WO2024087441A1 - 一种开放式耳机 - Google Patents

一种开放式耳机 Download PDF

Info

Publication number
WO2024087441A1
WO2024087441A1 PCT/CN2023/079407 CN2023079407W WO2024087441A1 WO 2024087441 A1 WO2024087441 A1 WO 2024087441A1 CN 2023079407 W CN2023079407 W CN 2023079407W WO 2024087441 A1 WO2024087441 A1 WO 2024087441A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamping
sound
ear hook
wearing state
ear
Prior art date
Application number
PCT/CN2023/079407
Other languages
English (en)
French (fr)
Inventor
徐江
郑泽英
张浩锋
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2024087441A1 publication Critical patent/WO2024087441A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/127Non-planar diaphragms or cones dome-shaped
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials

Definitions

  • the present invention relates to the field of open-type headphones, and in particular to an open-type headphone.
  • acoustic output devices e.g., headphones
  • electronic devices such as mobile phones and computers
  • acoustic devices can generally be divided into head-mounted, ear-hook, and in-ear types.
  • the output performance of the acoustic device, as well as the comfort and stability of wearing will greatly affect the user's choice and experience.
  • One of the embodiments of the present specification provides an open-type earphone, wherein at least one dimension of the open-type earphone is different between a wearing state and a non-wearing state.
  • FIG1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • FIG2 is an exemplary structural diagram of an open-type earphone according to some embodiments of this specification.
  • FIG3 is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG4 is a schematic diagram of an exemplary distribution of a cavity structure arranged around one of the dual sound sources according to some embodiments of this specification;
  • FIG5 is another exemplary structural diagram of the open-type earphone shown in FIG3 ;
  • FIG6 is another exemplary structural diagram of the open-type earphone shown in FIG3 ;
  • FIG7 is an exemplary exploded view of the sound-emitting portion of the open-type earphone shown in FIG3 ;
  • FIG8 is another exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG9 is a schematic diagram of an exemplary distribution of a baffle structure disposed between two sound sources of a dual sound source according to some embodiments of this specification;
  • FIG. 10 is a perspective view of a portion of an exemplary acoustic device according to some embodiments of the present application.
  • FIG. 11 is a cross-sectional view of an exemplary metal wire according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • device means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • unit means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • the words can be replaced by other expressions.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • the ear 100 may include an external auditory canal 101, a concha cavity 102, a concha cylindrica 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, an auricle crus 109, an outer contour 1013, and an inner contour 1014.
  • the antihelix crus 1011, the antihelix crus 1012, and the antihelix 105 are collectively referred to as the antihelix region in the embodiments of this specification.
  • the acoustic device can be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the concha cavity 102, the concha cylindrica 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to meet the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the acoustic device can be worn with the help of other parts of the ear 100 except the external auditory canal 101.
  • the acoustic device can be worn with the help of the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the user's external auditory canal 101 can be "liberated".
  • the acoustic device open earphones
  • the acoustic device will not block the user's external auditory canal 101, and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horns, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed to be compatible with the ear 100 according to the structure of the ear 100, so as to realize the wearing of the sound-emitting part of the acoustic device at different positions of the ear 100.
  • the open-type earphone can include a suspension structure (e.g., ear hook) and a sound-emitting part, and the sound-emitting part is physically connected to the suspension structure, and the suspension structure can be compatible with the shape of the auricle, so as to place the whole or part of the structure of the sound-emitting part in front of the crus helix 109 (e.g., the area J surrounded by the dotted line in FIG. 1).
  • a suspension structure e.g., ear hook
  • the sound-emitting part is physically connected to the suspension structure
  • the suspension structure can be compatible with the shape of the auricle, so as to place the whole or part of the structure of the sound-emitting part in front of the crus helix 109 (e.g., the area J surrounded by the dotted line in FIG. 1).
  • the whole or part of the structure of the sound-emitting part can contact the upper part of the external auditory canal 101 (e.g., the position of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, and the helix 107).
  • the upper part of the external auditory canal 101 e.g., the position of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, and the helix 107.
  • the entire or partial structure of the sound-producing part may be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted line in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • a simulator containing a head and its (left and right) ears 100 made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards, such as GRAS 45BC KEMAR, can be used as a reference for wearing an acoustic device, thereby presenting a scenario in which most users normally wear the acoustic device.
  • the ear 100 used as a reference may have the following relevant features: the size of the projection of the auricle on the sagittal plane in the vertical axis direction may be in the range of 49.5-74.3 mm, and the size of the projection of the auricle on the sagittal plane in the sagittal axis direction may be in the range of 36.6-55 mm. Therefore, in the present application, descriptions such as "user wears", “in a wearing state” and “in a wearing state” may refer to the acoustic device described in the present application being worn on the ear 100 of the aforementioned simulator. Of course, considering the individual differences among different users, the structure, shape, size, thickness, etc.
  • ear 100 may be differentially designed according to the ears 100 of different shapes and sizes. These differentiated designs may be manifested as characteristic parameters of one or more parts of the acoustic device (for example, the sound-emitting part, ear hook, etc. hereinafter) having different ranges of values, so as to adapt to different ears 100.
  • the acoustic device for example, the sound-emitting part, ear hook, etc. hereinafter
  • non-wearing state is not limited to the state where the open-type earphone is not worn on the user's ear 100, but also includes the state where the open-type earphone is not deformed by external force;
  • wearing state is not limited to the state where the open-type earphone is worn on the user's ear 100, and the suspension structure (for example, ear hook) and the sound-emitting part are spread out to a corresponding distance can also be regarded as a wearing state.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the "front side of the ear” described in the present application is a concept relative to the "back side of the ear", the front side of the ear refers to the side of the ear 100 that is located along the sagittal axis and faces the human face area, and the back side of the ear refers to the side of the ear 100 that is located along the sagittal axis and faces away from the human face area.
  • the front side profile diagram of the ear 100 shown in FIG1 can be obtained.
  • the description of the ear 100 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • a person skilled in the art may make various changes and modifications based on the description of the present application.
  • a part of the structure of the acoustic device may be To cover part or all of the external auditory canal 101.
  • FIG. 2 is an exemplary structural diagram of an open-type earphone according to some embodiments of the present specification.
  • the open-type earphone 10 may include a sound-emitting portion 11 and a suspension structure 12.
  • the open-type earphone 10 may wear the sound-emitting portion 11 on the user's body (e.g., the head, neck, or upper torso of the human body) through the suspension structure 12.
  • the suspension structure 12 may be an ear hook 12, and the sound-emitting portion 11 is connected to one end of the ear hook 12, and the ear hook 12 may be configured to be in a shape that matches the user's ear 100.
  • the ear hook 12 may be an arc-shaped structure.
  • the suspension structure 12 may also be a clamping structure that matches the user's auricle, so that the suspension structure 12 may be clamped at the user's auricle.
  • the ear hook 12 may include an ear hook first portion and an ear hook second portion, the ear hook first portion may be hung between the user's auricle and the user's head, and the ear hook second portion may extend to the side of the user's auricle away from the user's head and connect the sound-emitting portion 11, fixing the sound-emitting portion 11 near the user's ear canal but not blocking the user's ear canal opening.
  • the ear hook 12 may be composed of a metal wire and a wrapping layer, so that the open earphone 10 can be better fixed on the user, ensuring comfort while preventing the user from falling off during use.
  • the sound-emitting part 11 may include a transducer and a shell for accommodating the transducer, and the transducer may convert an electrical signal into a corresponding mechanical vibration to generate sound.
  • the open earphone 10 may be combined with products such as glasses, headphones, head-mounted display devices, AR/VR helmets, etc. In this case, the sound-emitting part 11 may be fixed near the user's ear 100 by hanging or clamping.
  • the sound-emitting part 11 may be a shell structure having a shape that fits the human ear 100, for example, a circular ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape, or a semicircle, so that the sound-emitting part 11 may be directly hung on the user's ear 100.
  • At least part of the sound-emitting part 11 may be located above, below, in front of the user's ear 100 (for example, region J in front of the tragus shown in FIG. 1 ) or inside the auricle (for example, region M shown in FIG. 1 ).
  • the following will be exemplarily described in conjunction with different wearing positions (11A, 11B, and 11C) of the sound-emitting part 11.
  • the sound-emitting part 11A is located on the side of the user's ear 100 facing the human facial region along the sagittal axis direction, that is, the sound-emitting part 11A is located on the facial region of the ear 100 facing the human body (for example, region J shown in FIG. 1 ).
  • a speaker is provided inside the shell of the sound-emitting part 11A, and at least one sound outlet hole (not shown in FIG. 2 ) may be provided on the shell of the sound-emitting part 11A, and the sound outlet hole may be located on the side wall of the shell facing or close to the user's external auditory canal 101, and the speaker may output sound to the user's ear canal through the sound outlet hole.
  • the speaker may include a diaphragm, and the chamber inside the shell is divided into at least a front chamber and a rear chamber by the diaphragm.
  • the sound outlet is acoustically coupled with the front chamber, and the vibration of the diaphragm drives the air in the front chamber to vibrate to produce air-conducted sound, and the air-conducted sound produced in the front chamber is transmitted to the outside through the sound outlet.
  • the shell may also include one or more pressure relief holes, and the pressure relief holes may be located on the side wall of the shell adjacent to or opposite to the side wall where the sound outlet is located.
  • the pressure relief holes are acoustically coupled with the rear chamber, and the vibration of the diaphragm also drives the air in the rear chamber to vibrate to produce air-conducted sound, and the air-conducted sound produced in the rear chamber can be transmitted to the outside through the pressure relief holes.
  • the speaker in the sound-emitting part 11A can output sounds with a phase difference (for example, opposite phases) through the sound outlet and the pressure relief hole.
  • the sound outlet can be located on the side wall of the shell of the sound-emitting part 11A facing the external auditory canal 101 of the user, and the pressure relief hole can be located on the side of the shell of the sound-emitting part 11 away from the external auditory canal 101 of the user.
  • the shell can act as a baffle to increase the sound path difference from the sound outlet and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101 and reduce the volume of far-field sound leakage.
  • the sound-emitting part 11 can have a long axis direction Y and a short axis direction Z that are perpendicular to the thickness direction X and orthogonal to each other.
  • the long axis direction Y can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting part 11 (for example, the projection of the sound-emitting part 11 on the plane where its outer surface OS is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle), and the short axis direction Z can be defined as the direction perpendicular to the long axis direction Y in the shape of the projection of the sound-emitting part 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction X can be defined as the direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body; as shown in Figure 5, the thickness direction X can also be defined as the direction in which the shell approaches or moves away from the ear 100 in the wearing state.
  • the long axis direction Y and the short axis direction Z are still parallel or approximately parallel to the sagittal plane, and the long axis direction Y can have a certain angle with the direction of the sagittal axis, that is, the long axis direction Y is also tilted accordingly, and the short axis direction Z can have a certain angle with the direction of the vertical axis, that is, the short axis direction Z is also tilted, as shown in the wearing state of the sound-emitting part 11B in FIG2 .
  • the entire or partial structure of the shell of the sound-emitting part 11B can extend into the concha cavity 102, that is, the projection of the shell of the sound-emitting part 11B on the sagittal plane and the projection of the concha cavity 102 on the sagittal plane have an overlapping part.
  • the specific content of the sound-emitting part 11B reference can be made to the content elsewhere in this specification, for example, FIG3 and its corresponding specification content.
  • the sound-emitting part 11 can also be in a horizontal state or an approximately horizontal state in the wearing state, as shown in the sound-emitting part 11C of FIG2 , the long axis direction Y can be consistent or approximately consistent with the direction of the sagittal axis, both pointing to the front and back direction of the body, and the short axis direction Z can be consistent or approximately consistent with the direction of the vertical axis, both pointing to the up and down direction of the body.
  • the sound-emitting part 11C when the sound-emitting part 11C is worn, it can mean that the angle between the long axis of the sound-emitting part 11C shown in FIG2 and the sagittal axis is within a specific range (for example, not more than 20°).
  • a specific range for example, not more than 20°.
  • the wearing position of the sound-emitting part 11 is not limited to the sound-emitting part 11A, the sound-emitting part 11B and the sound-emitting part 11C shown in FIG2, and it only needs to satisfy the area J, the area M1 or the area M2 shown in FIG1.
  • the sound-emitting part 11C The whole or part of the structure may be located in front of the crus helix 109 (e.g., the area J surrounded by the dotted line in FIG1 ).
  • the whole or part of the structure of the sound-emitting part 11 may be in contact with the upper part of the external auditory canal 101 (e.g., the location of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, etc.).
  • the whole or part of the structure of the sound-emitting part 11 of the acoustic device may be located in a cavity formed by one or more parts of the ear 100 (e.g., the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (e.g., the area M1 surrounded by the dotted line in FIG1 , which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 that includes at least the cavum concha 102).
  • the cavum concha 102 the cavum concha 102
  • the cymba concha 103 the triangular fossa 104
  • the area M2 that includes at least the cavum concha 102
  • the open-type earphone 10 may adopt any one of the following methods or a combination thereof.
  • the ear hook 12 is configured as a contoured structure that fits at least one of the back side of the ear and the head, so as to increase the contact area between the ear hook 12 and the ear 100 and/or the head, thereby increasing the resistance of the open-type earphone 10 to fall off the ear 100.
  • At least a portion of the ear hook 12 is configured as an elastic structure so that it has a certain amount of deformation when worn, so as to increase the positive pressure of the ear hook 12 on the ear 100 and/or the head, thereby increasing the resistance of the open-type earphone 10 to fall off the ear 100.
  • at least a portion of the ear hook 12 is configured to abut against the head when worn, so as to form a reaction force that presses the ear 100, so that the sound-generating portion 11 is pressed against the front side of the ear, thereby increasing the resistance of the open-type earphone 10 to fall off the ear 100.
  • the sound-emitting part 11 and the ear hook 12 are configured to clamp the antihelix area and the area where the cavum concha 102 is located from the front and back sides of the ear 100 when worn, thereby increasing the resistance of the open earphone 10 to falling off from the ear 100.
  • the sound-emitting part 11 or the auxiliary structure connected thereto is configured to at least partially extend into the cavities such as the cavum concha 102, the cymba concha 103, the triangular fossa 104 and the scaphoid 106, thereby increasing the resistance of the open earphone 10 to falling off from the ear 100.
  • the free end FE of the sound-emitting portion 11 can extend into the concha cavity 102.
  • the sound-emitting portion 11 and the ear hook 12 can be configured to clamp the ear region corresponding to the concha cavity 102 from both the front and rear sides of the ear region, thereby increasing the resistance of the open-type earphone 10 to fall off the ear 100, thereby improving the stability of the open-type earphone 10 in the wearing state.
  • the free end FE is pressed in the concha cavity 102 in the thickness direction X; for another example, the free end FE abuts against the concha cavity 102 in the long axis direction Y and the short axis direction Z.
  • the listening volume at the listening position (for example, at the opening of the ear canal), especially the listening volume of the mid-low frequency, can be increased, while still maintaining a good far-field sound leakage cancellation effect.
  • the sound-emitting part 11 and the concha cavity 102 form a structure similar to a cavity (hereinafter referred to as a quasi-cavity).
  • the quasi-cavity can be understood as a semi-enclosed structure surrounded by the side wall of the sound-emitting part 11 and the concha cavity 102 structure.
  • the semi-enclosed structure is not completely sealed and isolated from the external environment, but has a leakage structure (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • one or more sound outlet holes may be provided on the side of the shell of the sound-emitting part 11 close to or facing the user's ear canal, and one or more pressure relief holes may be provided on the other side walls of the shell of the sound-emitting part 11 (for example, the side walls away from or away from the user's ear canal).
  • the sound outlet holes are acoustically coupled with the front cavity of the open earphone 10, and the pressure relief holes are acoustically coupled with the back cavity of the open earphone 10.
  • the sound output by the sound outlet hole and the sound output by the pressure relief hole can be approximately regarded as two sound sources, and the sound waves of the two sound sources are in opposite phases.
  • the inner walls corresponding to the sound-emitting part 11 and the concha cavity 102 form a cavity-like structure, wherein the sound source corresponding to the sound outlet hole is located inside the cavity-like structure, and the sound source corresponding to the pressure relief hole is located outside the cavity-like structure, forming the acoustic model shown in FIG. 4.
  • the cavity-like structure 402 may include a listening position and at least one sound source 401A.
  • “include” may mean that at least one of the listening position and the sound source 401A is inside the cavity-like structure 402, or at least one of the listening position and the sound source 401A is at the inner edge of the cavity-like structure 402.
  • the listening position may be equivalent to the entrance of the ear canal, or may be an acoustic reference point of the ear, such as the ear reference point (ERP), the ear-drum reference point (DRP), etc., or may be an entrance structure leading to the listener, etc. Since the sound source 401A is wrapped by the cavity-like structure 402, most of the sound radiated by it will reach the listening position by direct radiation or reflection.
  • the setting of the cavity structure significantly increases the volume of the sound reaching the listening position.
  • only a small part of the anti-phase sound radiated by the anti-phase sound source 401B outside the cavity-like structure 402 will enter the cavity-like structure 402 through the leakage structure 403 of the cavity-like structure 402. This is equivalent to generating a secondary sound source 401B' at the leakage structure 403, whose intensity is significantly smaller than that of the sound source 401B and also significantly smaller than that of the sound source 401A.
  • the sound generated by the secondary sound source 401B' has a weak anti-phase cancellation effect on the sound source 401A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source 401A radiating sound to the outside through the leakage structure 403 of the cavity is equivalent to generating a secondary sound source 401A' at the leakage structure 403. Since almost all the sound radiated by the sound source 401A is output from the leakage structure 403, and the scale of the cavity-like structure 402 is much smaller than the spatial scale of the evaluation leakage sound (at least one order of magnitude difference), it can be considered that the intensity of the secondary sound source 401A' is equivalent to that of the sound source 401A.
  • the secondary sound source 401A' and the sound source 401B form a dual sound source to cancel each other out and reduce leakage sound.
  • the outer wall surface of the shell of the sound-emitting part 11 is usually a plane or a curved surface, and the contour of the user's concha cavity 102 is The uneven structure is achieved by extending part or all of the sound-emitting part 11 into the concha cavity 102, so that a cavity-like structure connected to the outside is formed between the contours of the sound-emitting part 11 and the concha cavity 102.
  • the sound outlet hole is arranged at a position where the shell of the sound-emitting part 11 faces the user's ear canal opening and close to the edge of the concha cavity 102, and the pressure relief hole is arranged at a position where the sound-emitting part 11 is away from or far away from the ear canal opening, so that the acoustic model shown in Figure 4 can be constructed, thereby enabling the user to improve the listening position at the ear opening when wearing open-ear headphones, and reduce the sound leakage effect in the far field.
  • FIG5 is another exemplary structural diagram of the open earphone shown in FIG3.
  • the sound-emitting portion 11 may include a transducer and a housing for accommodating the transducer, and the housing has an inner side IS facing the ear 100 along the thickness direction X and an outer side OS away from the ear 100 in the wearing state, and a connecting surface connecting the inner side IS and the outer side OS.
  • the sound-emitting portion 11 in the wearing state, can be arranged in a circular, elliptical, rounded square, rounded rectangle, etc. shape when observed along the direction of the coronal axis (i.e., the thickness direction X).
  • the above-mentioned connecting surface may refer to the arc-shaped side surface of the sound-emitting portion 11; and when the sound-emitting portion 11 is arranged in a rounded square, rounded rectangle, etc. shape, the above-mentioned connecting surface may include the lower side surface LS, upper side surface US and rear side surface RS mentioned later. Therefore, for the convenience of description, this embodiment takes the sound-emitting portion 11 arranged in a rounded rectangle as an example for exemplary description.
  • the length of the sound-emitting part 11 in the long-axis direction Y may be greater than the width of the sound-emitting part 11 in the short-axis direction Z.
  • the sound-emitting part 11 may have an upper side surface US facing away from the external auditory canal 101 along the short-axis direction Z in the wearing state, a lower side surface LS facing the external auditory canal 101, and a rear side surface RS connecting the upper side surface US and the lower side surface LS, wherein the rear side surface RS is located at one end of the long-axis direction Y facing the back of the brain in the wearing state, and is at least partially located in the concha cavity 102.
  • At least a portion of the shell can be inserted into the user's concha cavity 102, and at least the portion inserted into the user's concha cavity 102 includes at least one clamping area in contact with the side wall of the user's concha cavity 102, and the clamping area can be set at the free end FE of the sound-emitting part 11.
  • the orthographic projection of the ear hook 12 on a reference plane perpendicular to the long axis direction Y (such as the XZ plane in FIG.
  • the clamping area can be defined as an area on the rear side surface RS that forms a projection overlap area on the reference plane.
  • the overlapping area formed by the orthographic projection of the ear hook 12 on the aforementioned reference plane and the orthographic projection of the free end FE on the same reference plane is located between the inner side surface IS and the outer side surface OS in the thickness direction X.
  • the clamping force formed is mainly manifested as compressive stress, which is conducive to improving the stability and comfort of the acoustic device 10 in the wearing state.
  • the clamping area can be defined as the area on the connection surface (the arc-shaped side surface of the sound-emitting portion 11) corresponding to the overlapping area.
  • the clamping area can be the area on the sound-emitting portion 11 for clamping the concha cavity 102, but due to individual differences between different users, the ear 100 has different shapes, sizes and other dimensional differences. In the actual wearing state, the clamping area does not necessarily clamp the concha cavity 102, but for most users and the aforementioned standard ear 100 model, the clamping area can clamp the user's concha cavity 102 in the wearing state.
  • the clamping area and/or the inner side of the clamping area is provided with a flexible material.
  • a flexible material please refer to other parts of this specification, for example, FIG. 7 and its corresponding specification.
  • the sound-emitting portion 11 and the ear hook 12 can clamp the ear 100 from the front and back sides of the ear 100 (e.g., the concha cavity 102), and the clamping force formed is mainly in the form of compressive stress, which is beneficial to improving the stability and comfort of the open earphone 10 when worn.
  • the sound-emitting portion 11 may include a clamping area center CC
  • the ear hook 12 may include a clamping fulcrum CP and an ear hook clamping point EP.
  • the clamping fulcrum CP mentioned here can be understood as the fulcrum on the ear hook 12 that contacts the auricle and provides support for the open earphone when worn. Considering that there is a continuous contact area on the ear hook 12 that faces the side of the head and provides support, for ease of understanding, in some embodiments, the extreme point of the ear hook 12 located in this area can be regarded as the clamping fulcrum CP.
  • the extreme point of the ear hook 12 can be determined in the following way: obtain the inner contour of the projection curve of the open earphone in the wearing state on the user's sagittal plane (or the inner contour of the projection of the open earphone in the non-wearing state on the ear hook plane), and use the extreme point (for example, the maximum point) of the inner contour of the projection curve in the short axis direction Z as the extreme point of the ear hook 12, which is located near the highest point in the vertical axis direction of the human body in the wearing state (for example, within 15mm behind the highest point).
  • the ear hook structure is an arc structure
  • the ear hook plane is the plane formed by the three most convex points on the ear hook 12, that is, the plane that supports the ear hook 12 when the ear hook 12 is placed freely.
  • the ear hook plane may also refer to a plane formed by a bisector that bisects the ear hook 12 along its long axis direction Y or approximately bisects it.
  • the method for determining the extreme point of the inner contour of the projection curve in the width direction Z may be: a coordinate system is constructed with the long axis direction Y of the sound-emitting part 11 as the horizontal and vertical axes and the short axis direction Z as the vertical axis, and the maximum point of the inner contour of the projection curve in the coordinate system (for example, the first-order derivative is 0) is used as the extreme point of the inner contour of the projection curve in the width direction Z.
  • the sound-emitting part 11 and the end of the ear hook 12 away from the sound-emitting part 11 for example, the battery compartment
  • the sound-emitting part 11 and the end of the ear hook 12 away from the sound-emitting part 11 for example, the battery compartment
  • the center of the cross section corresponding to the position of maximum strain on the ear hook 12 before and after wearing can be used as the clamping fulcrum CP.
  • the ear hook 12 can be set to a variable cross-section structure, that is, the cross-sectional areas of the ear hook 12 at different positions can be different, and the center of the cross-sectional area with the smallest cross-sectional area on the ear hook 12 is used as the clamping fulcrum CP.
  • the main acting position of the supporting force is the highest point of the ear hook 12 in the vertical axis direction of the human body, so the highest point can also be regarded as the clamping fulcrum CP.
  • the center CC of the clamping area refers to a point that can represent the clamping area and is used to describe the position of the clamping area relative to other structures. In some embodiments, the center CC of the clamping area can be used to characterize the position where the clamping area exerts the greatest force on the ear 100 under standard wearing conditions.
  • the standard wearing condition can be the situation where the open earphone is correctly worn on the aforementioned standard ear model according to the wearing specifications.
  • the intersection of the long axis of the sound-emitting part and the clamping area can be defined as the center CC of the clamping area.
  • the long axis of the sound-emitting part can be the central axis of the sound-emitting part 11 along the aforementioned long axis direction Y.
  • the center CC of the clamping area can be determined in the following manner: determine the intersection of the orthographic projection of the sound-emitting part 11 on a reference plane perpendicular to the long axis direction Y (such as the XZ plane in Figure 6) and the orthographic projection of the central axis on the same reference plane, and the center CC of the clamping area can be defined as the point on the sound-emitting part 11 that forms the above-mentioned intersection on the reference plane.
  • the center CC of the clamping area can be defined as the intersection of the free end FE and the tangent plane of the end of the ear hook 12 away from the sound-emitting portion 11 (for example, the battery compartment) and the free end FE.
  • the center CC of the clamping area can be determined in the following manner: determine the tangent T of the orthographic projection of the sound-emitting portion 11 on a reference plane perpendicular to the thickness direction X (for example, the YZ plane in FIG6) and the orthographic projection of the end of the ear hook 12 away from the sound-emitting portion 11 (for example, the battery compartment) on the same reference plane, determine the intersection of the tangent T on the reference plane and the orthographic projection of the free end FE, and the center CC of the clamping area can be defined as the point on the free end FE that forms the above-mentioned intersection on the reference plane.
  • the distance between the clamping area center CC and the clamping fulcrum CP can be designed to simultaneously change the covering position of the sound generating part 11 in the concha cavity 102 in the wearing state, and the clamping position of the sound generating part 11 clamping the concha cavity 102 (or even the tragus near the concha cavity 102), which can not only affect the stability and comfort of the user wearing the open earphone, but also affect the listening effect of the open earphone. That is, in the wearing state, the distance between the clamping area center CC and the clamping fulcrum CP needs to be kept within a certain range.
  • the position of the sound-emitting part 11 in the concha cavity 102 will be too low, and the gap between the upper side US of the sound-emitting part 11 and the concha cavity 102 will be too large, that is, the opening of the quasi-cavity formed will be too large, and the sound source contained (that is, the sound outlet hole on the inner side IS) will directly radiate more sound components into the environment, and the sound reaching the listening position will be smaller.
  • the sound from the external sound source entering the quasi-cavity will increase, resulting in near-field sound cancellation, and then resulting in a smaller listening index.
  • the aforementioned distance is too large, it will cause excessive interference between the sound-emitting part 11 (or the connection area between the ear hook 12 and the sound-emitting part) and the tragus, causing the sound-emitting part 11 to squeeze the tragus too much, affecting the wearing comfort.
  • the shape and size of the sound-emitting part 11 are consistent, if the aforementioned distance is too small, the upper side US of the sound-emitting part 11 will fit with the upper edge of the concha cavity 102, and the gap between the upper side US and the concha cavity 102 will be too small or too few, and even the interior will be completely sealed and isolated from the external environment, and a cavity-like structure cannot be formed.
  • the listening index can be taken as the reciprocal 1/ ⁇ of the sound leakage index ⁇ , as an evaluation of the effect of each configuration. Its meaning is the size of the listening volume when the sound leakage is the same. From the application point of view, the listening index should be as large as possible. If the gap is too small (that is, the opening of the cavity-like body is too small), the sound leakage reduction effect is poor. If too few gaps are formed, the number of openings of this type of cavity will be small.
  • the cavity structure with more openings can better improve the resonant frequency of the air sound in the cavity structure compared to the cavity structure with fewer openings, so that the entire device has a better listening index in the high frequency band (for example, the sound with a frequency close to 10000Hz) compared to the cavity structure with fewer openings.
  • the high frequency band is the frequency band that the human ear is more sensitive to, so the demand for reduced leakage sound is greater. Therefore, if too few gaps are formed, it will lead to the inability to improve the effect of reducing leakage sound in the high frequency band.
  • the distance between the center CC of the clamping area and the clamping fulcrum CP can be 20mm ⁇ 40mm. In some embodiments, in order to further improve the effect of reducing leakage sound, the distance between the center CC of the clamping area and the clamping fulcrum CP can be 23mm ⁇ 35mm. In some embodiments, in order to make the cavity-like structure formed by the sound-emitting part 11 and the concha cavity 102 have a more suitable volume and opening size/number, the distance between the center CC of the clamping area and the clamping fulcrum CP can be 25mm ⁇ 32mm.
  • the ear hook clamping point EP may be the point on the ear hook 12 that is closest to the center CC of the clamping area, and can be used to measure the clamping condition of the ear hook 12 on the ear 100 when worn. By setting the position of the ear hook clamping point EP, the clamping force of the ear hook 12 on the ear 100 can be changed.
  • the sound-emitting part 11 is set to a regular shape such as a circle, an ellipse, a rounded square, a rounded rectangle, etc.
  • the intersection of the long axis of the sound-emitting part and the first part of the ear hook can be defined as the ear hook clamping point EP.
  • the ear hook clamping point EP can be determined in the following way: the point on the first part of the ear hook corresponding to the intersection of the orthographic projection of the first part of the ear hook on a reference plane perpendicular to the long axis direction Y (such as the XZ plane in FIG. 6) and the orthographic projection of the central axis of the sound-emitting part 11 on the same reference plane is defined as the ear hook clamping point EP.
  • the ear hook clamping point EP can be defined as the intersection of a section that passes through the center CC of the clamping area and is perpendicular to the section between the free end FE and the end of the ear hook 12 away from the sound-emitting portion 11 (for example, the battery compartment), and a portion of the ear hook 12 close to the free end FE.
  • the ear hook clamping point EP can be determined by: determining a straight line S that passes through the orthographic projection of the center CC of the clamping area on a reference plane perpendicular to the thickness direction X (for example, the YZ plane in FIG6 ) and is perpendicular to the tangent T, determining the intersection of the straight line S and the portion of the orthographic projection of the ear hook 12 on the reference plane close to the orthographic projection of the free end FE on the reference plane, and the ear hook clamping point EP can be defined as the portion of the ear hook 12 on the reference plane that is perpendicular to the free end FE.
  • the distance range between the ear hook clamping point EP and the clamping fulcrum CP on the first part of the ear hook needs to be kept within a certain range. If the aforementioned distance is too large, the ear hook 12 between the ear hook clamping point EP and the clamping fulcrum CP will be too straight or difficult to clamp on the back side of the concha cavity 102 (for example, the clamping position is lower than the concha cavity 102), and the end of the ear hook 12 away from the sound-emitting part 11 (for example, the battery compartment) will not fit the ear 100 well.
  • the ear hook 12 between the ear hook clamping point EP and the clamping fulcrum CP will be too bent or difficult to clamp on the back side of the concha cavity 102 (for example, the support position is higher than the concha cavity 102), and the end of the ear hook 12 away from the sound-emitting part 11 will squeeze the ear 100, resulting in poor comfort.
  • the distance range between the ear hook clamping point EP and the clamping fulcrum CP on the first part of the ear hook can be 25mm to 45mm.
  • the distance between the ear hook clamping point EP on the first part of the ear hook and the clamping fulcrum CP can be 26mm to 40mm. In some embodiments, in order to make it more comfortable, in the wearing state, the distance between the ear hook clamping point EP on the first part of the ear hook and the clamping fulcrum CP can be 27mm to 36mm.
  • connection end CE in the wearing state, when observed along the direction of the human coronal axis, the connection end CE is closer to the top of the head than the free end FE, so that the free end FE can extend into the concha cavity 102. Based on this, the angle between the long axis direction Y and the direction of the human sagittal axis needs to be kept within a certain range.
  • the shape and size of the sound-emitting part 11 are consistent, if the aforementioned angle is too small, the upper side US of the sound-emitting part 11 will fit the upper edge of the concha cavity 102, and the gap between the upper side US and the concha cavity 102 will be too small or too few, resulting in poor sound leakage reduction effect, and the sound outlet on the sound-emitting part 11 will be too far from the external auditory canal 101.
  • the shape and size of the sound-emitting part 11 are consistent, if the aforementioned angle is too large, the gap between the upper side US of the sound-emitting part 11 and the concha cavity 102 will be too large, that is, the cavity-like opening formed will be too large, resulting in a smaller listening index.
  • the angle between the long axis direction Y and the direction of the human body sagittal axis can be in the range of 15° and 60°. In some embodiments, in order to further improve the sound leakage reduction effect, the angle between the long axis direction Y and the direction of the human body sagittal axis can be in the range of 20° and 50°. In some embodiments, in order to make the sound hole have a suitable distance from the external auditory canal 101, the angle between the long axis direction Y and the direction of the human body sagittal axis can be in the range of 23° and 46°.
  • the direction of the clamping force can be the direction of the line connecting the two clamping points (or the center points of the clamping surface) of the open earphone clamped on both sides of the auricle.
  • the direction of the clamping force is closely related to the orientation of the sound-emitting part 11 in the concha cavity 102 and the depth of the sound-emitting part 11 extending into the concha cavity 102.
  • the direction of the clamping force should be kept the same or substantially the same as the direction of the pressure applied by the sound-emitting part 11 to the concha cavity 102 and the direction of the pressure applied by the ear hook clamping point EP to the back of the ear, so as to avoid the tendency of relative movement between the sound-emitting part 11 and the ear hook 12. Therefore, the direction of the clamping force will also affect the wearing stability of the open earphone.
  • the angle between the direction of the clamping force and the sagittal plane of the user needs to be kept within a certain range.
  • the direction of the clamping force is parallel or substantially parallel to the sagittal plane of the user.
  • the gap between the inner side surface IS of the sound-emitting part 11 and the concha cavity 102 will be too large, which will lead to a smaller listening index; or the position of the sound-emitting part 11 in the concha cavity 102 will be biased toward the side of the ear 100 facing the head, and the inner side surface IS on the sound-emitting part 11 will fit the upper edge of the concha cavity 102.
  • the gap between the inner side surface IS of the sound-emitting part 11 and the concha cavity 102 is too small or too few, and even the interior is completely sealed and isolated from the external environment, resulting in poor sound leakage reduction effect.
  • the direction of the clamping force can be obtained by attaching a force sensor (such as a strain gauge) or a force sensor array to both the side of the auricle facing the head and the side of the auricle away from the head, and reading the distribution of the force at the clamped position of the auricle. For example, if there is a point where force can be measured on the side of the auricle facing the head and the side of the auricle away from the head, the direction of the clamping force can be considered to be the direction of the line connecting the two points.
  • the angle between the direction of the clamping force and the sagittal plane of the user is in the range of -30° to 30°. In some embodiments, in order to improve the listening index, the angle between the direction of the clamping force and the sagittal plane of the user is in the range of -20° to 20°. In some embodiments, in order to further improve the sound leakage reduction effect, the angle between the direction of the clamping force and the sagittal plane of the user is in the range of -10° to 10°. In some embodiments, in order to further increase the wearing stability of the open earphone 10, the angle between the direction of the clamping force and the sagittal plane of the user is in the range of -8° to 8°. In some embodiments, the direction of the clamping force can be adjusted by designing the curved configuration of the ear hook 12, and/or designing the shape and size of the sound-emitting part 11, and/or designing the position of the center CC of the clamping area.
  • this specification defines the degree of difficulty of deformation of the ear hook 12 based on the clamping fulcrum CP as the clamping coefficient based on the clamping fulcrum CP.
  • the value range of the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP needs to be kept within a certain range. If the aforementioned clamping coefficient is too large, the clamping force will be too large when worn, and the user's ear 100 will feel a strong sense of pressure.
  • the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP ranges from 10N/m to 30N/m. In order to increase the adjustability after wearing, the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP ranges from 11N/m to 26N/m. In some embodiments, in order to increase the stability after wearing, the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP ranges from 15N/m to 25N/m.
  • the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP ranges from 17N/m to 24N/m. In some embodiments, in order to further improve the sound leakage reduction effect, the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP ranges from 18N/m to 23N/m. The clamping coefficient of the ear hook 12 based on the clamping fulcrum CP can reflect the difficulty of stretching the sound-emitting part 11 away from the ear hook 12.
  • the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP can be expressed as the relationship between the distance between the sound-emitting part 11 and the ear hook 12 when worn and the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 to approach the first part of the ear hook.
  • the distance between the sound-emitting part 11 and the ear hook 12 can be the change in the distance between the sound-emitting part 11 and the ear hook 12 in the long axis direction Y of the sound-emitting part from the non-wearing state to the wearing state;
  • the value range of the clamping coefficient of the ear hook 12 based on the clamping fulcrum CP can be determined by the following exemplary method, and the ear hook 12 can be equivalent to a spring, and the specific relationship between the distance between the sound-emitting part 11 and the clamping force of the spring is shown in formula (1):
  • F represents the clamping force
  • k represents the clamping coefficient
  • x represents the pull-off distance
  • the clamping coefficient can be determined by the following method: the clamping force corresponding to different pull-out distances is measured by a tensioner to determine at least one set of clamping force and pull-out distance. Substitute at least one set of clamping force and corresponding pull-out distance into formula (1) to determine at least one intermediate clamping coefficient. Then calculate the average value of at least one intermediate clamping coefficient, and use the average value as the clamping coefficient.
  • the clamping force is determined by measuring the clamping force when the pull-out distance is pulled out in a normal wearing state by a tensioner. Substitute the clamping force and pull-out distance into formula (1) to determine the clamping coefficient.
  • the ear hook 12 in the wearing state, the ear hook 12 generates a clamping force that drives the sound-emitting part 11 to approach the first part of the ear hook, and the clamping force needs to be maintained within a certain range.
  • the clamping force can be measured by a tensioner to measure the clamping force corresponding to the preset distance, and the preset distance is the distance under standard wearing conditions; the clamping force can also be obtained by attaching force sensors (such as strain gauges) or force sensor arrays on the side of the auricle facing the head and the side of the auricle away from the head, and reading the force value of the clamped position of the auricle.
  • the force can be measured at two points corresponding to the same position on the side of the auricle facing the head and the side of the auricle away from the head, the magnitude of the force (such as any one of the two forces) can be used as the clamping force.
  • the clamping force is too small, the ear hook 12 and the sound-emitting part 11 cannot be effectively clamped on the front and back sides of the ear 100 when worn, resulting in poor wearing stability.
  • the sound-emitting part 11 cannot effectively clamp the concha cavity 102, the gap between the sound-emitting part 11 and the concha cavity 102 is too large, that is, the opening of the cavity-like body formed is too large, resulting in a lower listening index.
  • the open-type earphone 10 will have a strong sense of pressure on the user's ear 100 when worn, and it is not easy to adjust the wearing position after wearing. Moreover, if the aforementioned clamping force is too large, the pressure of the sound-emitting part 11 on the cavum concha 102 will be too large, which will increase the tendency of the sound-emitting part 11 to rotate around the clamping fulcrum CP.
  • the clamping area of the sound-emitting part 11 may slide toward the position of the clamping fulcrum CP, so that the sound-emitting part 11 cannot be in the expected position in the cavum concha 102, that is, the side wall of the sound-emitting part 11 may fit with the upper edge of the cavum concha 102, so that the gap between the side wall of the sound-emitting part 11 and the cavum concha 102 is too small or too few, resulting in poor sound leakage reduction effect.
  • the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 close to the first part of the ear hook can have a value range of 0.03N to 1N.
  • the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 close to the first part of the ear hook can have a value range of 0.05N to 0.8N. In some embodiments, in order to increase the stability after wearing, the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 close to the first part of the ear hook can be in the range of 0.2N to 0.75N. In some embodiments, in order to make the open earphone have a better listening index when worn, the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 close to the first part of the ear hook can be in the range of 0.3N to 0.7N.
  • the clamping force generated by the ear hook 12 to drive the sound-emitting part 11 close to the first part of the ear hook can be in the range of 0.35N to 0.6N.
  • the open-ear headphone has at least one dimension that is different between the worn state and the non-worn state.
  • the minimum distance between the sound-emitting part 11 and the first part of the ear hook needs to be kept within a certain range. It should be noted that the minimum distance between the sound-emitting part 11 and the first part of the ear hook mentioned here refers to the minimum distance between the area on the sound-emitting part 11 clamped on both sides of the user's auricle (i.e., the clamping area) and the area on the first part of the ear hook (i.e., the area near the ear hook clamping point EP).
  • the minimum distance between the sound-emitting part 11 and the first part of the ear hook can be understood as the distance from the center CC of the clamping area to the ear hook clamping point EP. If the aforementioned minimum distance is too large, it will lead to the inability to effectively clamp on both sides of the ear 100 after wearing (i.e., the wearing stability deteriorates), and it will cause the gap between the sound-emitting part 11 and the concha cavity 102 to be too large, that is, the cavity-like opening formed is too large, which leads to a smaller listening index.
  • the minimum distance between the sound-emitting part 11 and the first part of the ear hook can be no more than 3mm. In some embodiments, in order to increase the stability after wearing, the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the non-wearing state may be no greater than 2.6 mm. In some embodiments, in order to make the cavity-like structure formed by the sound-emitting part 11 and the concha cavity 102 have a more suitable opening size, the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the non-wearing state may be no greater than 2.2 mm.
  • the minimum distance between the sound-emitting portion 11 and the first portion of the ear hook needs to be kept within a certain range. If the minimum distance is too small, the open-type earphone 10 will cause a strong pressure on the user's ear 100 when the user is wearing the open-type earphone 10. It is difficult to adjust the wearing position after wearing, and the side wall of the sound-emitting part 11 will fit the upper edge of the concha cavity 102. The gap between the side wall of the sound-emitting part 11 and the concha cavity 102 is too small or the number is too small, resulting in poor sound leakage reduction effect.
  • the minimum distance between the sound-emitting part 11 and the first part of the ear hook may be no less than 2mm. In some embodiments, in order to improve the sound leakage reduction effect, in the worn state, the minimum distance between the sound-emitting part 11 and the first part of the ear hook may be no less than 2.5mm. In some embodiments, in order to further increase the adjustability after wearing, in the worn state, the minimum distance between the sound-emitting part 11 and the first part of the ear hook may be no less than 2.8mm.
  • the open earphone 10 may include a wearing state and a non-wearing state, and the difference between the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the wearing state and the non-wearing state needs to be kept within a certain range. It should be noted that the difference between the wearing state and the non-wearing state may correspond to the distance.
  • the clamping force will be too small, which will result in the inability to effectively clamp on both sides of the ear 100 after wearing, and will cause the gap between the sound-emitting part 11 and the concha cavity 102 to be too large, that is, the opening of the cavity-like body formed is too large, which will lead to a smaller listening index.
  • the difference between the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the wearing state and the non-wearing state may be not less than 1mm.
  • the difference between the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the wearing state and the non-wearing state may be not less than 1.3mm. In some embodiments, in order to make the cavity-like structure formed by the sound-emitting part 11 and the concha cavity 102 have a more suitable opening size, the difference in the minimum distance between the sound-emitting part 11 and the first part of the ear hook in the wearing state and the non-wearing state may be no less than 1.5 mm.
  • the angle between the first line connecting the clamping area center CC to the clamping fulcrum CP and the second line connecting the ear hook clamping point EP to the clamping fulcrum CP needs to be kept within a certain range, so that the open earphone can provide a suitable clamping force to the ear 100 in the wearing state, and the sound-emitting part 11 is in the expected position in the concha cavity 102.
  • the clamping coefficient of the clamping fulcrum CP and the shape and size of the sound-emitting part 11 are consistent, if the aforementioned angle is too small, the difference between the angle of the connecting line in the wearing state and the angle of the connecting line in the non-wearing state will be too large, so that the clamping force of the ear hook 12 on the ear 100 in the wearing state will be too large, resulting in the open earphone 10 having a strong sense of pressure on the user's ear 100 in the wearing state, and it is not easy to adjust the wearing position after wearing, and it will cause the side wall of the sound-emitting part 11 to fit the upper edge of the concha cavity 102, and the gap between the side wall of the sound-emitting part 11 and the concha cavity 102 is too small or the number is too small, resulting in poor sound leakage reduction effect.
  • the angle between the first connecting line from the clamping area center CC to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP can range from 3° to 9°. In some embodiments, in order to increase the adjustability after wearing, in the non-wearing state, the angle between the first line from the clamping area center CC to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP can be in the range of 3.1° to 8.4°.
  • the angle between the first line from the clamping area center CC to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP can be in the range of 3.8° to 8°.
  • the angle between the first line from the clamping area center CC to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP can be in the range of 4.5° to 7.9°.
  • the angle between the first line from the clamping area center CC to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP can be in the range of 4.6° to 7°.
  • the angle between the first connecting line from the clamping area center CC to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP needs to be kept within a certain range, so as to provide a suitable clamping force for the ear 100 and make the sound-emitting part 11 in the expected position in the concha cavity 102.
  • the open earphone 10 When the clamping coefficient of the clamping fulcrum CP and the shape and size of the open earphone 10 are consistent, if the aforementioned angle is too small, the open earphone 10 will cause a strong sense of pressure on the user's ear 100 in the wearing state, and it will be difficult to adjust the wearing position after wearing, and the side wall of the sound-emitting part 11 will fit the upper edge of the concha cavity 102, and the gap between the side wall of the sound-emitting part 11 and the concha cavity 102 will be too small or the number will be too small, resulting in poor sound leakage reduction effect.
  • the angle between the first connecting line from the center CC of the clamping area to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP can be 6° to 12°.
  • the angle between the first connecting line from the center CC of the clamping area to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP can be 6.3° to 10.8°.
  • the angle between the first connecting line from the center CC of the clamping area to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP can be 7° to 10.5°.
  • the angle between the first line connecting the clamping area center CC to the clamping fulcrum CP and the second line connecting the ear hook clamping point EP to the clamping fulcrum CP can be 7.3° to 10°.
  • the clamping area can be 10° to 20°.
  • the angle between the first connecting line from the domain center CC to the clamping fulcrum CP and the second connecting line from the ear hook clamping point EP to the clamping fulcrum CP can range from 8° to 9.8°.
  • the open earphone 10 may include a wearing state and a non-wearing state, and the difference between the angle of the line in the wearing state and the angle of the line in the non-wearing state needs to be kept within a certain range.
  • the angle of the line in the wearing state is the angle between the first line from the center CC of the clamping area to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP in the wearing state
  • the angle of the line in the non-wearing state is the angle between the first line from the center CC of the clamping area to the clamping fulcrum CP and the second line from the ear hook clamping point EP to the clamping fulcrum CP in the non-wearing state.
  • the clamping coefficients of the clamping fulcrum CP are the same, if the aforementioned difference is too small, the clamping force will be too small, which will result in the inability to effectively clamp on both sides of the ear 100 after wearing, and will cause the gap between the sound-emitting part 11 and the concha cavity 102 to be too large, that is, the cavity-like opening formed is too large, which will lead to a smaller listening index.
  • the clamping coefficients of the clamping fulcrum CP are consistent, if the aforementioned difference is too large, the clamping force will be too large, which will cause the open earphone 10 to have a strong sense of pressure on the user's ear 100 when worn, and it will be difficult to adjust the wearing position after wearing.
  • the difference between the angle of the connection line in the wearing state and the angle of the connection line in the non-wearing state can range from 2° to 4°. In some embodiments, in order to increase the adjustability after wearing, the difference between the angle of the connection line in the wearing state and the angle of the connection line in the non-wearing state can range from 2.1° to 3.8°.
  • the difference between the angle of the connection line in the wearing state and the angle of the connection line in the non-wearing state can range from 2.3° to 3.7°.
  • the difference between the angle of the connection line in the worn state and the angle of the connection line in the non-worn state can be in the range of 2.5° to 3.6°.
  • the difference between the angle of the connection line in the worn state and the angle of the connection line in the non-worn state can be in the range of 2.6° to 3.4°.
  • the housing 111 is inserted into the clamping area of the user's concha cavity 102 and/or the inner side of the clamping area is provided with a flexible material, and the Shore hardness of the flexible material needs to be maintained within a certain range. If the Shore hardness of the aforementioned flexible material is too large, the comfort of the sound-emitting part 11 in the wearing state will be deteriorated.
  • the Shore hardness range of the flexible material in order to meet the wearing requirements, can be 0HA to 40HA. In some embodiments, in order to improve comfort, the Shore hardness range of the flexible material can be 0HA to 20HA.
  • the flexible material may be a flexible insert 1119, and the hardness of the flexible insert 1119 is less than the hardness of the housing 111.
  • the housing 111 may be a plastic part; the material of the flexible insert 1119 may be silicone, rubber, etc., and may be formed in the clamping area and/or the inner side of the clamping area by injection molding. Further, the flexible insert 1119 may at least partially cover the area of the housing 111 corresponding to the free end FE, that is, cover the clamping area and/or the inner side of the clamping area, so that the sound-emitting part 11 at least partially abuts against the concha cavity 102 through the flexible insert 1119.
  • the part of the housing 111 that extends into the concha cavity 102 and contacts the concha cavity 102 may be covered by the flexible insert 1119.
  • the flexible insert 1119 acts as a buffer between the shell 111 and the ear 100 (for example, the aforementioned ear area) to relieve the pressure of the acoustic device 10 on the ear 100, which is conducive to improving the comfort of the acoustic device 10 when worn.
  • the flexible insert 1119 may continuously cover at least a portion of the area of the shell 111 corresponding to the rear side RS, the upper side US, and the lower side LS.
  • the area of the shell 111 corresponding to the rear side RS is covered by the flexible insert 1119 by more than 90%
  • the area of the shell 111 corresponding to the upper side US and the lower side LS is covered by the flexible insert 1119 by about 30%. In this way, the comfort of the acoustic device 10 in the wearing state and the need to set structural parts such as transducers in the shell 111 are taken into account.
  • the flexible insert 1119 when viewed along the thickness direction X, may be arranged in a U-shape.
  • the portion of the flexible insert 1119 corresponding to the lower side LS can be against the antitragus.
  • the thickness of the portion of the flexible insert 1119 corresponding to the rear side RS can be respectively smaller than the thickness of the portion of the flexible insert 1119 corresponding to the upper side US and the lower side LS, so that good comfort can be obtained when the movement module 11 is against an uneven position in the concha cavity 102.
  • FIG7 is an exemplary exploded view of the sound-emitting part according to some embodiments of the present specification.
  • the housing 111 may include an inner housing 1111 and an outer housing 1112 that are buckled together along the thickness direction X.
  • the inner housing 1111 is closer to the ear 100 than the outer housing 1112 when worn.
  • the sound outlet 111a, the first pressure relief hole 111c, and the second pressure relief hole 111d may all be provided on the inner housing 1111.
  • the diaphragm of the transducer is provided toward the inner housing 1111, and a first acoustic cavity is formed between the transducer and the inner housing 1111.
  • the parting surface 111b between the outer housing 1112 and the inner housing 1111 is inclined toward the side where the movement inner housing 1111 is located in the direction close to the free end FE, so that the flexible insert 1119 can be provided as much as possible in the area of the outer housing 1112 corresponding to the free end FE.
  • the flexible insert 1119 is all provided in the area of the movement outer housing 1112 corresponding to the free end FE, so as to simplify the structure of the sound-emitting part 11 and reduce the processing cost.
  • a wrapping layer may be further provided outside the shell 111, and the Shore hardness range of the wrapping layer needs to be maintained within a certain range. If the aforementioned Shore hardness is too large, the comfort of the sound-emitting portion 11 in the wearing state will be deteriorated, and when the flexible covering layer 1120 can integrally cover at least part of the outer surface of the flexible insert 1119, the flexible insert 1119 cannot play its due role (for example, relieving the pressure of the acoustic device 10 on the ear 100 and improving the comfort of the acoustic device 10 in the wearing state).
  • the side wall of the sound-emitting portion 11 will be completely fitted with the structure of the concha cavity 102, thereby making the interior completely sealed and isolated from the external environment, without any sound.
  • the method cannot form a cavity-like structure, so it cannot reduce the sound leakage effect in the far field, and it will cause the shape to fail to be fixed during the assembly process.
  • the Shore hardness range of the wrapping layer in order to improve the sound leakage reduction effect, can be 10HA ⁇ 80HA. In some embodiments, in order to improve the comfort of the sound-emitting part 11 when worn, the Shore hardness range of the wrapping layer can be 15HA ⁇ 70HA.
  • the Shore hardness range of the wrapping layer in order to form a cavity-like structure with the sound-emitting part 11 and the concha cavity 102, can be 25HA ⁇ 55HA. In some embodiments, in order to achieve better shaping during the assembly process, the Shore hardness range of the wrapping layer can be 30HA ⁇ 50HA.
  • the wrapping layer may be a flexible coating 1120, and the hardness of the flexible coating 1120 is less than the hardness of the housing 111.
  • the housing 111 may be a plastic part; the material of the flexible coating 1120 may be silicone, rubber, etc., and may be formed on a preset area of the housing 111 by injection molding, glue connection, etc.
  • the flexible coating 1120 may be integrally covered on at least part of the outer surface of the flexible insert 1119 and at least part of the outer surface of the outer shell 1112 not covered by the flexible insert 1119, which is conducive to enhancing the consistency of the appearance of the sound-emitting part 11.
  • the flexible coating 1120 may be further covered on the outer surface of the inner shell 1111.
  • the hardness of the flexible insert 1119 is less than the hardness of the flexible coating 1120, so that the flexible insert 1119 is sufficiently soft.
  • the flexible coating 1120 can also improve the comfort of the acoustic device 10 when worn, and has a certain structural strength to protect the flexible insert 1119.
  • the area of the outer surface of the flexible insert 1119 may be between 126 mm 2 and 189 mm 2.
  • the thickness of the flexible cover 1120 may be less than the thickness of the housing 1112.
  • the inner shell 1111 may include a bottom wall 1113 and a first side wall 1114 connected to the bottom wall 1113
  • the outer shell 1112 may include a top wall 1115 and a second side wall 1116 connected to the top wall 1115
  • the second side wall 1116 and the first side wall 1114 are buckled with each other along the parting surface 111b, and the two can support each other.
  • the portion of the first side wall 1114 close to the free end FE gradually approaches the bottom wall 1113 in the thickness direction X, and the portion of the second side wall 1116 close to the free end FE gradually moves away from the top wall 1115 in the thickness direction X, so that the parting surface 111b is inclined toward the side where the inner shell 1111 is located in the direction close to the free end FE.
  • the flexible insert 1119 is at least partially arranged on the outside of the second side wall 1116.
  • the flexible insert 1119 is not only disposed on the outer side of the second side wall 1116 , but is also partially disposed on the outer side of the top wall 1115 .
  • the housing 1112 may be provided with an embedding groove at least partially located on the second side wall 1116, and the flexible insert 1119 may be embedded in the embedding groove, so that the outer surface of the area of the housing 1112 not covered by the flexible insert 1119 is continuously transitioned to the outer surface of the flexible insert 1119.
  • the area where the flexible insert 1119 is located in FIG. 7 can be simply regarded as the embedding groove. In this way, it is not only conducive to the accumulation of the flexible insert 1119 on the housing 1112 during the injection molding process to prevent the flexible insert 1119 from overflowing, but also conducive to improving the appearance quality of the sound-emitting part 11 and avoiding the surface of the unit 11 from being bumpy.
  • the second side wall 1116 may include a first sub-side wall segment 1117 and a second sub-side wall segment 1118 connected to the first sub-side wall segment 1117, the first sub-side wall segment 1117 is closer to the top wall 1115 than the second sub-side wall segment 1118 in the thickness direction X, and the second sub-side wall segment 1118 protrudes toward the outside of the housing 111 compared to the first sub-side wall segment 1117.
  • the second side wall 1116 may be a step-shaped structure.
  • the above structure is not only conducive to the accumulation of the flexible insert 1119 on the housing 1112 during the injection molding process to prevent the flexible insert 1119 from overflowing, but also conducive to the sound-emitting portion 11 better abutting against the concha cavity 102 through the flexible insert 1119, thereby improving the comfort of the acoustic device 10 in the wearing state.
  • the open earphone 10 shown in Fig. 8 is taken as an example to explain the open earphone 10 in detail. It should be noted that the structure and corresponding parameters of the open earphone 10 in Fig. 8 can also be applied to the open earphones of other configurations mentioned above without violating the corresponding acoustic principles.
  • the output effect of the open-type earphone can be improved, that is, the sound intensity at the near-field listening position is increased, while the volume of the far-field sound leakage is reduced.
  • one or more sound outlet holes can be provided on the shell of the sound-emitting part 11 close to or facing the user's ear canal, and one or more pressure relief holes are provided on the other side walls of the shell of the sound-emitting part 11 (for example, the side walls away from or away from the user's ear canal).
  • the sound outlet holes are acoustically coupled with the front cavity of the open-type earphone 10, and the pressure relief holes are acoustically coupled with the back cavity of the open-type earphone 10.
  • the sound-emitting part 11 including a sound outlet hole and a pressure relief hole as an example, the sound output from the sound outlet hole and the sound output from the pressure relief hole can be approximately regarded as two sound sources, and the sound waves of the two sound sources are in opposite phases.
  • the sound emitted by the sound outlet hole can be directly transmitted to the user's ear canal opening without hindrance, while the sound emitted by the pressure relief hole needs to bypass the shell of the sound-emitting part 11 or pass through the gap formed between the sound-emitting part 11 and the anti-auricular helix 105.
  • the sound-emitting part 11 and the antihelix 105 can form a structure similar to a baffle (the antihelix 105 is equivalent to the baffle), wherein the sound source corresponding to the sound outlet is located on one side of the baffle, and the sound source corresponding to the pressure relief hole is located on the other side of the baffle, forming the acoustic model shown in FIG9.
  • the sound field of the point sound source A2 needs to bypass the baffle to interfere with the sound wave of the point sound source A1 at the listening position, which is equivalent to increasing the sound path from the point sound source A2 to the listening position. Therefore, assuming that the point sound source A1 and the point sound source A2 have the same amplitude, compared with the case where no baffle is provided, the amplitude difference of the sound waves of the point sound source A1 and the point sound source A2 at the listening position increases, thereby reducing the degree of cancellation of the two-way sound at the listening position, thereby increasing the volume at the listening position.
  • the sound waves generated by the point sound source A1 and the point sound source A2 do not need to bypass the baffle within a larger spatial range, the sound waves generated by the point sound source A1 and the point sound source A2 do not need to bypass the baffle. Interference can occur through the baffle (similar to the case without a baffle), and the far-field sound leakage will not increase significantly compared to the case without a baffle. Therefore, by setting a baffle structure around one of the point sound sources A1 and A2 , the volume at the near-field listening position can be significantly increased without significantly increasing the volume of far-field sound leakage.
  • the sound-emitting portion 11 may include a transducer and a shell for accommodating the transducer, at least part of the shell is located at the user's antihelix 105, and the side of the shell facing the user's antihelix 105 includes a clamping area in contact with the user's antihelix 105. Since the distance of the sound-emitting portion 11 relative to the ear hook plane in the thickness direction X is enlarged after wearing, the sound-emitting portion 11 tends to approach the ear hook plane, so clamping can be formed in the wearing state.
  • the orthographic projection of the ear hook 12 on a reference plane perpendicular to the thickness direction X (such as the YZ plane in FIG.
  • the clamping force formed is mainly manifested as compressive stress, which is conducive to improving the stability and comfort of the acoustic device 10 when worn.
  • the above-mentioned clamping area refers to the area that clamps the antihelix 105, but due to individual differences between different users, the ear 100 has different shapes, sizes and other dimensional differences. In the actual wearing state, the clamping area does not necessarily clamp the antihelix 105.
  • the angle between the direction of the clamping force and the sagittal plane of the user needs to be kept within a certain range.
  • the direction of the clamping force can be perpendicular or substantially perpendicular to the sagittal plane of the user. If the aforementioned angle deviates too much from 90°, it will result in the inability to form a baffle structure between the sound outlet and the pressure relief hole (for example, one side of the shell where the pressure relief hole is located is tilted, and the auricle 105 cannot block the pressure relief hole to the other side of the sound outlet), the volume of the near-field listening position cannot be increased, and the free end FE or the battery compartment exerts pressure on the ear 100.
  • the direction of the clamping force can be obtained by attaching a patch (i.e., a force sensor) or a patch array to the side of the auricle facing the head and the side of the auricle away from the head, and reading the distribution of the force at the clamped position of the auricle.
  • a patch i.e., a force sensor
  • the direction of the clamping force can be considered to be the direction of the line connecting the two points.
  • the angle between the direction of the clamping force and the sagittal plane of the user can be in the range of 60° to 120°.
  • the angle between the direction of the clamping force and the sagittal plane of the user may be in the range of 80° to 100°. In some embodiments, in order to further make the open earphone fit the antihelix 105 better when worn, the angle between the direction of the clamping force and the sagittal plane of the user may be in the range of 70° to 90°.
  • the shell and the first part of the ear hook clamp the user's auricle, and the clamping force provided to the user's auricle needs to be maintained within a certain range.
  • the clamping force can be measured by a tensioner.
  • the shell of the sound-emitting part 11 in the non-wearing state is pulled away from the ear hook 12 by a preset distance according to the wearing method, and the magnitude of the pulling force at this time is equal to the magnitude of the clamping force; the clamping force can also be obtained by fixing the patch on the wearer's ear.
  • the clamping force is too small, it will lead to the inability to form a baffle structure between the sound outlet and the pressure relief hole (for example, the sound-emitting part 11 is loose, and the auricle 105 cannot block the pressure relief hole to the other side of the sound outlet, which is equivalent to the reduction of the baffle height in Figure 9), and the volume of the near-field listening position cannot be increased, and the wearing stability of the open earphone 10 will be poor; if the clamping force is too large, it will cause a greater sense of pressure on the ear 100, making the adjustability of the open earphone 10 poor after wearing.
  • the shell and the first part of the ear hook 12 clamp the user's auricle and provide a clamping force of 0.03N to 3N to the user's auricle. In some embodiments, in order to increase the adjustability after wearing, in the wearing state, the shell and the first part of the ear hook clamp the user's auricle and provide a clamping force of 0.03N to 1N to the user's auricle.
  • the shell and the first part of the ear hook clamp the user's auricle and provide a clamping force of 0.4N to 0.9N to the user's auricle.
  • FIG. 10 is a perspective view of a portion of an exemplary acoustic device according to some embodiments of the present application.
  • the ear hook 12 of the open earphone 10 may be composed of a metal wire 121 and a wrapping layer 122.
  • the metal wire 121 plays a supporting and clamping role, and the wrapping layer 122 may be wrapped around the outside of the metal wire 121 to make the ear hook 12 softer and better fit the auricle, thereby improving user comfort.
  • the open earphone 10 shown in Fig. 8 is taken as an example to explain the open earphone 10 in detail. It should be noted that the structure and corresponding parameters of the open earphone 10 in Fig. 8 can also be applied to the open earphones of other configurations mentioned above without violating the corresponding acoustic principles.
  • the metal wire 121 may include spring steel, titanium alloy, titanium-nickel alloy, chrome-molybdenum steel, aluminum alloy, copper alloy, etc. or a combination thereof.
  • the number, shape, length, thickness, diameter and other parameters of the metal wire 121 may be set according to actual needs (e.g., the diameter of the acoustic device component, the strength requirements of the acoustic device component, etc.).
  • the shape of the metal wire 121 may include any suitable shape, such as a cylinder, a cube, a cuboid, a prism, an elliptical cylinder, etc.
  • FIG11 is a cross-sectional view of an exemplary metal wire according to some embodiments of the present application.
  • the metal wire 121 may be a flat structure, so that the metal wire 121 has different deformation capabilities in various directions.
  • the cross-sectional shape of the metal wire 121 may include square, rectangular, triangular, polygonal, circular, elliptical, irregular, and the like.
  • the cross-sectional shape of the metal wire 121 may be a rounded rectangle.
  • the cross-sectional shape of the metal wire 121 may be an elliptical.
  • the long side (or long axis, L1) and/or the long axis (L2) of the metal wire 121 may be a plurality of spherical shapes.
  • the length of the short side (or short axis, L2) can be set according to actual needs (e.g., the diameter of the acoustic device portion including the metal wire 121).
  • the ratio of the long side to the short side of the metal wire 121 can be within the range of 1.1:1-2:1. In some embodiments, the ratio of the long side to the short side of the metal wire 121 can be 1.5:1.
  • the metal wire 121 can be formed into a specific shape by processes such as stamping and pre-bending.
  • the initial state of the metal wire 121 in the ear hook 12 of the acoustic device can be curled, and then straightened and then stamped to form an arc shape in the short axis direction (as shown in Figure (c) in Figure 11), so that the metal wire 121 can store a certain internal stress and maintain a straight shape, becoming a "memory metal wire".
  • it When subjected to a small external force, it will return to a curled shape, so that the ear hook 12 of the acoustic device fits and wraps around the human ear.
  • the ratio of the arc height of the metal wire 121 (L3 shown in Figure 11) to its long side can be within the range of 0.1-0.4. In some embodiments, the ratio of the arc height of the metal wire 121 to its long side can be within the range of 0.1-0.35. In some embodiments, the ratio of the arc height of the metal wire 121 to its long side can be within the range of 0.15-0.3. In some embodiments, the ratio of the arc height of the metal wire 121 to its long side can be within the range of 0.2-0.35. In some embodiments, the ratio of the arc height of the metal wire 121 to its long side can be within the range of 0.25-0.4.
  • the stiffness of the components in the acoustic device along its length direction can be increased, and the effectiveness of the acoustic device (for example, the ear hook 12) in clamping the user's ear 100 can be improved.
  • the metal wire 121 in the ear hook 12 can be bent in the length direction of the ear hook 12 and have strong elasticity, thereby further improving the effectiveness of the ear hook 12 in pressing the user's ear 100 or head.
  • the elastic modulus of the metal wire 121 can be obtained by GB/T 24191-2009/ISO 12076:2002. In some embodiments, the elastic modulus of the metal wire 121 needs to be kept within a certain range. When the shape and size of the open earphone 10 are consistent, if the elastic modulus is too large, the ear hook 12 will not be easily deformed, making it difficult for the user to adjust the wearing angle of the ear hook 12. When the shape and size of the open earphone 10 are consistent, if the elastic modulus is too small, the ear hook 12 will be too easy to deform, resulting in the inability to effectively clamp the ear 100 after wearing.
  • the elastic modulus of the metal wire 121 in order to effectively clamp the ear hook 12 on both sides of the ear 100 after wearing, can be 20GPa to 50GPa. In some embodiments, in order to make the ear hook 12 easy to adjust, the elastic modulus of the metal wire 121 can be 25GPa to 43GPa. In some embodiments, the elastic modulus of the metal wire 121 can also be 30GPa to 40GPa.
  • the diameter of the metal wire 121 needs to be kept within a certain range. It should be noted that when the cross-sectional shape of the metal wire 121 is circular, the diameter of the metal wire 121 is the length of the diameter of the circular cross-sectional shape of the metal wire 121; when the cross-sectional shape of the metal wire 121 is elliptical, the diameter of the metal wire is the length of the major axis of the elliptical cross-sectional shape of the metal wire 121; when the cross-sectional shape of the metal wire 121 is square, rectangular, triangular, polygonal, irregular, etc., the diameter of the metal wire 121 can be defined as the length of the longest line segment in the line segments whose two endpoints are on the cross-sectional shape of the metal wire 121 and pass through the center of the cross-sectional shape of the metal wire 121.
  • the diameter of the metal wire 121 needs to be kept within a certain range.
  • the material of the metal wire 121 and the shape and size of the open earphone 10 are consistent, if the aforementioned diameter is too large, the ear hook 12 will be too heavy and produce a sense of pressure on the ear 100, and the ear hook 12 will be too strong, the ear hook 12 will not be easily deformed, and the user will find it difficult to adjust the wearing angle of the ear hook 12.
  • the diameter of the metal wire 121 can be 0.5mm to 1mm. In some embodiments, in order to increase the strength of the ear hook 12, the diameter of the metal wire 121 can be 0.6mm to 1mm. In some embodiments, in order to effectively clamp the ear hook 12 on both sides of the ear 100 after wearing, the diameter of the metal wire 121 can be 0.7mm to 0.9mm.
  • the density of the metal wire 121 needs to be maintained within a certain range. If the aforementioned density is too large, the ear hook 12 will be too heavy, causing a sense of oppression on the ear 100. If the aforementioned density is too small, the ear hook 12 will be too weak in strength, easily damaged, and have a short lifespan. In some embodiments, in order to prevent the ear hook 12 from causing a sense of oppression on the ear 100 after being worn, the density of the metal wire 121 may be 5g/cm3 to 7g/cm3. In some embodiments, in order to increase the strength of the ear hook 12, the density of the metal wire 121 may be 5.5g/cm3 to 6.8g/cm3. In some embodiments, the density of the metal wire 121 may be 5.8g/cm3 to 6.5g/cm3.
  • the wrapping layer 122 may include a softer material, a harder material, or a combination thereof.
  • a softer material refers to a material having a hardness (e.g., Shore hardness) less than a first hardness threshold (e.g., 15A, 20A, 30A, 35A, 40A, etc.).
  • a first hardness threshold e.g. 15A, 20A, 30A, 35A, 40A, etc.
  • the Shore hardness of a softer material may be 45-85A, 30-60D.
  • a harder material refers to a material having a hardness (e.g., Shore hardness) greater than a second hardness threshold (e.g., 65D, 70D, 75D, 80D, etc.).
  • Softer materials may include polyurethanes (PU) (e.g., thermoplastic polyurethanes (TPU)), polycarbonate (PC), polyamides (PA), acrylonitrile butadiene styrene (ABS), polystyrene (PS), high impact polystyrene (HIPS), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyurethanes (PU), polyethylene (PE), phenolic resin (PF), urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF), silicone, etc. or a combination thereof.
  • PU polyurethanes
  • TPU thermoplastic polyurethanes
  • PC polycarbonate
  • PA polyamides
  • PA acrylonitrile butadiene styrene
  • PS polystyrene
  • HIPS high impact polystyrene
  • PP polypropylene
  • PET polyethylene
  • Harder materials may include polyethersulfone resin (Poly (estersulfones), PES), polyvinylidenechloride (PVDC), polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), etc. or a combination thereof, or a mixture thereof with reinforcing agents such as glass fiber and carbon fiber.
  • the setting of the wrapping layer 122 can be selected according to the specific situation.
  • the metal wire 121 can be directly coated with a softer material.
  • the metal wire 121 can be first coated with a harder material, and the harder material is then wrapped with a softer material.
  • the part of the ear hook 12 that contacts the user is made of a softer material, and the rest is made of a harder material.
  • different materials can be formed by processes such as two-color injection molding and spraying of hand-feel paint.
  • the hand-feel paint can include rubber hand-feel paint, elastic hand-feel paint, plastic elastic paint, etc. or a combination thereof.
  • softer materials can improve the comfort of the user wearing the ear hook 12, and harder materials can improve the strength of the ear hook 12.
  • the strength of the ear hook 12 can be improved while improving the user's comfort.
  • the Shore hardness of the wrapping layer 122 needs to be maintained within a certain range. If the aforementioned Shore hardness is too large, the user will feel less comfortable wearing the ear hook 12. In some embodiments, in order to increase the comfort of the user wearing the ear hook 12, the Shore hardness of the wrapping layer 122 may range from 10HA to 80HA. In some embodiments, the Shore hardness of the wrapping layer 122 may range from 15HA to 70HA. In some embodiments, the Shore hardness of the wrapping layer 122 may range from 25HA to 55HA. In some embodiments, the Shore hardness of the wrapping layer 122 may range from 30HA to 50HA.
  • numbers describing the number of components and attributes are used. It should be understood that such numbers used in the description of the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Unless otherwise specified, “about”, “approximately” or “substantially” indicate that the numbers are allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximate values, which may change according to the required features of individual embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and adopt the general method of retaining digits. Although the numerical domains and parameters used to confirm the breadth of their range in some embodiments of this specification are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Headphones And Earphones (AREA)

Abstract

一种开放式耳机,该开放式耳机在佩戴状态和非佩戴状态下的至少一个尺寸不同。

Description

一种开放式耳机
交叉引用
本申请要求于2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,于2022年12月1日提交的申请号为202223239628.6,以及于2022年12月30日提交的申请号PCT/CN2022/144339的PCT申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及开放式耳机领域,特别涉及一种开放式耳机。
背景技术
随着声学输出技术的发展,声学输出装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。按照用户佩戴的方式,声学装置一般可以分为头戴式、耳挂式和入耳式等。声学装置的输出性能,以及佩戴的舒适性和稳定性会极大影响用户的选择和体验。
因此,有必要提供一种开放式耳机,保证开放式耳机的输出性能的同时,改善用户佩戴的舒适度以及开放式耳机在佩戴方面的稳定性。
发明内容
本说明书实施例之一提供一种开放式耳机,所述开放式耳机在佩戴状态和非佩戴状态下的至少一个尺寸不同。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的示例性耳部示意图;
图2是根据本说明书一些实施例所示的开放式耳机的示例性结构图;
图3是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图4是根据本说明书一些实施例所示的双声源的其中一个声源周围设置腔体结构的示例性分布示意图;
图5是图3所示开放式耳机的另一示例性结构图;
图6是图3所示开放式耳机的另一示例性结构图;
图7是图3所示开放式耳机的发声部的示例性爆炸图;
图8是根据本说明书一些实施例所示的开放式耳机的另一示例性佩戴示意图;
图9是根据本说明书一些实施例所示的双声源的两个声源中间设置挡板结构的示例性分布示意图;
图10是根据本申请的一些实施例所示的示例性声学装置一部分部件的透视图;
图11是根据本申请的一些实施例所示的示例性金属丝的截面图。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的 是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本申请的一些实施例所示的示例性耳部示意图。
如图1所示,图1是根据本申请的一些实施例所示的示例性耳部的示意图。参见图1,耳部100可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108,耳轮脚109,外轮廓1013和内轮廓1014。需要说明的是,为便于描述,本说明书实施例中将对耳轮上脚1011和对耳轮下脚1012以及对耳轮105统称为对耳轮区域。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、或耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的外耳道101。当用户佩戴声学装置(开放式耳机)时,声学装置不会堵塞用户外耳道101,用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部100不同位置的佩戴。例如,声学装置为开放式耳机时,开放式耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相适配,以将发声部的整体或者部分结构置于耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部100存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得的含头部及其(左、右)耳部100的模拟器,例如GRAS 45BC KEMAR,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。仅仅作为示例,作为参考的耳部100可以具有如下相关特征:耳廓在矢状面上的投影在垂直轴方向的尺寸可以在49.5-74.3mm的范围内,耳廓在矢状面上的投影在矢状轴方向的尺寸可以在36.6-55mm的范围内。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部100。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以根据不同形状和尺寸的耳部100进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部100。另外,需要说明的是:“非佩戴状态”并非仅限于开放式耳机未佩戴于用户耳部100的状态,而是也包括开放式耳机未受外力作用而变形的状态;“佩戴状态”并非仅限于开放式耳机佩戴于用户耳部100的状态,悬挂结构(例如,耳挂)和发声部摆开至相应的距离也可以视为是佩戴状态。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的“耳部的前侧”是一个相对于“耳部的后侧”的概念,耳部的前侧指沿着矢状轴方向且位于耳部100朝向人体面部区域的一侧,耳部的后侧沿着矢状轴方向且位于指耳部100背离人体面部区域的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部100,可以得到图1所示的耳部100的前侧轮廓示意图。
关于上述耳部100的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,声学装置的部分结构可 以遮蔽外耳道101的部分或者全部。这些变化和修改仍处于本申请的保护范围之内。
图2是根据本说明书一些实施例所示的开放式耳机的示例性结构图。如图2所示,开放式耳机10可以包括发声部11和悬挂结构12。在一些实施例中,开放式耳机10可以通过悬挂结构12将发声部11佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干)。在一些实施例中,悬挂结构12可以为耳挂12,发声部11与耳挂12的一端连接,耳挂12可以设置成与用户耳部100相适配的形状。例如,耳挂12可以为弧形结构。在一些实施例中,悬挂结构12也可以为与用户耳廓相适配的夹持结构,以使悬挂结构12可以夹持于用户耳廓处。在一些实施例中,耳挂12可以包括耳挂第一部分和耳挂第二部分,耳挂第一部分可以挂设在用户耳廓和用户头部之间,耳挂第二部分可以向用户耳廓背离用户头部的一侧延伸并连接发声部11,将发声部11固定于用户耳道附近但不堵塞用户耳道口的位置。在一些实施例中,耳挂12可以由金属丝和包裹层组成,使得开放式耳机10可以更好地固定在用户身上,在确保舒适性的同时,防止用户在使用时发生掉落。
在一些实施例中,发声部11可以包括换能器和容纳换能器的壳体,该换能器可以将电信号转换为相应的机械振动从而产生声音。在一些实施例中,开放式耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,发声部11可以采用悬挂或夹持的方式固定在用户的耳部100的附近。在一些实施例中,发声部11可以为具有人体耳部100适配形状的壳体结构,例如,圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便发声部11可以直接挂靠在用户的耳部100处。
结合图1和图2,在一些实施例中,当用户佩戴开放式耳机10时,发声部11的至少部分可以位于用户耳部100的上方、下方、前侧(例如,图1中示出耳屏前侧的区域J)或耳廓内(例如,图1中示出的区域M)。以下将结合发声部11的不同佩戴位置(11A、11B和11C)进行示例性说明。在一些实施例中,发声部11A位于用户耳部100沿矢状轴方向朝向人体面部区域的一侧,即发声部11A位于耳部100朝向人体的面部区域(例如,图1中示出的区域J)。进一步地,发声部11A的壳体内部设置有扬声器,发声部11A的壳体上可以设置有至少一个出声孔(图2中未示出),出声孔可以位于壳体上朝向或靠近用户外耳道101的侧壁上,扬声器可以通过出声孔向用户耳道处输出声音。在一些实施例中,扬声器可以包括振膜,壳体内部的腔室被振膜至少分隔为前腔和后腔,出声孔与前腔声学耦合,振膜振动带动前腔的空气振动产生气导声音,前腔产生的气导声音通过出声孔向外界传播。在一些实施例中,壳体上还可以包括一个或多个泄压孔,泄压孔可以位于壳体上与出声孔所在侧壁相邻或相对的侧壁上,泄压孔与后腔声学耦合,振膜振动的同时也会带动后腔的空气产生振动产生气导声音,后腔产生的气导声音可以通过泄压孔向外界传递。示例性地,在一些实施例中,发声部11A内的扬声器可以通过出声孔和泄压孔输出具有相位差(例如,相位相反)的声音,出声孔可以位于发声部11A的壳体朝向用户外耳道101的侧壁上,泄压孔可以位于发声部11的壳体背离用户外耳道101的一侧,此时壳体可以起到挡板的作用,增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。在一些实施例中,发声部11可以具有垂直于厚度方向X且彼此正交的长轴方向Y和短轴方向Z。其中,长轴方向Y可以定义为发声部11的二维投影面(例如,发声部11在其外侧面OS所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向),短轴方向Z可以定义为在发声部11在矢状面上投影的形状中垂直于长轴方向Y的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向X可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向;如图5所示,厚度方向X也可以定义为在佩戴状态下壳体靠近或者远离耳部100的方向。在一些实施例中,当佩戴状态下发声部11处于倾斜状态时,长轴方向Y与短轴方向Z仍平行或近似平行于矢状面,长轴方向Y可以与矢状轴的方向具有一定夹角,即长轴方向Y也相应倾斜设置,短轴方向Z可以与垂直轴的方向具有一定夹角,即短轴方向Z也倾斜设置,如图2所示的发声部11B的佩戴情况。在一些实施例中,发声部11B的壳体的整体或部分结构可以伸入耳甲腔102中,也就是说,发声部11B的壳体在矢状面上的投影与耳甲腔102在矢状面上的投影具有重叠的部分。关于发声部11B的具体内容可以参考本说明书其他地方的内容,例如,图3及其对应的说明书内容。在一些实施例中,佩戴状态下发声部11也可以处于水平状态或近似水平状态,如图2的发声部11C所示,长轴方向Y可以与矢状轴的方向一致或近似一致,均指向身体的前后方向,短轴方向Z可以与垂直轴的方向一致或近似一致,均指向身体的上下方向。需要注意的是,佩戴状态下,发声部11C处于近似水平状态可以是指图2所示的发声部11C的长轴方向与矢状轴的夹角在特定范围(例如,不大于20°)内。关于发声部11C的具体内容可以参考本说明书其他地方的内容,例如,图8及其对应的说明书内容。此外,发声部11的佩戴位置不限于图2中所示的发声部11A、发声部11B和发声部11C,满足图1中示出的区域J、区域M1或区域M2即可。例如,发声部11 整体或者部分结构可以位于耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,发声部11的整体或者部分结构可以与外耳道101的上部(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,声学装置发声部11的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
为了改善开放式耳机10在佩戴状态下的稳定性,开放式耳机10可以采用以下几种方式中的任何一种或其组合。其一,耳挂12的至少部分设置成与耳部的后侧和头部中的至少一者贴合的仿形结构,以增加耳挂12与耳部100和/或头部的接触面积,从而增加开放式耳机10从耳部100上脱落的阻力。其二,耳挂12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加耳挂12对耳部100和/或头部的正压力,从而增加开放式耳机10从耳部100上脱落的阻力。其三,耳挂12至少部分设置成在佩戴状态下抵靠在头部上,使之形成压持耳部100的反作用力,以使得发声部11压持在耳部的前侧,从而增加开放式耳机10从耳部100上脱落的阻力。其四,发声部11和耳挂12设置成在佩戴状态下从耳部100的前后两侧夹持对耳轮区域、耳甲腔102所在区域等,从而增加开放式耳机10从耳部100上脱落的阻力。其五,发声部11或者与之连接的辅助结构设置成至少部分伸入耳甲腔102、耳甲艇103、三角窝104及耳舟106等腔体内,从而增加开放式耳机10从耳部100上脱落的阻力。
作为示例性地,结合图3,在佩戴状态下,发声部11的自由端FE可以伸入耳甲腔102内。其中,发声部11和耳挂12可以设置成从耳甲腔102所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加开放式耳机10从耳部100上脱落的阻力,进而改善开放式耳机10在佩戴状态下的稳定性。例如,自由端FE在厚度方向X上压持在耳甲腔102内;再例如,自由端FE在长轴方向Y和短轴方向Z上抵接在耳甲腔102内。
以下以图3所示的开放式耳机10为例,对开放式耳机10进行详细说明。需要知道的是,在不违背相应声学原理的情况下,图3的开放式耳机10的结构以及其对应的参数也可以同样适用于上文中提到的其它构型的开放式耳机中。
通过将发声部11至少部分伸入耳甲腔102内,可以提高听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时仍然保持较好的远场漏音相消的效果。仅作为示例性说明,发声部11的整体或部分结构伸入耳甲腔102内时,发声部11与耳甲腔102形成类似于腔体(以下简称为类腔体)的结构,在说明书实施例中,类腔体可以理解为由发声部11的侧壁与耳甲腔102结构共同围成的半封闭结构,该半封闭结构使得内部与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构(例如,开口、缝隙、管道等)。用户在佩戴开放式耳机10时,发声部11的壳体上靠近或朝向用户耳道的一侧可以设置一个或多个出声孔,发声部11的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与开放式耳机10的前腔声学耦合,泄压孔与开放式耳机10的后腔声学耦合。以发声部11包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声波相位相反,发声部11和耳甲腔102对应的内壁形成类腔体结构,其中,出声孔对应的声源位于类腔体结构内,泄压孔对应的声源位于类腔体结构外,形成图4所示的声学模型。如图4所示,类腔体结构402中可以包含听音位置和至少一个声源401A。这里的“包含”可以表示听音位置和声源401A至少有一者在类腔体结构402内部,也可以表示听音位置和声源401A至少有一者在类腔体结构402内部边缘处。听音位置可以等效为耳部耳道入口,也可以是耳部声学参考点,如耳参考点(ear reference point,ERP)、鼓膜参考点(ear-drum reference point,DRP)等,也可以是导向听音者的入口结构等。由于声源401A被类腔体结构402包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有类腔体结构402的情况,声源401A辐射出的声音大部分不会到达听音位置。因此,腔体结构的设置使得到达听音位置的声音音量得到显著提高。同时,类腔体结构402外的反相声源401B辐射出来的反相声音只有较少的一部分会通过类腔体结构402的泄漏结构403进入类腔体结构402中。这相当于在泄漏结构403处生成了一个次级声源401B’,其强度显著小于声源401B,亦显著小于声源401A。次级声源401B’产生的声音在腔体内对声源401A产生反相相消的效果微弱,使听音位置的听音音量显著提高。对于漏音来说,声源401A通过腔体的泄漏结构403向外界辐射声音相当于在泄漏结构403处生成了一个次级声源401A’,由于声源401A辐射的几乎所有声音均从泄漏结构403输出,且类腔体结构402尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源401A’的强度与声源401A相当。对于外界空间来说,次级声源401A’与声源401B形成双声源相消降漏音。
在具体应用场景中,发声部11的壳体外壁面通常为平面或曲面,而用户耳甲腔102的轮廓为 凹凸不平的结构,通过将发声部11部分或整体结构伸入耳甲腔102内,发声部11与耳甲腔102的轮廓之间形成与外界连通的类腔体结构,进一步地,将出声孔设置在发声部11的壳体朝向用户耳道口和靠近耳甲腔102边缘的位置,以及将泄压孔设置在发声部11背离或远离耳道口的位置就可以构造图4所示的声学模型,从而使得用户在佩戴开放式耳机时能够提高用户在耳口处的听音位置,以及降低远场的漏音效果。
图5是图3所示开放式耳机的另一示例性结构图。结合图3与图4,在一些实施例中,发声部11可以包括换能器和容纳换能器的壳体,壳体具有在佩戴状态下沿厚度方向X朝向耳部100的内侧面IS和背离耳部100的外侧面OS,以及连接内侧面IS和外侧面OS的连接面。需要说明的是:在佩戴状态下,沿冠状轴所在方向(即厚度方向X)观察,发声部11可以设置成圆形、椭圆形、圆角正方形、圆角矩形等形状。其中,当发声部11设置成圆形、椭圆形等形状时,上述连接面可以指发声部11的弧形侧面;而当发声部11设置成圆角正方形、圆角矩形等形状时,上述连接面可以包括后文中提及的下侧面LS、上侧面US和后侧面RS。因此,为了便于描述,本实施例以发声部11设置成圆角矩形为例进行示例性的说明。其中,发声部11在长轴方向Y上的长度可以大于发声部11在短轴方向Z上的宽度。如图5所示,发声部11可以具有在佩戴状态下沿短轴方向Z背离外耳道101的上侧面US和朝向外耳道101的下侧面LS,以及连接上侧面US和下侧面LS的后侧面RS,后侧面RS在佩戴状态下位于长轴方向Y朝向脑后的一端,并至少部分位于耳甲腔102内。
进一步地,壳体的至少部分可以插入用户耳甲腔102,插入用户耳甲腔102的至少部分包括至少一个与用户耳甲腔102的侧壁接触的夹持区域,该夹持区域可以设置于发声部11的自由端FE。在一些实施例中,耳挂12在一垂直于长轴方向Y的参考平面(例如图5中XZ平面)上的正投影与自由端FE在同一参考平面上的正投影部分重叠(如图中后侧面RS上的阴影部分所示),夹持区域可以定义为后侧面RS上在该参考平面上形成投影重叠区域的区域。其中,耳挂12在前述参考平面上的正投影与自由端FE在同一参考平面上的正投影所形成的重叠区域在厚度方向X上位于内侧面IS与外侧面OS之间。如此,不仅发声部11和耳挂12可以从耳部100的前后两侧共同夹持耳部100,而且所形成的夹持力主要表现为压应力,有利于改善声学装置10在佩戴状态下的稳定性和舒适度。可以理解地,当发声部11设置成圆形、椭圆形等形状时,夹持区域可以定义为与该重叠区域对应的连接面(发声部11的弧形侧面)上的区域。夹持区域可以是发声部11上用于夹持耳甲腔102的区域,但由于不同的用户可能存在个体差异,导致耳部100存在不同的形状、大小等尺寸差异,实际佩戴状态下,该夹持区域并不一定会夹持耳甲腔102,但对于大多数用户和前述标准耳部100模型而言,在佩戴状态下该夹持区域可以夹持用户的耳甲腔102。
在一些实施例中,夹持区域和/或夹持区域的内侧设置有柔性材料。关于柔性材料的具体内容可以参考本说明书其他地方的内容,例如,图7及其对应的说明书内容。
在一些实施例中,如图3所示,发声部11和耳挂12可以从耳部100(例如,耳甲腔102)的前后两侧共同夹持耳部100,而且所形成的夹紧力主要表现为压应力,有利于改善开放式耳机10在佩戴状态下的稳定性和舒适度。如图6所示,发声部11可以包括夹持区域中心CC,耳挂12可以包括夹紧支点CP和耳挂夹持点EP。
这里所说的夹紧支点CP可以理解为佩戴时耳挂12上接触耳廓并对开放式耳机提供支撑的支点。考虑到耳挂12上存在连续的与耳廓朝向头部的一侧接触并提供支撑区域,为方便理解,在一些实施例中,可以将位于该区域内的耳挂12的极值点视为夹紧支点CP。耳挂12的极值点可以通过以下方式确定:获取佩戴状态下的开放式耳机在用户矢状面上的投影曲线的内轮廓(或者非佩戴状态下的开放式耳机在耳挂平面上的投影的内轮廓),以所述投影曲线的内轮廓在短轴方向Z上的极值点(例如,极大值点)作为耳挂12的极值点,其在佩戴状态下位于人体垂直轴方向上的最高点附近(例如,在该最高点的后侧15mm内的位置)。需要说明的是,耳挂结构为弧形结构,耳挂平面为与耳挂12上最外凸的三个点所形成的平面,即将耳挂12自由放置时,对耳挂12进行支撑的平面。在其它实施例中,耳挂平面也是可以指耳挂12沿其长轴方向Y将其平分或大致平分的平分线所构成的平面。所述投影曲线的内轮廓在宽度方向Z上的极值点的确定方法可以为:以发声部11的长轴方向Y作为横纵,短轴方向Z作为纵轴构建坐标系,将所述投影曲线的内轮廓在该坐标系上的极大值点(例如,一阶导数为0)作为所述投影曲线的内轮廓在宽度方向Z上的极值点。此外,由非佩戴状态变为佩戴状态时,发声部11和耳挂12上远离发声部11的端部(例如,电池仓)之间可能被拉伸,此时,夹紧支点CP处应当产生较大的应变,因此,在一些可替代的实施例中,可以将佩戴前后耳挂12上应变最大位置处对应的截面中心当作夹紧支点CP。或者,为了能够让夹紧支点CP处容易产生较大的应变,可以将耳挂12设置为变截面结构,即耳挂12不同位置的横截面的面积可以不同,并将耳挂12上截面积最小的截面的中心作为夹紧支点CP。在另一些可替代的实施例中,由于用户在佩戴开放式耳机时,用户耳部100对耳挂12的 支撑力的主要作用位置为耳挂12位于人体垂直轴方向上的最高点,因此,也可以将该最高点当作夹紧支点CP。
夹持区域中心CC是指可以代表夹持区域并用来描述夹持区域相对于其它结构位置的点。在一些实施例中,夹持区域中心CC可以用来表征在标准佩戴情况下夹持区域对耳部100作用力最大的位置。标准佩戴情况可以是将开放式耳机按照佩戴规范正确地佩戴在前述标准耳部模型上的情况。在一些实施例中,当发声部11设置成圆形、椭圆形、圆角正方形、圆角矩形等规则形状时,可以将发声部长轴与夹持区域的交点定义为夹持区域中心CC。需要说明的是,发声部长轴可以为发声部11沿前述长轴方向Y的中轴线。夹持区域中心CC可以通过以下方式确定:确定发声部11在一垂直于长轴方向Y的参考平面(例如图6中XZ平面)上的正投影与中轴线在同一参考平面上的正投影的交点,夹持区域中心CC可以定义为发声部11上在该参考平面上形成上述交点的点。在另一些实施例中,当发声部11的长轴难以确定(例如,发声部11设置成不规则形状)时,如图6所示,夹持区域中心CC可以定义为自由端FE与耳挂12上远离发声部11的端部(例如,电池仓)的切面与自由端FE的交点。夹持区域中心CC可以通过以下方式确定:确定发声部11在一垂直于厚度方向X的参考平面(例如图6中YZ平面)上的正投影与耳挂12上远离发声部11的端部(例如,电池仓)在同一参考平面上的正投影的切线T,确定该参考平面上切线T与自由端FE的正投影的交点,夹持区域中心CC可以定义为自由端FE上在该参考平面上形成上述交点的点。
在一些实施例中,当发生部11的形状和尺寸确定后,通过设计夹持区域中心CC与夹紧支点CP的距离可以同时改变佩戴状态下发声部11在耳甲腔102中的覆盖位置,以及发声部11夹持耳甲腔102(甚至耳甲腔102附近的耳屏)的夹持位置,不仅能够影响用户佩戴开放式耳机的稳定性、舒适度,还能够影响开放式耳机的听音效果。即在佩戴状态下,夹持区域中心CC与夹紧支点CP的距离需要保持在一定范围之内。当发声部11的形状、尺寸一致时,如果前述距离太大,会导致发声部11在耳甲腔102内的位置偏下,发声部11的上侧面US与耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,被包含的声源(即位于内侧面IS上的出声孔)直接向环境中辐射的声音成分较多,到达听音位置的声音较小,同时外面声源进入类腔体的声音会增多,导致近场声音相消,进而导致听音指数变小。而且,如果前述距离太大,会造成发声部11(或者耳挂12与发声部的连接区域)与耳屏之间形成过多的干涉,导致发声部11过于挤压耳屏,影响佩戴的舒适度。当发声部11的形状、尺寸一致时,如果前述距离太小,会导致发声部11的上侧面US与耳甲腔102上边缘贴合,上侧面US与耳甲腔102之间的缝隙太小或数量太少,甚至使得内部与外部环境完全密闭隔绝,无法形成类腔体的结构。而且,如果前述距离太小,会造成发声部11(或者耳挂12与发声部的连接区域)过于挤压耳部的外轮廓,也会影响佩戴的舒适度。其中,听音指数可以取漏音指数α的倒数1/α,作为评价各构型的效果。其含义为,在漏音相同时听音音量的大小。从应用的角度看,听音指数应越大越好。如果缝隙太小(即类腔体的开口过小),则降漏音效果差。如果形成的缝隙太少,会导致该类腔体的开口数量较少。而采用了较多开口的腔体结构相对于较少开口的腔体结构能更好地提高腔体结构内气声的谐振频率,使得整个装置相对于较少开口的腔体结构在高频段(例如,频率接近10000Hz的声音)有更好的听音指数。并且,高频段是人耳更敏感的频段,因此对降漏音的需求更大。因此,如果形成的缝隙太少,会导致无法提高高频段的降漏音效果。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,夹持区域中心CC与夹紧支点CP的距离可以为20mm~40mm。在一些实施例中,为了进一步提高降漏音效果,夹持区域中心CC与夹紧支点CP的距离可以为23mm~35mm。在一些实施例中,为了使得发声部11与耳甲腔102形成的类腔体结构具有更合适的体积和开口大小/数量,夹持区域中心CC与夹紧支点CP的距离可以为25mm~32mm。
耳挂夹持点EP可以为耳挂12上离夹持区域中心CC最近的点,可以用来衡量佩戴状态下,耳挂12对耳部100的夹持情况。通过设置耳挂夹持点EP的位置,可以改变耳挂12对耳部100的夹持力。在一些实施例中,当发声部11设置成圆形、椭圆形、圆角正方形、圆角矩形等规则形状时,可以将发声部长轴与耳挂第一部分的交点定义为耳挂夹持点EP。耳挂夹持点EP可以通过以下方式确定:耳挂第一部分在一垂直于长轴方向Y的参考平面(例如图6中XZ平面)上的正投影与发声部11的中轴线在同一参考平面上的正投影的交点所对应的耳挂第一部分上的点定义为耳挂夹持点EP。在一些实施例中,当发声部11的长轴难以确定(例如,发声部11设置成不规则形状)时,如图6所示,耳挂夹持点EP可以定义为经过夹持区域中心CC,且与自由端FE与耳挂12上远离发声部11的端部(例如,电池仓)的切面垂直的切面,与耳挂12上靠近自由端FE的部分的交点。耳挂夹持点EP可以通过以下方式确定:确定在一垂直于厚度方向X的参考平面(例如图6中YZ平面)上经过夹持区域中心CC在该参考平面上的正投影,且与切线T垂直的直线S,确定直线S与耳挂12在该参考平面上的正投影上靠近自由端FE在该参考平面上的正投影的部分的交点,耳挂夹持点EP可以定义为耳挂12上在该参考 平面上形成上述交点的点。
在一些实施例中,在佩戴状态下,耳挂第一部分上的耳挂夹持点EP与夹紧支点CP的距离范围需要保持在一定范围之内。如果前述距离太大,会导致耳挂夹持点EP与夹紧支点CP之间的耳挂12过直或者难以夹持于耳甲腔102后侧(例如,夹持位置相对耳甲腔102偏下),耳挂12上远离发声部11的端部(例如,电池仓)与耳部100贴合性不好。如果前述距离太小,会导致耳挂12夹持点EP与夹紧支点CP之间的耳挂12过弯或者难以夹持于耳甲腔102后侧(例如,加持位置相对耳甲腔102偏上),耳挂12上远离发声部11的端部对耳部100形成挤压,舒适性较差。在一些实施例中,为了满足佩戴需求,在佩戴状态下,耳挂第一部分上的耳挂夹持点EP与夹紧支点CP的距离范围可以为25mm~45mm。在一些实施例中,为了使得耳挂12上远离发声部11的端部与耳部100贴合性更好,在佩戴状态下,耳挂第一部分上的耳挂夹持点EP与夹紧支点CP的距离范围可以为26mm~40mm。在一些实施例中,为了使得舒适性更好,在佩戴状态下,耳挂第一部分上的耳挂夹持点EP与夹紧支点CP的距离范围可以为27mm~36mm。
在一些实施例中,如图3所示,在佩戴状态下,沿人体冠状轴所在方向观察,连接端CE相较于自由端FE更靠近头顶,以便于自由端FE伸入耳甲腔102内。基于此,长轴方向Y与人体矢状轴所在方向之间的夹角需要保持在一定范围之内。当发声部11的形状、尺寸一致时,如果前述夹角太小,会导致发声部11的上侧面US与耳甲腔102上边缘贴合,上侧面US与耳甲腔102之间的缝隙太小或数量太少,导致降漏音效果差,并且发声部11上的出声孔与外耳道101相距太远。当发声部11的形状、尺寸一致时,如果前述夹角太大,会导致发声部11的上侧面US与耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,导致听音指数变小。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,长轴方向Y与人体矢状轴所在方向之间的夹角可以在15°与60°范围内。在一些实施例中,为了进一步提高降漏音效果,长轴方向Y与人体矢状轴所在方向之间的夹角可以在20°与50°范围内。在一些实施例中,为了使得出声孔与外耳道101具有合适的距离,长轴方向Y与人体矢状轴所在方向之间的夹角可以在23°与46°范围内。
在一些实施例中,夹紧力的方向可以是开放式耳机夹持在耳廓两侧的两个夹持点(或夹持面的中心点)的连线方向。当发声部11形状和尺寸一定时,夹紧力的方向与发声部11在耳甲腔102中的朝向和伸入耳甲腔102的深度密切相关。另外,为了使开放式耳机佩戴更稳固,应尽量使夹紧力的方向与发声部11对耳甲腔102施加的压力的方向以及耳挂夹持点EP对耳背施加的压力的方向均保持相同或大致相同,以避免产生发声部11与耳挂12产生相对运动的趋势,因此夹紧力的方向还会影响开放式耳机的佩戴稳定性。由于耳部100背面与耳甲腔102相对的区域范围有限,且耳挂12在这些区域对耳部100的压力方向通常是平行或大致平行于用户矢状面的,因此,夹紧力的方向与用户的矢状面的夹角需要保持在一定范围内。换言之,夹紧力的方向与用户的矢状面平行或基本平行。如果前述夹角偏离0°太大,会导致发声部11的内侧面IS与耳甲腔102之间的缝隙过大,进而导致听音指数变小;或者会导致发声部11在耳甲腔102内的位置偏向耳部100朝向头部的一侧,发声部11上的内侧面IS与耳甲腔102上边缘贴合,发声部11的内侧面IS与耳甲腔102之间的缝隙太小或数量太少,甚至使得内部与外部环境完全密闭隔绝,进而降漏音效果差。另外,如果前述夹角偏离0°太大,会导致开放式耳机10的佩戴稳定性较差,容易产生摇晃。需要说明的是,夹紧力的方向可以通过在耳廓朝向头部的一侧和耳廓背离头部的一侧都贴上力传感器(例如应变片)或力传感器阵列,并读取耳廓被夹持位置的力的分布获得。例如,如果耳廓朝向头部的一侧和耳廓背离头部的一侧上分别有一个可以测到力的点,就可以认为夹紧力的方向为两个点的连线方向。在一些实施例中,为了满足佩戴需求,夹紧力的方向与用户的矢状面的夹角在-30°~30°范围内。在一些实施例中,为了提高听音指数,夹紧力的方向与用户的矢状面的夹角在-20°~20°范围内。在一些实施例中,为了进一步提高降漏音效果,夹紧力的方向与用户的矢状面的夹角在-10°~10°范围内。在一些实施例中,为了进一步增加开放式耳机10的佩戴稳定性,夹紧力的方向与用户的矢状面的夹角在-8°~8°范围内。在一些实施例中,通过设计耳挂12的曲线构型,和/或,设计发声部11的形状、尺寸,和/或,设计夹持区域中心CC的位置,即可调控夹紧力的方向。
为了更进一步地衡量耳挂12在佩戴状态下提供的夹紧力,本说明书将耳挂12基于夹紧支点CP形变的难易程度定义为基于夹紧支点CP的夹紧系数。在一些实施例中,耳挂12基于夹紧支点CP的夹紧系数的取值范围需要保持在一定范围之内。如果前述夹紧系数太大,会导致佩戴时夹紧力过大,对用户耳部100压迫感强烈,不易于在佩戴后调整佩戴位置,并且可能会导致发声部11的上侧面US与耳甲腔102上边缘贴合,发声部11与耳甲腔102之间的缝隙太小或数量太少,导致降漏音效果差。如果前述夹紧系数太小,会导致耳挂12佩戴不够稳定,发声部11容易脱离耳廓,并且容易导致发声部11与耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,导致听音指数变小。在一些实施例中,为了满足佩戴需求,耳挂12基于夹紧支点CP的夹紧系数的取值范围为10N/m~30N/m。在一些实施例 中,为了增加佩戴后的可调节性,耳挂12基于夹紧支点CP的夹紧系数的取值范围为11N/m~26N/m。在一些实施例中,为了增加佩戴后的稳定性,耳挂12基于夹紧支点CP的夹紧系数的取值范围为15N/m~25N/m。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,耳挂12基于夹紧支点CP的夹紧系数的取值范围为17N/m~24N/m。在一些实施例中,为了进一步提高降漏音效果,耳挂12基于夹紧支点CP的夹紧系数的取值范围为18N/m~23N/m。耳挂12基于夹紧支点CP的夹紧系数可以反映拉伸发声部11以远离耳挂12的难易程度。在一些实施例中,耳挂12基于夹紧支点CP的夹紧系数可以表示为佩戴状态下,发声部11与耳挂12的拉开距离与耳挂12产生的驱使发声部11靠近耳挂第一部分的夹紧力的关系。需要说明的是,发声部11与耳挂12的拉开距离可以为,从非佩戴状态到佩戴状态,发声部长轴方向Y上,发声部11与耳挂12的距离的变化量;耳挂12基于夹紧支点CP的夹紧系数的取值范围可以通过下述示例性的方法进行确定,可以将耳挂12等价于一个弹簧,该弹簧的拉开距离与夹紧力具体关系如公式(1)所示:
F=kx,       (1)
其中,F代表夹紧力,k代表夹紧系数,x代表拉开距离。
基于上述公式(1),可以通过以下方法确定夹紧系数:通过拉力器测定不同拉开距离对应的夹紧力,确定至少一组夹紧力与拉开距离。将至少一组夹紧力与对应的拉开距离代入公式(1),确定至少一个中间夹紧系数。接着计算至少一个中间夹紧系数的平均值,并将该平均值作为夹紧系数。或者,通过拉力器测定拉开正常佩戴状态下的拉开距离时的夹紧力,确定夹紧力。将该夹紧力和拉开距离代入公式(1),确定夹紧系数。
在一些实施例中,在佩戴状态下,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力,该夹紧力需要保持在一定范围之内。需要说明的是,该夹紧力可以通过拉力器测定拉开预设距离对应的夹紧力,该预设距离为标准佩戴情况下的距离;该夹紧力还可以通过在耳廓朝向头部的一侧和耳廓背离头部的一侧都贴上力传感器(例如应变片)或力传感器阵列,并读取耳廓被夹持位置的力的值获得。例如,如果耳廓朝向头部的一侧和耳廓背离头部的一侧上有两个对应于相同位置的点处都可以测到力,则可以将该力(例如两个力中的任意一个)的大小作为夹紧力。如果前述夹紧力太小,会导致佩戴状态下,耳挂12和发声部11无法有效夹持在耳部100的前后两侧,导致佩戴稳定性变差,并且当发声部11无法对耳甲腔102形成有效夹持时,发声部11与耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,导致听音指数变小。如果前述夹紧力太大,会导致开放式耳机10在佩戴状态下对用户耳部100压迫感强烈,不易于在佩戴后调整佩戴位置。并且前述夹紧力太大会使得发声部11对耳甲腔102的压力过大,会导致发声部11绕夹紧支点CP转动的趋势增大,发声部11的夹持区域可能朝向夹紧支点CP所在位置滑动而使发声部11不能在耳甲腔102中处于预期的位置,即发声部11的侧壁可能与耳甲腔102上边缘贴合,使得发声部11的侧壁与耳甲腔102的缝隙太小或数量太少,导致降漏音效果差。在一些实施例中,为了满足佩戴需求,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力的取值范围可以为0.03N~1N。在一些实施例中,为了增加佩戴后的可调节性,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力的取值范围可以为0.05N~0.8N。在一些实施例中,为了增加佩戴后的稳定性,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力的取值范围可以为0.2N~0.75N。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力的取值范围可以为0.3N~0.7N。在一些实施例中,为了进一步提高降漏音效果,耳挂12产生驱使发声部11靠近耳挂第一部分的夹紧力的取值范围可以为0.35N~0.6N。
在一些实施例中,开放式耳机在佩戴状态和非佩戴状态下的至少一个尺寸不同。
在一些实施例中,在非佩戴状态下,发声部11与耳挂第一部分的最小距离需要保持在一定范围之内。需要说明的是,这里所说的发声部11与耳挂第一部分的最小距离是指夹持在用户耳廓两侧的发声部11上的区域(即夹持区域)与耳挂第一部分上的区域(即耳挂夹持点EP附近的区域)之间最小的距离。在一些实施例中,为了方便描述,发声部11与耳挂第一部分的最小距离可以理解为夹持区域中心CC到耳挂夹持点EP的距离。如果前述最小距离太大,会导致佩戴后无法有效夹持在耳部100两侧(即佩戴稳定性变差),并且会导致发声部11与耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,进而导致听音指数变小。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,在非佩戴状态下,发声部11与耳挂第一部分的最小距离可以不大于3mm。在一些实施例中,为了增加佩戴后的稳定性,在非佩戴状态下,发声部11与耳挂第一部分的最小距离可以不大于2.6mm。在一些实施例中,为了使得发声部11与耳甲腔102形成的类腔体结构具有更合适的开口大小,在非佩戴状态下,发声部11与耳挂第一部分的最小距离可以不大于2.2mm。
在一些实施例中,在佩戴状态下,发声部11与耳挂第一部分的最小距离需要保持在一定范围之内。如果前述最小距离太小,会导致开放式耳机10在佩戴状态下对用户耳部100压迫感强烈,不易 于在佩戴后调整佩戴位置,并且会导致发声部11的侧壁与耳甲腔102上边缘贴合,发声部11的侧壁与耳甲腔102的缝隙太小或数量太少,导致降漏音效果差。在一些实施例中,为了满足佩戴需求,在佩戴状态下,发声部11与耳挂第一部分的最小距离可以不小于2mm。在一些实施例中,为了提高降漏音效果,在佩戴状态下,发声部11与耳挂第一部分的最小距离可以不小于2.5mm。在一些实施例中,为了进一步增加佩戴后的可调节性,在佩戴状态下,发部11与耳挂第一部分的最小距离可以不小于2.8mm。
在一些实施例中,开放式耳机10可以包括佩戴状态和非佩戴状态,发声部11与耳挂第一部分的最小距离在佩戴状态和非佩戴状态下的差值需要保持在一定范围之内。需要说明的是,佩戴状态和非佩戴状态下的差值可以对应拉开距离。如果前述差值太小,根据公式(1),夹紧力会太小,会导致佩戴后无法有效夹持在耳部100两侧,并且会导致发声部11耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,进而导致听音指数变小。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,发声部11与耳挂第一部分的最小距离在佩戴状态和非佩戴状态下的差值可以不小于1mm。在一些实施例中,为了增加佩戴后的稳定性,发声部11与耳挂第一部分的最小距离在佩戴状态和非佩戴状态下的差值可以不小于1.3mm。在一些实施例中,为了使得发声部11与耳甲腔102形成的类腔体结构具有更合适的开口大小,发声部11与耳挂第一部分的最小距离在佩戴状态和非佩戴状态下的差值可以不小于1.5mm。
在一些实施例中,当夹紧支点CP的夹紧系数确定后,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角需要保持在一定范围之内,使得开放式耳机在佩戴状态下能够对耳部100提供合适的夹紧力,并使得发声部11在耳甲腔102中处在预期的位置。当夹紧支点CP的夹紧系数以及发声部11的形状、尺寸一致时,如果前述夹角太大,会导致佩戴后无法有效夹持在耳部100两侧,并且会导致发声部11和耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,进而导致听音指数变小。当夹紧支点CP的夹紧系数以及发声部11的形状、尺寸一致时,如果前述夹角太小,会导致佩戴状态连线夹角与非佩戴状态连线夹角的差值过大,从而佩戴状态下耳挂12对耳部100的夹紧力会过大,导致开放式耳机10在佩戴状态下对用户耳部100压迫感强烈,不易于在佩戴后调整佩戴位置,并且会导致发声部11的侧壁与耳甲腔102上边缘贴合,发声部11的侧壁与耳甲腔102的缝隙太小或数量太少,导致降漏音效果差。在一些实施例中,为了满足佩戴需求,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为3°~9°。在一些实施例中,为了增加佩戴后的可调节性,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为3.1°~8.4°。在一些实施例中,为了增加佩戴后的稳定性,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为3.8°~8°。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为4.5°~7.9°。在一些实施例中,为了进一步提高降漏音效果,在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为4.6°~7°。
在一些实施例中,当夹紧支点CP的夹紧系数以及开放式耳机10的形状、尺寸确定时,在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角需要保持在一定范围之内,以便为耳部100提供合适的夹紧力并使发声部11在耳甲腔102中处于预期的位置。当夹紧支点CP的夹紧系数以及开放式耳机10的形状、尺寸一致时,如果前述夹角太小,会导致开放式耳机10在佩戴状态下对用户耳部100压迫感强烈,不易于在佩戴后调整佩戴位置,并且会导致发声部11的侧壁与耳甲腔102上边缘贴合,发声部11的侧壁与耳甲腔102的缝隙太小或数量太少,导致降漏音效果差。当夹紧支点CP的夹紧系数以及开放式耳机10的形状、尺寸一致时,如果前述夹角太大,会导致佩戴后无法有效夹持在耳部100两侧,并且会导致发声部11耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,进而导致听音指数变小。在一些实施例中,为了满足佩戴需求,在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为6°~12°。在一些实施例中,为了增加佩戴后的可调节性,在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为6.3°~10.8°。在一些实施例中,为了增加佩戴后的稳定性,在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为7°~10.5°。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为7.3°~10°。在一些实施例中,为了进一步提高降漏音效果,在佩戴状态下,夹持区 域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角范围可以为8°~9.8°。
在一些实施例中,开放式耳机10可以包括佩戴状态和非佩戴状态,佩戴状态连线夹角与非佩戴状态连线夹角的差值需要保持在一定范围之内。需要说明的是,佩戴状态连线夹角为在佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角;非佩戴状态连线夹角为在非佩戴状态下,夹持区域中心CC到夹紧支点CP的第一连线与耳挂夹持点EP到夹紧支点CP的第二连线之间的夹角。当夹紧支点CP的夹紧系数一致时,如果前述差值太小,夹紧力会太小,会导致佩戴后无法有效夹持在耳部100两侧,并且会导致发声部11耳甲腔102之间的缝隙过大,即形成的类腔体开口过大,进而导致听音指数变小。当夹紧支点CP的夹紧系数一致时,如果前述差值太大,夹紧力会太大,会导致开放式耳机10在佩戴状态下对用户耳部100压迫感强烈,不易于在佩戴后调整佩戴位置,并且会导致发声部11的侧壁与耳甲腔102上边缘贴合,发声部11的侧壁与耳甲腔102的缝隙太小或数量太少,导致降漏音效果差。在一些实施例中,为了满足佩戴需求,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围可以为2°~4°。在一些实施例中,为了增加佩戴后的可调节性,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围可以为2.1°~3.8°。在一些实施例中,为了增加佩戴后的稳定性,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围可以为2.3°~3.7°。在一些实施例中,为了使得开放式耳机在佩戴状态下具有更好的听音指数,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围可以为2.5°~3.6°。在一些实施例中,为了进一步提高降漏音效果,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围可以为2.6°~3.4°。
如图7所示,在一些实施例中,壳体111插入用户耳甲腔102的夹持区域和/或夹持区域的内侧设置有柔性材料,该柔性材料的邵氏硬度需要保持在一定范围之内。如果前述柔性材料的邵氏硬度太大,会导致发声部11在佩戴状态下的舒适度恶化。在一些实施例中,为了满足佩戴需求,柔性材料的邵氏硬度范围可以为0HA~40HA。在一些实施例中,为了提高舒适度,柔性材料的邵氏硬度范围可以为0HA~20HA。
该柔性材料可以为柔性嵌块1119,柔性嵌块1119的硬度小于壳体111的硬度。其中,壳体111可以为塑胶制件;柔性嵌块1119的材质可以为硅胶、橡胶等,并可以通过注塑的方式形成在夹持区域和/或夹持区域的内侧。进一步地,柔性嵌块1119可以至少部分覆盖在壳体111对应于自由端FE的区域,即覆盖在夹持区域和/或夹持区域的内侧,以使得发声部11至少部分通过柔性嵌块1119抵靠在耳甲腔102内。换言之,壳体111伸入耳甲腔102且与耳甲腔102接触的部分可以被柔性嵌块1119覆盖。如此,当发声部11抵靠在耳甲腔102内时,例如当发声部11和悬挂结构12设置成从耳部100的耳甲腔102所对应的耳部区域的前后两侧共同夹持前述耳部区域时,柔性嵌块1119在壳体111与耳部100(例如前述耳部区域)之间起到缓冲作用,以缓解声学装置10对耳部100的压力,这样有利于改善声学装置10在佩戴状态下的舒适度。
在一些实施例中,柔性嵌块1119可以连续地覆盖在壳体111对应于后侧面RS、上侧面US和下侧面LS的至少部分区域上。例如:壳体111对应于后侧面RS的区域被柔性嵌块1119覆盖90%以上,壳体111对应于上侧面US和下侧面LS的区域分别被柔性嵌块1119覆盖30%左右。如此,以兼顾声学装置10在佩戴状态下的舒适度以及壳体111内设置换能器等结构件的需求。
在一些实施例中,沿厚度方向X上观察,柔性嵌块1119可以呈U型设置。
在一些实施例中,柔性嵌块1119对应于下侧面LS的部分可以抵靠在对耳屏上。其中,柔性嵌块1119对应于后侧面RS的部分的厚度可以分别小于柔性嵌块1119对应于的上侧面US和下侧面LS的部分的厚度,以在机芯模组11抵靠在耳甲腔102内不平的位置时也能够获得良好的舒适度。
图7是根据本说明书一些实施例所示的发声部的示例性爆炸图。在一些实施例中,壳体111可以包括沿厚度方向X彼此扣合的内壳1111和外壳1112,内壳1111在佩戴状态下相较于外壳1112更靠近耳部100,出声孔111a、第一泄压孔111c与第二泄压孔111d均可以设置在内壳1111上,换能器的振膜朝向内壳1111设置,换能器与内壳1111之间形成第一声学腔体。其中,外壳1112和内壳1111之间的分模面111b在靠近自由端FE的方向上向机芯内壳1111所在一侧倾斜,以使得柔性嵌块1119能够尽可能地设置在外壳1112对应于自由端FE的区域。例如:柔性嵌块1119全部设置在机芯外壳1112对应于自由端FE的区域,以简化发声部11的结构,降低加工成本。
在一些实施例中,壳体111外还可以设置有包裹层,该包裹层的邵氏硬度范围需要保持在一定范围之内。如果前述邵氏硬度太大,会导致发声部11在佩戴状态下的舒适度恶化,且当柔性覆层1120可以一体地覆盖在至少部分柔性嵌块1119的外表面时,柔性嵌块1119无法起到其应有的作用(例如,缓解声学装置10对耳部100的压力,改善声学装置10在佩戴状态下的舒适度)。如果前述邵氏硬度太小,会导致发声部11的侧壁与耳甲腔102结构完全贴合,从而使得内部与外部环境完全密闭隔绝,无 法能形成类腔体的结构,因此无法降低远场的漏音效果,并且会导致装配过程中无法定型。在一些实施例中,为了提高降漏音效果,该包裹层的邵氏硬度范围可以为10HA~80HA。在一些实施例中,为了提高发声部11在佩戴状态下的舒适度,该包裹层的邵氏硬度范围可以为15HA~70HA。在一些实施例中,为了使得发声部11与耳甲腔102形成的类腔体结构,该包裹层的邵氏硬度范围可以为25HA~55HA。在一些实施例中,为了使得装配过程中更好的定型,该包裹层的邵氏硬度范围可以为30HA~50HA。
该包裹层可以为柔性覆层1120,柔性覆层1120的硬度小于壳体111的硬度。其中,壳体111可以为塑胶制件;柔性覆层1120的材质可以为硅胶、橡胶等,并可以通过注塑、胶水连接等方式形成在壳体111的预设区域上。进一步地,柔性覆层1120可以一体地覆盖在至少部分柔性嵌块1119的外表面和至少部分外壳1112未被柔性嵌块1119覆盖的外表面上,这样有利于增强发声部11在外观上的一致性。当然,柔性覆层1120可以进一步覆盖在内壳1111的外表面上。其中,柔性嵌块1119的硬度小于柔性覆层1120的硬度,以允许柔性嵌块1119足够的柔软。除此之外,柔性覆层1120也能够改善声学装置10在佩戴状态下的舒适度,且具有一定的结构强度以保护柔性嵌块1119。进一步地,柔性嵌块1119的外表面的面积可以介于126mm2与189mm2之间。其中,如果柔性嵌块1119的外表面的面积太小,会导致发声部11在佩戴状态下的舒适度恶化;如果柔性嵌块1119的外表面的面积太大,会导致发声部11的体积过大,以及因柔性嵌块1119不与耳甲腔102抵靠的面积过大而与设置柔性嵌块1119的初衷背离。在一些实施例中,柔性覆层1120的厚度可以小于外壳1112的厚度。
在一些实施例中,内壳1111可以包括底壁1113以及与底壁1113连接的第一侧壁1114,外壳1112可以包括顶壁1115以及与顶壁1115连接的第二侧壁1116,第二侧壁1116和第一侧壁1114沿分模面111b彼此扣合,且两者可以彼此支撑。其中,沿短轴方向Z观察,在连接端CE指向自由端FE的参考方向(例如图7中长轴方向Y的箭头的反方向)上,第一侧壁1114靠近自由端FE的部分在厚度方向X上逐渐靠近底壁1113,第二侧壁1116靠近自由端FE的部分在厚度方向X上逐渐远离顶壁1115,以使得分模面111b在靠近自由端FE的方向上向内壳1111所在一侧倾斜。此时,柔性嵌块1119至少部分设置在第二侧壁1116的外侧。例如:结合图7,柔性嵌块1119除了设置在第二侧壁1116的外侧之外,还部分设置在顶壁1115的外侧。
在一些实施例中,外壳1112可以设置有至少部分位于第二侧壁1116上的嵌入槽,柔性嵌块1119可以嵌入到嵌入槽内,以使得外壳1112未被柔性嵌块1119覆盖的区域的外表面与柔性嵌块1119的外表面连续过渡。其中,图7中柔性嵌块1119所在的区域即可简单地视作嵌入槽。如此,不仅有利于柔性嵌块1119在注塑过程中堆积在外壳1112上,避免柔性嵌块1119四溢,还有利于改善发声部11的外观品质,避免机组11的表面坑坑洼洼。
在一些实施例中,第二侧壁1116可以包括第一子侧壁段1117以及与第一子侧壁段1117连接的第二子侧壁段1118,第一子侧壁段1117在厚度方向X上相较于第二子侧壁段1118更靠近顶壁1115,第二子侧壁段1118相较于第一子侧壁段1117朝向壳体111的外侧凸出。简而言之,第二侧壁1116可以呈台阶状结构。采用上述结构,不仅有利于柔性嵌块1119在注塑过程中堆积在外壳1112上,避免柔性嵌块1119四溢,还有利于发声部11更好地通过柔性嵌块1119抵靠在耳甲腔102内,从而改善声学装置10在佩戴状态下的舒适度。
以下以图8所示的开放式耳机10为例,对开放式耳机10进行详细说明。需要知道的是,在不违背相应声学原理的情况下,图8的开放式耳机10的结构以及其对应的参数也可以同样适用于上文中提到的其它构型的开放式耳机中。
通过将发声部11至少部分位于用户对耳轮105处,可以提高开放式耳机的输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量。用户在佩戴开放式耳机10时,发声部11的壳体上靠近或朝向用户耳道的一侧可以设置一个或多个出声孔,发声部11的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与开放式耳机10的前腔声学耦合,泄压孔与开放式耳机10的后腔声学耦合。以发声部11包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声波相位相反。出声孔发出的声音可以不受阻碍地直接传递到用户耳道口,而泄压孔发出的声音需要绕过发声部11的壳体或者穿过发声部11和对耳轮105之间形成的缝隙。此时,发声部11和对耳轮105可以形成类似于挡板的结构(对耳轮105相当于挡板),其中,出声孔对应的声源位于挡板的一侧,泄压孔对应的声源位于挡板的另一侧,形成图9所示的声学模型。如图9所示,当点声源A1和点声源A2之间设有挡板时,在近场,点声源A2的声场需要绕过挡板才能与点声源A1的声波在听音位置处产生干涉,相当于增加了点声源A2到听音位置的声程。因此,假设点声源A1和点声源A2具有相同的幅值,则相比于没有设置挡板的情况,点声源A1和点声源A2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A1和点声源A2产生的声波在较大的空间范围内都不需要绕 过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A1和点声源A2的其中一个声源周围设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
在一些实施例中,发声部11可以包括换能器和容纳换能器的壳体,壳体的至少部分位于用户对耳轮105处,壳体朝向用户对耳轮105的侧面包括与用户对耳轮105接触的夹持区域。由于在厚度方向X上发声部11相对于耳挂平面的距离在佩戴后被拉大,发声部11有向耳挂平面靠近的趋势,因此佩戴状态下可以形成夹持。在一些实施例中,耳挂12在一垂直于厚度方向X的参考平面(例如图8中YZ平面)上的正投影与发声部11中段或中前段在同一参考平面上的正投影部分重叠(如图中壳体朝向用户对耳轮105的侧面上的阴影部分所示)。其中,耳挂12在前述参考平面上的正投影与自由端FE在同一参考平面上的正投影所形成的重叠区域位于朝向用户对耳轮105的侧面上。如此,不仅发声部11和耳挂12可以从耳部100背离头部的一侧到耳部100朝向头部的一侧共同夹持耳部100,而且所形成的夹持力主要表现为压应力,有利于改善声学装置10在佩戴状态下的稳定性和舒适度。需要说明的是,上述夹持区域是指夹持对耳轮105的区域,但由于不同的用户可能存在个体差异,导致耳部100存在不同的形状、大小等尺寸差异,实际佩戴状态下,该夹持区域并不一定会夹持对耳轮105。
在一些实施例中,夹紧力的方向与用户的矢状面的夹角需要保持在一定范围之内。例如,夹紧力的方向可以与用户的矢状面垂直或基本垂直。如果前述夹角偏离90°太大,会导致出声孔和泄压孔之间无法形成挡板结构(例如,泄压孔所在的壳体一侧翘起,对耳轮105无法将泄压孔挡到出声孔另一侧),无法提升近场听音位置的音量,并且自由端FE或电池仓对耳部100产生压迫。需要说明的是,夹紧力的方向可以通过在耳廓朝向头部的一侧和耳廓背离头部的一侧都贴上贴片(即力传感器)或贴片阵列,并读取耳廓被夹持位置的力的分布获得。例如,如果耳廓朝向头部的一侧和耳廓背离头部的一侧上分别有一个可以测到力的点,就可以认为夹紧力的方向为两个点的连线方向。在一些实施例中,为了满足佩戴需求,夹紧力的方向与用户的矢状面的夹角可以在60°~120°范围内。在一些实施例中,为了提升近场听音位置的音量,夹紧力的方向与用户的矢状面的夹角可以在80°~100°范围内。在一些实施例中,为了进一步使开放式耳机在佩戴状态下更好地贴合对耳轮105,夹紧力的方向与用户的矢状面的夹角可以在70°~90°范围内。
在一些实施例中,在佩戴状态下,壳体和耳挂第一部分夹持用户耳廓,并向用户耳廓提供的夹紧力需要保持在一定范围之内。需要说明的是,该夹紧力可以通过拉力器测定。例如,将非佩戴状态下的发声部11壳体按照佩戴方式与耳挂12拉开预设距离,此时的拉力大小等同于夹紧力大小;该夹紧力还可以通过在佩戴者耳部固定贴片获得。如果夹紧力过小,会导致出声孔和泄压孔之间无法形成挡板结构(例如,发声部11较松,对耳轮105无法将泄压孔挡到出声孔另一侧,相当于图9中的挡板高度减小),无法提升近场听音位置的音量,并且会造成开放式耳机10的佩戴稳定性较差;如果夹紧力过大,会导致对耳部100有较大的压迫感,使得开放式耳机10佩戴后的可调节性较差。在一些实施例中,为了满足佩戴需求,在佩戴状态下,壳体和耳挂12第一部分夹持用户耳廓,并向用户耳廓提供0.03N~3N的夹紧力。在一些实施例中,为了增加佩戴后的可调节性,在佩戴状态下,壳体和耳挂第一部分夹持用户耳廓,并向用户耳廓提供0.03N~1N的夹紧力。在一些实施例中,为了提升近场听音位置的音量,在佩戴状态下,壳体和耳挂第一部分夹持用户耳廓,并向用户耳廓提供0.4N~0.9N的夹紧力。
图10是根据本申请的一些实施例所示的示例性声学装置一部分部件的透视图。
在一些实施例中,如图10所示,开放式耳机10的耳挂12可以由金属丝121和包裹层122组成,金属丝121起到支撑和夹持的作用,包裹层122可以包覆在金属丝121的外侧,使耳挂12更柔软,与耳廓的贴合度更好,从而提高用户舒适度。
以下以图8所示的开放式耳机10为例,对开放式耳机10进行详细说明。需要知道的是,在不违背相应声学原理的情况下,图8的开放式耳机10的结构以及其对应的参数也可以同样适用于上文中提到的其它构型的开放式耳机中。
在一些实施例中,金属丝121可以包括弹簧钢、钛合金、钛镍合金、铬钼钢、铝合金、铜合金等或其组合。在一些实施例中,金属丝121的数量、形状、长度、厚度、直径等参数可以根据实际需要(例如,声学装置部件的直径、对声学装置部件的强度要求等)设置。金属丝121的形状可以包括任何适合的形状,例如,圆柱体、正方体、长方体、棱柱、椭圆柱体等。
图11是根据本申请的一些实施例所示的示例性金属丝的横截面图。如图11所示,金属丝121可以为扁平结构,从而使得金属丝121在各个方向上具有不同的形变能力。在一些实施例中,金属丝121的横截面形状可以包括正方形、矩形、三角形、多边形、圆形、椭圆形、不规则形状等形状。如图11中的图(a)所示,金属丝121的横断面形状可以为圆角矩形。如图11中的图(b)所示,金属丝121的断面形状可以为椭圆形。在一些实施例中,金属丝121长边(或者长轴,L1)和/或 短边(或者短轴,L2)的长度可以根据实际需要(例如,包括金属丝121的声学装置部分的直径)设置。在一些实施例中,金属丝121的长边与短边的比值可以在1.1:1-2:1范围之内。在一些实施例中,金属丝121的长边与其短边的比值可以为1.5:1。
在一些实施例中,金属丝121可以通过冲压、预弯折等工艺形成特定的形状,仅作为示例,声学装置的耳挂12中的金属丝121的初始状态(也就是被加工之前的状态)可以为卷曲状,拉直后再通过冲压工艺使其在短轴方向呈圆弧状(如图11中的图(c)所示),进而使得金属丝121能够储存一定的内应力而维持平直形态,成为“记忆金属丝”,在受到较小的外力时,会恢复卷曲状,进而使声学装置的耳挂12贴合包裹在人耳上。在一些实施例中,金属丝121的圆弧高度(图11所示的L3)与其长边的比值可以在0.1-0.4范围之内。在一些实施例中,金属丝121的圆弧高度与其长边的比值可以在0.1-0.35范围之内。在一些实施例中,金属丝121的圆弧高度与其长边的比值可以在0.15-0.3范围之内。在一些实施例中,金属丝121的圆弧高度与其长边的比值可以在0.2-0.35范围之内。在一些实施例中,金属丝121的圆弧高度与其长边的比值可以在0.25-0.4范围之内。通过设置金属丝121,可以提高声学装置中的部件沿其长度方向的刚度,提高声学装置(例如,耳挂12)对用户耳部100夹持的有效性。另外,经过加工后,耳挂12中的金属丝121可以在耳挂12的长度方向上弯曲而具有较强的弹性,从而进一步提高耳挂12对用户耳部100或者头部压持的有效性。
在一些实施例中,金属丝121的弹性模量可以通过GB/T 24191-2009/ISO 12076:2002获得。在一些实施例中,金属丝121的弹性模量需要保持在一定范围之内。当开放式耳机10的形状、尺寸一致时,如果前述弹性模量太大,会导致耳挂12不容易变形,使用户难以调整耳挂12的佩戴角度等。当开放式耳机10的形状、尺寸一致时,如果前述弹性模量太小,会导致耳挂12太容易变形,从而导致佩戴后无法有效夹持在耳部100两侧。在一些实施例中,为了使耳挂12在佩戴后可以有效夹持在耳部100两侧,金属丝121的弹性模量可以为20GPa~50GPa。在一些实施例中,为了使耳挂12容易调节,金属丝121的弹性模量可以为25GPa~43GPa。在一些实施例中,金属丝121的弹性模量还可以为30GPa~40GPa。
在一些实施例中,金属丝121的直径需要保持在一定范围之内。需要说明的是,当金属丝121的横截面形状为圆形时,金属丝121的直径为金属丝121的圆形横截面的直径的长度;当金属丝121的横截面形状为椭圆形时,金属丝的直径为金属丝121的椭圆形横截面的长轴的长度;当金属丝121的横截面形状为正方形、矩形、三角形、多边形、不规则形状等形状时,金属丝121的直径可以定义为两个端点在金属丝121的横截面上且通过金属丝121的横截面的中心的线段中,最长的线段的长度。
在一些实施例中,金属丝121的直径需要保持在一定范围之内。当金属丝121的材料以及开放式耳机10的形状、尺寸一致时,如果前述直径太大,会导致耳挂12太重,且对耳部100产生压迫感,并且会导致耳挂12的强度太大,耳挂12不容易变形,用户难以调整耳挂12的佩戴角度。当金属丝121的材料以及开放式耳机10的形状、尺寸一致时,如果前述直径太小,会导致耳挂12强度太低,且夹紧力太弱,佩戴后无法有效夹持在耳部100两侧。在一些实施例中,为了使耳挂12在佩戴后不会对耳部100产生压迫感,且易于进行佩戴角度调整,金属丝121的直径可以为0.5mm~1mm。在一些实施例中,为了增加耳挂12的强度,金属丝121的直径可以为0.6mm~1mm。在一些实施例中,为了使耳挂12在佩戴后可以有效夹持在耳部100两侧,金属丝121的直径可以为0.7mm~0.9mm。
在一些实施例中,金属丝121的密度需要保持在一定范围之内。如果前述密度太大,会导致耳挂12太重,对耳部100产生压迫感。如果前述密度太小,会导致耳挂12强度太低,容易损坏,寿命较低。在一些实施例中,为了使耳挂12在佩戴后不会对耳部100产生压迫感,金属丝121的密度可以为5g/cm3~7g/cm3。在一些实施例中,为了增加耳挂12的强度,金属丝121的密度可以为5.5g/cm3~6.8g/cm3。在一些实施例中,金属丝121的密度可以为5.8g/cm3~6.5g/cm3。
在一些实施例中,包裹层122可以包括质地较软的材料、质地较硬的材料等或其组合制成。质地较软的材料是指硬度(例如,邵氏硬度)小于第一硬度阈值(例如,15A、20A、30A、35A、40A等)的材料。例如,质地较软的材料的邵氏硬度可以为45-85A,30-60D。质地较硬的材料是指硬度(例如,邵氏硬度)大于第二硬度阈值(例如,65D、70D、75D、80D等)的材料。质地较软的材料可以包括聚氨酯(Polyurethanes,PU)(例如,热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethanes,TPU))、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、硅胶等或其组合。质地较硬的材料可以包括聚醚砜树酯(Poly(estersulfones), PES)、聚二氯乙烯(Polyvinylidenechloride,PVDC)、聚甲基丙烯酸甲酯(PolymethylMethacrylate,PMMA)、聚醚醚酮(Poly-ether-ether-ketone,PEEK)等或其组合,亦或其与玻璃纤维、碳纤维等增强剂形成的混合物。在一些实施例中,包裹层122的设置可以根据具体情况选择。例如,金属丝121可以直接由质地较软的材料包覆。又例如,金属丝121可以先由质地较硬的材料包覆,质地较硬的材料再由质地较软的材质包裹。再例如,佩戴状态下,耳挂12中与用户接触的部分由质地较软的材质制成,其余部分由质地较硬的材质制成。在一些实施例中,不同的材质之间可以采用双色注塑、喷涂手感漆等工艺进行成型。手感漆可以包括橡胶手感漆、弹性手感漆、塑料弹性漆等或其组合。在本实施例中,质地较软的材料可以提高用户佩戴耳挂12的舒适度,质地较硬的材料可以提高耳挂12的强度,通过合理的配置耳挂12各部分的材质,可以在提高用户舒适度的同时提高耳挂12的强度。
在一些实施例中,包裹层122的邵氏硬度需要保持在一定范围之内。如果前述邵氏硬度太大,会导致用户佩戴耳挂12的舒适度较差。在一些实施例中,为了增加用户佩戴耳挂12的舒适度,包裹层122的邵氏硬度范围可以为10HA~80HA。在一些实施例中,包裹层122的邵氏硬度范围可以为15HA~70HA。在一些实施例中,包裹层122的邵氏硬度范围可以为25HA~55HA。在一些实施例中,包裹层122的邵氏硬度范围可以为30HA~50HA。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (26)

  1. 一种开放式耳机,其特征在于,所述开放式耳机在佩戴状态和非佩戴状态下的至少一个尺寸不同。
  2. 根据权利要求1所述的开放式耳机,其特征在于,所述开放式耳机包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,用于至少部分地挂设在用户耳廓和用户头部之间,并延伸至所述用户耳廓背离所述用户头部的一侧,以将所述发声部固定于用户耳道附近但不堵塞用户耳道口的位置;
    其中,所述开放式耳机包括所述佩戴状态,在所述佩戴状态下,所述发声部与耳挂第一部分的最小距离不小于2mm。
  3. 根据权利要求2所述的开放式耳机,其特征在于,在所述佩戴状态下,所述耳挂产生驱使所述发声部靠近所述耳挂第一部分的夹紧力,所述夹紧力的取值范围为0.03N~1N;
    其中,所述耳挂第一部分为用于挂设在所述用户耳廓和所述用户头部之间的部分。
  4. 根据权利要求3所述的开放式耳机,其特征在于,所述夹紧力的方向与用户的矢状面的夹角在-30°~30°范围内。
  5. 根据权利要求2所述的开放式耳机,其特征在于,所述壳体包括夹持区域,所述夹持区域设置于所述发声部的自由端;
    所述耳挂包括夹紧支点和耳挂夹持点,所述夹紧支点位于所述耳挂上截面积最小的位置;
    在所述佩戴状态下,所述夹持区域和所述耳挂夹持点具有相互靠近的趋势。
  6. 根据权利要求5所述的开放式耳机,其特征在于,所述耳挂基于所述夹紧支点的夹紧系数的取值范围为10N/m~30N/m。
  7. 根据权利要求5所述的开放式耳机,其特征在于,在所述佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角范围为6°~12°。
  8. 根据权利要求5所述的开放式耳机,其特征在于,在所述佩戴状态下,夹持区域中心与所述夹紧支点的距离范围为20mm~40mm。
  9. 根据权利要求5所述的开放式耳机,其特征在于,在所述佩戴状态下,所述耳挂夹持点与所述夹紧支点的距离范围为25mm~45mm。
  10. 根据权利要求2所述的开放式耳机,其特征在于,所述壳体插入用户耳甲腔的部分设置有柔性材料,所述柔性材料的邵氏硬度范围为0HA~40HA。
  11. 根据权利要求2-10任一项所述的开放式耳机,其特征在于,所述耳挂由金属丝和包裹层组成。
  12. 根据权利要求1所述的开放式耳机,其特征在于,所述开放式耳机包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,用于至少部分地挂设在用户耳廓和用户头部之间,并延伸至所述用户耳廓背离所述用户头部的一侧,以将所述发声部固定于用户耳道附近但不堵塞用户耳道口的位置;
    其中,所述开放式耳机包括所述非佩戴状态,在非佩戴状态下,所述发声部与耳挂第一部分的最小距离不大于3mm。
  13. 根据权利要求12所述的开放式耳机,其特征在于,所述壳体包括夹持区域,所述夹持区域设置于所述发声部的自由端;
    所述耳挂包括夹紧支点和耳挂夹持点,所述夹紧支点位于所述耳挂上截面积最小的位置。
  14. 根据权利要求13所述的开放式耳机,其特征在于,在所述非佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角范围为3°~9°。
  15. 根据权利要求13所述的开放式耳机,其特征在于,佩戴状态连线夹角与非佩戴状态连线夹角 的差值范围为2°~4°;所述佩戴状态连线夹角为在佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角;所述非佩戴状态连线夹角为在所述非佩戴状态下,所述夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角。
  16. 根据权利要求12所述的开放式耳机,其特征在于,所述壳体插入用户耳甲腔的部分设置有柔性材料,所述柔性材料的邵氏硬度范围为0HA~40HA。
  17. 根据权利要求12-16任一项所述的开放式耳机,其特征在于,所述耳挂由金属丝和包裹层组成。
  18. 根据权利要求1所述的开放式耳机,其特征在于,所述开放式耳机包括:
    发声部,包括换能器和容纳所述换能器的壳体;
    耳挂,用于至少部分地挂设在用户耳廓和用户头部之间,并延伸至所述用户耳廓背离所述用户头部的一侧,以将所述发声部固定于用户耳道附近但不堵塞用户耳道口的位置;
    其中,所述开放式耳机包括所述佩戴状态和所述非佩戴状态,所述发声部与耳挂第一部分的最小距离在所述佩戴状态和所述非佩戴状态下的差值不小于1mm。
  19. 根据权利要求18所述的开放式耳机,其特征在于,在所述佩戴状态下,所述耳挂产生驱使所述发声部靠近所述耳挂第一部分的夹紧力,所述夹紧力的取值范围为0.03N~1N;
    其中,所述耳挂第一部分为用于挂设在所述用户耳廓和所述用户头部之间的部分。
  20. 根据权利要求19所述的开放式耳机,其特征在于,所述夹紧力的方向与用户的矢状面的夹角在-30°~30°范围内。
  21. 根据权利要求18所述的开放式耳机,其特征在于,所述壳体包括夹持区域,所述夹持区域设置于所述发声部的自由端;
    所述耳挂包括夹紧支点和耳挂夹持点,所述夹紧支点位于所述耳挂上截面积最小的位置;
    在所述佩戴状态下,所述夹持区域和所述耳挂夹持点具有相互靠近的趋势。
  22. 根据权利要求21所述的开放式耳机,其特征在于,在所述佩戴状态下,夹持区域中心与所述夹紧支点的距离范围为20mm~40mm。
  23. 根据权利要求21所述的开放式耳机,其特征在于,在所述佩戴状态下,所述耳挂夹持点与所述夹紧支点的距离范围为25mm~45mm。
  24. 根据权利要求21所述的开放式耳机,其特征在于,在所述佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角范围为6°~12°。
  25. 根据权利要求21所述的开放式耳机,其特征在于,在所述非佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角范围为3°~9°。
  26. 根据权利要求21所述的开放式耳机,其特征在于,佩戴状态连线夹角与非佩戴状态连线夹角的差值范围为2°~4°;所述佩戴状态连线夹角为在所述佩戴状态下,夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角;所述非佩戴状态连线夹角为在所述非佩戴状态下,所述夹持区域中心到所述夹紧支点的第一连线与所述耳挂夹持点到所述夹紧支点的第二连线之间的夹角。
PCT/CN2023/079407 2022-10-28 2023-03-02 一种开放式耳机 WO2024087441A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CNPCT/CN2022/144339 2022-12-30
CN2022144339 2022-12-30

Publications (1)

Publication Number Publication Date
WO2024087441A1 true WO2024087441A1 (zh) 2024-05-02

Family

ID=88743304

Family Applications (14)

Application Number Title Priority Date Filing Date
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机

Family Applications After (9)

Application Number Title Priority Date Filing Date
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部

Country Status (3)

Country Link
US (2) US20240147142A1 (zh)
CN (58) CN220528213U (zh)
WO (14) WO2024087445A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050598B1 (en) * 2002-12-06 2006-05-23 Plantronics, Inc. Self-adjusting earloop for an over-the-ear headset
CN214429681U (zh) * 2020-11-15 2021-10-19 深圳市大十科技有限公司 一种挂夹耳开放式耳机
CN215682610U (zh) * 2021-09-17 2022-01-28 深圳市科奈信科技有限公司 开放式耳机
CN115460496A (zh) * 2022-09-15 2022-12-09 深圳市冠旭电子股份有限公司 耳挂连接结构及蓝牙耳机
CN115550783A (zh) * 2022-09-30 2022-12-30 东莞市猎声电子科技有限公司 一种开放式耳机
CN218352706U (zh) * 2022-09-30 2023-01-20 东莞市猎声电子科技有限公司 符合人体工学以提高佩戴舒适度的耳机

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057731B2 (ja) * 1990-08-21 2000-07-04 ソニー株式会社 電気音響変換器及び音響再生システム
JP2001326986A (ja) * 2000-05-15 2001-11-22 Audio Technica Corp ヘッドホン
EP1694092A4 (en) * 2003-11-13 2009-12-23 Panasonic Corp TWEETER
JP4723400B2 (ja) * 2006-02-28 2011-07-13 スター精密株式会社 電気音響変換器
WO2009104264A1 (ja) * 2008-02-21 2009-08-27 東北パイオニア株式会社 スピーカ装置
JP5262818B2 (ja) * 2009-02-20 2013-08-14 株式会社Jvcケンウッド 耳掛け式イヤホン装置、イヤホン装置用耳掛けアーム
US9025782B2 (en) * 2010-07-26 2015-05-05 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for multi-microphone location-selective processing
JP6107581B2 (ja) * 2013-09-30 2017-04-05 株式会社Jvcケンウッド 耳掛け式ヘッドホン
US10182287B2 (en) * 2016-08-16 2019-01-15 Bose Corporation Earphone having damped ear canal resonance
KR101760754B1 (ko) * 2016-08-23 2017-07-25 주식회사 이엠텍 방수 기능 사이드 진동판 및 이를 구비하는 마이크로스피커
WO2018132996A1 (zh) * 2017-01-19 2018-07-26 声电电子科技(惠州)有限公司 一种微型扬声器
JP6903933B2 (ja) * 2017-02-15 2021-07-14 株式会社Jvcケンウッド 収音装置、及び収音方法
US11405712B2 (en) * 2017-07-21 2022-08-02 Sony Corporation Sound output apparatus
CN107277718A (zh) * 2017-07-28 2017-10-20 常州市润蒙声学科技有限公司 扬声器
CN207926857U (zh) * 2017-12-21 2018-09-28 歌尔科技有限公司 发声装置单体、耳机以及电子设备
GB2584535B (en) * 2019-04-02 2021-12-01 Tymphany Acoustic Tech Huizhou Co Ltd In-ear headphone device with active noise control
CN210053540U (zh) * 2019-08-02 2020-02-11 深圳新锐芯科技有限公司 一种固定功能的耳挂式蓝牙耳机
US11122351B2 (en) * 2019-08-28 2021-09-14 Bose Corporation Open audio device
KR102209486B1 (ko) * 2019-10-29 2021-01-29 주식회사 이엠텍 리시버의 진동판 부착 구조
CN110958526A (zh) * 2019-12-19 2020-04-03 歌尔科技有限公司 耳机
CN113542956B (zh) * 2020-04-22 2024-04-09 耳一号声学科技(深圳)有限公司 一种入耳式耳机及耳机固持结构
CN113556638B (zh) * 2020-04-24 2024-03-19 万魔声学股份有限公司 耳机
GB2595971B (en) * 2020-06-12 2022-09-21 Tymphany Acoustic Tech Ltd Earphone body with tuned vents
CN113810812A (zh) * 2020-06-17 2021-12-17 耳一号声学科技(深圳)有限公司 一种耳机及其耳撑
CN111654790A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111654789A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111698608B (zh) * 2020-07-02 2022-02-01 立讯精密工业股份有限公司 一种骨传导耳机
CN217159954U (zh) * 2020-07-29 2022-08-09 深圳市韶音科技有限公司 一种耳机
JP2023530725A (ja) * 2020-07-29 2023-07-19 シェンツェン・ショックス・カンパニー・リミテッド イヤホン
KR20230050430A (ko) * 2020-11-24 2023-04-14 썬전 샥 컴퍼니 리미티드 음향장치
CN113301463A (zh) * 2021-02-03 2021-08-24 深圳市大十科技有限公司 一种用于耳机的夹耳结构
CN115209267A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209268A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN116918350A (zh) * 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
US11140469B1 (en) * 2021-05-03 2021-10-05 Bose Corporation Open-ear headphone
CN215818549U (zh) * 2021-08-25 2022-02-11 深圳市冠旭电子股份有限公司 可旋转开放式tws耳机
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN216600066U (zh) * 2021-10-29 2022-05-24 华为技术有限公司 扬声器以及声音输出装置
CN113905304A (zh) * 2021-11-01 2022-01-07 东莞市猎声电子科技有限公司 一种耳机及其定向出声的方法
CN216357224U (zh) * 2021-11-01 2022-04-19 东莞市猎声电子科技有限公司 一种耳机
CN217011123U (zh) * 2021-12-20 2022-07-19 深圳市科奈信科技有限公司 骨传导耳机
CN114390394A (zh) * 2022-02-24 2022-04-22 听智慧(南京)科技有限公司 定制无线耳机
CN114760554A (zh) * 2022-03-28 2022-07-15 广东小天才科技有限公司 一种夹耳式耳机的麦克风管理方法、装置及夹耳式耳机
CN114928800A (zh) * 2022-05-10 2022-08-19 歌尔股份有限公司 发声装置和电子设备
CN114866925A (zh) * 2022-05-31 2022-08-05 歌尔股份有限公司 发声装置和发声设备
CN217643682U (zh) * 2022-06-24 2022-10-21 深圳市韶音科技有限公司 一种开放式耳机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050598B1 (en) * 2002-12-06 2006-05-23 Plantronics, Inc. Self-adjusting earloop for an over-the-ear headset
CN214429681U (zh) * 2020-11-15 2021-10-19 深圳市大十科技有限公司 一种挂夹耳开放式耳机
CN215682610U (zh) * 2021-09-17 2022-01-28 深圳市科奈信科技有限公司 开放式耳机
CN115460496A (zh) * 2022-09-15 2022-12-09 深圳市冠旭电子股份有限公司 耳挂连接结构及蓝牙耳机
CN115550783A (zh) * 2022-09-30 2022-12-30 东莞市猎声电子科技有限公司 一种开放式耳机
CN218352706U (zh) * 2022-09-30 2023-01-20 东莞市猎声电子科技有限公司 符合人体工学以提高佩戴舒适度的耳机

Also Published As

Publication number Publication date
CN117956359A (zh) 2024-04-30
CN117956337A (zh) 2024-04-30
CN220711634U (zh) 2024-04-02
CN220067644U (zh) 2023-11-21
CN117956340A (zh) 2024-04-30
WO2024087440A1 (zh) 2024-05-02
CN220067646U (zh) 2023-11-21
CN117956348A (zh) 2024-04-30
CN220254651U (zh) 2023-12-26
CN220067648U (zh) 2023-11-21
CN117956338A (zh) 2024-04-30
CN220711630U (zh) 2024-04-02
CN117956352A (zh) 2024-04-30
CN117956346A (zh) 2024-04-30
CN220325779U (zh) 2024-01-09
CN220210580U (zh) 2023-12-19
CN117956334A (zh) 2024-04-30
CN220528213U (zh) 2024-02-23
CN220368781U (zh) 2024-01-19
CN220342445U (zh) 2024-01-12
CN117956343A (zh) 2024-04-30
CN220210576U (zh) 2023-12-19
WO2024087492A1 (zh) 2024-05-02
CN220693319U (zh) 2024-03-29
WO2024087442A1 (zh) 2024-05-02
WO2024087438A1 (zh) 2024-05-02
CN220493121U (zh) 2024-02-13
CN220493122U (zh) 2024-02-13
CN117956345A (zh) 2024-04-30
CN220254655U (zh) 2023-12-26
CN220067643U (zh) 2023-11-21
CN220823261U (zh) 2024-04-19
WO2024087439A1 (zh) 2024-05-02
WO2024087482A1 (zh) 2024-05-02
CN220732986U (zh) 2024-04-05
CN220210578U (zh) 2023-12-19
CN220528220U (zh) 2024-02-23
CN117956344A (zh) 2024-04-30
CN117956353A (zh) 2024-04-30
CN220528217U (zh) 2024-02-23
CN117956356A (zh) 2024-04-30
WO2024087481A1 (zh) 2024-05-02
CN117956335A (zh) 2024-04-30
CN117956342A (zh) 2024-04-30
CN220254653U (zh) 2023-12-26
CN220711628U (zh) 2024-04-02
CN220511241U (zh) 2024-02-20
CN220067645U (zh) 2023-11-21
US20240147161A1 (en) 2024-05-02
CN117956341A (zh) 2024-04-30
CN220254652U (zh) 2023-12-26
WO2024087444A1 (zh) 2024-05-02
CN220528214U (zh) 2024-02-23
WO2024087445A1 (zh) 2024-05-02
CN220254654U (zh) 2023-12-26
WO2024087480A1 (zh) 2024-05-02
CN220711638U (zh) 2024-04-02
CN220528219U (zh) 2024-02-23
CN220711629U (zh) 2024-04-02
US20240147159A1 (en) 2024-05-02
WO2024087483A1 (zh) 2024-05-02
CN220673920U (zh) 2024-03-26
CN220108163U (zh) 2023-11-28
CN117956339A (zh) 2024-04-30
CN220108162U (zh) 2023-11-28
CN220528194U (zh) 2024-02-23
CN220210577U (zh) 2023-12-19
CN220043614U (zh) 2023-11-17
US20240147142A1 (en) 2024-05-02
CN220528215U (zh) 2024-02-23
WO2024087494A1 (zh) 2024-05-02
CN117956336A (zh) 2024-04-30
WO2024087443A1 (zh) 2024-05-02
CN117956347A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2022022618A1 (zh) 一种耳机
US11582547B2 (en) Open audio device
WO2024087441A1 (zh) 一种开放式耳机
WO2024088224A1 (zh) 一种耳机
WO2024087484A1 (zh) 一种耳机
WO2024087493A1 (zh) 一种耳机
CN221081534U (zh) 一种耳机
CN220325780U (zh) 一种耳机
US20240031723A1 (en) Earphone
US12010478B2 (en) Open audio device
CN220067647U (zh) 一种耳机
WO2024087488A1 (zh) 一种发声部
TW202418824A (zh) 一種開放式耳機
TW202418825A (zh) 一種開放式耳機
TW202418831A (zh) 一種開放式耳機
TW202418840A (zh) 一種發聲部