving hole 1192 can be set at position 33, 34, 43, or 44.
  • the sound receiving effect of the first sound receiving hole 1191 in the full frequency band is better than that of the second sound receiving hole 1192.
  • the second sound receiving hole 1192 is set at position 33 or position 34, the sound receiving effect of the second sound receiving hole 1192 is better, and has good consistency with the sound receiving curve at the first sound receiving hole 1191.
  • the signals of the first microphone and the second microphone can obtain the sound of the user's mouth in a wider frequency band.
  • the distance between the second sound receiving hole 1192 and the first sound receiving hole 1191 is greater, which is more conducive to noise reduction.
  • FIG13 is a schematic diagram of sound receiving curves when sound receiving holes are located at different positions according to other embodiments of this specification. As shown in FIG13, the sound receiving conditions of the microphones at positions 11 and 14 are shown. The sound receiving effect of the microphone at position 11 is better than that of the microphone at position 14 in the full frequency band.
  • the first sound receiving hole 1191 can be set at position 11, and the second sound receiving hole 1192 can be set at position 14. The microphone is placed at position 14. At this time, the sound receiving effects of the first sound receiving hole 1191 and the second sound receiving hole 1192 are both good. After the signals of the first microphone and the second microphone are processed, the sound of the user's mouth can be obtained in a wider frequency band.
  • FIG14 is a schematic diagram of sound reception curves when sound receiving holes are located at different positions according to other embodiments of this specification. As shown in FIG14, the sound reception of the microphones at positions 31 and 43 is shown. The sound reception effect of the microphone at position 31 is better than that of the microphone at position 43 in the full frequency band.
  • the first sound receiving hole 1191 can be set at position 31, and the second sound receiving hole 1192 can be set at position 43. At this time, the sound reception effects of the first sound receiving hole 1191 and the second sound receiving hole 1192 are both good.
  • the signals of the first microphone and the second microphone can obtain the sound of the user's mouth in a wider frequency band.
  • the projection of the sound-emitting part 11 on the sagittal plane may be runway-shaped, and the extension lines of the two sides of the runway-shaped projection close to the mouth (i.e., the projection of the lower side and the front side of the sound-emitting part 11) have an intersection, and this intersection is defined as the fourth projection point (for example, the intersection G of the X-axis and the Y-axis shown in FIG7, and the origin of the X-Y coordinate system shown in FIG8).
  • the distance between the first projection point P and the fourth projection point of the first sound receiving hole 1191 on the sagittal plane needs to meet a preset condition.
  • the distance between the first projection point and the fourth projection point can be made not greater than 5 mm.
  • the first sound receiving hole 1191 can be set at a position on the sound-emitting part 11 that is closer to the user's mouth.
  • the distance between the first projection point P and the fourth projection point may be no greater than 3 mm.
  • the distance between the first projection point P and the fourth projection point may be no greater than 1 mm.
  • the first sound receiving hole 1191 is closer to the user's mouth to further improve the sound receiving effect of the first microphone.
  • the projection of the sound-emitting part 11 on the sagittal plane is not limited to the above-mentioned runway shape, but can also be other regular (for example, rectangular, elliptical, circular, etc.) or irregular shapes, as long as the first sound receiving hole 1191 is set close to the user's mouth or close to the origin of the X-Y coordinate system.
  • 15A and 15B are schematic diagrams of exemplary structures of headphones according to other embodiments of the present specification.
  • the first sound receiving hole 1191 may also be located on the lower side surface LS or the front side surface CE of the sound-emitting part 11.
  • FIG16A and FIG16B are schematic diagrams of exemplary coordinate systems established according to the sound-emitting part shown in other embodiments of the present specification.
  • the coordinate of the first sound receiving hole 1191 in the long axis direction X of the sound-emitting part 11 is 0, and the positional relationship of the first sound receiving hole 1191 relative to the sound-emitting part 11 can be represented by a Y-Z coordinate system, wherein the Z axis is the thickness direction of the sound-emitting part 11, which is perpendicular to both the long axis direction X and the short axis direction Y of the sound-emitting part 11.
  • the coordinate of the first sound receiving hole 1191 in the short axis direction Y of the sound-emitting part 11 is 0, and the positional relationship of the first sound receiving hole 1191 relative to the sound-emitting part 11 can be represented by the X-Z coordinate system.
  • the first sound outlet hole 1191 when the first sound outlet hole 1191 is too close to the inner side of the sound-emitting part 11 (for example, less than 2 mm), not only may the first sound receiving hole 1191 be blocked by the user's ear during wearing, but the first microphone may also collect the noise generated by the friction between the user's ear and the sound-emitting part 11. It can be seen that no matter whether the first sound receiving hole 1191 is located on the lower side or the front side of the sound-emitting part 11, the distance between the first sound receiving hole 1191 and the inner side of the sound-emitting part 11 should not be too close.
  • the two ears and the mouth of the human body are regarded as three points in space, and the three points construct an approximately isosceles triangle area.
  • the sound-emitting part 11 When the earphone is worn, the sound-emitting part 11 needs to be tilted to extend into the concave concha cavity, that is, the line connecting any two points on the outer side of the sound-emitting part 11 will not point to the triangular area. If the first sound receiving hole 1191 is too close to the outer side of the sound-emitting part 11 (for example, the distance from the outer side is less than 2 mm), even if the second sound receiving hole 1192 is set on the outer side of the sound-emitting part 11, it cannot be guaranteed that the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the user's mouth.
  • the ratio of the distance between the first sound hole 1191 and the inner side of the sound-emitting part 11 in the thickness direction Z of the sound-emitting part to the size of the sound-emitting part 11 along its thickness direction Z can be made between 0.25 and 0.7.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound-emitting part 11 in the thickness direction Z of the sound-emitting part to the size of the sound-emitting part 11 along the thickness direction Z can be 0.25-0.65.
  • the first sound receiving hole 1191 is set at a relatively far distance from the inner side surface of the sound-emitting part 11, which can reduce the influence of the noise generated by the friction between the sound-emitting part 11 and the ear.
  • the connecting line between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be directed to the user's mouth.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound-emitting part 11 in the thickness direction Z of the sound-emitting part to the size of the sound-emitting part 11 along the thickness direction Z can be 0.3-0.6.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound emitting part 11 in the thickness direction Z of the sound emitting part to the size of the sound emitting part 11 along the thickness direction Z can be 0.3-0.4.
  • the connection line between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be more accurately pointed to the user's mouth.
  • the inner side surface of the sound emitting part 11 is a curved surface.
  • the distance between the first sound receiving hole 1191 and the inner side surface of the sound emitting part 11 in the thickness direction Z of the sound emitting part can be equivalent to the distance between the first sound receiving hole 1191 and the inner side surface of the sound emitting part 11 in the thickness direction Z of the sound emitting part.
  • the first sound receiving hole 1191 may also be provided on the ear hook (for example, the position on the ear hook closest to the user's mouth). Accordingly, in order to ensure the directivity of the line connecting the second sound receiving hole 1192 and the first sound receiving hole 1191, when the first sound receiving hole 1191 is provided on the ear hook, the second sound receiving hole 1192 may be provided near the connection between the upper side surface and the front side surface of the sound-emitting portion 11.
  • the structure or shape of the ear hook of the earphone 10 may also be changed to meet the position requirement for opening the second sound receiving hole 1192, thereby ensuring that the distance between the second sound receiving hole 1192 and the first sound receiving hole 1191 is greater than the preset requirement while the line connecting the second sound receiving hole 1192 and the first sound receiving hole 1191 is substantially directed to the user's mouth.
  • the second sound receiving hole 1192 can be provided on a side of the sound-emitting part 11 that does not form an auxiliary cavity with the concha cavity. In some embodiments, the second sound receiving hole 1192 can be provided on at least one of the upper side surface US, the lower side surface LS, and the outer side surface OS of the sound-emitting part 11, and the first sound receiving hole 1191 and the second sound receiving hole 1192 are both provided away from the components (such as speakers, main control circuit boards, etc.) in the shell of the sound-emitting part 11. For example, the second sound receiving hole 1192 can be provided on any one of the upper side surface US, the lower side surface LS, and the outer side surface OS of the sound-emitting part 11.
  • the second sound receiving hole 1192 can be provided at the connection of any two of the upper side surface US, the lower side surface LS, and the outer side surface OS of the sound-emitting part 11.
  • the first sound receiving hole 1191 is usually arranged diagonally, for example, the first sound receiving hole 1191 is arranged at the lower left corner as shown in FIG. 6, and the second sound receiving hole 1192 is arranged at the upper right corner as shown in FIG. 6.
  • the second sound receiving hole 1192 can be located on the outer side surface OS of the sound-emitting part 11.
  • the distance d6 between the second sound receiving hole 1192 and the rear side surface FE can be 8mm-12mm.
  • the distance d6 between the second sound receiving hole 1192 and the rear side surface FE is 9mm-10mm.
  • the distance between the second sound receiving hole 1192 and the upper side US or the lower side LS of the sound-emitting part 11 should not be too large or too small, and the distance d5 between the second sound receiving hole 1192 and the upper side US of the sound-emitting part 11 can be 1mm-3mm, or the distance d8 between the second sound receiving hole 1192 and the lower side LS can be 4mm-8mm.
  • the distance d5 between the second sound receiving hole 1192 and the upper side US is 2mm-2.5mm, or the distance d8 between the second sound receiving hole 1192 and the lower side LS can be 6mm-8mm.
  • the distance d7 between the second sound receiving hole 1192 and the front side CE is 8mm-12mm.
  • the distance from the second sound receiving hole 1192 to the upper side, front side, rear side and lower side of the sound-emitting part 11 may refer to the distance from the center of the opening of the second sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the upper side, front side or rear side of the sound-emitting part 11.
  • the side of the sound-emitting part 11 (such as the upper side, front side, rear side and lower side) is a plane
  • the distance is the distance from the center of the opening of the second sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the plane.
  • the distance may refer to the distance from the center of the opening of the second sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the tangent of the curved surface.
  • the cross-section corresponding to the upper side surface of the sound-emitting part 11 may refer to a plane parallel to the X-Z plane (or coordinate system) shown in Figure 16B and tangent to the upper side surface of the sound-emitting part 11.
  • the cross-section corresponding to the lower side surface of the sound-emitting part 11 may refer to a plane parallel to the X-Z plane (or coordinate system) shown in Figure 16B and tangent to the lower side surface of the sound-emitting part 11.
  • the cross-section corresponding to the front side surface of the sound-emitting part 11 may refer to a plane parallel to the Y-Z plane (or coordinate system) shown in Figure 16A and tangent to the front side surface of the sound-emitting part 11.
  • the cross-section corresponding to the rear side surface of the sound-emitting part 11 may refer to a plane parallel to the X-Z plane (or coordinate system) shown in Figure 16A and tangent to the rear side surface of the sound-emitting part 11.
  • FIG. 17 is a schematic diagram of an exemplary positional relationship between the first sound receiving hole, the second sound receiving hole and the user's mouth according to some embodiments of the present specification.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can point to the user's mouth so that the first sound receiving hole 1191 and the second sound receiving hole 1192 have a good sound receiving effect.
  • point O can represent the position of the second sound receiving hole 1192
  • point P and point P' respectively represent two different positions of the first sound receiving hole 1191
  • point Q represents the position of the user's mouth.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the line connecting the first sound receiving hole 1191 and the user's mouth Q is about 150°, that is, the size of angle OPQ and/or angle OP'Q is about 150°.
  • the angle OPQ or the angle OP′Q may be between 140° and 180°, that is, the first sound receiving hole 1191 , the second sound receiving hole 1192 and the user's mouth may be substantially located on the same straight line.
  • FIG. 18 is a schematic diagram of an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the first microphone and the second microphone can have a better sound receiving effect, wherein, when the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the area between the user's mouth and the bottom end point of the mandible, the sound receiving effect of the first microphone and the second microphone is relatively good.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be directed to or approximately directed to the area between the user's mouth and the bottom end point of the mandible.
  • the bottom end point of the mandible of the user may refer to the point on the user's mandible that is farthest from the user's ear.
  • the user's mandibular base endpoint may have a fifth projection point Q' on the user's sagittal plane, and the centroid of the projection of the user's ear canal opening on the sagittal plane (for example, the dotted area 1015 in Figure 18) is B. Since at least part of the sound-emitting part 11 of the earphone 10 needs to extend into the user's concha cavity when worn, the line connecting the fifth projection point Q' and the centroid B of the projection of the user's ear canal opening on the sagittal plane can reflect the relative position relationship between the sound-emitting part 11 and the user's mandibular base endpoint to a certain extent.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane.
  • the angle ⁇ 1 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane may be made not greater than 45°.
  • the angle ⁇ 1 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane may be 6°-35°, at which time the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 may point to the vicinity of the user's mouth.
  • the angle ⁇ 1 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane can be 10°-25°. At this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can point to the user's mouth more accurately.
  • the first microphone and the second microphone can have a better sound receiving effect.
  • the user's vertical axis is used as a reference to further illustrate the distribution position of the first projection point P and the second projection point O.
  • the line between the first projection point P and the second projection point O in order to make the line between the first projection point P and the second projection point O point to the area between the user's mouth and the end point of the mandibular bottom, so as to better obtain the sound of the user when speaking, accordingly, the line between the first projection point P and the second projection point O here has a corresponding critical direction, for example, the sagittal axis S and the vertical axis T shown in Figure 18, wherein, when the line between the first projection point P and the second projection point O is in the coordinate system S-T, it can ensure that the first microphone and the second microphone can collect the sound of the user when speaking.
  • the critical direction is explained in combination with the wearing state of the headset. As shown in FIG.
  • the mouth is located at the lower left of the ear. If the line connecting the first projection point P and the second projection point O points to the upper left, upper, lower right, upper right or right of the ear, the sound signal of the user speaking obtained by the first microphone and the second microphone is extremely small. Therefore, the line connecting the first projection point P and the second projection point O points to the left side of the ear as a critical direction, and the line connecting the first projection point P and the second projection point O points to the lower side of the ear as a critical direction.
  • the critical direction mentioned in the embodiment of this specification is used to represent the critical value pointed by the line connecting the first projection point P and the second projection point O (or the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192).
  • the first microphone and the second microphone can have better directivity.
  • the sagittal axis S and the vertical axis T of the user represent the above two critical directions.
  • the angle ⁇ 2 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be less than 90°.
  • the angle ⁇ 2 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be in the range of 20°-80°.
  • the angle ⁇ 2 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be in the range of 40°-70°, at which time, the line connecting the first projection point P and the second projection point O points to the area close to the user's mouth or the bottom end point of the mandible.
  • the angle ⁇ 2 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be in the range of 42°-65°, at which time, the line connecting the first projection point P and the second projection point O can point to the user's mouth area more accurately.
  • FIG. 19 is a schematic diagram showing an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the description is made here in conjunction with the user's coronal axis R.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the coronal axis can be approximately regarded as pointing to the left or right side of the human head, resulting in poor sound effects when the user speaks, which is captured by the microphone.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 directly points to the user's head, which also results in poor sound effects when the user speaks, which is captured by the microphone.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis can be between -30° and 135° to ensure that the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 has an area that can point to the front of the human face.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis please refer to Figure 19 and its related description.
  • FIG. 19 shows the relative relationship between the user's head and the coronal axis and sagittal axis corresponding to the user, wherein reference numeral 20 may represent the user's head, and reference numeral 21 may represent the user's ear.
  • reference numeral 20 may represent the user's head
  • reference numeral 21 may represent the user's ear.
  • the coronal axis direction shown in FIG. 19 may be used as a reference, and rays L3 and L4 may represent the critical direction of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 may point to the front side of the user's face.
  • the angle ⁇ 1 between ray L3 and the coronal axis R is approximately 30°
  • the angle ⁇ 2 between ray L4 and the sagittal axis S is approximately 45°. Based on Therefore, the angle ⁇ 3 of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's coronal axis R can be between -30° and 135°.
  • the angle of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's coronal axis can be between -50° and 125°, and at this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the area around the user's mouth. More preferably, the angle of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's coronal axis can be between -90° and 115°, and at this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the area around the user's mouth.
  • the angle between the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis is -90°
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 are parallel to the user's sagittal plane. It should be noted that the angle here is determined with the clockwise direction as positive.
  • FIG. 20 is a schematic diagram of an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane.
  • the angle between the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane may be expressed as ⁇ 3. It can be understood that when the earphone 10 is in a wearing state, the position of the sound-emitting part 11 relative to the ear may be considered unchanged.
  • the angle ⁇ 4 formed by the line connecting the fifth projection point Q' of the user's mandibular bottom end point on the user's sagittal plane and the centroid B of the projection of the user's ear canal opening on the sagittal plane and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane may be approximately considered unchanged.
  • the sound receiving effects of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be adjusted by controlling the angle between the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane.
  • the sagittal axis S and the vertical axis T can represent the critical direction of the line connecting the first projection point P and the second projection point O relative to the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane.
  • the line connecting the first projection point P and the second projection point O is in the coordinate system S-T, the sound receiving effect of the first microphone and the second microphone when collecting the user's speech can be guaranteed.
  • the angle ⁇ 1 between the long axis direction X and the sagittal axis S can be approximately 20°
  • the angle ⁇ 2 between the long axis direction X and the vertical axis T can be approximately 45°
  • the angle ⁇ 4 formed by the line connecting the fifth projection point Q′ of the user's mandibular bottom endpoint on the user's sagittal plane and the centroid B of the projection of the user's ear canal opening on the sagittal plane and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be between 50° and 75°.
  • the angle formed by the line connecting the first projection point P and the second projection point O relative to the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane is represented, then the angle ⁇ 3 formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be between 20° and 135°.
  • the angle ⁇ 3 formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be 45°-70°, at which time the line connecting the first projection point P and the second projection point O can more accurately point to the area between the user's mouth and the end point of the mandibular bottom.
  • Fig. 21A is a schematic diagram of an exemplary wearing method of an earphone according to some other embodiments of the present specification.
  • Fig. 21B is a schematic diagram of the angle between the connecting line of the first sound receiving hole and the second sound receiving hole and the outer side surface of the sound-emitting part according to some embodiments of the present specification.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be expressed as ⁇ 5.
  • the outer side surface of the sound-emitting part 11 can be a plane, and the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the outer side surface is the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the plane.
  • the line connecting the first sound receiving hole and the second sound receiving hole can be a curved surface
  • the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the outer side surface refers to the angle between the planes tangent to the curved surface of the outer side surface.
  • the outer side surface of the sound-emitting part 11 can be represented by four points M1, M2, M3, and M4 located on the outer side surface.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 can be located on the same side surface or different sides of the sound-emitting part 11.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may both be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 may be located on the front side of the sound emitting portion 11, and the second sound receiving hole 1192 may be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 may be located on the lower side of the sound emitting portion 11, and the second sound receiving hole 1192 may be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 has a projection point M5 on the outer side surface M1M2M3M4, and the second sound receiving hole 1192 has a projection point M6 on the outer side surface M1M2M3M4.
  • the angle ⁇ 5 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound emitting part 11 may refer to the angle formed by the line connecting the projection point M5 and the projection point M6 and the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the angle ⁇ 5 can reflect the relative position relationship between the first sound receiving hole 1191 and the second sound receiving hole 1192 in the thickness direction of the sound-emitting part 11, and can also reflect the directivity of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's mouth to a certain extent.
  • the angle ⁇ 5 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be controlled to be between 0° and 60°.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 have better directivity.
  • the line connecting the sound holes 1192 can be roughly pointed to the area on the front side of the user's face, so that the first microphone and the second microphone can have a better sound reception effect.
  • the angle ⁇ 5 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be 10°-50°, at which time the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be roughly pointed to the area around the user's mouth, thereby improving the sound reception effect of the first microphone and the second microphone.
  • the angle ⁇ 5 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be 25°-38°, at which time the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be pointed to the user's mouth, thereby further improving the sound reception effect of the first microphone and the second microphone.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 need to have a larger area size.
  • the diameter of the first sound receiving hole and the second sound receiving hole can be greater than 0.8 mm. In some embodiments, the diameter of the first sound receiving hole and the second sound receiving hole can be greater than 0.85 mm to further improve the sound receiving effect of the first sound receiving hole 1191 and the second sound receiving hole 1192. In some embodiments, the diameter of the first sound receiving hole and the second sound receiving hole can be 0.9 mm.
  • the area size of the first sound receiving hole 1191 and the second sound receiving hole 1192 should not be too large.
  • the diameter of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be between 0.8mm-3mm.
  • the diameter of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be 0.8mm-2.5mm to further improve the dustproof and waterproof performance of the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the diameter of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be 0.85mm-1.5mm, which can further improve the sound receiving effect and dustproof and waterproof performance of the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may have the same or different apertures.
  • their diameters may be understood as the maximum inner diameter or the average inner diameter.
  • the depth of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be less than 4 mm.
  • the depth of the first sound receiving hole 1191 and the second sound receiving hole 1192 can refer to the distance from its opening to the corresponding microphone.
  • the depth of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be equal to the thickness of the housing.
  • the depth of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be less than 2.5 mm, so as to further reduce the loss of sound in the process of being transmitted to the first microphone and the second microphone, and improve the sound receiving effect of the mid-high frequency sound.
  • the depth of the first sound receiving hole 1191 and the second sound receiving hole 1192 can be kept consistent. If the depths of the first sound receiving hole 1191 and the second sound receiving hole 1192 are inconsistent, some sounds will be propagated for an extra distance, resulting in inconsistent responses of the first sound receiving hole 1191 and the second sound receiving hole 1192 to noise, affecting the noise reduction effect and call quality of the earphone 10.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may be provided with dustproof and waterproof nets.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may be sealed, for example, by a silicone sleeve and double-sided tape.
  • the headset 10 can also be designed with a corresponding adjustment algorithm so that the low frequency boost can be clearly heard when the headset 10 is at a low volume, while there is no change at a high volume, so as to avoid distortion and damage to the speaker.
  • the algorithm settings the user can adjust the headset sound effects independently.
  • FIG. 22 is a schematic diagram of an exemplary structure of an earphone according to other embodiments of the present specification.
  • the sound-emitting portion 11 may further include at least one sound outlet hole (e.g., sound outlet hole 111a) and at least one pressure relief hole (e.g., pressure relief hole 111c), wherein the sound outlet hole 111a is disposed on the inner side of the sound-emitting portion 11, and the pressure relief hole 111c is disposed on the lower side of the sound-emitting portion 11.
  • the pressure relief hole 111c may also be located on any one of the upper side, front side, rear side, and outer side of the sound-emitting portion.
  • the distances between the first sound receiving hole 1191 and the pressure relief hole 111c and the sound outlet hole 111a need to satisfy a certain relationship to prevent the sound derived from the sound outlet hole 111a and the pressure relief hole 111c from echoing at the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the distance between the first sound receiving hole 1191 and the pressure relief hole 111c can be expressed as d1
  • the distance between the first sound receiving hole 1191 and the sound outlet hole 111a can be expressed as d2.
  • the first sound receiving hole 1191 can be set near the acoustic zero point (for example, the area where the sound leakage between the sound outlet hole 111a and the pressure relief hole 111c is cancelled) to reduce the interference of the speaker to the first microphone.
  • the difference between d1 and d2 can be less than 10mm.
  • the difference between d1 and d2 can be less than 6mm.
  • the difference between d1 and d2 can be less than 4mm to further reduce the interference of the speaker to the first microphone.
  • FIG. 23 is a schematic diagram of an exemplary cross-sectional structure of the sound-emitting portion of an earphone according to other embodiments of the present specification.
  • a first acoustic resistance net 1193 may be provided in the first sound receiving hole 1191, and a second acoustic resistance net 1192 may be provided in the second sound receiving hole 1192.
  • the first acoustic resistance net 1193 and the second acoustic resistance net 1194 may refer to structures having a certain acoustic resistance effect but not completely blocking the propagation of sound.
  • the first acoustic resistance net 1193 and/or the second acoustic resistance net 1194 may include a gauze net and/or a steel net.
  • the first acoustic resistance net 1193 and the second acoustic resistance net 1194 may be fixed to the first sound receiving hole 1191 and the second sound receiving hole 1192 respectively by double-sided tape or glue. In some embodiments, the first acoustic resistance net 1193 and the second acoustic resistance net 1194 may improve the waterproof and dustproof performance at the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the distance between the first acoustic resistance net 1193 and the outer surface of the shell of the sound-emitting part 11 where the first acoustic resistance net 1193 is located can be expressed as d3
  • the distance between the second acoustic resistance net 1194 and the outer surface of the shell of the sound-emitting part 11 where the second acoustic resistance net 1194 is located can be expressed as d4. It should be noted that in this specification, d3 and d4 can be the same or different.
  • the propagation efficiency of the sound through the first sound receiving hole 1191 and the second sound receiving hole 1192 can be approximately the same, ensuring the sound receiving effect of the first microphone and the second microphone.
  • the distance d3 between the first acoustic resistance net 1193 and the outer surface of the shell of the sound-emitting part 11 can be between 0.5 mm and 2 mm
  • the distance d4 between the second acoustic resistance net 1194 and the outer surface of the shell of the sound-emitting part 11 can also be between 0.5 mm and 2 mm.
  • the distance d3 between the first acoustic resistance net 1193 and the outer surface of the shell of the sound-emitting part 11 may be between 0.5 mm and 1.5 mm
  • the distance d4 between the second acoustic resistance net 1194 and the outer surface of the shell of the sound-emitting part 11 may be between 0.5 mm and 1.5 mm.
  • the first acoustic resistance net 1193 and the second acoustic resistance net 1194 need to have a certain acoustic resistance, for example, greater than 45 Mrayls.
  • a certain acoustic resistance for example, greater than 45 Mrayls.
  • the acoustic resistance value of the first acoustic resistance net 1193 and the second acoustic resistance net 1194 cannot be too large.
  • the acoustic resistance of the first acoustic resistance net 1193 and the second acoustic resistance net 1194 can be between 45 Mrayls and 320 Mrayls.
  • the acoustic impedance of the first acoustic impedance net 1193 and the second acoustic impedance net 1194 can be 80 Mrayls-260 Mrayls.
  • the frequency response of the sound received at the first microphone or the second microphone is relatively flat, and the quality of the sound signal collected at the first microphone or the second microphone is relatively high.
  • the acoustic impedance of the first acoustic impedance net 1193 and the second acoustic impedance net 1194 can be 120 Mrayls-200 Mrayls.
  • the frequency response of the sound received at the first microphone or the second microphone is flatter, and the quality of the sound signal collected at the first microphone or the second microphone is improved.
  • the acoustic impedance measurement of the first acoustic impedance net 1193 and the second acoustic impedance net 1194 can be measured by ultrasonic echo measurement method, or determined by the product of the density of the acoustic impedance net and the speed of sound.
  • the parameters of the first acoustic resistance net 1193 and the second acoustic resistance net 1194 can be designed so that the first acoustic resistance net 1193 and the second acoustic resistance net 1194 have a preset acoustic resistance range.
  • the first acoustic resistance net 1193 and/or the second acoustic resistance net 1194 may include a plurality of holes, wherein the aperture of each hole may be in the range of 15 ⁇ m-51 ⁇ m.
  • the aperture of each hole in the first acoustic resistance net 1193 and the second acoustic resistance net 1194 may be controlled to be 18 ⁇ m-44 ⁇ m.
  • the porosity of the first acoustic resistance net 1193 and/or the second acoustic resistance net 1194 can be in the range of 11%-18%, wherein the term "porosity" can be understood as the ratio of the area of the openings in the acoustic resistance net to the total area of the acoustic resistance net. The larger the porosity, the more openings per unit area when the size of a single opening is constant, and the smaller the acoustic resistance of the acoustic resistance net.
  • the porosity of the first acoustic resistance net 1193 and/or the second acoustic resistance net 1194 can be 11%-18%.
  • the thickness of the first acoustic resistance net 1193 and/or the second acoustic resistance net 1194 can be in the range of 55 ⁇ m-108 ⁇ m.
  • FIG. 24 is a schematic diagram showing an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the sound-emitting portion 11 when the earphone 10 is in a wearing state, at least part of the sound-emitting portion 11 may cover the anti-helix region of the user (e.g., the triangular fossa, the upper crus of the anti-helix, the lower crus of the anti-helix, or the position of the anti-helix, the position of the sound-emitting portion 11C relative to the ear shown in FIG. 2 ).
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 may also be directed to the user's mouth.
  • the first sound receiving hole 1191 can be located near the mouth of the earphone 10, thereby improving the first microphone to collect the user's sound. Similar to the wearing method in which at least part of the sound-emitting portion 11 extends into the user's concha cavity, when the wearing method of the earphone 10 is that at least part of the sound-emitting portion 11 covers the user's anti-helix area, a certain distance is also required between the first sound receiving hole 1191 and the second sound receiving hole 1192 to facilitate subsequent signal processing.
  • the sound-emitting portion 11 of the earphone 10 covers the anti-helix area of the user when the earphone is worn, at least part of the sound-emitting portion 11 will abut against the inner wall of the user's auricle (for example, the inner contour 1014).
  • the second sound receiving hole 1192 may be closer to the inner contour 1014, which may cause the inner contour 1014 to reflect the sound waves generated by the user's speech or the external sound waves when they are transmitted to the inner contour 1014, especially in the frequency range of 3kHz-4kHz, causing the sound received by the second microphone to be louder than the sound received by the first microphone, affecting the subsequent noise reduction and sound collection effects.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 and the distance between the second sound receiving hole 1192 and the inner contour 1014 of the user's auricle can be adjusted to ensure the noise reduction and sound collection effects of the earphone.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane (e.g., the TS plane shown in FIG24 ), and the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 may be characterized by a first distance OP between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane.
  • the extension line of the line connecting the first projection point P of the first sound receiving hole on the user's sagittal plane and the second projection point O of the second sound receiving hole on the sagittal plane has an intersection C with the projection of the inner contour 1014 of the user's auricle on the sagittal plane, and the distance between the second sound receiving hole 1192 and the inner contour 1014 of the auricle can be characterized by the second distance OC between the second projection point O of the second sound receiving hole 1192 on the sagittal plane and the intersection C.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OC between the second projection point O and the intersection C can be set between 1.8 and 4.4.
  • the distance of the second sound receiving hole 1192 relative to the inner contour of the auricle can be increased, and the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be increased, so as to facilitate the subsequent signal processing.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OC between the second projection point O and the intersection C can be between 2.5-3.8.
  • the distance of the second sound receiving hole 1192 relative to the antihelix can be increased, and the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be increased, so as to facilitate the subsequent signal processing.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OC between the second projection point O and the intersection C can be between 2.8-3.5.
  • the distance of the second sound hole 1192 relative to the antihelix can be further increased, and the distance between the first sound hole 1191 and the second sound hole 1192 can be further increased.
  • the ratio of the first distance OP between the first projection point P and the second projection point O to the second distance OC between the second projection point O and the intersection C can be between 3.0 and 3.3.
  • the inner contour 1014 of the auricle may reflect the sound waves when the sound waves generated by the user's speech or the external sound waves are transmitted to the inner contour 1014 of the auricle, especially in the frequency range of 3kHz-8kHz, which may cause the sound received by the second microphone to be louder than the sound received by the first microphone, affecting the subsequent noise reduction and sound receiving effects.
  • the limited size of the sound-emitting part 11 it is necessary to ensure that there is a large distance between the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 will become smaller, affecting the subsequent signal processing.
  • 25A-25D are schematic diagrams of frequency response curves corresponding to the second projection point O and the intersection point C at different distances according to some embodiments of the present specification.
  • curves 2501 and 2502 are schematic diagrams of frequency response curves of the first microphone and the second microphone when the first distance OP between the first projection point P and the second projection point O is 20 mm, and the second distance OC between the second projection point O and the intersection C is 8 mm, respectively, wherein the second sound receiving hole 1192 is located on the upper side of the sound emitting part 11.
  • curves 2503 and 2504 are schematic diagrams of frequency response curves when the first distance OP between the first projection point P and the second projection point O is 20 mm, and the second distance OC between the second projection point O and the intersection C is 6 mm, respectively.
  • the second sound receiving hole 1192 is located on the upper side of the sound-emitting part 11, which is the same as the scene shown in FIG25A.
  • curves 2505 and 2506 are curves of the first microphone and the second microphone at the projection point P and the second projection point, respectively.
  • the schematic diagram of the frequency response curve when the first distance OP between the shadow points O is 20 mm and the second distance OC between the second projection point O and the intersection point C is 4 mm is the same as the scene shown in FIG. 25A and FIG. 25B , and the second sound receiving hole 1192 is located on the upper side of the sound emitting part 11. According to FIG.
  • curves 2507 and 2508 are schematic diagrams of frequency response curves when the first distance OP between the first projection point P and the second projection point O is 20 mm, and the second distance OC between the second projection point O and the intersection C is 2 mm, respectively.
  • the second sound receiving hole 1192 is located on the upper side of the sound-emitting part 11, which is the same as the scene shown in FIG. 25A to FIG. 25D. As can be seen from FIG.
  • the amplitude of the voice collected by the first microphone and the second microphone in the frequency band above 2.2 kHz is basically the same, and the voice pickup effect of the microphone assembly on the user's mouth will be seriously affected.
  • the distance between the second projection point O of the second sound receiving hole 1192 in the sagittal plane and the intersection C can be between 2 mm and 10 mm.
  • the distance between the second sound receiving hole 1192 and the inner auricle 1014 of the auricle can be increased.
  • the distance between the second projection point O and the intersection C can be between 4 mm and 10 mm.
  • the distance between the second sound receiving hole 1192 and the inner auricle 1014 of the auricle can be further increased.
  • the distance between the second projection point O and the intersection C can be between 6 mm and 10 mm.
  • the second sound receiving hole 1192 is set at a position far away from the inner auricle 1014 of the auricle, the reflection effect of the inner auricle 1014 of the auricle on sound waves will hardly affect the second sound receiving hole 1192.
  • the distance between the second projection point O and the intersection point C can be between 8mm-10mm.
  • the above description is mainly aimed at the situation where the second sound receiving hole 1192 is located on the upper side of the sound-emitting part 11.
  • the second sound receiving hole 1192 is arranged on the outer side of the sound-emitting part 11, since the second sound receiving hole 1192 is basically in the same plane as the user's auricle, the distance between the second projection point O and the intersection point C has no significant effect on the sound receiving effect of the second microphone. At this time, it is only necessary to ensure that the user's auricle is not significantly higher than the position of the second sound receiving hole 1192.
  • the distance between the first sound receiving hole 1191 and the user's mouth (refer to point Q in FIG. 24 ) is smaller than the distance between the second sound receiving hole 1192 and the user's mouth, so as to facilitate subsequent signal processing.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane (e.g., the T-S plane shown in FIG.
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane, and the third projection point Q is used to represent the projection of the user's mouth (e.g., the lip bead) on the user's sagittal plane, and the user's mouth has a third projection point Q on the user's sagittal plane, wherein the distance between PQ is smaller than the distance between OQ.
  • the line connecting the first projection point P of the first sound receiving hole 1191 on the user's sagittal plane and the second projection point O of the second sound receiving hole 1192 on the sagittal plane roughly points to the third projection point Q of the user's mouth on the sagittal plane.
  • a directivity algorithm can be constructed based on the sound received by the first microphone and the second microphone to make the received user voice clearer.
  • the line PQ between the first projection point P and the third projection point Q can be at a certain angle relative to the line OQ between the second projection point O and the third projection point Q.
  • the angle between PQ and OQ can be less than 30°.
  • the angle between PQ and OQ can be 0°-25°.
  • the angle between PQ and OQ can be 5°-20°.
  • the angle between PQ and OQ can be 0°, 3°, 9° or 15°, etc.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 When the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 is too small, it will increase the difficulty of processing the low-frequency signal (mainly because the phase difference of the low-frequency signal will be very small), and it will be difficult to achieve accurate calculation. Therefore, the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 should not be too small.
  • the distance between the first sound receiving hole 1191 and the second sound receiving hole 1192 please refer to the contents of other places in this manual, such as Figure 7 and its corresponding contents, which will not be repeated here.
  • FIG. 26 is a schematic diagram showing an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the user's mandibular base endpoint may have a fifth projection point Q' on the user's sagittal plane, and the centroid of the projection of the user's ear canal opening on the sagittal plane (for example, the dotted area 1015 in Figure 26) is B.
  • the line formed by the fifth projection point Q' and the centroid B of the projection of the user's ear canal opening on the sagittal plane can reflect the relative position relationship between the sound-emitting part 11 and the user's mandibular base endpoint to a certain extent.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane.
  • the angle ⁇ 6 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane may be made no greater than 45°.
  • the first projection point P when the earphone 10 is in the second wearing state, the first projection point P
  • the angle ⁇ 6 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane can be 6°-35°, at which time the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can point to the vicinity of the user's mouth.
  • the angle ⁇ 6 between the line connecting the first projection point P and the second projection point O and the line connecting the fifth projection point Q′ and the centroid B of the projection of the user's ear canal opening on the sagittal plane can be 10°-25°, at which time the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can point to the user's mouth more accurately.
  • the sagittal axis S and the vertical axis T may represent the critical direction of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the direction of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 may be between the sagittal axis S and the vertical axis T.
  • the line connecting the first projection point P and the second projection point O may form a certain angle ⁇ 7 with the user's vertical axis.
  • the angle ⁇ 7 may reflect the directivity of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the angle ⁇ 7 between the line connecting the first projection point P and the second projection point O and the user's vertical axis may be in the range of 20°-80°, and at this time, the line connecting the first projection point P and the second projection point O points to the area close to the user's mouth or the end point of the mandibular bottom.
  • the angle ⁇ 7 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be in the range of 40°-70°, at which point the line connecting the first projection point P and the second projection point O points to the user's mouth or the area of the mandibular bottom end point.
  • the angle ⁇ 7 between the line connecting the first projection point P and the second projection point O and the vertical axis of the user can be in the range of 42°-65°, at which point the line connecting the first projection point P and the second projection point O can point to the user's mouth area more accurately.
  • FIG. 27 is a schematic diagram showing an exemplary wearing method of headphones according to other embodiments of the present specification.
  • the projection of the sound-emitting part 11 on the sagittal plane may include a long axis direction X and a short axis direction Y, wherein the long axis direction X may refer to the length extension direction of the sound-emitting part 11, and the short axis direction Y may refer to the height (or width) extension direction of the sound-emitting part 11.
  • the first sound receiving hole 1191 may have a first projection point P on the user's sagittal plane
  • the second sound receiving hole 1192 may have a second projection point O on the user's sagittal plane
  • the angle between the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane may be expressed as ⁇ 8.
  • the sound receiving effects of the first sound receiving hole 1191 and the second sound receiving hole 1192 may be controlled by controlling the angle between the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane.
  • the sagittal axis S and the vertical axis T can represent the critical direction of the line connecting the first projection point P and the second projection point O relative to the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane.
  • the direction of the line connecting the first projection point P and the second projection point O can be between the sagittal axis S and the vertical axis T to ensure the sound collection effect of the first microphone and the second microphone when collecting the user's speech.
  • the counterclockwise direction is positive to represent the angle formed by the line connecting the first projection point P and the second projection point O relative to the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane.
  • the angle ⁇ 8 formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be between -45° and 45°.
  • the angle ⁇ 8 formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be -25°-30°, and the line connecting the first projection point P and the second projection point O can point to the area between the user's mouth and the bottom end point of the mandible.
  • the angle ⁇ 8 formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be -20°-25°, and the line connecting the first projection point P and the second projection point O can point more accurately to the area between the user's mouth and the bottom end point of the mandible.
  • the earphone can also be in the wearing state shown in FIG.
  • the upper side or the lower side of the sound-emitting part is approximately parallel to the horizontal direction, and the angle formed by the line connecting the first projection point P and the second projection point O and the long axis direction X of the projection shape of the sound-emitting part 11 on the sagittal plane can be 0-90°.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis can be between -30° and 135°.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's coronal axis can be between -50° and 125°, and at this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the area near the left and right sides of the user's mouth.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis can be between -90° and 115°, and at this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 points to the user's mouth area.
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the user's coronal axis is -90°
  • the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 is parallel to the user's sagittal plane.
  • a coordinate system can be established with the long axis direction X, the short axis direction Y and the thickness direction Z of the sound-emitting part 11, and the coordinates in the coordinate system are used to represent the relative positions of the first sound receiving hole 1191 and/or the second sound receiving hole 1192 relative to the sound-emitting part 11.
  • the Z value in the coordinate system can represent the relative positions of the first sound receiving hole 1191 and/or the second sound receiving hole 1192.
  • the distance between the first sound receiving hole 1191 and/or the second sound receiving hole 1192 and the inner side of the sound-emitting part 11 is represented by the X value in the coordinate system
  • the distance between the first sound receiving hole 1191 and/or the second sound receiving hole 1192 and the front side of the sound-emitting part 11 is represented by the Y value in the coordinate system.
  • the larger the Z value in the coordinate system the farther the first sound receiving hole 1191 is from the inner side of the sound-emitting part 11; the larger the X value, the farther the first sound receiving hole 1191 is from the front side of the sound-emitting part 11; and the larger the Y value, the farther the first sound receiving hole 1191 is from the lower side of the sound-emitting part 11.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X is not greater than 0.75, that is, when the sound-emitting part 11 is divided into 4 equal parts along the long axis direction X, the first projection point P is located in the area of X ⁇ 3.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X is not greater than 0.5.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.3.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.2.
  • the first sound receiving hole 1191 is arranged at a position close to the front side of the sound-emitting part, and more options are provided for the position of the second sound receiving hole 1192, ensuring that the second sound receiving hole can maintain a specific distance from the first sound receiving hole and that the second sound receiving hole can be as far away from the antihelix as possible.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the front side of the sound-emitting part 11 on the sagittal plane in the long axis direction X to the size of the projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X may be no greater than 0.1.
  • the first sound receiving hole 1191 may also be located on the front side of the sound-emitting part 11. In this case, the first sound receiving hole 1191 is closer to the user's mouth in the horizontal direction, and the sound receiving effect of the first microphone is better.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y can be made no greater than 0.5, that is, when the sound-emitting part is divided into 4 equal parts along the short axis direction Y, the first projection point P is located in the area where Y ⁇ 2.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y can be made no greater than 0.4.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y may be no greater than 0.3.
  • Setting the first sound receiving hole 1191 at a position close to the lower side of the sound-emitting part can also provide more options for the position of the second sound receiving hole 1192, ensuring that the second sound receiving hole can maintain a specific distance from the first sound receiving hole and that the line connecting the first sound receiving hole and the second sound receiving hole can point more accurately to the user's mouth.
  • the ratio of the distance between the first projection point P of the first sound receiving hole 1191 on the sagittal plane and the projection of the lower side of the sound-emitting part 11 on the sagittal plane in the short axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Y may be less than or equal to 0.1.
  • the first sound receiving hole 1911 may be located on the lower side of the sound-emitting portion 11. In this case, the first sound receiving hole 1191 is closer to the user's mouth in the vertical direction, and the sound receiving effect of the first microphone is better.
  • the first sound receiving hole 1192 may be located on the lower side or front side of the sound-emitting portion 11. In some embodiments, considering that the first sound outlet hole 1191 is too close to the inner side of the sound-emitting portion 11 (for example, less than 2 mm), not only may the first sound receiving hole 1191 be blocked by the user's ear during wearing, but the first microphone may also collect the noise generated by the friction between the user's ear and the sound-emitting portion 11.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound-emitting part 11 in the thickness direction Z of the sound-emitting part to the size of the sound-emitting part 11 along the thickness direction Z can be between 0.25-0.7.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound-emitting part 11 in the thickness direction Z of the sound-emitting part to the size of the sound-emitting part 11 along the thickness direction Z can be 0.25-0.65.
  • the first sound receiving hole 1191 is set at a relatively far distance from the inner side surface of the sound-emitting part 11, which can reduce the influence of the noise generated by the friction between the sound-emitting part 11 and the ear.
  • the connecting line between the first sound receiving hole 1191 and the second sound receiving hole 1192 can be directed to the user's mouth.
  • the ratio of the distance between the first sound receiving hole 1191 and the inner side surface of the sound emitting part 11 in the thickness direction Z of the sound emitting part to the size of the sound emitting part 11 along the thickness direction Z can be 0.3-0.65.
  • the first sound receiving hole 1191 can be made The line connecting the sound hole 1191 and the second sound receiving hole 1192 points more accurately to the user's mouth.
  • the projection of the front side of the sound-emitting part 11 on the user's sagittal plane (or the extension of the projection) and the projection of the lower side of the sound-emitting part 11 on the user's sagittal plane (or the extension of the projection) may have an intersection G.
  • the distance between the first projection point P and the intersection G may be no greater than 5 mm.
  • the distance between the first projection point and the fourth projection point may be no greater than 3 mm.
  • the first sound receiving hole 1191 may be set at a position closer to the user's mouth on the sound-emitting part 11.
  • the distance between the first projection point and the fourth projection point may be no greater than 1 mm.
  • the first sound receiving hole 1191 is closer to the user's mouth to further improve the sound receiving effect of the first microphone.
  • the second sound receiving hole 1192 can be set on the side of the sound-emitting part 11 that does not form an auxiliary cavity with the user's anti-helix.
  • the second sound receiving hole 1192 can be set on the upper side surface US, the lower side surface LS, the outer side surface OS, etc. of the sound-emitting part 11.
  • the second sound receiving hole 1192 can be located on the outer side surface OS of the sound-emitting part 11.
  • the distance between the second sound receiving hole 1192 and the upper side surface US of the sound-emitting part 11 can be 1mm-3mm, and the distance between the second sound receiving hole 1192 and the rear side surface FE (also referred to as the end FE of the sound-emitting part 11) can be 8mm-12mm.
  • the distance between the second sound receiving hole 1192 and the upper side US may be 2mm-2.5mm, and the distance between the second sound receiving hole 1192 and the rear side FE may be 9mm-10mm.
  • the distance between the position of the second sound receiving hole 1192 and the upper side US may be 2.47mm, and the distance between the second sound receiving hole 1192 and the rear side FE may be 9.96mm.
  • the distance between the second sound receiving hole 1192 and the front side CE may be 8mm-12mm.
  • the distance between the second sound receiving hole 1192 and the front side CE may be 8.5mm-12mm.
  • the distance between the second sound receiving hole 1192 and the lower side LS may be 4mm-8mm.
  • the distance between the second sound receiving hole 1192 and the lower side LS may be 6mm-8mm.
  • the distance from the first sound receiving hole 1192 to the upper side, front side, rear side and lower side of the sound-emitting part 11 may refer to the distance from the center of the opening of the first sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the upper side, front side or rear side of the sound-emitting part 11.
  • the distance may refer to the distance from the center of the opening of the first sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the side.
  • the distance may refer to the distance from the center of the opening of the first sound receiving hole 1192 on the outer surface of the shell of the sound-emitting part 11 to the tangent plane corresponding to the curved surface.
  • Fig. 28A is a schematic diagram of an exemplary wearing method of an earphone according to some other embodiments of the present specification.
  • Fig. 28B is a schematic diagram of the angle between the connecting line of the first sound receiving hole and the second sound receiving hole and the outer side surface of the sound-emitting part according to some embodiments of the present specification.
  • the angle between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be expressed as ⁇ 9.
  • the outer side surface of the sound-emitting part 11 can be a plane, and the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the outer side surface is the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the plane.
  • the line connecting the first sound receiving hole and the second sound receiving hole can be a curved surface
  • the angle between the line connecting the first sound receiving hole and the second sound receiving hole and the outer side surface refers to the angle between the first sound receiving hole and the second sound receiving hole and the plane tangent to the curved surface of the outer side surface.
  • the outer side surface of the sound-emitting part 11 can be represented by four points M1, M2, M3, and M4 located on the outer side surface.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 can be located on the same side surface or different sides of the sound-emitting part 11.
  • the first sound receiving hole 1191 and the second sound receiving hole 1192 may both be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 may be located on the front side of the sound emitting portion 11, and the second sound receiving hole 1192 may be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 may be located on the lower side of the sound emitting portion 11, and the second sound receiving hole 1192 may be located on the outer side of the sound emitting portion 11.
  • the first sound receiving hole 1191 has a projection point M7 on the outer side surface M1M2M3M4, and the second sound receiving hole 1192 may be located on the outer side surface of the sound-emitting portion 11 (i.e., located in the plane M1M2M3M4).
  • the angle ⁇ 9 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting portion 11 may refer to the angle formed by the line connecting the projection point M7 and the second sound receiving hole 1192 and the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192.
  • the second sound hole 1192 when the second sound hole 1192 is not located on the outer side surface of the sound-emitting part 11, the second sound hole 1192 may have a projection point M8 (not shown in the figure) on the outer side surfaces M1M2M3M4, and the angle ⁇ 9 between the line connecting the first sound hole 1191 and the second sound hole 1192 and the outer side surface of the sound-emitting part 11 may refer to the angle formed by the line connecting the projection point M7 and the projection point M8 and the line connecting the first sound hole 1191 and the second sound hole 1192.
  • the angle ⁇ 9 can reflect the relative position relationship between the first sound receiving hole 1191 and the second sound receiving hole 1192 in the thickness direction of the sound emitting part 11, and can also reflect the directivity of the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 relative to the user's mouth to a certain extent.
  • the first sound receiving hole 1191 in order to make the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 have better directivity, thereby ensuring that the first sound receiving hole 1191 and the second sound receiving hole 1192 have better sound receiving effect, the first sound receiving hole 1191 can be The angle ⁇ 9 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 is controlled to be between 0° and 60°. At this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be roughly directed to the area on the front side of the user's face, so that the first microphone and the second microphone can have a better sound receiving effect.
  • the angle ⁇ 9 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be 10°-40°. At this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be roughly directed to the area around the user's mouth, thereby improving the sound receiving effect of the first microphone and the second microphone.
  • the angle ⁇ 9 between the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 and the outer side surface of the sound-emitting part 11 can be 25°-38°. At this time, the line connecting the first sound receiving hole 1191 and the second sound receiving hole 1192 can be directed to the user's mouth, thereby further improving the sound receiving effect of the first microphone and the second microphone.
  • the present application uses specific words to describe the embodiments of the present application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment.
  • some features, structures or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Headphones And Earphones (AREA)

Abstract

本说明书实施例提供一种耳机,包括发声部、耳挂以及麦克风组件;耳挂被配置为将发声部佩戴于耳道附近但不堵塞耳道口的位置,发声部的至少部分伸入耳甲腔中;麦克风组件至少包括第一麦克风和第二麦克风,第一麦克风或第二麦克风设置于发声部或耳挂中,发声部或耳挂上开设有分别与第一麦克风和第二麦风对应的第一收音孔和第二收音孔;其中,第一收音孔在用户矢状面的投影和第二收音孔在矢状面的投影的连线的延长线与对耳轮在矢状面的投影具有交点,第一收音孔在矢状面的投影和第二收音孔在矢状面的投影的距离为第一距离,第二收音孔在矢状面的投影与交点的距离为第二距离,第一距离与第二距离比值为1.8-4.4。

Description

一种耳机
交叉引用
本申请要求于2022年10月28日提交的申请号为202211336918.4的中国申请,于2022年12月1日提交的申请号为202223239628.6的中国申请的优先权,以及于2022年12月30日提交的申请号PCT/CN2022/144339的PCT申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,特别涉及一种耳机。
背景技术
随着声学输出技术的发展,声学装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。
通常,耳机上会布置麦克风,用于拾取用户声音。麦克风的拾音效果效果依赖于其在耳机上的布置方式。如何在保证耳机输出声音效果的同时,提高麦克风的拾音效果,是亟需解决的问题。
发明内容
本说明书实施例之一提供一种耳机,包括:发声部;耳挂,被配置为将所述发声部佩戴于耳道附近但不堵塞耳道口的位置,所述发声部的至少部分伸入耳甲腔中;以及麦克风组件,至少包括第一麦克风和第二麦克风,所述第一麦克风或所述第二麦克风设置于所述发声部或耳挂中,所述发声部或所述耳挂上开设有分别与所述第一麦克风和所述第二麦风对应的第一收音孔和第二收音孔;其中,所述第一收音孔在用户矢状面的投影和所述第二收音孔在所述矢状面的投影的连线的延长线与对耳轮在所述矢状面的投影具有交点,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的距离为第一距离,所述第二收音孔在所述矢状面的投影与所述交点的距离为第二距离,所述第一距离与所述第二距离比值为1.8-4.4。
本说明书实施例之一还提供一种耳机,包括:发声部;以及耳挂,被配置为将所述发声部固定于耳道附近但不堵塞耳道口的位置,所述发声部的至少部分覆盖对耳轮区域;麦克风组件,至少包括第一麦克风和第二麦克风,所述第一麦克风或所述第二麦克风设置于所述发声部或耳挂中,所述发声部或所述耳挂上开设有分别与所述第一麦克风和所述第二麦风对应的第一收音孔和第二收音孔;其中,所述第一收音孔在用户矢状面的投影和所述第二收音孔在所述矢状面的投影的连线的延长线与耳廓的内轮廓在所述矢状面的投影具有交点,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的距离为第一距离,所述第二收音孔在所述矢状面的投影与所述交点的距离为第二距离,所述第一距离与所述第二距离比值为1.8-4.4。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性耳部示意图;
图2是根据本说明书一些实施例所示的耳机的示例性佩戴示意图;
图3是根据本说明书一些实施例所示的耳机的发声部伸入耳甲腔的佩戴示意图;
图4是根据本说明书一些实施例所示的类腔体结构声学模型示意图;
图5是根据本说明书一些实施例所示的耳机的示例性结构示意图;
图6是根据本说明书一些实施例所示的耳机的示例性佩戴示意图;
图7是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图8是根据本说明书一些实施例所示的以发声部的长轴方向和短轴方向建立的坐标系示意图;
图9是根据本说明书一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图10是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图11是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图12是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图13是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图14是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图;
图15A是根据本说明书另一些实施例所示的耳机的示例性结构示意图;
图15B是根据本说明书另一些实施例所示的耳机的示例性结构示意图;
图16A是根据本说明书另一些实施例所示的根据发声部建立的示例性坐标系示意图;
图16B是根据本说明书另一些实施例所示的根据发声部建立的示例性坐标系示意图;
图17是根据本说明书一些实施例所示的第一收音孔、第二收音孔与用户嘴部的示例性位置关系示意图;
图18是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图19是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图20是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图21A是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图21B是根据本说明书一些实施例所示的第一收音孔和第二收音孔的连线与发声部的外侧面的夹角示意图;
图22是根据本说明书另一些实施例所示的耳机的示例性结构示意图;
图23是根据本说明书另一些实施例所示的耳机的发声部的示例性剖面结构示意图;
图24是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图25A是根据本说明书一些实施例所示的第二投影点O与交点C的距离为8mm时所对应的频响曲线示意图;
图25B是根据本说明书一些实施例所示的第二投影点O与交点C的距离为6mm时所对应的频响曲线示意图;
图25C是根据本说明书一些实施例所示的第二投影点O与交点C的距离为4mm时所对应的频响曲线示意图;
图25D是根据本说明书一些实施例所示的第二投影点O与交点C的距离为2mm时所对应的频响曲线示意图;
图26是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图27是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图28A是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图;
图28B是根据本说明书一些实施例所示的第一收音孔和第二收音孔的连线与发声部的外侧面的夹角示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
图1是根据本说明书一些实施例所示的示例性耳部示意图。如图1所示,图1是根据本申请的一些实施例所示的示例性耳部的示意图。参见图1,耳部100可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108、耳轮脚109、外轮廓1013和内轮廓1014。需要说明的是,为便于描述,本说明书实施例中将对耳轮上脚1011和对耳轮下脚1012以及对耳轮105统称为对耳轮区域。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、或耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的外耳道101。当用户佩戴声学装置(耳机)时,声学装置不会堵塞用户外耳道101,用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部不同位置的佩戴。例如,声学装置为耳机时,耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相 适配,以将耳部发声部的整体或者部分结构置于耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴耳机时,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,在用户佩戴耳机时,发声部的整体或者部分结构可以位于耳部的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得的含头部及其(左、右)耳部的模拟器,例如GRAS KEMAR、HEAD Acoustics、B&K 4128系列或B&K 5128系列,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。以GRAS KEMAR作为示例,耳部的模拟器可以为GRAS 45AC、GRAS 45BC、GRAS 45CC或GRAS 43AG等中的任意一种。以HEAD Acoustics作为示例,耳部的模拟器可以为HMS II.3、HMS II.3 LN或HMS II.3LN HEC等中的任意一种。需要注意的是,本说明书实施例中测取的数据范围是在GRAS 45BC KEMAR的基础上测取的,但应当理解的是,不同头部模型及耳朵模型之间可能存在差异,在用其它模型是相关数据范围可能存在±10%的波动。仅仅作为示例,作为参考的耳部模型可以具有如下相关特征:耳廓在矢状面上的投影在垂直轴方向的尺寸可以在55-65mm的范围内,耳廓在矢状面上的投影在矢状轴方向的尺寸可以在45-55mm的范围内。耳廓在矢状面的投影是指耳廓的边缘在矢状面的投影。耳廓的边缘至少由耳轮的外轮廓、耳垂轮廓、耳屏轮廓、屏间切迹、对屏尖、轮屏切迹等组成。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以根据不同形状和尺寸的耳部进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的耳部的前侧指沿着矢状轴方向且位于耳部朝向人体面部区域的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部,可以得到图1所示的耳部的前侧轮廓示意图。
关于上述耳部100的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,声学装置的部分结构可以遮蔽外耳道101的部分或者全部。这些变化和修改仍处于本申请的保护范围之内。
图2是根据本说明书一些实施例所示的耳机的示例性佩戴示意图。如图2所示,耳机10可以包括发声部11和悬挂结构12。在一些实施例中,耳机10可以通过悬挂结构12将发声部11佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干)。在一些实施例中,悬挂结构12可以为耳挂,发声部11与耳挂的一端连接,耳挂可以设置成与用户耳部相适配的形状。例如,耳挂可以为弧形结构。在一些实施例中,悬挂结构12也可以为与用户耳廓相适配的夹持结构,以使悬挂结构12可以夹持于用户耳廓处。在一些实施例中,悬挂结构12可以包括但不限于耳挂、弹性带等,使得耳机10可以更好地挂设在用户身上,防止用户在使用时发生掉落。
在一些实施例中,发声部11可以用于佩戴在用户的身体上,发声部11内可以设有扬声器以产生声音输入用户耳部100。在一些实施例中,耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,发声部11可以采用悬挂或夹持的方式佩戴在用户的耳部100的附近。在一些实施例中,发声部11可以为圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便发声部11可以直接挂靠在用户的耳部100处。
结合图1和图2,在一些实施例中,当用户佩戴耳机10时,发声部11的至少部分可以位于图1中示出用户耳部100中耳屏前侧的区域J或耳廓的前外侧面区域M1和区域M2。以下将结合发声部11的不同佩戴位置(11A、11B和11C)进行示例性说明。需要说明的是,本说明书实施例中提及的耳廓的前外侧面是指耳廓沿冠状轴方向背离头部的一侧,对应的,耳廓的后内侧面是指耳廓沿冠状轴方向 朝向人头的一侧。在一些实施例中,发声部11A位于用户耳部100沿矢状轴方向朝向人体面部区域的一侧,即发声部11A位于耳部100的前侧的人体面部区域J。进一步地,发声部11A的壳体内部设置有扬声器,发声部11A的壳体上可以设置有至少一个出声孔(图2中未示出),出声孔可以位于发声部的壳体上朝向或靠近用户外耳道101的侧壁上,扬声器可以通过出声孔向用户外耳道101处输出声音。在一些实施例中,扬声器可以包括振膜,发声部11的壳体内部的腔室被振膜至少分隔为前腔和后腔,出声孔与前腔声学耦合,振膜振动带动前腔的空气振动产生气导声音,前腔产生的气导声音通过出声孔向外界传播。在一些实施例中,发声部11的壳体上还可以包括一个或多个泄压孔,泄压孔可以位于壳体上与出声孔所在侧壁相邻或相对的侧壁上,泄压孔与后腔声学耦合,振膜振动的同时也会带动后腔的空气产生振动产生气导声音,后腔产生的气导声音可以通过泄压孔向外界传递。示例性地,在一些实施例中,发声部11A内的扬声器可以通过出声孔和泄压孔输出具有相位差(例如,相位相反)的声音,出声孔可以位于发声部11A的壳体朝向用户外耳道101的侧壁上,泄压孔可以位于发声部11的壳体背离用户外耳道101的一侧,此时壳体可以起到挡板的作用,增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。在一些实施例中,发声部11可以具有垂直于厚度方向Z且彼此正交的长轴方向X和短轴方向Y。其中,长轴方向X可以定义为发声部11的二维投影面(例如,发声部11在其外侧面所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向),短轴方向Y可以定义为在发声部11在矢状面上投影的形状中垂直于长轴方向X的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向Z可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。在一些实施例中,当佩戴状态下发声部11处于倾斜状态时,长轴方向X与短轴方向Y仍平行或近似平行于矢状面,长轴方向X可以与矢状轴的方向具有一定夹角,即长轴方向X也相应倾斜设置,短轴方向Y可以与垂直轴的方向具有一定夹角,即短轴方向Y也倾斜设置,如图2所示的发声部11B的佩戴情况。在一些实施例中,发声部11B的整体或部分结构可以伸入耳甲腔中,也就是说,发声部11B在矢状面上的投影与耳甲腔在矢状面上的投影具有重叠的部分。关于发声部11B的具体内容可以参考本说明书其他地方的内容,例如,图3及其对应的说明书内容。在一些实施例中,佩戴状态下发声部11也可以处于水平状态或近似水平状态,如图2的发声部11C所示,长轴方向X可以与矢状轴的方向一致或近似一致,均指向身体的前后方向,短轴方向Y可以与垂直轴的方向一致或近似一致,均指向身体的上下方向。需要注意的是,佩戴状态下,发声部11C处于近似水平状态可以是指图2所示的发声部11C的长轴方向X与矢状轴的夹角在特定范围(例如,不大于20°)内。此外,发声部11的佩戴位置不限于图2中所示的发声部11A、发声部11B和发声部11C,满足图1中示出的区域J、区域M1或区域M2即可。例如,发声部11整体或者部分结构可以位于图1中虚线围成的区域J。又例如,发声部的整体或者部分结构可以与耳部100的耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置接触。再例如,发声部11的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
为了改善耳机10在佩戴状态下的稳定性,耳机10可以采用以下几种方式中的任何一种或其组合。其一,悬挂结构12的至少部分设置成与耳廓的后内侧面和头部中的至少一者贴合的仿形结构,以增加悬挂结构12与耳部和/或头部的接触面积,从而增加声学装置10从耳部上脱落的阻力。其二,悬挂结构12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加悬挂结构12对耳部和/或头部的正压力,从而增加耳机10从耳部上脱落的阻力。其三,悬挂结构12至少部分设置成在佩戴状态下抵靠在耳部和/或头部上,使之形成压持耳部的反作用力,以使得发声部11压持在耳廓的前外侧面(例如,图1中示出的区域M1和区域M2),从而增加耳机10从耳部上脱落的阻力。其四,发声部11和悬挂结构12设置成在佩戴状态下从耳廓的前外侧面和后内侧面两侧夹持对耳轮区域、耳甲腔所在区域等,从而增加耳机10从耳部上脱落的阻力。其五,发声部11或者与之连接的结构设置成至少部分伸入耳甲腔102、耳甲艇103、三角窝104及耳舟106等腔体内,从而增加声耳机10从耳部上脱落的阻力。
示例性地,结合图3,在佩戴状态下,发声部11的末端FE(也被称为自由端)可以伸入耳甲腔内。可选地,发声部11和悬挂结构12可以设置成从耳甲腔所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加耳机10从耳部上脱落的阻力,进而改善耳机10在佩戴状态下的稳定性。例如,发声部的末端FE在厚度方向Z上压持在耳甲腔内。再例如,末端FE在长轴方向X和/或短轴方向Y上抵接在耳甲腔内(例如,与耳甲腔的相对末端FE的内壁相抵接)。需要说明的是,发声部11的 末端FE是指发声部11中与悬挂结构12连接的固定端相对设置的端部,也被称为自由端。发声部11可以为规则或不规则的结构体,这里为了进一步说明发声部11的末端FE,进行示例性说明。例如,发声部11为长方体结构时,发声部11的端部壁面为平面,此时发声部11的末端FE为发声部11中与悬挂结构12连接的固定端相对设置的端部侧壁。又例如,发声部11为球体、椭球体或不规则的结构体时,发声部11的末端FE可以是指沿Y-Z平面(短轴方向Y和厚度方向Z形成的平面)对发声部11进行切割,获取的远离固定端的特定区域,该特定区域沿长轴方向X的尺寸与发声部沿长轴方向X的尺寸的比值可以为0.05-0.2。
通过将发声部11至少部分伸入耳甲腔内,可以提高听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时仍然保持较好的远场漏音相消的效果。仅作为示例性说明,发声部11的整体或部分结构伸入耳甲腔102内时,发声部11与耳甲腔102形成类似于腔体的结构(以下简称为类腔体),在说明书实施例中,类腔体结构可以理解为由发声部11的侧壁与耳甲腔102结构共同围成的半封闭结构,该半封闭结构使得听音位置(例如,耳道口处)与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构(例如,开口、缝隙、管道等)。用户在佩戴耳机10时,发声部11的壳体上靠近或朝向用户耳道的一侧可以设置一个或多个出声孔,发声部11的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与耳机10的前腔声学耦合,泄压孔与耳机10的后腔声学耦合。以发声部11包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声音相位相反,形成一个偶极子,发声部11和耳甲腔102对应的内壁形成类腔体结构,其中,出声孔对应的声源位于类腔体结构内,泄压孔对应的声源位于类腔体结构外,形成图4所示的声学模型。如图4所示,类腔体结构402中可以包含听音位置和至少一个声源401A。这里的“包含”可以表示听音位置和声源401A至少有一者在类腔体结构402内部,也可以表示听音位置和声源401A至少有一者在类腔体结构402内部边缘处。听音位置可以等效为耳部的耳道口,也可以是耳部声学参考点,如ERP、DRP等,也可以是导向听音者的入口结构等。声源401B位于类腔体结构402的外部,相位相反的声源401A和401B构成了一个偶极子。该偶极子分别向周围空间辐射声音并发生声波的干涉相消现象,实现漏音相消效果。由于两个声音的声程差在听音位置较大,因此声音相消的效果相对不显著,可在听音位置听到较其他位置更大的声音。具体地,由于声源401A被类腔体结构402包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有类腔体结构402的情况,声源401A辐射出的声音大部分不会到达听音位置。因此,类腔体结构402的设置使得到达听音位置的声音音量得到显著提高。同时,类腔体结构402外的反相声源401B辐射出来的反相声音只有较少的一部分会通过类腔体结构402的泄漏结构403进入类腔体结构402中。这相当于在泄漏结构403处生成了一个次级声源401B’,其强度显著小于声源401B,亦显著小于声源401A。次级声源401B’产生的声音在腔体内对声源401A产生反相相消的效果微弱,使听音位置的听音音量显著提高。对于漏音来说,声源401A通过腔体的泄漏结构402向外界辐射声音相当于在泄漏结构402处生成了一个次级声源401A’,由于声源401A辐射的几乎所有声音均从泄漏结构403输出,且类腔体结构402尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源401A’的强度与声源401A相当。对于外界空间来说,次级声源401A’与声源401B产生的声音相消效果与声源401A与声源401B产生的声音相消效果相当。即该类腔体结构下,仍然保持了相当的降漏音效果。
在具体应用场景中,发声部11的壳体外壁面通常为平面或曲面,而用户耳甲腔的轮廓为凹凸不平的结构,通过将发声部11部分或整体结构伸入耳甲腔内,发声部11与耳甲腔的轮廓之间形成与外界连通的类腔体结构,进一步地,将出声孔设置在发声部的壳体朝向用户耳道口和靠近耳甲腔边缘的位置,以及将泄压孔设置在发声部11背离或远离耳道口的位置就可以构造图4所示的声学模型,从而使得用户在佩戴耳机时能够提高用户在耳口处的听音位置,以及降低远场的漏音效果。
图5是根据本说明书一些实施例所示的耳机的示例性结构示意图。
参照图5,耳机10可以包括发声部11和悬挂结构12。在一些实施例中,耳机10的发声部11可以包括换能器和容纳换能器的壳体,其中,换能器是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,换能器的类型可以包括低频(例如,30Hz-150Hz)扬声器、中低频(例如,150Hz-500Hz)扬声器、中高频(例如,500Hz-5kHz)扬声器、高频(例如,5kHz-16kHz)扬声器或全频(例如,30Hz-16kHz)扬声器,或其任意组合。这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz,700Hz,800Hz,1000Hz等。
在一些实施例中,换能器可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧 和后侧发出。在一些实施例中,壳体内振膜前侧的位置设有用于传递声音的前腔(未示出)。前腔与出声孔声学耦合,振膜前侧的声音可以通过前腔从出声孔中发出。壳体内振膜后侧的位置设有用于传递声音的后腔(未示出)。后室与泄压孔声学耦合,振膜后侧的声音可以通过后腔从泄压孔中发出。
参照图5,本说明书中以耳挂作为悬挂结构12的一个示例进行说明,在一些实施例中,耳挂可以包括依次连接的第一部分121和第二部分122,其中,第一部分121可以挂设在用户耳廓的后内侧面和头部之间,第二部分122可以向耳廓的前外侧面(耳廓沿冠状轴方向背离人体头部的一侧)延伸并连接发声部11,从而将发声部11佩戴于用户耳道附近但不堵塞耳道口的位置。在一些实施例中,出声孔可以开设在发声部11的壳体朝向耳廓的侧壁上,从而将换能器产生的声音导出壳体后传向用户的耳道口。在一些实施例中,当用户佩戴耳机10时,发声部11的至少部分可以伸入用户耳甲腔中(例如,图2中所示出的发声部11B相对耳部的位置),从而形成前文所述的类腔体结构,提高耳道口处的听音音量。
在一些实施例中,耳机10还可以包括用于采集声学信号(例如用户语音、环境声音等)的麦克风,麦克风可以位于耳挂或发声部中,发声部或耳挂上开设有与麦克风声学导通的收音孔。在一些实施例中,耳机10可以包括麦克风组件,麦克风组件可以包括第一麦克风和第二麦克风,该第一麦克风和第二麦克风可以分别采集其对应位置的声音信号,例如用户语音、环境声音等。在一些实施例中,该第一麦克风和第二麦克风可以均设置于发声部11中。在一些实施例中,第一麦克风和第二麦克风也可以均设置于耳挂中。在一些实施例中,第一麦克风和第二麦克风的一个可以设置于耳挂中,另一个设置于发声部11中。以下结合图5作为示例进行说明,如图5所示,第一麦克风(图5中未示出)位于耳挂中,耳挂上开设有与第一麦克风声学导通的第一收音孔1191,第二麦克风(图5中未示出)位于发声部11中,发声部11上开设有与第二麦克风声学导通的第二收音孔1192,并且,当用户佩戴耳机时,第一收音孔1191与第二收音孔1192均不受遮挡,以便接收用户讲话时的声音信息或外界的声音信息。在一些实施例中,第一收音孔1191和第二收音孔1192可以为双孔结构,例如,第一收音孔1191的数量为两个,第一麦克风对应两个第一收音孔1191,两个第一收音孔1191在耳挂或发声部内部联通,当外界环境中存在气流速度引起的压力波动时,通过将第一收音孔1191和第二收音孔1192设置成双孔结构,第一收音孔1191和第二收音孔1192可以在其外侧(收音孔所在的耳挂或发声部的外表面)之间进行压力平衡,然后再传递至第一收音孔1191和第二收音孔1192的内侧。由于第一收音孔1191和第二收音孔1192的内侧的中心轴线垂直于气流方向,压力波动会有所减小,进而使得其引起的风噪也会相应减小,因此,通过设置该第一麦克风、第二麦克风、以及与第一麦克风声学导通的第一收音孔1191、与第二麦克风声学导通的第二收音孔1192,可以起到降低风噪的作用。在一些实施例中,第一收音孔1191和第二收音孔1192可以为圆形孔、方形孔、椭圆孔、菱形孔等规则形状或不规则形状。其中,第一收音孔1191的形状与第二收音孔1192的形状可以相同或不同。
图6是根据本说明书一些实施例所示的耳机的示例性佩戴示意图。
参照图5和图6,在一些实施例中,当耳机10处于佩戴状态时,发声部11的至少部分可以伸入用户的耳甲腔。在一些实施例中,第一收音孔1191与第二收音孔1192的连线可以指向用户的嘴部,以使第一麦克风与第二麦克风具有良好的收音效果。在一些实施例中,在佩戴状态下,第一收音孔1191可以是位于耳机10上最接近嘴的位置,从而提高第一麦克风收集用户的嘴部发出的声音时的收音效果。第一收音孔1191和第二收音孔1192与用户嘴部的距离均较近,因此,用户嘴部发出的声音对于第一麦克风和第二麦克风均为近场声音。此外,第一收音孔1191和第二收音孔1192与用户嘴部的距离不同,因此第一麦克风和第二麦克风接收到的用户嘴部发出的声音之间存在差别(例如,声音的幅值或相位不同)。而来自于环境中的噪声对于第一麦克风与第二麦克风来说均可以视为远场声音,第一麦克风与第二麦克风接收到噪声基本相同(例如,声音的幅值或相位基本相同),然后将第一麦克风接收到的信号减去第二麦克风接收到的信号之后再放大,即可得到较好的消除噪声后的人声效果。基于此,第一收音孔1191和第二收音孔1192之间需要设置一定的间距,以便进行后续的信号处理,由于耳机10在佩戴状态下,发声部11的至少部分伸入耳甲腔中,在保证第一收音孔1191设置在靠近用户嘴部的位置以及第一收音孔1191和第二收音孔1192之间的间距的前提下,第二收音孔1192可能距离对耳轮较近,这就会导致用户讲话产生的声波或外界声波在传递到对耳轮时,对耳轮对声波造成反射效应,尤其是在3kHz-8kHz的频率范围内,导致第二麦克风接收的声音相对第一麦克风接收到的声音还要大,影响后续的降噪和收音效果。基于上述问题,在一些实施例中,可以通过调整第一收音孔1191和第二收音孔1192之间的距离以及第二收音孔1192与用户对耳轮的边缘的距离以保证耳机的降噪和收音效果。如图6所示,当耳机10处于佩戴状态时,第一收音孔1191在用户矢状面(例如图6所示的T-S平面)上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O。在一些实施例中,为了便于更清楚地描述第一收音孔1191、第二收音孔1192以及用户耳廓的对耳轮的 位置关系,第一收音孔1191与第二收音孔1192之间的距离可以通过第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的第一距离OP来反映。在一些实施例中,第一收音孔在用户矢状面的第一投影点P和第二收音孔在矢状面的第二投影点O的连线的延长线与用户对耳轮在矢状面的投影具有交点A,第二收音孔1192与用户对耳轮的距离可以通过第二收音孔1192在矢状面的投影第二投影点O与交点A之间的第二距离OA来反映。耳甲腔是指耳轮脚下方的凹窝区域,也就是说,耳甲腔的边缘至少是由耳脚轮下方的侧壁、耳屏的轮廓、屏间切迹、对屏尖、轮屏切迹以及与耳甲腔对应的对耳轮体的轮廓组成。基于此,在一些实施例中,为了保证耳机10中的第一麦克风和第二麦克风具有较好的收音效果和降噪效果,以使第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点A之间的第二距离OA的比值介于1.8-4.4之间。为了降低对耳轮对第二麦克风的影响,这里可以增大第二收音孔1192相对对耳轮的距离,同时增大第一收音孔1191和第二收音孔1192之间的距离,以便易于后续信号的处理,优选地,可以使第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点A之间的第二距离OA的比值介于2.5-3.8之间。优选地,当耳机的佩戴位置不变时,为了进一步降低对耳轮对第二麦克风的影响,可以增大第二收音孔1192相对对耳轮的距离,同时增大第一收音孔1191和第二收音孔1192之间的距离,以便易于后续信号的处理,在一些实施例中,第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点A之间的第二距离OA的比值可以介于2.8-3.5之间。基于降低对耳轮对第二麦克风的影响以及易于后续信号的处理的考虑,可以进一步增大第二收音孔1192相对对耳轮的距离,同时进一步增大第一收音孔1191和第二收音孔1192之间的距离,较为优选地,第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点A之间的第二距离OA的比值可以介于3.0-3.3之间。
需要注意的是,在本说明书中,第一投影点P可以指第一收音孔1191在用户矢状面上的投影的形心,类似的,第二投影点O可以指第二收音孔1192在用户矢状面上的投影的形心。当第一收音孔1191和第二收音孔1192的尺寸相对较小(例如直径小于2mm)时,可以直接将第一收音孔1191和第二收音孔1192在矢状面的投影可近似视为一个点。
考虑到第二收音孔1192距离对耳轮较近时,会导致用户讲话产生的声波或外界声波在传递到对耳轮时,对耳轮对声波造成反射效应,尤其是在3kHz-8kHz的频率范围内,使得第二麦克风接收的声音相对第一麦克风接收到的声音还要大,影响后续的降噪效果和收音效果。另外,由于发声部11的尺寸有限,需要保证第一收音孔1191和第二收音孔1192之间具有较大的距离,第二收音孔1192距离对耳轮较远时,第一收音孔1191和第二收音孔1192之间的距离会变小,影响后续信号的处理。基于此,在一些实施例中,为了确保第一麦克风和第二麦克风接收到的用户嘴部发出的声音具有足够的差别,同时降低对耳轮对第二收音孔1192处的声音增强效应,可以使第二收音孔1192在矢状面的第二投影点O与交点A之间的距离介于2mm-10mm之间。为了降低对耳轮对第二收音孔1192处的声音增强效应,提高第一麦克风和第二麦克风的收音效果,可以增大第二收音孔1192相对对耳轮的距离,在一些实施例中,第二投影点O与交点A之间的距离可以介于4mm-10mm之间。为了进一步降低对耳轮对声波造成反射效应,进一步提高第一麦克风和第二麦克风的收音效果,可以进一步增加第二收音孔1192相对对耳轮的距离,优选地,第二投影点O与交点A之间的距离可以介于6mm-10mm之间。将第二收音孔1192设置在相对对耳轮较远的位置时,对耳轮对声波的反射作用几乎不会影响第二收音孔1192,较为优选地,第二投影点O与交点A之间的距离可以介于8mm-10mm之间。
当第一收音孔1191与第二收音孔1192之间的距离过小时,会导致第一麦克风和第二麦克风所接收的低频声音信号的幅值和相位差异过小,导致后续对于低频信号的处理难度上升,因此,第一收音孔1191与第二收音孔1192之间的距离也不宜过小。
在一些实施例中,为了确保第一麦克风和第二麦克风具有较好的收音效果以及便于后续的信号处理,第一收音孔1191和第二收音孔1192的距离可以不小于10mm。为了保证耳机的便携性以及用户佩戴耳机时的舒适性,发声部11的自身尺寸不宜过大,相对应地,第一收音孔1191和第二收音孔1192之间的距离受到发声部11尺寸的限制,在一些实施例中,第一收音孔1191和第二收音孔1192的距离不大于50mm。在一些实施例中,考虑到发声部11自身尺寸限制以及为了使得第一麦克风和第二麦克风具有较好的收音效果和便于后续的信号处理,可以使第一收音孔1191与第二收音孔1192之间的距离介于10mm-50mm之间。这里所述的第一收音孔1191与第二收音孔1192之间的距离是指第一收音孔1191和第二收音孔1192各自在发声部11或耳挂12的外表面的开口的中心之间的直线距离(例如,图5中示出的距离D12)。考虑到发声部11的尺寸过大会影响耳机的携带和佩戴的稳定性、舒适性,这里可以在保证第一麦克风和第二麦克风能够具有较好的收音效果和易于进行后续信号处理的前提下,适当减小第一收音孔1191和第二收音孔1192之间的距离,使得发声部11的尺寸可以相对较小,优选地,在一些实施例中,第一收音孔1191与第二收音孔1192之间的距离可以介于20mm-47mm之 间。较为优选地,为了使得第一麦克风和第二麦克风接收到的声音信号能够有足够差异,且发声部11具有合适的尺寸,第一收音孔1191与第二收音孔1192之间的距离可以介于27mm-32mm。作为具体示例,第一收音孔1191与第二收音孔1192之间的距离可以为26mm。
在一些实施例中,第一收音孔1191与第二收音孔1192之间的距离也可以通过第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的距离来体现。可以理解,当第一收音孔1191与第二收音孔1192之间的连线与用户矢状面不平行时,第一收音孔1191与第二收音孔1192之间的距离相较于第一投影点P与第二投影点O之间的距离可以存在一定的差距,具体表现为第一收音孔1191与第二收音孔1192之间的距离大于第一投影点P与第二投影点O之间的距离。参考上述第一收音孔1191和第二收音孔1192间的距离的内容,考虑到发声部11自身尺寸限制以及第一麦克风和第二麦克风具有较好的收音效果和便于后续的信号处理,在一些实施例中,第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的距离可以介于8mm-48mm之间。优选地,第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的距离可以介于18mm-45mm之间。较为优选地,第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的距离可以介于25mm-30mm之间。
在该佩戴状态下,第一收音孔1191与用户嘴部(参考图6中的Q点)之间的距离小于第二收音孔1192与用户嘴部之间的距离,以便后续信号的处理。如图6所示,当耳机10处于佩戴状态时,第一收音孔1191在用户矢状面(例如图6所示的T-S平面)上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O,第三投影点Q用来表示用户嘴部(例如,唇珠)在用户矢状面的投影,用户嘴部在用户矢状面上具有第三投影点Q,其中,PQ之间的距离小于OQ之间的距离。
在一些实施例中,第一收音孔1191在用户矢状面上的第一投影点P与第二收音孔1192在该矢状面上的第二投影点O的连线大致指向用户嘴部在该矢状面上的第三投影点Q。通过这种方式,可以基于第一麦克风和第二麦克风接收的声音构建指向性算法,使收到的用户语音更加清晰。在一些实施例中,第一投影点P与第三投影点Q之间的连线PQ相对于第二投影点O与第三投影点Q之间的连线OQ可以呈一定角度的夹角,为了确保第一收音孔1191和第二收音孔1192的指向性,可以使PQ与OQ之间的夹角小于30°。在一些实施例中,PQ与OQ之间的夹角可以为5°-25°。优选地,PQ与OQ之间的夹角可以为8°-15°。示例性地,在一些实施例中,PQ与OQ之间的夹角可以为0°、3°、9°或者15°等。
参照图5,在一些实施例中,第一收音孔1191可以设置在耳挂的第二部分112(耳挂靠近发声部的部分)。具体地,在一些实施例中,第一收音孔1191可以设置在耳挂的第二部分122与发声部11的连接处附近。例如,第一收音孔1191可以设置于耳挂的第二部分122上或者设置于发声部11上。在本说明书中第一收音孔1191可以设置在耳挂的第二部分122与发声部11的连接处附近可以理解为第一收音孔1191与连接处的最小距离不大于4mm。在一些实施例中,第一收音孔1191相对于耳挂的第二部分122以及发声部11的位置关系还可以通过第一收音孔1191在矢状面上的投影与该连接处在矢状面上的投影的距离表征。例如,在一些实施例中,第一收音孔1191在矢状面上的投影与该连接处在矢状面上的投影的最小距离可以不大于4mm。当用户佩戴耳机时,发声部11更加靠近用户嘴部,为了提高第一麦克风的收音效果,优选地,该第一收音孔1191在矢状面上的投影与该连接处在矢状面上的投影的最小距离可以不大于3mm。在一些实施例中,第一收音孔1191还可以设置于发声部11与耳挂的第二部分122之间的连接处,此时第一收音孔1191更加靠近用户嘴部,第一麦克风的收音效果更佳。在一些实施例中,发声部11与耳挂的第二部分122可以是相互独立的结构,二者可以通过拼接、嵌接、插接等的方式进行连接,发声部11与耳挂的第二部分122的连接处可以是指二者之间的连接缝隙。发声部11与耳挂的第二部分122的连接处在矢状面的投影是指二者之间的连接缝隙在矢状面的投影。在一些实施例中,将第一收音孔1191设置于发声部11与耳挂的第二部分122的连接处附近(例如,第一收音孔1191设置于耳挂的第二部分122上)可以保证第一收音孔1191靠近用户的同时,不占据发声部11内部腔体空间,便于换能器的安装、内部线路的走线,有效提高生产效率。
还需要说明的是,在一些实施例中,当第一收音孔1191和第二收音孔1192的尺寸较小时,其可以近似看作一个点。在一些实施例中,当第一收音孔1191和第二收音孔1192的尺寸较大时,第一收音孔1191与发声部11和耳挂的第二部分122的连接处之间的距离可以理解为第一收音孔1191的中心与发声部11和耳挂的第二部分122的连接处之间的最小距离。相对应地,当第一收音孔1191尺寸较小时,第一收音孔1191在矢状面上的投影可以近似视为一个点,第一收音孔1191在矢状面上的投影与发声部11和耳挂的第二部分122的连接处在矢状面上的投影的最小距离是指第一收音孔1191在 矢状面的投影点与该连接处在矢状面的投影的最小距离。当第一收音孔1191尺寸较大时,第一收音孔1191在矢状面上的投影与发声部11和耳挂的第二部分122的连接处在矢状面上的投影的最小距离是指第一收音孔1191在矢状面的投影的形心与该连接处在矢状面的投影的最小距离。类似地,本说明书其它地方描述的收音孔与发声部11的某个侧面(例如,内侧面,上侧面)的距离可以理解为收音孔的中心到该发声部11的侧面的最小距离。
应当理解,图5所示的第一收音孔1191和第二收音孔1192的位置仅为示例性说明。在一些实施例中,第一收音孔1191和/或第二收音孔1192可以设置在其他不受遮挡的位置。例如,在一些实施例中,第一收音孔1191和第二收音孔1192可以一同设置在发声部11的外侧面。又例如,在一些实施例中,第一收音孔1191可以设置在发声部11的外侧面,第二收音孔1192可以设置在发声部11的上侧面。需要说明的是,在本说明书中,发声部11的内侧面可以指耳机10在佩戴状态下距离用户头部最近的一个面(参照图15A和图15B中的内侧面IS),发声部11的上侧面可以指耳机10在佩戴状态下距离地面最远的一个面(参照图15A和图15B中的上侧面US),相应地,与内侧面相对的一个面可以视为发声部10的外侧面(参照图15A中的外侧面OS),与上侧面相对的一个面可以视为发声部10的下侧面(参照图15B中的下侧面LS)。在一些实施例中,发声部11的上侧面、下侧面、内侧面以及外侧面中的每一个面可以为平面和/或非平面。以下将结合图7至图16B对第一收音孔1191和第二收音孔1192的具体分布位置进行说明。
图7是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
参照图7,发声部11在矢状面上的投影的形状可以包括长轴方向X和短轴方向Y。图8是根据本说明书一些实施例所示的根据发声部在矢状面的投影建立的示例性坐标系示意图,参照图8,以长轴方向X和短轴方向Y建立坐标系,并通过该坐标系中的坐标来表征第一收音孔1191相对于发声部11的相对位置,其中,Y轴是与短轴方向Y平行并且与发声部11的前侧面在矢状面上的投影相切的切线,X轴是与长轴方向X平行并且与发声部11的下侧面在矢状面上的投影相切的切线。在一些实施例中,Y轴的位置可以通过如下方式确定:先确定发声部11在矢状面上的投影;找出与短轴方向Y平行并且与发声部11的后侧面在矢状面上的投影相切的切线(简称为“切线I”);确定发声部11内振膜或磁路组件在矢状面上的投影的中心;找出切线I关于该中心的对称线,并以该对称线作为Y轴所在的直线。
参照图8,在Y轴上,1X可以表示直线Y=1,2X可以表示直线Y=2,3X可以表示直线Y=3,4X可以表示直线Y=4等。同理,在X轴上,Y1可以表示直线X=1,Y2可以表示直线X=2,Y3可以表示直线X=3等。在一些实施例中,该坐标系中的点的坐标可以表示为YX,例如,在Y=2这条直线上,直线Y=2与X轴平行,由于Y=2取值不变,因此这条直线上的点的坐标可以统一可以表示为2X。当X取不同的值时,就可以得到不同的位置,例如位置21、位置22、位置23等。如图7和图8所示,在一些实施例中,可以将发声部11在长轴方向X等分为4份,在短轴方向Y将发声部11等分为4份。在一些实施例中,也可以将发声部11在长轴方向X和短轴方向Y划分为其他数量的等份。下面以该坐标系为基准,对第一收音孔1191位于不同位置的收音情况进行说明。
图9是根据本说明书一些实施例所示的第一收音孔位于不同位置的收音曲线示意图。如图9所示,当Y=1时,在直线Y=1上沿X轴方向的坐标可以统一表示为1X,当X取不同值时,就可以确定相应的位置,例如位置11、位置12、位置13、位置14等。图9中显示了了使第一麦克风具有较好的收音效果的同时,保证第二收音孔能够与第一收音孔保持特定的间距以及第二收音孔能够尽量远离对耳轮,可以使第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值不大于0.75,也即,当发声部11沿长轴方向X等分为4个等份时,第一投影点P位于X≤3的区域。为了使得第一收音孔1191靠近用户嘴部,以提高第一麦克风的收音效果,优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.5。较为优选地,为了使第一收音孔1191更加靠近用户嘴部,以提高第一麦克风的收音效果,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.3。较为优选地,为了使第一收音孔1191更加靠近用户嘴部,以提高第一麦克风的收音效果,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.2,将第一收音孔1191设置在靠近发声部的前侧面的位置,也可以使得第二收音孔1192的位置有更多的选择,保证第二收音孔能够与第一收音孔保持特定的间距以及第二收音孔能够尽量远离对耳轮。基于上述考虑,更为优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离 与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.1。进一步优选地,在一些实施例中,第一收音孔1191还可以位于发声部11的前侧面,此时,第一收音孔1191在水平方向上更加靠近用户嘴部,第一麦克风的收音效果更佳。需要说明的是,为方便理解,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离可以指第一投影点P与Y轴之间的距离,也即第一投影点P与沿短轴方向Y并且与发声部11的前侧面在矢状面上的投影相切的切线之间的距离。
图10是根据本说明书另一些实施例所示的第一收音孔位于不同位置的收音曲线示意图。如图10所示,当X=1时,在直线X=1上沿Y轴方向的坐标可以统一表示为Y1,当Y取不同值时,就可以确定相应的位置,例如位置11、位置21、位置31、位置41等。图10中显示了分别位于位置11、位置21、位置31、位置41的第一麦克风的收音情况。由图10可知,在Y1上,Y轴的坐标越小,离用户的嘴部越近,麦克风的收音效果越佳。
基于此,在一些实施例中,为了使第一麦克风具有较好的收音效果,可以使第一收音孔1191在矢状面上的第一投影点P与发声部的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值不大于1。考虑到第一收音孔1191和第二收音孔1192同时位于发声部11上时,如果第一收音孔1191位于发声部的上侧面或前侧面相对于长轴方向X的最大距离处时,第一收音孔1191和第二收音孔1192的连线无法指向用户的嘴部,会影响收音效果,优选地,可以使第一收音孔1191在矢状面上的第一投影点P与发声部的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值不大于0.5,也即,当发声部沿短轴方向Y等分为4个等份时,第一投影点P位于Y≤2的区域。较为优选地,为了使得第一收音孔1191更加靠近用户嘴部,提高第一麦克风的收音效果,在一些实施例中,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以不大于0.4。优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以不大于0.3,将第一收音孔1191设置在靠近发声部的下侧面的位置,也可以使得第二收音孔1192的位置有更多的选择,保证第二收音孔能够与第一收音孔保持特定的间距以及第一收音孔和第二收音孔的连线能够更加精准地指向用户嘴部。基于上述考虑,较为优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以小于或等于0.1。更为优选地,第一收音孔1911可以位于发声部11的下侧面,此时,第一收音孔1191在竖直方向上更加靠近用户嘴部,第一麦克风的收音效果更佳。需要说明的是,为方便理解,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离可以指第一投影点P与X轴之间的距离,也即第一投影点P与沿长轴方向X并且与发声部11的下侧面在矢状面上的投影相切的切线之间的距离。
图11是根据本说明书另一些实施例所示的第二收音孔位于不同位置的收音曲线示意图。如图11所示,当Y=4时,在直线Y=4上沿X轴方向的坐标可以统一表示为4X,当X取不同值时,就可以确定相应的位置,例如位置41、位置42、位置43、位置44等。图11中显示了分别位于位置41、位置42、位置43、位置44的收音情况。由图11可知,在4X上,随着X的增大,第二收音孔到用户对耳轮的距离变小,受到对耳轮反射的影响变大。例如,当X较大时,第二麦克风在3kHz以后的频段收音会出现显著抬升,导致第二麦克风在3kHz前后不同的变化规律。即,若第二收音孔1192设置于离对耳轮较近的位置,会导致第二收音孔1192在3kHz后的收音效果强于第一收音孔1191,导致第一麦克风和第二麦克风对用户嘴部声音的拾取效果变差。
图12是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图。如图12所示,位置21处的麦克风的收音效果好于位置33、位置34、位置43、位置44处的麦克风的收音情况。在一些实施例中,第一收音孔1191可以设置在位置21处,第二收音孔1192可以设置在位置33、位置34、位置43或位置44处。此时第一收音孔1191在全频段上的收音效果好于第二收音孔1192。当第二收音孔1192设置于位置33或位置34处时,第二收音孔1192的收音效果较好,与第一收音孔1191处的收音曲线有较好的一致性。第一麦克风和第二麦克风的信号经过处理后可以在更宽的频段获得用户嘴部的声音。当第二收音孔1192位于位置43或位置44处时,第二收音孔1192与第一收音孔1191的距离较大,更有利于降噪。第一麦克风和第二麦克风的信号经过处理后可以在低频范围内获得更清晰的用户嘴部的声音。
图13是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图。如图13所示,为位置11、位置14处的麦克风的收音情况。位置11处的麦克风在全频段上的收音效果好于位置14处的麦克风。在一些实施例中,第一收音孔1191可以设置在位置11处,第二收音孔1192可以设 置在位置14处。此时,第一收音孔1191与第二收音孔1192的收音效果均较好。第一麦克风和第二麦克风的信号经过处理后可以在更宽的频段获得用户嘴部的声音。
图14是根据本说明书另一些实施例所示的收音孔位于不同位置的收音曲线示意图。如图14所示,为位置31、位置43处的麦克风的收音情况。位置31处的麦克风在全频段上的收音效果好于位置43处的麦克风。在一些实施例中,第一收音孔1191可以设置在位置31处,第二收音孔1192可以设置在位置43处。此时,第一收音孔1191与第二收音孔1192的收音效果均较好。第一麦克风和第二麦克风的信号经过处理后可以在更宽的频段获得用户嘴部的声音。
在一些实施例中,发声部11在矢状面上的投影可以为跑道形,跑道形投影的两条靠近嘴部的侧边(即发声部11的下侧面和前侧面的投影)的延长线之间具有交点,将此交点定义为第四投影点(例如,图7所示的X轴和Y轴的交点G,图8所示的X-Y坐标系的原点)。为了使得第一收音孔1191尽可能靠近用户的嘴部,第一收音孔1191在矢状面上的第一投影点P与第四投影点之间的距离需要满足预设条件。该距离越大,则表示第一投影点P与图7所示的交点G、图8所示的X-Y坐标系的原点的距离越远,相应地,第一收音孔1191与用户嘴部的距离也就越远,第一麦克风的收音效果也就越差。基于此,在一些实施例中,为了确保第一麦克风的收音效果,可以使第一投影点与第四投影点之间的距离不大于5mm。为了提高第一麦克风的收音效果,可以将第一收音孔1191设置在发声部11上更加靠近用户嘴部的位置,在一些实施例中,第一投影点P与第四投影点之间的距离可以不大于3mm。在一些实施例中,第一投影点P与第四投影点之间的距离可以不大于1mm,这里第一收音孔1191更加靠近用户嘴部的位置,以进一步提高第一麦克风的收音效果。需要注意的是,发声部11在矢状面上的投影并不限于上述的跑道形,还可以为其它规则(例如,长方形、椭圆形、圆形等)或不规则的形状,满足第一收音孔1191设置在靠近用户嘴部的位置或者靠近X-Y坐标系的原点即可。
图15A和图15B是根据本说明书另一些实施例所示的耳机的示例性结构示意图。
参照图15A和图15B,在一些实施例中,第一收音孔1191还可以位于发声部11的下侧面LS或前侧面CE。图16A和图16B是根据本说明书另一些实施例所示的根据发声部建立的示例性坐标系示意图。具体地,如图16A所示,当第一收音孔1191位于发声部11的前侧面CE时,第一收音孔1191在发声部11的长轴方向X的坐标为0,第一收音孔1191相对于发声部11的位置关系可以通过Y-Z坐标系来表示,其中,Z轴为发声部11的厚度方向,其同时垂直于发声部11的长轴方向X和短轴方向Y。类似地,如图16B所示,当第一收音孔1191位于发声部11的下侧面LS时,第一收音孔1191在发声部11的短轴方向Y的坐标为0,第一收音孔1191相对于发声部11的位置关系可以通过X-Z坐标系来表示。Z值越大,表示第一收音孔1191距离发声部11的内侧面的距离越远;X值越大,表示第一收音孔1191距离发声部11的前侧面越远;Y值越大,表示第一收音孔1191距离发声部11的下侧面越远。
考虑到第一出声孔1191距离发声部11的内侧面过近(例如小于2mm)时,不仅可能会导致第一收音孔1191在佩戴过程中被用户耳部遮挡,还有可能使第一麦克风采集到用户耳部与发声部11摩擦所产生的噪声,由此可见,无论第一收音孔1191位于发声部11的下侧面还是前侧面,第一收音孔1191与发声部11的内侧面的距离均不宜过近。此外,将人体两个耳朵和嘴部视为空间中的三个点,三个点构建一个近似等腰三角形区域,而耳机在佩戴状态下,发声部11需要倾斜设置才能伸入内凹的耳甲腔,即发声部11的外侧面的任意两个点连线并不会指向该三角形区域,如果第一收音孔1191距离发声部11的外侧面过近(例如,与外侧面的距离小于2mm)时,即使第二收音孔1192设置在发声部11的外侧面时,也无法保证第一收音孔1191和第二收音孔1192的连线指向用户嘴部。基于此,在一些实施例中,当第一收音孔1191位于发声部11的下侧面或前侧面时,为了确保第一收音孔1191的收音效果以及第一收音孔1191和第二收音孔1192的连线可以指向用户前侧的区域,可以使第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以在0.25-0.7之间。优选地,第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以为0.25-0.65,这里将第一收音孔1191设置在相对发声部11内侧面相对较远的距离,可以降低发声部11与耳部的摩擦所产生的噪声的影响,同时,这里通过减小第一收音孔1191相对发声部11的外侧面的距离,可以使得第一收音孔1191和第二收音孔1192的连线指向用户的嘴部。较为优选地,第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以为0.3-0.6。较为优选地,第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以为0.3-0.4,这里通过进一步减小第一收音孔1191相对发声部11的外侧面的距离,可以使得第一收音孔1191和第二收音孔1192的连线更加精准地指向用户的嘴部。在一些实施例中,发声部11的内侧面为曲面形状,此时第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离可以等效为第一收音孔1191 的中心与发声部11的内侧面的切面之间的距离,其中,发声部11的内侧面的切面为平行于长轴方向X和短轴方向Y,且与内侧面相切的平面。
在一些实施例中,第一收音孔1191还可以设置在耳挂上(例如耳挂上距离用户嘴部最近的位置),相应地,为了确保第二收音孔1192与第一收音孔1191的连线的指向性,当第一收音孔1191设置在耳挂上时,第二收音孔1192可以设置在发声部11的上侧面与前侧面的连接处附近。在一些实施例中,还可以通过改变耳机10的耳挂的结构或形状以满足开设第二收音孔1192所需的位置要求,从而实现在满足第二收音孔1192与第一收音孔1191的连线的大致指向用户嘴部的同时,确保第二收音孔1192与第一收音孔1191之间的距离大于预设要求。
在一些实施例中,第二收音孔1192可以设置于发声部11上未与耳甲腔形成辅助腔体的一侧。在一些实施例中,第二收音孔1192可以设置于发声部11的上侧面US、下侧面LS、外侧面OS中的至少一个侧面上,且第一收音孔1191与第二收音孔1192均避开发声部11的壳体内的零部件(例如扬声器、主控电路板等)设置。例如,第二收音孔1192可以设置于发声部11的上侧面US、下侧面LS、外侧面OS中的任意一个侧面上。又例如,第二收音孔1192可以设置于发声部11的上侧面US、下侧面LS、外侧面OS中的任意两个侧面的连接处。在一些实施例中,为了使得第一收音孔1191和第二收音孔1192之间具有较大的间距,同时兼顾第一收音孔1191和第二收音孔1192连线的指向性,第一收音孔1191通常呈对角设置,例如,第一收音孔1191设置在图6所示的左下角,第二收音孔1192设置在图6所示的右上角。为了更为清楚地说明第二收音孔1192的分布位置,这里以发声部11的上侧面US、下侧面LS、后侧面FE为参考分别进行描述。在一些实施例中,第二收音孔1192可以位于发声部11的外侧面OS。在一些实施例中,为了避免第二收音孔1192与用户对耳轮的距离过小而导致收音质量受到影响,第二收音孔1192与后侧面FE的距离d6可以为8mm-12mm。优选地,第二收音孔1192与后侧面FE的距离d6为9mm-10mm。为了防止第一收音孔1191与第二收音孔1192的连线无法指向用户嘴部,第二收音孔1192与发声部11的上侧面US或下侧面LS的距离不宜过大或过小,可以使第二收音孔1192与发声部11的上侧面US的距离d5为1mm-3mm,或第二收音孔1192与下侧面LS的距离d8可以为4mm-8mm。优选地,在一些实施例中,第二收音孔1192与上侧面US的距离d5为2mm-2.5mm,或第二收音孔1192与下侧面LS的距离d8可以为6mm-8mm。为了避免第二收音孔1192与第一收音孔1191之间的距离过小,在一些实施例中,第二收音孔1192与前侧面CE的距离d7为8mm-12mm。需要说明的是,在本说明书中,第二收音孔1192到发声部11的上侧面、前侧面、后侧面以及下侧面的距离可以指第二收音孔1192在发声部11的壳体的外表面的开口的中心到发声部11的上侧面、前侧面或后侧面的距离。其中,当发声部11的侧面(例如上侧面、前侧面、后侧面、下侧面)为平面时,该距离即第二收音孔1192在发声部11的壳体的外表面的开口的中心到平面的距离。当发声部11的侧面为曲面时,该距离可以指第二收音孔1192在发声部11的壳体的外表面的开口的中心到曲面的切面的距离。在本说明书中,发声部11的上侧面所对应的切面可以指与图16B所示的X-Z平面(或坐标系)平行并且与声部11的上侧面相切的平面,同理,发声部11的下侧面所对应的切面可以指与图16B所示的X-Z平面(或坐标系)平行并且与声部11的下侧面相切的平面,发声部11的前侧面所对应的切面可以指与图16A所示的Y-Z平面(或坐标系)平行并且与声部11的前侧面相切的平面,发声部11的后侧面所对应的切面可以指与图16A所示的X-Z平面(或坐标系)平行并且与声部11的后侧面相切的平面。
图17是根据本说明书一些实施例所示的第一收音孔、第二收音孔与用户嘴部的示例性位置关系示意图。如图17所示,在一些实施例中,第一收音孔1191与第二收音孔1192的连线可以指向用户的嘴部,以使第一收音孔1191与第二收音孔1192具有良好的收音效果。如图17所示,O点可以表示第二收音孔1192的位置,P点与P′点分别表示第一收音孔1191设置的两个不同位置,Q点表示用户嘴部的位置。在一些实施例中,第一收音孔1191和第二收音孔1192的连线,与第一收音孔1191和用户嘴部Q的连线之间的夹角在150°左右,即角OPQ和/或角OP′Q的大小在150°左右。仅作为示例,在一些实施例中,角OPQ或角OP′Q的大小可以介于140°-180°之间,也即第一收音孔1191、第二收音孔1192与用户嘴部可以大致位于同一条直线上。
图18是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
当第一收音孔1191和第二收音孔1192的连线指向用户面部时(例如位于图18中的矢状轴S和垂直轴T的中间区域时),第一麦克风和第二麦克风可以具有较好的收音效果,其中,当第一收音孔1191和第二收音孔1192的连线指向用户嘴部至下颌底端点之间的区域时,第一麦克风和第二麦克风的收音效果相对较佳。基于此,在一些实施例中,为了提高耳机10的收音效果,可以使第一收音孔1191和第二收音孔1192的连线指向或大致指向用户的嘴部至下颌底端点之间的区域。在一些实施例中,用户的下颌底端点可以指用户的下颌部位距离用户耳部最远的点。
参照图18,当耳机10处于佩戴状态时,用户的下颌底端点在用户矢状面上可以具有第五投影点Q′,用户耳道口在矢状面上的投影(例如图18中的虚线区域1015)的形心为B,由于该耳机10的发声部11的至少部分在佩戴状态下需要伸入用户的耳甲腔,因此,该第五投影点Q′与用户耳道口在矢状面上的投影的形心B的连线可以在一定程度上反映发声部11与用户的下颌底端点的相对位置关系。
继续参照图18,第一收音孔1191在用户矢状面上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O。在一些实施例中,为了使第一收音孔1191和第二收音孔1192具有较好的指向性,即第一收音孔1191和第二收音孔1192的连线指向用户嘴部至下颌底端点之间的区域,可以使第一投影点P和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ1不大于45°。在一些实施例中,第一投影点P和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ1可以为6°-35°,此时第一收音孔1191和第二收音孔1192的连线可以指向用户嘴部的附近区域。优选地,该第一投影点P和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ1可以为10°-25°,此时第一收音孔1191和第二收音孔1192的连线可以更加精准地指向用户嘴部。
考虑到第一收音孔1191在矢状面的第一投影点P和第二收音孔1192在矢状面的第二投影点O之间的连线指向用户嘴部至下颌底端点之间的区域时,第一麦克风和第二麦克风可以具有较好的收音效果。这里以用户垂直轴作为参考来进一步说明第一投影点P和第二投影点O的分布位置。继续参照图18,为了使得第一投影点P和第二投影点O的连线可以指向用户嘴部至下颌底端点之间的区域,以更好地获取用户讲话时的声音,相应地,这里第一投影点P和第二投影点O的连线具有相应的临界方向,例如,图18中所示出的矢状轴S和垂直轴T,其中,第一投影点P和第二投影点O的连线处于坐标系S-T中时可以保证第一麦克风和第二麦克风采集用户讲话时的收音效果。这里结合耳机的佩戴状态对临界方向进行说明,如图18所示,嘴部位于耳部的左下方,如果第一投影点P和第二投影点O的连线指向耳部的左上方、上方、右下方、右上方或右方时,第一麦克风和第二麦克风获取的用户讲话时的声音信号极小,因此第一投影点P和第二投影点O的连线指向耳部的左侧为一个临界方向,第一投影点P和第二投影点O的连线指向耳部的下侧为一个临界方向。基于上述描述,可以理解地,本说明书实施例中提及的临界方向用来表示第一投影点P和第二投影点O的连线(或第一收音孔1191和第二收音孔1192的连线)指向的临界值。例如,如图18所示,当第一投影点P和第二投影点O的连线指向这两个临界方向之间时,第一麦克风和第二麦克风可以具有较好的指向性,这里以用户的矢状轴S和垂直轴T表征上述的两个临界方向。基于此,在一些实施例中,第一投影点P和第二投影点O的连线与用户垂直轴的夹角θ2可以小于90°。为了使得第一投影点P和第二投影点O的连线指向靠近用户的嘴部或下颌底端点的区域,以提高第一麦克风和第二麦克风的采集用户讲话时的收音效果,在一些实施例中,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ2可以在20°-80°的范围内。优选地,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ2可以在40°-70°的范围内,此时,第一投影点P和第二投影点O的连线指向用户的嘴部或下颌底端点的区域。优选地,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ2可以在42°-65°的范围内,此时,第一投影点P和第二投影点O的连线可以更加精准地指向用户的嘴部区域。
图19是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
为了进一步说明第一收音孔1191和第二收音1192在耳机的分布位置,这里结合用户冠状轴R进行说明。第一收音孔1191和第二收音孔1192的连线与冠状轴的夹角过小时,第一收音孔1191和第二收音孔1192的连线可以近似视为指向人体头部的左侧或右侧,导致麦克风获取的用户讲话时的声音效果不佳。而第一收音孔1191和第二收音孔1192的连线与冠状轴的夹角过大时,第一收音孔1191和第二收音孔1192的连线径直指向用户头部,同样导致麦克风获取的用户讲话时的声音效果不佳。为了保证第一收音孔1191和第二收音孔1192的连线可以尽量指向人体面部的前方,可以使第一收音孔1191和第二收音孔1192的连线与用户冠状轴(例如图18中的R轴,该R轴垂直于用户矢状面(S-T平面))的夹角介于-30°--135°之间,以确保第一收音孔1191和第二收音孔1192的连线具有可以指向人体面部前侧的区域。关于第一收音孔1191和第二收音孔1192的连线相对于用户冠状轴的夹角的更多说明可以参照图19及其相关描述。
参照图19,图19示出了用户头部与用户所对应的冠状轴和矢状轴之间的相对关系,其中,附图标记20可以表示用户头部,附图标记21可以表示用户耳部。如图19所示,在本说明书的一些实施例中,可以以图19所示的冠状轴方向为参考,射线L3和射线L4可以表示第一收音孔1191与第二收音孔1192的连线的临界方向,也就是说,第一收音孔1191与第二收音孔1192的连线方向介于射线L3与射线L4之间时可以使得第一收音孔1191和第二收音孔1192的连线指向用户面部前侧。在一些实施例中,射线L3与冠状轴R之间的夹角α1约为30°,射线L4与矢状轴S之间的夹角α2约为45°,基于 此,第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴R的夹角α3可以介于-30°--135°之间。优选地,第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角可以介于-50°--125°之间,此时,第一收音孔1191和第二收音孔1192的连线指向用户嘴部左右附近的区域。较为优选地,第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角可以介于-90°--115°之间,此时,第一收音孔1191和第二收音孔1192的连线指向用户嘴部的区域。其中,当第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角为-90°时,第一收音孔1191与第二收音孔1192的连线平行于用户矢状面。需要说明的是,这里的角度是以顺时针方向为正进行确定的。
图20是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
参照图20,第一收音孔1191在用户矢状面上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O,第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X的夹角可以表示为θ3。可以理解,当耳机10处于佩戴状态时,发声部11相对耳部的位置可以视为不发生变化,此时用户的下颌底端点在用户矢状面上的第五投影点Q′与用户耳道口在矢状面上的投影的形心B所构成的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的夹角θ4可以近似视为不发生变化,θ3的角度越接近θ4,则表示第一收音孔1191与第二收音孔1192的连线的指向性越好。基于此,在一些实施例中,可以通过控制第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X的夹角来调整第一收音孔1191与第二收音孔1192的收音效果。
如图20所示,矢状轴S和垂直轴T可以表示第一投影点P和第二投影点O的连线相对于发声部11在该矢状面上的投影形状的长轴方向X的临界方向,换言之,即第一投影点P和第二投影点O的连线处于坐标系S-T中时可以保证第一麦克风和第二麦克风采集用户讲话时的收音效果。具体而言,在本说明书的一些实施例中,当耳机10处于佩戴状态时,长轴方向X与矢状轴S之间的夹角β1可以约为20°,长轴方向X与垂直轴T之间的夹角β2可以约为45°,用户的下颌底端点在用户矢状面上的第五投影点Q′与用户耳道口在矢状面上的投影的形心B所构成的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的夹角θ4可以介于50°-75°之间。基于此,在一些实施例中,若以图20所示的长轴方向X的负方向为0°,以逆时针方向为正,来对第一投影点P和第二投影点O的连线相对于发声部11在该矢状面上的投影形状的长轴方向X所构成的角度进行表示,则可以使第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度θ3介于20°-135°之间。优选地,第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度θ3可以为45°-70°,此时第一投影点P和第二投影点O的连线可以更加精准地指向用户嘴部至下颌底端点之间的区域。
图21A是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。图21B是根据本说明书一些实施例所示的第一收音孔和第二收音孔的连线与发声部的外侧面的夹角示意图。
参照图21A和图21B,在一些实施例中,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角可以表示为θ5。在一些实施例中,发声部11的外侧面可以为平面,此时第一收音孔和第二收音孔的连线与外侧面的夹角就是第一收音孔和第二收音孔的连线与该平面的夹角。在一些实施例中,第一收音孔和第二收音孔的连线可以为曲面,第一收音孔和第二收音孔的连线与外侧面的夹角是指第一收音孔和第二收音孔与该外侧面的曲面相切的平面的夹角。以外侧面为平面时作为示例进行说明,在一些实施例中,发声部11的外侧面可以通过位于该外侧面上的四个点M1、M2、M3、M4表示。在一些实施例中,第一收音孔1191和第二收音孔1192可以位于发声部11的同一个侧面或不同侧面。例如,在一些实施例中,第一收音孔1191和第二收音孔1192可以均位于发声部11的外侧面。又例如,在一些实施例中,第一收音孔1191可以位于发声部11的前侧面,第二收音孔1192可以位于发声部11的外侧面。再例如,在一些实施例中,第一收音孔1191可以位于发声部11的下侧面,第二收音孔1192可以位于发声部11的外侧面。
如图21B所示,第一收音孔1191在外侧面M1M2M3M4上具有投影点M5,第二收音孔1192在外侧面M1M2M3M4上具有投影点M6。第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ5可以指投影点M5和投影点M6的连线与第一收音孔1191和第二收音孔1192的连线所构成的夹角。
可以理解,该夹角θ5可以反映第一收音孔1191和第二收音孔1192在发声部11的厚度方向的相对位置关系,也可以在一定程度反映出第一收音孔1191和第二收音孔1192的连线相对于用户嘴部的指向性。在一些实施例中,为了使第一收音孔1191和第二收音孔1192的连线具有较好的指向性,从而确保第一收音孔1191和第二收音孔1192具有较好的收音效果,可以将第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ5控制在0°-60°之间,此时,第一收音孔1191和第二收 音孔1192的连线可以大致指向用户面部前侧的区域,从而使得第一麦克风和第二麦克风可以具有较好的收音效果。在一些实施例中,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ5可以为10°-50°,此时第一收音孔1191和第二收音孔1192的连线可以大致指向用户嘴部左右附近的区域,从而提高第一麦克风和第二麦克风的收音效果。优选地,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ5可以为25°-38°,此时第一收音孔1191和第二收音孔1192的连线可以指向用户嘴部,从而进一步提高第一麦克风和第二麦克风的收音效果。
在一些实施例中,为了提升第一收音孔1191与第二收音孔1192的收音效果,第一收音孔1191与第二收音孔1192需要具有较大的面积尺寸。在一些实施例中,第一收音孔与第二收音孔的直径可以大于0.8mm。在一些实施例中,第一收音孔与第二收音孔的直径可以大于0.85mm,以进一步提升第一收音孔1191与第二收音孔1192的收音效果。在一些实施例中,第一收音孔与第二收音孔的直径可以为0.9mm。
在一些实施例中,为了提升第一收音孔1191与第二收音孔1192的防尘防水效果,第一收音孔1191与第二收音孔1192的面积尺寸也不宜过大。基于此,在一些实施例中,为了同时保证第一收音孔1191与第二收音孔1192的收音效果和防尘防水性能,可以使第一收音孔1191与第二收音孔1192的直径介于0.8mm-3mm之间。示例性地,在一些实施例中,第一收音孔1191与第二收音孔1192的直径可以为0.8mm-2.5mm,以进一步提升第一收音孔1191与第二收音孔1192的防尘防水性能。优选地,第一收音孔1191与第二收音孔1192的直径可以为0.85mm-1.5mm,可以进一步提升第一收音孔1191与第二收音孔1192的收音效果和防尘防水性能。需要说明的是,在本说明书中,第一收音孔1191和第二收音孔1192可以具有相同或不同的孔径。当第一收音孔1191和/或第二收音孔1192的形状为不规则形状时,其直径可以理解为最大内径或平均内径。
在一些实施例中,考虑到第一收音孔1191和第二收音孔1192的深度过大(例如大于8mm)时,可能会导致声音在传递至第一麦克风和第二麦克风的过程中有所损耗,并且可能使得中高频声音更加尖锐,因此,为了保证第一收音孔1191和第二收音孔1192的收音效果,可以使第一收音孔1191和/或第二收音孔1192的深度小于4mm。在一些实施例中,第一收音孔1191与第二收音孔1192的深度可以是指其开口处至对应麦克风的距离。在一些实施例中,当第一麦克风与第二麦克风紧贴壳体设置时,第一收音孔1191与第二收音孔1192的深度可以等于壳体的厚度。示例性地,在一些实施例中,第一收音孔1191和第二收音孔1192的深度可以均小于2.5mm,以进一步降低声音在传递至第一麦克风和第二麦克风的过程中的损耗,提高中高频声音的收音效果。
在一些实施例中,为了保持第一收音孔1191与第二收音孔1192的收音效果,第一收音孔1191与第二收音孔1192的深度可以保持一致。若是第一收音孔1191与第二收音孔1192的深度不一致,会导致部分声音多传播了一段额外的距离,导致第一收音孔1191与第二收音孔1192对噪声的响应不一致,影响耳机10的降噪效果与通话质量。
在一些实施例中,第一收音孔1191与第二收音孔1192还可以设置有防尘防水网。第一收音孔1191与第二收音孔1192可以密封设置,例如通过硅胶套和双面胶密封等。
在一些实施例中,耳机10还可以通过设计相应的调整算法,使得在耳机10在较小音量时能明显听到低频提升,同时大音量时无变化,以避免破音损坏扬声器。通过调整算法设置,使得用户可以自主调整耳机音效。
图22是根据本说明书另一些实施例所示的耳机的示例性结构示意图。
参照图22,在一些实施例中,发声部11上还可以包括至少一个出声孔(例如出声孔111a)和至少一个泄压孔(例如泄压孔111c),其中,出声孔111a设置于发声部11的内侧面,泄压孔111c设置于发声部11的下侧面。在一些实施例中,泄压孔111c还可以位于发声部的上侧面、前侧面、后侧面、外侧面中的任意一个侧面。在一些实施例中,第一收音孔1191与泄压孔111c、出声孔111a之间的距离需要满足一定的关系,以避免出声孔111a和泄压孔111c导出的声音在第一收音孔1191和第二收音孔1192处产生回声。
参照图22,在一些实施例中,第一收音孔1191与泄压孔111c之间的距离可以表示为d1,第一收音孔1191与出声孔111a之间的距离可以表示为d2。在一些实施例中,对于主要收音的第一收音孔1191,可以将第一收音孔1191设置于声学零点附近(例如出声孔111a与泄压孔111c之间的漏音相消的区域),以减小扬声器对第一麦克风的干扰。具体而言,在一些实施例中,为了将第一收音孔1191设置于声学零点附近,可以使d1与d2的差值小于10mm。d1与d2的差值越小的位置,出声孔111a与泄压孔111c之间的漏音相抵消地越充分,在一些实施例中,d1与d2的差值可以小于6mm。优选地,d1与d2的差值可以小于4mm,以进一步减小扬声器对第一麦克风的干扰。
图23是根据本说明书另一些实施例所示的耳机的发声部的示例性剖面结构示意图。
参照图23,在一些实施例中,第一收音孔1191中可以设置第一声阻网1193,第二收音孔1192中可以设置第二声阻网1192。该第一声阻网1193和第二声阻网1194可以指具有一定声阻作用但不会完全阻挡声音传播的结构,在一些实施例中,该第一声阻网1193和/或第二声阻网1194可以包括纱网和/或钢网。在一些实施例中,该第一声阻网1193和第二声阻网1194可以通过双面胶或者胶水分别固定在第一收音孔1191和第二收音孔1192中。在一些实施例中,通过该第一声阻网1193和第二声阻网1194,可以提高第一收音孔1191和第二收音孔1192处的防水防尘性能。
参照图23,在一些实施例中,第一声阻网1193与第一声阻网1193所在的发声部11的壳体外表面的距离可以表示为d3,第二声阻网1194与第二声阻网1194所在的发声部11的壳体外表面的距离可以表示为d4。需要说明的是,在本说明书中,d3和d4可以相同,也可以不同。例如,d3和d4距离相同时可以使得声音经过第一收音孔1191和第二收音孔1192的传播效率近似相同,保证第一麦克风和第二麦克风的收音效果。示例性地,在一些实施例中,第一声阻网1193与发声部11的壳体外表面的距离d3可以介于0.5mm-2mm之间,第二声阻网1194与发声部11的壳体外表面的距离d4也可以介于0.5mm-2mm之间。在一些实施例中,第一声阻网1193与发声部11的壳体外表面的距离d3可以介于0.5mm-1.5mm之间,第二声阻网1194与发声部11的壳体外表面的距离d4也可以介于0.5mm-1.5mm之间。
在一些实施例中,为了使得第一麦克风和第二麦克风接收到的声音的频率响应较为平坦,提高第一麦克风和第二麦克风接收到的声音的信噪比,第一声阻网1193和第二声阻网1194需要具有一定的声阻,例如大于45Mrayls。例如,随着第一声阻网1193和第二声阻网1194的声阻的升高,第一麦克风或第二麦克风处对应的谐振频率向低频移动,且谐振峰的峰值逐渐平缓,同时,为了确保第一收音孔1191和第二收音孔1192处的声音的传播效率,以保证第一麦克风和第二麦克风的收音效果,第一声阻网1193和第二声阻网1194的声阻值也不能过大,基于此,在一些实施例中,为了确保第一收音孔1191和第二收音孔1192的收音效果,可以使第一声阻网1193和第二声阻网1194的声阻介于45Mrayls-320Mrayls之间。优选地,第一声阻网1193和第二声阻网1194的声阻可以为80Mrayls-260Mrayls,此时,第一麦克风或第二麦克风处接收到的声音的频率响应较为平坦,第一麦克风或第二麦克风处采集到的声音信号的质量较高,同时也可以保证第一麦克风或第二麦克风对声音信号具有较高的灵敏度。较为优选地,第一声阻网1193和第二声阻网1194的声阻可以为120Mrayls-200Mrayls,这里在保证第一麦克风或第二麦克风对声音信号具有较高的灵敏度的同时,使得第一麦克风或第二麦克风处接收到的声音的频率响应更为为平坦,提高第一麦克风或第二麦克风处采集到的声音信号的质量。需要说明的是,这里关于第一声阻网1193和第二声阻网1194的声阻测量,可以采用超声波回波测量法进行测量,或者通过声阻网的密度与声速的乘积进行确定。
由于声阻网的网孔越密集,声阻网对应的声阻越大,对来自与用户嘴部的用户语音的抑制效果越明显,麦克风所接收到的收音强度也就越小。基于此,可以对第一声阻网1193和第二声阻网1194的参数(例如网密度、网孔大小、厚度等)进行设计,以使得第一声阻网1193和第二声阻网1194具有预设的声阻范围。
示例性地,在一些实施例中,第一声阻网1193和/或第二声阻网1194可以包括多个孔,其中,每一个孔的孔径可以在15μm-51μm的范围内。优选地,在一些实施例中,为了确保第一收音孔1191和第二收音孔1192的防水防尘性能,同时兼顾声音的传播效率,可以将第一声阻网1193和第二声阻网1194中的每一个孔的孔径控制在18μm-44μm。
在一些实施例中,第一声阻网1193和/或第二声阻网1194的开孔率可以在11%-18%的范围内,其中,术语“开孔率”可以理解为声阻网中开孔面积与声阻网的总面积的比值,开孔率越大,则表示在单个开孔大小一定的情况下单位面积内的开孔数量越多,声阻网的声阻也就越小。在一些实施例中,为了使第一声阻网1193和/或第二声阻网1194的声阻介于45Mrayls-320Mrayls之间,第一声阻网1193和/或第二声阻网1194的开孔率可以为11%-18%。类似地,在一些实施例中,为了使第一声阻网1193和/或第二声阻网1194的声阻介于45Mrayls-320Mrayls之间,可以使第一声阻网1193和/或第二声阻网1194的厚度在55μm-108μm的范围内。
图24是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
参照图24,在一些实施例中,当耳机10处于佩戴状态时,发声部11的至少部分可以覆盖用户的对耳轮区域(例如位于三角窝、对耳轮上脚、对耳轮下脚或对耳轮的位置,图2中所示的发声部11C相对于耳部的位置)。在一些实施例中,类似地,为了确保第一麦克风与第二麦克风具有良好的收音效果,在该佩戴状态下也可以使第一收音孔1191与第二收音孔1192的连线指向用户的嘴部。
在一些实施例中,在发声部11的至少部分覆盖用户的对耳轮区域的佩戴状态下(后文简称第二佩戴状态),第一收音孔1191可以位于耳机10上接近嘴部的位置,从而提高第一麦克风收集用户 的嘴部发出的声音时的收音效果。与发声部11的至少部分伸入用户耳甲腔的佩戴方式类似,当耳机10的佩戴方式为发声部11的至少部分覆盖用户的对耳轮区域时,第一收音孔1191和第二收音孔1192之间也需要具有一定的间距,以便进行后续的信号处理。并且,由于耳机10在发声部11的至少部分覆盖用户的对耳轮区域的佩戴状态下,发声部11的至少部分会抵接在用户耳廓的内壁(例如内轮廓1014处),在保证第一收音孔1191设置在靠近用户嘴部的位置以及第一收音孔1191和第二收音孔1192之间需要具有一定的间距的前提下,第二收音孔1192可能距离内轮廓1014较近,这就可能导致用户讲话产生的声波或外界声波在传递到内轮廓1014时,内轮廓1014对声波造成反射效应,尤其是在3kHz-4kHz的频率范围内,导致第二麦克风接收的声音相对第一麦克风接收到的声音还要大,影响后续的降噪和收音效果。基于上述问题,在一些实施例中,可以通过调整第一收音孔1191和第二收音孔1192之间的距离以及第二收音孔1192与用户耳廓的内轮廓1014的距离以保证耳机的降噪和收音效果。如图24所示,当耳机10处于第二佩戴状态时,第一收音孔1191在用户矢状面(例如图24所示的T-S平面)上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O。在一些实施例中,为了便于更清楚地描述第一收音孔1191、第二收音孔1192以及用户耳廓的内轮廓1014的距离的位置关系,第一收音孔1191与第二收音孔1192之间的距离可以通过第一收音孔1191在矢状面上的第一投影点P与第二收音孔1192在矢状面上的第二投影点O之间的第一距离OP来表征。在一些实施例中,第一收音孔在用户矢状面的第一投影点P和第二收音孔在矢状面的第二投影点O的连线的延长线与用户耳廓的内轮廓1014在矢状面的投影具有交点C,第二收音孔1192与耳廓的内轮廓1014的距离可以通过第二收音孔1192在矢状面的投影第二投影点O与交点C之间的第二距离OC来表征。在一些实施例中,为了保证耳机10中的第一麦克风和第二麦克风在第二佩戴状态下具有较好的收音效果和降噪效果,可以使第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点C之间的第二距离OC的比值介于1.8-4.4之间。为了降低耳廓的内轮廓对第二麦克风的影响,可以增大第二收音孔1192相对耳廓的内轮廓的距离,同时增大第一收音孔1191和第二收音孔1192之间的距离,以便易于后续信号的处理,优选地,可以使第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点C之间的第二距离OC的比值介于2.5-3.8之间。优选地,当耳机的佩戴位置不变时,为了进一步降低对耳轮对第二麦克风的影响,可以增大第二收音孔1192相对对耳轮的距离,同时增大第一收音孔1191和第二收音孔1192之间的距离,以便易于后续信号的处理,在一些实施例中,第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点C之间的第二距离OC的比值可以介于2.8-3.5之间。基于降低对耳轮对第二麦克风的影响以及易于后续信号的处理的考虑,可以进一步增大第二收音孔1192相对对耳轮的距离,同时进一步增大第一收音孔1191和第二收音孔1192之间的距离,较为优选地,第一投影点P和第二投影点O之间的第一距离OP与第二投影点O与交点C之间的第二距离OC的比值可以介于3.0-3.3之间。
在一些实施例中,考虑到第二收音孔1192距离耳廓的内轮廓1014较近时,会导致用户讲话产生的声波或外界声波在传递到耳廓的内轮廓1014时,耳廓的内轮廓1014可能对声波造成反射效应,尤其是在3kHz-8kHz的频率范围内,会造成第二麦克风接收的声音相对第一麦克风接收到的声音还要大,影响后续的降噪效果和收音效果。另外,由于发声部11的尺寸有限,需要保证第一收音孔1191和第二收音孔1192之间具有较大的距离,而第二收音孔1192距离耳廓的内轮廓1014较远时,第一收音孔1191和第二收音孔1192之间的距离会变小,影响后续信号的处理。
图25A-图25D是根据本说明书一些实施例所示的第二投影点O与交点C在不同距离下所对应的频响曲线示意图。
参照图25A,曲线2501和曲线2502分别为第一麦克风和第二麦克风在第一投影点P和第二投影点O之间的第一距离OP为20mm,第二投影点O与交点C之间的第二距离OC为8mm时的频响曲线示意图,其中,第二收音孔1192位于发声部11的上侧面。根据图25A可以看出,当第二收音孔1192位于发声部11的上侧面,且第二投影点O与交点C之间的第二距离OC为8mm时,第一麦克风的收音在全频段都优于第二麦克风,且第一麦克风和第二麦克风对声音的响应比较一致,整体收音情况相对较为理想。
参照图25B,曲线2503和曲线2504分别为第一麦克风和第二麦克风在第一投影点P和第二投影点O之间的第一距离OP为20mm,第二投影点O与交点C之间的第二距离OC为6mm时的频响曲线示意图,与图25A所示的场景相同,第二收音孔1192位于发声部11的上侧面。根据图25B可以看出,当第二收音孔1192位于发声部11的上侧面,且第二投影点O与交点C之间的第二距离OC为6mm时,第一麦克风和第二麦克风的收音在4k以上的频段幅值差异已经很小,此时整个麦克风组件对用户嘴部的语音拾取效果会受到影响,高频部分可能会有所缺失。
参照图25C,曲线2505和曲线2506分别为第一麦克风和第二麦克风在第一投影点P和第二投 影点O之间的第一距离OP为20mm,第二投影点O与交点C之间的第二距离OC为4mm时的频响曲线示意图,与图25A和图25B所示的场景相同,第二收音孔1192位于发声部11的上侧面。根据图25C可以看出,当第二收音孔1192位于发声部11的上侧面,且第二投影点O与交点C之间的第二距离OC为4mm时,第一麦克风和第二麦克风的收音在2.2k-4k频段的收音幅值差异也显著减小,良好收音的语音频段进一步收窄。
参照图25D,曲线2507和曲线2508分别为第一麦克风和第二麦克风在第一投影点P和第二投影点O之间的第一距离OP为20mm,第二投影点O与交点C之间的第二距离OC为2mm时的频响曲线示意图,与图25A-图25D所示的场景相同,第二收音孔1192位于发声部11的上侧面。根据图25D可以看出,当第二收音孔1192位于发声部11的上侧面,且第二投影点O与交点C之间的第二距离OC为2mm时,第一麦克风和第二麦克风的收音在2.2kHz以上频段前后收取语音的幅值已经基本没有差异,麦克风组件对用户嘴部的语音拾取效果会受到较严重的影响。
在一些实施例中,为了确保第一麦克风和第二麦克风具有较好的收音效果和降噪效果,可以使第二收音孔1192在矢状面的第二投影点O与交点C之间的距离介于2mm-10mm之间。示例性地,为了降低耳廓的内耳廓1014对声波造成反射效应,提高第一麦克风和第二麦克风的收音效果,可以增大第二收音孔1192相对耳廓的内耳廓1014的距离,在一些实施例中,第二投影点O与交点C之间的距离可以介于4mm-10mm之间。为了进一步降低廓的内耳廓1014对声波造成反射效应,进一步提高第一麦克风和第二麦克风的收音效果,可以进一步增加第二收音孔1192相对廓的内耳廓1014的距离,优选地,第二投影点O与交点C之间的距离可以介于6mm-10mm之间。将第二收音孔1192设置在相对耳廓的内耳廓1014较远的位置时,耳廓的内耳廓1014对声波的反射作用几乎不会影响第二收音孔1192,较为优选地,第二投影点O与交点C之间的距离可以介于8mm-10mm之间。
需要说明的是,以上描述主要针对于第二收音孔1192位于发声部11的上侧面的情况,当第二收音孔1192设置于发声部11的外侧面时,由于第二收音孔1192基本与用户耳轮处于同一平面,所以第二投影点O与交点C之间的距离对第二麦克风的收音效果的影响不显著,此时,只需确保用户的耳轮没有显著高于第二收音孔1192所在位置即可。
继续参照图24,在第二佩戴状态下,第一收音孔1191与用户嘴部(参考图24中的Q点)之间的距离小于第二收音孔1192与用户嘴部之间的距离,以便后续信号的处理。如图24所示,当耳机10处于第二佩戴状态时,第一收音孔1191在用户矢状面(例如图24所示的T-S平面)上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O,第三投影点Q用来表示用户嘴部(例如,唇珠)在用户矢状面的投影,用户嘴部在用户矢状面上具有第三投影点Q,其中,PQ之间的距离小于OQ之间的距离。
在一些实施例中,第一收音孔1191在用户矢状面上的第一投影点P与第二收音孔1192在该矢状面上的第二投影点O的连线大致指向用户嘴部在该矢状面上的第三投影点Q。通过这种方式,可以基于第一麦克风和第二麦克风接收的声音构建指向性算法,使收到的用户语音更加清晰。在一些实施例中,第一投影点P与第三投影点Q之间的连线PQ相对于第二投影点O与第三投影点Q之间的连线OQ可以呈一定角度的夹角。为了确保第一收音孔1191和第二收音孔1192的指向性,可以使PQ与OQ之间的夹角小于30°。在一些实施例中,PQ与OQ之间的夹角可以为0°-25°。优选地,PQ与OQ之间的夹角可以为5°-20°。示例性地,在一些实施例中,PQ与OQ之间的夹角可以为0°、3°,9°或者15°等。
当第一收音孔1191与第二收音孔1192之间的距离过小时,会导致对于低频信号的处理难度上升(主要在于低频信号的相位差会很小),难以实现精确运算,因此,第一收音孔1191与第二收音孔1192之间的距离也不宜过小。关于第一收音孔1191与第二收音孔1192之间的距离可以参考本说明书其他地方的内容,例如图7及其对应的内容,在此不做赘述。
图26是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
参照图26,当耳机10处于第二佩戴状态时,用户的下颌底端点在用户矢状面上可以具有第五投影点Q′,用户耳道口在矢状面上的投影(例如图26中的虚线区域1015)的形心为B,该第五投影点Q′与用户耳道口在矢状面上的投影的形心B所构成的连线可以在一定程度上反映发声部11与用户的下颌底端点的相对位置关系。
继续参照图26,第一收音孔1191在用户矢状面上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O。在一些实施例中,为了使第一收音孔1191和第二收音孔1192具有较好的指向性,即第一收音孔1191和第二收音孔1192的连线指向用户嘴部至下颌底端点之间的区域,可以使第一投影点P和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ6不大于45°。在一些实施例中,当耳机10处于第二佩戴状态时,第一投影点P 和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ6可以为6°-35°,此时第一收音孔1191和第二收音孔1192的连线可以指向用户嘴部的附近区域。优选地,该第一投影点P和第二投影点O的连线与第五投影点Q′和用户耳道口在矢状面上的投影的形心B的连线的夹角θ6可以为10°-25°,此时第一收音孔1191和第二收音孔1192的连线可以更加精准地指向用户嘴部。
继续参照图26,矢状轴S和垂直轴T可以表示第一收音孔1191与第二收音孔1192的连线的临界方向,换言之,即在本说明书的一些实施例中,为了保证第一麦克风和第二麦克风采集用户讲话时的收音效果,可以使第一收音孔1191与第二收音孔1192的连线方向可以介于矢状轴S与垂直轴T之间。第一投影点P和第二投影点O的连线与用户垂直轴可以呈一定角度的夹角θ7。该夹角θ7可以反映出第一收音孔1191和第二收音孔1192的连线的指向性,基于此,在一些实施例中,为了保证第一收音孔1191和第二收音孔1192的收音效果,在一些实施例中,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ7可以在20°-80°的范围内,此时第一投影点P和第二投影点O的连线指向靠近用户的嘴部或下颌底端点的区域。优选地,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ7可以在40°-70°的范围内,此时,第一投影点P和第二投影点O的连线指向用户的嘴部或下颌底端点的区域。优选地,第一投影点P和第二投影点O的连线与用户垂直轴之间的夹角θ7可以在42°-65°的范围内,此时,第一投影点P和第二投影点O的连线可以更加精准地指向用户的嘴部区域。
图27是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。
参照图27,发声部11在矢状面上的投影可以包括长轴方向X和短轴方向Y,其中,长轴方向X可以指发声部11的长度延伸方向,短轴方向Y可以指发声部11的高度(或宽度)延伸方向。当耳机10处于第二佩戴状态时,第一收音孔1191在用户矢状面上可以具有第一投影点P,第二收音孔1192在用户矢状面上可以具有第二投影点O,第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X的夹角可以表示为θ8。在一些实施例中,可以通过控制第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X的夹角来控制第一收音孔1191与第二收音孔1192的收音效果。
如图27所示,矢状轴S和垂直轴T可以表示第一投影点P和第二投影点O的连线相对于发声部11在该矢状面上的投影形状的长轴方向X的临界方向,换言之,即在本说明书的一些实施例中,第一投影点P和第二投影点O的连线方向可以介于矢状轴S与垂直轴T之间,以保证第一麦克风和第二麦克风采集用户讲话时的收音效果。在一些实施例中,可以以图27所示的长轴方向X的负方向为0°,以逆时针方向为正,来对第一投影点P和第二投影点O的连线相对于发声部11在该矢状面上的投影形状的长轴方向X所构成的角度进行表示。具体地,在本说明书的一些实施例中,为了使第一麦克风和第二麦克风具有较好的收音效果,可以使第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度θ8介于-45°-45°之间。优选地,第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度θ8可以为-25°-30°,此时第一投影点P和第二投影点O的连线可以指向靠近用户嘴部至下颌底端点之间的区域。较为优选地,第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度θ8可以为-20°-25°,此时第一投影点P和第二投影点O的连线可以更加精准地指向用户嘴部至下颌底端点之间的区域。需要注意的是,在一些实施例中,耳机还可以是图28A所示的佩戴状态,此时发声部的上侧面或下侧面与水平方向近似平行,此时使第一投影点P和第二投影点O的连线与发声部11在该矢状面上的投影形状的长轴方向X所构成的角度可以为0-90°。
与发声部11的至少部分伸入用户耳甲腔的佩戴方式类似,在一些实施例中,当耳机10的佩戴方式为发声部11的至少部分覆盖用户的对耳轮区域时,为了确保第一收音孔1191和第二收音孔1192的连线具有较好的指向性,可以使第一收音孔1191和第二收音孔1192的连线与用户冠状轴(例如图27中的R轴,该R轴垂直于用户矢状面(S-T平面))的夹角介于-30°--135°之间。优选地,第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角可以介于-50°--125°之间,此时,第一收音孔1191和第二收音孔1192的连线指向用户嘴部左右附近的区域。较为优选地,第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角可以介于-90°--115°之间,此时,第一收音孔1191和第二收音孔1192的连线指向用户嘴部的区域。其中,当第一收音孔1191与第二收音孔1192的连线相对于用户冠状轴的夹角为-90°时,第一收音孔1191与第二收音孔1192的连线平行于用户矢状面。
在一些实施例中,当耳机10处于第二佩戴状态时,可以以发声部11长轴方向X、短轴方向Y以及厚度方向Z建立坐标系,并通过该坐标系中的坐标来表征第一收音孔1191和/或第二收音孔1192相对于发声部11的相对位置。例如,可以通过坐标系中的Z值表示第一收音孔1191和/或第二收音孔 1192相对于发声部11的内侧面的距离,通过坐标系中的X值表示第一收音孔1191和/或第二收音孔1192相对于发声部11的前侧面的距离,通过坐标系中的Y值表示第一收音孔1191和/或第二收音孔1192相对于发声部11的下侧面的距离。在一些实施例中,该坐标系中的Z值越大,可以表示第一收音孔1191距离发声部11的内侧面的距离越远;X值越大,可以表示第一收音孔1191距离发声部11的前侧面越远;Y值越大,可以表示第一收音孔1191距离发声部11的下侧面越远。
与发声部11的至少部分伸入用户耳甲腔的佩戴方式类似,在一些实施例中,当耳机10为第二佩戴方式时,为了使第一麦克风具有较好的收音效果,可以使第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值不大于0.75,也即,当发声部11沿长轴方向X等分为4个等份时,第一投影点P位于X≤3的区域。为了使得第一收音孔1191靠近用户嘴部,以提高第一麦克风的收音效果,优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.5。较为优选地,为了使第一收音孔1191更加靠近用户嘴部,以提高第一麦克风的收音效果,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.3。较为优选地,为了使第一收音孔1191更加靠近用户嘴部,以提高第一麦克风的收音效果,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.2,将第一收音孔1191设置在靠近发声部的前侧面的位置,也可以使得第二收音孔1192的位置有更多的选择,保证第二收音孔能够与第一收音孔保持特定的间距以及第二收音孔能够尽量远离对耳轮。基于上述考虑,更为优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的前侧面在矢状面上的投影在长轴方向X的距离与发声部11在矢状面上的投影沿长轴方向X的尺寸的比值可以不大于0.1。进一步优选地,在一些实施例中,第一收音孔1191还可以位于发声部11的前侧面,此时,第一收音孔1191在水平方向上更加靠近用户嘴部,第一麦克风的收音效果更佳。
在一些实施例中,为了使第一麦克风具有较好的收音效果,可以使第一收音孔1191在矢状面上的第一投影点P与发声部的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值不大于0.5,也即,当发声部沿短轴方向Y等分为4个等份时,第一投影点P位于Y≤2的区域。较为优选地,为了使得第一收音孔1191更加靠近用户嘴部,提高第一麦克风的收音效果,在一些实施例中,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以不大于0.4。优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以不大于0.3,将第一收音孔1191设置在靠近发声部的下侧面的位置,也可以使得第二收音孔1192的位置有更多的选择,保证第二收音孔能够与第一收音孔保持特定的间距以及第一收音孔和第二收音孔的连线能够更加精准地指向用户嘴部。基于上述考虑,较为优选地,第一收音孔1191在矢状面上的第一投影点P与发声部11的下侧面在矢状面上的投影在短轴方向Y的距离与发声部11在矢状面上的投影沿短轴方向Y的尺寸的比值可以小于或等于0.1。更为优选地,第一收音孔1911可以位于发声部11的下侧面,此时,第一收音孔1191在竖直方向上更加靠近用户嘴部,第一麦克风的收音效果更佳。
与发声部11的至少部分伸入用户耳甲腔的佩戴方式类似,在一些实施例中,当耳机10的佩戴方式为发声部11的至少部分覆盖用户的对耳轮区域时,第一收音孔1192可以位于发声部11的下侧面或前侧面。在一些实施例中,考虑到第一出声孔1191距离发声部11的内侧面过近(例如小于2mm)时,不仅可能会导致第一收音孔1191在佩戴过程中被用户耳部遮挡,还有可能使第一麦克风采集到用户耳部与发声部11摩擦所产生的噪声,另一方面,当第一收音孔1191位于发声部11的下侧面或前侧面时,第一收音孔1191与发声部11的内侧面的距离越远,则第一收音孔1191所接收到的来自用户嘴部的收音音量越小。因此,在一些实施例中,为了同时确保第一收音孔1191的收音效果和来自用户嘴部的收音音量,可以使第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值介于0.25-0.7之间。示例性地,在一些实施例中,第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以为0.25-0.65,这里将第一收音孔1191设置在相对发声部11内侧面相对较远的距离,可以降低发声部11与耳部的摩擦所产生的噪声的影响,同时,这里通过减小第一收音孔1191相对发声部11的外侧面的距离,可以使得第一收音孔1191和第二收音孔1192的连线指向用户的嘴部。优选地,第一收音孔1191与发声部11的内侧面在发声部的厚度方向Z的距离与发声部11沿其厚度方向Z的尺寸的比值可以为0.3-0.65,这里通过进一步减小第一收音孔1191相对发声部11的外侧面的距离,可以使得第一收 音孔1191和第二收音孔1192的连线更加精准地指向用户的嘴部。
参照图27,在一些实施例中,发声部11的前侧面在用户矢状面上的投影(或投影的延长线)与发声部11的下侧面在用户矢状面上的投影(或投影的延长线)可以具有交点G,第一收音孔1191在矢状面上的第一投影点P与该交点G之间的距离越大,则表示第一投影点P与用户嘴部的距离也就越远,第一麦克风的收音效果也就越差。基于此,在一些实施例中,为了确保第一麦克风的收音效果,可以使第一投影点P与该交点G之间的距离不大于5mm。在一些实施例中,第一投影点与第四投影点之间的距离可以不大于3mm。为了提高第一麦克风的收音效果,可以将第一收音孔1191设置在发声部11上更加靠近用户嘴部的位置,在一些实施例中,第一投影点与第四投影点之间的距离可以不大于1mm,这里第一收音孔1191更加靠近用户嘴部的位置,以进一步提高第一麦克风的收音效果。
与发声部11的至少部分伸入用户耳甲腔的佩戴方式类似,在一些实施例中,当耳机10的佩戴方式为发声部11的至少部分覆盖用户的对耳轮区域时,第二收音孔1192可以设置于发声部11上未与用户对耳轮形成辅助腔体的一侧。例如,第二收音孔1192可以设置于发声部11的上侧面US、下侧面LS、外侧面OS等。在一些实施例中,第二收音孔1192可以位于发声部11的外侧面OS。在一些实施例中,为了避免第二收音孔1192与用户耳廓的距离过小而导致耳机10的收音质量受到影响,可以使第二收音孔1192与发声部11的上侧面US的距离为1mm-3mm,第二收音孔1192与后侧面FE(也可以称之为发声部11的末端FE)的距离为8mm-12mm。优选地,在一些实施例中,第二收音孔1192与上侧面US的距离可以为2mm-2.5mm,第二收音孔1192与后侧面FE的距离可以为9mm-10mm。在一些实施例中,第二收音孔1192的位置与上侧面US的距离可以为2.47mm,第二收音孔1192与后侧面FE的距离可以为9.96mm。类似地,为了避免第二收音孔1192与第一收音孔1191之间的距离过小,在一些实施例中,可以第二收音孔1192与前侧面CE的距离为8mm-12mm。优选地,第二收音孔1192与前侧面CE的距离可以为8.5mm-12mm。在一些实施例中,第二收音孔1192与下侧面LS的距离可以为4mm-8mm。优选地,第二收音孔1192与下侧面LS的距离可以为6mm-8mm。需要说明的是,在本说明书中,第一收音孔1192到发声部11的上侧面、前侧面、后侧面以及下侧面的距离可以指第一收音孔1192在发声部11的壳体的外表面的开口的中心到第一收音孔1192到发声部11的上侧面、前侧面或后侧面的距离。其中,当发声部11的侧面(例如上侧面、前侧面、后侧面、下侧面)为平面时,该距离可以指第一收音孔1192在发声部11的壳体的外表面的开口的中心到该侧面的距离。当发声部11的侧面为曲面时,该距离可以指第一收音孔1192在发声部11的壳体的外表面的开口的中心到该曲面所对应的切面的距离。
图28A是根据本说明书另一些实施例所示的耳机的示例性佩戴示意图。图28B是根据本说明书一些实施例所示的第一收音孔和第二收音孔的连线与发声部的外侧面的夹角示意图。
参照图28A和图28B,在一些实施例中,当耳机10采用第二佩戴方式进行使用时,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角可以表示为θ9。在一些实施例中,发声部11的外侧面可以为平面,此时第一收音孔和第二收音孔的连线与外侧面的夹角就是第一收音孔和第二收音孔的连线与该平面的夹角。在一些实施例中,第一收音孔和第二收音孔的连线可以为曲面,第一收音孔和第二收音孔的连线与外侧面的夹角是指第一收音孔和第二收音孔与与该外侧面的曲面相切的平面的夹角。以外侧面为平面时作为示例进行说明,在一些实施例中,发声部11的外侧面可以通过位于该外侧面上的四个点M1、M2、M3、M4表示。在一些实施例中,第一收音孔1191和第二收音孔1192可以位于发声部11的同一个侧面或不同侧面。例如,第一收音孔1191和第二收音孔1192可以均位于发声部11的外侧面。又例如,第一收音孔1191可以位于发声部11的前侧面,第二收音孔1192可以位于发声部11的外侧面。再例如,在一些实施例中,第一收音孔1191可以位于发声部11的下侧面,第二收音孔1192可以位于发声部11的外侧面。
如图28B所示,在一些实施例中,第一收音孔1191在外侧面M1M2M3M4上具有投影点M7,第二收音孔1192可以位于发声部11的外侧面上(也即位于平面M1M2M3M4内)。第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ9可以指投影点M7和第二收音孔1192的连线与第一收音孔1191和第二收音孔1192的连线所构成的夹角。在一些实施例中,当第二收音孔1192没有位于发声部11的外侧面时,第二收音孔1192在外侧面M1M2M3M4上可以具有投影点M8(图中未示出),第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ9可以指投影点M7和投影点M8的连线与第一收音孔1191和第二收音孔1192的连线所构成的夹角。
可以理解,该夹角θ9可以反映第一收音孔1191和第二收音孔1192在发声部11的厚度方向的相对位置关系,也可以在一定程度反映出第一收音孔1191和第二收音孔1192的连线相对于用户嘴部的指向性。基于此,在一些实施例中,为了使第一收音孔1191和第二收音孔1192的连线具有较好的指向性,从而确保第一收音孔1191和第二收音孔1192具有较好的收音效果,可以将第一收音孔1191 和第二收音孔1192的连线与发声部11的外侧面的夹角θ9控制在0°-60°之间,此时,第一收音孔1191和第二收音孔1192的连线可以大致指向用户面部前侧的区域,从而使得第一麦克风和第二麦克风可以具有较好的收音效果。示例性地,在一些实施例中,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ9可以为10°-40°,此时第一收音孔1191和第二收音孔1192的连线可以大致指向用户嘴部左右附近的区域,从而提高第一麦克风和第二麦克风的收音效果。优选地,第一收音孔1191和第二收音孔1192的连线与发声部11的外侧面的夹角θ9可以为25°-38°,此时第一收音孔1191和第二收音孔1192的连线可以指向用户嘴部,从而进一步提高第一麦克风和第二麦克风的收音效果。
关于第二佩戴方式的更多细节,可以在不冲突的情况下参考本说明书其他位置所描述的内容(例如关于发声部的至少部分伸入用户耳甲腔的佩戴方式的相关内容),本说明书中不再进行赘述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。本申请记载的具体实施方式仅为示例性的,具体实施方式中的一个或者多个技术特征是可选的或者附加的,并非构成本申请发明构思的必要技术特征。换言之,本申请的保护范围涵盖并远大于具体实施方式。

Claims (42)

  1. 一种耳机,包括:
    发声部;
    耳挂,被配置为将所述发声部佩戴于耳道附近但不堵塞耳道口的位置,所述发声部的至少部分伸入耳甲腔中;以及
    麦克风组件,至少包括第一麦克风和第二麦克风,所述第一麦克风或所述第二麦克风设置于所述发声部或耳挂中,所述发声部或所述耳挂上开设有分别与所述第一麦克风和所述第二麦风对应的第一收音孔和第二收音孔;
    其中,所述第一收音孔在用户矢状面的投影和所述第二收音孔在所述矢状面的投影的连线的延长线与对耳轮在所述矢状面的投影具有交点,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的距离为第一距离,所述第二收音孔在所述矢状面的投影与所述交点的距离为第二距离,所述第一距离与所述第二距离比值为1.8-4.4。
  2. 根据权利要求1所述的耳机,其中,所述第一距离与所述第二距离比值为2.5-3.8。
  3. 根据权利要求1或2所述的耳机,其中,所述第二距离为2mm-10mm。
  4. 根据权利要求3所述的耳机,其中,所述第二距离为6mm-10mm。
  5. 根据权利要求1或2所述的耳机,其中,所述第一距离为10mm-50mm。
  6. 根据权利要求5所述的耳机,其中,所述第一距离为25mm-30mm。
  7. 根据权利要求1-6任一项所述的耳机,其中,所述耳挂挂设在用户耳廓和头部之间,所述耳挂靠近发声部的部分向所述耳廓的前外侧面延伸并连接所述发声部,所述第一收音孔位于所述耳挂靠近发声部的部分,所述第一收音孔在矢状面的投影与所述发声部和所述耳挂靠近发声部的部分的连接处在矢状面的投影的最小距离不大于4mm。
  8. 根据权利要求1-6任一项所述的耳机,所述发声部在所述矢状面的投影形状包括长轴方向和短轴方向,其中,所述第一收音孔在所述矢状面的投影与所述发声部的前侧面在所述矢状面的投影在所述长轴方向的距离与所述发声部在所述矢状面的投影沿长轴方向的尺寸的比值不大于0.75。
  9. 根据权利要求8所述的耳机,所述第一收音孔在所述矢状面的投影与所述发声部的下侧面在所述矢状面的投影在所述短轴方向的距离与所述发声部在所述矢状面的投影沿短轴方向的尺寸的比值不大于0.5。
  10. 根据权利要求1-6任一项所述的耳机,其中,所述发声部的前侧面在所述矢状面的投影和所述发声部的下侧面在所述矢状面的投影的交点距所述第一收音孔在所述矢状面的投影的距离小于3mm。
  11. 根据权利要求1-6任一项所述的耳机,其中,所述第一收音孔位于所述发声部的下侧面或前侧面,所述第一收音孔与所述发声部的内侧面在所述发声部的厚度方向的距离与所述发声部沿其厚度方向的尺寸的比值为0.25-0.4。
  12. 根据权利要求1-11任一项所述的耳机,其中,所述第二收音孔位于所述发声部的上侧面、下侧面、外侧面中的至少一个侧面。
  13. 根据权利要求1-11任一项所述的耳机,其中,所述第二收音孔位于所述发声部的外侧面,所述第二收音孔到所述发声部的上侧面的距离为1mm-3mm。
  14. 根据权利要求13所述的耳机,其中,所述第二收音孔到所述发声部的前侧面的距离为8mm-12mm。
  15. 根据权利要求1-14任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与所述用户的下颌底端点在所述矢状面的投影和所述耳道口在所述矢状面的投影的形心的连线的夹角不大于45°。
  16. 根据权利要求1-15任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与用户垂直轴的夹角在40°-70°的范围内。
  17. 根据权利要求1-16任一项所述的耳机,其中,所述第一收音孔和所述第二收音孔的连线与用户冠状轴的夹角为-30°--135°。
  18. 根据权利要求1-17任一项所述的耳机,其中,所述第一收音孔和所述第二收音孔的连线与所述外侧面的夹角为0°-60°。
  19. 根据权利要求1-18任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与所述发声部在所述矢状面的投影形状的长轴方向的夹角为20°-135°。
  20. 根据权利要求1-19任一项所述的耳机,其中,所述第一收音孔或所述第二收音孔的孔径大于0.8mm,和/或,所述第一收音孔或所述第二收音孔的深度小于4mm。
  21. 根据权利要求1-20任一项所述的耳机,其中,所述第一收音孔和所述第二收音孔处设置有声阻网,所述声阻网的声阻为45Mrayls-320Mrayls。
  22. 根据权利要求1-21所述的耳机,其中,所述第一收音孔和所述第二收音孔处设置有声阻网,所述声阻网包括多个孔,所述声阻网满足以下条件中的至少一个;
    所述孔的孔径在15μm-51μm的范围内;
    所述声阻网的开孔率在11%-18%的范围内;
    所述声阻网的厚度在55μm-108μm的范围内。
  23. 根据权利要求1-21所述的耳机,其中,还包括出声孔和泄压孔,所述第一收音孔到所述出声孔的距离与所述第一收音孔到所述泄压孔的距离的差值小于10mm。
  24. 一种耳机,包括:
    发声部;以及
    耳挂,被配置为将所述发声部固定于耳道附近但不堵塞耳道口的位置,所述发声部的至少部分覆盖对耳轮区域;
    麦克风组件,至少包括第一麦克风和第二麦克风,所述第一麦克风或所述第二麦克风设置于所述发声部或耳挂中,所述发声部或所述耳挂上开设有分别与所述第一麦克风和所述第二麦风对应的第一收音孔和第二收音孔;
    其中,所述第一收音孔在用户矢状面的投影和所述第二收音孔在所述矢状面的投影的连线的延长线与耳廓的内轮廓在所述矢状面的投影具有交点,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的距离为第一距离,所述第二收音孔在所述矢状面的投影与所述交点的距离为第二距离,所述第一距离与所述第二距离比值为1.8-4.4。
  25. 根据权利要求24所述的耳机,其中,所述第一距离与所述第二距离比值为2.5-3.8。
  26. 根据权利要求24或25所述的耳机,其中,所述第二距离为2mm-10mm。
  27. 根据权利要求26所述的耳机,其中,所述第二距离为6mm-10mm。
  28. 根据权利要求24或25所述的耳机,其中,所述第一距离为10mm-50mm。
  29. 根据权利要求28所述的耳机,其中,所述第一距离为25mm-30mm。
  30. 根据权利要求24-29任一项所述的耳机,其中,所述耳挂挂设在用户耳廓和头部之间,所述耳挂靠近发声部的部分向所述耳廓的前外侧面延伸并连接所述发声部,所述第一收音孔位于所述耳挂靠近发声部的部分,所述第一收音孔在矢状面的投影与所述发声部和所述耳挂靠近发声部的部分的连 接处在矢状面的投影的最小距离不大于4mm。
  31. 根据权利要求24-29任一项所述的耳机,所述发声部在所述矢状面的投影形状包括长轴方向和短轴方向,其中,所述第一收音孔在所述矢状面的投影与所述发声部的前侧面在所述矢状面的投影在所述长轴方向的距离与所述发声部在所述矢状面的投影沿长轴方向的尺寸的比值不大于0.75。
  32. 根据权利要求31所述的耳机,所述第一收音孔在所述矢状面的投影与所述发声部的下侧面在所述矢状面的投影在所述短轴方向的距离与所述发声部在所述矢状面的投影沿短轴方向的尺寸的比值不大于0.5。
  33. 根据权利要求24-29任一项所述的耳机,其中,所述发声部的前侧面在所述矢状面的投影和所述发声部的下侧面在所述矢状面的投影的交点距所述第一收音孔在所述矢状面的投影的距离小于3mm。
  34. 根据权利要求24-29任一项所述的耳机,其中,所述第一收音孔位于所述发声部的下侧面或前侧面,所述第一收音孔与所述发声部的内侧面在所述发声部的厚度方向的距离与所述发声部沿其厚度方向的尺寸的比值为0.25-0.4。
  35. 根据权利要求24-34任一项所述的耳机,其中,所述第二收音孔位于所述发声部的上侧面、下侧面、外侧面中的至少一个侧面。
  36. 根据权利要求24-34任一项所述的耳机,其中,所述第二收音孔位于所述发声部的外侧面,所述第二收音孔到所述发声部的上侧面的距离为1mm-3mm。
  37. 根据权利要求36所述的耳机,其中,所述第二收音孔到所述发声部的前侧面的距离为8mm-12mm。
  38. 根据权利要求24-37任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与所述用户的下颌底端点在所述矢状面的投影和所述耳道口在所述矢状面的投影的形心的连线的夹角不大于45°。
  39. 根据权利要求24-38任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与用户垂直轴的夹角在40°-70°的范围内。
  40. 根据权利要求24-39任一项所述的耳机,其中,所述第一收音孔和所述第二收音孔的连线与用户冠状轴的夹角为-30°--135°。
  41. 根据权利要求24-40任一项所述的耳机,其中,所述第一收音孔和所述第二收音孔的连线与所述外侧面的夹角为10°-60°。
  42. 根据权利要求24-41任一项所述的耳机,其中,所述第一收音孔在所述矢状面的投影和所述第二收音孔在所述矢状面的投影的连线与所述发声部在所述矢状面的投影形状的长轴方向的夹角为0°-90°。
PCT/CN2023/083551 2022-10-28 2023-03-24 一种耳机 WO2024087494A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/346,891 US11877111B1 (en) 2022-10-28 2023-07-05 Earphones
US18/450,371 US11930317B1 (en) 2022-10-28 2023-08-15 Earphones
PCT/CN2023/126052 WO2024088223A1 (zh) 2022-10-28 2023-10-23 一种耳机
CN202311386846.9A CN117956366A (zh) 2022-10-28 2023-10-23 一种耳机

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CN2022144339 2022-12-30
CNPCT/CN2022/144339 2022-12-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/346,891 Continuation US11877111B1 (en) 2022-10-28 2023-07-05 Earphones
US18/450,371 Continuation US11930317B1 (en) 2022-10-28 2023-08-15 Earphones

Publications (1)

Publication Number Publication Date
WO2024087494A1 true WO2024087494A1 (zh) 2024-05-02

Family

ID=88743304

Family Applications (14)

Application Number Title Priority Date Filing Date
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机

Family Applications Before (8)

Application Number Title Priority Date Filing Date
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机

Country Status (3)

Country Link
US (2) US20240147142A1 (zh)
CN (58) CN220493122U (zh)
WO (14) WO2024087440A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026733A (zh) * 2010-07-26 2013-04-03 高通股份有限公司 用于多麦克风位置选择性处理的系统、方法、设备和计算机可读媒体
US11140469B1 (en) * 2021-05-03 2021-10-05 Bose Corporation Open-ear headphone
CN113810812A (zh) * 2020-06-17 2021-12-17 耳一号声学科技(深圳)有限公司 一种耳机及其耳撑
CN114760554A (zh) * 2022-03-28 2022-07-15 广东小天才科技有限公司 一种夹耳式耳机的麦克风管理方法、装置及夹耳式耳机
CN115243137A (zh) * 2021-04-25 2022-10-25 深圳市韶音科技有限公司 一种耳机

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057731B2 (ja) * 1990-08-21 2000-07-04 ソニー株式会社 電気音響変換器及び音響再生システム
JP2001326986A (ja) * 2000-05-15 2001-11-22 Audio Technica Corp ヘッドホン
US7050598B1 (en) * 2002-12-06 2006-05-23 Plantronics, Inc. Self-adjusting earloop for an over-the-ear headset
EP1694092A4 (en) * 2003-11-13 2009-12-23 Panasonic Corp TWEETER
JP4723400B2 (ja) * 2006-02-28 2011-07-13 スター精密株式会社 電気音響変換器
WO2009104264A1 (ja) * 2008-02-21 2009-08-27 東北パイオニア株式会社 スピーカ装置
JP5262818B2 (ja) * 2009-02-20 2013-08-14 株式会社Jvcケンウッド 耳掛け式イヤホン装置、イヤホン装置用耳掛けアーム
JP6107581B2 (ja) * 2013-09-30 2017-04-05 株式会社Jvcケンウッド 耳掛け式ヘッドホン
US10182287B2 (en) * 2016-08-16 2019-01-15 Bose Corporation Earphone having damped ear canal resonance
KR101760754B1 (ko) * 2016-08-23 2017-07-25 주식회사 이엠텍 방수 기능 사이드 진동판 및 이를 구비하는 마이크로스피커
WO2018132996A1 (zh) * 2017-01-19 2018-07-26 声电电子科技(惠州)有限公司 一种微型扬声器
JP6903933B2 (ja) * 2017-02-15 2021-07-14 株式会社Jvcケンウッド 収音装置、及び収音方法
EP3657816B1 (en) * 2017-07-21 2022-07-06 Sony Group Corporation Sound output device
CN107277718A (zh) * 2017-07-28 2017-10-20 常州市润蒙声学科技有限公司 扬声器
CN207926857U (zh) * 2017-12-21 2018-09-28 歌尔科技有限公司 发声装置单体、耳机以及电子设备
GB2584535B (en) * 2019-04-02 2021-12-01 Tymphany Acoustic Tech Huizhou Co Ltd In-ear headphone device with active noise control
CN210053540U (zh) * 2019-08-02 2020-02-11 深圳新锐芯科技有限公司 一种固定功能的耳挂式蓝牙耳机
US11122351B2 (en) * 2019-08-28 2021-09-14 Bose Corporation Open audio device
KR102209486B1 (ko) * 2019-10-29 2021-01-29 주식회사 이엠텍 리시버의 진동판 부착 구조
CN110958526A (zh) * 2019-12-19 2020-04-03 歌尔科技有限公司 耳机
CN113542956B (zh) * 2020-04-22 2024-04-09 耳一号声学科技(深圳)有限公司 一种入耳式耳机及耳机固持结构
CN113556638B (zh) * 2020-04-24 2024-03-19 万魔声学股份有限公司 耳机
CN111654790A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111654789A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111698608B (zh) * 2020-07-02 2022-02-01 立讯精密工业股份有限公司 一种骨传导耳机
PE20230883A1 (es) * 2020-07-29 2023-05-31 Shenzhen Shokz Co Ltd Auricular
CN217159960U (zh) * 2020-07-29 2022-08-09 深圳市韶音科技有限公司 一种耳机
CN214429681U (zh) * 2020-11-15 2021-10-19 深圳市大十科技有限公司 一种挂夹耳开放式耳机
KR20230050430A (ko) * 2020-11-24 2023-04-14 썬전 샥 컴퍼니 리미티드 음향장치
CN113301463A (zh) * 2021-02-03 2021-08-24 深圳市大十科技有限公司 一种用于耳机的夹耳结构
CN115209267A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209268A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN215818549U (zh) * 2021-08-25 2022-02-11 深圳市冠旭电子股份有限公司 可旋转开放式tws耳机
CN215682610U (zh) * 2021-09-17 2022-01-28 深圳市科奈信科技有限公司 开放式耳机
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN216600066U (zh) * 2021-10-29 2022-05-24 华为技术有限公司 扬声器以及声音输出装置
CN113905304A (zh) * 2021-11-01 2022-01-07 东莞市猎声电子科技有限公司 一种耳机及其定向出声的方法
CN216357224U (zh) * 2021-11-01 2022-04-19 东莞市猎声电子科技有限公司 一种耳机
CN217011123U (zh) * 2021-12-20 2022-07-19 深圳市科奈信科技有限公司 骨传导耳机
CN114390394A (zh) * 2022-02-24 2022-04-22 听智慧(南京)科技有限公司 定制无线耳机
CN114928800A (zh) * 2022-05-10 2022-08-19 歌尔股份有限公司 发声装置和电子设备
CN114866925A (zh) * 2022-05-31 2022-08-05 歌尔股份有限公司 发声装置和发声设备
CN217643682U (zh) * 2022-06-24 2022-10-21 深圳市韶音科技有限公司 一种开放式耳机
CN115460496A (zh) * 2022-09-15 2022-12-09 深圳市冠旭电子股份有限公司 耳挂连接结构及蓝牙耳机
CN115550783B (zh) * 2022-09-30 2023-10-31 东莞市猎声电子科技有限公司 一种开放式耳机
CN218352706U (zh) * 2022-09-30 2023-01-20 东莞市猎声电子科技有限公司 符合人体工学以提高佩戴舒适度的耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026733A (zh) * 2010-07-26 2013-04-03 高通股份有限公司 用于多麦克风位置选择性处理的系统、方法、设备和计算机可读媒体
CN113810812A (zh) * 2020-06-17 2021-12-17 耳一号声学科技(深圳)有限公司 一种耳机及其耳撑
CN115243137A (zh) * 2021-04-25 2022-10-25 深圳市韶音科技有限公司 一种耳机
US11140469B1 (en) * 2021-05-03 2021-10-05 Bose Corporation Open-ear headphone
CN114760554A (zh) * 2022-03-28 2022-07-15 广东小天才科技有限公司 一种夹耳式耳机的麦克风管理方法、装置及夹耳式耳机

Also Published As

Publication number Publication date
CN220254653U (zh) 2023-12-26
CN117956342A (zh) 2024-04-30
CN220210576U (zh) 2023-12-19
CN117956353A (zh) 2024-04-30
CN220528194U (zh) 2024-02-23
CN220067643U (zh) 2023-11-21
CN220528213U (zh) 2024-02-23
WO2024087439A1 (zh) 2024-05-02
CN117956335A (zh) 2024-04-30
CN117956356A (zh) 2024-04-30
WO2024087438A1 (zh) 2024-05-02
CN117956336A (zh) 2024-04-30
CN220711629U (zh) 2024-04-02
WO2024087482A1 (zh) 2024-05-02
CN220528217U (zh) 2024-02-23
CN220067645U (zh) 2023-11-21
WO2024087483A1 (zh) 2024-05-02
CN220254651U (zh) 2023-12-26
CN220528214U (zh) 2024-02-23
CN117956345A (zh) 2024-04-30
WO2024087480A1 (zh) 2024-05-02
CN220528219U (zh) 2024-02-23
CN220108162U (zh) 2023-11-28
US20240147142A1 (en) 2024-05-02
CN117956334A (zh) 2024-04-30
US20240147161A1 (en) 2024-05-02
CN220043614U (zh) 2023-11-17
CN220711638U (zh) 2024-04-02
CN220342445U (zh) 2024-01-12
WO2024087441A1 (zh) 2024-05-02
CN117956346A (zh) 2024-04-30
CN117956340A (zh) 2024-04-30
CN220528220U (zh) 2024-02-23
WO2024087444A1 (zh) 2024-05-02
CN220528215U (zh) 2024-02-23
WO2024087443A1 (zh) 2024-05-02
CN220254655U (zh) 2023-12-26
CN220067644U (zh) 2023-11-21
CN220210577U (zh) 2023-12-19
CN220711628U (zh) 2024-04-02
CN220067648U (zh) 2023-11-21
CN220210580U (zh) 2023-12-19
WO2024087440A1 (zh) 2024-05-02
WO2024087445A1 (zh) 2024-05-02
CN220823261U (zh) 2024-04-19
CN117956341A (zh) 2024-04-30
CN220067646U (zh) 2023-11-21
CN220108163U (zh) 2023-11-28
CN117956338A (zh) 2024-04-30
CN220673920U (zh) 2024-03-26
CN220493122U (zh) 2024-02-13
CN220368781U (zh) 2024-01-19
WO2024087481A1 (zh) 2024-05-02
CN220711630U (zh) 2024-04-02
CN220693319U (zh) 2024-03-29
CN117956344A (zh) 2024-04-30
CN220493121U (zh) 2024-02-13
WO2024087492A1 (zh) 2024-05-02
CN220210578U (zh) 2023-12-19
CN220325779U (zh) 2024-01-09
CN117956339A (zh) 2024-04-30
CN117956359A (zh) 2024-04-30
CN117956337A (zh) 2024-04-30
CN117956352A (zh) 2024-04-30
CN220254654U (zh) 2023-12-26
US20240147159A1 (en) 2024-05-02
CN220254652U (zh) 2023-12-26
CN220511241U (zh) 2024-02-20
CN220711634U (zh) 2024-04-02
WO2024087442A1 (zh) 2024-05-02
CN220732986U (zh) 2024-04-05
CN117956343A (zh) 2024-04-30
CN117956348A (zh) 2024-04-30
CN117956347A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2024087494A1 (zh) 一种耳机
WO2024087489A1 (zh) 一种耳机
US11930317B1 (en) Earphones
WO2024088223A1 (zh) 一种耳机
US20240179447A1 (en) Earphones
WO2024087486A1 (zh) 一种耳机
WO2024087908A1 (zh) 一种耳机
WO2024088222A1 (zh) 一种开放式耳机
WO2024088246A1 (zh) 一种耳机
WO2024087485A1 (zh) 一种耳机
WO2024087488A1 (zh) 一种发声部
WO2024087490A1 (zh) 一种耳机
WO2024087491A1 (zh) 一种耳机
US11930312B1 (en) Open earphones