WO2024087445A1 - 一种开放式耳机 - Google Patents

一种开放式耳机 Download PDF

Info

Publication number
WO2024087445A1
WO2024087445A1 PCT/CN2023/079412 CN2023079412W WO2024087445A1 WO 2024087445 A1 WO2024087445 A1 WO 2024087445A1 CN 2023079412 W CN2023079412 W CN 2023079412W WO 2024087445 A1 WO2024087445 A1 WO 2024087445A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
projection
sagittal plane
emitting part
area
Prior art date
Application number
PCT/CN2023/079412
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2023/083539 priority Critical patent/WO2024087485A1/zh
Priority to PCT/CN2023/083540 priority patent/WO2024087486A1/zh
Priority to CN202310339576.XA priority patent/CN117956360A/zh
Priority to CN202320694257.6U priority patent/CN220043616U/zh
Priority to CN202320679352.9U priority patent/CN220368782U/zh
Priority to US18/350,762 priority patent/US11871171B1/en
Priority to US18/452,523 priority patent/US11930312B1/en
Priority to PCT/CN2023/117777 priority patent/WO2024087907A1/zh
Priority to CN202311159929.4A priority patent/CN117956363A/zh
Priority to US18/499,197 priority patent/US11968489B1/en
Priority to US18/517,758 priority patent/US20240147133A1/en
Priority to US18/537,726 priority patent/US20240147121A1/en
Publication of WO2024087445A1 publication Critical patent/WO2024087445A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1066Constructional aspects of the interconnection between earpiece and earpiece support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • H04R7/127Non-planar diaphragms or cones dome-shaped
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/023Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials

Definitions

  • the present application relates to the field of acoustic technology, and in particular to an open-type earphone.
  • acoustic devices e.g., headphones
  • electronic devices such as mobile phones and computers to provide users with an auditory feast.
  • acoustic devices can generally be divided into head-mounted, ear-hook, and in-ear types.
  • an open-type earphone comprising a sound-emitting part and an ear hook
  • the ear hook comprises a first part and a second part connected in sequence, wherein the first part is hung between the auricle and the head of the user, and the second part extends toward the front and outer side of the auricle and is connected to the sound-emitting part, and the sound-emitting part is worn near the ear canal but does not block the ear canal opening; wherein the sound-emitting part is at least partially inserted into the concha cavity, and the overlap ratio between the projection area of the sound-emitting part on the sagittal plane and the projection area of the concha cavity on the sagittal plane is not less than 44.01%.
  • One of the embodiments of the present specification also provides an open-type earphone, comprising a sound-emitting part and an ear hook, the ear hook comprising a first part and a second part connected in sequence, the first part being hung between the auricle and the head of the user, the second part extending toward the front and outer side of the auricle and connected to the sound-emitting part, fixing the sound-emitting part at a position near the ear canal but not blocking the ear canal opening; wherein the sound-emitting part is at least partially inserted into the concha cavity, and the distance from the projection of the end of the sound-emitting part in the sagittal plane to the projection of the edge of the concha cavity in the sagittal plane is not greater than 16 mm.
  • One of the embodiments of the present specification also provides an open-type earphone, comprising a sound-emitting part and an ear hook, the ear hook comprising a first part and a second part connected in sequence, the first part being hung between the auricle and the head of the user, the second part extending toward the front and outer side of the auricle and connected to the sound-emitting part, fixing the sound-emitting part at a position near the ear canal but not blocking the ear canal opening; the sound-emitting part at least partially covers the antihelix area, and the overlap ratio of the projection area of the sound-emitting part on the sagittal plane and the projection area of the cavum concha on the sagittal plane is not less than 11.82%.
  • One of the embodiments of the present specification also provides an open-type earphone, comprising a sound-emitting part and an ear hook, the ear hook comprising a first part and a second part connected in sequence, the first part being hung between the user's auricle and the head, the second part extending toward the front and outer side of the auricle and connected to the sound-emitting part, fixing the sound-emitting part at a position near the ear canal but not blocking the ear canal opening; the sound-emitting part at least partially covers the antihelix, and the distance between the projection of the end of the sound-emitting part on the sagittal plane and the projection of the inner contour of the auricle on the sagittal plane is not greater than 8 mm.
  • FIG1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification.
  • FIG2 is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG3 is a schematic diagram of wearing an open-type earphone with the sound-emitting portion extending into the concha cavity according to some embodiments of the present specification
  • FIG4 is a schematic diagram of an acoustic model of a cavity-like structure according to some embodiments of this specification.
  • FIG5 is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG6 is a schematic diagram of a cavity-like structure according to some embodiments of the present specification.
  • FIG. 7 is a graph showing a listening index of a cavity-like structure having leakage structures of different sizes according to some embodiments of the present specification.
  • FIG. 8 is a diagram showing the projection area of the first projection and the projection of the user's concha cavity on the sagittal plane according to some embodiments of the present specification. Schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of area;
  • FIG9 is a schematic diagram of exemplary frequency response curves corresponding to different ratios of the size of the first projection along the long axis direction to the size along the short axis direction according to some embodiments of this specification;
  • FIG10 is a frequency response curve of a sound-emitting portion having different sizes in its thickness direction according to some embodiments of the present specification
  • FIG11A is a schematic diagram of different exemplary mating positions of an open-type earphone and a user's ear canal according to this specification;
  • FIG11B is a schematic diagram of different exemplary mating positions of another open-type earphone and a user's ear canal according to this specification;
  • FIG11C is a schematic diagram of different exemplary mating positions of another open-type earphone and a user's ear canal according to this specification;
  • FIG12 is a schematic diagram of exemplary frequency response curves corresponding to different distances between the projection of the end of the sound-producing part on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane according to some embodiments of the present specification;
  • FIG13A is a schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of the area of the first projection and the area of the projection of the cavum concha on the sagittal plane according to some embodiments of the present specification;
  • FIG13B is a schematic diagram of exemplary frequency response curves corresponding to different distances between the centroid of the first projection and the centroid of the projection of the ear canal opening on the sagittal plane according to some embodiments of the present specification;
  • FIG14 is an exemplary wearing diagram of an open-type headset according to other embodiments of this specification.
  • FIG15 is a schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of the first projection and the projection of the cavum conchae on the sagittal plane according to some embodiments of the present specification;
  • FIG16A is a schematic diagram of an exemplary wearing method of an open-type headset according to other embodiments of this specification.
  • FIG16B is a schematic diagram of another exemplary wearing method of an open-type headset according to other embodiments of this specification.
  • FIG16C is a schematic diagram of an exemplary wearing method of yet another open-type earphone according to other embodiments of this specification.
  • FIG16D is a schematic diagram of an exemplary wearing method of yet another open-type earphone according to other embodiments of this specification.
  • FIG16E is a schematic diagram of an exemplary wearing method of yet another open-type earphone according to other embodiments of this specification.
  • FIG17 is a schematic diagram showing exemplary frequency response curves corresponding to different distances between the projection of the end of the vocal part on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane in FIG16E;
  • FIG18A is a schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of the area of the first projection of the sound-emitting part on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane in a wearing scenario when the sound-emitting part does not extend into the concha cavity according to other embodiments of the present specification;
  • 18B is a schematic diagram of exemplary frequency response curves corresponding to different distances between the centroid of the first projection of the sound-emitting part on the sagittal plane and the centroid of the projection of the ear canal opening on the sagittal plane in a wearing scenario when the sound-emitting part does not extend into the concha cavity as shown in other embodiments of the present specification.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • the ear 100 may include an external auditory canal 101, a concha cavity 102, a cymba concha 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a helix crus 109, an outer contour 1013, and an inner contour 1014.
  • the antihelix crus 1011, the antihelix crus 1012, and the antihelix 105 are collectively referred to as the antihelix region in the embodiments of this specification.
  • the acoustic device can be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the concha cavity 102, the cymba concha 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to meet the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the acoustic device can be worn with the help of other parts of the ear 100 except the external auditory canal 101.
  • the acoustic device can be worn with the help of parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, or the helix 107 or a combination thereof.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the user's external auditory canal 101 can be "liberated".
  • the acoustic device When the user wears the acoustic device (open earphones), the acoustic device will not block the user's external auditory canal 101, and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horns, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed to be compatible with the ear 100 according to the structure of the ear 100, so that the sound-generating part of the acoustic device can be worn at different positions of the ear.
  • the open-type earphone may include a suspension structure (e.g., an ear hook) and a sound-generating part.
  • the sound-generating part is physically connected to the suspension structure, and the suspension structure can be compatible with the shape of the auricle to place the entire or partial structure of the sound-generating part of the ear at a certain position.
  • the front side of the crus helix 109 e.g., the area J surrounded by the dotted line in FIG1 ).
  • the whole or part of the structure of the sound-emitting part may be in contact with the outside of the external auditory canal 101 (e.g., the location of one or more parts such as the crus helix 109, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, etc.).
  • the whole or part of the structure of the sound-emitting part may be located in a cavity formed by one or more parts of the ear (e.g., the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (e.g., the area M1 surrounded by the dotted line in FIG1 , which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 that includes at least the cavum concha 102).
  • the cavum concha 102 the cavum concha 102
  • the cymba concha 103 the triangular fossa 104
  • the area M2 that includes at least the cavum concha 102
  • this manual will mainly use an ear model with a "standard" shape and size as a reference to further describe the wearing method of the acoustic device in different embodiments on the ear model.
  • a simulator containing a head and its (left and right) ears made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards, such as GRAS KEMAR, HEAD Acoustics, B&K 4128 series or B&K 5128 series can be used as a reference for wearing an acoustic device, thereby presenting the scenario of most users wearing the acoustic device normally.
  • the ear simulator can be any one of GRAS 45AC, GRAS 45BC, GRAS45CC or GRAS 43AG.
  • the ear simulator can be any one of HMS II.3, HMS II.3LN or HMS II.3LN HEC.
  • the data range measured in the embodiment of this specification is measured on the basis of GRAS 45BC KEMAR, but it should be understood that there may be differences between different head models and ear models, and the relevant data range may fluctuate by ⁇ 10% when using other models.
  • the ear used as a reference can have the following relevant characteristics: the size of the projection of the auricle on the sagittal plane in the vertical axis direction can be in the range of 55-65mm, and the size of the projection of the auricle on the sagittal plane in the sagittal axis direction can be in the range of 45-55mm.
  • the projection of the auricle on the sagittal plane refers to the projection of the edge of the auricle on the sagittal plane.
  • the edge of the auricle is composed of at least the outer contour of the helix, the earlobe contour, the tragus contour, the intertragus notch, the antitragus cusp, the helix notch, etc.
  • descriptions such as “user wears”, “in a wearing state” and “in a wearing state” may refer to the acoustic device described in the present application being worn on the ear of the aforementioned simulator.
  • the structure, shape, size, thickness, etc. of one or more parts of the ear 100 may be differentially designed according to ears of different shapes and sizes. These differentiated designs may be manifested as characteristic parameters of one or more parts of the acoustic device (e.g., the sound-emitting part, ear hook, etc. described below) having different ranges of values to adapt to different ears.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the “front side of the ear” mentioned in the present application refers to the side of the ear that is along the sagittal axis and is located toward the human facial area.
  • the description of the ear 100 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • a person skilled in the art can make various changes and modifications based on the description of the present application.
  • a partial structure of the acoustic device can shield part or all of the external auditory canal 101. These changes and modifications are still within the scope of protection of the present application.
  • Fig. 2 is an exemplary wearing diagram of an open-type earphone according to some embodiments of the present specification.
  • the open-type earphone 10 may include a sound-emitting portion 11 and a suspension structure 12.
  • the open-type earphone 10 may wear the sound-emitting portion 11 on the user's body (e.g., the head, neck, or upper torso of the human body) through the suspension structure 12.
  • the suspension structure 12 may be an ear hook, and the sound-emitting portion 11 is connected to one end of the ear hook, and the ear hook may be arranged in a shape that matches the user's ear.
  • the ear hook may be an arc-shaped structure.
  • the suspension structure 12 may also be a clamping structure that matches the user's auricle, so that the suspension structure 12 may be clamped at the user's auricle.
  • the suspension structure 12 may include, but is not limited to, an ear hook, an elastic band, etc., so that the open-type earphone 10 may be better worn on the user to prevent the user from falling off during use.
  • the sound-emitting portion 11 can be worn on the user's body, and a speaker can be provided in the sound-emitting portion 11 to generate sound for input into the user's ear 100.
  • the open-type earphone 10 can be combined with products such as glasses, headphones, head-mounted display devices, AR/VR helmets, etc. In this case, the sound-emitting portion 11 can be worn near the user's ear 100 in a hanging or clamping manner.
  • the sound-emitting portion 11 can be in the shape of a ring, an ellipse, a polygon (regular or irregular), a U-shape, a V-shape, or a semicircle, so that the sound-emitting portion 11 can be directly hung on the user's ear 100.
  • At least a portion of the sound-emitting portion 11 may be located in the area J in front of the tragus of the user's ear 100 shown in FIG. 1 or in the areas M1 and M2 in the auricle.
  • the following will provide an exemplary description in conjunction with different wearing positions (11A, 11B, and 11C) of the sound-emitting portion 11.
  • the anterior lateral side of the auricle mentioned in the embodiments of this specification refers to the side of the auricle facing away from the head along the coronal axis
  • the posterior medial side of the auricle refers to the side of the auricle facing toward the head along the coronal axis.
  • the sound-emitting part 11A is located on the side of the user's ear 100 along the sagittal axis direction toward the human facial area, that is, the sound-emitting part 11A is located in the area J on the front side of the ear 100.
  • a speaker is provided inside the shell of the sound-emitting part 11A, and at least one sound outlet hole (not shown in FIG. 2 ) may be provided on the shell of the sound-emitting part 11A, and the sound outlet hole may be located on the side wall of the shell of the sound-emitting part facing or close to the user's external auditory canal 101, and the speaker may output sound to the user's external auditory canal 101 through the sound outlet hole.
  • the speaker may include a diaphragm, and the cavity inside the shell of the sound-emitting part 11 is divided into at least a front cavity and a rear cavity by the diaphragm, and the sound outlet hole is acoustically coupled with the front cavity, and the vibration of the diaphragm drives the air in the front cavity to vibrate to generate air-conducted sound, and the air-conducted sound generated in the front cavity is transmitted to the outside through the sound outlet hole.
  • the shell of the sound-emitting part 11 may also include one or more pressure relief holes. The pressure relief holes may be located on the side wall of the shell adjacent to or opposite to the side wall where the sound outlet hole is located.
  • the pressure relief holes are acoustically coupled with the back cavity. When the diaphragm vibrates, it will also drive the air in the back cavity to vibrate and produce air-conducted sound.
  • the air-conducted sound generated in the back cavity can be transmitted to the outside through the pressure relief holes.
  • the speaker in the sound-emitting part 11A can output a sound with a phase difference (for example, opposite phase) through the sound outlet hole and the pressure relief hole.
  • the sound outlet hole may be located on the side wall of the shell of the sound-emitting part 11A facing the external auditory canal 101 of the user, and the pressure relief hole may be located on the side of the shell of the sound-emitting part 11 away from the external auditory canal 101 of the user.
  • the shell can act as a baffle to increase the sound path difference between the sound outlet hole and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101 and reduce the volume of far-field leakage.
  • the sound-emitting part 11 may have a long axis direction Y and a short axis direction Z that are perpendicular to the thickness direction X and orthogonal to each other.
  • the long axis direction Y can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting part 11 (for example, the projection of the sound-emitting part 11 on the plane where its outer side surface is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle), and the short axis direction Z can be defined as the direction perpendicular to the long axis direction Y in the shape of the projection of the sound-emitting part 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction X can be defined as the direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body.
  • the long axis direction Y and the short axis direction Z are still parallel or approximately parallel to the sagittal plane, and the long axis direction Y can have a certain angle with the direction of the sagittal axis, that is, the long axis direction Y is also tilted accordingly, and the short axis direction Z can have a certain angle with the direction of the vertical axis, that is, the short axis direction Z is also tilted, as shown in the wearing state of the sound-emitting part 11B in FIG2 .
  • the whole or part of the structure of the sound-emitting part 11B can extend into the concha cavity, that is, the projection of the sound-emitting part 11B on the sagittal plane and the projection of the concha cavity on the sagittal plane have an overlapping part.
  • the specific content of the sound-emitting part 11B reference can be made to the content elsewhere in this specification, for example, FIG3 and its corresponding specification content.
  • the sound-emitting part can also be in a horizontal state or an approximately horizontal state in the wearing state, as shown in the sound-emitting part 11C of FIG2 , the long axis direction Y can be consistent or approximately consistent with the direction of the sagittal axis, both pointing to the front and back directions of the body, and the short axis direction Z can be consistent or approximately consistent with the direction of the vertical axis, both pointing to the up and down directions of the body.
  • the sound-emitting part 11C in an approximately horizontal state, which may mean that the angle between the long axis direction of the sound-emitting part 11C shown in FIG2 and the sagittal axis is within a specific range (for example, not more than 20°).
  • the wearing position of the sound-emitting part 11 is not limited to the sound-emitting part 11A, the sound-emitting part 11B and the sound-emitting part 11C shown in FIG2 , and it only needs to satisfy the area J, the area M1 or the area M2 shown in FIG1 .
  • the whole or part of the structure of the sound-emitting part 11 may be located in the area J surrounded by the dotted line in FIG1 .
  • the whole or part of the structure of the sound-emitting part may be in contact with the position where one or more parts of the external auditory canal 101, such as the crus 109 of the helix, the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, etc. are located.
  • the entire or partial structure of the sound-producing part may be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted lines in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • the open earphone 10 can adopt any one of the following methods or a combination thereof.
  • the suspension structure 12 is configured as a contoured structure that fits at least one of the posterior medial side of the auricle and the head, so as to increase the contact area between the suspension structure 12 and the ear and/or the head, thereby increasing the resistance of the acoustic device 10 to fall off from the ear.
  • At least a portion of the suspension structure 12 is configured as an elastic structure so that it has a certain amount of deformation when worn, so as to increase the positive pressure of the suspension structure 12 on the ear and/or the head, thereby increasing the resistance of the open earphone 10 to fall off from the ear.
  • at least a portion of the suspension structure 12 is configured to abut against the ear and/or the head when worn, so as to form a reaction force that presses the ear, so that the sound-generating portion 11 is pressed against the front outer side of the auricle (for example, the area M1 and the area M2 shown in FIG. 1 ), thereby increasing the resistance of the open earphone 10 to fall off from the ear.
  • the sound-emitting part 11 and the suspension structure 12 are configured to clamp the antihelix area and the area where the concha cavity is located from the front and rear inner sides of the auricle when worn, thereby increasing the resistance of the open-type earphone 10 to fall off the ear.
  • the sound-emitting part 11 or the structure connected thereto is configured to at least partially extend into the concha cavity 102, the concha 103, the triangular fossa 104 and the scaphoid 106, thereby increasing the resistance of the open-type earphone 10 to fall off the ear.
  • the end FE (also referred to as the free end) of the sound-emitting portion 11 can extend into the concha cavity.
  • the sound-emitting portion 11 and the suspension structure 12 can be configured to jointly clamp the ear region corresponding to the concha cavity from the front and rear sides of the ear region, thereby increasing the resistance of the open-type earphone 10 to falling off the ear, thereby improving the stability of the open-type earphone 10 in the wearing state.
  • the end FE of the sound-emitting portion is pressed in the concha cavity in the thickness direction X.
  • the end FE abuts in the concha cavity in the major axis direction Y and/or the minor axis direction Z (for example, abuts against the inner wall of the concha cavity opposite to the end FE).
  • the end FE of the sound-emitting portion 11 refers to the end portion of the sound-emitting portion 11 that is arranged opposite to the fixed end connected to the suspension structure 12, also referred to as the free end.
  • the sound-emitting part 11 may be a regular or irregular structure.
  • an exemplary description is given to further illustrate the end FE of the sound-emitting part 11.
  • the end wall surface of the sound-emitting part 11 is a plane.
  • the end FE of the sound-emitting part 11 is the end side wall of the sound-emitting part 11 that is arranged opposite to the fixed end connected to the suspension structure 12.
  • the end FE of the sound-emitting part 11 may refer to a specific area away from the fixed end obtained by cutting the sound-emitting part 11 along the YZ plane (the plane formed by the short axis direction Z and the thickness direction X), and the ratio of the size of the specific area along the long axis direction Y to the size of the sound-emitting part along the long axis direction Y may be 0.05-0.2.
  • the listening volume at the listening position (for example, at the opening of the ear canal), especially the listening volume of the mid-low frequency, can be increased, while still maintaining a good effect of far-field leakage cancellation.
  • the sound-emitting part 11 and the concha cavity 102 form a cavity-like structure (hereinafter referred to as a cavity-like structure).
  • the cavity-like structure can be understood as a semi-enclosed structure surrounded by the side wall of the sound-emitting part 11 and the concha cavity 102 structure.
  • the semi-enclosed structure makes the listening position (for example, at the opening of the ear canal) not completely sealed and isolated from the external environment, but has a leakage structure (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure for example, an opening, a gap, a pipe, etc.
  • one or more sound outlet holes may be provided on the side of the shell of the sound-emitting part 11 close to or facing the user's ear canal, and one or more pressure relief holes may be provided on the other side walls of the shell of the sound-emitting part 11 (for example, the side walls away from or away from the user's ear canal).
  • the sound outlet holes are acoustically coupled with the front cavity of the open earphone 10, and the pressure relief holes are acoustically coupled with the back cavity of the open earphone 10.
  • the sound-emitting part 11 including a sound outlet hole and a pressure relief hole as an example, the sound output by the sound outlet hole and the sound output by the pressure relief hole can be approximately regarded as two sound sources, and the sound phases of the two sound sources are opposite to form a dipole.
  • the cavity-like structure 402 may include a listening position and at least one sound source 401A.
  • “include” may mean that at least one of the listening position and the sound source 401A is inside the cavity-like structure 402, or at least one of the listening position and the sound source 401A is at the inner edge of the cavity-like structure 402.
  • the listening position may be equivalent to the ear canal opening of the ear, or may be an acoustic reference point of the ear, such as ERP, DRP, etc., or may be an entrance structure leading to the listener, etc.
  • the sound source 401B is located outside the cavity-like structure 402, and the sound sources 401A and 401B with opposite phases constitute a dipole.
  • the dipole radiates sound to the surrounding space respectively and causes interference and destructive phenomenon of sound waves, thereby achieving the effect of sound leakage cancellation. Since the sound path difference between the two sounds is relatively large at the listening position, the effect of sound cancellation is relatively insignificant, and a louder sound can be heard at the listening position than at other positions.
  • the sound source 401A since the sound source 401A is wrapped by the cavity-like structure 402, most of the sound radiated by it will reach the listening position by direct or reflected means. In contrast, in the absence of the cavity-like structure 402, most of the sound radiated by the sound source 401A will not reach the listening position. Therefore, the provision of the cavity-like structure 402 significantly increases the volume of the sound reaching the listening position. At the same time, only a small portion of the anti-phase sound radiated by the anti-phase sound source 401B outside the cavity-like structure 402 will enter the cavity-like structure 402 through the leakage structure 403 of the cavity-like structure 402.
  • This is equivalent to generating a secondary sound source 401B' at the leakage structure 403, whose intensity is significantly smaller than that of the sound source 401B and also significantly smaller than that of the sound source 401A.
  • the sound generated by the secondary sound source 401B' has a weak anti-phase cancellation effect on the sound source 401A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source 401A radiates sound to the outside through the leakage structure 403 of the cavity, which is equivalent to generating a secondary sound source 401A' at the leakage structure 403.
  • the intensity of the secondary sound source 401A' is equivalent to that of the sound source 401A.
  • the sound cancellation effect generated by the secondary sound source 401A' and the sound source 401B is equivalent to the sound cancellation effect generated by the sound source 401A and the sound source 401B. That is, under this type of cavity structure, a considerable sound leakage reduction effect is still maintained.
  • the outer wall surface of the shell of the sound-emitting part 11 is usually a plane or a curved surface, while the contour of the user's concha is an uneven structure.
  • a cavity-like structure connected to the outside world is formed between the sound-emitting part 11 and the contour of the concha.
  • the sound outlet hole is arranged at a position where the shell of the sound-emitting part faces the opening of the user's ear canal and close to the edge of the concha
  • the pressure relief hole is arranged at a position where the sound-emitting part 11 is away from or far away from the opening of the ear canal, so as to construct the acoustic model shown in Figure 4, thereby enabling the user to improve the listening position at the ear opening when wearing open-ear headphones and reduce the sound leakage effect in the far field.
  • the sound-generating part of the open earphone may include a transducer and a housing for accommodating the transducer, wherein the transducer is an element that can receive an electrical signal and convert it into a sound signal for output.
  • the type of transducer may include a low-frequency (e.g., 30 Hz to 150 Hz) speaker, a mid-low-frequency (e.g., 150 Hz to 500 Hz) speaker, a mid-high-frequency (e.g., 500 Hz to 5 kHz) speaker, a high-frequency (e.g., 5 kHz to 16 kHz) speaker, or a full-frequency (e.g., 30 Hz to 16 kHz) speaker, or any combination thereof, by frequency.
  • a low-frequency e.g., 30 Hz to 150 Hz
  • a mid-low-frequency e.g., 150 Hz to 500 Hz
  • a mid-high-frequency e.g., 500 Hz to 5 kHz
  • the low frequency, high frequency, etc. mentioned here only represent the approximate range of frequency, and different division methods may be used in different application scenarios.
  • a crossover point may be determined, the low frequency represents the frequency range below the crossover point, and the high frequency represents the frequency above the crossover point.
  • the crossover point may be any value within the audible range of the human ear, for example, 500 Hz, 600 Hz, 700 Hz, 800 Hz, 1000 Hz, etc.
  • the transducer may include a diaphragm.
  • a front cavity (not shown) for transmitting sound is provided at the front side of the diaphragm in the housing 120.
  • the front cavity is acoustically coupled to the sound outlet, and the sound at the front side of the diaphragm may be emitted from the sound outlet through the front cavity.
  • the rear cavity is acoustically coupled with the pressure relief hole, and the sound at the rear side of the diaphragm can be emitted from the pressure relief hole through the rear cavity.
  • the ear hook may include a first portion 121 and a second portion 122 connected in sequence, wherein the first portion 121 may be hung between the auricle of the user and the head, and the second portion 122 may extend to the outside of the ear (the side of the ear away from the human head along the coronal axis) and connect to the sound-emitting portion 11, so that the sound-emitting portion 11 is worn near the user's ear canal but does not block the ear canal opening.
  • a sound outlet may be provided on the side wall of the housing facing the auricle, so that the sound generated by the transducer is guided out of the housing and then transmitted to the ear canal opening of the user.
  • FIG. 5 is a schematic diagram showing an exemplary wearing method of an open-ear headset according to some embodiments of the present specification.
  • the sound-emitting part 11 when the user wears the open earphone 10, the sound-emitting part 11 has a first projection on the sagittal plane (i.e., the plane formed by the T axis and the S axis in FIG. 5 ) along the coronal axis direction R, and the shape of the sound-emitting part 11 may be a regular or irregular three-dimensional shape.
  • the first projection of the sound-emitting part 11 on the sagittal plane is a regular or irregular shape.
  • the first projection of the sound-emitting part 11 on the sagittal plane may be a rectangle or a quasi-rectangle (e.g., a runway shape).
  • the first projection of the sound-emitting part 11 on the sagittal plane may be an irregular shape
  • a rectangular area shown in a solid line frame P may be delineated around the projection of the sound-emitting part 11 (i.e., the first projection) shown in FIG.
  • the centroid O of the rectangular area shown in the solid line frame P is approximately regarded as the centroid of the first projection.
  • the above description of the first projection and its centroid is only used as an example, and the shape of the first projection is related to the shape of the sound-emitting part 11 or the wearing condition of the sound-emitting part 11 relative to the ear.
  • the sound-emitting part 11 and the suspension structure 12 may be two independent structures or an integrally formed structure.
  • the thickness direction X, the major axis direction Y and the minor axis direction Z are introduced here according to the three-dimensional structure of the sound-emitting part 11, wherein the major axis direction Y and the minor axis direction Z are perpendicular, and the thickness direction X is perpendicular to the plane formed by the major axis direction Y and the minor axis direction Z.
  • the confirmation process of the solid-line frame P is as follows: determine the two points of the sound-emitting part 11 that are farthest apart in the major axis direction Y, and make the first line segment and the second line segment parallel to the minor axis direction Z through the two points respectively.
  • the sound-emitting part 11 when the user wears the open earphone 10, at least part of the sound-emitting part 11 thereof can extend into the user's concha cavity, forming the acoustic model shown in FIG. 4 . Since the sound-emitting part 11 cannot be closely fitted with the concha cavity, a gap is formed, which corresponds to the leakage structure 403 shown in FIG. 4 . That is, when the open earphone is worn, when part or the entire structure of the sound-emitting part 11 extends into the concha cavity, the projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane have an overlapping area.
  • the ratio of the overlapping area will affect the size of the opening area of the leakage structure 403 of the cavity-like structure 403 in the acoustic model shown in FIG. 4 .
  • the overlapping ratio between the sound-emitting part 11 and the concha cavity is relatively large, the sound-emitting part 11 can cover a larger part of the concha cavity.
  • the size of the gap between the sound-emitting part 11 and the concha cavity is small, that is, the opening area of the leakage structure 403 of the cavity-like structure 403 is small.
  • FIG6 is a schematic diagram of a cavity-like structure according to some embodiments of the present specification
  • FIG7 is a graph of a listening index of a cavity-like structure with leakage structures of different sizes according to some embodiments of the present specification.
  • the opening area of the leakage structure on the cavity-like structure is S
  • the area of the cavity-like structure directly affected by the contained sound source is S0 .
  • "Direct action” here means that the sound emitted by the contained sound source directly acts on the wall of the cavity-like structure without passing through the leakage structure.
  • the distance between the two sound sources is d0
  • the distance from the center of the opening shape of the leakage structure to the other sound source (“-" shown in FIG6) is L.
  • the listening index may refer to the sound pressure level intensity measured at the listening position. This is because the larger the relative opening, the more sound components directly radiated outward by the contained sound source, and the less sound reaching the listening position, causing the listening volume to decrease as the relative opening increases, thereby causing the listening index to decrease. It can be inferred that the larger the opening, the smaller the listening volume at the listening position.
  • the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the projection area of the concha cavity on the sagittal plane can be controlled within a specific range to control the size of the opening.
  • the overlapping ratio can be understood as the ratio of the overlapping area of the first projection area and the projection area of the concha cavity on the sagittal plane to the projection area of the concha cavity on the sagittal plane.
  • FIG8 is a schematic diagram of an exemplary frequency response curve corresponding to different overlapping ratios of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the projection area of the user's concha cavity on the sagittal plane according to some embodiments of the present specification.
  • the abscissa represents the frequency (unit: Hz)
  • the ordinate represents the frequency response at the ear canal opening corresponding to different overlapping ratios (unit: dB).
  • the listening volume at the user's ear canal opening is significantly improved compared to when the first projection and the projection of the concha cavity on the sagittal plane do not have an overlapping area (the overlapping ratio is 0%), especially in the mid-low frequency band.
  • the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be not less than 9.26%.
  • the overlap ratio of the first projection area of the sound-emitting part 11 on the sagittal plane and the projection area of the user's concha cavity on the sagittal plane increases, the user's The listening volume at the intersection is also improved, especially when the overlap ratio of the area of the first projection and the area of the projection of the user's concha cavity on the sagittal plane is increased from 36.58% to 44.01%, the listening effect is significantly improved. Based on this, in order to further improve the user's listening effect, the overlap ratio of the area of the first projection and the area of the projection of the user's concha cavity on the sagittal plane is not less than 44.01%.
  • the overlap ratio of the area of the first projection and the area of the projection of the user's concha cavity on the sagittal plane is not less than 57.89%.
  • the frequency response curve corresponding to the overlap ratio of the area of the first projection and the area of the projection of the user's concha cavity on the sagittal plane measured in the embodiment of this specification is measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis or vertical axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction) and the size of the sound-emitting part are constant.
  • the open-ear headphones provided in the embodiments of the present specification can make the sound-emitting part 11 better cooperate with the user's cavity of the concha to form the acoustic model shown in FIG. 4 by extending at least part of the sound-emitting part 11 into the cavity of the concha, and controlling the overlap ratio of the area of the first projection on the sagittal plane and the area of the projection of the cavity of the concha of the user on the sagittal plane to be no less than 44.01%, thereby improving the listening volume of the open-ear headphones at the listening position (for example, at the opening of the ear canal), especially the listening volume of mid- and low-frequency sounds.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane should not be too large.
  • the size of the sound-emitting part 11 extending into the concha cavity is too small, the fitting area of the sound-emitting part 11 and the user's concha cavity is small, and the concha cavity cannot be used to provide sufficient support and limit for the sound-emitting part 11, resulting in the problem of unstable wearing and easy falling off.
  • the size of the gap formed by the sound-emitting part 11 and the concha cavity is too large, which affects the listening volume of the user's ear canal opening.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be 44.01%-77.88%, so that when the part or the whole structure of the sound-emitting part 11 extends into the concha cavity, the force of the concha cavity on the sound-emitting part 11 can be used to support and limit the sound-emitting part 11 to a certain extent, thereby improving its wearing stability and comfort.
  • the sound-emitting part 11 can also form an acoustic model shown in FIG. 4 with the concha cavity to ensure the listening volume of the user at the listening position (for example, the ear canal opening) and reduce the leakage volume of the far field.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be 46%-71.94%.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's cavum concha on the sagittal plane may be 48%-65.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's cavum concha on the sagittal plane may be 57.89%-62%.
  • the size and contour shape of the concha cavity may be different for different users (for example, different ages, different genders, different heights and weights), and the projection area of the concha cavity of different users in the sagittal plane is within a certain range (for example, 320mm2-410mm2 ).
  • the overlap ratio of the projection area of the sound-emitting part 11 in the sagittal plane and the projection area of the concha cavity in the sagittal plane should not be too large or too small, and correspondingly, the overall size of the sound-emitting part 11 (especially the size along its long axis and the size along its short axis) should not be too large or too small.
  • the sound-emitting part 11 in the sagittal plane is too small, the sound-emitting part 11 cannot fully cover the concha cavity, and the gap formed between the sound-emitting part 11 and the concha cavity is large, resulting in a low listening volume at the user's ear canal opening.
  • the sound-emitting part 11 may cover the user's ear canal opening, making the ear canal opening unable to remain open, affecting the user's acquisition of sounds in the external environment.
  • the area of the first projection of the sound-emitting part 11 on the sagittal plane can be 202mm 2 -560mm 2 .
  • the area of the first projection of the sound-emitting part 11 on the sagittal plane can be 220mm 2 -500mm 2 .
  • the area of the first projection of the sound-emitting part 11 on the sagittal plane can be 300mm 2 -470mm 2 .
  • the area of the first projection of the sound-emitting part 11 on the sagittal plane can be 330mm 2 -440mm 2 .
  • the shape of the first projection of the sound-emitting part 11 in the sagittal plane may include a long axis direction Y and a short axis direction Z.
  • the volume of the sound-emitting part 11 is relatively small, so that the area of the diaphragm arranged inside it is also relatively small, resulting in low efficiency of the diaphragm pushing the air inside the shell of the sound-emitting part 11 to produce sound, affecting the acoustic output effect of the open-type earphone.
  • the sound-emitting part 11 in the long axis direction Y when the size of the sound-emitting part 11 in the long axis direction Y is too large, the sound-emitting part 11 exceeds the range of the concha cavity, cannot extend into the concha cavity, and cannot form a cavity-like structure, or the size of the gap formed between the sound-emitting part 11 and the concha cavity is very large, affecting the listening volume of the user wearing the open-type earphone 10 at the ear canal opening and the sound leakage effect in the far field.
  • the sound-emitting part 11 in the short axis direction Z when the size of the sound-emitting part 11 in the short axis direction Z is too large, the sound-emitting part 11 may cover the user's ear canal opening, affecting the user's acquisition of sound information in the external environment.
  • the size range of the shape of the first projection along the long axis direction Y may be between 12mm-32mm.
  • the size range of the shape of the first projection along the long axis direction Y is between 18mm-29mm. More preferably, the size range of the shape of the first projection along the long axis direction Y may be 20mm-27mm, and more preferably, the size range of the shape of the first projection along the long axis direction Y may be 22mm-25mm.
  • the size range of the shape of the first projection along the short axis direction Z is between 4.5mm-18mm.
  • the size range of the shape of the first projection along the short axis direction Z is between 10mm-15mm. More preferably, the size range of the shape of the first projection along the short axis direction Z may be 11 mm-13.5mm. Further preferably, the size of the shape of the first projection along the short axis direction Z can range from 12mm to 13mm.
  • the ratio of the size of the shape of the first projection of the sound-emitting part 11 in the sagittal plane along the long axis direction Y to the size of the shape of the first projection of the sound-emitting part 11 in the sagittal plane along the short axis direction Z is exemplarily described below.
  • FIG9 shows a schematic diagram of an exemplary frequency response curve corresponding to different ratios of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size along the short axis direction Z when the first projection area of the sound-emitting part 11 on the sagittal plane is constant (for example, 119 mm 2 ).
  • the abscissa represents the frequency (unit: Hz)
  • the ordinate represents the total sound pressure level (unit: dB) corresponding to different ratios of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size along the short axis direction Z.
  • the frequency response curves shown from top to bottom in FIG9 correspond to L5, L4, L3, L2 and L1 respectively within the range of 100 Hz-1000 Hz.
  • L1 is the frequency response curve corresponding to the ratio of the size of the first projection along the long axis direction Y to the size along the short axis direction Z of 4.99 (that is, the size of the first projection along the long axis direction Y is 24.93mm, and the size of the first projection along the short axis direction Z is 4.99mm)
  • L2 is the frequency response curve corresponding to the ratio of the size of the first projection along the long axis direction Y to the size along the short axis direction Z of 3.99 (that is, the size of the first projection along the long axis direction Y is 22.43mm, and the size of the first projection along the short axis direction Z is 5.61mm)
  • L3 is the frequency response curve corresponding to the ratio of the size of the first projection along the long axi
  • L4 is the frequency response curve corresponding to the time when the size of the first projection along the major axis direction Y to the size along the minor axis direction Z is approximately 2.0 (i.e. the size of the first projection along the major axis direction Y is 16.33 mm, and the size of the first projection along the minor axis direction Z is 8.16 mm).
  • L5 is the frequency response curve corresponding to the time when the size of the first projection along the major axis direction Y to the size along the minor axis direction Z is 1.0 (i.e. the size of the first projection along the major axis direction Y is 12.31 mm, and the size of the first projection along the minor axis direction Z is 12.31 mm). According to FIG.
  • the resonance frequencies corresponding to the frequency response curves L1-L5 are substantially the same (all about 3500 Hz), but when the ratio of the size of the first projection along the long axis direction Y to the size along the short axis direction Z is 1.0-3.0, the frequency response curve of the sound-emitting part 11 is smoother overall, and has a better frequency response at 100 Hz-3500 Hz.
  • the frequency is 5000 Hz, the larger the ratio of the size of the first projection along the long axis direction Y to the size along the short axis direction Z, the faster the sound frequency response of the sound-emitting part 11 at the ear canal opening decreases.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z can be set between 1.0-3.0.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z may be between 1.4-2.5.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z may be between 1.4-2.3.
  • the ratio of the dimension of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the dimension of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z may be between 1.45 and 2.0. It can be understood that when the sound-emitting part 11 has different length-to-width ratios, the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane will have different overlapping ratios.
  • the projection area of the sound-emitting part 11 on the sagittal plane in a normal wearing state can be relatively moderate, which can avoid the projection area of the sound-emitting part 11 on the sagittal plane being too small, resulting in a large gap between the sound-emitting part 11 and the concha cavity, resulting in a low listening volume at the user's ear canal opening, and also avoid the projection area of the sound-emitting part 11 on the sagittal plane being too large, which makes the ear canal opening unable to remain open, affecting the user's acquisition of sounds in the external environment, thereby enabling the user to have a better acoustic experience.
  • the frequency response curve measured in FIG9 is obtained through a simulation experiment.
  • the human auditory system is simulated by the model of the P.574.3 full-band human ear simulator, and the auricle defined by the ITU-TP.57 standard is used to simulate the human auricle.
  • the auricle under this standard includes the geometric shape of the ear canal.
  • the frequency response curves corresponding to the different long-axis dimensions and short-axis dimensions measured in the embodiments of this specification are measured by changing the different long-axis dimensions and short-axis dimensions when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction) and the wearing position are constant.
  • the size of the sound-emitting portion 11 in the thickness direction X may also affect the listening experience of the user wearing the open-ear headphones, which will be further explained below in conjunction with FIG. 10 .
  • FIG10 shows the frequency response curves of the sound-emitting part 11 when it has different sizes in the thickness direction X when the area of the first projection of the sound-emitting part 11 on the sagittal plane is constant and the ratio of the size of the first projection along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z is constant.
  • the horizontal axis represents the frequency (unit: Hz)
  • the vertical axis represents the sound pressure level at the ear canal opening at different frequencies (unit: dB).
  • Frequency response curve 1001 is the frequency response curve corresponding to the size of the sound-emitting part 11 in the thickness direction of 20 mm
  • frequency response curve 1002 is the frequency response curve corresponding to the size of the sound-emitting part 11 in the thickness direction of 10 mm
  • frequency response curve 1003 is the frequency response curve corresponding to the size of the sound-emitting part 11 in the thickness direction of X of 10 mm
  • 1004 is the frequency response curve corresponding to the sound-emitting portion 11 when the size in the thickness direction X is 5 mm
  • the frequency response curve 1005 is the frequency response curve corresponding to the size in the thickness direction X of the sound-emitting portion 11 is 1 mm.
  • the size of the sound-emitting portion 11 along the thickness direction X (also referred to as the thickness) is proportional to the size of the front cavity of the sound-emitting portion 11 along the thickness direction X.
  • the smaller the size of the front cavity along the thickness direction X the larger the resonant frequency corresponding to the corresponding front cavity resonance peak, and the flatter the frequency response curve in the lower frequency range (100Hz-1000Hz).
  • the sound outlet is acoustically coupled with the front cavity, and the sound in the front cavity is transmitted to the user's ear canal through the sound outlet and received by the user's auditory system.
  • the resonant frequency corresponding to the front cavity resonance peak corresponding to the sound-emitting portion 11 is too small, which will affect the acoustic performance of the sound-emitting portion 11 in the lower frequency band.
  • the overall size or weight of the sound-emitting portion 11 is large, which affects the stability and comfort of wearing. If the size of the sound-emitting part 11 in the thickness direction X is too small, the space of the front cavity and the rear cavity of the sound-emitting part 11 is limited, which affects the vibration amplitude of the diaphragm and limits the output of the sound-emitting part 11 at low frequency and large amplitude.
  • the thickness of the sound-emitting part 11 (the size along the thickness direction of the sound-emitting part 11) can be 2mm-20mm.
  • the thickness of the sound-emitting part 11 can be 5mm-15mm. More preferably, the thickness of the sound-emitting part 11 can be set to 8mm-12mm.
  • the thickness of the sound-emitting part 11 can refer to the maximum distance between the inner side and the outer side of the sound-emitting part 11 in the thickness direction X.
  • the frequency response curves corresponding to different thicknesses measured in the embodiments of this specification are measured by changing the thickness direction dimension of the sound-emitting part when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction), the wearing position, and the dimensions in the long axis direction and the short axis direction are certain.
  • 11A-11C are schematic diagrams of different exemplary fitting positions of an open-type earphone and a user's ear canal according to the present specification.
  • the size of the gap formed between the sound-producing part 11 and the edge of the concha cavity is related to the inclination angle of the projection of the upper side wall 111 (also called the upper side) or the lower side wall 112 (also called the lower side) of the sound-producing part 11 on the sagittal plane and the horizontal direction (parallel to the sagittal axis S and in the same direction), the size of the sound-producing part 11 (for example, the size along the short axis direction Z and the long axis direction Y shown in FIG. 11A , and the size along the thickness direction X shown in FIG. 3 ), and the distance of the end FE of the sound-producing part 11 relative to the edge of the concha cavity.
  • the distance of the end FE of the sound-producing part 11 relative to the edge of the concha cavity can be characterized by the distance between the midpoint of the projection of the end FE of the sound-producing part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane.
  • the concha cavity refers to the concave area below the crus of the helix, that is, the edge of the concha cavity is composed of at least the side wall below the crus of the helix, the contour of the tragus, the intertragic notch, the antitragic cusp, the tragic notch, and the contour of the antihelical body corresponding to the concha cavity.
  • the projection of the edge of the cavum concha on the sagittal plane is the contour of the projection of the cavum concha on the sagittal plane.
  • one end of the sound-emitting part 11 is connected to the suspension structure 12 (the second part 122 of the ear hook), and when the user wears it, part or the entire structure of the sound-emitting part 11 extends into the cavum concha, and the position of the end FE (free end) of the sound-emitting part 11 relative to the edge of the cavum concha will affect the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the cavum concha on the sagittal plane, thereby affecting the size of the gap formed between the sound-emitting part 11 and the cavum concha, and further affecting the listening volume at the user's ear canal opening.
  • the distance between the midpoint of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can reflect the position of the end FE of the sound-emitting part 11 relative to the cavum concha and the extent to which the sound-emitting part 11 covers the user's cavum concha.
  • the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane can be selected by the following exemplary method: two points of the projection of the terminal FE on the sagittal plane with the largest distance along its short axis direction can be selected to make a line segment, and the midpoint of the line segment can be selected as the perpendicular bisector, and the point where the perpendicular bisector intersects with the projection is the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • the tangent point of the tangent line parallel to the short axis direction Z on its projection can also be selected as the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • the end FE of the sound-emitting portion 11 is located in the cavum concha 102, that is, the midpoint of the projection of the end FE of the sound-emitting portion 11 on the sagittal plane does not overlap with the projection of the edge of the cavum concha 102 on the sagittal plane.
  • the sound-emitting portion 11 of the open-type earphone 10 extends into the cavum concha 102, and the end FE of the sound-emitting portion 11 abuts against the edge of the cavum concha 102, that is, the midpoint of the projection of the end FE of the sound-emitting portion 11 on the sagittal plane overlaps with the projection of the edge of the cavum concha 102 on the sagittal plane.
  • the sound-emitting portion 11 of the open-type earphone 10 covers the cavum concha, and the end FE of the sound-emitting portion 11 is located between the edge of the cavum concha 102 and the inner contour 1014 of the auricle.
  • the midpoint C3 of the projection of the end FE of the sound-emitting part on the sagittal plane is located between the projection of the edge of the cavum concha 102 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane, if the midpoint C3 of the projection of the end FE of the sound-emitting part on the sagittal plane and the projection of the edge of the cavum concha 102 on the sagittal plane are too large, the end FE of the sound-emitting part 11 will interfere with the auricle, and the ratio of the sound-emitting part 11 covering the cavum concha 102 cannot be increased.
  • the edge of the concha cavity 102 cannot limit the sound-emitting part 11, and it is easy to fall off.
  • the increase in the size of the sound-emitting part 11 will increase its own weight, affecting the user's wearing comfort and carrying convenience. Convenience.
  • the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane can be selected by the following illustrative method, that is, the starting point and the terminal point of the projection of the terminal FE on the sagittal plane can be selected to make a line segment, and the midpoint of the line segment can be selected to make the perpendicular bisector, and the point where the perpendicular bisector intersects with the projection is the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • the tangent point of the tangent line parallel to the short-axis direction Z on its projection can also be selected as the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • FIG12 is a schematic diagram of exemplary frequency response curves corresponding to different distances between the projection of the end of the sound-emitting part in the sagittal plane and the projection of the edge of the cavum concha in the sagittal plane according to some embodiments of the present specification.
  • frequency response curve 1201 is a frequency response curve when the distance between the midpoint C3 of the projection of the end of the sound-emitting part in the sagittal plane and the projection of the edge of the cavum concha in the sagittal plane is 0 mm (for example, in the wearing state, the end of the sound-emitting part 11 is against the edge of the cavum concha)
  • frequency response curve 1202 is a frequency response curve when the distance between the midpoint C3 of the projection of the end of the sound-emitting part in the sagittal plane and the projection of the edge of the cavum concha in the sagittal plane is 4.77 mm
  • frequency response curve 1203 is a frequency response curve when the distance between the midpoint C3 of the projection of the end of the sound-emitting part in the sagittal plane and the
  • the frequency response curve 1204 is the frequency response curve when the projection distance between the midpoint C3 of the projection of the end of the vocal part in the sagittal plane and the edge of the concha cavity is 10.48 mm.
  • the frequency response curve 1205 is the frequency response curve when the projection distance between the midpoint C3 of the projection of the end of the vocal part in the sagittal plane and the edge of the concha cavity is 15.3 mm.
  • the frequency response curve 1206 is the frequency response curve when the projection distance between the midpoint C3 of the projection of the end of the vocal part in the sagittal plane and the edge of the concha cavity is 19.24 mm.
  • FIG12 it can be seen that when the distance between the midpoint C3 of the projection of the end of the sound-emitting part 11 on the sagittal plane and the edge of the concha cavity on the sagittal plane is 0 mm (for example, when the wearer is wearing the sound-emitting part 11, the end of the sound-emitting part 11 abuts against the edge of the concha cavity), 4.77 mm, and 7.25 mm, the sound pressure level of the sound measured at the ear canal opening is relatively large.
  • the sound pressure level of the sound measured at the ear canal opening is relatively small.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane is not greater than 16 mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane is not greater than 13 mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0mm-10.92mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0mm-15.3mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0mm-10.48mm. More preferably, the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0mm-7.25mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0mm-4.77mm.
  • the end of the sound-emitting part may abut against the edge of the concha cavity, which can be understood as the projection of the end FE of the sound-emitting part 11 in the sagittal plane overlapping with the projection of the edge of the concha cavity in the sagittal plane (for example, the position of the sound-emitting part 11 relative to the concha cavity shown in FIG.
  • the sound-emitting part 11 can have a better frequency response. At this time, the end of the sound-emitting part 11 abuts against the edge of the concha cavity, which can support and limit the sound-emitting part 11, thereby improving the stability of the user wearing the open earphone.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 in the sagittal plane and the projection of the edge of the concha cavity 102 in the sagittal plane can refer to the minimum distance from the midpoint C3 of the projection of the end FE of the sound-emitting part 11 in the sagittal plane to the projection of the edge of the concha cavity 102 in the sagittal plane.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha 102 on the sagittal plane may also refer to the distance along the sagittal axis.
  • the distance between the projection of the end of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane involved in FIG. 12 is measured in the scene where the end of the sound-emitting part 11 extends into the cavum concha.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane may be greater than 0 mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane may be 2 mm-16 mm.
  • the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 4mm-10.48mm.
  • the cavum concha 102 is a concave structure, and the side wall corresponding to the cavum concha 102 is not a flat wall surface, and the projection of the edge of the cavum concha on the sagittal plane is an irregular two-dimensional shape.
  • the projection of the side wall corresponding to the cavum concha 102 on the sagittal plane may be on the outline of the shape or outside the outline of the shape.
  • the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane may not overlap with the projection of the edge of the cavum concha 102 on the sagittal plane.
  • the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane may be on the inside or outside of the projection of the edge of the cavum concha 102 on the sagittal plane.
  • the terminal FE of the sound-emitting part 11 and the projection of the edge of the cavum concha on the sagittal plane are not overlapped.
  • the end FE of the sound-emitting part 11 can be regarded as abutting against the edge of the concha cavity 102 .
  • the frequency response curves corresponding to different distances between the midpoint of the projection of the end FE of the sound-emitting part on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane measured in the embodiments of this specification are measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction), and the dimensions in the long axis direction, the short axis direction and the thickness direction are constant.
  • the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the ear canal opening on the sagittal plane may at least partially overlap.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane can reflect the relative positional relationship between the sound-emitting part 11 and the ear canal opening and the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the ear canal opening on the sagittal plane.
  • the overlap ratio will affect the number of leakage structures of the cavity-like structure formed by the sound-emitting part 11 and the user's ear and the opening size of the leakage structure, and the opening size of the leakage structure will directly affect the listening quality, which is specifically manifested in that the larger the opening of the leakage structure, the more sound components directly radiated outward from the sound-emitting part 11, and the less sound reaching the listening position.
  • Fig. 13A is a schematic diagram of an exemplary frequency response curve corresponding to different overlapping ratios of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane according to some embodiments of the present specification
  • Fig. 13B is a schematic diagram of an exemplary frequency response curve corresponding to different distances between the centroid of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid of the projection of the ear canal opening on the sagittal plane according to some embodiments of the present specification.
  • the horizontal axis is the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane
  • the vertical axis is the sound pressure level of the sound at the ear canal opening corresponding to different overlapping ratios.
  • Straight line 1301 represents the linear relationship between the overlapping ratio of the area of the first projection and the area of the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 500 Hz;
  • straight line 1302 represents the linear relationship between the overlapping ratio of the area of the first projection and the area of the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 1 kHz;
  • straight line 1303 represents the linear relationship between the overlapping ratio of the area of the first projection and the area of the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 3 kHz.
  • the hollow circular points in Figure 13A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 500 Hz;
  • the circular points with lighter grayscale values in Figure 13A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 1 kHz;
  • the black circular points in Figure 13A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 3 kHz.
  • the overlap ratio between the area of the first projection and the area of the projection of the concha cavity on the sagittal plane is approximately positively correlated with the sound pressure level at the user's ear canal opening.
  • the sound of a specific frequency for example, 500 Hz, 1 kHz, 3 kHz measured at the ear canal opening is significantly improved compared to when the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane do not overlap (the overlap ratio is 0).
  • the overlap ratio between the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane can be set between 44.01% and 80%.
  • the overlap ratio is 22% or 32%, the sound pressure level of the sound at the ear canal opening is relatively large, but the structure of the sound-emitting part 11 extending into the concha cavity is limited, and the edge of the concha cavity cannot support and limit the end of the sound-emitting part 11.
  • the overlap ratio of the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane can be between 45% and 71.49%.
  • the horizontal axis is the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane
  • the vertical axis is the sound pressure level of the sound at the ear canal opening corresponding to different distances.
  • Line 1304 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 500 Hz;
  • Line 1305 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 1 kHz;
  • Line 1306 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 3 kHz.
  • the hollow circular points in FIG13B represent the test data corresponding to different distances between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane when the frequency is 500 Hz;
  • the black circular points in FIG13B represent the test data corresponding to different distances between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane when the frequency is 1 kHz;
  • the circular points with lighter gray values in FIG13B represent the test data corresponding to different distances between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane when the frequency is 3 kHz.
  • the overlap ratio will affect the number of leakage structures of the cavity-like structure formed by the sound-emitting part 11 and the user's ear and the size of the opening of the leakage structure, and the size of the opening of the leakage structure will directly affect the listening quality, which is specifically manifested in that the larger the opening of the leakage structure, the more sound components directly radiated outward from the sound-emitting part 11, and the less sound reaching the listening position.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane should not be too large.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane can be 3mm-15mm.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane can be 4mm-13mm. More preferably, the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid P of the projection of the ear canal opening on the sagittal plane can be 8mm-10mm.
  • the frequency response curves corresponding to different overlapping ratios and the frequency response curves corresponding to the centroid of the first projection and the centroid of the projection of the ear canal opening in the sagittal plane measured in the embodiments of this specification are measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction), and the dimensions in the long axis direction, the short axis direction and the thickness direction are constant.
  • the positional relationship between the sound-producing part 11 and the auricle, the concha cavity or the ear canal opening involved in the embodiments of the present specification can be determined by the following exemplary method: first, at a specific position, a photograph of a human head model with an ear is taken in the direction opposite to the sagittal plane, and the edge of the concha cavity, the outline of the ear canal opening and the auricle outline (for example, the inner outline and the outer outline) are marked. These marked outlines can be regarded as the projection outlines of various structures of the ear on the sagittal plane; then, at the specific position, a photograph of the human head model wearing open headphones is taken at the same angle, and the outline of the sound-producing part is marked.
  • the outline can be regarded as the projection of the sound-producing part on the sagittal plane.
  • the positional relationship between the sound-producing part (for example, the centroid, the end, etc.) and the edge of the concha cavity, the ear canal opening, the inner outline or the outer outline can be determined by comparative analysis.
  • the aforementioned Figures 1 to 13B and the corresponding description contents are about the situation that the whole or part of the sound-emitting part extends into the concha cavity when the open earphone is worn.
  • the sound-emitting part 11 may not extend into the concha cavity.
  • at least part of the sound-emitting part 11 shown in Figure 14 covers the antihelix area.
  • the sound-emitting part 11 shown in Figure 16E partially covers the antihelix area, but is suspended relative to the concha cavity. The following will be specifically described in conjunction with Figures 14 to 18B.
  • FIG. 14 is a schematic diagram of an exemplary wearing method of an open-type headset according to other embodiments of the present specification.
  • the sound-emitting part 11 when the open-type earphone 10 is in the wearing state, at least part of the sound-emitting part 11 may cover the anti-helix region of the user, wherein the anti-helix region may include any one or more of the anti-helix 105, the anti-helix upper crus 1011, and the anti-helix lower crus 1012 shown in FIG. 1 .
  • the sound-emitting part 11 is located in the M1 region (shown in FIG. 1 ) above the cavum conchae 102 and the ear canal opening, so that the ear canal opening of the user is in an open state.
  • the shell of the sound-emitting part 11 may include at least one sound outlet and a pressure relief hole, the sound outlet is acoustically coupled with the front cavity of the open-type earphone 10, and the pressure relief hole is acoustically coupled with the back cavity of the open-type earphone 10, wherein the sound output by the sound outlet and the sound output by the pressure relief hole can be approximately regarded as two point sound sources, and the sound of the two point sound sources has opposite phases to form a dipole.
  • the sound outlet is located on the side wall of the sound-emitting part 11 facing or close to the ear canal opening of the user
  • the pressure relief hole is located on the side wall of the sound-emitting part 11 away from or away from the ear canal opening of the user.
  • the shell of the sound-emitting part 11 itself can act as a baffle, increasing the difference in acoustic path from the sound-emitting hole and the pressure relief hole to the external auditory canal 101, so as to increase the sound intensity at the external auditory canal 101.
  • the side wall of the sound-emitting part 11 is against the anti-helix area, and the concave-convex structure of the anti-helix area can also act as a baffle, which will increase the acoustic path of the sound emitted by the pressure relief hole to the external auditory canal 101, thereby increasing the difference in acoustic path from the sound-emitting hole and the pressure relief hole to the external auditory canal 101, increasing the sound intensity at the external auditory canal 101, and reducing the volume of far-field sound leakage.
  • FIG15 is a schematic diagram of an exemplary frequency response curve corresponding to different overlapping ratios of the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the cavum concha on the sagittal plane in a wearing mode in which the sound-emitting part 11 at least partially covers the antihelix area as shown in some embodiments of the present specification.
  • the horizontal axis represents the frequency (unit: Hz)
  • the vertical axis represents the sound pressure level (unit: dB) measured at the opening of the ear canal at different frequencies.
  • the sound hole is usually arranged on the side wall of the sound-emitting part 11 close to or facing the ear canal opening.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane is larger, it means that the sound hole of the sound-emitting part 11 will usually be closer to the ear canal opening. Therefore, even if the baffle effect of the antihelix area and the sound-emitting part 11 is weakened, the listening volume at the ear canal opening can also be improved. Continuing to refer to FIG.
  • the listening volume at the ear canal opening is significantly improved compared to when the overlap ratio is less than 11.821%, that is, the sound-emitting part 11 can also produce a better frequency response when covering part of the concha cavity and the antihelix area at the same time.
  • the sound-emitting part 11 in order to improve the user's listening effect when wearing open headphones, needs to cover the antihelix while also satisfying that the overlap ratio of the area of the first projection on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane is not less than 11.82%.
  • the overlap ratio of the projection area of the first projection of the sound-emitting part 11 on the sagittal plane and the projection area of the user's concha cavity on the sagittal plane can be not less than 31.83%.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane is too large, the sound-emitting part 11 will cover the ear canal opening, and the ear canal opening cannot be kept fully open, affecting the user's acquisition of the sound in the external environment. More preferably, in some embodiments, the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be 11.82%-62.50%.
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be 31.83%-50.07%. More preferably, the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the user's concha cavity on the sagittal plane can be 35.55%-45%.
  • the frequency response curve corresponding to the overlapping ratio of the area of the first projection measured in the embodiment of this specification and the area of the projection of the user's concha cavity on the sagittal plane is measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis or the vertical axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction, for example, the angle between the upper side wall and the horizontal direction is 0°) and the size of the sound-emitting part are constant.
  • the angle between the sound-emitting portion 11 and the sagittal plane is slightly smaller than that in the wearing mode in which at least part of the sound-emitting portion 11 in the open-type earphone shown in FIG3 extends into the cavum concha. Therefore, in the wearing mode in which at least part of the sound-emitting portion 11 covers the user's antihelix area, the projection area of the sound-emitting portion in the open-type earphone shown in FIG14 on the sagittal plane is slightly larger than that of the open-type earphone shown in FIG14.
  • the area of the first projection of the sound-emitting portion 11 on the sagittal plane may be 236 mm 2 -565 mm 2 .
  • the first projection area of the sound-emitting part 11 in the sagittal plane may be between 250mm 2 and 550mm 2.
  • the first projection area of the sound-emitting part 11 in the sagittal plane may be 270mm 2 -500mm 2. More preferably, in the worn state, the first projection area of the sound-emitting part 11 in the sagittal plane may be 290mm 2 -450mm 2. More preferably, in the worn state, the first projection area of the sound-emitting part 11 in the sagittal plane may be 320mm 2 -410mm 2 .
  • the projection shape of the first projection of the sound-emitting part 11 on the sagittal plane may include a long axis direction (e.g., the Y axis direction) and a short axis direction (e.g., the Z axis direction).
  • the volume of the sound-emitting part 11 is relatively small, so that the area of the diaphragm arranged inside it is also relatively small, resulting in low efficiency of the diaphragm in pushing the air inside the shell of the sound-emitting part 11 to produce sound at low frequencies, affecting the acoustic output effect of the open earphone.
  • the size of the sound-emitting part 11 in the long axis direction Y is too small or the size in the short axis direction is too small, the distance between the sound outlet and the pressure relief hole of the sound-emitting part 11 is too small, resulting in a small sound path difference between the sound at the sound outlet and the sound at the pressure relief hole, affecting the listening volume at the user's ear canal opening. If the size of the sound-emitting part 11 in the long axis direction Y is too large, the sound-emitting part 11 may extend out of the user's auricle, thereby causing discomfort when wearing.
  • the size of the sound-emitting part 11 in the long axis direction Y is too small, there is a gap between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle, and the sound emitted by the sound outlet and the sound emitted by the pressure relief hole will be acoustically short-circuited in the area between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle, resulting in a decrease in the listening volume at the user's ear canal opening.
  • the larger the area between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle the more obvious the acoustic short-circuit phenomenon.
  • the size range of the shape of the first projection along the long axis direction Y can be between 21mm-33mm.
  • the size range of the shape of the first projection along the long axis direction Y can be 21.5mm-31mm. More preferably, the size range of the shape of the first projection along the long axis direction Y can be 21.5mm-26.5mm.
  • the size of the shape of the first projection along the short axis direction Z ranges from 11 mm to 18 mm.
  • the size of the shape of the first projection along the short axis direction Z may range from 11.5 mm to 16.5 mm. More preferably, the size of the shape of the first projection along the short axis direction Z may range from 11.5 mm to 16 mm.
  • the ratio of the size of the shape of the first projection of the sound-emitting part 11 in the sagittal plane along the long axis direction Y to the size of the shape of the first projection of the sound-emitting part 11 in the sagittal plane along the short axis direction Z is exemplified below.
  • the wearing method is constant (for example, the wearing position and wearing angle are fixed), for the wearing method in which the sound-emitting part 11 covers the antihelix, the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size along the short axis direction Z has an effect on the acoustic output effect of the sound-emitting part 11 that can be considered to be roughly the same as the wearing method in which the sound-emitting part 11 extends into the concha cavity as described above.
  • the frequency response curve of the sound-emitting part 11 is relatively smoother as a whole, and has a better frequency response in the mid- and low-frequency range.
  • the frequency is in the high-frequency range, the larger the ratio of the size of the first projection along the long axis direction Y to the size along the short axis direction Z, the faster the sound frequency response of the sound-emitting part 11 at the ear canal opening decreases.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z can be set between 1.0-3.0.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z can be set between 1.4-2.5.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z can be set between 1.4-2.3.
  • the ratio of the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction Y to the size of the projection of the sound-emitting part 11 on the sagittal plane along the short axis direction Z can be set between 1.45-2.0.
  • the frequency response curves corresponding to the different long-axis dimensions and short-axis dimensions measured in the embodiments of this specification are measured by changing the long-axis dimensions and short-axis dimensions when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction) and the wearing position are constant.
  • the wearing method is certain (for example, the wearing position and wearing angle are fixed), for the wearing method in which the sound-emitting part 11 covers the antihelix, the influence of the thickness of the sound-emitting part 11 on the acoustic output effect of the sound-emitting part 11 can also be regarded as being roughly the same as the wearing method in which the sound-emitting part 11 extends into the concha cavity as described above.
  • the size of the sound-emitting part 11 along the thickness direction X (also referred to as the thickness) is proportional to the size of the front cavity of the sound-emitting part 11 along the thickness direction X.
  • the sound outlet is acoustically coupled to the front cavity, and the sound in the front cavity is transmitted to the user's ear canal opening through the sound outlet and received by the user's auditory system. If the size of the sound-emitting part 11 in the thickness direction X is too large, the resonance frequency corresponding to the resonance peak of the front cavity corresponding to the sound-emitting part 11 is too small.
  • the overall size or weight of the sound-emitting part 11 when worn, the overall size or weight of the sound-emitting part 11 is large, which affects the stability and comfort of wearing.
  • the excessive size of the sound-emitting part 11 in the thickness direction X will affect the acoustic performance of the sound-emitting part 11 in the lower frequency band. If the size of the sound-emitting part 11 in the thickness direction X is too small, the space of the front cavity and the rear cavity of the sound-emitting part 11 is limited, which affects the vibration amplitude of the diaphragm and limits the low-frequency output of the sound-emitting part 11.
  • the thickness of the sound-emitting part 11 (the size along the thickness direction of the sound-emitting part 11) can be 2mm-20mm.
  • the thickness of the sound-emitting part 11 can be 5mm-15mm. More preferably, the thickness of the sound-emitting part 11 can be set to 8mm-12mm.
  • the thickness of the sound-emitting part 11 may refer to the maximum distance between the inner side surface and the outer side surface of the sound-emitting part 11 in the thickness direction X.
  • the frequency response curves corresponding to different thicknesses measured in the embodiments of this specification are measured by changing the thickness direction dimension of the sound-emitting part when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction, for example, the angle between the upper side wall and the horizontal direction is 0°), the wearing position, and the dimensions in the major axis direction and the minor axis direction are certain.
  • FIG16A-FIG16E are exemplary wearing diagrams of open-type earphones according to other embodiments of the present specification.
  • the upper side wall 111 also referred to as the upper side
  • the lower side wall 112 also referred to as the lower side
  • the sound-emitting portion 11 in the wearing state may be parallel or approximately parallel to the horizontal plane.
  • the projection of the end FE of the sound-emitting portion 11 in the sagittal plane may be located in the area between the projection of the inner contour 1014 of the auricle in the sagittal plane and the projection of the edge of the cavum concha 102 in the sagittal plane, that is, the midpoint of the projection of the end FE of the sound-emitting portion 11 in the sagittal plane is located between the projection of the inner contour 1014 of the auricle in the sagittal plane and the projection of the edge of the cavum concha 102 in the sagittal plane.
  • the end FE of the sound-emitting part 11 may abut against the edge of the cavum concha 102, the fixed end of the sound-emitting part 11 may be located in front of the tragus, and at least part of the sound-emitting part 11 may cover the user's cavum concha 102. As shown in Fig.
  • the midpoint of the projection of the end FE of the sound-emitting part 11 on the sagittal plane may be located within the projection area of the cavum concha 102 on the sagittal plane, and the projection of the fixed end of the sound-emitting part 11 on the sagittal plane may be located outside the projection area of the user's auricle on the sagittal plane.
  • the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 in the wearing state may also be inclined at a certain angle relative to the horizontal plane.
  • the end FE of the sound-emitting part 11 may be inclined toward the area of the top of the auricle relative to the fixed end of the sound-emitting part 11, and the end FE of the sound-emitting part 11 may be against the inner contour 1014 of the auricle.
  • the fixed end of the sound-emitting part 11 may be inclined toward the area of the top of the auricle relative to the end FE of the sound-emitting part 11, and the end FE of the sound-emitting part 11 may be located between the edge of the cavum concha 102 and the inner contour 1014 of the auricle, that is, the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane is located at the intersection of the projection of the inner contour 1014 of the auricle on the sagittal plane and the edge of the cavum concha 102 on the sagittal plane. Between the projections on the surface.
  • the distance between the centroid O of the first projection and a point in a certain area of the boundary of the second projection is too large, there may be a gap between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle, and the sound emitted by the sound outlet and the sound emitted by the pressure relief hole will be acoustically short-circuited in the area between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle, resulting in a decrease in the listening volume at the user's ear canal opening, and the larger the area between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle, the more obvious the acoustic short-circuit phenomenon is.
  • the inner contour 1014 of the auricle may refer to the inner wall of the helix, and correspondingly, the outer contour 1013 of the auricle may refer to the outer wall of the helix.
  • the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane may be no more than 8 mm.
  • the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane may be 0 mm-6 mm. More preferably, the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane may be 0 mm-5.5 mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 0.
  • the distance is equal to 0, it means that the end FE of the sound-emitting part 11 is against the inner contour 1014 of the auricle.
  • the sound-emitting part 11 is against the inner contour 1014 of the auricle in the wearing state, thereby improving the stability of the open earphone when worn.
  • the area between the end FE of the sound-emitting part 11 and the inner contour 1014 of the auricle can be minimized to reduce the acoustic short-circuit area around the sound-emitting part 11, thereby increasing the listening volume at the user's ear canal opening. It should be noted that in a specific scenario, other points other than the midpoint C3 in the projection of the end FE of the sound-emitting part 11 on the sagittal plane can be against the edge of the inner contour 1014 of the auricle.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be greater than 0 mm. In some embodiments, the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 2mm-10mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 4mm-8mm.
  • the terminal FE of the sound-emitting part 11 refers to the end of the sound-emitting part 11 away from the connection between the sound-emitting part 11 and the ear hook.
  • the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane is a curve or a broken line
  • the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane can be selected by the following exemplary method.
  • the starting point and the terminal point of the projection of the terminal FE on the sagittal plane can be selected to make a line segment, and the midpoint on the line segment can be selected to make a perpendicular midline.
  • the point where the perpendicular midline intersects with the projection is the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • the tangent point of the tangent line parallel to the short axis direction Z on its projection can also be selected as the midpoint of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane.
  • the distance between the midpoint of the projection of the end FE of the sound-producing part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane may refer to the minimum distance between the projection of the end FE of the sound-producing part 11 on the sagittal plane and the projection area of the inner contour 1014 of the auricle on the sagittal plane.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-producing part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane may refer to the distance between the midpoint C3 of the projection of the end FE of the sound-producing part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal axis.
  • the length of the baffle formed by the sound-emitting part 11 and the antihelix region is related to the distance range between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane.
  • the inclination angle of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction will also affect the position of the sound outlet relative to the ear canal opening.
  • FIGS. 16A to 16E respectively.
  • the shape of the sound-emitting portion 11 may be a regular shape such as a cuboid, a quasi-cuboid (e.g., a runway shape), a cylinder, or other irregular shapes.
  • a regular shape such as a cuboid, a quasi-cuboid (e.g., a runway shape), a cylinder, or other irregular shapes.
  • the upper side wall 111 or the lower side wall 112 of the sound-emitting portion 11 may be parallel or approximately parallel to the horizontal direction when worn.
  • the inclination angle of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting portion 11 in the sagittal plane relative to the horizontal direction may range from 0° to 20°, and the distance between the midpoint C3 of the projection of the end FE of the sound-emitting portion 11 in the sagittal plane and the projection of the inner contour 1014 of the auricle in the sagittal plane may range from 0mm to 18mm.
  • the inclination angle range of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction can be 5°-15°, and the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 0mm-11mm;
  • the inclination angle range of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction can be 7°-12°, and the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 3mm-12mm
  • the end FE of the sound-emitting part 11 can be against the inner contour 1014 of the auricle, and at the same time, the ear hook can be attached to the back side of the user's ear, so that the sound-emitting part 11 and the ear hook cooperate to clamp the user's ear from the front and back sides, increase the resistance to prevent the open earphone 10 from falling off the ear, and improve the wearing stability of the open earphone 10.
  • the upper side wall 111 or the lower side wall 112 of the sound-emitting portion 11 may also be inclined at a certain angle relative to the horizontal plane. However, when the upper side wall 111 or the lower side wall 112 of the sound-emitting portion 11 is inclined at too large an angle relative to the horizontal plane, the sound-emitting portion 11 may extend out of the user's auricle, causing discomfort and instability in wearing.
  • the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting portion 11 on the sagittal plane may be inclined at an angle of no more than 43° to the horizontal direction.
  • the inclination angle of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction can range from 0° to 43°, and the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane ranges from 0mm to 15mm.
  • the inclination angle range of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction can be 30°-45°
  • the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 0mm-10mm; when the wearing method as shown in FIG.
  • the inclination angle range of the projection of the upper side wall 111 or the lower side wall 112 of the sound-emitting part 11 on the sagittal plane relative to the horizontal direction can be 25°-45°
  • the distance between the midpoint C3 of the projection of the terminal FE of the sound-emitting part 11 on the sagittal plane and the projection of the inner contour 1014 of the auricle on the sagittal plane can be 3mm-11mm.
  • the inclination angle of the projection of the upper side wall 111 of the sound-emitting part 11 on the sagittal plane to the horizontal direction may be the same as or different from the inclination angle of the projection of the lower side wall 112 on the sagittal plane to the horizontal direction.
  • the inclination angle of the projection of the upper side wall 111 on the sagittal plane to the horizontal direction and the inclination angle of the projection of the lower side wall 112 on the sagittal plane to the horizontal direction are the same.
  • the inclination angle of the projection of the upper side wall 111 on the sagittal plane to the horizontal direction and the inclination angle of the projection of the lower side wall 112 on the sagittal plane to the horizontal direction may be different.
  • the projection of the upper side wall 111 or the lower side wall 112 on the sagittal plane may be a curve or a broken line.
  • the inclination angle of the projection of the upper side wall 111 on the sagittal plane to the horizontal direction can be the angle between the tangent of the point where the curve or broken line has the largest distance to the ground plane and the horizontal direction
  • the inclination angle of the projection of the lower side wall 112 on the sagittal plane to the horizontal direction can be the angle between the tangent of the point where the curve or broken line has the smallest distance to the ground plane and the horizontal direction.
  • the sound-emitting part 11 of the open earphone shown in FIG. 14 may not cover the antihelix area, such as the wearing position shown in FIG. 16E. At this time, the sound-emitting part 11 does not extend into the concha cavity, but is suspended relative to the concha cavity of the user toward the side wall outside the ear of the user, that is, the sound-emitting part 11 itself acts as a baffle.
  • the distance between the projection of the end of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane is positively correlated with the overlap ratio between the first projection area of the sound-emitting part 11 on the sagittal plane and the projection area of the concha cavity on the sagittal plane.
  • the position of the sound-emitting hole of the sound-emitting part 11 relative to the ear canal opening is positively correlated with the distance between the projection of the end of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane.
  • Fig. 17 shows a schematic diagram of exemplary frequency response curves corresponding to different distances between the projection of the end of the sound-producing part in the sagittal plane and the projection of the edge of the concha cavity in the sagittal plane in Fig. 16E. Referring to Fig.
  • the abscissa represents frequency (unit: Hz)
  • the ordinate represents the sound pressure level at the ear canal opening at different frequencies (unit: dB)
  • curve 1801 is a frequency response curve corresponding to when the distance between the projection of the end of the sound-producing part 11 in the sagittal plane and the projection of the edge of the concha cavity in the sagittal plane is 0
  • curve 1802 is a frequency response curve corresponding to when the distance between the projection of the end of the sound-producing part 11 in the sagittal plane and the projection of the edge of the concha cavity in the sagittal plane is 3.72 mm
  • curve 1803 is a frequency response curve corresponding to when the distance between the projection of the end of the sound-producing part 11 in the sagittal plane and the projection of the edge of the concha cavity in the sagittal plane is 10.34 mm.
  • the frequency response when the distance between the projection of the end of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane is 0 mm and 3.72 mm is better than the frequency response when it is 10.34 mm.
  • the distance between the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be no more than 10.34 mm.
  • the distance between the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0 mm-7 mm. More preferably, the distance between the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0 mm-5 mm. More preferably, the distance between the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the cavum concha on the sagittal plane can be 0 mm-3.72 mm.
  • the projection of the end FE of the sound-emitting part 11 on the sagittal plane may be in contact with the edge of the concha cavity at other points except the midpoint C3, and the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane may be greater than 0 mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane can be 2mm-7mm.
  • the distance between the midpoint C3 of the projection of the end FE of the sound-emitting part 11 on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane can be 2mm-3.74mm.
  • the frequency response curves corresponding to different distances between the midpoint of the projection of the end FE of the sound-emitting part on the sagittal plane and the projection of the edge of the concha cavity on the sagittal plane measured in the embodiment of this specification are measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction, for example, the angle between the upper side wall and the horizontal direction is 0°), the size in the long axis direction, the size in the short axis direction and the thickness direction are constant.
  • the increase in the overlap ratio between the first projection area of the sound-emitting part 11 in the sagittal plane and the projection area of the concha cavity in the sagittal plane means that the sound outlet of the sound-emitting part 11 will be closer to the ear canal opening, which can also improve the listening effect at the ear canal opening.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 in the sagittal plane and the centroid Q of the projection of the ear canal opening in the sagittal plane also needs to be considered.
  • Fig. 18A is a schematic diagram of an exemplary frequency response curve corresponding to different overlapping ratios of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane in a wearing scenario when the sound-emitting part 11 does not extend into the concha cavity as shown in other embodiments of the present specification.
  • Fig. 18A is a schematic diagram of an exemplary frequency response curve corresponding to different overlapping ratios of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane in a wearing scenario when the sound-emitting part 11 does not extend into the concha cavity as shown in other embodiments of the present specification.
  • 18B is a schematic diagram of an exemplary frequency response curve corresponding to different distances between the centroid of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid of the projection of the ear canal opening on the sagittal plane in a wearing scenario when the sound-emitting part 11 does not extend into the concha cavity as shown in other embodiments of the present specification.
  • the horizontal axis is the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane
  • the vertical axis is the sound pressure level of the sound at the ear canal opening corresponding to different overlapping ratios.
  • Straight line 1601 represents the linear relationship between the overlapping ratio of the first projection area and the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 500 Hz;
  • straight line 1602 represents the linear relationship between the overlapping ratio of the first projection area and the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 1 kHz;
  • straight line 1603 represents the linear relationship between the overlapping ratio of the first projection area and the projection of the concha cavity on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 3 kHz.
  • the hollow circular points in Figure 18A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 500 Hz;
  • the black circular points in Figure 18A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 1 kHz;
  • the circular points with lighter gray values in Figure 18A represent the test data corresponding to the area of the first projection and the area of the projection of the cavum concha on the sagittal plane at different overlapping ratios when the frequency is 3 kHz.
  • the overlapping ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane is greater than 10%
  • the sound of a specific frequency (for example, 500Hz, 1kHz, 3kHz) measured at the ear canal opening has a significant improvement compared to when the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane have no overlapping ratio (the overlapping ratio is 0).
  • the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane is too large, it may affect the opening state of the ear canal opening, thereby affecting the user's acquisition of the sound in the external environment, therefore, the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane should not be too large, for example, the overlap ratio of the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the concha cavity on the sagittal plane is not greater than 62%.
  • the overlap ratio of the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane can be between 10% and 60%.
  • the overlap ratio of the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane can be between 10% and 45%. More preferably, the overlap ratio of the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane can be between 11.82% and 40%.
  • the overlap ratio of the first projection of the sound-producing part 11 on the sagittal plane and the projection of the cavum concha on the sagittal plane may be between 18% and 38%. More preferably, the overlap ratio of the first projection of the sound-producing part 11 on the sagittal plane and the projection of the cavum concha on the sagittal plane may be between 25% and 38%.
  • Fig. 18B wherein the horizontal axis is the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane, and the vertical axis is the frequency response sound pressure level of the sound at the ear canal opening corresponding to different distances.
  • Straight line 1604 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening at a frequency of 500Hz under ideal conditions;
  • straight line 1605 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening at a frequency of 1kHz.
  • Straight line 1606 represents the linear relationship between the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane and the sound pressure level at the ear canal opening when the frequency is 3kHz.
  • the hollow circular points in FIG18B represent the test data corresponding to the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane at different distances when the frequency is 500Hz;
  • the black circular points in FIG18B represent the test data corresponding to the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane at different distances when the frequency is 1kHz;
  • the circular points with lighter grayscale values in FIG18B represent the test data corresponding to the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane at different distances when the frequency is 3kHz.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane is approximately negatively correlated with the size of the sound pressure level at the user's ear canal opening.
  • the sound pressure level of the sound of a specific frequency e.g., 500 Hz, 1 kHz, 3 kHz
  • the centroid Q of the projection of the ear canal opening on the sagittal plane increases.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane is too small, the overlap ratio between the area of the first projection of the sound-emitting part 11 on the sagittal plane and the area of the projection of the ear canal opening on the sagittal plane is too large, and the sound-emitting part 11 may cover the user's ear canal opening, affecting the user's acquisition of sound information in the external environment.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane should not be too large.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane may be 3mm-13mm.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane may be 4mm-10mm.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane may be 4mm-7mm.
  • the distance between the centroid O of the first projection of the sound-emitting part 11 on the sagittal plane and the centroid Q of the projection of the ear canal opening on the sagittal plane may be 4mm-6mm.
  • the frequency response curves corresponding to different overlapping ratios and the frequency response curves corresponding to the centroid of the first projection and the centroid of the projection of the ear canal opening in the sagittal plane measured in the embodiments of this specification are measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis) when the wearing angle of the sound-emitting part (the angle between the upper side wall or the lower side wall and the horizontal direction, for example, the angle between the upper side wall and the horizontal direction is 0°), and the dimensions in the long axis direction, the short axis direction and the thickness direction are constant.
  • the present application uses specific words to describe the embodiments of the present application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” refer to a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment.
  • some features, structures or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Manufacturing & Machinery (AREA)
  • Headphones And Earphones (AREA)

Abstract

本说明书实施例提供一种开放式耳机,包括:发声部和耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,所述发声部至少部分插入耳甲腔,所述发声部在矢状面上的投影面积与所述耳甲腔在所述矢状面上的投影面积的重叠比例不小于44.01%。

Description

一种开放式耳机
交叉引用
本申请要求于2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,于2022年12月1日提交的申请号为202223239628.6,以及于2022年12月30日提交的申请号-PCT/CN2022/144339的PCT申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,特别涉及一种开放式耳机。
背景技术
随着声学输出技术的发展,声学装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。按照用户佩戴的方式,声学装置一般可以分为头戴式、耳挂式和入耳式等。
因此,有必要提供一种能够提高用户佩戴舒适度且具有较好的输出性能的开放式耳机。
发明内容
本说明书实施例之一提供一种开放式耳机,包括发声部和耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,所述发声部至少部分插入耳甲腔,所述发声部在矢状面上的投影面积与所述耳甲腔在所述矢状面上的投影面积的重叠比例不小于44.01%。
本说明书实施例之一还提供一种开放式耳机,包括发声部和耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;其中,所述发声部至少部分插入耳甲腔,所述发声部的末端在矢状面的投影到所述耳甲腔的边缘在所述矢状面的投影的距离不大于16mm。
本说明书实施例之一还提供一种开放式耳机,包括发声部和耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面一侧延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;所述发声部至少部分覆盖对耳轮区域,所述发声部在矢状面的投影面积与耳甲腔在所述矢状面的投影面积的重叠比例不小于11.82%。
本说明书实施例之一还提供一种开放式耳机,包括发声部和耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;所述发声部至少部分覆盖对耳轮,所述发声部的末端在矢状面的投影与所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性耳部示意图;
图2是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图3是根据本说明书一些实施例所示的开放式耳机的发声部伸入耳甲腔的佩戴示意图;
图4是根据本说明书一些实施例所示的类腔体结构声学模型示意图;
图5是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图6是根据本说明书一些实施例所示的类腔体结构示意图;
图7是根据本说明书一些实施例所示的具有不同大小的泄漏结构的类腔体结构的听音指数曲线图;
图8是根据本说明书一些实施例所示的第一投影的投影面积与用户耳甲腔在矢状面上的投影 面积在不同重叠比例所对应的示例性频响曲线示意图;
图9是根据本说明书一些实施例所示的第一投影沿长轴方向的尺寸与沿短轴方向的尺寸在不同比值下所对应的示例性频响曲线示意图;
图10是根据本说明书一些实施例所示的发声部在其厚度方向具有不同尺寸时的频响曲线;
图11A是根据本说明书所示的一种开放式耳机与用户耳道的不同示例性配合位置示意图;
图11B是根据本说明书所示的另一种开放式耳机与用户耳道的不同示例性配合位置示意图;
图11C是根据本说明书所示的又一种开放式耳机与用户耳道的不同示例性配合位置示意图;
图12是根据本说明书一些实施例所示的发声部末端在矢状面的投影与耳甲腔的边缘在矢状面的投影在不同距离时所对应的示例性频响曲线示意图;
图13A是根据本说明书一些实施例所示的第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例时所对应的示例性频响曲线示意图;
图13B是根据本说明书一些实施例所示的第一投影的形心与耳道口在矢状面上的投影的形心在不同距离时所对应的示例性频响曲线示意图;
图14是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图;
图15是根据本说明书一些实施例所示的第一投影与耳甲腔在矢状面上的投影在不同重叠比例时所对应的示例性频响曲线示意图;
图16A是根据本说明书另一些实施例所示的一种开放式耳机的示例性佩戴示意图;
图16B是根据本说明书另一些实施例所示的另一种开放式耳机的示例性佩戴示意图;
图16C是根据本说明书另一些实施例所示的又一种开放式耳机的示例性佩戴示意图;
图16D是根据本说明书另一些实施例所示的再一种开放式耳机的示例性佩戴示意图;
图16E是根据本说明书另一些实施例所示的再一种开放式耳机的示例性佩戴示意图;
图17示出了图16E中发声部末端在矢状面的投影与耳甲腔边缘在矢状面的投影在不同距离时所对应的示例性频响曲线示意图;
图18A是根据本说明书另一些实施例所示的发声部不伸入耳甲腔时的佩戴场景时发声部在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例时所对应的示例性频响曲线示意图;
图18B是根据本说明书另一些实施例所示的发声部不伸入耳甲腔时的佩戴场景时发声部在矢状面上的第一投影的形心与耳道口在矢状面上的投影的形心在不同距离时所对应的示例性频响曲线示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
图1是根据本申请的一些实施例所示的示例性耳部的示意图。参见图1,耳部100可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108,耳轮脚109,外轮廓1013和内轮廓1014。需要说明的是,为便于描述,本说明书实施例中将对耳轮上脚1011和对耳轮下脚1012以及对耳轮105统称为对耳轮区域。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、或耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的外耳道101。当用户佩戴声学装置(开放式耳机)时,声学装置不会堵塞用户外耳道101,用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部不同位置的佩戴。例如,声学装置为开放式耳机时,开放式耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相适配,以将耳部发声部的整体或者部分结构置于 耳轮脚109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以与外耳道101的外侧(例如,耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置)接触。再例如,在用户佩戴开放式耳机时,发声部的整体或者部分结构可以位于耳部的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得的含头部及其(左、右)耳部的模拟器,例如GRAS KEMAR、HEAD Acoustics、B&K 4128系列或B&K 5128系列,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。以GRAS KEMAR作为示例,耳部的模拟器可以为GRAS 45AC、GRAS 45BC、GRAS45CC或GRAS 43AG等中的任意一种。以HEAD Acoustics作为示例,耳部的模拟器可以为HMS II.3、HMS II.3LN或HMS II.3LN HEC等中的任意一种。需要注意的是,本说明书实施例中测取的数据范围是在GRAS 45BC KEMAR的基础上测取的,但应当理解的是,不同头部模型及耳朵模型之间可能存在差异,在用其它模型是相关数据范围可能存在±10%的波动。仅仅作为示例,作为参考的耳部可以具有如下相关特征:耳廓在矢状面上的投影在垂直轴方向的尺寸可以在55-65mm的范围内,耳廓在矢状面上的投影在矢状轴方向的尺寸可以在45-55mm的范围内。耳廓在矢状面的投影是指耳廓的边缘在矢状面的投影。耳廓的边缘至少由耳轮的外轮廓、耳垂轮廓、耳屏轮廓、屏间切迹、对屏尖、轮屏切迹等组成。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以根据不同形状和尺寸的耳部进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的“耳部的前侧指沿着矢状轴方向且位于耳部朝向人体面部区域的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部,可以得到图1所示的耳部的前侧轮廓示意图。
关于上述耳部100的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,声学装置的部分结构可以遮蔽外耳道101的部分或者全部。这些变化和修改仍处于本申请的保护范围之内。
图2是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图。如图2所示,开放式耳机10可以包括发声部11和悬挂结构12。在一些实施例中,开放式耳机10可以通过悬挂结构12将发声部11佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干)。在一些实施例中,悬挂结构12可以为耳挂,发声部11与耳挂的一端连接,耳挂可以设置成与用户耳部相适配的形状。例如,耳挂可以为弧形结构。在一些实施例中,悬挂结构12也可以为与用户耳廓相适配的夹持结构,以使悬挂结构12可以夹持于用户耳廓处。在一些实施例中,悬挂结构12可以包括但不限于耳挂、弹性带等,使得开放式耳机10可以更好地佩戴在用户身上,防止用户在使用时发生掉落。
在一些实施例中,发声部11可以用于佩戴在用户的身体上,发声部11内可以设有扬声器以产生声音输入用户耳部100。在一些实施例中,开放式耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,发声部11可以采用悬挂或夹持的方式佩戴在用户的耳部100的附近。在一些实施例中,发声部11可以为圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便发声部11可以直接挂靠在用户的耳部100处。
结合图1和图2,在一些实施例中,当用户佩戴开放式耳机10时,发声部11的至少部分可以位于图1所示的用户耳部100耳屏前侧的区域J或耳廓内的区域M1和M2。以下将结合发声部11的不同佩戴位置(11A、11B和11C)进行示例性说明。需要说明的是,本说明书实施例中提及的耳廓的前外侧面是指耳廓沿冠状轴方向背离头部的一侧,对应的,耳廓的后内侧面是指耳廓沿冠状轴方向朝向 人头的一侧。在一些实施例中,发声部11A位于用户耳部100沿矢状轴方向朝向人体面部区域的一侧,即发声部11A位于耳部100前侧的区域J。进一步地,发声部11A的壳体内部设置有扬声器,发声部11A的壳体上可以设置有至少一个出声孔(图2中未示出),出声孔可以位于发声部的壳体上朝向或靠近用户外耳道101的侧壁上,扬声器可以通过出声孔向用户外耳道101处输出声音。在一些实施例中,扬声器可以包括振膜,发声部11的壳体内部的腔室被振膜至少分隔为前腔和后腔,出声孔与前腔声学耦合,振膜振动带动前腔的空气振动产生气导声音,前腔产生的气导声音通过出声孔向外界传播。在一些实施例中,发声部11的壳体上还可以包括一个或多个泄压孔,泄压孔可以位于壳体上与出声孔所在侧壁相邻或相对的侧壁上,泄压孔与后腔声学耦合,振膜振动的同时也会带动后腔的空气产生振动产生气导声音,后腔产生的气导声音可以通过泄压孔向外界传递。示例性地,在一些实施例中,发声部11A内的扬声器可以通过出声孔和泄压孔输出具有相位差(例如,相位相反)的声音,出声孔可以位于发声部11A的壳体朝向用户外耳道101的侧壁上,泄压孔可以位于发声部11的壳体背离用户外耳道101的一侧,此时壳体可以起到挡板的作用,增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度,同时减小远场漏音的音量。在一些实施例中,发声部11可以具有垂直于厚度方向X且彼此正交的长轴方向Y和短轴方向Z。其中,长轴方向Y可以定义为发声部11的二维投影面(例如,发声部11在其外侧面所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向),短轴方向Z可以定义为在发声部11在矢状面上投影的形状中垂直于长轴方向Y的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向X可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。在一些实施例中,当佩戴状态下发声部11处于倾斜状态时,长轴方向Y与短轴方向Z仍平行或近似平行于矢状面,长轴方向Y可以与矢状轴的方向具有一定夹角,即长轴方向Y也相应倾斜设置,短轴方向Z可以与垂直轴的方向具有一定夹角,即短轴方向Z也倾斜设置,如图2所示的发声部11B的佩戴情况。在一些实施例中,发声部11B的整体或部分结构可以伸入耳甲腔中,也就是说,发声部11B在矢状面上的投影与耳甲腔在矢状面上的投影具有重叠的部分。关于发声部11B的具体内容可以参考本说明书其他地方的内容,例如,图3及其对应的说明书内容。在一些实施例中,佩戴状态下发声部也可以处于水平状态或近似水平状态,如图2的发声部11C所示,长轴方向Y可以与矢状轴的方向一致或近似一致,均指向身体的前后方向,短轴方向Z可以与垂直轴的方向一致或近似一致,均指向身体的上下方向。需要注意的是,佩戴状态下,发声部11C处于近似水平状态可以是指图2所示的发声部11C的长轴方向与矢状轴的夹角在特定范围(例如,不大于20°)内。此外,发声部11的佩戴位置不限于图2中所示的发声部11A、发声部11B和发声部11C,满足图1中示出的区域J、区域M1或区域M2即可。例如,发声部11整体或者部分结构可以位于图1中虚线围成的区域J。又例如,发声部的整体或者部分结构可以与外耳道101的耳轮脚109、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等一个或多个部位所在的位置接触。再例如,发声部的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
为了改善开放式耳机10在佩戴状态下的稳定性,开放式耳机10可以采用以下几种方式中的任何一种或其组合。其一,悬挂结构12的至少部分设置成与耳廓的后内侧面和头部中的至少一者贴合的仿形结构,以增加悬挂结构12与耳部和/或头部的接触面积,从而增加声学装置10从耳部上脱落的阻力。其二,悬挂结构12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加悬挂结构12对耳部和/或头部的正压力,从而增加开放式耳机10从耳部上脱落的阻力。其三,悬挂结构12至少部分设置成在佩戴状态下抵靠在耳部和/或头部上,使之形成压持耳部的反作用力,以使得发声部11压持在耳廓的前外侧面(例如,图1中示出的区域M1和区域M2),从而增加开放式耳机10从耳部上脱落的阻力。其四,发声部11和悬挂结构12设置成在佩戴状态下从耳廓的前外侧面和后内侧面夹持对耳轮区域、耳甲腔所在区域等,从而增加开放式耳机10从耳部上脱落的阻力。其五,发声部11或者与之连接的结构设置成至少部分伸入耳甲腔102、耳甲艇103、三角窝104及耳舟106等腔体内,从而增加声开放式耳机10从耳部上脱落的阻力。
示例性地,结合图3,在佩戴状态下,发声部11的末端FE(也被称为自由端)可以伸入耳甲腔内。可选地,发声部11和悬挂结构12可以设置成从耳甲腔所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加开放式耳机10从耳部上脱落的阻力,进而改善开放式耳机10在佩戴状态下的稳定性。例如,发声部的末端FE在厚度方向X上压持在耳甲腔内。再例如,末端FE在长轴方向Y和/或短轴方向Z上抵接在耳甲腔内(例如,与耳甲腔的相对末端FE的内壁相抵接)。需要说明的是,发声部11的末端FE是指发声部11中与悬挂结构12连接的固定端相对设置的端部,也被称为自由端。 发声部11可以为规则或不规则的结构体,这里为了进一步说明发声部11的末端FE,进行示例性说明。例如,发声部11为长方体结构时,发声部11的端部壁面为平面,此时发声部11的末端FE为发声部11中与悬挂结构12连接的固定端相对设置的端部侧壁。又例如,发声部11为球体、椭球体或不规则的结构体时,发声部11的末端FE可以是指沿Y-Z平面(短轴方向Z和厚度方向X形成的平面)对发声部11进行切割,获取的远离固定端的特定区域,该特定区域沿长轴方向Y的尺寸与发声部沿长轴方向Y的尺寸的比值可以为0.05-0.2。
通过将发声部11至少部分伸入耳甲腔内,可以提高听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量,同时仍然保持较好的远场漏音相消的效果。仅作为示例性说明,发声部11的整体或部分结构伸入耳甲腔102内时,发声部11与耳甲腔102形成类似于腔体的结构(以下简称为类腔体结构),在说明书实施例中,类腔体可以理解为由发声部11的侧壁与耳甲腔102结构共同围成的半封闭结构,该半封闭结构使得听音位置(例如,耳道口处)与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构(例如,开口、缝隙、管道等)。用户在佩戴开放式耳机10时,发声部11的壳体上靠近或朝向用户耳道的一侧可以设置一个或多个出声孔,发声部11的壳体的其它侧壁(例如,远离或背离用户耳道的侧壁)上设置一个或多个泄压孔,出声孔与开放式耳机10的前腔声学耦合,泄压孔与开放式耳机10的后腔声学耦合。以发声部11包括一个出声孔和泄压孔作为示例,出声孔输出的声音和泄压孔输出的声音可以近似视为两个声源,该两个声源的声音相位相反,形成一个偶极子,发声部11和耳甲腔对应的内壁形成类腔体结构,其中,出声孔对应的声源位于类腔体结构内,泄压孔对应的声源位于类腔体结构外,形成图4所示的声学模型。如图4所示,类腔体结构402中可以包含听音位置和至少一个声源401A。这里的“包含”可以表示听音位置和声源401A至少有一者在类腔体结构402内部,也可以表示听音位置和声源401A至少有一者在类腔体结构402内部边缘处。听音位置可以等效为耳部的耳道口,也可以是耳部声学参考点,如ERP、DRP等,也可以是导向听音者的入口结构等。声源401B位于类腔体结构402的外部,相位相反的声源401A和401B构成了一个偶极子。该偶极子分别向周围空间辐射声音并发生声波的干涉相消现象,实现漏音相消效果。由于两个声音的声程差在听音位置较大,因此声音相消的效果相对不显著,可在听音位置听到较其他位置更大的声音。具体地,由于声源401A被类腔体结构402包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有类腔体结构402的情况,声源401A辐射出的声音大部分不会到达听音位置。因此,类腔体结构402的设置使得到达听音位置的声音音量得到显著提高。同时,类腔体结构402外的反相声源401B辐射出来的反相声音只有较少的一部分会通过类腔体结构402的泄漏结构403进入类腔体结构402中。这相当于在泄漏结构403处生成了一个次级声源401B’,其强度显著小于声源401B,亦显著小于声源401A。次级声源401B’产生的声音在腔体内对声源401A产生反相相消的效果微弱,使听音位置的听音音量显著提高。对于漏音来说,声源401A通过腔体的泄漏结构403向外界辐射声音相当于在泄漏结构403处生成了一个次级声源401A’,由于声源401A辐射的几乎所有声音均从泄漏结构403输出,且类腔体结构402尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源401A’的强度与声源401A相当。对于外界空间来说,次级声源401A’与声源401B产生的声音相消效果与声源401A与声源401B产生的声音相消效果相当。即该类腔体结构下,仍然保持了相当的降漏音效果。
在具体应用场景中,发声部11的壳体外壁面通常为平面或曲面,而用户耳甲腔的轮廓为凹凸不平的结构,通过将发声部11部分或整体结构伸入耳甲腔内,发声部11与耳甲腔的轮廓之间形成与外界连通的类腔体结构,进一步地,将出声孔设置在发声部的壳体朝向用户耳道口和靠近耳甲腔边缘的位置,以及将泄压孔设置在发声部11背离或远离耳道口的位置就可以构造图4所示的声学模型,从而使得用户在佩戴开放式耳机时能够提高用户在耳口处的听音位置,以及降低远场的漏音效果。
在一些实施例中,开放式耳机的发声部可以包括换能器和容纳换能器的壳体,其中,换能器是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,换能器的类型可以包括低频(例如,30Hz~150Hz)扬声器、中低频(例如,150Hz~500Hz)扬声器、中高频(例如,500Hz~5kHz)扬声器、高频(例如,5kHz~16kHz)扬声器或全频(例如,30Hz~16kHz)扬声器,或其任意组合。这里所说的低频、高频等只表示频率的大致范围,在不同的应用场景中,可以具有不同的划分方式。例如,可以确定一个分频点,低频表示分频点以下的频率范围,高频表示分频点以上的频率。该分频点可以为人耳可听范围内的任意值,例如,500Hz,600Hz,700Hz,800Hz,1000Hz等。
在一些实施例中,换能器可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出。在一些实施例中,壳体120内振膜前侧的位置设有用于传递声音的前腔(未示出)。前腔与出声孔声学耦合,振膜前侧的声音可以通过前腔从出声孔中发出。壳体120内振膜后侧的位置设 有用于传递声音的后腔(未示出)。后腔与泄压孔声学耦合,振膜后侧的声音可以通过后腔从泄压孔中发出。
参照图3,这里以耳挂作为悬挂结构12的一个示例进行说明,在一些实施例中,耳挂可以包括依次连接的第一部分121和第二部分122,其中,第一部分121可以挂设在用户耳廓和头部之间,第二部分122可以向耳部的外侧(耳部沿冠状轴方向背离人体头部的一侧)延伸并连接发声部11,从而将发声部11佩戴于用户耳道附近但不堵塞耳道口的位置。在一些实施例中,出声孔可以开设在壳体朝向耳廓的侧壁上,从而将换能器产生的声音导出壳体后传向用户的耳道口。
图5是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图。
结合图3和图5,在一些实施例中,用户佩戴开放式耳机10时,发声部11沿冠状轴方向R在矢状面(即图5中T轴和S轴所形成的平面)上具有第一投影,发声部11的形状可以为规则或不规则的三维形状,对应地,发声部11在矢状面上的第一投影为规则或不规则的形状,例如,发声部11的形状为长方体、类长方体、圆柱体时,发声部11在矢状面上的第一投影可能为长方形或类长方形(例如,跑道形),考虑到发声部11在矢状面上的第一投影可能为不规则形状,为方便描述第一投影,可在图5中所示的发声部11投影(即第一投影)周围划定实线框P所示的矩形区域,并将实线框P所示的矩形区域的形心O近视为第一投影的形心。需要说明的是,上述关于第一投影及其形心的描述仅作为一个示例,第一投影的形状与发声部11的形状或发声部11相对耳部的佩戴情况相关。在一些实施例中,发声部11与悬挂结构12可以是两个相互独立的结构或者为一体成型式的结构。为了更为清楚地描述发声部11的第一投影区域,这里根据发声部11的三维结构引入厚度方向X、长轴方向Y和短轴方向Z,其中长轴方向Y和短轴方向Z垂直,厚度方向X与长轴方向Y和短轴方向Z形成的平面垂直。仅作为示例,实线框P的确认过程如下:确定发声部11在长轴方向Y上相距最远的两点,分别过该两点作与短轴方向Z平行的第一线段和第二线段。确定发声部11在短轴方向Z上相距最远的两点,分别过该两点作与长轴方向Y平行的第三线段和第四线段,通过上述各线段所形成的区域可以获取图5所示实线框P的矩形区域。
如前文所述,当用户佩戴开放式耳机10时,其发声部11的至少部分可以伸入用户的耳甲腔,形成图4所示的声学模型。由于发声部11无法与耳甲腔完成紧密贴合,从而会形成缝隙,该缝隙与图4中所示出的泄露结构403对应。也就是说,开放式耳机在佩戴状态下,发声部11的部分或整体结构伸入耳甲腔时,发声部11在矢状面上的投影与耳甲腔在矢状面的投影上具有重叠区域。进一步地,该重叠区域的比例会影响图4中所示的声学模型中类腔体结构403的泄露结构403的开口面积的大小。例如,发声部11与耳甲腔之间的重叠比例比较大时,发声部11可以覆盖耳甲腔较大部分的区域,此时,发声部11与耳甲腔之间的缝隙尺寸较小,也就是说,类腔体结构403的泄露结构403的开口面积较小。图6是根据本说明书一些实施例所示的类腔体结构的示意图;图7是根据本说明书一些实施例所示的具有不同大小的泄漏结构的类腔体结构的听音指数曲线图。如图6所示,类腔体结构上泄漏结构的开口面积为S,类腔体结构中受被包含的声源(图6中示出的“+”)直接作用的面积为S0。这里的“直接作用”指被包含声源发出的声音不经过泄漏结构直接声学作用于类腔体结构的壁面。两声源的间距为d0,泄漏结构的开口形状的中心到另一个声源(与6中示出的“-”)的距离为L。如图7所示,保持L/d0=1.09不变,相对开口大小S/S0越大,听音指数越小。这里听音指数可以是指听音位置测取的声压级强度。这是由于相对开口越大,被包含的声源直接向外辐射的声音成分越多,到达听音位置的声音越少,造成了听音音量随着相对开口增大而下降,进而导致听音指数变小。由此可以推断出,开口越大,在听音位置的听音音量越小。在一些实施例中,为了保证用户佩戴开放式耳机时在耳道口处的听音音量,可以将发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影面积(例如图5中的虚线框1015所围成的面积)的重叠比例控制在特定范围内,以控制开口的大小。需要说明的是,在本说明书实施例中,重叠比例可以理解为第一投影的面积与耳甲腔在矢状面的投影面积的重叠面积与耳甲腔在矢状面上的投影的面积的比值。
图8是根据本说明书一些实施例所示的发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影面积在不同重叠比例所对应的示例性频响曲线示意图。在图8中,横坐标表示频率(单位:Hz),纵坐标表示不同重叠比例所对应的耳道口处的频率响应(单位:dB)。由图8可知,用户佩戴开放式耳机且发声部11的至少部分结构覆盖耳甲腔时,即发声部11在矢状面的第一投影与耳甲腔在矢状面的投影具有重叠区域时,相对于第一投影与耳甲腔在矢状面的投影不具有重叠区域(重叠比例为0%)时用户耳道口处的听音音量具有显著的提升,尤其是在中低频频段范围内。在一些实施例中,为了提高用户佩戴开放式耳机时的听音效果,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以不小于9.26%。继续参考图8,随着发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例不断增大,用户在耳 道口处的听音音量得到的提升也越强,尤其是将第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例由36.58%提升至44.01%时,听音效果具有显著的提升。基于此,为了进一步提高用户的听音效果,第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例不小于44.01%。优选地,第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例不小于57.89%。需要说明的是,关于本说明书实施例中的测取的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)以及发声部的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴或垂直轴方向平移)来测取的。
本说明书实施例中提供的开放式耳机,通过将发声部11的至少部分伸入耳甲腔内,且在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例控制为不小于44.01%,可以使发声部11与用户的耳甲腔较好地配合以形成图4所示的声学模型,从而提高开放式耳机在听音位置(例如,耳道口处)的听音音量,特别是中低频的听音音量。
还需要说明的是,为了保证用户在佩戴开放式耳机10时不堵塞用户耳道口,使耳道口保持开放状态,以便用户在获取开放式耳机10输出的声音的同时,还能够获取外界环境中的声音,发声部11在矢状面上的第一投影的面积与耳甲腔在该矢状面上的投影的面积的重叠比例不宜过大。在佩戴状态下,当发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例过小时,发声部11伸入耳甲腔中的尺寸过小发声部11与用户耳甲腔的贴合面积较小,无法利用耳甲腔对发声部11起到足够的支撑和限位作用,存在佩戴不稳定容易发生脱落的问题,另一方面,发声部11与耳甲腔形成的缝隙尺寸过大,影响用户耳道口的听音音量。为了保证开放式耳机在不堵塞用户耳道口的前提下,保证用户佩戴开放式耳机的稳定性和舒适性以及具有较好的听音效果,在一些实施例中,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为44.01%-77.88%,以使得发声部11的部分或整体结构伸入耳甲腔时,可以通过耳甲腔对发声部11的作用力,对发声部11起到一定的支撑和限位作用,进而提升其佩戴稳定性和舒适性。同时发声部11还可以与耳甲腔形成图4所示的声学模型,保证用户在听音位置(例如,耳道口)的听音音量,降低远场的漏音音量。优选地,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为46%-71.94%。较为优选地,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为48%-65。较为优选地,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为57.89%-62%。
不同用户(例如,不同年龄、不同性别、不同身高体重)的耳甲腔大小和轮廓形状可能有所差异,不同用户的耳甲腔在矢状面的投影面积在一定范围内(例如,320mm2-410mm2)。结合上述内容,发声部11在矢状面的投影面积与耳甲腔在矢状面的投影面积的重叠比例不宜过大或过小,相对应地,发声部11的整体尺寸(尤其是沿其长轴方向的尺寸和短轴方向的尺寸)也不宜过大或过小。例如,发声部11在矢状面的投影面积过小时,发声部11无法对耳甲腔进行充分的覆盖,发声部11与耳甲腔之间形成的缝隙尺寸较大,导致用户耳道口处的听音音量较低。而发声部11在矢状面的投影面积过大时,发声部11可能覆盖用户耳道口,使耳道口无法保持开放状态,影响用户获取外界环境中的声音。为了保证用户佩戴开放式耳机的听音效果以及同时保持耳道口处于开放状态以获取外界环境中的声音,在一些实施例中,发声部11在矢状面上的第一投影的面积可以为202mm2-560mm2。优选地,发声部11在矢状面上的第一投影的面积可以为220mm2-500mm2。较为优选地,发声部11在矢状面上的第一投影的面积可以为300mm2-470mm2。进一步优选地,发声部11在矢状面上的第一投影的面积可以为330mm2-440mm2
参照图5,发声部11在矢状面的第一投影的形状可以包括长轴方向Y和短轴方向Z。在一些实施例中,考虑到发声部11在长轴方向Y或短轴方向Z的尺寸过小时,发声部11的体积相对较小,使得其内部设置的振膜面积也相对较小,导致振膜推动发声部11的壳体内部空气产生声音的效率低,影响开放式耳机的声学输出效果。此外,发声部11在长轴方向Y的尺寸过大时,使得发声部11超出耳甲腔的范围,无法伸入耳甲腔,并无法形成类腔体结构,或者发声部11与耳甲腔之间形成的缝隙的尺寸很大,影响用户佩戴开放式耳机10在耳道口的听音音量以及远场的漏音效果。而发声部11在短轴方向Z的尺寸过大时,发声部11可能覆盖用户耳道口,影响用户获取外界环境中的声音信息。在一些实施例中,为了使用户在佩戴开放式耳机10时可以具有较好的声学输出质量,可以使第一投影的形状沿长轴方向Y的尺寸范围介于12mm-32mm之间。优选地,第一投影的形状沿长轴方向Y的尺寸范围介于18mm-29mm之间。较为优选地,第一投影的形状沿长轴方向Y的尺寸范围可以为20mm-27mm,较为优选地,第一投影的形状沿长轴方向Y的尺寸范围可以为22mm-25mm。对应地,第一投影的形状沿短轴方向Z的尺寸范围介于4.5mm-18mm之间。优选地,第一投影的形状沿短轴方向Z的尺寸范围介于10mm-15mm之间。较为优选地,第一投影的形状沿短轴方向Z的尺寸范围可以为11 mm-13.5mm。进一步优选地,第一投影的形状沿短轴方向Z的尺寸范围可以为12mm-13mm。为了进一步说明发声部11在矢状面的第一投影的形状对用户佩戴开放式耳机的听音效果的影响,以下针对发声部11在矢状面的第一投影的形状沿长轴方向Y的尺寸和发声部11在矢状面的第一投影的形状沿短轴方向Z的尺寸的比值进行示例性说明。
图9示出了发声部11在矢状面上的第一投影面积一定(例如,119mm2)时,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸在不同比值下所对应的示例性频响曲线示意图。图9中,横坐标表示频率(单位:Hz),纵坐标表示发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸在不同比值下所对应的总声压级(单位:dB)。为了便于区分不同的频响曲线,这里100Hz-1000Hz的范围内,图9中由上至下所示的频响曲线分别对应L5、L4、L3、L2和L1。其中,L1为第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为4.99(即第一投影沿长轴方向Y的尺寸为24.93mm,第一投影沿短轴方向Z的尺寸为4.99mm)时所对应的频响曲线,L2为第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为3.99(即第一投影沿长轴方向Y的尺寸为22.43mm,第一投影沿短轴方向Z的尺寸为5.61mm)时所对应的频响曲线,L3为第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为3.04(即第一投影沿长轴方向Y的尺寸为19.61mm,第一投影沿短轴方向Z的尺寸为6.54mm)时所对应的频响曲线,L4为第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值约为2.0(即第一投影沿长轴方向Y的尺寸为16.33mm,第一投影沿短轴方向Z的尺寸为8.16mm)所对应的频响曲线,L5为第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为1.0(即第一投影沿长轴方向Y的尺寸为12.31mm,第一投影沿短轴方向Z的尺寸为12.31mm)时所对应的频响曲线。根据图9可以看出,频响曲线L1-L5所对应的谐振频率大致相同(均为3500Hz左右),但是,当第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为1.0-3.0时,发声部11的频响曲线整体而言较为平滑,并且,在100Hz-3500Hz具有更好的频率响应,当频率为5000Hz时,第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值越大,发声部11在耳道口处的声音频响下降的越快。基于此,在一些实施例中,为了使得用户在佩戴开放式耳机时能够体验到较好的声学输出效果,可以使发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值介于1.0-3.0之间。在一些实施例中,考虑到在第一投影的面积一定的情况下,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值越小则发声部11在矢状面上的投影沿短轴方向Z的尺寸越大,由于发声部11在矢状面上的投影沿短轴方向Z的尺寸过大可能会导致发声部11无法较好地伸入用户耳甲腔,进而造成佩戴稳定性和舒适性问题,因此,为了同时保证佩戴的稳定性和舒适性,可以使发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值介于1.4-2.5之间。优选地,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值可以介于1.4-2.3之间。较为优选地,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值可以介于1.45-2.0之间。可以理解,发声部11在具有不同的长宽比例时,发声部11在矢状面上的第一投影与耳甲腔在矢状面的投影会具有不同的重叠比例,在一些实施例中,通过将发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值控制在1.4-3之间,可以使得发声部11在正常佩戴状态下投影至矢状面的投影面积相对较为适中,既可以避免发声部11在矢状面的投影面积过小而造成发声部11与耳甲腔之间形成的缝隙尺寸较大,导致用户耳道口处的听音音量较低,同时也可以避免发声部11在矢状面的投影面积过大而使得耳道口无法保持开放状态,影响用户获取外界环境中的声音,从而可以使用户具有较好的声学体验。
需要说明的是,图9中所测取的频响曲线是通过模拟实验进行获取的,这里通过P.574.3型全频带人耳模拟器的模型来模拟人体的听觉系统,以及通过ITU-TP.57标准定义的耳廓来模拟人体耳廓,该标准下的耳廓包含了耳道的几何形状。此外,关于本说明书实施例中的测取的不同长轴方向的尺寸和短轴方向尺寸对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)和佩戴位置一定时,通过改变不同长轴方向的尺寸和短轴方向尺寸来测取的。
在一些实施例中,发声部11在厚度方向X的尺寸还会对用户佩戴开放式耳机的听音效果造成影响,以下将结合图10进行进一步说明。
图10示出了发声部11在矢状面上的第一投影的面积一定且第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值一定时,发声部11在其厚度方向X具有不同尺寸时的频响曲线。在图10中,横坐标表示频率(单位:Hz),纵坐标表示不同频率时在耳道口处的声压级(单位:dB)。频响曲线1001为发声部11在厚度方向的尺寸为20mm时对应的频响曲曲线,频响曲线1002为发声部11在厚度方向X的尺寸为10mm时对应的频响曲曲线,频响曲线1003为发声 部11在厚度方向X的尺寸为5mm时对应的频响曲曲线,频响曲线1004为发声部11在厚度方向X的尺寸为1mm时对应的频响曲曲线。发声部11沿厚度方向X的尺寸(也被称为厚度)正比于出发声部11前腔沿厚度方向X的尺寸,前腔沿厚度方向X的尺寸越小,其对应的前腔谐振峰对应的谐振频率越大,在较低频段范围内(100Hz-1000Hz)时的频响曲线更加平坦。在一些实施例中,出声孔与前腔声学耦合,前腔中的声音通过出声孔传递至用户耳道口处并被用户的听觉系统接收。如果发声部11在厚度方向X的尺寸过大,发声部11对应的前腔谐振峰对应的谐振频率过小,会影响发声部11在较低频段的声学性能。此外,在佩戴状态时,发声部11的整体尺寸或重量较大,影响佩戴的稳定性和舒适性。发声部11在厚度方向X的尺寸过小时,发声部11的前腔和后腔的空间有限,影响振膜的振动幅度,会限制发声部11低频大振幅下的输出。基于此,为了保证发声部11可以具有较好的声学输出效果以及保证佩戴时的稳定性,在一些实施例中,发声部11的厚度(沿发声部11厚度方向的尺寸)可以为2mm-20mm。优选地,发声部11的厚度可以为5mm-15mm。较为优选地,发声部11的厚度可以设置为8mm-12mm。需要说明的是,在佩戴状态下,当发声部11在厚度方向X上相反设置的两个侧壁(即,朝向用户耳部外侧的内侧面和背离用户耳部外侧的外侧面)的至少一个壁面为非平面时,发声部11的厚度可以指发声部11的内侧面和外侧面在厚度方向X上的最大距离。
需要说明的是,关于本说明书实施例中的测取的不同厚度对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)、佩戴位置一定以及长轴方向的尺寸和短轴方向的尺寸一定时,通过改变发声部厚度方向尺寸来测取的。
图11A-图11C是根据本说明书所示的开放式耳机与用户耳道的不同示例性配合位置示意图。
发声部11和耳甲腔边缘之间形成的缝隙尺寸除了与发声部11的上侧壁111(也被称为上侧面)或下侧壁112(也被称为下侧面)在矢状面上的投影与水平方向(与矢状轴S平行且方向相同)的倾角、发声部11的尺寸(例如,沿图11A中示出的短轴方向Z、长轴方向Y的尺寸、图3所示出的厚度方向X的尺寸)相关,还与发声部11的末端FE相对于耳甲腔边缘的距离相关,发声部11的末端FE相对于耳甲腔边缘的距离可以通过发声部11的末端FE在矢状面的投影的中点与耳甲腔的边缘在矢状面的投影的距离来表征。耳甲腔是指耳轮脚下方的凹窝区域,也就是说,耳甲腔的边缘至少是由耳脚轮下方的侧壁、耳屏的轮廓、屏间切迹、对屏尖、轮屏切迹以及与耳甲腔对应的对耳轮体的轮廓组成。耳甲腔的边缘在矢状面的投影为耳甲腔在矢状面投影的轮廓。具体地,发声部11的一端与悬挂结构12(耳挂的第二部分122)连接,用户在佩戴时,发声部11的部分或整体结构伸入耳甲腔中,而发声部11的末端FE(自由端)相对耳甲腔边缘的位置会影响发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例,从而影响发声部11和耳甲腔之间形成的缝隙尺寸,进而影响用户耳道口处的听音音量。进一步地,发声部11的末端FE在矢状面上的投影的中点与耳甲腔的边缘在矢状面上的投影距离可以反映发声部11的末端FE相对于耳甲腔的位置以及发声部11覆盖用户耳甲腔的程度。需要说明的是,发声部11的末端FE在矢状面上的投影为曲线或折线时,发声部11的末端FE在矢状面上的投影的中点可以通过下述示例性的方法进行选取:可以选取末端FE在矢状面上的投影沿其短轴方向距离最大的两个点做一条线段,选取该线段上的中点作中垂线,该中垂线与该投影相交的点即为发声部11的末端在矢状面上的投影的中点。在一些实施例中,发声部11的末端FE为曲面时,还可以选取其投影上与短轴方向Z平行的切线所在的切点作为发声部11的末端FE在矢状面上的投影的中点。
如图11A所示,发声部11没有抵持在耳甲腔102的边缘时,发声部11的末端FE位于耳甲腔102内,也就是说,发声部11的末端FE在矢状面上的投影的中点并未与耳甲腔102的边缘在矢状面上的投影重叠。如图11B所示,开放式耳机10的发声部11伸入耳甲腔102,且发声部11的末端FE与耳甲腔102的边缘抵接,也就是说,发声部11的末端FE在矢状面上的投影的中点与耳甲腔102的边缘在矢状面上的投影重叠。如图11C所示,开放式耳机10的发声部11覆盖耳甲腔,且发声部11的末端FE位于耳甲腔102的边缘和耳廓的内轮廓1014之间。
结合图11A-图11C,当发声部11的末端FE位于耳甲腔102的边缘内时,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔102的边缘在矢状面上的投影的距离如果过大则发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影面积的重叠比例过小,发声部11和耳甲腔102的边缘之间形成的缝隙尺寸较大,影响用户耳道口处的听音音量。当发声部末端FE与在矢状面上的投影的中点C3位于耳甲腔102的边缘在矢状面上的投影和耳廓的内轮廓1014在矢状面上的投影之间的位置时,发声部末端FE在矢状面上的投影的中点C3与耳甲腔102的边缘在矢状面上的投影如果过大,发声部11的末端FE会与耳廓相干涉,且不能增加发声部11覆盖耳甲腔102的比例。此外,用户佩戴时,发声部11的末端FE如果未处于耳甲腔102中,耳甲腔102的边缘无法对发声部11起到限位的作用,容易发生脱落。另外,发声部11尺寸增加会增加其自身重量,影响用户佩戴的舒适性和随身携带 的便捷性。需要说明的是,发声部11的末端FE在矢状面上的投影为曲线或折线时,发声部11的末端FE在矢状面上的投影的中点可以通过下述示例性的方法进行选取,可以选取末端FE在矢状面上的投影的始端点和终端点做一条线段,选取该线段上的中点做中垂线,该中垂线与该投影相交的点即为发声部11的末端在矢状面上的投影的中点。在一些实施例中,发声部11的末端FE为曲面时,还可以选取其投影上与短轴方向Z平行的切线所在的切点作为发声部11的末端FE在矢状面上的投影的中点。
图12是根据本说明书一些实施例所示的发声部末端在矢状面的投影与耳甲腔的边缘在矢状面的投影在不同距离时所对应的示例性频响曲线示意图。参照图12,其中,横坐标表示频率(单位:Hz),纵坐标表示不同频率时耳道口处的声压级(单位:dB),频响曲线1201为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为0mm(例如,在佩戴状态下,发声部11的末端抵靠在耳甲腔的边缘)时的频响曲线,频响曲线1202为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为4.77mm时的频响曲线,频响曲线1203为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为7.25mm时的频响曲线,频响曲线1204为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为10.48mm时的频响曲线,频响曲线1205为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为15.3mm时的频响曲线,频响曲线1206为发声部末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为19.24mm时的频响曲线。根据图12可以看出,当发声部11的末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为0mm(例如,在佩戴状态下,发声部11的末端抵靠在耳甲腔的边缘)、4.77mm、7.25mm时,耳道口处测取的声音的声压级较大。当发声部的末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影距离为19.24mm(例如,在佩戴状态下,发声部11的末端抵靠在耳甲腔的边缘)时,耳道口测取的声音的声压级相对较小。也就是说,在佩戴状态下,当发声部11的末端在矢状面的投影的中点C3与耳甲腔的边缘在矢状面的投影的距离越大,即发声部11伸入耳甲腔中结构越少,发声部11在矢状面的第一投影的面积与耳甲腔的边缘在矢状面的投影的面积的重叠比例越小,耳道口处的听音效果越差。基于此,为了保证开放式耳机10在具有较好的听音效果的同时,也能保证用户佩戴的舒适性和稳定性,在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离不大于16mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离不大于13mm。较为优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-10.92mm。仅作为示例,在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-15.3mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-10.48mm。较为优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-7.25mm。更为为优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-4.77mm。在一些实施例中,发声部的末端可以抵靠耳甲腔边缘,这里可以理解为发声部11的末端FE在矢状面的投影与耳甲腔边缘在矢状面的投影相重叠(例如,图11A所示的发声部11相对耳甲腔的位置),即发声部末端在矢状面的投影与耳甲腔的边缘在矢状面的投影距离为0mm时,发声部11可以具有较好的频率响应,此时发声部11的末端与耳甲腔边缘相抵靠,可以对发声部11起到支撑和限位作用,提高用户佩戴开放式耳机的稳定性。需要说明的是,在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔102的边缘在矢状面上的投影的距离可以是指发声部11的末端FE在矢状面上的投影的中点C3到耳甲腔102的边缘在矢状面上的投影的最小距离。在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔102的边缘在矢状面上的投影的距离还可以是指沿矢状轴方向的距离。此外,图12中涉及的发声部11的末端在矢状面的投影与耳甲腔的边缘在矢状面的投影的距离均是发声部11的末端伸入耳甲腔的场景进行测取的。需要说明的是,在具体佩戴场景中,还可以是发声部11的末端FE在矢状面的投影中除了中点C3之外的其他点与耳甲腔边缘抵靠,此时发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以大于0mm。在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以为2mm-16mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以为4mm-10.48mm。此外,耳甲腔102为凹窝结构,耳甲腔102对应的侧壁并非是平整的壁面,而耳甲腔的边缘在矢状面的投影是一个不规则的二维形状,耳甲腔102对应的侧壁在矢状面的投影可能是在该形状的轮廓上,也可能在该形状的轮廓外,因此,发声部11的末端FE在矢状面上的投影的中点与耳甲腔102的边缘在矢状面上的投影也可以不重叠。例如,发声部11的末端FE在矢状面上的投影的中点可以在耳甲腔102的边缘在矢状面的投影内侧或外侧。在本说明书的实施例中,当发声11的末端FE位于耳甲腔102时,发声部11的末端FE与在矢状 面上的投影的中点与耳甲腔102的边缘在矢状面上的投影的距离在特定范围(例如,不大于6mm)内均可视为发声部11的末端FE与耳甲腔102的边缘抵接。
需要说明的是,关于本说明书实施例中测取的发声部的末端FE与在矢状面上的投影的中点与耳甲腔的边缘在矢状面上的投影的不同距离对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)、以及长轴方向的尺寸、短轴方向和厚度方向的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴方向平移)来测取的。
在一些实施例中,参照图11A-图11C,当开放式耳机10处于佩戴状态时,发声部11在矢状面上的第一投影与耳道口在矢状面上的投影(例如图11A-图11C所示的虚线区域1016)可以至少部分重叠。其中,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离可以反映出发声部11与耳道口之间的相对位置关系以及发声部11在矢状面上的第一投影的面积与耳道口在矢状面上的投影的面积的重叠比例。该重叠比例会影响发声部11与用户耳部所构成的类腔体结构的泄露结构的数量以及泄露结构的开口大小,而该泄露结构的开口大小会直接影响听音质量,具体表现为泄露结构的开口越大,发声部11直接向外辐射的声音成分越多,到达听音位置的声音越少。
图13A是根据本说明书一些实施例所示的发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例时所对应的示例性频响曲线示意图,图13B是根据本说明书一些实施例所示的发声部11在矢状面上的第一投影的形心与耳道口在矢状面上的投影的形心在不同距离时所对应的示例性频响曲线示意图。
参照图13A,其中,横坐标为发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例,纵坐标为不同重叠比例所对应的耳道口处的声音的声压级,直线1301表示在频率为500Hz时,根据第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行拟合的线性关系;直线1302表示在频率为1kHz时,根据第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行拟合的线性关系;直线1303表示在频率为3kHz时,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行拟合的线性关系。图13A中的空心圆形点表示频率为500Hz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据;图13A中的灰度值较浅的圆形点表示频率为1kHz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据;图13A中的黑色圆形点表示频率为3kHz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据。根据图13A可以看出,不同频率下,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与用户耳道口处的声压级大小是近似呈正相关的,当发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积具有重叠时,在耳道口处测取特定频率(例如,500Hz、1kHz、3kHz)的声音的相对于发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积不具有重叠比例(重叠比例为0)时具有明显的提升。基于此,为了保证发声部11的声学输出质量,可以使发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例介于44.01%-80%之间。结合图13A,当重叠比例为22%或32%时在耳道口处的声音的声压级较大,但是发声部11伸入耳甲腔的结构有限,耳甲腔边缘无法对发声部11的末端起到支撑和限位的作用,而重叠比例过大(例如,重叠比例大于80%)虽然在耳道口处的声音的声压级较大,但是会影响耳道口的开放状态,优选地,在一些实施例中,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例可以介于45%-71.49%之间。
参照图13B,其中,横坐标为发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离,纵坐标为不同距离所对应的耳道口处的声音的声压级。直线1304表示在频率为500Hz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离与耳道口处的声压级进行拟合的线性关系;直线1305表示在频率为1kHz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离与耳道口处的声压级进行模拟的线性关系;直线1306表示在频率为3kHz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离与耳道口处的声压级进行模拟的线性关系。图13B中的空心圆形点表示频率为500Hz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P在不同距离的情况下所对应的测试数据;图13B中的黑色圆形点表示频率为1kHz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P在不同距离的情况下所对应的测试数据;图13B中的灰度值较浅的圆形点表示频率为3kHz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P在不同距离的情况下所对应的测试数据。根据图13B可以看出,不同频率下,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离与用户耳道口处的声压级大小是近似呈负相关的,从整体来看,在耳道口处测取特定频率(例如,500Hz、1kHz、 3kHz)的声音的声压级随着发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离的增大呈下降趋势,这里结合图13A和图13B,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离越大,发声部11在矢状面上的第一投影的面积与耳道口在矢状面上的投影的面积的重叠比例越小。该重叠比例会影响发声部11与用户耳部所构成的类腔体结构的泄露结构的数量以及泄露结构的开口大小,而该泄露结构的开口大小会直接影响听音质量,具体表现为泄露结构的开口越大,发声部11直接向外辐射的声音成分越多,到达听音位置的声音越少。此外,当发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离过小时,发声部11在矢状面上的第一投影的面积与耳道口在矢状面上的投影的面积的重叠比例过大,发声部11可能覆盖用户耳道口,影响用户获取外界环境中的声音信息。根据图13B可以看出,以频率为3kHz作为示例,当发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离为7mm、11mm时测取的耳道口处的声压级分别为-72dB和-70dB,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离为18mm、22mm时测取的耳道口处的声压级分别为-80dB和-84.3dB。由此可知,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P的距离不宜过大。在一些实施例中,为了保证发声部11的声学输出质量(例如,在耳道口处的声压级大于-80dB)的同时,保证用户可以接收外界环境中的声音信息,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离可以为3mm-15mm。优选地,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离可以为4mm-13mm。较为优选地,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心P之间的距离可以为8mm-10mm。
需要说明的是,关于本说明书实施例中测取的不同重叠比例对应的频响曲线和第一投影的形心与耳道口在矢状面的投影的形心对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)、以及长轴方向的尺寸、短轴方向和厚度方向的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴方向平移)来测取的。
需要说明的是,本说明书实施例中涉及的发声部11与耳廓、耳甲腔或耳道口之间的位置关系可以通过以下如下示例性方法进行确定:首先,在特定位置,沿正对矢状面的方向拍摄具有耳部的人头模型的照片,标示出耳甲腔边的缘、耳道口轮廓和耳廓轮廓(例如,内轮廓和外轮廓),这些标示出的轮廓可以视为耳部各个构造在矢状面的投影轮廓;然后,在该特定位置以相同的角度拍摄在人头模型上佩戴开放式耳机的照片,标示出发声部的轮廓,该轮廓可以视为发声部在矢状面的投影,通过对比分析即可确定发声部(例如,形心、末端等)与耳甲腔边缘、耳道口、内轮廓或外轮廓之间的位置关系。
前述图1-图13B及其对应的说明书内容是关于开放式耳机佩戴状态下发声部的整体或部分伸入耳甲腔的情况,在一些实施例中,发声部11还可以不伸入耳甲腔。例如,图14所示的发声部11的至少部分覆盖对耳轮区域。又例如,如16E所示的发声部11部覆盖对耳轮区域,而是相对耳甲腔悬空设置。以下将结合图14-图18B进行具体说明。
图14是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图。
参照图14,在一些实施例中,开放式耳机10在佩戴状态下,发声部11的至少部分可以覆盖用户的对耳轮区域,其中,对耳轮区域可以包括图1所示的对耳轮105、对耳轮上脚1011、对耳轮下脚1012中的任意一个或多个区域,此时,发声部11位于耳甲腔102及耳道口的上方的M1区域(图1中示出),使得用户的耳道口处于开放状态。在一些实施例中,发声部11的壳体上可以包括至少一个出声孔和泄压孔,出声孔与开放式耳机10的前腔声学耦合,泄压孔与开放式耳机10的后腔声学耦合,其中,出声孔输出的声音和泄压孔输出的声音可以近似视为两个点声源,该两个点声源的声音具有相位相反,形成一个偶极子。其中,用户佩戴开放式耳机时,出声孔位于发声部11朝向或靠近用户耳道口的侧壁上,泄压孔位于发声部11远离或背离用户耳道口的侧壁上。这里发声部11自身的壳体可以起到挡板的作用,增大出声孔和泄压孔到外耳道101的声程差,以增大外耳道101处的声音强度。进一步地,在佩戴状态下,发声部11的侧壁贴靠在对耳轮区域,对耳轮区域的凹凸结构也可以起到挡板的作用,其会增大泄压孔发出的声音传播到外耳道101的声程,从而增大出声孔和泄压孔到外耳道101的声程差,增大外耳道101处的声音强度,同时减小远场漏音的音量。
图15是根据本说明书一些实施例所示的发声部11的至少部分覆盖对耳轮区域的佩戴方式下,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影在不同重叠比例时所对应的示例性频响曲线示意图。在图15中,横坐标表示频率(单位:Hz),纵坐标表示测取的耳道口处在不同频率下的声压级(单位dB)。由图15可知,在具体实验中,由于发声部11的三维结构和整体尺寸一定,为了保证发声部11在矢状面的第一投影的面积为定值,这里是通过沿矢状轴和/或垂直轴方向进行平移的方 式来获取不同覆盖比例的实验数值。通过平移的方式会使得发声部11相对于对耳轮区域的位置发生改变,相对应地,发声部11与对耳轮区域所形成的挡板的作用会被削弱。在佩戴状态下,出声孔通常设置在发声部11靠近或朝向耳道口的侧壁上,此时如果发声部11矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例越大,意味着发声部11的出声孔通常会更加靠近耳道口,因此即使对耳轮区域和发声部11起到的挡板作用削弱,耳道口处的听音音量也可以得到提升。继续参考图15,发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例在不小于11.82%时相较于重叠比例小于11.821%时,耳道口处的听音音量具有显著的提升,也即发声部11在同时覆盖部分耳甲腔和对耳轮区域的情况下也可以产生更好的频率响应。基于此,在一些实施例中,为了提高用户佩戴开放式耳机时具有较好的听音效果,发声部11在覆盖对耳轮的同时还需要满足在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例不小于11.82%。优选地,在一些实施例中,发声部11在矢状面上的第一投影的投影面积与用户耳甲腔在该矢状面上的投影面积的重叠比例可以不小于31.83%。考虑到发声部11在矢状面的第一投影的面积与耳甲腔在矢状面的投影的面积的重叠比例过大,发声部11会覆盖耳道口,无法使耳道口保持充分开放的状态,影响用户获取外界环境中的声音。较为优选地,在一些实施例中,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为11.82%-62.50%。进一步优选地,在一些实施例中,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为31.83%-50.07%。更为优选地,发声部11在矢状面上的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例可以为35.55%-45%。需要说明的是,关于本说明书实施例中的测取的第一投影的面积与用户耳甲腔在该矢状面上的投影的面积的重叠比例对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角,例如,上侧壁与水平方向的夹角为0°)以及发声部的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴或垂直轴方向平移)来测取的。
在发声部11的至少部分覆盖用户对耳轮的佩戴方式下,由于发声部11不伸入用户的耳甲腔,发声部11与矢状面之间的夹角相较于图3中所示的开放式耳机中发声部11的至少部分伸入耳甲腔的佩戴方式会略小一些,因此,在发声部11的至少部分覆盖用户对耳轮区域的佩戴方式下,图14所示的开放式耳机中发声部在矢状面上的投影面积相较于图14所示的开放式耳机中发声部在矢状面上的投影面积略大一些,例如,在一些实施例中,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为236mm2-565mm2。在一些实施例中,为了避免发声部11在矢状面的第一投影的面积过小而导致其产生的挡板作用过差,同时避免发声部11在矢状面的第一投影的面积过大覆盖耳道口而影响用户获取外界环境中的声音,在佩戴状态下,发声部11在矢状面的第一投影的面积可以介于250mm2-550mm2之间。优选地,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为270mm2-500mm2。较为优选地,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为290mm2-450mm2。更为优选地,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为320mm2-410mm2
参照图14,发声部11在矢状面的第一投影的投影形状(例如图14中的虚线区域1100)可以包括长轴方向(例如Y轴方向)和短轴方向(例如Z轴方向)。在一些实施例中,考虑到发声部11在长轴方向Y或短轴方向Z的尺寸过小时,发声部11的体积相对较小,使得其内部设置的振膜面积也相对较小,导致振膜在低频时推动发声部11的壳体内部空气产生声音的效率低,影响开放式耳机的声学输出效果。进一步地,发声部11在长轴方向Y的尺寸过小或短轴方向的尺寸过小时,发声部11的出声孔和泄压孔之间的距离过小,导致出声孔处的声音和泄压孔处的声音的声程差较小,影响用户耳道口处的听音音量。而发声部11在长轴方向Y的尺寸过大时,可能会使得发声部11伸出用户的耳廓,进而引起佩戴不适的问题。此外,发声部11在长轴方向Y的尺寸过小时,发声部11的末端FE相对耳廓的内轮廓1014之间具有间隙,出声孔发出的声音和泄压孔发出的声音会在发声部11的末端FE与耳廓的内轮廓1014之间的区域发生声短路,导致用户耳道口处的听音音量降低,发声部11的末端FE与耳廓的内轮廓1014之间的区域越大,声短路现象越明显。而发声部11在短轴方向Z的尺寸过大时,发声部11可能覆盖用户耳道口,影响用户获取外界环境中的声音信息。在一些实施例中,为了使用户在佩戴开放式耳机10时可以具有较好的声学输出质量和佩戴舒适度,可以使第一投影的形状沿长轴方向Y的尺寸范围介于21mm-33mm之间。优选地,第一投影的形状沿长轴方向Y的尺寸范围可以为21.5mm-31mm。较为优选地,第一投影的形状沿长轴方向Y的尺寸范围可以为21.5mm-26.5mm。对应地,在一些实施例中,第一投影的形状沿短轴方向Z的尺寸范围介于11mm-18mm之间。优选地,第一投影的形状沿短轴方向Z的尺寸范围可以为11.5mm-16.5mm。较为优选地,第一投影的形状沿短轴方向Z的尺寸范围可以为11.5mm-16mm。为了进一步说明发声部11在矢状面的第一投影的形状对用户佩戴开放式耳机的听音效果的影响,以下针对发声部11在矢状面的第一投影的形状沿长轴方向Y的尺寸和发声部11在矢状面的第一投影的形状沿短轴方向Z的尺寸的比值进行示例性说明。
在佩戴方式一定(例如佩戴位置和佩戴角度固定)的情况下,对于发声部11覆盖对耳轮的佩戴方式,其发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸的比值对于发声部11的声学输出效果的影响可以视为与前文所述的发声部11伸入耳甲腔的佩戴方式大致相同。当发声部11在矢状面的第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值为1.0-3.0时,发声部11的频响曲线整体而言相对更为平滑,并且,在中低频范围内具有更好的频率响应。当频率位于高频范围时,第一投影沿长轴方向Y的尺寸与沿短轴方向Z的尺寸比值越大,发声部11在耳道口处的声音频响下降的越快。基于此,在一些实施例中,为了使得用户在佩戴开放式耳机时能够体验到较好的声学输出效果,可以使发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值介于1.0-3.0之间。类似地,为了同时保证佩戴的稳定性和舒适性,在一些实施例中,可以使发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值介于1.4-2.5之间。优选地,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值可以介于1.4-2.3之间。较为优选地,发声部11在矢状面上的第一投影沿长轴方向Y的尺寸与发声部11在矢状面上的投影沿短轴方向Z的尺寸的比值可以介于1.45-2.0之间。
需要说明的是,关于本说明书实施例中的测取的不同长轴方向的尺寸和短轴方向尺寸对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角)和佩戴位置一定时,通过改变不同长轴方向的尺寸和短轴方向尺寸来测取的。
类似地,在佩戴方式一定(例如佩戴位置和佩戴角度固定)的情况下,对于发声部11覆盖对耳轮的佩戴方式,其发声部11的厚度对于发声部11的声学输出效果的影响也可以视为与前文所述的发声部11伸入耳甲腔的佩戴方式大致相同。发声部11沿厚度方向X的尺寸(也被称为厚度)正比于出发声部11前腔沿厚度方向X的尺寸,前腔沿厚度方向X的尺寸越小,其对应的前腔谐振峰对应的谐振频率越大,在较低频段范围内(例如,100Hz-1000Hz)时的频响曲线更加平坦。在一些实施例中,出声孔与前腔声学耦合,前腔中的声音通过出声孔传递至用户耳道口处并被用户的听觉系统接收。如果发声部11在厚度方向X的尺寸过大,发声部11对应的前腔谐振峰对应的谐振频率过小,此外,在佩戴状态时,发声部11的整体尺寸或重量较大,影响佩戴的稳定性和舒适性,发声部11在厚度方向X的尺寸过大会影响发声部11在较低频段的声学性能。发声部11在厚度方向X的尺寸过小时,发声部11的前腔和后腔的空间有限,影响振膜的振动幅度,会限制发声部11的低频输出。基于此,为了保证发声部11可以具有较好的声学输出效果z以及保证佩戴时的稳定性,在一些实施例中,发声部11的厚度(沿发声部11厚度方向的尺寸)可以为2mm-20mm。优选地,发声部11的厚度可以为5mm-15mm。较为优选地,发声部11的厚度可以设置为8mm-12mm。需要说明的是,在佩戴状态下,当发声部11在厚度方向X上相反设置的两个侧壁(即,朝向用户耳部外侧的内侧面和背离用户耳部外侧的外侧面)的至少一个壁面为非平面时,发声部11的厚度可以指发声部11的内侧面和外侧面在厚度方向X上的最大距离。
需要说明的是,关于本说明书实施例中的测取的不同厚度对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角,例如,上侧壁与水平方向的夹角为0°)、佩戴位置一定以及长轴方向的尺寸和短轴方向的尺寸一定时,通过改变发声部厚度方向尺寸来测取的。
图16A-图16E是根据本说明书另一些实施例所示的开放式耳机的示例性佩戴示意图。参照图16A、图16D和图16E,在一些实施例中,佩戴状态下发声部11的上侧壁111(也被称为上侧面)或下侧壁112(也被称为下侧面)可以相对水平面平行或近似平行。如图16A所示,在一些实施例中,发声部11的末端FE在矢状面的投影可以位于耳廓的内轮廓1014在矢状面的投影和耳甲腔102的边缘在矢状面的投影之间的区域内,也就是说,发声部11的末端FE在矢状面的投影的中点位于耳廓的内轮廓1014在矢状面的投影和耳甲腔102的边缘在矢状面上的投影之间。如图16D所示,在一些实施例中,发声部11的末端FE可以抵靠耳甲腔102的边缘,发声部11的固定端可以位于耳屏前侧,发声部11的至少部分可以覆盖用户的耳甲腔102。如图16E所示,在一些实施例中,发声部11的末端FE在矢状面的投影的中点可以位于耳甲腔102在矢状面的投影区域内,发声部11的固定端在矢状面的投影可以位于用户耳廓在矢状面的投影区域外。
参照图16B和图16C,在一些实施例中,佩戴状态下发声部11的上侧壁111或下侧壁112也可以相对于水平面呈一定角度的倾斜。如图16B所示,在一些实施例中,发声部11的末端FE可以相对发声部11的固定端向耳廓顶部的区域倾斜,发声部11的末端FE可以抵靠在耳廓的内轮廓1014。如图16C所示,在一些实施例中,发声部11的固定端可以相对发声部11的末端FE向耳廓顶部的区域倾斜,发声部11的末端FE可以位于耳甲腔102的边缘和耳廓的内轮廓1014之间,也就是说,发声部11的末端FE在矢状面的投影的中点C3位于耳廓的内轮廓1014在矢状面的投影和耳甲腔102的边缘在矢 状面上的投影之间。
可以理解,在用户佩戴时,若发声部11的末端FE在矢状面上的投影的中点C3相对耳廓的内轮廓1014在矢状面的投影的距离过大,会导致发声部11的末端FE无法抵靠在耳廓的内轮廓1014处,也就导致无法对发声部11起到限位的作用,容易发生脱落。此外,第一投影的形心O与第二投影的边界的某个区域的点的距离过大,发声部11的末端FE相对耳廓的内轮廓1014之间可能具有间隙,出声孔发出的声音和泄压孔发出的声音会在发声部11的末端FE与耳廓的内轮廓1014之间的区域发生声短路,导致用户耳道口处的听音音量降低,而发声部11的末端FE与耳廓的内轮廓1014之间的区域越大,声短路现象越明显。需要说明的是,耳廓的内轮廓1014可以是指耳轮的内壁,对应地,耳廓的外轮廓1013可以是指耳轮的外壁。在一些实施例中,为了使开放式耳机具有较好的佩戴稳定性,可以使发声部11的末端FE在矢状面上的投影的中点C3相对耳廓的内轮廓1014在矢状面的投影的距离不大于8mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3相对耳廓的内轮廓1014在矢状面的投影的距离可以为0mm-6mm。较为优选地,发声部11的末端FE在矢状面上的投影的中点C3相对耳廓的内轮廓1014在矢状面的投影的距离可以为0mm-5.5mm。在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3相对耳廓的内轮廓1014在矢状面的投影的距离可以为0,当该距离等于0时,表示发声部11的末端FE与耳廓的内轮廓1014相抵靠,此时发声部11在佩戴状态下与耳廓的内轮廓1014相抵靠,从而提高开放式耳机佩戴时的稳定性。此外,可以使得发声部11的末端FE与耳廓的内轮廓1014之间的区域尽量减小,以减小发声部11周围的声短路区域,从而提高用户耳道口的听音音量。需要说明的是,在具体场景中,还可以是发声部11的末端FE在矢状面的投影中除了中点C3之外的其他点与耳廓的内轮廓1014边缘抵靠,此时发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为大于0mm。在一些实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为2mm-10mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为4mm-8mm。
还需要说明的是,在本说明书中,发声部11的末端FE指发声部11中远离发声部11与耳挂的连接处的一端,发声部11的末端FE在矢状面上的投影为曲线或折线时,发声部11的末端FE在矢状面上的投影的中点C3可以通过下述示例性的方法进行选取,可以选取末端FE在矢状面上的投影的始端点和终端点做一条线段,选取该线段上的中点做中垂线,该中垂线与该投影相交的点即为发声部11的末端在矢状面上的投影的中点C3。在一些实施例中,发声部11的末端FE为曲面时,还可以选取其投影上与短轴方向Z平行的切线所在的切点作为发声部11的末端FE在矢状面上的投影的中点。
另外,在本说明书中的一些实施例中,发声部11的末端FE在矢状面上的投影的中点与耳廓的内轮廓1014在矢状面的投影的距离可以指发声部11的末端FE在矢状面上的投影与耳廓的内轮廓1014在矢状面的投影区域的最小距离。或者,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以指发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影在矢状轴的距离。
发声部11与对耳轮区域所形成的挡板的长度与发声部11的末端FE与在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离范围相关,例如,发声部11的末端FE与在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离越小,发声部11与对耳轮区域所形成的挡板的长度越长,出声孔和泄压孔到外耳道101的声程差越大,外耳道101处接收到的声音强度也就越大。此外,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角还会影响出声孔相对耳道口的位置,例如,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角越小,出声孔越靠近耳道口。以下分别图16A-图16E进行具体说明。
在一些实施例中,发声部11的形状可以为长方体、类长方体(例如,跑道形)、圆柱体等规则形状或其他不规则形状。参照图16A、图16D和图16E,在一些实施例中,当发声部11为类长方体结构时,其在佩戴状态下发声部11的上侧壁111或下侧壁112可以相对水平方向平行或近似平行。此时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为0°-20°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离范围为0mm-18mm。示例性地,当采用如图16A所示的佩戴方式时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为5°-15°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为0mm-11mm;当采用如图16D所示的佩戴方式时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为7°-12°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为3mm-12mm;当采用如图16E所示的佩戴方式时,发声部11的上侧壁111或下侧壁112 在矢状面的投影相对于水平方向的倾角范围可以为8°-10°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为8mm-12mm。在一些实施例中,当开放式耳机处于佩戴状态时,发声部11的末端FE可以抵靠在耳廓的内轮廓1014处,同时,耳挂可以贴合在用户耳部的后侧,从而使得发声部11和耳挂相配合从前后两侧对用户的耳部进行夹持,增加防止开放式耳机10从耳部上脱落的阻力,提高开放式耳机10的佩戴稳定性。
继续参照图16B和图16C,在一些实施例中,发声部11的上侧壁111或下侧壁112相对于水平面也可以呈一定角度的倾斜,但是,当发声部11的上侧壁111或下侧壁112相对于水平面倾斜角度过大时,则会导致发声部11伸出用户的耳廓,引起佩戴不适和佩戴不稳定的问题。因此,为了保证发声部11覆盖对耳轮区域的面积,使耳道口处具有较好的声音强度,同时确保开放式耳机具有较好的佩戴稳定性和舒适度,在一些实施例中,开放式耳机10在佩戴状态下,发声部11的上侧壁111或下侧壁112在矢状面上的投影与水平方向的倾角可以不大于43°。在一些实施例中,当采用如图16B和图16C所示的佩戴方式进行佩戴时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为0°-43°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离范围为0mm-15mm。示例性地,当采用如图16B所示的佩戴方式时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为30°-45°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为0mm-10mm;当采用如图16C所示的佩戴方式时,发声部11的上侧壁111或下侧壁112在矢状面的投影相对于水平方向的倾角范围可以为25°-45°,发声部11的末端FE在矢状面上的投影的中点C3与耳廓的内轮廓1014在矢状面的投影的距离可以为3mm-11mm。
需要注意的是,发声部11的上侧壁111在矢状面上的投影与水平方向的倾角可以与下侧壁112在矢状面上的投影与水平方向的倾角相同或不同。例如,当发声部11的上侧壁111与下侧壁112平行时,上侧壁111在矢状面上的投影与水平方向的倾角和下侧壁112在矢状面上的投影与水平方向的倾角相同。又例如,当发声部11的上侧壁111与下侧壁112不平行时,或者上侧壁111或下侧壁112中的一个为平面壁,另一个为非平面壁(例如,曲面壁)时,上侧壁111在矢状面上的投影与水平方向的倾角和下侧壁112在矢状面上的投影与水平方向的倾角可以不同。此外,当上侧壁111或下侧壁112为曲面或者凹凸面时,上侧壁111或下侧壁112在矢状面上的投影可能为曲线或折线,此时上侧壁111在矢状面上的投影与水平方向的倾角可以为曲线或折线相对地平面距离最大的点的切线与水平方向的夹角,下侧壁112在矢状面上的投影与水平方向的倾角可以为曲线或折线相对地平面距离最小的点的切线与水平方向的夹角。
需要注意的是,图14所示的开放式耳机的发声部11也可以不覆盖对耳轮区域,例如图16E所示的佩戴位置,此时发声部11并不伸入耳甲腔中,而是朝向用户耳部外侧的侧壁相对用户的耳甲腔悬空设置,即发声部11自身起到挡板的作用,发声部11在矢状面上的第一投影面积与耳甲腔在矢状面的投影面积的重叠比例越大意味着发声部11的出声孔越靠近耳道口,用户耳道口的听音音量也就越大。这里发声部11末端在矢状面的投影与耳甲腔边缘在矢状面的投影的距离与发声部11在矢状面上的第一投影面积与耳甲腔在矢状面的投影面积的重叠比例呈正相关,进一步地,发声部11的出声孔相对耳道口的位置与发声部11末端在矢状面的投影与耳甲腔边缘在矢状面的投影的距离呈正相关。以下结合图17进行具体说明。
图17示出了图16E中发声部末端在矢状面的投影与耳甲腔边缘在矢状面的投影在不同距离时所对应的示例性频响曲线示意图。参照图17,其中,横坐标表示频率(单位:Hz),纵坐标表示不同频率时耳道口处的声压级(单位:dB),曲线1801为发声部11的末端在矢状面的投影与耳甲腔边缘在矢状面的投影的距离为0时所对应的频响曲线,曲线1802为发声部11的末端在矢状面的投影与耳甲腔边缘在矢状面的投影的距离为3.72mm时所对应的频响曲线,曲线1803为发声部11的末端在矢状面的投影与耳甲腔边缘在矢状面的投影的距离为10.34mm时所对应的频响曲线。根据图17可以看出,当发声部11的末端在矢状面的投影与耳甲腔的边缘在矢状面的投影的距离为0mm和3.72mm时的频率响应优于10.34mm时的频率响应。基于此,在一些实施例中,为了保证开放式耳机10具有较好的听音效果,可以使发声部11的末端FE在矢状面上的投影与耳甲腔的边缘在矢状面上的投影的距离不大于10.34mm。优选地,发声部11的末端FE在矢状面上的投影与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-7mm。较为优选地,发声部11的末端FE在矢状面上的投影与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-5mm。较为优选地,发声部11的末端FE在矢状面上的投影与耳甲腔的边缘在矢状面上的投影的距离可以为0mm-3.72mm。需要说明的是,在具体场景中,还可以是发声部11的末端FE在矢状面的投影中除了中点C3之外的其他点与耳甲腔边缘抵靠,此时发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以为大于0mm。在一些 实施例中,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以为2mm-7mm。优选地,发声部11的末端FE在矢状面上的投影的中点C3与耳甲腔边缘在矢状面的投影的距离可以为2mm-3.74mm。要说明的是,关于本说明书实施例中测取的发声部的末端FE与在矢状面上的投影的中点与耳甲腔的边缘在矢状面上的投影的不同距离对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角,例如,上侧壁与水平方向的夹角为0°)、以及长轴方向的尺寸、短轴方向和厚度方向的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴方向平移)来测取的。
继续参照图16A-图16C,在发声部11和用户耳廓的尺寸一定、且发声部11在佩戴状态下相对于水平方向的倾角一定的情况下,发声部11在矢状面的第一投影的形心O与耳道口(例如图16A-图16E中所示的虚线区域1016)在矢状面的投影的形心Q之间的距离会影响发声部11与对耳轮区域形成的挡板作用以及发声部11的出声孔相对耳道口的位置,最终影响耳道口处的声音强度。例如,发声部11在矢状面的第一投影的形心O与耳道口在矢状面的投影的形心Q之间的距离越小,发声部11与对耳轮区域的接触区域越小,发声部11与对耳轮区域形成的挡板作用越弱,但是此时发声部11在矢状面的第一投影面积与耳甲腔在矢状面的投影面积的重叠比例增大意味着发声部11的出声孔会更加靠近耳道口,同样可以起到提高耳道口处的听音效果。因此,在发声部11的整体体积和佩戴方式一定的前提下,对于发声部11在矢状面的第一投影的形心O与耳道口在矢状面的投影的形心Q之间的距离也需要重点考虑。
图18A是根据本说明书另一些实施例所示的发声部11不伸入耳甲腔时的佩戴场景时发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例时所对应的示例性频响曲线示意图,图18B是根据本说明书另一些实施例所示的发声部11不伸入耳甲腔时的佩戴场景时发声部11在矢状面上的第一投影的形心与耳道口在矢状面上的投影的形心在不同距离时所对应的示例性频响曲线示意图。
参照图18A,其中,横坐标为发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例,纵坐标为不同重叠比例所对应的耳道口处的声音的声压级,直线1601表示在频率为500Hz时,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行模拟的线性关系;直线1602表示在频率为1kHz时,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行模拟的线性关系;直线1603表示在频率为3kHz时,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与耳道口处的声压级进行模拟的线性关系。图18A中的空心圆形点表示频率为500Hz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据;图18A中的黑色圆形点表示频率为1kHz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据;图18A中的灰度值较浅的圆形点表示频率为3kHz时第一投影的面积与耳甲腔在矢状面上的投影的面积在不同重叠比例的情况下所对应的测试数据。根据图18A可以看出,不同频率下,第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例与用户耳道口处的声压级大小呈近似线性变化,当发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例大于10%时,在耳道口处测取特定频率(例如,500Hz、1kHz、3kHz)的声音相对于发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积不具有重叠比例(重叠比例为0)时具有明显的提升。另外,由于发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例过大时可能会影响耳道口的开放状态,进而影响用户获取外界环境中的声音,因此,发声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例不宜过大,例如,声部11在矢状面上的第一投影的面积与耳甲腔在矢状面上的投影的面积的重叠比例不大于62%。基于此,为了保证发声部11的声学输出质量,可以使发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例介于10%-60%之间。优选地,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例可以介于10%-45%之间。较为优选地,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例可以介于11.82%-40%之间。优选地,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例可以介于18%-38%之间。更为优选地,发声部11在矢状面上的第一投影与耳甲腔在矢状面上的投影的重叠比例可以介于25%-38%之间。
参照图18B,其中,横坐标为发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离,纵坐标为不同距离所对应的耳道口处的声音的频率响应声压级。直线1604表示理想状态下在频率为500Hz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离与耳道口处的声压级的线性关系;直线1605表示在频率为1kHz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离与耳道口处的声压级的线性 关系;直线1606表示在频率为3kHz时,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离与耳道口处的声压级的线性关系。图18B中的空心圆形点表示频率为500Hz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q在不同距离的情况下所对应的测试数据;图18B中的黑色圆形点表示频率为1kHz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q在不同距离的情况下所对应的测试数据;图18B中的灰度值较浅的圆形点表示频率为3kHz时发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q在不同距离的情况下所对应的测试数据。根据图18B可以看出,不同频率下,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离与用户耳道口处的声压级大小近似呈负相关,从整体来看,在耳道口处测取特定频率(例如,500Hz、1kHz、3kHz)的声音的声压级随着发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离的增大呈下降趋势,这里结合图18A和图18B,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离越大,发声部11在矢状面上的第一投影的面积与耳道口在矢状面上的投影的面积的重叠比例越小。该重叠比例会影响发声部11的出声孔与耳道口之间相对位置。例如,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离越大,重叠比例越大,此时发声部11的出声孔越靠近耳道口,耳道口处的听音效果也就越好。此外,当发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离过小时,发声部11在矢状面上的第一投影的面积与耳道口在矢状面上的投影的面积的重叠比例过大,发声部11可能覆盖用户耳道口,影响用户获取外界环境中的声音信息。根据图18B可以看出,以频率为3kHz作为示例,当发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离为4mm、5.8mm、12mm时测取的耳道口处的声压级分别为-73dB、-76dB和-82dB,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离为17mm、22mm时测取的耳道口处的声压级分别为-85dB和-83dB。由此可知,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q的距离不宜过大。在一些实施例中,为了使开放式耳机在佩戴状态下具有较好的声学输出质量(例如,在耳道口处的声压级大于-82dB)以及保证用户可以接收到外界环境中的声音信息,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离可以为3mm-13mm。优选地,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离可以为4mm-10mm。优选地,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离可以为4mm-7mm。优选地,发声部11在矢状面上的第一投影的形心O与耳道口在矢状面上的投影的形心Q之间的距离可以为4mm-6mm。
需要说明的是,关于本说明书实施例中测取的不同重叠比例对应的频响曲线和第一投影的形心与耳道口在矢状面的投影的形心对应的频响曲线是在发声部的佩戴角度(上侧壁或下侧壁与水平方向的夹角,例如,上侧壁与水平方向的夹角为0°)、以及长轴方向的尺寸、短轴方向和厚度方向的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴方向平移)来测取的。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (35)

  1. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;
    其中,所述发声部至少部分插入耳甲腔,所述发声部在矢状面上的投影面积与所述耳甲腔在所述矢状面上的投影面积的重叠比例不小于44.01%。
  2. 根据权利要求1所述的开放式耳机,其中,所述发声部在所述矢状面上的投影面积与所述耳甲腔在所述矢状面上的投影面积的重叠比例不小于57.89%。
  3. 根据权利要求1所述的开放式耳机,其中,所述发声部在所述矢状面的投影的面积范围为202mm2-560mm2
  4. 根据权利要求1-3任一项所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影与所述耳甲腔的边缘在所述矢状面的投影的距离不大于16mm。
  5. 根据权利要求4所述的开放式耳机,其中,所述发声部的末端抵靠所述耳甲腔的边缘。
  6. 根据权利要求4所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影到所述耳甲腔的边缘在所述矢状面的投影的距离范围为4.77mm-10.48mm。
  7. 根据权利要求1-6任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影的形心与所述耳道口在所述矢状面的投影的形心的距离范围为8mm-12mm。
  8. 根据权利要求1-7任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影形状包括长轴方向和短轴方向,所述投影形状满足以下条件中的至少一个:
    所述投影形状沿所述长轴方向的尺寸范围为18mm-29mm;
    所述投影形状沿所述短轴方向的尺寸范围为10mm-15mm。
  9. 根据权利要求8所述的开放式耳机,其中,所述投影形沿所述长轴方向的尺寸与所述投影形状沿所述短轴方向的尺寸的比值为1.4-2.2。
  10. 根据权利要求1-9任一项所述的开放式耳机,其中,所述发声部的厚度为6mm-12mm。
  11. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;
    其中,所述发声部至少部分插入耳甲腔,所述发声部的末端在矢状面的投影到所述耳甲腔的边缘在所述矢状面的投影的距离不大于16mm。
  12. 根据权利要求11所述的开放式耳机,其中,所述发声部的末端抵靠所述耳甲腔的边缘。
  13. 根据权利要求11所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影至所述耳甲腔的边缘在所述矢状面的投影的距离范围为4.77mm-10.48mm。
  14. 根据权利要求11所述的开放式耳机,其中,所述发声部在所述矢状面上的投影面积与所述耳甲腔在所述矢状面上的投影面积的重叠比例不小于34.05%。
  15. 根据权利要求14所述的开放式耳机,其中,所述发声部在所述矢状面的投影的面积范围为202mm2-560mm2
  16. 根据权利要求11-15任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影的形心与所述耳道口在所述矢状面的投影的形心的距离范围为8mm-12mm。
  17. 根据权利要求8-11任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影形状包括长轴方向和短轴方向,所述投影形状满足以下条件中的至少一个:
    所述投影形状沿所述长轴方向的尺寸范围为18mm-29mm;
    所述投影形状沿所述短轴方向的尺寸范围为10mm-15mm。
  18. 根据权利要求17所述的开放式耳机,其中,所述投影形沿所述长轴方向的尺寸与所述投影形沿所述短轴方向的尺寸的比值为1.4-2.2。
  19. 根据权利要求11-18任一项所述的开放式耳机,其中,所述发声部的厚度为6mm-12mm。
  20. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面一侧延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;
    所述发声部至少部分覆盖对耳轮区域,所述发声部在矢状面的投影面积与耳甲腔在所述矢状面的投影面积的重叠比例不小于11.82%。
  21. 根据权利要求20所述的开放式耳机,其中,所述发声部在所述矢状面的投影面积与所述耳甲腔在所述矢状面的投影面积的重叠比例不小于31.83%。
  22. 根据权利要求20所述的开放式耳机,其中,所述发声部在所述矢状面的投影面积范围为236mm2-565mm2
  23. 根据权利要求20-22任一项所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影位于所述耳甲腔的边缘在所述矢状面的投影和所述耳廓的内轮廓在所述矢状面的投影之间的区域内。
  24. 根据权利要求20-23任一项所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影与所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm。
  25. 根据权利要求24所述的开放式耳机,所述发声部的末端与所述耳廓的内轮廓相抵靠。
  26. 根据权利要求24所述的开放式耳机,在佩戴状态下,所述发声部的上侧壁或下侧壁在所述矢状面的投影相对于水平方向的倾角范围为28°-43°,所述发声部的末端在所述矢状面的投影到所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm。
  27. 根据权利要求24所述的开放式耳机,在佩戴状态下,所述发声部的上侧壁或下侧壁在所述矢状面的投影相对于水平方向的倾角范围为0°-20°,所述发声部的末端在所述矢状面的投影到所述耳廓的内轮廓在所述矢状面的投影的距离范不大于6mm。
  28. 根据权利要求20-27任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影的形心与所述耳道口在所述矢状面的投影的形心的距离范围为4mm-7mm。
  29. 根据权利要求20-28任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影形状包括长轴方向和短轴方向,所述投影形状满足以下条件中的至少一个:
    所述投影形状的沿所述长轴方向的尺寸范围为21mm-33mm;
    所述投影形状的沿所述短轴方向的尺寸范围为11mm-18mm。
  30. 根据权利要求29所述的开放式耳机,其中,所述投影形状沿所述长轴方向的尺寸与所述投影形状沿所述短轴方向的尺寸的比值为1.4-2.4。
  31. 根据权利要求20-30任一项所述的开放式耳机,其中,所述发声部的厚度为6mm-12mm。
  32. 一种开放式耳机,包括:
    发声部;以及
    耳挂,所述耳挂包括依次连接的第一部分和第二部分,所述第一部分挂设在用户耳廓和头部之间,所述第二部分向所述耳廓的前外侧面延伸并连接所述发声部,将所述发声部固定于耳道附近但不堵塞耳道口的位置;
    所述发声部至少部分覆盖对耳轮,所述发声部的末端在矢状面的投影与所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm。
  33. 根据权利要求32所述的开放式耳机,其中,所述发声部的末端在所述矢状面的投影位于耳甲腔的边缘在所述矢状面的投影和所述耳廓的内轮廓在所述矢状面的投影之间的区域内。
  34. 根据权利要求32或33所述的开放式耳机,其中,所述发声部在所述矢状面的投影面积与耳甲腔在所述矢状面的投影面积的重叠比例不小于11.82%。
  35. 根据权利要求32-34任一项所述的开放式耳机,其中,所述发声部在所述矢状面的投影的面积范围为236mm2-565mm2
PCT/CN2023/079412 2022-10-28 2023-03-02 一种开放式耳机 WO2024087445A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/CN2023/083539 WO2024087485A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083540 WO2024087486A1 (zh) 2022-10-28 2023-03-24 一种耳机
CN202310339576.XA CN117956360A (zh) 2022-10-28 2023-03-24 一种耳机
CN202320694257.6U CN220043616U (zh) 2022-10-28 2023-03-24 一种耳机
CN202320679352.9U CN220368782U (zh) 2022-10-28 2023-03-24 一种耳机
US18/350,762 US11871171B1 (en) 2022-10-28 2023-07-12 Open earphones
US18/452,523 US11930312B1 (en) 2022-10-28 2023-08-19 Open earphones
PCT/CN2023/117777 WO2024087907A1 (zh) 2022-10-28 2023-09-08 一种耳机
CN202311159929.4A CN117956363A (zh) 2022-10-28 2023-09-08 一种耳机
US18/499,197 US11968489B1 (en) 2022-10-28 2023-10-31 Earphones
US18/517,758 US20240147133A1 (en) 2022-10-28 2023-11-22 Earphones
US18/537,726 US20240147121A1 (en) 2022-10-28 2023-12-12 Open earphones

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CN2022144339 2022-12-30
CNPCT/CN2022/144339 2022-12-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/350,762 Continuation US11871171B1 (en) 2022-10-28 2023-07-12 Open earphones
US18/452,523 Continuation US11930312B1 (en) 2022-10-28 2023-08-19 Open earphones

Publications (1)

Publication Number Publication Date
WO2024087445A1 true WO2024087445A1 (zh) 2024-05-02

Family

ID=88743304

Family Applications (14)

Application Number Title Priority Date Filing Date
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部

Family Applications After (13)

Application Number Title Priority Date Filing Date
PCT/CN2023/079401 WO2024087439A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079400 WO2024087438A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079404 WO2024087440A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079407 WO2024087441A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/079409 WO2024087442A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2014-01-06 2023-03-02 一种开放式耳机
PCT/CN2023/083547 WO2024087492A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083535 WO2024087481A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083534 WO2024087480A1 (zh) 2022-10-28 2023-03-24 耳机
PCT/CN2023/083536 WO2024087482A1 (zh) 2022-10-28 2023-03-24 一种发声部
PCT/CN2023/083551 WO2024087494A1 (zh) 2022-10-28 2023-03-24 一种耳机
PCT/CN2023/083537 WO2024087483A1 (zh) 2022-10-28 2023-03-24 一种发声部

Country Status (3)

Country Link
US (2) US20240147142A1 (zh)
CN (58) CN220210576U (zh)
WO (14) WO2024087445A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137476A1 (en) * 2017-07-21 2020-04-30 Sony Corporation Sound output apparatus
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114390394A (zh) * 2022-02-24 2022-04-22 听智慧(南京)科技有限公司 定制无线耳机
WO2022111485A1 (zh) * 2020-11-24 2022-06-02 深圳市韶音科技有限公司 一种声学装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057731B2 (ja) * 1990-08-21 2000-07-04 ソニー株式会社 電気音響変換器及び音響再生システム
JP2001326986A (ja) * 2000-05-15 2001-11-22 Audio Technica Corp ヘッドホン
US7050598B1 (en) * 2002-12-06 2006-05-23 Plantronics, Inc. Self-adjusting earloop for an over-the-ear headset
EP1694092A4 (en) * 2003-11-13 2009-12-23 Panasonic Corp TWEETER
JP4723400B2 (ja) * 2006-02-28 2011-07-13 スター精密株式会社 電気音響変換器
WO2009104264A1 (ja) * 2008-02-21 2009-08-27 東北パイオニア株式会社 スピーカ装置
JP5262818B2 (ja) * 2009-02-20 2013-08-14 株式会社Jvcケンウッド 耳掛け式イヤホン装置、イヤホン装置用耳掛けアーム
US9025782B2 (en) * 2010-07-26 2015-05-05 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for multi-microphone location-selective processing
JP6107581B2 (ja) * 2013-09-30 2017-04-05 株式会社Jvcケンウッド 耳掛け式ヘッドホン
US10182287B2 (en) * 2016-08-16 2019-01-15 Bose Corporation Earphone having damped ear canal resonance
KR101760754B1 (ko) * 2016-08-23 2017-07-25 주식회사 이엠텍 방수 기능 사이드 진동판 및 이를 구비하는 마이크로스피커
WO2018132996A1 (zh) * 2017-01-19 2018-07-26 声电电子科技(惠州)有限公司 一种微型扬声器
JP6903933B2 (ja) * 2017-02-15 2021-07-14 株式会社Jvcケンウッド 収音装置、及び収音方法
CN107277718A (zh) * 2017-07-28 2017-10-20 常州市润蒙声学科技有限公司 扬声器
CN207926857U (zh) * 2017-12-21 2018-09-28 歌尔科技有限公司 发声装置单体、耳机以及电子设备
GB2584535B (en) * 2019-04-02 2021-12-01 Tymphany Acoustic Tech Huizhou Co Ltd In-ear headphone device with active noise control
CN210053540U (zh) * 2019-08-02 2020-02-11 深圳新锐芯科技有限公司 一种固定功能的耳挂式蓝牙耳机
US11122351B2 (en) * 2019-08-28 2021-09-14 Bose Corporation Open audio device
KR102209486B1 (ko) * 2019-10-29 2021-01-29 주식회사 이엠텍 리시버의 진동판 부착 구조
CN110958526A (zh) * 2019-12-19 2020-04-03 歌尔科技有限公司 耳机
CN113542956B (zh) * 2020-04-22 2024-04-09 耳一号声学科技(深圳)有限公司 一种入耳式耳机及耳机固持结构
CN113556638B (zh) * 2020-04-24 2024-03-19 万魔声学股份有限公司 耳机
GB2595971B (en) * 2020-06-12 2022-09-21 Tymphany Acoustic Tech Ltd Earphone body with tuned vents
CN113810812A (zh) * 2020-06-17 2021-12-17 耳一号声学科技(深圳)有限公司 一种耳机及其耳撑
CN111654789A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111654790A (zh) * 2020-06-29 2020-09-11 歌尔股份有限公司 发声器件及电子设备
CN111698608B (zh) * 2020-07-02 2022-02-01 立讯精密工业股份有限公司 一种骨传导耳机
CN218830533U (zh) * 2020-07-29 2023-04-07 深圳市韶音科技有限公司 一种耳机
CN214429681U (zh) * 2020-11-15 2021-10-19 深圳市大十科技有限公司 一种挂夹耳开放式耳机
CN113301463A (zh) * 2021-02-03 2021-08-24 深圳市大十科技有限公司 一种用于耳机的夹耳结构
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209268A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN115209267A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN116918350A (zh) * 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
US11140469B1 (en) * 2021-05-03 2021-10-05 Bose Corporation Open-ear headphone
CN215818549U (zh) * 2021-08-25 2022-02-11 深圳市冠旭电子股份有限公司 可旋转开放式tws耳机
CN215682610U (zh) * 2021-09-17 2022-01-28 深圳市科奈信科技有限公司 开放式耳机
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN216600066U (zh) * 2021-10-29 2022-05-24 华为技术有限公司 扬声器以及声音输出装置
CN216357224U (zh) * 2021-11-01 2022-04-19 东莞市猎声电子科技有限公司 一种耳机
CN113905304A (zh) * 2021-11-01 2022-01-07 东莞市猎声电子科技有限公司 一种耳机及其定向出声的方法
CN217011123U (zh) * 2021-12-20 2022-07-19 深圳市科奈信科技有限公司 骨传导耳机
CN114760554A (zh) * 2022-03-28 2022-07-15 广东小天才科技有限公司 一种夹耳式耳机的麦克风管理方法、装置及夹耳式耳机
CN114928800A (zh) * 2022-05-10 2022-08-19 歌尔股份有限公司 发声装置和电子设备
CN114866925A (zh) * 2022-05-31 2022-08-05 歌尔股份有限公司 发声装置和发声设备
CN217643682U (zh) * 2022-06-24 2022-10-21 深圳市韶音科技有限公司 一种开放式耳机
CN115460496A (zh) * 2022-09-15 2022-12-09 深圳市冠旭电子股份有限公司 耳挂连接结构及蓝牙耳机
CN218352706U (zh) * 2022-09-30 2023-01-20 东莞市猎声电子科技有限公司 符合人体工学以提高佩戴舒适度的耳机
CN115550783B (zh) * 2022-09-30 2023-10-31 东莞市猎声电子科技有限公司 一种开放式耳机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137476A1 (en) * 2017-07-21 2020-04-30 Sony Corporation Sound output apparatus
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
WO2022111485A1 (zh) * 2020-11-24 2022-06-02 深圳市韶音科技有限公司 一种声学装置
CN114390394A (zh) * 2022-02-24 2022-04-22 听智慧(南京)科技有限公司 定制无线耳机

Also Published As

Publication number Publication date
CN220254652U (zh) 2023-12-26
WO2024087483A1 (zh) 2024-05-02
CN117956335A (zh) 2024-04-30
CN117956337A (zh) 2024-04-30
CN117956346A (zh) 2024-04-30
WO2024087440A1 (zh) 2024-05-02
CN117956344A (zh) 2024-04-30
CN220342445U (zh) 2024-01-12
CN220210576U (zh) 2023-12-19
CN220693319U (zh) 2024-03-29
CN220067643U (zh) 2023-11-21
CN117956336A (zh) 2024-04-30
CN117956343A (zh) 2024-04-30
CN117956352A (zh) 2024-04-30
CN220823261U (zh) 2024-04-19
CN220528217U (zh) 2024-02-23
CN117956339A (zh) 2024-04-30
CN220711630U (zh) 2024-04-02
CN220493121U (zh) 2024-02-13
CN220673920U (zh) 2024-03-26
CN220108162U (zh) 2023-11-28
CN117956353A (zh) 2024-04-30
WO2024087481A1 (zh) 2024-05-02
WO2024087444A1 (zh) 2024-05-02
CN220067645U (zh) 2023-11-21
CN117956338A (zh) 2024-04-30
CN117956341A (zh) 2024-04-30
CN220043614U (zh) 2023-11-17
CN220254655U (zh) 2023-12-26
CN220067646U (zh) 2023-11-21
CN220528194U (zh) 2024-02-23
CN220254654U (zh) 2023-12-26
CN117956345A (zh) 2024-04-30
CN220210578U (zh) 2023-12-19
WO2024087442A1 (zh) 2024-05-02
CN220108163U (zh) 2023-11-28
WO2024087438A1 (zh) 2024-05-02
CN117956356A (zh) 2024-04-30
CN220210580U (zh) 2023-12-19
CN220368781U (zh) 2024-01-19
CN220711634U (zh) 2024-04-02
CN220732986U (zh) 2024-04-05
CN220325779U (zh) 2024-01-09
CN220528213U (zh) 2024-02-23
WO2024087480A1 (zh) 2024-05-02
CN220528214U (zh) 2024-02-23
CN220711629U (zh) 2024-04-02
WO2024087492A1 (zh) 2024-05-02
WO2024087439A1 (zh) 2024-05-02
CN220528219U (zh) 2024-02-23
CN220254653U (zh) 2023-12-26
CN117956347A (zh) 2024-04-30
WO2024087441A1 (zh) 2024-05-02
WO2024087494A1 (zh) 2024-05-02
CN220528215U (zh) 2024-02-23
US20240147142A1 (en) 2024-05-02
CN220067648U (zh) 2023-11-21
CN117956340A (zh) 2024-04-30
CN220210577U (zh) 2023-12-19
WO2024087482A1 (zh) 2024-05-02
CN220067644U (zh) 2023-11-21
CN220511241U (zh) 2024-02-20
CN220493122U (zh) 2024-02-13
WO2024087443A1 (zh) 2024-05-02
CN117956334A (zh) 2024-04-30
CN220711638U (zh) 2024-04-02
CN220711628U (zh) 2024-04-02
CN220254651U (zh) 2023-12-26
US20240147159A1 (en) 2024-05-02
US20240147161A1 (en) 2024-05-02
CN117956342A (zh) 2024-04-30
CN117956359A (zh) 2024-04-30
CN117956348A (zh) 2024-04-30
CN220528220U (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2024087445A1 (zh) 一种开放式耳机
WO2024087485A1 (zh) 一种耳机
WO2024087486A1 (zh) 一种耳机
TW202418832A (zh) 一種開放式耳機
TW202418830A (zh) 一種開放式耳機
TW202418833A (zh) 一種開放式耳機
WO2024087908A1 (zh) 一种耳机
CN220325780U (zh) 一种耳机
WO2024087495A1 (zh) 一种耳机
WO2024088222A1 (zh) 一种开放式耳机
US11902734B1 (en) Open earphones
TW202418824A (zh) 一種開放式耳機
TW202418852A (zh) 一種耳機
TW202418825A (zh) 一種開放式耳機
TW202418831A (zh) 一種開放式耳機
CN117956358A (zh) 一种耳机
CN117956360A (zh) 一种耳机