WO2024087907A1 - 一种耳机 - Google Patents

一种耳机 Download PDF

Info

Publication number
WO2024087907A1
WO2024087907A1 PCT/CN2023/117777 CN2023117777W WO2024087907A1 WO 2024087907 A1 WO2024087907 A1 WO 2024087907A1 CN 2023117777 W CN2023117777 W CN 2023117777W WO 2024087907 A1 WO2024087907 A1 WO 2024087907A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
pressure relief
emitting part
relief hole
sagittal plane
Prior art date
Application number
PCT/CN2023/117777
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2023/079410 external-priority patent/WO2024087443A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2024087907A1 publication Critical patent/WO2024087907A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones

Definitions

  • the present application relates to the field of acoustic technology, and in particular to a headset.
  • acoustic devices such as headphones
  • headphones can be used in conjunction with electronic devices such as mobile phones and computers to provide users with an auditory feast.
  • Headphones are portable audio output devices that achieve sound conduction within a specific range.
  • headphones do not block or cover the ear canal, allowing users to obtain sound information from the external environment while listening to music, thereby improving safety and comfort.
  • the output performance of headphones has a great impact on the user's comfort.
  • An embodiment of the present application provides an earphone, comprising: a sound-emitting portion, comprising a transducer and a shell for accommodating the transducer, wherein a sound outlet hole is provided on the inner side of the sound-emitting portion facing the user's auricle, for guiding the sound generated by the transducer out of the shell and then transmitting it to the user's ear canal; and an ear hook, wherein when worn, the sound-emitting portion is worn at a position near the ear canal but not blocking the ear canal opening; wherein at least a portion of the sound-emitting portion is inserted into the concha cavity, a projection of a rear side surface of the sound-emitting portion on the sagittal plane and a projection of an edge of the concha cavity on the sagittal plane are in a range of 0 to 7.25 mm, and a distance range from the center of the sound outlet hole to the rear side surface of the sound-emitting portion is 8.15 mm to 12.
  • one or more pressure relief holes are provided on the side surfaces of the sound-emitting part except the inner side surface, and the distance between the center of the one or more pressure relief holes and the rear side surface of the sound-emitting part ranges from 10.44 mm to 15.68 mm or 13.51 mm to 20.27 mm.
  • the projection of the sound-producing part on the sagittal plane and the projection of the cavum concha on the sagittal plane have an overlapping portion, and the ratio of the area of the overlapping portion to the projection area of the cavum concha on the sagittal plane is not less than 44.01%.
  • the projection area of the sound-producing part on the sagittal plane ranges from 202 mm 2 to 560 mm 2 .
  • the distance between the center of the sound outlet and the lower side of the sound-emitting part ranges from 4.05 mm to 6.05 mm; and the short axis size of the sound-emitting part ranges from 10 mm to 15 mm.
  • At least one of the one or more pressure relief holes includes a first pressure relief hole, which is opened on the upper side, outer side or lower side of the sound-emitting part, and the distance between the center of the first pressure relief hole and the rear side is in the range of 10.44 mm to 15.68 mm.
  • the distance between the projection point of the center of the sound outlet in the sagittal plane and the projection point of the center of the ear canal opening in the sagittal plane is in the range of 2.2 mm to 3.8 mm; and the distance between the projection point of the center of the first pressure relief hole in the sagittal plane and the projection point of the center of the ear canal opening in the sagittal plane is in the range of 12 mm to 18 mm.
  • the distance between the projection point of the center of the sound outlet on the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side on the sagittal plane is in the range of 3.5 mm to 5.6 mm;
  • the distance between the projection of the center of the first pressure relief hole on the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface on the sagittal plane is in the range of 13.76 mm to 20.64 mm.
  • the thickness of the sound-emitting part ranges from 6 mm to 12 mm; and the distance between the center of the first pressure relief hole and the inner side surface of the sound-emitting part facing the auricle ranges from 4.24 mm to 6.38 mm.
  • At least one of the one or more pressure relief holes includes a second pressure relief hole, which is opened on the upper side, outer side or lower side of the sound-emitting part, and the center of the second pressure relief hole is at a distance ranging from 13.51 mm to 20.27 mm from the rear side.
  • the distance between the projection point of the center of the sound outlet on the sagittal plane and the projection point of the center of the ear canal opening on the sagittal plane is in the range of 2.2 mm to 3.8 mm; and the projection point of the center of the second pressure relief hole on the sagittal plane is in the range of 2.2 mm to 3.8 mm.
  • the distance between the center of the ear canal opening and the projection point on the sagittal plane ranges from 6.88 mm to 10.32 mm.
  • the distance between the projection point of the center of the sound outlet on the sagittal plane and the projection point of the midpoint of the upper boundary of the inner side on the sagittal plane is in the range of 10.0 mm to 15.2 mm;
  • the distance between the projection point of the center of the second pressure relief hole on the sagittal plane and the projection point of the midpoint of the upper boundary of the inner side surface on the sagittal plane is in the range of 14.4 mm to 21.6 mm.
  • the thickness of the sound-emitting part ranges from 6 mm to 12 mm; and the distance between the center of the second pressure relief hole and the inner side surface of the sound-emitting part facing the auricle ranges from 4.24 mm to 6.38 mm.
  • the distance between the projection point of the center of the sound outlet in the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane is in the range of 3.5mm to 5.6mm; and the distance between the projection point of the center of the second pressure relief hole in the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane is in the range of 8.16mm to 12.24mm.
  • the at least one of the one or more pressure relief holes includes a first pressure relief hole and a second pressure relief hole, and the first pressure relief hole and the second pressure relief hole are respectively opened on opposite sides of the sound-emitting part.
  • the short axis dimension of the sound-emitting part ranges from 10 mm to 15 mm; and the distance between the projection point of the center of the first pressure relief hole on the sagittal plane and the projection point of the center of the second pressure relief hole on the sagittal plane ranges from 8.51 mm to 15.81 mm.
  • the distance between the center of the sound outlet hole and the perpendicular midplane of the line connecting the center of the first pressure relief hole and the center of the second pressure relief hole is 0 mm to 2 mm.
  • the distance between the projection of the center of the first pressure relief hole in the sagittal plane and the midpoint of the projection of the upper boundary of the inner side surface in the sagittal plane is no more than 2 mm; and the distance between the projection point of the center of the second pressure relief hole in the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane is 8.16 mm to 12.24 mm.
  • the embodiment of the present application also provides an earphone, comprising: a sound-emitting part, comprising a transducer and a shell for accommodating the transducer, a sound outlet hole being provided on the inner side surface of the sound-emitting part facing the user's auricle, for guiding the sound generated by the transducer out of the shell and then transmitting it to the user's ear canal, and one or more pressure relief holes being provided on the other sides of the sound-emitting part except the inner side surface; and an ear hook, wherein when worn, the sound-emitting part is worn near the ear canal but does not block the ear canal opening; wherein at least part of the sound-emitting part is located at the antihelix, the distance between the projection of the rear side surface of the sound-emitting part on the sagittal plane and the projection of the inner contour of the auricle on the sagittal plane is not greater than 8 mm, the distance between the center of the sound outlet hole and the rear side surface of
  • the distance between the center of the sound hole and the upper apex of the ear hook ranges from 17.5 mm to 27.0 mm; and the projection of the sound-emitting part on the sagittal plane and the projection of the caval concha on the sagittal plane have an overlapping part, and the ratio of the area of the overlapping part to the projection area of the caval concha on the sagittal plane is not less than 11.82%.
  • the short axis size of the sound-emitting part ranges from 11 mm to 18 mm; and the distance between the center of the sound outlet hole and the lower side surface of the sound-emitting part ranges from 2.3 mm to 3.6 mm.
  • At least one of the one or more pressure relief holes includes a first pressure relief hole, and the first pressure relief hole is opened on the upper side, outer side or lower side of the sound-emitting part.
  • the thickness of the sound-emitting portion is 6 mm to 12 mm; and the distance between the center of the first pressure relief hole and the inner side surface is in the range of 4.43 mm to 7.96 mm.
  • the at least one of the one or more pressure relief holes further includes a second pressure relief hole, and the first pressure relief hole and the second pressure relief hole are opened on opposite sides of the sound-emitting part.
  • the distance between the center of the second pressure relief hole and the inner side surface ranges from 4.43 mm to 7.96 mm; and the distance between the center of the sound outlet hole and the perpendicular bisector of the line connecting the center of the first pressure relief hole and the center of the second pressure relief hole ranges from 0 mm to 2 mm.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • FIG2 is an exemplary structural diagram of an earphone according to some embodiments of this specification.
  • FIG3 is a schematic diagram of two point sound sources and a listening position according to some embodiments of this specification.
  • FIG4 is a comparison diagram of sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of this specification;
  • FIG5 is a schematic diagram of an exemplary distribution of a baffle disposed between two sound sources of a dipole sound source according to some embodiments of this specification;
  • FIG6 is a comparison diagram of sound leakage index when a baffle is set between two sound sources of a dipole sound source according to some embodiments of the present specification and when a baffle is not set between two sound sources;
  • FIG7 is an exemplary wearing diagram of an earphone according to some embodiments of this specification.
  • FIG8 is a schematic diagram of the structure of the earphone shown in FIG7 facing the ear;
  • FIG9 is a schematic structural diagram of the housing shown in FIG8 ;
  • FIG10 is a schematic diagram of exemplary frequency response curves corresponding to different ratios of the size of the first projection along the long axis direction to the size along the short axis direction according to some embodiments of this specification;
  • FIG11 is a frequency response curve of a sound-emitting portion having different sizes in its thickness direction according to some embodiments of the present specification
  • FIG12 is a schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of the first projection and the projection of the cavum conchae on the sagittal plane according to some embodiments of the present specification;
  • FIG. 13 is a schematic diagram of an exemplary distribution of a cavity structure arranged around one of the dipole sound sources according to some embodiments of this specification;
  • FIG14A is a schematic diagram of a listening principle of a dipole sound source structure and a cavity structure constructed around one of the dipole sound sources according to some embodiments of this specification;
  • FIG. 14B is a schematic diagram of a dipole sound source structure and a sound leakage principle of a cavity structure constructed around one of the dipole sound sources according to some embodiments of this specification;
  • FIG. 15A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present specification.
  • FIG. 15B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present specification.
  • FIG16 is a comparison diagram of listening index curves of a cavity structure with two openings and one opening according to some embodiments of this specification;
  • FIG17 is a schematic diagram of an exemplary wearing method of an earphone according to other embodiments of the present application.
  • FIG18 is a schematic diagram of the structure of the earphone shown in FIG17 facing the ear;
  • FIG19 is a schematic structural diagram of a housing of an earphone according to some embodiments of this specification.
  • FIG20 is a schematic diagram of exemplary frequency response curves corresponding to different distances between the free end of the sound-emitting part and the edge of the concha cavity according to some embodiments of the present specification;
  • FIG21 is a schematic diagram of exemplary frequency response curves corresponding to different overlapping ratios of the sound-producing part and the concha cavity according to some embodiments of this specification;
  • FIG22 is a schematic diagram of a projection on a sagittal plane of an open-type earphone in a wearing state according to some embodiments of this specification;
  • FIG. 23 is a diagram showing an exemplary internal structure of a sound-producing part according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • device means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • unit means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • the words can be replaced by other expressions.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediate medium; it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can
  • FIG. 1 is a schematic diagram of an exemplary ear portion 100 according to some embodiments of the present application.
  • the ear 100 (also referred to as the auricle 100 ) may include an ear canal 101, a cavity concha 102, a cymba concha 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a tragus 109, and an auricle crus 1071.
  • the acoustic device may be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the ear canal 101, the cavity concha 102, the cymba concha 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to meet the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headphone
  • the wearing of an acoustic device may be achieved by using other parts of the ear 100 except the ear canal 101.
  • the acoustic device can be worn with the help of the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107 and other parts or their combination.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the user's ear canal 101 can be "liberated".
  • the acoustic device When the user wears the acoustic device (for example, headphones), the acoustic device will not block the user's ear canal 101, and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horn sounds, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device can be designed into a structure adapted to the ear 100 according to the structure of the ear 100, so as to realize the wearing of the sound-emitting part of the acoustic device at various different positions of the ear 100.
  • the earphone may include a suspension structure (e.g., an ear hook) and a sound-emitting part, the sound-emitting part is physically connected to the suspension structure, and the suspension structure may be adapted to the shape of the auricle 100, so as to place the entirety or a portion of the structure of the sound-emitting part in front of the tragus 109 (e.g., the area M3 surrounded by the dotted line in FIG1).
  • a suspension structure e.g., an ear hook
  • the sound-emitting part is physically connected to the suspension structure
  • the suspension structure may be adapted to the shape of the auricle 100, so as to place the entirety or a portion of the structure of the sound-emitting part in front of the tragus 109 (e.g., the area M3 surrounded by the dotted line in FIG1).
  • the entirety or a portion of the structure of the sound-emitting part may contact the upper part of the ear canal 101 (e.g., the location of one or more parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, and the crus 1071).
  • the entire or partial structure of the sound-emitting part may be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted lines in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • the area M2 which includes at least the cavum concha 102
  • ear 100 model with a "standard" shape and size as a reference to further describe the wearing method of the acoustic device in different embodiments on the ear 100 model.
  • a simulator containing a head and its (left and right) ear 100 such as GRAS45BCKEMAR, can be made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards as a reference for wearing an acoustic device, thereby presenting the scene of most users wearing the acoustic device normally.
  • the ear 100 used as a reference can have the following relevant features: the size of the projection of the auricle 100 on the sagittal plane in the vertical axis direction can be in the range of 49.5mm-74.3mm, and the size of the projection of the auricle 100 on the sagittal plane in the sagittal axis direction can be in the range of 36.6mm-55mm. Therefore, in the present application, descriptions such as "user wears", “in a wearing state” and “in a wearing state” may refer to the acoustic device described in the present application being worn on the ear 100 of the aforementioned simulator. Of course, considering the individual differences among different users, the structure, shape, size, thickness, etc.
  • the acoustic device may be designed differently. These differentiated designs may be manifested as characteristic parameters of one or more parts of the acoustic device (for example, the sound-emitting part, ear hook, etc. described below) having different ranges of values to adapt to different auricles 100.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the "front side of the auricle 100" described in the present application is a concept relative to the "back side of the auricle 100", the former refers to the side of the auricle 100 facing away from the head, and the latter refers to the side of the auricle 100 facing the head.
  • the front side outline schematic diagram of the auricle 100 shown in Figure 1 can be obtained.
  • FIG. 2 is a schematic diagram of an exemplary wearing method of an earphone according to some embodiments of the present specification.
  • the earphone 10 may include but is not limited to air conduction earphones and bone air conduction earphones, etc. In some embodiments, the earphone 10 may be combined with glasses, headphones, head-mounted display devices, AR/VR helmets, and other products.
  • the earphone 10 may include a sound-emitting portion 11 and an ear hook 12.
  • the earphone 10 may be worn on the user's body (e.g., the head, neck, or upper torso of the human body) by means of the ear hook 12.
  • the earphone 10 can fix the sound-emitting part 11 at a position near the ear canal but not blocking the ear canal through the ear hook 12.
  • one end of the ear hook 12 may be connected to the sound-generating part 11, and the other end thereof may extend along the junction of the user's auricle 100 and the head.
  • the ear hook 12 may be an arc-shaped structure adapted to the user's auricle 100, so that the ear hook 12 may be suspended on the user's auricle 100.
  • the ear hook 12 may have an arc-shaped structure adapted to the junction of the user's head and the auricle 100, so that the ear hook 12 may be hung between the user's auricle 100 and the head.
  • the ear hook 12 may also be a clamping structure adapted to the user's auricle 100, so that the ear hook 12 may be clamped at the user's auricle 100.
  • the ear hook 12 may include but is not limited to an ear hook, an elastic band, etc., so that the earphone 10 can be better fixed on the user to prevent the user from falling off during use.
  • the earphone 10 may not include the ear hook 12, and the sound-generating part 11 may be fixed near the user's auricle 100 by hanging or clamping.
  • the ear hook 12 includes a hook-shaped portion (a first portion 121 as shown in FIG. 7 ) and a connecting portion (a second portion 122 as shown in FIG. 7 ) connected in sequence.
  • the connecting portion connects the hook-shaped portion and the sound-emitting portion 11 so that the earphone 10 is curved in a three-dimensional space when it is in a non-wearing state (i.e., a natural state).
  • a non-wearing state i.e., a natural state.
  • the hook-shaped portion, the connecting portion, and the sound-emitting portion 11 are not coplanar.
  • the hook-shaped portion can be hung between the back side of the auricle 100 and the head of the user, and the sound-emitting portion 11 contacts the front side of the auricle 100 (e.g., area M 3 in FIG. 1 ) or the auricle 100 (e.g., area M 1 and area M 2 in FIG. 1 ), and the sound-emitting portion 11 and the hook-shaped portion can cooperate to clamp the auricle 100.
  • the connecting portion can extend from the head to the outside of the head, and then cooperate with the hook-shaped portion to provide the sound-emitting portion 11 with a pressing force on the front side of the auricle 100 or the auricle 100.
  • the sound-emitting part 11 can be pressed against the front side of the auricle 100 or the areas where the concha 102, the cymba concha 103, the triangular fossa 104, the antihelix 105 and other parts are located, so that the earphone 10 does not block the ear canal 101 of the auricle 100 when the earphone 10 is in the worn state.
  • the earphone 10 may adopt any one of the following methods or a combination thereof.
  • at least a portion of the ear hook 12 is configured as a contoured structure that fits at least one of the rear side of the auricle 100 and the head, so as to increase the contact area between the ear hook 12 and the auricle 100 and/or the head, thereby increasing the resistance of the earphone 10 to falling off from the auricle 100.
  • At least a portion of the ear hook 12 is configured as an elastic structure so that it has a certain amount of deformation when being worn, so as to increase the positive pressure of the ear hook 12 on the auricle 100 and/or the head, thereby increasing the resistance of the earphone 10 to falling off from the auricle 100.
  • at least a portion of the ear hook 12 is configured to abut against the head when being worn, so as to form a reaction force that presses the auricle 100, so that the sound-generating part 11 is pressed against the front side of the auricle 100, thereby increasing the resistance of the earphone 10 to falling off from the auricle 100.
  • the sound-emitting part 11 and the ear hook 12 are configured to clamp the area where the antihelix 105 is located and the area where the cavum concha is located from the front and back sides of the auricle 100 when the earphone is worn, thereby increasing the resistance of the earphone 10 falling off the auricle 100.
  • the sound-emitting part 11 or the auxiliary structure connected thereto is configured to at least partially extend into the cavities such as the cavum concha 102, the cymba concha 103, the triangular fossa 104 and the scaphoid 106, thereby increasing the resistance of the earphone 10 falling off the auricle 100.
  • the sound-emitting part 11 can generate sound and input it into the ear canal of the user.
  • the sound-emitting part 11 can be a regular or irregular shape, such as a circular ring, an ellipse, a runway, a polygon, a U-shape, a V-shape, a semicircle, etc., so that the sound-emitting part 11 can be directly hung on the user's auricle 100.
  • the sound-emitting part 11 can have a long axis direction X, a short axis direction Y and a thickness direction Z that are orthogonal to each other.
  • the long axis direction X can be defined as the direction with a larger extension dimension in the shape of the two-dimensional projection surface of the sound-emitting part 11 (for example, the projection of the sound-emitting part 11 on the plane where its inner side is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle).
  • this specification will be described with the projection of the sound-emitting part on the sagittal plane.
  • the short axis direction Y can be defined as the direction perpendicular to the long axis direction X in the shape of the projection of the sound-emitting part 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction Z may be defined as a direction perpendicular to the sagittal plane, for example, consistent with the direction of the coronal axis, both pointing in the left-right direction of the body.
  • the sound-emitting portion 11 may include a transducer (e.g., the transducer 116 shown in FIG. 23 ) and a shell 111 for accommodating the transducer.
  • the shell 111 (which can also be said to be the sound-emitting portion 11) may be connected to the ear hook 12.
  • the transducer is used to convert an excitation signal (e.g., an electrical signal) into a corresponding mechanical vibration to generate sound.
  • a sound outlet 112 is provided on the inner side of the shell 111 facing the auricle 100, and the sound outlet 112 is used to guide the sound generated by the transducer out of the shell 111 and then transmit it to the ear canal, so that the user can hear the sound.
  • the transducer e.g., a diaphragm
  • the transducer may separate the shell 111 into a front cavity (e.g., the front cavity 114 shown in FIG. 23 ) and a rear cavity of the earphone, and the sound outlet 112 is acoustically coupled to the front cavity, and guides the sound generated by the front cavity out of the shell 111 and then transmits it to the ear canal.
  • a front cavity e.g., the front cavity 114 shown in FIG. 23
  • the sound outlet 112 is acoustically coupled to the front cavity, and guides the sound generated by the front cavity out of the shell 111 and then transmits it to the ear canal.
  • Part of the sound guided out through the sound outlet 112 can be transmitted to the ear canal so that the user can hear the sound, and the other part can be transmitted to the outside of the earphone 10 and the auricle 100 together with the sound reflected from the ear canal through the leakage structure between the sound-emitting part 11 and the auricle 100 (for example, the part of the concha cavity not covered by the sound-emitting part 11), thereby forming a first sound leakage in the far field.
  • one or more pressure relief holes 113 are provided on other sides of the shell 111 (for example, the side away from or facing away from the user's ear canal).
  • the pressure relief hole 113 is acoustically coupled to the back cavity, and guides the sound generated in the back cavity out of the shell 111 and then transmits it to the outside.
  • the pressure relief hole 113 is farther away from the ear canal than the sound outlet 112, and the sound transmitted from the pressure relief hole 113 will form a first sound leakage in the far field.
  • the intensity of the first sound leakage is equivalent to the intensity of the second sound leakage, and the phase of the first sound leakage is (close to) opposite to each other, so that the two can cancel each other out in the far field, which is beneficial to reducing the sound leakage of the earphone 10 in the far field.
  • the sound-emitting part 11 please refer to other places in this specification, such as Figure 7, Figure 17, etc. and their descriptions.
  • the sound-emitting part 11 when the user wears the earphone 10, the sound-emitting part 11 can be fixed near the user's ear canal 101 but not blocking the ear canal.
  • the projection of the earphone 10 on the sagittal plane may not cover the user's ear canal.
  • the projection of the sound-emitting part 11 on the sagittal plane may fall on the left and right sides of the head and on the sagittal axis of the human body at a position in front of the tragus (such as the position shown in the solid line frame A in Figure 2).
  • the sound-emitting part 11 is located in front of the user's tragus, the long axis of the sound-emitting part 11 can be in a vertical or approximately vertical state, the projection of the short axis direction Y on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the long axis direction X on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the projection of the sound-emitting part 11 on the sagittal plane can fall on the antihelix 105 (such as the position shown in the dotted line frame C in Figure 2).
  • the sound-emitting part 11 is at least partially located at the antihelix 105, the long axis of the sound-emitting part 11 is in a horizontal or approximately horizontal state, the projection of the long axis direction X of the sound-emitting part 11 on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the short axis direction Y on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the sound-emitting part 11 can be prevented from blocking the ear canal, thereby freeing the user's ears; the contact area between the sound-emitting part 11 and the auricle 100 can also be increased, thereby improving the wearing comfort of the earphone 10.
  • the projection of the earphone 10 on the sagittal plane may also cover or at least partially cover the ear canal of the user.
  • the projection of the sound-emitting portion 11 on the sagittal plane may fall within the concha cavity 102 (e.g., the position shown in the dotted box B in FIG. 2 ), and contact the helix crus 1071 and/or the helix 107.
  • the sound-emitting portion 11 is at least partially located within the concha cavity 102, and the sound-emitting portion 11 is in an inclined state.
  • the projection of the short axis direction Y of the sound-emitting portion 11 on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the short axis direction Y is also inclined accordingly, and the projection of the long axis direction X on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the long axis direction X is also inclined, and the thickness direction Z is perpendicular to the sagittal plane.
  • the concha cavity 102 has a certain volume and depth, there is a certain distance between the inner side of the earphone 10 and the concha cavity, and the ear canal can be connected to the outside world through the leakage structure between the inner side and the concha cavity, thereby freeing the user's ears.
  • the sound-emitting portion 11 and the concha cavity can cooperate to form an auxiliary cavity (i.e., the cavity structure mentioned below) that is connected to the ear canal.
  • the sound outlet 112 can be at least partially located in the auxiliary cavity, and the sound output from the sound outlet 112 will be restricted by the auxiliary cavity, that is, the auxiliary cavity can gather the sound so that the sound can be more transmitted into the ear canal, thereby increasing the volume and quality of the sound heard by the user in the near field, thereby improving the acoustic effect of the earphone 10.
  • the description of the above-mentioned earphone 10 is for the purpose of illustration only and is not intended to limit the scope of the present application.
  • the earphone 10 may also include a battery assembly, a Bluetooth assembly, etc. or a combination thereof.
  • the battery assembly can be used to power the earphone 10.
  • the Bluetooth assembly can be used to wirelessly connect the earphone 10 to other devices (e.g., a mobile phone, a computer, etc.).
  • FIG3 is a schematic diagram of two point sound sources and a listening position according to some embodiments of the present specification.
  • sound can be transmitted to the outside of the earphone 10 through the sound outlet 112, which can be regarded as a monopole sound source (or point sound source) A1, to generate a first sound;
  • sound can be transmitted to the outside of the earphone 10 through the pressure relief hole 113, which can be regarded as a monopole sound source (or point sound source) A2, to generate a second sound, and the second sound can be opposite or approximately opposite in phase to the first sound, so that they can cancel each other in the far field, that is, to form an "acoustic dipole" to reduce sound leakage.
  • the line connecting the two monopole sound sources can point to the ear canal (referred to as the "listening position") so that the user can hear a sufficiently loud sound.
  • the sound pressure at the listening position (referred to as Pear) can be used to characterize the strength of the sound heard by the user (i.e., the near-field listening sound pressure).
  • the sound pressure on the sphere centered on the user's listening position or on the sphere centered on the dipole sound source (A1 and A2 as shown in FIG.
  • Pfar can be counted, which can be used to characterize the strength of sound leakage radiated from the earphone 10 to the far field (i.e., far-field sound leakage pressure).
  • Pfar can be obtained by a variety of statistical methods, such as taking the average value of the sound pressure at each point on the sphere, and for another example, taking the sound pressure distribution at each point on the sphere for area integration.
  • the method for measuring sound leakage in the present application is only an exemplary explanation of the principle and effect, and is not limited.
  • the measurement and calculation method of sound leakage can also be reasonably adjusted according to the actual situation.
  • the listening measurement method can be to select a position point near the point sound source as the listening position, and take the sound pressure amplitude measured at the listening position as the value of the listening.
  • the listening position may be on the line connecting the two point sound sources, or may not be on the line connecting the two point sound sources.
  • the measurement and calculation method of listening can also be reasonably adjusted according to the actual situation, for example, the sound pressure amplitude of other points or more than one point in the near field position is averaged. For another example, with a certain point sound source as the center of the circle, the sound pressure amplitude of two or more points in the near field is uniformly taken according to a certain spatial angle for calculating the average value. In some embodiments, the distance between the near-field listening position and the point sound source is much smaller than the distance between the point sound source and the far-field sound leakage measurement sphere.
  • the sound pressure Pear transmitted by the earphone 10 to the user's ear 100 should be large enough to enhance the listening effect;
  • the pressure Pfar should be small enough to increase the sound leakage reduction effect. Therefore, the sound leakage index ⁇ can be taken as an indicator for evaluating the sound leakage reduction capability of the earphone 10:
  • FIG4 is a comparison chart of the sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of this specification.
  • the double-point sound source (also referred to as a dipole sound source) in FIG4 can be a typical double-point sound source, that is, the spacing is fixed, the two-point sound source amplitudes are the same, and the two-point sound sources are opposite in phase.
  • the typical double-point sound source is selected only for the principle and effect description, and the parameters of each point sound source can be adjusted according to actual needs to make it have certain differences from the typical double-point sound source.
  • the sound leakage generated by the double-point sound source increases with the increase of frequency, and the ability to reduce sound leakage weakens with the increase of frequency.
  • the frequency is greater than a certain frequency value (for example, about 8000Hz as shown in FIG4), the sound leakage generated will be greater than that of the single-point sound source, and this frequency (for example, 8000Hz) is the upper limit frequency at which the double-point sound source can reduce sound leakage.
  • a baffle may be provided between the sound outlet 112 and the pressure relief hole 113 .
  • FIG5 is an exemplary distribution diagram of a baffle plate between two sound sources of a dipole sound source according to some embodiments of the present specification.
  • a baffle plate when a baffle plate is provided between a point sound source A1 and a point sound source A2, in the near field, the sound wave of the point sound source A2 needs to bypass the baffle plate to interfere with the sound wave of the point sound source A1 at the listening position, which is equivalent to increasing the sound path from the point sound source A2 to the listening position.
  • the amplitude difference between the sound waves of the point sound source A1 and the point sound source A2 at the listening position increases compared to the case where no baffle plate is provided, thereby reducing the degree of cancellation of the two-way sound at the listening position, thereby increasing the volume at the listening position.
  • the sound waves generated by the point sound source A1 and the point sound source A2 do not need to bypass the baffle plate to interfere in a larger spatial range (similar to the case without a baffle plate), the sound leakage in the far field will not increase significantly compared to the case where there is no baffle plate. Therefore, by providing a baffle structure around one of the point sound sources A1 and A2, the volume at the near-field listening position can be significantly increased without significantly increasing the volume of far-field sound leakage.
  • FIG6 is a comparison chart of the sound leakage index when a baffle is set between the two sound sources of the dipole sound source shown in some embodiments of this specification and when no baffle is set.
  • the sound leakage index is much smaller than when no baffle is added, that is, at the same listening volume, the sound leakage in the far field is smaller than when there is no baffle, and the sound leakage reduction capability is significantly enhanced.
  • Fig. 7 is an exemplary wearing diagram of an earphone according to some embodiments of the present specification.
  • Fig. 8 is a structural diagram of the earphone shown in Fig. 7 facing the ear 100.
  • the ear hook 12 is an arc-shaped structure that fits the junction of the user's head and the ear 100.
  • the sound-emitting part 11 (or the shell 111 of the sound-emitting part 11) may have a connection end CE connected to the ear hook 12 and a free end FE not connected to the ear hook 12.
  • the first part 121 of the ear hook 12 (for example, the hook-shaped part of the ear hook 12) is hung between the user's auricle 100 (for example, the helix 107) and the head, and the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle 100 away from the head and is connected to the connection end CE of the sound-emitting part 11, so as to at least partially fix the sound-emitting part 11 to the user's anti-helix 105.
  • the first part 121 of the ear hook 12 for example, the hook-shaped part of the ear hook 12
  • the second part 122 of the ear hook 12 extends to the side of the auricle 100 away from the head and is connected to the connection end CE of the sound-emitting part 11, so as to at least partially fix the sound-emitting part 11 to the user's anti-helix 105.
  • the sound-emitting part 11 is located in the M1 region (shown in FIG1 ) above the concha cavity 102 and the ear canal 101, so that the user's ear canal is in an open state.
  • the long axis direction X of the sound-emitting portion 11 may be set horizontally or approximately horizontally (similar to position C shown in FIG. 2 ), and the free end FE of the sound-emitting portion 11 faces the back of the user's head.
  • the projection of the long axis direction X of the sound-emitting portion 11 on the sagittal plane may be consistent with the direction of the sagittal axis
  • the projection of the short axis direction Y on the sagittal plane may be consistent with the direction of the vertical axis
  • the thickness direction Z is perpendicular to the sagittal plane.
  • the sound-emitting portion 11 may have an inner side surface IS (also called the inner side surface of the shell 111) facing the ear 100 along the thickness direction Z in the worn state and an outer side surface OS (also called the outer side surface of the shell 111) away from the ear 100, as well as a connecting surface connecting the inner side surface IS and the outer side surface OS.
  • the sound-emitting portion 11 in the worn state, when observed along the direction of the coronal axis (i.e., the thickness direction Z), the sound-emitting portion 11 may be arranged to be circular, elliptical, square with rounded corners, rectangular with rounded corners, and the like.
  • the above-mentioned connecting surface may refer to the arcuate side surface of the sound-emitting portion 11; and when the sound-emitting portion 11 is arranged to be a square with rounded corners, rectangular with rounded corners, or the like, the above-mentioned connecting surface may include the lower side surface LS (also called the lower side surface of the shell 111) mentioned later.
  • the upper side US and the lower side LS may refer to the side of the sound-emitting part 11 away from the external auditory canal 101 and the side close to the external auditory canal 101 along the short axis direction Y in the wearing state, respectively; the rear side RS may refer to the side of the sound-emitting part 11 facing the back of the brain along the long axis direction X in the wearing state.
  • this specification takes the sound-emitting part 11 being set as a rounded rectangle as an example for illustrative explanation.
  • the length of the sound-emitting part 11 in the long axis direction X may be greater than the width of the sound-emitting part 11 in the short axis direction Y.
  • the rear side RS of the earphone may be a curved surface.
  • a transducer may be provided in the sound-emitting portion 11, which may convert an electrical signal into a corresponding mechanical vibration to generate sound.
  • the transducer e.g., a diaphragm
  • the sounds generated in the front cavity and the rear cavity are in opposite phases.
  • a sound outlet hole 112 acoustically coupled to the front cavity is provided on the inner side surface IS to guide the sound generated in the front cavity out of the housing 111 and then transmit it to the ear canal so that the user can hear the sound.
  • one or more pressure relief holes 113 acoustically coupled to the rear cavity may be provided on other sides of the housing 111 (e.g., the outer side surface OS, the upper side surface US, or the lower side surface LS, etc.) to guide the sound generated in the rear cavity out of the housing 111 and then interfere with the sound leaked through the sound outlet hole 112 in the far field.
  • Such a configuration makes the pressure relief hole 113 farther away from the ear canal than the sound outlet hole 112, so as to reduce the anti-phase cancellation between the sound output through the pressure relief hole 113 and the sound output through the sound outlet hole 112 at the listening position (e.g., ear canal), and increase the sound volume at the listening position.
  • the inner side IS of the shell 111 can be pressed against the surface of the ear 100 (e.g., the antihelix 105) to increase the resistance of the earphone 10 falling off the ear 100.
  • the surface of the ear 100 e.g., the antihelix 105
  • the projection of the sound outlet hole 112 on the sagittal plane can partially or completely overlap with the projection of the concave structure of the ear 100 (e.g., the hymena concha 103) on the sagittal plane.
  • the cymba concha 103 is connected to the cavum concha 102 and the ear canal is located in the cavum concha 102, when at least a partial projection of the sound outlet hole 112 on the sagittal plane is located in the cymba concha 103, the sound output by the sound outlet hole 112 can reach the ear canal unimpeded, thereby making the volume received by the ear canal higher.
  • the sound outlet 112 connected to the front cavity can be regarded as the point sound source A1 shown in Figure 5
  • the pressure relief hole 113 connected to the rear cavity can be regarded as the point sound source A2 shown in Figure 5
  • the ear canal can be regarded as the listening position shown in Figure 5.
  • the sound output by the sound outlet 112 and the sound output by the pressure relief hole 113 are opposite in phase, forming a dipole.
  • the sound outlet is located on the inner side surface IS of the sound-emitting part 11 facing or close to the user's ear canal
  • the pressure relief hole is located on the other side of the sound-emitting part 11 away from or away from the user's ear canal.
  • At least part of the shell 111 of the sound-emitting part 11 and/or at least part of the auricle 100 can be regarded as the baffle shown in Figure 5.
  • the baffle increases the sound path from the pressure relief hole 113 to the ear canal, that is, increases the sound path difference between the sound at the sound outlet 112 and the sound at the pressure relief hole 113, reduces the intensity of the sound output by the pressure relief hole 113 in the ear canal, and reduces the degree of interference and cancellation of the sound output by the sound outlet 112 and the pressure relief hole 113 in the ear canal, thereby increasing the sound intensity in the ear canal.
  • the sound output by the sound outlet 112 does not need to bypass the sound-emitting part 11 itself to interfere with the sound output by the pressure relief hole 113 in a larger external space (similar to the case without a baffle), and the sound leakage will not increase significantly.
  • the volume at the ear canal can be significantly improved while maintaining the effect of reducing far-field sound leakage.
  • the area of the first projection of the sound-emitting portion 11 in the sagittal plane may be 236mm 2 -565mm 2 .
  • the area of the first projection of the sound-emitting portion 11 in the sagittal plane may be between 250mm 2 -550mm 2 .
  • the area of the first projection of the sound-emitting portion 11 in the sagittal plane may be 270mm 2 -500mm 2 . In some embodiments, in the worn state, the area of the first projection of the sound-emitting portion 11 in the sagittal plane may be 290mm 2 -450mm 2 . In some embodiments, in the worn state, the area of the first projection of the sound-emitting portion 11 in the sagittal plane may be 320mm 2 -410mm 2 .
  • the volume of the sound-emitting part 11 is relatively small, so that the area of the transducer (such as a diaphragm) arranged inside it is also relatively small, resulting in low efficiency of the transducer vibration to generate sound, affecting the acoustic output effect of the earphone 10.
  • the short axis dimension of the sound-emitting part 11 When the short axis dimension of the sound-emitting part 11 is too small, it will also cause the distance between the sound outlet hole 112 on the sound-emitting part 11 and the ear canal to be too large, resulting in a small volume of sound received by the ear canal. Moreover, when the long axis dimension of the sound-emitting part 11 is too small or the short axis dimension is too small, the distance between the sound outlet hole 112 and the pressure relief hole 113 of the sound-emitting part 11 is small, resulting in a small difference in the sound path between the sound at the sound outlet hole 112 and the sound at the pressure relief hole, affecting the listening volume at the user's ear canal.
  • the long axis size of the sound-emitting part 11 When the long axis size of the sound-emitting part 11 is too large, the free end FE of the sound-emitting part 11 may extend out of the user's auricle 100, affecting the fit between the sound-emitting part 11 and the ear 100, and causing discomfort when wearing.
  • the short axis size of the sound-emitting part 11 When the short axis size of the sound-emitting part 11 is too large, the mass of the sound-emitting part 11 will be relatively large, affecting the stability of the user when wearing the earphone 10. Therefore, in some embodiments, in order to allow the user to have better acoustic output quality, wearing comfort and stability when wearing the earphone 10, the long axis size and short axis size of the sound-emitting part 11 need to be set within a suitable size range.
  • the long axis size of the sound-emitting part 11 may range from 21mm to 33mm. In some In an embodiment, the long axis dimension of the sound-emitting part 11 may range from 21.5 mm to 31 mm. In some embodiments, the long axis dimension of the sound-emitting part 11 may range from 21.5 mm to 26.5 mm. Correspondingly, in some embodiments, the short axis dimension of the sound-emitting part 11 may range from 11 mm to 18 mm. In some embodiments, the short axis dimension of the sound-emitting part 11 may range from 11.5 mm to 16.5 mm.
  • the short axis dimension of the sound-emitting part 11 may range from 11.5 mm to 16 mm. It should be noted that the long axis dimension and short axis dimension of the sound-emitting part 11 described in this specification may refer to the dimensions of the first projection of the sound-emitting part 11 in the sagittal plane along the long axis direction X and along the short axis direction Y, respectively.
  • the long axis dimension of the sound-emitting part 11 is too small, there is a gap between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle, and the sound emitted by the sound outlet 112 and the sound emitted by the pressure relief hole 113 will be acoustically short-circuited in the area between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle, resulting in a decrease in the volume of the listening sound at the user's ear canal.
  • the larger the area between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle the more obvious the acoustic short-circuit phenomenon.
  • the inner contour 1072 of the auricle may refer to the inner wall of the helix
  • the distance between the rear side surface of the sound-emitting part 11 and the inner contour 1072 of the auricle may refer to the shortest distance between the projection of the rear side surface on the sagittal plane and the projection of the inner contour 1072 on the sagittal plane along the X direction.
  • the distance between the rear side surface of the sound-emitting part 11 and the inner contour 1072 of the auricle may be no more than 8 mm. In some embodiments, the distance between the rear side surface of the sound-emitting part 11 and the inner contour 1072 of the auricle may be 0 mm-6 mm. In some embodiments, the distance between the rear side surface of the sound-emitting part 11 and the inner contour 1072 of the auricle may be 0 mm-5.5 mm. In some embodiments, the distance between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle can be 0.
  • the distance When the distance is equal to 0, it means that the rear side of the sound-emitting part 11 is against the inner contour 1072 of the auricle. At this time, the sound-emitting part 11 is against the inner contour 1072 of the auricle when worn, thereby improving the stability of the earphone when worn. In addition, the area between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle can be minimized to reduce the acoustic short-circuit area around the sound-emitting part 11, thereby increasing the listening volume of the user's ear canal.
  • FIG10 shows a schematic diagram of an exemplary frequency response curve corresponding to different ratios of the long-axis dimension to the short-axis dimension of the first projection of the sound-emitting part 11 on the sagittal plane when the first projection area of the sound-emitting part on the sagittal plane is constant (for example, 119 mm 2 ).
  • the abscissa represents the frequency (unit: Hz)
  • the ordinate represents the total sound pressure level (unit: dB) corresponding to different ratios of the long-axis dimension to the short-axis dimension of the first projection of the sound-emitting part 11 on the sagittal plane.
  • the frequency response curves shown from top to bottom in FIG10 correspond to 1005, 1004, 1003, 1002, and 1001, respectively, within the range of 100 Hz-1000 Hz.
  • curve 1001 is the frequency response curve corresponding to the ratio of the first projection major axis size to the minor axis size of 4.99 (i.e., the first projection major axis size is 24.93 mm, and the first projection minor axis size is 4.99 mm)
  • curve 1002 is the frequency response curve corresponding to the ratio of the first projection major axis size to the minor axis size of 3.99 (i.e., the first projection major axis size is 22.43 mm, and the first projection minor axis size is 5.61 mm)
  • curve 1003 is the frequency response curve corresponding to the ratio of the first projection major axis size to the minor axis size of 3.04 (i.e., the first projection major axis size is 22.43 mm, and the first projection minor axis
  • Curve 1004 is the frequency response curve corresponding to the time when the ratio of the first projection major axis to the minor axis is about 2.0 (i.e., the first projection major axis is 16.33 mm, and the first projection minor axis is 8.16 mm).
  • Curve 1005 is the frequency response curve corresponding to the time when the ratio of the first projection major axis to the minor axis is 1.0 (i.e., the first projection major axis is 12.31 mm, and the first projection minor axis is 12.31 mm). According to FIG.
  • the resonance frequencies corresponding to the frequency response curves 1001-1005 are approximately the same (all about 3500 Hz), but when the ratio of the long axis dimension to the short axis dimension of the first projection is 1.0-3.0, the frequency response curve of the sound-emitting part 11 is smoother overall, and has a better frequency response at 100 Hz-3500 Hz.
  • the frequency is 5000 Hz, the larger the ratio of the long axis dimension to the short axis dimension of the first projection, the faster the sound frequency response of the sound-emitting part 11 in the ear canal decreases.
  • the ratio of the long axis dimension of the first projection of the sound-emitting part 11 on the sagittal plane to the short axis dimension of the projection of the sound-emitting part 11 on the sagittal plane can be set between 1.0-3.0.
  • the ratio of the first projection long axis size of the sound-emitting part 11 on the sagittal plane to the projection short axis size of the sound-emitting part 11 on the sagittal plane can be between 1.4-2.5. In some embodiments, the ratio of the first projection long axis size of the sound-emitting part 11 on the sagittal plane to the projection short axis size of the sound-emitting part 11 on the sagittal plane can be between 1.4-2.3.
  • the ratio of the first projection long axis size of the sound-emitting part 11 on the sagittal plane to the projection short axis size of the sound-emitting part 11 on the sagittal plane can be between 1.45-2.0. It can be understood that when the sound-emitting part 11 has different length-to-width ratios, the first projection of the sound-emitting part 11 on the sagittal plane and the projection of the cavum concha on the sagittal plane will have different overlapping ratios.
  • the projection area of the sound-emitting part 11 on the sagittal plane in a normal wearing state can be relatively moderate, which can avoid the projection area of the sound-emitting part 11 on the sagittal plane being too small, resulting in a large size of the leakage structure formed between the sound-emitting part 11 and the cavum concha, which leads to
  • the listening volume at the user's ear canal is low, and it can also avoid the projection area of the sound-emitting part 11 in the sagittal plane being too large, which makes the ear canal unable to remain open and affects the user's acquisition of sounds in the external environment, thereby allowing the user to have a better acoustic experience.
  • the frequency response curve measured in FIG10 is obtained through a simulation experiment.
  • the human auditory system is simulated by the model of the P.574.3 full-band human ear simulator, and the auricle defined by the ITU-TP.57 standard is used to simulate the human auricle.
  • the auricle under this standard includes the geometric shape of the ear canal.
  • the frequency response curve corresponding to the ratio of different major axis dimensions to minor axis dimensions measured in the embodiments of this specification is measured by changing different major axis dimensions and minor axis dimensions when the wearing angle of the sound-emitting part (the angle between the upper side or the lower side and the sagittal axis) and the wearing position are constant.
  • the size of the sound-emitting portion 11 along the thickness direction Z may also affect the listening experience of the user wearing the earphones, which will be further explained below in conjunction with FIG. 11 .
  • FIG11 shows the frequency response curves of the sound-emitting part 11 when the area of the first projection of the sound-emitting part 11 on the sagittal plane is constant and the ratio of the major axis dimension to the minor axis dimension of the first projection is constant, and when the sound-emitting part 11 has different dimensions in its thickness direction Z.
  • the abscissa represents the frequency (unit: Hz)
  • the ordinate represents the sound pressure level (unit: dB) at the ear canal at different frequencies.
  • the frequency response curve 1101 is a frequency response curve corresponding to the dimension of the sound-emitting part 11 along the thickness direction Z (also referred to as the thickness) of 20 mm
  • the frequency response curve 1102 is a frequency response curve corresponding to the thickness of the sound-emitting part 11 of 11 mm
  • the frequency response curve 1103 is a frequency response curve corresponding to the thickness of the sound-emitting part 11 of 5 mm
  • the frequency response curve 1104 is a frequency response curve corresponding to the thickness of the sound-emitting part 11 of 1 mm.
  • the thickness of the sound-emitting part 11 is proportional to the thickness of the front cavity of the sound-emitting part 11.
  • the sound outlet is acoustically coupled with the front cavity, and the sound in the front cavity is transmitted to the user's ear canal through the sound outlet and received by the user's auditory system. If the thickness of the sound-emitting part 11 is too large, the resonant frequency corresponding to the front cavity resonance peak corresponding to the sound-emitting part 11 is too small, which will affect the acoustic performance of the sound-emitting part 11 in the lower frequency band.
  • the thickness of the sound-emitting part 11 can be 2mm-20mm.
  • the thickness of the sound-emitting portion 11 may be 5 mm to 15 mm. In some embodiments, the thickness of the sound-emitting portion 11 may be set to 6 mm to 12 mm. It should be noted that, in the wearing state, when at least one wall surface of the two oppositely disposed side surfaces of the sound-emitting portion 11 in the thickness direction Z (i.e., the inner side surface facing the user's ear and the outer side surface facing away from the user's ear) is non-planar, the thickness of the sound-emitting portion 11 may refer to the maximum distance between the inner side surface and the outer side surface of the sound-emitting portion 11 in the thickness direction Z.
  • the frequency response curves corresponding to different thicknesses measured in the embodiments of this specification are measured by changing the thickness direction dimension of the sound-emitting part when the wearing angle of the sound-emitting part (the angle between the upper side surface US or the lower side surface LS and the long axis direction X, for example, the angle between the upper side surface US and the long axis direction X is 0°), the wearing position is certain, and the long axis size and the short axis size are certain.
  • the gap size between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle is determined, that is, the distance between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle is not greater than 8 mm.
  • the projection of the sound outlet 112 in the sagittal plane can be partially or completely located within the projection area of the concave structure of the ear 100 in the sagittal plane when the earphone 10 is worn.
  • the sound outlet 112 transmits sound downward (towards the user's earlobe in the Y direction) to the user's ear canal, and the pressure relief hole 113 should be arranged away from the sound outlet 112 to avoid the sound emitted by the pressure relief hole 113 from canceling out the sound emitted by the sound outlet 112 at the listening position (that is, the ear canal), thereby reducing the volume at the listening position.
  • the distance between the rear side surface of the sound-emitting portion 11 and the inner contour 1072 of the auricle is no more than 8 mm
  • the distance a3 between the center O of the sound outlet hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction is in the range of 9.5 mm to 15.0 mm
  • the distance between the center of the pressure relief hole 113 and the rear side surface RS can be in the range of 8.60 mm to 12.92 mm.
  • the sound outlet hole 112 and the pressure relief hole 113 can be staggered in the X direction, so that the pressure relief hole 113 is arranged away from the sound outlet hole 112.
  • the distance between the rear side surface of the sound-emitting part 11 and the inner contour 1072 of the auricle can be 0mm-6mm. Under this configuration, since the rear side surface is closer to the inner contour 1072, the distance between the sound hole 112 and the rear side surface should be larger to ensure that the sound hole 112 is located at the concave structure of the ear 100.
  • the distance between the pressure relief hole 113 and the rear side surface can be smaller or unchanged to avoid the pressure relief hole 113 being blocked by the structure of the ear 100 (such as the helix foot 1071).
  • the distance a3 between the center O of the sound-emitting hole 112 and the rear side RS of the sound-emitting part 11 along the X direction can be in the range of 11.0mm-15.0mm, and the distance between the center of the pressure relief hole 113 and the rear side RS can be in the range of 8.60mm-11.92mm.
  • the rear side of the sound-emitting part 11 is abutted against the inner contour 1072 of the auricle to improve the stability of the earphone when worn, and to eliminate the acoustic short-circuit area between the rear side of the sound-emitting part 11 and the inner contour 1072 of the auricle as much as possible, so as to reduce the noise level of the earphone.
  • the distance between the rear side of the sound part 11 and the inner contour 1072 of the auricle can be 0.
  • the distance between the sound hole 112 and the rear side is further increased, and the distance between the pressure relief hole 113 and the rear side can be appropriately reduced or unchanged, so as to further increase the distance between the sound hole 112 and the pressure relief hole 113, while preventing the pressure relief hole 113 from being blocked by the structure of the ear 100 (such as the helix foot 1071 and the helix 107).
  • the distance a3 between the center O of the sound hole 112 and the rear side RS of the sound part 11 along the X direction can range from 12.0 mm to 15.0 mm, and the distance between the center of the pressure relief hole 113 and the rear side RS can range from 10.60 mm to 11.82 mm.
  • the sound outlet hole 112 and the pressure relief hole 113 are arranged on the shell 111, each side of the shell 111 has a certain thickness, therefore, the sound outlet hole 112 and the pressure relief hole 113 are holes with a certain depth. At this time, the sound outlet hole 112 and the pressure relief hole 113 may both have an inner opening and an outer opening.
  • the center O of the sound outlet hole 112 mentioned above and below may refer to the centroid of the outer opening of the sound hole 112
  • the center of the pressure relief hole 113 mentioned above and below may refer to the centroid of the outer opening of the pressure relief hole 113
  • the center O1 of the first pressure relief hole 1131 may refer to the centroid of the outer opening of the first pressure relief hole 1131
  • the center O2 of the second pressure relief hole 1132 may refer to the centroid of the outer opening of the second pressure relief hole 1132
  • the distance from a certain position (for example, the center O of the sound hole 112, the center O1 of the first pressure relief hole 1131 , the center O2 of the second pressure relief hole 1132, etc.) to the rear side surface RS may refer to the distance from that position to the cross-section of the rear side surface RS that is farthest from the center of the sound-emitting part and parallel to the short axis of the sound-emitting part.
  • the short axis size of the sound-emitting portion 11 ranges from 11 mm to 18 mm.
  • the sound outlet 112 in order to enhance the sound intensity (volume) of the sound outlet 112 in the ear canal (that is, the listening position), the sound outlet 112 can be set at a position closer to the ear canal, that is, the sound outlet 112 can be closer to the lower side surface LS of the sound-emitting portion 11 in the Y direction.
  • the pressure relief hole 113 can be set at a position away from the sound outlet 112, for example, the pressure relief hole 113 can be set at a position away from the sound outlet 112 on the outer side surface OS or the upper side surface US. Therefore, in some embodiments, the short axis size of the sound-emitting portion 11 ranges from 11 mm to 18 mm, and the distance h1 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting portion 11 along the Y direction ranges from 2.3 mm to 3.6 mm. In some embodiments, the short axis size of the sound-emitting part 11 can be reduced to reduce the mass of the sound-emitting part 11.
  • the distance from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction can be further reduced so that the sound hole 112 can be closer to the ear canal. Therefore, the short axis size of the sound-emitting part 11 ranges from 11.5 mm to 16.5 mm, and the distance h1 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 2.5 mm to 3.2 mm.
  • the short axis size of the sound-emitting part 11 ranges from 11.5 mm to 16 mm, and the distance h1 from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 2.8 mm to 3.1 mm.
  • the long axis size and short axis size of the sound-emitting part 11 described in this specification may refer to the size of the first projection of the sound-emitting part 11 on the sagittal plane along the long axis direction X and along the short axis direction Y, respectively.
  • Some embodiments of the present specification limit the short axis size of the sound-emitting part 11 and the distance between the sound hole 112 and the lower side surface LS of the sound-emitting part 11 so that the sound hole 112 provided on the sound-emitting part 11 can be closer to the ear canal to increase the listening volume in the ear canal.
  • the projection of the sound outlet 112 in the sagittal plane can be partially or completely located in the projection area of the concave structure of the ear 100 (for example, the hymena concha 103) in the sagittal plane when the earphone 10 is worn.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 along the Y direction ranges from 17.5 mm to 27.0 mm, where the upper vertex of the ear hook 12 refers to the point on the ear hook 12 closest to the head along the vertical axis.
  • the sound-emitting part 11 should be arranged close to the ear canal to increase the listening volume.
  • the distance between the sound-emitting part 11 and the ear canal is represented by the area of the overlapping part of the sound-emitting part 11 and the projection area of the concha cavity on the sagittal plane at different ratios, wherein the overlapping part refers to the overlapping part of the projection of the sound-emitting part 11 on the sagittal plane and the projection of the concha cavity on the sagittal plane. It can be understood that the higher the ratio of the area of the overlapping part of the sound-emitting part 11 to the projection area of the concha cavity on the sagittal plane, the smaller the distance between the sound-emitting part 11 and the ear canal.
  • FIG12 is a schematic diagram of an exemplary frequency response curve corresponding to different ratios of the area of the overlapping portion to the projection area of the concha cavity on the sagittal plane in a wearing mode in which the sound-emitting part at least partially covers the antihelix as shown in some embodiments of the present specification.
  • the horizontal axis represents the frequency (unit: Hz)
  • the vertical axis represents the sound pressure level (unit: dB) of the ear canal at different frequencies.
  • the volume of the sound at the ear canal is significantly improved compared to when the ratio is less than 11.82%, that is, the sound-emitting portion 11 can also produce a better frequency response when covering part of the concha cavity and the antihelix at the same time.
  • the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 along the Y direction ranges from 17.5 mm to 27.0 mm, and the sound-emitting part 11 needs to satisfy the ratio of the area of the overlapping part to the area of the projection of the concha cavity on the sagittal plane is not less than 11.82% while covering the antihelix.
  • the sound hole 112 can be arranged as close to the ear canal as possible, that is, the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 along the Y direction is increased, and at the same time, the ratio of the area of the overlapping part of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane is increased to further improve the listening volume, so the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 along the Y direction ranges from 20.0 mm to 27 mm, and the ratio of the area of the overlapping part of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane can be not less than 31.83%.
  • the sound-emitting part 11 will cover the ear canal, and the ear canal cannot be kept in a fully open state, which affects the user's acquisition of the sound in the external environment.
  • the sound holes 112 can all be located at the concave structure of the ear 100, and the sound holes 112 can be arranged close to the ear canal.
  • the ratio of the area of the overlapping part of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane is 31.83%-62.50%.
  • the ratio of the area of the overlapping portion of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane is 35.55%-45%.
  • the frequency response curve corresponding to the ratio of the area of the overlapping portion of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane measured in the embodiments of this specification is measured by changing the wearing position of the sound-emitting part 11 (for example, translating along the sagittal axis or the vertical axis) when the wearing angle of the sound-emitting part (the angle between the upper side surface US or the lower side surface LS and the long axis direction X, for example, the angle between the upper side surface US and the long axis direction X is 0°) and the size of the sound-emitting part 11 are constant.
  • Some embodiments of the present specification limit the distance range between the center O of the sound hole 112 and the upper vertex M of the ear hook 12, and limit the ratio of the area of the overlapping part of the sound-emitting part 11 to the area of the projection of the concha cavity on the sagittal plane. This can make the sound hole 112 arranged on the sound-emitting part 11 closer to the ear canal and ensure that the sound hole 112 is not blocked by the tissue structure of the ear 100 in the wearing state, so as to increase the listening volume in the ear canal.
  • At least one of the one or more pressure relief holes 113 acoustically coupled with the back cavity opened on other sides of the shell 111 except the inner side includes a first pressure relief hole 1131, and the first pressure relief hole 1131 can be set on the upper side US, the outer side OS or the lower side LS of the sound-emitting portion 11.
  • the first pressure relief hole 1131 can be arranged away from the sound outlet hole 112, or the lower side LS, so that the first pressure relief hole 1131 can be arranged on the upper side US or the outer side OS.
  • the first pressure relief hole 1131 in order to reduce the cancellation of the sound output by the first pressure relief hole 1131 and the sound output by the sound outlet hole 112 at the ear canal and increase the volume at the ear canal, when the first pressure relief hole 1131 is arranged on the outer side OS, the first pressure relief hole 1131 is located in the area on the outer side OS close to the upper side US. In some embodiments, in order to increase the cancellation of the sound output by the first pressure relief hole 1131 and the sound output by the sound outlet hole 112 in the ear canal and increase the volume in the ear canal, the first pressure relief hole 1131 is set on the upper side US.
  • the pressure relief hole 1131 When the first pressure relief hole 1131 is disposed on the upper side US, the pressure relief hole 113 is disposed away from the sound outlet hole 112 in the X direction by limiting the distance between the sound outlet hole 112 and the pressure relief hole 113 and the rear side RS, so that the volume at the listening position is increased. Similarly, the first pressure relief hole 1131 can be disposed away from the sound outlet hole 112 in the Z direction by limiting the distance between the first pressure relief hole 1131 and the inner side IS. Therefore, in some embodiments, the thickness of the sound-emitting portion 11 is 6 mm to 12 mm, and the distance d 1 between the center O 1 of the first pressure relief hole 1131 and the inner side IS ranges from 4.43 mm to 7.96 mm.
  • the thickness of the sound-emitting portion 11 is 6 mm to 12 mm, and the distance between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS is further increased, so that the first pressure relief hole 1131 is arranged farther away from the sound outlet hole 112 in the Z direction. Therefore, the distance d 1 between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS ranges from 5.43 mm to 7.96 mm. In some embodiments, in order to reduce the overall size or mass of the sound-emitting portion 11 and reduce the thickness of the sound-emitting portion 11, the maximum distance between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS has to be reduced.
  • the minimum distance between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS is increased to ensure that the first pressure relief hole 1131 is arranged farther away from the sound outlet hole 112 in the Z direction. Therefore, the thickness of the sound-emitting portion 11 is 5 mm to 12 mm, and the distance d 1 between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS ranges from 5.43 mm to 6.96 mm.
  • the first pressure relief hole 1131 can be arranged away from the sound outlet hole 112, so that the effect of the sound emitted by the first pressure relief hole 1131 canceling out the sound emitted by the sound outlet hole 112 at the listening position (i.e., the ear canal) is weakened, thereby increasing the volume at the listening position.
  • At least two pressure relief holes 113 may be provided on other sides of the shell 111 (e.g., the outer side OS, the upper side US, or the lower side LS, etc.).
  • the provision of at least two pressure relief holes 113 may destroy the standing waves in the rear cavity, so that the resonant frequency of the sound exported from the pressure relief holes 113 to the outside of the shell 111 is as high as possible, so that the frequency response of the rear cavity has a wider flat area (e.g., the area before the resonance peak) and obtains a better sound leakage reduction effect in the mid-high frequency range (e.g., 2kHz-6kHz).
  • the pressure relief holes 113 may include a first pressure relief hole 1131 and a second pressure relief hole 1132.
  • the pressure relief holes 113 may include a first pressure relief hole 1131 and a second pressure relief hole 1132.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be arranged on the same side of the shell 111, for example, the first pressure relief hole 1131 and the second pressure relief hole 113 can be arranged on the outer side surface OS, the upper side surface US or the lower side surface LS at the same time.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be arranged on two different sides of the shell 111 respectively, for example, the first pressure relief hole 1131 can be arranged on the outer side surface OS, and the second pressure relief hole 1132 can be arranged on the upper side surface US, or the first pressure relief hole 1131 can be arranged on the outer side surface OS, and the second pressure relief hole 1132 can be arranged on the lower side surface LS.
  • the two pressure relief holes 113 can be located on opposite sides of the shell 111, for example, the first pressure relief hole 1131 can be arranged on the upper side surface US, and the second pressure relief hole 1132 can be arranged on the lower side surface LS.
  • this specification will provide an exemplary description by taking the example that the first pressure relief hole 1131 is arranged on the upper side US and the second pressure relief hole 1132 is arranged on the lower side LS.
  • the second pressure relief hole 1132 can also be set away from the sound outlet hole 112 in the Z direction by limiting the distance between the second pressure relief hole 1132 and the inner side surface IS. Since the sound-emitting portion 11 is a rectangular parallelepiped, the upper side surface US and the lower side surface LS are close in size, so the distance d2 between the center O2 of the second pressure relief hole 1132 and the inner side surface IS is similar to the distance d1 between the center O1 of the first pressure relief hole 1131 and the inner side surface IS .
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 should be as far away from the sound outlet hole 112 as possible at the same time.
  • the center of the sound outlet hole 112 can be located on or near the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 4.43 mm to 7.96 mm, and the distance between the center of the sound outlet hole 112 and the midpoint of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132 is 0 mm to 2 mm.
  • the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 5.43 mm to 7.96 mm, and the distance between the center of the sound outlet hole 112 and the midpoint of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132 is 0 mm to 2 mm.
  • the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 5.43 mm to 6.96 mm, and the distance between the center of the sound outlet hole 112 and the midpoint of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132 is 0 mm to 2 mm.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be arranged away from the sound outlet hole 112, so that the effect of the sound emitted by the first pressure relief hole 1131 and the second pressure relief hole 1132 canceling out the sound emitted by the sound outlet hole 112 at the listening position (i.e., the ear canal) is weakened, thereby increasing the volume at the listening position.
  • the area of the second pressure relief hole 1132 can be reduced to reduce the intensity of the sound derived from the second pressure relief hole 1132 and transmitted to the ear canal.
  • the area of the second pressure relief hole 1132 can be smaller than the area of the first pressure relief hole 1131 (as shown in FIG. 9 ).
  • the area of the sound outlet hole 112 and the pressure relief hole 113 can also refer to other cross-sectional areas of the sound hole 112 and the pressure relief hole 113, such as the area of the inner opening of the sound outlet hole 112 and/or the pressure relief hole 113, or the average of the inner opening area and the outer opening area of the sound outlet hole 112 and/or the pressure relief hole 113.
  • the description of the earphone 10 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • the pressure relief hole can be any one of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • the pressure relief hole can be the first pressure relief hole 1131, that is, the pressure relief hole can be provided on the upper side US.
  • the distance range from the center of the pressure relief hole to the inner side IS can be 4.24 mm to 7.96 mm, and the distance range from the center of the pressure relief hole to the rear side RS can be 8.60 mm to 15.68 mm.
  • a cavity structure in order to increase the listening volume, especially the listening volume of mid- and low-frequency sounds, while still retaining the effect of far-field leakage cancellation, can be constructed around one of the double-point sound sources.
  • Figure 13 is an exemplary distribution diagram of a cavity structure arranged around one of the dipole sound sources shown in some embodiments of this specification.
  • the cavity structure 41 when a cavity structure 41 is provided between the dipole sound sources, one of the dipole sound sources and the listening position is inside the cavity structure 41, and the other dipole sound source is outside the cavity structure 41.
  • the sound derived from the dipole sound source inside the cavity structure 41 will be restricted by the cavity structure 41, that is, the cavity structure 41 can gather the sound so that the sound can be more transmitted to the listening position, thereby improving the volume and quality of the sound at the listening position.
  • the "cavity structure” can be understood as a semi-enclosed structure surrounded by the side of the sound-emitting part 11 and the concha cavity structure, and the semi-enclosed structure makes the interior not completely sealed and isolated from the external environment, but has a leakage structure 42 (for example, an opening, a leakage structure, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure 42 for example, an opening, a leakage structure, a pipe, etc.
  • Exemplary leakage structures may include but are not limited to openings, leakage structures, pipes, etc., or any combination thereof.
  • the cavity structure 41 may include a listening position and at least one sound source.
  • “include” may mean that at least one of the listening position and the sound source is inside the cavity, or at least one of the listening position and the sound source is at the edge of the cavity.
  • the listening position may be the entrance of the ear canal, or may be the acoustic reference point of the ear.
  • Fig. 14A is a schematic diagram of the listening principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • Fig. 14B is a schematic diagram of the sound leakage principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • a dipole with a cavity structure is constructed around one of the sound sources. Since one of the sound sources A is wrapped by the cavity structure, most of the sound radiated by it will reach the listening position by direct radiation or reflection. Relatively speaking, in the absence of a cavity structure, most of the sound radiated by the sound source will not reach the listening position. Therefore, the setting of the cavity structure significantly increases the volume of the sound reaching the listening position. At the same time, only a small part of the anti-phase sound radiated by the anti-phase sound source B outside the cavity structure will enter the cavity structure through the leakage structure of the cavity structure.
  • the sound generated by the secondary sound source B' has a weak anti-phase cancellation effect on the sound source A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source A radiates sound to the outside through the leakage structure of the cavity, which is equivalent to generating a secondary sound source A’ at the leakage structure. Since almost all the sound radiated by the sound source A is output from the leakage structure, and the structural scale of the cavity is much smaller than the spatial scale of the sound leakage evaluation (at least one order of magnitude difference), it can be considered that the intensity of the secondary sound source A’ is equivalent to that of the sound source A.
  • the sound cancellation effect generated by the secondary sound source A’ and the sound source B is equivalent to the sound cancellation effect generated by the sound source A and the sound source B. That is, under this cavity structure, a considerable sound leakage reduction effect is still maintained.
  • the leakage structure of the above-mentioned one opening is only an example, and the leakage structure of the cavity structure may include one or more openings, which can also achieve a better listening index, wherein the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • Equal openings are equivalent to doubling the relative opening size of only one hole (i.e., the ratio of the opening area S of the leakage structure on the cavity structure to the area S0 directly affected by the contained sound source in the cavity structure). As mentioned above, its overall listening index will decrease. In the case of equal opening ratio, even if S/S0 is the same as the structure with only one hole, the distances from the two openings to the external sound source are different, which will also result in different listening indexes.
  • FIG. 15A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present specification.
  • FIG. 15B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present specification.
  • the distances from the two openings to the external sound source are respectively maximum and minimum;
  • the two lines are perpendicular (i.e., two vertical openings), the distances from the two openings to the external sound source are equal and take an intermediate value.
  • FIG16 is a comparison diagram of the listening index curves of the cavity structure with two openings and one opening according to some embodiments of the present specification. As shown in FIG16, the overall listening index of the cavity structure with equal openings is lower than that of the cavity structure with one opening. For the cavity structure with equal opening ratio, due to the different distances from the two openings to the external sound source, different listening indexes will also be caused. It can be seen from FIG15A, FIG15B and FIG16 that the listening index of the leakage structure with equal opening ratio is higher than that of the leakage structure with equal opening ratio, regardless of whether it is a horizontal opening or a vertical opening.
  • the listening index of the horizontal opening is larger, regardless of whether it is a leakage structure with equal opening ratio or a leakage structure with equal opening ratio.
  • the distance from one of the openings in the horizontally opened leakage structure to the external sound source is smaller than the distance between the two sound sources.
  • the secondary sound source thus formed is closer to the external sound source than the original two sound sources, so the listening index is higher, thereby improving the effect of reducing leakage sound. Therefore, in order to improve the effect of reducing leakage sound, the distance from at least one opening to the external sound source can be made smaller than the distance between the two sound sources.
  • a cavity structure with two openings can better improve the resonant frequency of the air sound in the cavity structure than a cavity structure with one opening, so that the entire device has a better listening index in the high frequency band (for example, sounds with a frequency close to 10,000 Hz) than a cavity structure with only one opening.
  • the high frequency band is a frequency band that the human ear is more sensitive to, so there is a greater demand for reduced leakage sound. Therefore, in order to improve the effect of reducing leakage sound in the high frequency band, a cavity structure with an opening number greater than 1 can be selected.
  • Fig. 17 is an exemplary wearing diagram of an earphone according to some other embodiments of the present application.
  • Fig. 18 is a structural diagram of the earphone shown in Fig. 17 facing the ear.
  • Fig. 19 is a structural diagram of the housing of an earphone according to some embodiments of the present specification.
  • the earphone 10 shown in FIG17 has a similar structure to the earphone 10 shown in FIG7 , for example, the ear hook 12 is an arc-shaped structure that fits the junction of the user's head and the ear 100.
  • the sound-emitting portion 11 (or the shell 111 of the sound-emitting portion 11) may have a connecting end CE connected to the ear hook 12 and a free end FE not connected to the ear hook 12.
  • the first part 121 of the ear hook 12 (for example, the hook-shaped part of the ear hook 12) is hung between the user's auricle 100 (for example, the helix 107) and the head, and the second part 122 of the ear hook 12 (for example, the connecting part of the ear hook) extends to the side of the auricle 100 away from the head and is connected to the connecting end CE of the sound-emitting portion 11, so as to fix the sound-emitting portion 11 at a position near the ear canal but not blocking the ear canal.
  • the first part 121 of the ear hook 12 for example, the hook-shaped part of the ear hook 12
  • the second part 122 of the ear hook 12 (for example, the connecting part of the ear hook) extends to the side of the auricle 100 away from the head and is connected to the connecting end CE of the sound-emitting portion 11, so as to fix the sound-emitting portion 11 at a position near the ear canal but not blocking the ear
  • the structures are similar, and the main difference is that the sound-emitting part 11 is tilted, and the shell 111 of the sound-emitting part 11 is at least partially inserted into the concha cavity 102.
  • the free end FE of the sound-emitting part 11 can extend into the concha cavity 102.
  • the ear hook 12 and the sound-emitting part 11 of such a structure have a better fit with the user's ear 100, which can increase the resistance of the earphone 10 to fall off from the ear 100, thereby increasing the wearing stability of the earphone 10.
  • connection end CE of the sound-emitting portion 11 when worn, is closer to the top of the head than the free end FE when observed along the thickness direction Z, so that the free end FE can be inserted into the concha cavity. Based on this, the angle between the short axis direction Y and the direction of the sagittal axis of the human body can be between 30° and 40°.
  • the aforementioned angle is too small, it is easy to cause the free end FE to be unable to extend into the concha cavity, and the sound outlet hole 112 on the sound-emitting portion 11 is too far away from the ear canal; if the aforementioned angle is too large, it is also easy to cause the sound-emitting portion 11 to be unable to extend into the concha cavity, and the ear canal is blocked by the sound-emitting portion 11.
  • such a setting allows the sound-emitting portion 11 to extend into the concha cavity, and the sound outlet hole 112 on the sound-emitting portion 11 has a suitable distance from the ear canal, so that the user can hear more of the sound produced by the sound-emitting portion 11 when the ear canal is not blocked.
  • the sound-emitting portion 11 and the ear hook 12 can jointly clamp the ear 100 area corresponding to the concha cavity from the front and back sides of the ear 100 area, thereby increasing the resistance of the earphone 10 to fall off from the ear 100, thereby improving the stability of the earphone 10 in the wearing state.
  • the free end FE of the sound-emitting portion 11 is pressed in the concha cavity in the thickness direction Z.
  • the free end FE abuts against the concha cavity in the major axis direction X and the minor axis direction Y (for example, the free end FE abuts against the inner wall of the concha cavity).
  • the free end FE can refer to a specific area away from the connecting end CE obtained by cutting the sound-emitting portion 11 along the Y-Z plane (the plane formed by the minor axis direction Y and the thickness direction Z), and the ratio of the major axis dimension of the specific area to the major axis dimension of the sound-emitting portion can be 0.05 to 0.2.
  • the listening volume at the listening position e.g., at the ear canal
  • the listening volume of the mid-low frequency can be increased, while still maintaining a good far-field leakage cancellation effect.
  • the cavity enclosed by the inner side surface IS of the sound-emitting part 11 and the concha cavity 102 can be regarded as the cavity structure 41 as shown in FIG.
  • the leakage structure formed between the inner side surface IS and the concha cavity e.g., the first leakage structure UC formed between the inner side surface IS and the concha cavity near the top of the head, and the second leakage structure LC formed between the inner side surface IS and the ear 100 near the ear canal
  • the sound outlet hole 112 disposed on the inner side surface IS can be regarded as a point sound source inside the cavity structure 41 as shown in FIG.
  • one or more pressure relief holes 113 (for example, the first pressure relief hole 1131 and/or the second pressure relief hole 1132) disposed on other sides of the sound-emitting portion 11 (for example, the upper side surface US and/or the lower side surface LS) can be regarded as a point sound source outside the cavity structure 41 as shown in FIG. 13 , and the sound outlet hole 112 and the pressure relief hole 113 with opposite sound output phases form a dipole. Therefore, according to the relevant descriptions of FIGS. 13 to 16 , when the earphone 10 is worn in a wearing manner of at least partially inserting into the concha cavity, that is, in a wearing manner as shown in FIG.
  • the sound outlet hole 112 in terms of the listening effect, most of the sound radiated from the sound outlet hole 112 can reach the ear canal by direct or reflected means, which can significantly increase the volume of the sound reaching the ear canal, especially the volume of the mid- and low-frequency listening sound.
  • the leakage structure the first leakage structure UC and the second leakage structure LC
  • the interference and cancellation effect with the sound outlet hole 112 is weak, which significantly increases the listening volume of the ear canal.
  • the sound outlet hole 112 can leak sound to the outside through the leakage structure of the cavity structure.
  • the sound intensity leaked from the sound outlet hole 112 is equivalent to the sound intensity of the pressure relief hole 113, and the sound leaked from the sound outlet hole 112 can cancel the sound generated by the pressure relief hole 113 in the far field, thereby ensuring the sound leakage reduction effect.
  • the free end FE extending into the concha cavity may be close to the edge 1021 of the concha cavity (see FIG. 17 ), or may be at a certain distance from the edge 1021 of the concha cavity.
  • the distance between the free end FE of the sound-emitting portion 11 and the edge 1021 of the concha cavity will affect the size of the cavity structure enclosed by the sound-emitting portion 11 and the concha cavity 102, thereby affecting the size of the leakage structure formed between the sound-emitting portion 11 and the concha cavity, and further affecting the listening volume at the user's ear canal, which is specifically manifested in that the larger the opening of the leakage structure, the more sound components directly radiated outward by the sound-emitting portion 11, and the less sound reaching the listening position.
  • the distance between the free end FE of the sound-emitting portion 11 and the edge 1021 of the concha cavity can be characterized by the shortest distance between the projection of the free end FE of the sound-emitting portion 11 on the sagittal plane and the projection of the edge 1021 of the concha cavity on the sagittal plane along the X direction.
  • the distance between the free end FE of the sound-emitting portion 11 and the edge 1021 of the concha cavity can be the distance between the midpoint of the projection of the free end FE of the sound-emitting portion 11 on the sagittal plane and the projection of the edge 1021 of the concha cavity on the sagittal plane along the X direction.
  • the distance between the free end FE of the sound-emitting portion 11 and the edge 1021 of the concha cavity can be used to reflect the position of the free end FE of the sound-emitting portion 11 relative to the concha cavity 102 and the extent to which the sound-emitting portion 11 covers the user's concha cavity 102.
  • FIG20 is a schematic diagram of exemplary frequency response curves corresponding to different distances between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity according to some embodiments of the present specification.
  • the horizontal axis represents frequency (unit: Hz)
  • the vertical axis represents the sound pressure level at the ear canal at different frequencies (unit: dB)
  • the frequency response curve 201 is a frequency response curve when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 0 mm (for example, in the wearing state, the free end of the sound-emitting part 11 is against the edge of the concha cavity)
  • the frequency response curve 202 is a frequency response curve when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 4.77 mm
  • the frequency response curve 203 is a frequency response curve when the distance between the free end FE of the sound-emitting part and the edge 10
  • the frequency response curve 206 is the frequency response curve when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 15.3 mm
  • the frequency response curve 207 is the frequency response curve when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 19.24 mm. According to FIG. 20 , it can be seen that when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 0 mm, 4.77 mm, and 7.25 mm, the sound pressure level of the sound measured at the ear canal is relatively large.
  • the sound pressure level of the sound measured at the ear canal is relatively small. That is to say, in the wearing state, when the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is greater, that is, the less the structure of the sound-emitting part 11 extending into the concha cavity, the smaller the cavity structure surrounded by the sound-emitting part 11 and the concha cavity 102, and the worse the listening effect at the ear canal.
  • the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity can be 0mm to 7.25mm. In some embodiments, the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity can be 0mm to 4.77mm.
  • the free end of the sound-emitting part can abut against the edge 1021 of the concha cavity, which can be understood as the projection of the free end FE of the sound-emitting part 11 in the sagittal plane overlaps with the projection of the edge 1021 of the concha cavity in the sagittal plane (for example, the position of the sound-emitting part 11 relative to the concha cavity shown in Figure 17), that is, when the distance between the projection of the free end of the sound-emitting part in the sagittal plane and the projection of the edge 1021 of the concha cavity in the sagittal plane is 0mm, the sound-emitting part 11 can have a good frequency response.
  • the free end of the sound-emitting part 11 abuts against the edge 1021 of the concha cavity, which can support and limit the sound-emitting part 11, thereby improving the stability of the user wearing the earphone.
  • the frequency response curves corresponding to different distances between the free end FE of the sound-emitting part and the edge of the concha cavity 1021 measured in the embodiments of this specification are measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis) when the wearing angle of the sound-emitting part and the dimensions in the major axis direction, the minor axis direction and the thickness direction are constant.
  • the sound hole 112 is disposed on the inner side surface IS of the sound emitting part 11.
  • the position of the sound hole 112 can be limited in the X direction so that the sound hole 112 is placed inside the cavity structure formed between the sound emitting part 11 and the concha cavity.
  • the distance b1 between the center O of the sound hole 112 and the rear side surface RS of the sound emitting part 11 along the X direction is in the range of 8.15 mm to 12.25 mm.
  • the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha is 0 mm to 4.77 mm.
  • the distance between the sound hole 112 and the rear side surface RS is larger, and the distance b1 between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting part 11 along the X direction is in the range of 8.5 mm to 12.00 mm.
  • the free end FE of the sound-emitting part in order to improve the wearing comfort and stability of the user, can be made to abut against the edge 1021 of the concha cavity, even if the distance between the free end FE of the sound-emitting part and the edge 1021 of the concha cavity is 0 mm.
  • the distance b1 between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting part 11 along the X direction is in the range of 9.25 mm to 11.15 mm.
  • the position of the sound outlet 112 can be limited from the Y direction so that the sound outlet 112 is placed inside the cavity structure formed between the sound-emitting part 11 and the concha cavity. Therefore, in some embodiments, when in the wearing state, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 22.5 mm to 34.5 mm.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 25 mm to 32 mm. In some embodiments, when in the wearing state, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 27.5 mm to 29.5 mm. In some embodiments, when in the wearing state, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 28 mm to 29 mm.
  • the distance between the projection of the center of the sound outlet 112 on the sagittal plane and the projection of the upper vertex of the ear hook 12 on the sagittal plane ranges from 18 mm to 30 mm.
  • Some embodiments of the present specification can place the sound hole 112 inside the cavity structure formed between the sound emitting part 11 and the cavity concha by limiting the position of the sound hole 112 in the Y direction and/or the X direction based on the sound emitting part 11, thereby ensuring the sound intensity of the sound hole 112, i.e., the listening position. Therefore, based on the position of the sound emitting part 11 relative to the cavity concha, the position of the sound hole 112 can be limited in the Y direction and the X direction, so that the sound hole 112 is placed inside the cavity structure formed between the sound emitting part 11 and the cavity concha, thereby ensuring the sound intensity of the sound hole 112 in the ear canal.
  • the projection of the sound-emitting part 11 on the sagittal plane overlaps with the projection of the concha cavity on the sagittal plane.
  • the size of the overlapping part will also affect the size of the cavity structure, thereby affecting the size of the leakage structure formed between the sound-emitting part 11 and the concha cavity.
  • the ratio of the area of the overlapping part to the projection area of the concha cavity on the sagittal plane is defined as the overlapping ratio of the sound-emitting part 11 and the concha cavity 102.
  • the sound-emitting part 11 can cover a larger part of the concha cavity.
  • the size of the leakage structure between the sound-emitting part 11 and the concha cavity is smaller, the opening area of the leakage structure of the cavity structure is smaller, and the sound component directly radiated outward from the sound-emitting part 11 is less, thereby ensuring the listening volume at the user's ear canal.
  • FIG. 21 is an exemplary diagram of the sound-producing part and the concha cavity corresponding to different overlapping ratios according to some embodiments of this specification. Schematic diagram of frequency response curve.
  • the horizontal axis represents frequency (unit: Hz)
  • the vertical axis represents the frequency response at the ear canal corresponding to different overlapping ratios (unit: dB).
  • the listening volume at the user's ear canal is significantly improved compared to when the projection of the sound-emitting part 11 on the sagittal plane does not overlap with the projection of the concha cavity on the sagittal plane (the overlapping ratio is 0%), especially in the mid- and low-frequency bands.
  • the overlapping ratio between the sound-emitting part and the concha cavity can be no less than 9.26%.
  • the listening volume of the user at the ear canal is also improved, especially when the overlap ratio between the sound-emitting part and the concha cavity is increased from 36.58% to 44.01%, the listening effect is significantly improved.
  • the overlap ratio between the sound-emitting part and the concha cavity is not less than 44.01%.
  • the overlap ratio between the sound-emitting part and the concha cavity is not less than 57.89%. It should be noted that the frequency response curve corresponding to the overlap ratio between the sound-emitting part and the concha cavity measured in the embodiments of this specification is measured by changing the wearing position of the sound-emitting part (for example, translating along the sagittal axis or vertical axis) when the wearing angle of the sound-emitting part (the angle between the upper side or the lower side and the sagittal axis) and the size of the sound-emitting part are constant.
  • the earphone provided in the embodiment of the present specification can make the sound-emitting part 11 better cooperate with the user's cavity of the concha to form a cavity structure by extending at least part of the sound-emitting part 11 into the cavity of the concha, and controlling the overlapping ratio of the sound-emitting part and the cavity of the concha in the sagittal plane to be no less than 44.01%, thereby improving the listening volume of the earphone at the listening position, especially the listening volume of mid- and low-frequency sounds.
  • the overlap ratio between the sound-emitting part and the concha cavity should not be too large.
  • the size of the sound-emitting part 11 extending into the concha cavity is too small, resulting in a small fitting area between the sound-emitting part 11 and the user's concha cavity, and the concha cavity cannot be used to provide sufficient support and limit for the sound-emitting part 11, resulting in the problem of unstable wearing and easy to fall off.
  • the size of the leakage structure formed by the sound-emitting part 11 and the concha cavity is too large, which affects the listening volume of the user's ear canal.
  • the overlap ratio of the sound-emitting part 11 and the concha cavity can be 44.01% to 77.88%, so that when part or the entire structure of the sound-emitting part 11 extends into the concha cavity, the force of the concha cavity on the sound-emitting part 11 can be used to support and limit the sound-emitting part 11 to a certain extent, thereby improving its wearing stability and comfort.
  • the sound-emitting part 11 can also form an acoustic model shown in Figure 13 with the concha cavity to ensure the listening volume of the user at the listening position (for example, the ear canal) and reduce the leakage volume of the far field.
  • the overlap ratio of the sound-emitting part 11 and the concha cavity can be 46% to 71.94%. In some embodiments, the overlap ratio of the sound-emitting part 11 and the concha cavity can be 48% to 65%. In some embodiments, the overlap ratio of the sound-emitting part 11 and the concha cavity can be 57.89% to 62%.
  • the size and contour shape of the concha cavity may be different for different users (for example, different ages, different genders, different heights and weights), and the projection area of the concha cavity of different users in the sagittal plane is within a certain range (for example, 320 mm 2 to 410 mm 2 ).
  • the overlap ratio of the projection area of the sound-emitting part 11 in the sagittal plane and the projection area of the concha cavity in the sagittal plane should not be too large or too small, and correspondingly, the overall size of the sound-emitting part 11 (especially the size along its long axis and the size along its short axis) should not be too large or too small.
  • the sound-emitting part 11 in the sagittal plane is too small, the sound-emitting part 11 cannot fully cover the concha cavity, and the leakage structure formed between the sound-emitting part 11 and the concha cavity is large in size, resulting in a low listening volume at the user's ear canal.
  • the projection area of the sound-emitting part 11 in the sagittal plane is too large, the sound-emitting part 11 may cover the user's ear canal, making it impossible for the ear canal to remain open, affecting the user's acquisition of sounds in the external environment.
  • the area of the first projection of the sound-emitting portion 11 on the sagittal plane can be 202mm 2 to 560mm 2 . In some embodiments, the area of the first projection of the sound-emitting portion 11 on the sagittal plane can be 220mm 2 to 500mm 2 . In some embodiments, the area of the first projection of the sound-emitting portion 11 on the sagittal plane can be 300mm 2 to 470mm 2 . Further, in some embodiments, the area of the first projection of the sound-emitting portion 11 on the sagittal plane can be 330mm 2 to 440mm 2 .
  • the shape of the sound-emitting part 11 may include a long axis direction X and a short axis direction Y.
  • the volume of the sound-emitting part 11 is relatively small, so that the area of the diaphragm arranged inside it is also relatively small, resulting in low efficiency of the diaphragm pushing the air inside the shell of the sound-emitting part 11 to produce sound, affecting the acoustic output effect of the earphone.
  • the sound-emitting part 11 exceeds the range of the concha cavity, cannot extend into the concha cavity, and cannot form a cavity structure, or the size of the leakage structure formed between the sound-emitting part 11 and the concha cavity is very large, affecting the listening volume of the user wearing the earphone 10 in the ear canal and the sound leakage effect in the far field.
  • the sound-emitting part 11 may cover the user's ear canal, affecting the user's acquisition of sound information in the external environment.
  • the long axis size range can be between 12 mm and 32 mm.
  • the major axis size ranges from 18 mm to 29 mm.
  • the major axis size ranges from 20 mm to 27 mm, and in some embodiments, the major axis size ranges from 22 mm to 25 mm.
  • the minor axis size ranges from 4.5 mm to 18 mm.
  • the minor axis size ranges from 10 mm to 15 mm.
  • the minor axis size ranges from 20 mm to 27 mm.
  • the minor axis size may range from 12 mm to 13 mm.
  • the ratio of the long axis size to the short axis size of the sound-emitting part 11 shown in FIG17 is similar to the ratio of the long axis size to the short axis size of the sound-emitting part 11 shown in FIG7 :
  • the ratio of the long axis size to the short axis size of the sound-emitting part 11 can be between 1.0 and 3.0.
  • the smaller the ratio of the long axis size to the short axis size of the sound-emitting part 11 is when the area is constant, the larger the short axis size of the sound-emitting part 11 is.
  • the ratio of the long axis size to the short axis size of the sound-emitting part 11 can be between 1.4 and 2.5. In some embodiments, the ratio of the long axis size to the short axis size of the sound-emitting part 11 can be between 1.4 and 2.3. In some embodiments, the ratio of the major axis dimension to the minor axis dimension of the sound-emitting portion 11 may be between 1.45 and 2.0.
  • the sound-emitting portion 11 and the cavum concha may have different overlapping ratios.
  • the ratio of the major axis dimension to the minor axis dimension of the sound-emitting portion 11 between 1.4 and 3
  • the projection area of the sound-emitting portion 11 projected onto the sagittal plane in a normal wearing state can be relatively moderate, which can avoid the sound-emitting portion 11 projected onto the sagittal plane too small, resulting in a large leakage structure formed between the sound-emitting portion 11 and the cavum concha, resulting in a low listening volume at the user's ear canal, and also avoid the sound-emitting portion 11 projected onto the sagittal plane too large, resulting in the ear canal being unable to remain open, affecting the user's acquisition of sound in the external environment, thereby enabling the user to have a better acoustic experience.
  • the short axis size of the sound-emitting part 11 ranges from 10 mm to 15 mm.
  • the sound outlet 112 in order to improve the sound intensity (volume) of the sound outlet 112 in the ear canal (i.e., the listening position), the sound outlet 112 can be set at a position closer to the ear canal, and the distance from the sound outlet 112 to the lower side surface LS of the sound-emitting part 11 in the Y direction can be limited to define the distance from the sound outlet 112 to the ear canal when worn.
  • the short axis size of the sound-emitting part 11 ranges from 10 mm to 15 mm, and the distance h2 from the center O of the sound outlet 112 to the lower side surface LS of the sound-emitting part 11 in the Y direction ranges from 4.05 mm to 6.05 mm. In some embodiments, the short axis size of the sound-emitting part 11 can be reduced to reduce the mass of the sound-emitting part 11.
  • the short axis size of the sound-emitting part 11 ranges from 11mm to 13.5mm
  • the distance h2 from the center O of the sound-emitting hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.80mm to 5.50mm.
  • the short axis size of the sound-emitting part 11 ranges from 12mm to 13mm, and the distance h2 from the center O of the sound-emitting hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 5.20mm to 5.55mm.
  • At least one of the one or more pressure relief holes 113 acoustically coupled with the back cavity opened on other sides of the shell 111 except the inner side includes a first pressure relief hole 1131, and the first pressure relief hole 1131 can be set on the upper side US, the outer side OS or the lower side LS of the sound-emitting part 11.
  • the sound-emitting part 11 since the sound-emitting part 11 is located in the concha cavity, due to its own gravity, the sound-emitting part 11 may be close to the lower inner wall of the concha cavity close to the earlobe, so that the leakage structure formed by the sound-emitting part 11 and the concha cavity is close to the upper side US of the sound-emitting part 11.
  • the first pressure relief hole 1131 In order to make the sound output by the first pressure relief hole 1131 cancel the sound discharged from the sound outlet hole 112 through the leakage structure in the far field, the first pressure relief hole 1131 should be set close to the leakage structure. Since the leakage structure may be close to the upper side US of the sound-emitting part 11, the first pressure relief hole is set in the area close to the upper side US or the outer side OS on the upper side US. In some embodiments, in order to enhance the cancellation of the sound output by the first pressure relief hole 1131 and the sound leaked through the leakage structure in the far field and enhance the effect of reducing leakage sound, the first pressure relief hole 1131 is disposed on the upper side US.
  • the sound-emitting portion 11 is at least partially inserted into the concha cavity, ensuring that the entire or partial area of the first pressure relief hole 1131 cannot be blocked due to the contact between the free end FE and the wall of the concha cavity, so that the effective area of the first pressure relief hole 1131 is reduced, and the distance between the first pressure relief hole 1131 and the rear side surface RS of the sound-emitting portion 11 along the X direction cannot be too close. Therefore, in some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS ranges from 8.60 mm to 15.68 mm.
  • the distance d1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS ranges from 10.44 mm to 15.68 mm. In some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS ranges from 11.00 mm to 14.55 mm. In some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS ranges from 12.15 mm to 13.25 mm.
  • the distance between the sound outlet 112 and the first pressure relief hole 1131 can be limited to be closer to the ear canal and farther from the ear canal. Therefore, in some embodiments, the distance between the projection point of the center O of the sound outlet 112 on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane ranges from 2.2 mm to 3.8 mm.
  • the first pressure relief hole 1131 is far away from the ear canal to improve the listening effect in the ear canal, and the distance between the projection point of the center O 1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane ranges from 12 mm to 18 mm.
  • the maximum distance between the first pressure relief hole 1131 and the ear canal is limited by the size of the sound-generating part 11.
  • the sound outlet 112 is easily blocked by the tragus.
  • the projection point of the center O of the sound outlet 112 on the sagittal plane is 30 meters away from the center O of the ear canal opening on the sagittal plane.
  • the distance between the projection point of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O 1 of the first pressure relief hole 1131 on the sagittal plane is 2.4mm ⁇ 3.4mm, and the distance between the projection point of the center O 1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane is 14mm ⁇ 18mm.
  • the distance between the sound outlet hole 112 and the ear canal can be reduced, and the distance between the first pressure relief hole 1131 and the ear canal can be increased. Therefore, the distance between the projection point of the center O of the sound outlet hole 112 on the sagittal plane and the projection point of the center O 3 of the ear canal opening on the sagittal plane is 2.4mm ⁇ 3.2mm, and the distance between the projection point of the center O 1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane is 15.5mm ⁇ 18mm.
  • the first pressure relief hole 1131 can be arranged away from the ear canal, thereby preventing the sound output by the first pressure relief hole 1131 from canceling out the sound output by the sound outlet hole 112 in the ear canal, resulting in a weakened listening effect.
  • the thickness dimension of the sound-emitting part 11 shown in FIG. 17 is similar to the thickness dimension of the sound-emitting part 11 shown in FIG. 7 :
  • the thickness of the sound-emitting part 11 can be 2 mm to 20 mm.
  • the thickness of the sound-emitting part 11 can be 5 mm to 15 mm.
  • the thickness of the sound-emitting part 11 can be set to 6 mm to 12 mm.
  • the first pressure relief hole 1131 is set on the upper side US, and the first pressure relief hole 1131 can be set away from the sound outlet hole 112 in the Z direction by limiting the distance between the first pressure relief hole 1131 and the inner side IS. Therefore, in some embodiments, the thickness of the sound-emitting part 11 is 6 mm to 12 mm, and the distance c 1 of the center O 1 of the first pressure relief hole 1131 from the inner side IS of the sound-emitting part 11 along the Z direction ranges from 4.24 mm to 6.38 mm.
  • the thickness of the sound-emitting part 11 is 6 mm-12 mm, and the distance between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS is further increased so that the first pressure relief hole 1131 is arranged farther away from the sound outlet hole 112 in the Z direction.
  • the distance c 1 between the center O 1 of the first pressure relief hole 1131 and the inner side surface IS of the sound-emitting part 11 along the Z direction ranges from 4.80 mm to 6.38 mm.
  • the maximum distance between the center O1 of the first pressure relief hole 1131 and the inner side surface IS has to be reduced.
  • the minimum distance between the center O1 of the first pressure relief hole 1131 and the inner side surface IS is increased to ensure that the first pressure relief hole 1131 is arranged farther away from the sound outlet hole 112 in the Z direction. Therefore, the thickness of the sound-emitting part 11 is 5mm-12mm, and the distance c1 between the center O1 of the first pressure relief hole 1131 and the inner side surface IS of the sound-emitting part 11 along the Z direction is in the range of 5.20mm ⁇ 5.55mm.
  • the first pressure relief hole 1131 can be arranged away from the sound outlet hole 112, so that the effect of the sound emitted by the first pressure relief hole 1131 canceling out the sound emitted by the sound outlet hole 112 at the listening position (i.e., the ear canal) is weakened, thereby increasing the volume at the listening position.
  • At least one of the one or more pressure relief holes 113 acoustically coupled with the back cavity opened on other sides of the shell 111 except the inner side includes a second pressure relief hole 1132, and the second pressure relief hole 1132 may be the same as the first pressure relief hole 1132, and the second pressure relief hole 1132 may be arranged on the upper side US, the outer side OS or the lower side LS of the sound-emitting part 11.
  • the free end FE of the sound-emitting part 11 abuts against the cavum concha, the leakage structure formed by the sound-emitting part 11 and the cavum concha is close to the lower side LS of the sound-emitting part 11.
  • the second pressure relief hole 1132 In order to make the sound output by the second pressure relief hole 1132 cancel the sound discharged from the sound outlet hole 112 through the leakage structure in the far field, the second pressure relief hole 1132 should be arranged close to the leakage structure. Since the leakage structure may be close to the lower side LS of the sound-emitting part 11, the second pressure relief hole 1132 is arranged in the area close to the lower side US or the outer side OS on the lower side US. In some embodiments, in order to improve the cancellation of the sound output by the second pressure relief hole 1132 and the sound leaked through the leakage structure in the far field and improve the effect of reducing leakage sound, the second pressure relief hole 1132 is arranged on the lower side US.
  • the sound-emitting part 11 is at least partially inserted into the concha cavity to ensure that the entire or partial area of the second pressure relief hole 1132 cannot be blocked due to the contact between the free end FE and the wall of the concha cavity, so that the effective area of the second pressure relief hole 1132 is reduced, and the distance between the second pressure relief hole 1132 and the rear side RS of the sound-emitting part 11 along the X direction cannot be too close. Therefore, in some embodiments, the distance d3 between the center O2 of the second pressure relief hole 1132 and the rear side RS is in the range of 13.51 mm to 20.27 mm.
  • the distance d3 between the center O2 of the second pressure relief hole 1132 and the rear side RS is in the range of 15.00 mm to 19.55 mm . In some embodiments, a distance d 3 between the center O 2 of the second pressure relief hole 1132 and the rear side surface RS ranges from 17.15 mm to 18.25 mm.
  • the distance between the sound outlet hole 112 and the second pressure relief hole 1132 can be limited to be closer to the ear canal and farther from the ear canal.
  • the distance between the projection point of the center O of the sound outlet hole 112 on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane ranges from 2.2 mm to 3.8 mm.
  • the second pressure relief hole 1132 is farther away from the ear canal to improve the listening effect in the ear canal, and the distance between the projection point of the center O 2 of the second pressure relief hole on the sagittal plane and the projection point of the center O 3 of the ear canal on the sagittal plane ranges from 6.88 mm to 10.32 mm.
  • the maximum distance between the second pressure relief hole 1132 and the ear canal is limited by the size of the sound-emitting part 11.
  • the sound outlet 112 is easily blocked by the tragus.
  • the distance between the projection point of the center O of the sound outlet 112 on the sagittal plane and the projection point of the center O3 of the ear canal opening on the sagittal plane is 2.4 mm to 3.4 mm
  • the projection point of the center O2 of the second pressure relief hole on the sagittal plane is 2.4 mm to 3.4 mm from the ear canal.
  • the distance from the projection point of the center O 3 of the sound outlet 112 on the sagittal plane is in the range of 7.88mm to 10.32mm.
  • the distance between the sound outlet 112 and the ear canal can be reduced, and the distance between the second pressure relief hole 1132 and the ear canal can be increased. Therefore, the distance from the projection point of the center O of the sound outlet 112 on the sagittal plane to the projection point of the center O 3 of the ear canal opening on the sagittal plane is in the range of 2.4mm to 3.2mm, and the distance from the projection point of the center O 2 of the second pressure relief hole on the sagittal plane to the projection point of the center O 3 of the ear canal on the sagittal plane is in the range of 8.32mm to 10.32mm.
  • the second pressure relief hole 1132 can be arranged away from the ear canal, thereby preventing the sound output by the second pressure relief hole 1132 from canceling out the sound output by the sound outlet hole 112 in the ear canal, resulting in a weakened listening effect.
  • the second pressure relief hole 1132 is arranged on the lower side surface, and the distance between the second pressure relief hole 1132 and the inner side surface IS can be limited so that the second pressure relief hole 1132 is arranged away from the sound outlet hole 112 in the Z direction, so as to prevent the sound outputted by the second pressure relief hole 1132 from excessively entering the cavity structure through the leakage structure and canceling the sound outputted by the sound outlet hole 112, thereby weakening the listening effect.
  • the thickness of the sound-emitting part 11 is 6 mm-12 mm, and the distance c 2 between the center O 2 of the second pressure relief hole 1132 and the inner side surface IS of the sound-emitting part 11 along the Z direction ranges from 4.24 mm to 6.38 mm. In some embodiments, the thickness of the sound-emitting part 11 is 6 mm-12 mm, and the distance between the center O 2 of the second pressure relief hole 1132 and the inner side surface IS is further increased so that the second pressure relief hole 1132 is arranged farther away from the sound outlet hole 112 in the Z direction.
  • the distance c 2 between the center O 2 of the second pressure relief hole 1132 and the inner side surface IS of the sound-emitting part 11 along the Z direction ranges from 4.80 mm to 6.38 mm.
  • the maximum distance between the center O2 of the second pressure relief hole 1132 and the inner side surface IS has to be reduced.
  • the minimum distance between the center O2 of the second pressure relief hole 1132 and the inner side surface IS is increased to ensure that the second pressure relief hole 1132 is arranged farther away from the sound outlet hole 112 in the Z direction.
  • the thickness of the sound-emitting part 11 is 5mm-12mm, and the distance c2 between the center O2 of the second pressure relief hole 1132 and the inner side surface IS of the sound-emitting part 11 along the Z direction is in the range of 5.20mm ⁇ 5.55mm.
  • the second pressure relief hole 1132 can be arranged away from the sound outlet hole 112, thereby preventing the sound output by the second pressure relief hole 1132 from canceling out the sound output by the sound outlet hole 112 in the ear canal, resulting in a weakened listening effect.
  • the cavity structure formed between the sound-emitting part 11 and the concha cavity has at least two leakage structures, and the free end FE can abut against the concha cavity in the long-axis direction X and the short-axis direction Y.
  • the inner side surface IS of the sound-emitting part 11 is inclined relative to the sagittal plane, and at this time, there is at least a first leakage structure UC close to the top of the head (i.e., the gap between the concha cavity and the upper boundary of the inner side surface IS) and a second leakage structure LC close to the ear canal (i.e., the gap between the concha cavity and the lower boundary of the inner side surface IS) between the inner side surface IS of the sound-emitting part and the concha cavity.
  • a first leakage structure UC close to the top of the head i.e., the gap between the concha cavity and the upper boundary of the inner side surface IS
  • a second leakage structure LC close to the ear canal i.e., the gap between the concha cavity and the lower boundary of the inner side surface IS
  • the first leakage structure UC and the second leakage structure LC formed between the inner side surface IS of the sound-emitting part and the concha cavity have certain dimensions in the long-axis direction X and the thickness direction Z.
  • the midpoint of the two points formed by the intersection of the upper/lower boundaries of the medial side IS and the ear (for example, the side wall of the concha cavity, the crus of the helix) when the earphone 10 is in the wearing state can be used as the position reference point of the first leakage structure UC and the second leakage structure LC
  • the center of the ear canal opening of the ear canal can be used as the position reference point of the ear canal.
  • the midpoint of the upper boundary of the medial side IS can be used as the position reference point of the first leakage structure UC, and the point of the lower boundary of the medial side IS near the free end FE (hereinafter referred to as the 1/3 point of the lower boundary of the medial side IS) can be used as the position reference point of the second leakage structure LC.
  • the upper boundary of the medial side IS can refer to the intersection line between the medial side IS and the upper side US
  • the lower boundary of the medial side IS can refer to the intersection line between the medial side IS and the lower side LS.
  • the intersection line of the two side surfaces may refer to the intersection line between the cross-sections of the two side surfaces that are farthest from the center of the sound-emitting part and parallel to the long axis or short axis of the sound-emitting part.
  • this specification will use the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary as the position reference points of the first leakage structure UC and the second leakage structure LC, respectively. It should be noted that the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary are selected only as exemplary reference points to describe the positions of the first leakage structure UC and the second leakage structure LC. In some embodiments, other reference points can also be selected to describe the positions of the first leakage structure UC and the second leakage structure LC.
  • the first leakage structure UC/second leakage structure LC formed when the earphone 10 is in a wearing state is a gap with a gradually changing width.
  • the reference position of the first leakage structure UC/second leakage structure LC can be the position on the upper boundary/lower boundary of the inner side surface IS close to the area with the largest gap width.
  • the midpoint of the upper boundary of the inner side surface IS can be used as the position of the first leakage structure UC
  • the 1/3 point of the lower boundary of the inner side surface IS close to the free end FE can be used as the position of the second leakage structure LC.
  • FIG22 is a schematic diagram of a projection of an open earphone in a wearing state on a sagittal plane according to some embodiments of the present specification; in some embodiments, as shown in FIG22 , the projection of the upper boundary of the medial side IS on the sagittal plane may be the same as the projection of the upper side US on the sagittal plane.
  • the projection of the lower boundary of the medial surface IS on the sagittal plane coincides, and the projection of the lower boundary of the medial surface IS on the sagittal plane can coincide with the projection of the lower surface LS on the sagittal plane.
  • the projection of the position reference point of the first leakage structure UC i.e.
  • the projection point A of the midpoint of the upper boundary of the medial surface IS on the sagittal plane can be the projection point of the intersection of the upper boundary of the medial surface IS and the short axis center plane of the magnetic circuit assembly of the transducer on the sagittal plane.
  • the short axis center plane of the magnetic circuit assembly refers to a plane parallel to the short axis direction of the sound-emitting part 11 and passing through the geometric center of the magnetic circuit assembly.
  • the projection point C of the 1/3 point of the lower boundary of the medial surface IS on the sagittal plane can be the projection point of the trisection point of the lower boundary of the medial surface IS close to the free end FE on the sagittal plane.
  • the projection of the sound-emitting part 11 of the earphone 10 on the sagittal plane can at least partially cover the ear canal of the user, but the ear canal can be connected to the outside world through the leakage structure to liberate the user's ears.
  • the sound of the sound outlet 112 can be leaked through the leakage structure.
  • the sound outlet 112 should be set away from the leakage structure.
  • the sound-emitting part 11 is at least partially inserted into the concha cavity, in order to make the sound outlet 112 away from the second leakage structure, the sound of the sound outlet 112 is prevented from leaking too much without being received by the ear canal, and the cavity structure has a suitable volume V, so that the sound receiving effect of the ear canal is better.
  • the distance between the first pressure relief hole 1131 and the second leakage structure is related to the size of the sound-emitting part 11. When the distance between the first pressure relief hole 1131 and the second leakage structure is larger, it means that the size of the sound-emitting part 11 is larger, that is, the volume of the cavity structure is larger, which is conducive to improving the listening effect.
  • the distance between the sound outlet 112 and the second leakage structure can be increased, and the distance between the first pressure relief hole 1131 and the second leakage structure can be increased.
  • the size of the sound-emitting part 11 cannot be too large, otherwise it will affect the stability and comfort of the earphone 10 when worn.
  • the distance between the projection point O1 of the center of the first pressure relief hole 1131 on the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the medial side surface IS on the sagittal plane ranges from 13.76mm to 20.64mm
  • the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface IS on the sagittal plane ranges from 3.5mm to 5.6mm.
  • the cavity structure is further enlarged to improve the convergence of the sound output by the sound outlet 112, and the distance between the sound outlet 112 and the second leakage structure is also increased accordingly.
  • the distance between the projection point O1 of the center of the first pressure relief hole 1131 on the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the inner side surface IS on the sagittal plane is 15.76mm to 20.64mm, and the distance between the projection point O' of the center of the sound outlet hole 112 on the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface IS on the sagittal plane is 3.9mm to 5.6mm.
  • the cavity structure in order to improve the comfort of the user wearing the earphone, avoid the size of the sound-emitting part 11 being too large, that is, avoid the volume of the cavity structure being larger, the cavity structure can be reduced, and the distance between the sound outlet hole 112 and the second leakage structure is also reduced.
  • the distance between the projection point O1 of the center of the first pressure relief hole 1131 on the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the inner side surface IS on the sagittal plane is in the range of 16.16mm to 18.24mm, and the distance between the projection point O' of the center O of the sound outlet hole 112 on the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface IS on the sagittal plane is in the range of 4.3mm to 4.8mm.
  • the sound-emitting part 11 is at least partially inserted into the concha cavity, in order to make the sound outlet 112 away from the upper leakage structure, to avoid excessive leakage of the sound of the sound outlet 112 before it is received by the ear canal, and to make the cavity structure have a suitable volume V, so that the sound receiving effect of the ear canal is better.
  • the distance between the second pressure relief hole 1132 and the upper leakage structure is related to the size of the sound-emitting part 11.
  • the distance between the second pressure relief hole 1132 and the upper leakage structure is larger, it means that the size of the sound-emitting part 11 is larger, that is, the volume of the cavity structure is larger, which is conducive to improving the listening effect. Therefore, in order to improve the listening effect at the ear canal, the distance between the sound outlet 112 and the upper leakage structure can be increased, and the distance between the second pressure relief hole 1132 and the upper leakage structure can be increased.
  • the size of the sound-emitting part 11 cannot be too large, otherwise it will affect the stability and comfort of the earphone 10 when worn.
  • the distance between the projection point O2 of the center of the second pressure relief hole 1132 on the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial side surface IS on the sagittal plane is in the range of 14.4 mm to 21.6 mm, and the distance between the projection point O' of the center of the sound outlet hole 112 on the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial side surface IS on the sagittal plane is in the range of 10.0 mm to 15.2 mm.
  • the cavity structure is further enlarged to enhance the convergence of the sound output by the sound outlet hole 112, and the distance between the sound outlet hole 112 and the upper leakage structure is also increased accordingly.
  • the distance between the projection point O2 of the center of the second pressure relief hole 1132 on the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS on the sagittal plane is 17.4 mm to 21.6 mm, and the distance between the projection point O' of the center of the sound outlet hole 112 on the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS on the sagittal plane is 13.0 mm to 15.2 mm.
  • the size of the sound-emitting part 11 is prevented from being too large, that is, the larger the volume of the cavity structure, the smaller the cavity structure can be, and the distance between the sound outlet hole 112 and the second leakage structure is also reduced.
  • the distance between the projection point O2 of the center of the second pressure relief hole 1132 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS in the sagittal plane is 17.4 mm to 18.2 mm
  • the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS in the sagittal plane is 13.0 mm to 14.2 mm.
  • the second pressure relief hole 1132 is closer to the sound outlet hole 112 in the Y direction relative to the first pressure relief hole 1131.
  • the second pressure relief hole 1132 on the lower side surface LS should be disposed as far away from the sound outlet hole 112 as possible, so that the effect of the sound emitted by the second pressure relief hole 1132 canceling out the sound emitted by the sound outlet hole 112 at the listening position (i.e., the ear canal) is weakened, thereby increasing the volume at the listening position.
  • the second pressure relief hole 1132 can be made to be far away from the sound outlet hole 112 in the X direction, so that the distance between the sound outlet hole 112 and the second pressure relief hole 1132 is as large as possible.
  • the second pressure relief hole 1132 is disposed as far away from the sound outlet hole 112 as possible.
  • the pressure hole 1132 may be disposed farther from the rear side surface RS (or the free end FE) than the first pressure relief hole 1131 .
  • the second pressure relief hole 1132 can be set away from the second leakage structure. Therefore, in order to improve the listening effect at the ear canal, the distance between the sound outlet 112 and the second leakage structure can be increased, and the distance between the second pressure relief hole 1132 and the second leakage structure can be increased.
  • the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side IS on the sagittal plane ranges from 3.5mm to 5.6mm
  • the distance between the projection point O2 of the center of the second pressure relief hole 1132 on the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the medial side IS on the sagittal plane ranges from 8.16mm to 12.24mm.
  • the distance between the sound outlet hole 112 and the second leakage structure can be increased, and the distance between the second pressure relief hole 1132 and the second leakage structure can be increased at the same time.
  • the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface IS in the sagittal plane ranges from 4.3mm to 5.6mm, and the distance between the projection point O2 of the center of the second pressure relief hole 1132 in the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the inner side surface IS in the sagittal plane ranges from 9.16mm to 12.24mm.
  • the distance between the sound outlet hole 112 and the second leakage structure can be increased.
  • the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface IS in the sagittal plane is in the range of 4.8mm to 5.6mm, and the distance between the projection point O2 of the center of the second pressure relief hole 1132 in the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the inner side surface IS in the sagittal plane is in the range of 9.66mm to 12.24mm.
  • the second pressure relief hole 1132 can be arranged away from the leakage structure, thereby preventing the sound output by the second pressure relief hole 1132 from entering the cavity structure through the leakage structure and canceling out the sound output by the sound outlet hole 112, resulting in a weakened listening effect.
  • At least two pressure relief holes 113 may be provided on other sides of the shell 111 (e.g., the outer side OS, the upper side US, or the lower side LS, etc.).
  • the provision of at least two pressure relief holes 113 may destroy the standing waves in the rear cavity, so that the resonant frequency of the sound exported from the pressure relief holes 113 to the outside of the shell 111 is as high as possible, so that the frequency response of the rear cavity has a wider flat area (e.g., the area before the resonance peak), and obtains a better sound leakage reduction effect in the mid-high frequency range (e.g., 2kHz to 6kHz).
  • the pressure relief hole 113 may include a first pressure relief hole 1131 and a second pressure relief hole 1132.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 may be provided on the same side of the shell 111, for example, the first pressure relief hole 1131 and the second pressure relief hole 113 may be provided on the outer side OS, the upper side US, or the lower side LS at the same time.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be respectively arranged near the first leakage structure UC and the second leakage structure LC.
  • the first pressure relief hole 1131 can be arranged on the upper side US, and the second pressure relief hole 1132 can be arranged on the outer side OS in an area close to the lower side LS, or the second pressure relief hole 1132 can be arranged on the lower side LS, and the first pressure relief hole 1131 can be arranged on the outer side OS in an area close to the upper side US.
  • the two pressure relief holes 113 can be located on opposite sides of the housing 111, for example, the first pressure relief hole 1131 can be arranged on the upper side US, and the second pressure relief hole 1132 can be arranged on the lower side LS.
  • this specification will take the example of the first pressure relief hole 1131 being arranged on the upper side US and the second pressure relief hole 1132 being arranged on the lower side LS as an example for exemplary description. It can be understood that the relevant size parameters of the separately arranged first pressure relief hole 1131 or the second pressure relief hole 1132 involved in the aforementioned embodiments are also applicable to the first pressure relief hole 1131 and the second pressure relief hole 1132 arranged at the same time.
  • a first pressure relief hole 1131 is provided on the upper side US of the sound-emitting part 11, and a second pressure relief hole 1132 is provided on the lower side LS.
  • the short axis size of the sound-emitting part 11 is determined, that is, the short axis size of the sound-emitting part 11 is in the range of 10mm-15mm, in this configuration, in order to enhance the sound intensity (volume) of the sound-emitting hole 112 in the ear canal (that is, the listening position), the sound-emitting hole 112 can be simultaneously arranged away from the first pressure relief hole 1131 and the second pressure relief hole 1132. On this basis, the distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 should be set farther.
  • the short axis size of the sound-emitting part 11 is in the range of 10mm-15mm, and the distance between the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O2 of the second pressure relief hole 1132 on the sagittal plane is in the range of 8.51mm to 15.81mm.
  • the short axis size of the sound-emitting part 11 can be reduced to reduce the mass of the sound-emitting part 11. On this basis, the maximum distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 is reduced accordingly, and the distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 is limited to a larger range as much as possible.
  • the short axis size range of the sound-emitting part 11 is 11mm-13.5mm, and the distance between the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O2 of the second pressure relief hole 1132 on the sagittal plane ranges from 10.51mm to 14.81mm.
  • the short axis size range of the sound-emitting part 11 is 12mm-13mm, and the distance between the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane and the projection point of the center O2 of the second pressure relief hole 1132 on the sagittal plane ranges from 12.51mm to 13.81mm.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 should be as far away from the sound outlet hole 112 as possible.
  • the center of the sound outlet hole 112 can be located on or near the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the center O1 of the sound outlet hole 112 can be 0 mm to 2 mm away from the median perpendicular plane of the line connecting the center O1 of the first pressure relief hole 1131 and the center O2 of the second pressure relief hole 1132.
  • the sound outlet hole 112 can be arranged away from the first pressure relief hole 1131 and the second pressure relief hole 1132 at the same time, so as to prevent the sounds output by the first pressure relief hole 1131 and the second pressure relief hole 1132 from affecting the volume of the sound output by the sound outlet hole 112 at the listening position.
  • the first pressure relief hole 1131 is provided on the upper side US. Due to the obstruction of the ear structure, the space for providing the first pressure relief hole 1131 on the upper side US of the sound-emitting part 11 is limited, so the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane can basically coincide with the projection point A of the midpoint of the upper boundary of the medial side IS on the sagittal plane. In some embodiments, the distance range of the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane from the projection point A of the midpoint of the upper boundary of the medial side IS on the sagittal plane is not greater than 2 mm.
  • the distance range of the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane from the projection point A of the midpoint of the upper boundary of the medial side IS on the sagittal plane is not greater than 1 mm. In some embodiments, the distance range of the projection point of the center O1 of the first pressure relief hole 1131 on the sagittal plane from the projection point A of the midpoint of the upper boundary of the medial side IS on the sagittal plane is not greater than 0.5 mm.
  • the second pressure relief hole 1132 can be arranged away from the second leakage structure to prevent the sound output by the second pressure relief hole 1132 from entering the cavity structure through the second leakage structure and canceling out the sound output by the sound outlet 112, resulting in a weakened listening effect. Therefore, in order to improve the listening effect at the ear canal, the distance between the second pressure relief hole 1132 and the second leakage structure can be increased.
  • the distance range between the projection point O1 of the center of the first pressure relief hole 1131 on the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS on the sagittal plane is no more than 2 mm
  • the distance range between the projection point O2 of the center of the second pressure relief hole 1132 on the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the medial surface IS on the sagittal plane is 8.16 mm to 12.24 mm.
  • the distance between the second pressure relief hole 1132 and the second leakage structure can be increased, and the distance between the projection point O1 of the center of the first pressure relief hole 1131 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the inner side surface IS in the sagittal plane is not greater than 2 mm, and the distance between the projection point O2 of the center of the second pressure relief hole 1132 in the sagittal plane and the projection point B of the 1/3 point of the lower boundary of the inner side surface IS in the sagittal plane is in the range of 9.16 mm to 12.24 mm.
  • the distance range from the projection point O 1 of the center of the first pressure relief hole 1131 in the sagittal plane to the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane is no more than 2 mm
  • the distance range from the projection point O 2 of the center of the second pressure relief hole 1132 in the sagittal plane to the projection point B of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane is 9.66 mm to 12.24 mm.
  • the second pressure relief hole 1132 can be arranged away from the leakage structure, thereby preventing the sound output by the second pressure relief hole 1132 from entering the cavity structure through the leakage structure and canceling out the sound output by the sound outlet hole 112, resulting in a weakened listening effect.
  • the relationship between the distance O1 between the center of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 (also referred to as the first distance) and the distance O2 between the center of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 (also referred to as the second distance) can be determined so that the center O of the sound outlet hole 112 is approximately on the perpendicular midplane of the line O1O2 .
  • the difference between the first distance and the second distance is less than 10%.
  • the difference between the first distance and the second distance is less than 8%.
  • the difference between the first distance and the second distance is less than 5%.
  • the difference between the first distance and the second distance is less than 2%.
  • the distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 and the sound outlet hole 112 cannot be too close.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 4mm to 15.11mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 4mm to 15mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 5.12mm to 15.11mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be not less than 5mm to 14mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be not less than 6mm to 13mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be not less than 7mm to 12mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be not less than 8mm to 10mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 9.55mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 4mm to 16.1mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be not less than 4mm to 15mm.
  • the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be not less than 5mm to 14mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 5.12 mm to 16.1 mm. The distance between the center O 2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be no less than 6 mm to 13 mm. In some embodiments, the distance between the center O 2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be no less than 7 mm to 12 mm.
  • the distance between the center O 2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be no less than 8 mm to 10 mm. In some embodiments, the distance between the center O 2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 9.15 mm.
  • the angle between the line O 1 O between the center O 1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 and the line O 2 O between the center O 2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 can be reduced.
  • the angle between the line O 1 O and the line O 2 O is in the range of 46.40° to 114.04°. In some embodiments, the angle between the line O 1 O and the line O 2 O is in the range of 46.40° to 90.40°.
  • the angle between the line O 1 O and the line O 2 O is in the range of 46.40° to 70.04°. In some embodiments, the angle between the line O 1 O and the line O 2 O is in the range of 46.40° to 60.04°. In some embodiments, the angle between the line O 1 O 2 and the line O 2 O between the center O 1 of the first pressure relief hole 1131 and the center O 2 of the second pressure relief hole 1132 is 19.72° to 101.16°. In some embodiments, the angle between the line O 1 O 2 and the line O 2 O is 19.71° to 97.75°.
  • the description of the earphone 10 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • a person skilled in the art can make various changes and modifications based on the description of the present application.
  • the pressure relief hole can be any one of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • FIG. 23 is a diagram showing an exemplary internal structure of a sound-producing part according to some embodiments of the present specification.
  • the sound-emitting part 11 may include a housing 111 connected to the ear hook 12 and a transducer 116 disposed in the housing 111.
  • the sound-emitting part 11 may also include a main control circuit board 13 disposed in the housing 111 and a battery (not shown) disposed at an end of the ear hook 12 away from the sound-emitting part 11, and the battery and the transducer 116 are electrically connected to the main control circuit board 13, respectively, so as to allow the battery to power the transducer 116 under the control of the main control circuit board 13.
  • the battery and the transducer 116 may also be disposed in the sound-emitting part 11, and the battery may be closer to the connection end CE and the transducer 116 may be closer to the free end FE.
  • the earphone 10 may include an adjustment mechanism connecting the sound-emitting portion 11 and the ear hook 12. Different users can adjust the relative position of the sound-emitting portion 11 on the ear 100 through the adjustment mechanism when wearing the earphone, so that the sound-emitting portion 11 is located at a suitable position, so that the sound-emitting portion 11 and the concha cavity form a cavity structure. In addition, due to the existence of the adjustment mechanism, the user can also adjust the earphone 10 to a more stable and comfortable position.
  • the concha cavity has a certain volume and depth, after the free end FE extends into the concha cavity, there can be a certain distance between the inner side IS of the sound-emitting portion 11 and the concha cavity.
  • the sound-emitting portion 11 can cooperate with the concha cavity to form a cavity structure connected to the external auditory canal in the worn state, and a sound outlet hole 112 is provided on the sound-emitting portion 11 (for example, the inner side IS), and the sound outlet hole 112 can be at least partially located in the aforementioned cavity structure.
  • the sound waves propagated from the sound outlet hole 112 will be restricted by the aforementioned cavity structure, that is, the aforementioned cavity structure can gather the sound waves so that the sound waves can be better propagated into the external auditory canal, thereby improving the volume and sound quality of the sound heard by the user in the near field, which is conducive to improving the acoustic effect of the earphone 10. Furthermore, since the sound-emitting portion 11 can be configured not to block the external auditory canal in the worn state, the aforementioned cavity structure can be semi-set.
  • a part of the sound waves propagated from the sound outlet 112 can be propagated to the ear canal so that the user can hear the sound, and the other part can be propagated together with the sound reflected from the ear canal through the leakage structure between the sound-emitting part 11 and the ear 100 (for example, the part of the concha cavity not covered by the sound-emitting part 11) to the outside of the earphone 10 and the ear 100, thereby forming a first sound leakage in the far field;
  • the sound waves propagated through the pressure relief holes 113 for example, the first pressure relief hole 1131 and the second pressure relief hole 1132 opened on the sound-emitting part 11 generally form a second sound leakage in the far field, and the intensity of the aforementioned first sound leakage is equivalent to the intensity of the aforementioned second sound leakage, and the phase of the aforementioned first sound leakage and the phase of the aforementioned second sound leakage are (close to) opposite to each other, so that the two can cancel
  • a front cavity 114 may be formed between the transducer 116 and the housing 111 , and a sound outlet hole 112 is disposed on the housing 111 to surround an area forming the front cavity 114 .
  • the front cavity 114 is connected to the outside through the sound outlet hole 112 .
  • the front cavity 114 is disposed between the diaphragm of the transducer 116 and the housing 111. In order to ensure that the diaphragm has sufficient vibration space, the front cavity 114 may have a larger depth dimension (i.e., the distance dimension between the diaphragm of the transducer 116 and the housing 111 facing it).
  • the sound outlet 112 is disposed on the inner side surface IS in the thickness direction Z. At this time, the depth of the front cavity 114 may refer to the dimension of the front cavity 114 in the Z direction.
  • the depth of the front cavity 114 may be 0.55 mm to 1.00 mm. In some embodiments, the depth of the front cavity 114 may be 0.66 mm to 0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.76 mm to 0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.96 mm to 0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.97 mm.
  • the front cavity 114 and the sound outlet 112 form a Helmholtz resonance cavity structure.
  • the resonant frequency should be as high as possible so that the overall frequency response curve of the sound-emitting part has a wide flat area.
  • the resonant frequency f1 of the front cavity 114 may be no less than 3 kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 4 kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 6 kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 7 kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 8 kHz.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Abstract

一种耳机(10),包括发声部(11),包括换能器(116)和容纳换能器(116)的壳体(111),发声部(11)朝向用户耳廓(100)的内侧面(IS)上开设出声孔(112),用于将换能器(116)产生的声音导出壳体(111)后传向用户耳道;以及耳挂(12),在佩戴状态下,将发声部(11)佩戴于耳道附近但不堵塞耳道口的位置;其中,发声部(11)的至少部分插入耳甲腔(102),发声部(11)的后侧面(RS)在矢状面的投影与耳甲腔(102)的边缘在矢状面的投影的距离范围为0mm~7.25mm,出声孔(112)的中心距发声部(11)的后侧面(RS)的距离范围为8.15mm~12.25mm。

Description

一种耳机
交叉引用
本申请要求2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,2022年12月01日提交的申请号为202223239628.6的中国申请的优先权,2022年12月30日提交的申请号为PCT/CN2022/144339的国际申请的优先权,2023年03月02日提交的申请号为PCT/CN2023/079412的国际申请的优先权,2023年03月02日提交的申请号为PCT/CN2023/079410的国际申请的优先权,2023年03月02日提交的申请号为PCT/CN2023/079404的国际申请的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,具体涉及一种耳机。
背景技术
随着声学输出技术的发展,声学装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。耳机是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,耳机具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。耳机的输出性能对于用户的使用舒适度具有很大的影响。
因此,有必要提出一种耳机,以提高耳机的输出性能。
发明内容
本申请实施例提供了一种耳机,包括:发声部,包括换能器和容纳所述换能器的壳体,所述发声部朝向用户耳廓的内侧面上开设出声孔,用于将所述换能器产生的声音导出所述壳体后传向用户耳道;以及耳挂,在佩戴状态下,将所述发声部佩戴于所述耳道附近但不堵塞耳道口的位置;其中,所述发声部的至少部分插入耳甲腔,所述发声部的后侧面在所述矢状面的投影与所述耳甲腔的边缘在所述矢状面的投影的距离范围为0~7.25mm,所述出声孔的中心距所述发声部的后侧面的距离范围为8.15mm~12.25mm。
在一些实施例中,所述发声部除所述内侧面外的其他侧面上开设有一个或多个泄压孔,所述一个或多个泄压孔的中心距所述发声部的后侧面的距离范围为10.44mm~15.68mm或13.51mm~20.27mm。
在一些实施例中,所述发声部在矢状面上的投影与所述耳甲腔在所述矢状面上的投影具有重叠部分,所述重叠部分的面积与所述耳甲腔在所述矢状面上的投影面积的比值不小于44.01%。
在一些实施例中,所述发声部在所述矢状面的投影的面积范围为202mm2~560mm2
在一些实施例中,所述出声孔的中心距所述发声部的下侧面的距离范围为4.05mm~6.05mm;且所述发声部的短轴尺寸范围为10mm~15mm。
在一些实施例中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔,所述第一泄压孔开设在所述发声部的上侧面、外侧面或下侧面上,所述第一泄压孔的中心距所述后侧面的距离范围为10.44mm~15.68mm。
在一些实施例中,所述出声孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为2.2mm~3.8mm;且所述第一泄压孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为12mm~18mm。
在一些实施例中,所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为3.5mm~5.6mm;且
所述第一泄压孔的中心在所述矢状面的投影距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为13.76mm~20.64mm。
在一些实施例中,所述发声部的厚度范围为6mm~12mm;且所述第一泄压孔的中心距所述发声部朝向耳廓的所述内侧面的距离范围为4.24mm~6.38mm。
在一些实施例中,所述一个或多个泄压孔中的所述至少一个包括第二泄压孔,所述第二泄压孔开设在所述发声部的上侧面、外侧面或下侧面上,所述第二泄压孔的中心距所述后侧面的距离范围为13.51mm~20.27mm。
在一些实施例中,所述出声孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为2.2mm~3.8mm;且所述第二泄压孔的所述中心在所述矢状面的投影点距 所述耳道口的中心在所述矢状面的投影点的距离范围为6.88mm~10.32mm。
在一些实施例中,所述出声孔的所述中心在矢状面的投影点距所述内侧面的上边界的中点在所述矢状面的投影点的距离范围为10.0mm~15.2mm;且
所述第二泄压孔的所述中心在矢状面的投影点距所述内侧面的上边界的中点在所述矢状面的投影点的距离范围为14.4mm~21.6mm。
在一些实施例中,所述发声部的厚度范围为6mm~12mm;且所述第二泄压孔的所述中心距所述发声部朝向所述耳廓的所述内侧面的距离范围为4.24mm~6.38mm。
在一些实施例中,所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为3.5mm~5.6mm;且所述第二泄压孔的中心在所述矢状面的投影距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为8.16mm~12.24mm。
在一些实施例中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔和第二泄压孔,所述第一泄压孔和所述第二泄压孔分别开设于发声部的相对两侧。
在一些实施例中,所述发声部的短轴尺寸范围为10mm~15mm;且所述第一泄压孔的中心在所述矢状面的投影点距所述第二泄压孔的中心在所述矢状面的投影点的距离范围为8.51mm~15.81mm。
在一些实施例中,所述出声孔的中心距所述第一泄压孔的所述中心与所述第二泄压孔的所述中心的连线的中垂面的距离为0mm~2mm。
在一些实施例中,所述第一泄压孔的中心在所述矢状面的投影距所述内侧面的上边界在所述矢状面的投影的中点的距离范围不大于2mm;且所述第二泄压孔的所述中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为8.16mm~12.24mm。
本申请实施例还提供了一种耳机,包括:发声部,包括换能器和容纳所述换能器的壳体,所述发声部朝向用户耳廓的内侧面上开设出声孔,用于将所述换能器产生的声音导出所述壳体后传向用户耳道,所述发声部除所述内侧面外的其它侧面上开设有一个或多个泄压孔;以及耳挂,在佩戴状态下,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;其中,所述发声部的至少部分位于对耳轮处,所述发声部的后侧面在所述矢状面的投影与所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm,所述出声孔的中心距所述发声部的后侧面的距离范围为9.5mm~15.0mm,所述一个或多个泄压孔中的至少一个的中心距所述后侧面的距离范围为8.60mm~12.92mm。
在一些实施例中,所述出声孔的中心距所述耳挂的上顶点的距离范围为17.5mm~27.0mm;且所述发声部在矢状面上的投影与所述耳甲腔在所述矢状面上的投影具有重叠部分,所述重叠部分的面积与所述耳甲腔在所述矢状面上的投影面积的比值不小于11.82%。
在一些实施例中,所述发声部的短轴尺寸范围为11mm~18mm;且所述出声孔的中心距所述发声部的下侧面的距离范围为2.3mm~3.6mm。
在一些实施例中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔,所述第一泄压孔开设在所述发声部的上侧面、外侧面或下侧面上。
在一些实施例中,所述发声部的厚度为6mm~12mm;且所述第一泄压孔的中心距所述内侧面的距离范围为4.43mm~7.96mm。
在一些实施例中,所述一个或多个泄压孔中的所述至少一个还包括第二泄压孔,所述第一泄压孔和所述第二泄压孔开设于发声部的相对两侧。
在一些实施例中,所述第二泄压孔的中心距所述内侧面的距离范围为4.43mm~7.96mm;且所述出声孔的中心距所述第一泄压孔的中心与所述第二泄压孔的中心的连线的中垂线的距离为0mm~2mm。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的示例性耳部的示意图;
图2是根据本说明书一些实施例所示的耳机的示例性结构图;
图3是根据本说明书一些实施例所示的两个点声源与听音位置的示意图;
图4是根据本说明书一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图;
图5是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图;
图6是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数对比图;
图7是根据本说明书一些实施例所示的耳机的示例性佩戴示意图;
图8是图7所示的耳机朝向耳部一侧的结构示意图;
图9是图8所示的壳体的结构示意图;
图10是根据本说明书一些实施例所示的第一投影沿长轴方向的尺寸与沿短轴方向的尺寸在不同比值下所对应的示例性频响曲线示意图;
图11是根据本说明书一些实施例所示的发声部在其厚度方向具有不同尺寸时的频响曲线;
图12是根据本说明书一些实施例所示的第一投影与耳甲腔在矢状面上的投影在不同重叠比例时所对应的示例性频响曲线示意图;
图13是根据本说明书一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图;
图14A是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图;
图14B是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图;
图15A是根据本说明书一些实施例所示的具有两个水平开口的腔体结构的示意图;
图15B是根据本说明书一些实施例所示的具有两个垂直开口的腔体结构的示意图;
图16是根据本说明书一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图;
图17是根据本申请另一些实施例所示的耳机的示例性佩戴示意图;
图18是图17所示的耳机朝向耳部一侧的结构示意图;
图19是根据本说明书一些实施例所示的耳机的壳体的结构示意图;
图20是根据本说明书一些实施例所示的发声部自由端距耳甲腔边缘的不同距离时所对应的示例性频响曲线示意图;
图21是根据本说明书一些实施例所示的发声部与耳甲腔在不同重叠比例所对应的示例性频响曲线示意图;
图22是根据本说明书一些实施例所示的开放式耳机处于佩戴状态时在矢状面的投影示意图;
图23是根据本说明书一些实施例所示的发声部的示例性内部结构图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解 上述术语在本说明书中的具体含义。
图1是根据本申请的一些实施例所示的示例性耳部100的示意图。
如图1所示,耳部100(也可以称为耳廓100)可以包括耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108、耳屏109以及耳轮脚1071。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于耳道101中。在一些实施例中,可以借助耳部100中除耳道101外的其他部位,实现声学装置(例如,耳机)的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的耳道101。当用户佩戴声学装置(例如,耳机)时,声学装置不会堵塞用户耳道101,用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部100各个不同位置的佩戴。例如,声学装置为耳机时,耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓100的形状相适配,以将发声部的整体或者部分结构置于耳屏109的前侧(例如,图1中虚线围成的区域M3)。又例如,在用户佩戴耳机时,发声部的整体或者部分结构可以与耳道101的上部(例如,耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳轮脚1071等一个或多个部位所在的位置)接触。再例如,在用户佩戴耳机时,发声部的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部100存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部100模型作为参考,进一步描述不同实施例中的声学装置在该耳部100模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得一含头部及其(左、右)耳部100的模拟器,例如GRAS45BCKEMAR,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。仅仅作为示例,作为参考的耳部100可以具有如下相关特征:耳廓100在矢状面上的投影在垂直轴方向的尺寸可以在49.5mm-74.3mm的范围内,耳廓100在矢状面上的投影在矢状轴方向的尺寸可以在36.6mm-55mm的范围内。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部100。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以具有一定区别,为了满足不同用户的需求,可以对声学装置进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳廓100。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的“耳廓100的前侧”是一个相对于“耳廓100的后侧”的概念,前者指耳廓100背离头部的一侧,后者指耳廓100朝向头部的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳廓100,可以得到图1所示的耳廓100的前侧轮廓示意图。
图2是根据本说明书一些实施例所示的耳机的示例性佩戴示意图。
在一些实施例中,耳机10可以包括但不限于气传导耳机及骨气导耳机等。在一些实施例中,耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合。
如图2所示,耳机10可以包括发声部11和耳挂12。在一些实施例中,耳机10可以通过耳挂12将发声部11佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干)。在一些实施例 中,耳机10可以通过耳挂12将发声部11固定于耳道附近但不堵塞耳道的位置。
在一些实施例中,耳挂12的一端可以与发声部11连接,其另一端沿用户耳廓100与头部的交界处延伸。在一些实施例中,耳挂12可以为与用户耳廓100相适配的弧状结构,以使耳挂12可以悬挂于用户耳廓100上。例如,耳挂12可以具有与用户头部与耳廓100交界处相适配的弧状结构,以使耳挂12可以挂设在用户耳廓100和头部之间。在一些实施例中,耳挂12也可以为与用户耳廓100相适配的夹持结构,以使耳挂12可以夹持于用户耳廓100处。在一些实施例中,耳挂12可以包括但不限于耳挂、弹性带等,使得耳机10可以更好地固定在用户身上,防止用户在使用时发生掉落。在一些实施例中,耳机10可以不包括耳挂12,发声部11可以采用悬挂或夹持的方式固定在用户的耳廓100的附近。
示例性地,耳挂12包括依次连接的钩状部(如图7所示的第一部分121)和连接部(如图7所示的第二部分122)。其中,连接部连接钩状部与发声部11,以使得耳机10处于非佩戴状态(也即是自然状态)时在三维空间中呈弯曲状。换言之,在三维空间中,钩状部、连接部、发声部11不共面。如此设置,以在耳机10处于佩戴状态时,钩状部可以挂设在用户的耳廓100后侧与头部之间,发声部11与用户的耳廓100前侧(例如,图1中的区域M3)或耳廓100(例如,图1中的区域M1、区域M2)接触,发声部11和钩状部可以配合以夹持耳廓100。具体地,连接部可以从头部向头部的外侧延伸,进而与钩状部配合为发声部11提供对耳廓100前侧或耳廓100的压紧力。其中,发声部11在压紧力的作用下具体可以抵压于耳廓100前侧或耳甲腔102、耳甲艇103、三角窝104、对耳轮105等部位所在的区域,以使得耳机10处于佩戴状态时不遮挡耳廓100的耳道101。
在一些实施例中,为了改善耳机10在佩戴状态下的稳定性,耳机10可以采用以下几种方式中的任何一种或其组合。其一,耳挂12的至少部分设置成与耳廓100的后侧和头部中的至少一者贴合的仿形结构,以增加耳挂12与耳廓100和/或头部的接触面积,从而增加耳机10从耳廓100上脱落的阻力。其二,耳挂12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加耳挂12对耳廓100和/或头部的正压力,从而增加耳机10从耳廓100上脱落的阻力。其三,耳挂12至少部分设置成在佩戴状态下抵靠在头部上,使之形成压持耳廓100的反作用力,以使得发声部11压持在耳廓100的前侧,从而增加耳机10从耳廓100上脱落的阻力。其四,发声部11和耳挂12设置成在佩戴状态下从耳廓100的前后两侧夹持对耳轮105所在区域、耳甲腔所在区域等,从而增加耳机10从耳廓100上脱落的阻力。其五,发声部11或者与之连接的辅助结构设置成至少部分伸入耳甲腔102、耳甲艇103、三角窝104及耳舟106等腔体内,从而增加耳机10从耳廓100上脱落的阻力。
发声部11可以产生声音输入用户耳道。在一些实施例中,发声部11可以为例如,圆环形、椭圆形、跑道形、多边形、U型、V型、半圆形等规则或不规则形状,以便发声部11可以直接挂靠在用户的耳廓100处。在一些实施例中,发声部11可以具有彼此正交的长轴方向X、短轴方向Y和厚度方向Z。其中,长轴方向X可以定义为发声部11的二维投影面(例如,发声部11在其内侧面所在平面上的投影,或在矢状面上的投影)的形状中具有较大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即为长方形或近似长方形的长度方向)。为便于说明,本说明书将以发声部在矢状面上的投影进行说明。短轴方向Y可以定义为发声部11在矢状面上投影的形状中垂直于长轴方向X的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即为长方形或近似长方形的宽度方向)。厚度方向Z可以定义为垂直于矢状面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。
在一些实施例中,发声部11可以包括换能器(例如图23所示的换能器116))和用于容纳换能器的壳体111。壳体111(也可以说是发声部11)可以与耳挂12连接。换能器用于将激励信号(例如电信号)转换为相应的机械振动从而产生声音。在一些实施例中,壳体111朝向耳廓100的内侧面上开设有出声孔112,出声孔112用于将换能器产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。在一些实施例中,换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔(例如图23所示的前腔114)和后腔,出声孔112与前腔声学耦合,并将前腔产生的声音导出壳体111后传向耳道。经由出声孔112导出的声音,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳廓100之间的泄漏结构(例如耳甲腔未被发声部11覆盖的一部分)传播至耳机10及耳廓100的外部,从而在远场形成第一漏音。在一些实施例中,壳体111的其他侧面(例如,远离或背离用户耳道的侧面)上开设有一个或多个泄压孔113(例如第一泄压孔1131)。泄压孔113与后腔声学耦合,并将后腔产生的声音导出壳体111后向外界传递。泄压孔113相较于出声孔112更远离耳道,泄压孔113传播出去的声音会在远场形 成第二漏音,前述第一漏音的强度和前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场反相相消,有利于降低耳机10在远场的漏音。更多关于发声部11的描述参见本说明书其他地方,例如图7、图17等及其描述。
在一些实施例中,当用户佩戴耳机10时,发声部11可以固定于用户的耳道101附近但不堵塞耳道的位置。在一些实施例中,在佩戴状态下,耳机10在矢状面上的投影可以不覆盖用户的耳道。例如,发声部11在矢状面上的投影可以落在头部的左右两侧且在人体矢状轴上位于耳屏前侧的位置上(如,图2中实线框A所示的位置)。这时,发声部11位于用户的耳屏前侧,发声部11的长轴可以处于竖直或近似竖直状态,短轴方向Y在矢状面上的投影与矢状轴的方向一致,长轴方向X在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。又例如,发声部11在矢状面上投影可以落在对耳轮105上(如,图2中的虚线框C所示的位置)。这时的发声部11至少部分位于对耳轮105处,发声部11的长轴处于水平或近似水平状态,发声部11的长轴方向X在矢状面上的投影与矢状轴的方向一致,短轴方向Y在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。如此,既可以避免发声部11遮挡耳道,进而解放用户的双耳;还可以增加发声部11与耳廓100之间的接触面积,进而改善耳机10的佩戴舒适性。
在一些实施例中,在佩戴状态下,耳机10在矢状面上的投影也可以覆盖或至少部分覆盖用户的耳道,例如,发声部11在矢状面上的投影可以落在耳甲腔102内(如,图2中虚线框B所示的位置),并与耳轮脚1071和/或耳轮107接触。这时,发声部11至少部分位于耳甲腔102内,发声部11处于倾斜状态,发声部11的短轴方向Y在矢状面上的投影可与矢状轴的方向具有一定夹角,即短轴方向Y也相应倾斜设置,长轴方向X在矢状面上的投影可以与矢状轴的方向具有一定夹角,即长轴方向X也倾斜设置,厚度方向Z垂直于矢状面。此时,由于耳甲腔102具有一定的容积及深度,使得耳机10的内侧面与耳甲腔之间具有一定的间距,耳道可以通过内侧面与耳甲腔之间的泄漏结构与外界连通,进而解放用户的双耳。同时,发声部11与耳甲腔可以配合形成与耳道连通的辅助腔体(即后文提及的腔体结构)。在一些实施例中,出声孔112可以至少部分位于前述辅助腔体中,出声孔112导出的声音会受到前述辅助腔体的限制,即前述辅助腔体能够聚拢声音,使得声音能够更多地传播至耳道内,从而提高用户在近场听到的声音的音量和质量,从而改善耳机10的声学效果。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,耳机10还可以包括电池组件、蓝牙组件等或其组合。电池组件可用于给耳机10供电。蓝牙组件可以用于将耳机10无线连接至其他设备(例如,手机、电脑等)。这些变化和修改仍处于本申请的保护范围之内。
图3是根据本说明书一些实施例所示的两个点声源与听音位置的示意图。在一些实施例中,结合图3,经出声孔112可以向耳机10外部传输声音,其可以视作单极子声源(或点声源)A1,产生第一声音;经泄压孔113可以向耳机10外部传输声音,其可以视作单极子声源(或点声源)A2,产生第二声音,第二声音与第一声音可以相位相反或近似相反,使之能够在远场相消,也即是形成“声偶极子”,以降漏音。在一些实施例中,在佩戴状态下,两个单极子声源的连线可以指向耳道(记作“听音位置”),以便于用户听到足够大的声音。其中,听音位置处的声压大小(记作Pear)可以用来表征用户听到的声音强弱(即,近场听音声压)。进一步地,可以统计以用户听音位置为中心的球面上(或者以偶极子声源(如图3所示的A1和A2)中心为圆心、半径为r的球面上)的声压大小(记作Pfar),可以用来表征耳机10向远场辐射的漏音强弱(即,远场漏音声压)。其中,可以采用多种统计方式获得Pfar,例如取球面各点处声压的平均值,再例如,取球面各点声压分布进行面积分等。
需要知道的是,本申请中测量漏音的方法仅作原理和效果的示例性说明,并不作限制,漏音的测量和计算方式也可以根据实际情况进行合理调整。例如,以偶极子声源中心为圆心,在远场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,听音的测量方式可以为选取点声源附近的一个位置点作为听音位置,以该听音位置测量得到的声压幅值作为听音的值。在一些实施例中,听音位置可以在两个点声源的连线上,也可以不在两个点声源的连线上。听音的测量和计算方式也可以根据实际情况进行合理调整,例如,取近场位置的其他点或一个以上的点的声压幅值进行平均。又例如,以某个点声源为圆心,在近场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均值的计算。在一些实施例中,近场听音位置与点声源之间的距离远小于点声源与远场漏音测量球面的距离。
显然,耳机10传递到用户耳部100的声压Pear应该足够大,以增加听音效果;远场的声 压Pfar应该足够小,以增加降漏音效果。因此,可以取漏音指数α作为评价耳机10降漏音能力的指标:
通过公式(1)可知,漏音指数越小,耳机的降漏音能力越强,在听音位置处近场听音音量相同的情况下,远场的漏音越小。
图4是根据本说明书一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图。图4中的双点声源(也可称为偶极子声源)可以为典型双点声源,即间距固定,两点声源幅值相同,两点声源相位相反。应当理解的是,选用典型双点声源只作原理和效果说明,可以根据实际需要调整各点声源参数,使其与典型双点声源具有一定差异。如图4所示,在间距固定的情况下,双点声源产生的漏音随频率的增加而增加,降漏音能力随频率的增加而减弱。当频率大于某一频率值(例如,如图4所示8000Hz左右)时其产生的漏音会大于单点声源,此频率(例如,8000Hz)即为双点声源能够降漏音的上限频率。
在一些实施例中,为了提高耳机10的声学输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量,可以在出声孔112和泄压孔113之间设置挡板。
图5是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图。如图5所示,当点声源A1和点声源A2之间设有挡板时,在近场,点声源A2的声波需要绕过挡板才能与点声源A1的声波在听音位置处产生干涉,相当于增加了点声源A2到听音位置的声程。因此,假设点声源A1和点声源A2具有相同的幅值,则相比于没有设置挡板的情况,点声源A1和点声源A2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A1和点声源A2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A1和点声源A2的其中一个声源周围设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
图6是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数对比图。双点声源之间增加挡板以后,在近场相当于增加了两个点声源之间的距离,在近场听音位置的音量相当于由一个距离较大的双点声源产生,近场的听音音量相对于无挡板的情况明显增加;在远场,两个点声源的声场受挡板的影响很小,产生的漏音相当于是一个距离较小的双点声源产生。因此,如图6所示,增加挡板以后,漏音指数相比于不加挡板时小很多,即在相同听音音量下,远场的漏音比在无挡板的情况下小,降漏音能力明显增强。
以下将结合图7-图12对耳机在佩戴状态下发声部的至少部分覆盖对耳轮的情况进行具体说明。
图7是根据本说明书一些实施例所示的耳机的示例性佩戴示意图。图8是图7所示的耳机朝向耳部100一侧的结构示意图。
如图7所示,耳挂12为与用户头部与耳部100的交界处相贴合的弧状结构。发声部11(或发声部11的壳体111)可以具有与耳挂12连接的连接端CE和不与耳挂12连接的自由端FE。耳机10处于佩戴状态时,耳挂12的第一部分121(例如,耳挂12的钩状部)挂设在用户耳廓100(例如,耳轮107)和头部之间,耳挂12的第二部分122(例如,耳挂的连接部)向耳廓100背离头部的一侧延伸并与发声部11的连接端CE连接,以将发声部11至少部分地固定于用户的对耳轮105处。此时,发声部11位于耳甲腔102及耳道101上方的M1区域(图1中示出),使得用户的耳道处于开放状态。在一些实施例中,当耳机10处于佩戴状态时,发声部11的长轴方向X可以水平或近似水平设置(与图2所示的位置C类似),发声部11的自由端FE朝向用户的脑后。此时,发声部11的长轴方向X在矢状面上的投影可以与矢状轴的方向一致,短轴方向Y在矢状面上的投影可以与垂直轴方向一致,厚度方向Z垂直于矢状面。
结合图7和图8所示,发声部11可以具有在佩戴状态下沿厚度方向Z朝向耳部100的内侧面IS(也称为壳体111的内侧面)和背离耳部100的外侧面OS(也称为壳体111的外侧面),以及连接内侧面IS和外侧面OS的连接面。需要说明的是:在佩戴状态下,沿冠状轴所在方向(即厚度方向Z)观察,发声部11可以设置成圆形、椭圆形、圆角正方形、圆角矩形等形状。其中,当发声部11设置成圆形、椭圆形等形状时,上述连接面可以指发声部11的弧形侧面;而当发声部11设置成圆角正方形、圆角矩形等形状时,上述连接面可以包括后文中提及的下侧面LS(也称为壳体 111的下侧面)、上侧面US(也称为壳体111的上侧面)和后侧面RS(也称为壳体111的后侧面)。其中,上侧面US和下侧面LS可以分别指在佩戴状态下发声部11沿短轴方向Y背离外耳道101的侧面和靠近外耳道101的侧面;后侧面RS可以指在佩戴状态下发声部11沿长轴方向X朝向脑后的侧面。为了便于描述,本说明书以发声部11设置成圆角矩形为例进行示例性的说明。其中,发声部11在长轴方向X上的长度可以大于发声部11在短轴方向Y上的宽度。在一些实施例中,为了提升耳机的美观度及佩戴舒适度,耳机的后侧面RS可以为弧面。
发声部11内可以设置有换能器,其可以将电信号转换为相应的机械振动从而产生声音。换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔和后腔。前腔和后腔中产生的声音相位相反。在一些实施例中,内侧面IS上开设有与前腔声学耦合的出声孔112,以将前腔产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。在一些实施例中,壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有与后腔声学耦合的一个或多个泄压孔113,以用于将后腔产生的声音导出壳体111后与经由出声孔112泄露的声音在远场干涉相消。如此设置,使泄压孔113相较于出声孔112更远离耳道,以减弱经泄压孔113输出的声音与经出声孔112输出的声音之间在听音位置(例如,耳道)的反相相消,提高听音位置处的声音音量。在一些实施例中,为提高耳机10与耳部100的贴合度,提高耳机10佩戴的稳定性,壳体111的内侧面IS可以压接于耳部100(例如,对耳轮105)表面,以增加耳机10从耳部100上脱落的阻力。在一些实施例中,结合图7和图8,当耳机10压接于对耳轮105时,为了使内侧面IS上的出声孔112不被耳部100组织阻挡,出声孔112在矢状面的投影可以部分或全部与耳部100的内凹结构(例如,耳甲艇103)在矢状面的投影重合。在一些实施例中,由于耳甲艇103与耳甲腔102连通,耳道位于耳甲腔102内,当出声孔112在矢状面上的至少部分投影位于耳甲艇103内时,出声孔112输出的声音可以无阻碍地到达耳道,从而使耳道接收的音量较高。
其中,连通前腔的出声孔112可以视为图5所示的点声源A1,连通后腔的泄压孔113可以视为图5所示的点声源A2,耳道可以视为图5所示的听音位置。出声孔112输出的声音和泄压孔113输出的声音相位相反,形成一个偶极子。用户佩戴耳机时,出声孔位于发声部11朝向或靠近用户耳道的内侧面IS上,泄压孔位于发声部11远离或背离用户耳道的其他侧面上。发声部11的至少部分壳体111和/或至少部分耳廓100(例如,在声音传播路径上的耳甲艇103、对耳轮105及耳轮脚1071等)可以视为图5所示的挡板。就听音效果而言,挡板增加了泄压孔113到耳道的声程,即增加了出声孔112处的声音和泄压孔113处的声音的声程差,减小了泄压孔113输出的声音在耳道的强度,使出声孔112与泄压孔113输出的声音在耳道处发生干涉相消的程度减少,从而使耳道处的声音强度增大。就漏音效果而言,出声孔112输出的声音不需要绕过发声部11本身就能与泄压孔113输出的声音在外界较大的空间范围内发生干涉(类似于无挡板的情形),漏音不会明显增加。因此,可以通过设置发声部11及其上的出声孔112和泄压孔113相对于耳廓100的合适位置,可以在维持远场降漏音的效果的同时,显著提升耳道处的音量。
在一些实施例中,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为236mm2-565mm2。在一些实施例中,为了避免发声部11在矢状面的第一投影的面积过小而导致其产生的挡板作用过差,同时避免发声部11在矢状面的第一投影的面积过大覆盖耳道而影响用户获取外界环境中的声音,在佩戴状态下,发声部11在矢状面的第一投影的面积可以介于250mm2-550mm2之间。在一些实施例中,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为270mm2-500mm2。在一些实施例中,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为290mm2-450mm2。在一些实施例中,在佩戴状态下,发声部11在矢状面的第一投影的面积可以为320mm2-410mm2
参照图7,考虑到当发声部11沿长轴方向X的长轴尺寸或沿短轴方向Y的短轴尺寸过小时,发声部11的体积相对较小,使得其内部设置的换能器(例如振膜)面积也相对较小,导致换能器振动产生声音的效率低,影响耳机10的声学输出效果。发声部11短轴尺寸过小时,还会导致发声部11上的出声孔112距耳道的距离过大,导致耳道接收到的声音音量较小。且,当发声部11长轴尺寸过小或短轴尺寸过小时,发声部11的出声孔112和泄压孔113之间的距离较小,导致出声孔112处的声音和泄压孔处的声音的声程差较小,影响用户耳道处的听音音量。而当发声部11的长轴尺寸过大时,可能会使得发声部11的自由端FE伸出用户的耳廓100,影响发声部11与耳部100的贴合效果,进而引起佩戴不适的问题。而当发声部11的短轴尺寸过大时,发声部11的质量会较大,影响用户佩戴耳机10时的稳定性。因此,在一些实施例中,为了使用户在佩戴耳机10时可以具有较好的声学输出质量和佩戴舒适度、稳定性,发声部11的长轴尺寸及短轴尺寸需要设定在一个合适的尺寸范围内。在一些实施例中,发声部11的长轴尺寸范围可以为21mm-33mm。在一些 实施例中,发声部11的长轴尺寸范围可以为21.5mm-31mm。在一些实施例中,发声部11的长轴尺寸范围可以为21.5mm-26.5mm。对应地,在一些实施例中,发声部11的短轴尺寸范围可以为11mm-18mm。在一些实施例中,发声部11的短轴尺寸范围可以为11.5mm-16.5mm。在一些实施例中,发声部11的短轴尺寸范围可以为11.5mm-16mm。需要说明的是,本说明书所述的发声部11的长轴尺寸及短轴尺寸可以分别是指发声部11在矢状面的第一投影沿长轴方向X及沿短轴方向Y的尺寸。
此外,发声部11长轴尺寸过小时,发声部11的后侧面相对耳廓的内轮廓1072之间具有间隙,出声孔112发出的声音和泄压孔113发出的声音会在发声部11的后侧面与耳廓的内轮廓1072之间的区域发生声短路,导致用户耳道处的听音音量降低,发声部11的后侧面与耳廓的内轮廓1072之间的区域越大,声短路现象越明显。可以理解,在用户佩戴时,若发声部11的后侧面距耳廓的内轮廓1072沿X方向的距离过大,会导致发声部11的后侧面无法抵靠在耳廓的内轮廓1072处,也就导致耳廓无法对发声部11起到限位的作用,容易发生脱落。需要说明的是,耳廓的内轮廓1072可以是指耳轮的内壁,发声部11的后侧面距耳廓的内轮廓1072的距离可以是指后侧面在矢状面的投影距内轮廓1072在矢状面的投影沿X方向的最短距离,例如,后侧面在矢状面的投影的中点距内轮廓1072在矢状面的投影沿X方向的最短距离。在一些实施例中,为了使耳机具有较好的佩戴稳定性,可以使发声部11的后侧面距耳廓的内轮廓1072的距离不大于8mm。在一些实施例中,发声部11的后侧面距耳廓的内轮廓1072的距离可以为0mm-6mm。在一些实施例中,发声部11的后侧面距耳廓的内轮廓1072的距离可以为0mm-5.5mm。在一些实施例中,发声部11的后侧面距耳廓的内轮廓1072的距离可以为0,当该距离等于0时,表示发声部11的后侧面与耳廓的内轮廓1072相抵靠,此时发声部11在佩戴状态下与耳廓的内轮廓1072相抵靠,从而提高耳机佩戴时的稳定性。此外,可以使得发声部11的后侧面与耳廓的内轮廓1072之间的区域尽量减小,以减小发声部11周围的声短路区域,从而提高用户耳道的听音音量。
图10示出了发声部在矢状面上的第一投影面积一定(例如,119mm2)时,发声部11在矢状面上的第一投影的长轴尺寸与短轴尺寸在不同比值下所对应的示例性频响曲线示意图。图10中,横坐标表示频率(单位:Hz),纵坐标表示发声部11在矢状面上的第一投影的长轴尺寸与短轴尺寸在不同比值下所对应的总声压级(单位:dB)。为了便于区分不同的频响曲线,这里100Hz-1000Hz的范围内,图10中由上至下所示的频响曲线分别对应1005、1004、1003、1002和1001。其中,曲线1001为第一投影长轴尺寸与短轴尺寸比值为4.99(即第一投影长轴尺寸为24.93mm,第一投影短轴尺寸为4.99mm)时所对应的频响曲线,曲线1002为第一投影长轴尺寸与短轴尺寸比值为3.99(即第一投影长轴尺寸为22.43mm,第一投影短轴尺寸为5.61mm)时所对应的频响曲线,曲线1003为第一投影长轴尺寸与短轴尺寸比值为3.04(即第一投影长轴尺寸为19.61mm,第一投影短轴尺寸为6.54mm)时所对应的频响曲线,曲线1004为第一投影长轴尺寸与短轴尺寸比值约为2.0(即第一投影长轴尺寸为16.33mm,第一投影短轴尺寸为8.16mm)所对应的频响曲线,曲线1005为第一投影长轴尺寸与短轴尺寸比值为1.0(即第一投影长轴尺寸为12.31mm,第一投影短轴尺寸为12.31mm)时所对应的频响曲线。根据图10可以看出,频响曲线1001-1005所对应的谐振频率大致相同(均为3500Hz左右),但是,当第一投影长轴尺寸与短轴尺寸比值为1.0-3.0时,发声部11的频响曲线整体而言较为平滑,并且,在100Hz-3500Hz具有更好的频率响应,当频率为5000Hz时,第一投影的长轴尺寸与短轴尺寸比值越大,发声部11在耳道处的声音频响下降的越快。基于此,在一些实施例中,为了使得用户在佩戴耳机时能够体验到较好的声学输出效果,可以使发声部11在矢状面上的第一投影长轴尺寸与发声部11在矢状面上的投影短轴尺寸的比值介于1.0-3.0之间。在一些实施例中,考虑到在第一投影的面积一定的情况下,发声部11在矢状面上的第一投影长轴尺寸与发声部11在矢状面上的投影短轴尺寸的比值越小则发声部11在矢状面上的投影短轴尺寸越大,由于发声部11在矢状面上的投影短轴尺寸过大可能会导致发声部11无法较好地伸入用户耳甲腔,进而造成佩戴稳定性和舒适性问题,因此,为了同时保证佩戴的稳定性和舒适性,可以使发声部11在矢状面上的第一投影长轴尺寸与发声部11在矢状面上的投影短轴尺寸的比值介于1.4-2.5之间。在一些实施例中,发声部11在矢状面上的第一投影长轴尺寸与发声部11在矢状面上的投影短轴尺寸的比值可以介于1.4-2.3之间。在一些实施例中,发声部11在矢状面上的第一投影长轴尺寸与发声部11在矢状面上的投影短轴尺寸的比值可以介于1.45-2.0之间。可以理解,发声部11在具有不同的长宽比例时,发声部11在矢状面上的第一投影与耳甲腔在矢状面的投影会具有不同的重叠比例,在一些实施例中,通过将发声部11在矢状面上的第一投影的长轴尺寸与短轴尺寸的比值控制在1.4-3之间,可以使得发声部11在正常佩戴状态下投影至矢状面的投影面积相对较为适中,既可以避免发声部11在矢状面的投影面积过小而造成发声部11与耳甲腔之间形成的泄漏结构尺寸较大,导致 用户耳道处的听音音量较低,同时也可以避免发声部11在矢状面的投影面积过大而使得耳道无法保持开放状态,影响用户获取外界环境中的声音,从而可以使用户具有较好的声学体验。
需要说明的是,图10中所测取的频响曲线是通过模拟实验进行获取的,这里通过P.574.3型全频带人耳模拟器的模型来模拟人体的听觉系统,以及通过ITU-TP.57标准定义的耳廓来模拟人体耳廓,该标准下的耳廓包含了耳道的几何形状。此外,关于本说明书实施例中的测取的不同长轴尺寸和短轴尺寸的比值对应的频响曲线是在发声部的佩戴角度(上侧面或下侧面与矢状轴的夹角)和佩戴位置一定时,通过改变不同长轴尺寸和短轴尺寸来测取的。
在一些实施例中,发声部11沿厚度方向Z的尺寸还会对用户佩戴耳机的听音效果造成影响,以下将结合图11进行进一步说明。
图11示出了发声部11在矢状面上的第一投影的面积一定且第一投影的长轴尺寸与短轴尺寸的比值一定时,发声部11在其厚度方向Z具有不同尺寸时的频响曲线。在图11中,横坐标表示频率(单位:Hz),纵坐标表示不同频率时在耳道处的声压级(单位:dB)。频响曲线1101为发声部11沿厚度方向Z的尺寸(也被称为厚度)为20mm时对应的频响曲曲线,频响曲线1102为发声部11厚度为11mm时对应的频响曲曲线,频响曲线1103为发声部11厚度为5mm时对应的频响曲曲线,频响曲线1104为发声部11厚度为1mm时对应的频响曲曲线。发声部11的厚度正比于出发声部11前腔的厚度,前腔厚度越小,其对应的前腔谐振峰对应的谐振频率越大,在较低频段范围内(110Hz-1100Hz)时的频响曲线更加平坦。在一些实施例中,出声孔与前腔声学耦合,前腔中的声音通过出声孔传递至用户耳道处并被用户的听觉系统接收。如果发声部11厚度过大,发声部11对应的前腔谐振峰对应的谐振频率过小,会影响发声部11在较低频段的声学性能。此外,在佩戴状态时,发声部11的整体尺寸或重量较大,影响佩戴的稳定性和舒适性。发声部11厚度过小时,发声部11的前腔和后腔的空间有限,影响振膜的振动幅度,会限制发声部11低频大振幅下的输出。基于此,为了保证发声部11可以具有较好的声学输出效果以及保证佩戴时的稳定性,在一些实施例中,发声部11的厚度可以为2mm-20mm。在一些实施例中,发声部11的厚度可以为5mm-15mm。在一些实施例中,发声部11的厚度可以设置为6mm-12mm。需要说明的是,在佩戴状态下,当发声部11在厚度方向Z上相反设置的两个侧面(即,朝向用户耳部的内侧面和背离用户耳部的外侧面)的至少一个壁面为非平面时,发声部11的厚度可以指发声部11的内侧面和外侧面在厚度方向Z上的最大距离。
需要说明的是,关于本说明书实施例中的测取的不同厚度对应的频响曲线是在发声部的佩戴角度(上侧面US或下侧面LS与长轴方向X的夹角,例如,上侧面US与长轴方向X的夹角为0°)、佩戴位置一定以及长轴尺寸和短轴尺寸一定时,通过改变发声部厚度方向尺寸来测取的。
当发声部11的长轴尺寸确定后,或者说,发声部11的后侧面相对耳廓的内轮廓1072之间的间隙尺寸确定后,即,发声部11的后侧面距耳廓的内轮廓1072的距离不大于8mm,在该配置下,为了避免佩戴状态下出声孔112被耳部100的组织结构(例如,耳甲艇103)阻挡,可以使耳机10佩戴时出声孔112在矢状面的投影能够部分或全部位于耳部100的内凹结构在矢状面的投影区域内,在此基础上,由于发声部11的至少部分位于对耳轮处,出声孔112向下(Y方向上朝向用户耳垂的方向)传递声音至用户耳道,泄压孔113应当远离出声孔112设置,以避免泄压孔113发出的声音在听音位置(即耳道)与出声孔112发出的声音相消,从而使得听音位置的音量减弱。故在一些实施例中,当发声部11的后侧面距耳廓的内轮廓1072的距离不大于8mm,为了保证用户稳定佩戴耳机10的同时能够阻碍地获得出声孔112的声音且避免泄压孔113的声音减弱出声孔112在耳道处的声音,以提升听音音量,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离a3的范围为9.5mm~15.0mm,且泄压孔113的中心距后侧面RS的距离范围可以为8.60mm~12.92mm,如此设置,可以使出声孔112与泄压孔113在X方向上错开设置,以使泄压孔113远离出声孔112设置。在一些实施例中,为减小发声部11的后侧面与耳廓的内轮廓1072之间的区域,减弱声短路现象,发声部11的后侧面距耳廓的内轮廓1072的距离可以为0mm-6mm,在该配置下,由于后侧面更靠近内轮廓1072,出声孔112距后侧面的距离应当更大,以保证出声孔112对应位于耳部100的内凹结构处,而在此基础上,泄压孔113距后侧面的距离可以更小或不变,避免泄压孔113被耳部100结构(例如耳轮脚1071)阻挡。由此,当发声部11的后侧面距耳廓的内轮廓1072的距离为0mm-6mm,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离a3的范围可以为11.0mm~15.0mm,且泄压孔113的中心距后侧面RS的距离范围可以为8.60mm~11.92mm。在一些实施例中,使发声部11的后侧面与耳廓的内轮廓1072相抵靠,以提高耳机佩戴时的稳定性,并尽量消灭发声部11的后侧面与耳廓的内轮廓1072之间的声短路区域,发 声部11的后侧面距耳廓的内轮廓1072的距离可以为0,在该配置下,出声孔112距后侧面的距离进一步增大,泄压孔113距后侧面的距离可以适量减小或不变,以进一步增大出声孔112与泄压孔113的距离,同时避免泄压孔113被耳部100结构(例如耳轮脚1071、耳轮107)。由此,当发声部11的后侧面距耳廓的内轮廓1072的距离为0mm,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离a3的范围可以为12.0mm~15.0mm,且泄压孔113的中心距后侧面RS的距离范围可以为10.60mm~11.82mm。
需要知道的是,由于出声孔112和泄压孔113设置在壳体111上,壳体111的各个侧面均具有一定厚度,因此,出声孔112和泄压孔113均为具有一定深度的孔洞。此时,出声孔112和泄压孔113可以均具有内开口和外开口。为便于描述,在本说明书中,上述及下述出声孔112的中心O可以指出声孔112的外开口的形心,上述及下述泄压孔113的中心可以指泄压孔113的外开口的形心(例如,第一泄压孔1131的中心O1可以指第一泄压孔1131的外开口的形心,第二泄压孔1132的中心O2可以指第二泄压孔1132的外开口的形心)。当后侧面RS为弧面时,某位置(例如,出声孔112的中心O、第一泄压孔1131中心O1、第二泄压孔1132中心O2等)到后侧面RS的距离可以指该位置到后侧面RS的距发声部中心最远且平行于发声部短轴的切面的距离。
当发声部11的短轴尺寸确定后,即,发声部11的短轴尺寸范围为11mm-18mm,在该配置下,为了提升出声孔112在耳道(即,听音位置)的声音强度(音量),可以将出声孔112设置在距离耳道较近的位置,即出声孔112可以在Y方向上更加靠近发声部11的下侧面LS,此时,泄压孔113可以设置在远离出声孔112的位置,例如,泄压孔113可以设置在外侧面OS或上侧面US上远离出声孔112的位置。故在一些实施例中,发声部11的短轴尺寸范围为11mm-18mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.3mm~3.6mm。在一些实施例中,可以减小发声部11的短轴尺寸,以减小发声部11的质量,在此基础上,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离可以进一步减小,以使出声孔112能够距离耳道较近,故发声部11的短轴尺寸范围为11.5mm-16.5mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.5mm~3.2mm。在一些实施例中,同理,发声部11的短轴尺寸范围为11.5mm-16mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h1的范围为2.8mm~3.1mm。需要说明的是,本说明书所述的发声部11的长轴尺寸及短轴尺寸可以分别是指发声部11在矢状面的第一投影沿长轴方向X及沿短轴方向Y的尺寸。
本说明书一些实施例通过限定发声部11的短轴尺寸,并限定出声孔112距发声部11的下侧面LS的距离,使发声部11上设置的出声孔112可以更加靠近耳道,以提升耳道处的听音音量。
在一些实施例中,当发声部11上的出声孔112靠近耳道设置时,为了避免佩戴状态下出声孔112被耳部100的组织结构阻挡,可以使耳机10佩戴时出声孔112在矢状面的投影能够部分或全部位于耳部100的内凹结构(例如,耳甲艇103)在矢状面的投影区域内。在一些实施例中,当佩戴状态下出声孔112在矢状面的投影部分或全部位于耳甲艇103在矢状面的投影区域内时,即佩戴状态下出声孔112至少部分正对耳甲艇103,出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离的范围为17.5mm~27.0mm,这里耳挂12的上顶点是指沿垂直轴方向耳挂12上最靠近头部的点。在该配置下,发声部11应当靠近耳道设置,以提升听音音量。这里将结合图12说明发声部11与耳道的距离对听音音量的影响,图12中,以发声部11重叠部分的面积与耳甲腔在矢状面上的投影面积在不同比值时表征发声部11与耳道的距离,其中,重叠部分是指发声部11在矢状面上的投影与耳甲腔在矢状面上的投影的重叠部分。可以理解的是,发声部11重叠部分的面积与耳甲腔在矢状面上的投影面积的比值越高,发声部11与耳道的距离越小。
图12是根据本说明书一些实施例所示的发声部的至少部分覆盖对耳轮的佩戴方式下,重叠部分的面积与耳甲腔在矢状面上的投影面积在不同比值时所对应的示例性频响曲线示意图。在图12中,横坐标表示频率(单位:Hz),纵坐标表示测取的耳道处在不同频率下的声压级(单位dB)。由图12可知,在具体实验中,由于发声部11的三维结构和整体尺寸一定,为了保证发声部11在矢状面的第一投影的面积为定值,这里是通过沿矢状轴和/或垂直轴方向进行平移的方式来获取不同覆盖比例的实验数值。通过平移的方式会使得发声部11相对于对耳轮的位置发生改变,如果发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值越大,意味着发声部11会更加靠近耳道。继续参考图12,发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值在不小于11.82%时,相较于该比值小于11.82%时,耳道处的听音音量具有显著的提升,也即发声部11在同时覆盖部分耳甲腔和对耳轮的情况下也可以产生更好的频率响应。基于此,在一些实施例中,为了避免佩戴状态下出声孔112被耳部100的组织结构阻挡,并使用户佩戴耳机时具有较好的听音效果, 出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离的范围为17.5mm~27.0mm,且发声部11在覆盖对耳轮的同时还需要满足重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值不小于11.82%。在一些实施例中,在出声孔112至少部分对应位于耳部100的内凹结构处的前提下,可以使出声孔112尽量靠近耳道设置,即增大出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离,同时增大发声部11重叠部分的面积与耳甲腔在矢状面上的投影面积的比值,以进一步提升听音音量,故出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离的范围为20.0mm~27mm,且发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值可以不小于31.83%。考虑到发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值过大,发声部11会覆盖耳道,无法使耳道保持充分开放的状态,影响用户获取外界环境中的声音。在一些实施例中,可以在限制发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值过大的同时,使出声孔112全部对应位于耳部100的内凹结构处,并使出声孔112靠近耳道设置,故出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离的范围为22.0mm~24.5mm时,发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值为31.83%-62.50%。在一些实施例中,出声孔112的中心O距耳挂12的上顶点M之间沿Y方向的距离的范围为22.5mm~23.5mm时,发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值为35.55%-45%。需要说明的是,关于本说明书实施例中的测取的发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值对应的频响曲线是在发声部的佩戴角度(上侧面US或下侧面LS与长轴方向X的夹角,例如,上侧面US与长轴方向X的夹角为0°)以及发声部11的尺寸一定时,通过改变发声部11的佩戴位置(例如,沿矢状轴或垂直轴方向平移)来测取的。
本说明书一些实施例通过限定出声孔112的中心O距耳挂12的上顶点M之间的距离范围,且限定发声部11重叠部分的面积与耳甲腔在矢状面上的投影的面积的比值,可以使发声部11上设置的出声孔112可以更加靠近耳道,并保证佩戴状态下出声孔112不被耳部100的组织结构阻挡,以提升耳道处的听音音量。
在一些实施例中,壳体111的除内侧面外的其他侧面上开设的与后腔声学耦合的一个或多个泄压孔113中的至少一个包括第一泄压孔1131,第一泄压孔1131可以设置在发声部11的上侧面US、外侧面OS或下侧面LS上。在一些实施例中,由于出声孔112靠近下侧面LS设置,为减弱第一泄压孔1131输出的声音与出声孔112输出的声音在耳道处的相消,第一泄压孔1131可以远离出声孔112,或者说下侧面LS设置,由此第一泄压孔1131可以设置在上侧面US或外侧面OS上。在一些实施例中,为减弱第一泄压孔1131输出的声音与出声孔112输出的声音在耳道处的相消,提升耳道处的音量,当第一泄压孔1131设置在外侧面OS时,第一泄压孔1131位于外侧面OS上靠近上侧面US的区域。在一些实施例中,为提升第一泄压孔1131输出的声音与出声孔112输出的声音在耳道处的相消,提升耳道处的音量,第一泄压孔1131设置在上侧面US上。
第一泄压孔1131设置在上侧面US上时,前述已通过限定出声孔112及泄压孔113距后侧面RS的距离,使泄压孔113在X方向上远离出声孔112设置,以使听音位置的音量增加,同理,可以通过限定第一泄压孔1131距内侧面IS的距离,使第一泄压孔1131在Z方向上远离出声孔112设置。故在一些实施例中,发声部11的厚度为6mm-12mm,且第一泄压孔1131的中心O1距内侧面IS的距离d1范围为4.43mm~7.96mm。在一些实施例中,发声部11的厚度为6mm-12mm,且进一步增大第一泄压孔1131的中心O1距内侧面IS的距离,以使第一泄压孔1131在Z方向上更远离出声孔112设置,由此,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为5.43mm~7.96mm。在一些实施例中,为减小发声部11的整体尺寸或质量,减小发声部11的厚度,第一泄压孔1131的中心O1距内侧面IS的最大距离不得不减小,在此基础上,增大第一泄压孔1131的中心O1距内侧面IS的最小距离,保证第一泄压孔1131在Z方向上更远离出声孔112设置,故发声部11的厚度为5mm-12mm,且第一泄压孔1131的中心O1距内侧面IS的距离d1范围为5.43mm~6.96mm。
本说明书一些实施例通过限定发声部11的厚度尺寸及第一泄压孔1131距内侧面IS的距离,可以使第一泄压孔1131远离出声孔112设置,使第一泄压孔1131发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加。
在一些实施例中,除了内侧面IS,壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有至少两个泄压孔113,至少两个泄压孔113的设置可以破坏后腔中驻波,使得泄压孔113导出至壳体111外部的声音的谐振频率尽可能地高,从而使得后腔的频响具有较宽的平坦区域(例如,在谐振峰之前的区域),并在中高频范围内(例如2kHz-6kHz)获得更好的降漏音效果。仅作为示例,泄压孔113可以包括第一泄压孔1131和第二泄压孔1132。在一些实 施例中,第一泄压孔1131和第二泄压孔1132可以设置在壳体111的同一个侧面上,例如,第一泄压孔1131和第二泄压孔113可以同时设置在外侧面OS、上侧面US或下侧面LS上。在一些实施例中,第一泄压孔1131和第二泄压孔1132可以分别设置在壳体111的两个不同侧面上,例如,第一泄压孔1131可以设置在外侧面OS上,第二泄压孔1132可以设置在上侧面US上,或者,第一泄压孔1131可以设置在外侧面OS上,第二泄压孔1132可以设置在下侧面LS上。在一些实施例中,为最大程度上破坏后腔中的驻波,两个泄压孔113可以位于壳体111的相对两侧,例如,第一泄压孔1131可以设置在上侧面US上,第二泄压孔1132可以设置在下侧面LS上。为了便于描述,本说明书将以第一泄压孔1131设置在上侧面US上、第二泄压孔1132设置在下侧面LS上为例进行示例性的说明。
与限定第一泄压孔1131距内侧面IS的距离相似地,也可以通过限定第二泄压孔1132距内侧面IS的距离,使第二泄压孔1132在Z方向上远离出声孔112设置。由于发声部11为类长方体,其上侧面US与下侧面LS尺寸接近,故第二泄压孔1132中心O2距内侧面IS的距离d2与第一泄压孔1131的中心O1距内侧面IS的距离d1近似,同时,为避免第一泄压孔1131和第二泄压孔1132输出的声音均影响出声孔112输出的声音在听音位置的音量,第一泄压孔1131和第二泄压孔1132应同时尽可能远离出声孔112,例如,可以使出声孔112的中心位于第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面上或者中垂面附近。由此,在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为4.43mm~7.96mm,且出声孔112的中心距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~2mm。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为5.43mm~7.96mm,且出声孔112的中心距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~2mm。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为5.43mm~6.96mm,且出声孔112的中心距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~2mm。
本说明书一些实施例通过限定出声孔112距第一泄压孔的中心与第二泄压孔的中心的连线的中垂线的距离,及,第二泄压孔1132距内侧面IS的距离,可以使第一泄压孔1131及第二泄压孔1132远离出声孔112设置,使第一泄压孔1131及第二泄压孔1132发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加。
在一些实施例中,为了进一步避免第二泄压孔1132发出的声音在耳道(即听音位置)与出声孔112发出的声音反相相消而降低听音音量,可以减小第二泄压孔1132的面积以减少从第二泄压孔1132导出并传向耳道的声音强度,此时,第二泄压孔1132的面积可以小于第一泄压孔1131的面积(如图9所示)。需要知道的是,在其他一些实施例中,出声孔112和泄压孔113的面积也可以指出声孔112和泄压孔113其他截面面积,例如出声孔112和/或泄压孔113的内开口的面积,或者出声孔112和/或泄压孔113的内开口面积和外开口面积的平均值等。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,当发声部11上只设置有一个泄压孔时,该泄压孔可以是上述第一泄压孔1131和第二泄压孔1132中的任意一个。例如,该泄压孔可以是上述第一泄压孔1131,即该泄压孔可以设置在上侧面US。该泄压孔的中心距内侧面IS的距离范围可以为4.24mm~7.96mm,该泄压孔距的中心距后侧面RS的距离范围可以为8.60mm~15.68mm。这些变化和修改仍处于本申请的保护范围之内。
在一些实施例中,为了提高听音音量,特别是中低频的听音音量,同时仍然保留远场漏音相消的效果,可以在双点声源的其中一个声源周围构建一个腔体结构。图13是根据本说明书一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图。
如图13所示,偶极子声源之间设有腔体结构41时,使得其中一个偶极子声源和听音位置在腔体结构41的内部,另外一个偶极子声源在腔体结构41的外部。腔体结构41的内部的偶极子声源导出的声音会受到腔体结构41的限制,即腔体结构41能够聚拢声音,使得声音能够更多地传播至听音位置内,从而提高听音位置的声音的音量和质量。本申请中,“腔体结构”可以理解为由发声部11的侧面与耳甲腔结构共同围成的半封闭结构,该半封闭结构使得内部与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构42(例如,开口、泄漏结构、管道等)。示例性的泄漏结构可以包括但不限于开口、泄漏结构、管道等,或其任意组合。
在一些实施例中,腔体结构41中可以包含听音位置和至少一个声源。这里的“包含”可以表示听音位置和声源至少有一者在腔体内部,也可以表示听音位置和声源至少有一者在腔体内部边缘处。在一些实施例中,听音位置可以是耳道入口,也可以是耳朵声学参考点。
图14A是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图。图14B是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图。
对于近场听音来说,如图14A所示的其中一个声源周围构建有腔体结构的偶极子,由于其中一个声源A被腔体结构包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。相对地,在没有腔体结构的情况,声源辐射出的声音大部分不会到达听音位置。因此,腔体结构的设置使得到达听音位置的声音音量得到显著提高。同时,腔体结构外的反相声源B辐射出来的反相声音只有较少的一部分会通过腔体结构的泄漏结构进入腔体结构。这相当于在泄漏结构处生成了一个次级声源B’,其强度显著小于声源B,亦显著小于声源A。次级声源B’产生的声音在腔体内对声源A产生反相相消的效果微弱,使听音位置的听音音量显著提高。
对于漏音来说,如图14B所示,声源A通过腔体的泄漏结构向外界辐射声音相当于在泄漏结构处生成了一个次级声源A’,由于声源A辐射的几乎所有声音均从泄漏结构输出,且腔体的结构尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源A’的强度与声源A相当。对于外界空间来说,次级声源A’与声源B产生的声音相消效果与声源A与声源B产生的声音相消效果相当。即该腔体结构下,仍然保持了相当的降漏音效果。
应当理解的是,上述一个开口的泄漏结构仅为示例,腔体结构的泄漏结构可以包含一个或一个以上的开口,其也能实现较优的听音指数,其中,听音指数可以指漏音指数α的倒数1/α。以设置两个开口结构为例,下面分别分析等开孔和等开孔率的情况。以只开一个孔的结构作为对比,这里的“等开孔”指设置两个尺寸与只开一个孔的结构相同的开口,“等开孔率”指设置的两个孔开口面积之和与只开一个孔的结构相同。等开孔相当于将只开一个孔的相对开口大小(即腔体结构上泄漏结构的开口面积S与腔体结构中受被包含的声源直接作用的面积S0的比值)扩大了一倍,由之前所述,其整体的听音指数会下降。在等开孔率的情况下,即使S/S0与只开一个孔的结构相同,两个开口至外部声源的距离也不同,因而也会造成不同的听音指数。
图15A是根据本说明书一些实施例所示的具有两个水平开口的腔体结构的示意图。图15B是根据本说明书一些实施例所示的具有两个垂直开口的腔体结构的示意图。如图15A所示,当两个开口连线和两个声源连线平行(即为两个水平开口)时,两个开口到外部声源的距离分别取得最大和最小;如图15B所示,当两连线垂直(即为两个垂直开口)时,两开口到外部声源的距离相等并取得中间值。
图16是根据本说明书一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图。如图16所示,等开孔的腔体结构较一个开口的腔体结构的整体听音指数会下降。对于等开孔率的腔体结构,由于两个开口至外部声源的距离不同,因而也会造成不同的听音指数。结合图15A、图15B和图16可以看出,无论水平开口还是垂直开口,等开孔率的泄漏结构的听音指数都高于等开孔的泄漏结构。这是因为相对于等开孔的泄漏结构,等开孔率的泄漏结构的相对开口大小S/S0相比于等开孔的泄漏结构缩小了一倍,因此听音指数更大。结合图15A、图15B和图16还可以看出,无论是等开孔的泄漏结构还是等开孔率的泄漏结构,水平开口的听音指数都更大。这是因为水平开口的泄漏结构中其中一个开口到外部声源的距离小于两个声源的距离,这样形成的次级声源与外部声源由于距离相对原来两个声源更近,因此听音指数更高,进而提高了降漏音效果。因此,为了提高降漏音效果,可以使至少一个开口到外部声源的距离小于两个声源之间的距离。
此外,如图16所示,采用了两个开口的腔体结构相对于一个开口的腔体结构能更好地提高腔体结构内气声的谐振频率,使得整个装置相对于只有一个开口的腔体结构在高频段(例如,频率接近10000Hz的声音)有更好的听音指数。高频段是人耳更敏感的频段,因此对降漏音的需求更大。因此,为了提高在高频段的降漏音效果,可以选择开口数量大于1的腔体结构。
图17是根据本申请另一些实施例所示的耳机的示例性佩戴示意图。图18是图17所示的耳机朝向耳部一侧的结构示意图。图19是根据本说明书一些实施例所示的耳机的壳体的结构示意图。
图17所示的耳机10与图7所示的耳机10的结构类似,例如,耳挂12为与用户头部与耳部100的交界处相贴合的弧状结构。发声部11(或发声部11的壳体111)可以具有与耳挂12连接的连接端CE和不与耳挂12连接的自由端FE。耳机10处于佩戴状态时,耳挂12的第一部分121(例如,耳挂12的钩状部)挂设在用户耳廓100(例如,耳轮107)和头部之间,耳挂12的第二部分122(例如,耳挂的连接部)向耳廓100背离头部的一侧延伸并与发声部11的连接端CE连接,以将发声部11固定于耳道附近但不堵塞耳道的位置。图17所示的耳机10与图7所示的耳机10的 结构类似,其主要区别在于:发声部11倾斜设置,发声部11的壳体111至少部分插入耳甲腔102,例如,发声部11的自由端FE可以伸入耳甲腔102内。如此结构的耳挂12和发声部11与用户耳部100适配度较好,能够增加耳机10从耳部100上脱落的阻力,从而增加耳机10的佩戴稳定性。
在一些实施例中,在佩戴状态下,沿厚度方向Z观察,发声部11的连接端CE相较于自由端FE更靠近头顶,以便于自由端FE伸入耳甲腔内。基于此,短轴方向Y与人体矢状轴所在方向之间的夹角可以介于30°~40°之间。其中,如果前述夹角太小,容易导致自由端FE无法伸入耳甲腔内,以及发声部11上的出声孔112与耳道相距太远;如果前述夹角太大,同样容易导致发声部11无法伸入耳甲腔内,以及耳道被发声部11堵住。换言之,如此设置,既允许发声部11伸入耳甲腔内,又使得发声部11上的出声孔112与耳道具有合适的距离,以在耳道不被堵住的情况下,用户能够更多地听到发声部11产生的声音。
在一些实施例中,发声部11和耳挂12可以从耳甲腔所对应的耳部100区域的前后两侧共同夹持前述耳部100区域,从而增加耳机10从耳部100上脱落的阻力,进而改善耳机10在佩戴状态下的稳定性。例如,发声部11的自由端FE在厚度方向Z上压持在耳甲腔内。再例如,自由端FE在长轴方向X和短轴方向Y上抵接在耳甲腔内(例如,自由端FE与耳甲腔内壁相抵接)。这里自由端FE可以是指沿Y-Z平面(短轴方向Y和厚度方向Z形成的平面)对发声部11进行切割,获取的远离连接端CE的特定区域,该特定区域长轴尺寸与发声部长轴尺寸的比值可以为0.05~0.2。
本说明书一些实施例通过将发声部11的至少部分伸入耳甲腔内,可以提高听音位置(例如,耳道处)的听音音量,特别是中低频的听音音量,同时仍然保持较好的远场漏音相消的效果。仅作为示例性说明,发声部11的整体或部分结构伸入耳甲腔102内时,发声部11的内侧面IS与耳甲腔102共同围成的腔体可以视为如图13所示的腔体结构41,内侧面IS与耳甲腔之间形成的泄漏结构(例如,内侧面IS与耳甲腔之间形成的靠近头顶的第一泄露结构UC、内侧面IS与耳部100之间形成的靠近耳道的第二泄露结构LC)可以视为如图13所示的泄漏结构42。设置在内侧面IS上的出声孔112可以视为如图13所示的腔体结构41内部的点声源,设置在发声部11其他侧面(例如,上侧面US和/或下侧面LS)的一个或多个泄压孔113(例如,第一泄压孔1131和/或第二泄压孔1132)可以视为如图13所示的腔体结构41外部的点声源,输出声音相位相反的出声孔112和泄压孔113构成了一个偶极子。由此,根据图13-图16的相关描述,当耳机10以至少部分插入耳甲腔的佩戴方式佩戴时,即以如图17所示的佩戴方式佩戴,就听音效果而言,出声孔112辐射出来的声音大部分可以通过直射或反射的方式到达耳道,可以使得到达耳道的声音音量得到显著提高,特别是中低频的听音音量。同时,泄压孔113辐射出来的反相声音只有较少的一部分会通过泄漏结构(第一泄露结构UC和第二泄露结构LC)进入耳甲腔,与出声孔112产生干涉相消的效果微弱,使耳道的听音音量显著提高。就漏音效果而言,出声孔112可以通过腔体结构的泄漏结构向外界泄出声音,由于出声孔112辐射的几乎所有声音均从泄漏结构泄出,且腔体结构尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为出声孔112泄出的声音强度与泄压孔113的声音强度相当,出声孔112泄出的声音能够与泄压孔113产生的声音在远场相消,以此保证降漏音效果。
在一些实施例中,伸入耳甲腔内的自由端FE可以紧靠耳甲腔边缘1021(参见图17),也可以与耳甲腔边缘1021具有一定的距离。但发声部11的自由端FE距耳甲腔边缘1021的距离会影响发声部11与耳甲腔102共同围成的腔体结构的大小,从而影响发声部11和耳甲腔之间形成的泄漏结构尺寸,进而影响用户耳道处的听音音量,具体表现为泄露结构的开口越大,发声部11直接向外辐射的声音成分越多,到达听音位置的声音越少。需要说明的是,发声部11的自由端FE距耳甲腔边缘1021的距离可以通过发声部11的自由端FE在矢状面的投影与耳甲腔边缘1021在矢状面的投影沿X方向的最短距离来表征,例如,发声部11的自由端FE距耳甲腔边缘1021的距离可以为发声部11的自由端FE在矢状面的投影的中点与耳甲腔边缘1021在矢状面的投影沿X方向的距离。在一些实施例中,发声部11的自由端FE距耳甲腔边缘1021的距离可以用于反映发声部11的自由端FE相对于耳甲腔102的位置以及发声部11覆盖用户耳甲腔102的程度。
图20是根据本说明书一些实施例所示的发声部自由端FE距耳甲腔边缘1021的不同距离时所对应的示例性频响曲线示意图。参照图20,其中,横坐标表示频率(单位:Hz),纵坐标表示不同频率时耳道处的声压级(单位:dB),频响曲线201为发声部自由端FE距耳甲腔边缘1021的距离为0mm(例如,在佩戴状态下,发声部11的自由端抵靠在耳甲腔的边缘)时的频响曲线,频响曲线202为发声部自由端FE距耳甲腔边缘1021的距离为4.77mm时的频响曲线,频响曲线203为发声部自由端FE距耳甲腔边缘1021的距离为7.25mm时的频响曲线,频响曲线204为发声部自由端FE距耳甲腔边缘1021的距离为10.48mm时的频响曲线,频响曲线205为发声部自由端FE距 耳甲腔边缘1021的距离为15.3mm时的频响曲线,频响曲线206为发声部自由端FE距耳甲腔边缘1021的距离为19.24mm时的频响曲线。根据图20可以看出,当发声部自由端FE距耳甲腔边缘1021的距离为0mm、4.77mm、7.25mm时,耳道处测取的声音的声压级较大。当发声部自由端FE距耳甲腔边缘1021的距离为19.24mm(例如,在佩戴状态下,发声部11的自由端抵靠在耳甲腔的边缘)时,耳道测取的声音的声压级相对较小。也就是说,在佩戴状态下,当发声部自由端FE距耳甲腔边缘1021的距离越大,即发声部11伸入耳甲腔中结构越少,发声部11与耳甲腔102共同围成的腔体结构越小,耳道处的听音效果越差。基于此,为了保证耳机10在具有较好的听音效果的同时,也能保证用户佩戴的舒适性和稳定性,在一些实施例中,发声部自由端FE距耳甲腔边缘1021的距离可以为0mm~7.25mm。在一些实施例中,发声部自由端FE距耳甲腔边缘1021的距离可以为0mm~4.77mm。其中,发声部的自由端可以抵靠耳甲腔边缘1021,这里可以理解为发声部11的自由端FE在矢状面的投影与耳甲腔边缘1021在矢状面的投影相重叠(例如,图17所示的发声部11相对耳甲腔的位置),即发声部自由端在矢状面的投影与耳甲腔边缘1021在矢状面的投影距离为0mm时,发声部11可以具有较好的频率响应,此时发声部11的自由端与耳甲腔边缘1021相抵靠,可以对发声部11起到支撑和限位作用,提高用户佩戴耳机的稳定性。需要说明的是,关于本说明书实施例中测取的发声部自由端FE距耳甲腔边缘1021的不同距离对应的频响曲线是在发声部的佩戴角度以及长轴方向的尺寸、短轴方向和厚度方向的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴方向平移)来测取的。
结合图17和图18,出声孔112设置在发声部11的内侧面IS上,在一些实施例中,当发声部自由端FE距耳甲腔边缘1021的距离为0mm~7.25mm时,为保证出声孔112即听音位置的声音强度,可以从X方向上限定出声孔112的位置,使出声孔112置于发声部11与耳甲腔之间形成的腔体结构内部,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离b1的范围为8.15mm~12.25mm。在一些实施例中,为了使发声部11与耳甲腔102共同围成的腔体结构更大,以提升听音效果,发声部自由端FE距耳甲腔边缘1021的距离为0mm~4.77mm,在该配置下,为了使使出声孔112位于发声部11与耳甲腔之间形成的腔体结构内部,出声孔112距后侧面RS的距离更大,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离b1的范围为8.5mm~12.00mm。在一些实施例中,为了提升用户佩戴的舒适性和稳定性,可使发声部的自由端FE可以抵靠耳甲腔边缘1021,即使发声部自由端FE距耳甲腔边缘1021的距离为0mm,基于此,为了保证出声孔112位于发声部11与耳甲腔之间形成的腔体结构内部,且出声孔112能够靠近位于腔体结构内部的耳道设置,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离b1的范围为9.25mm~11.15mm。
在一些实施例中,当发声部自由端FE距耳甲腔边缘1021的距离为0mm~7.25mm时,为保证出声孔112即听音位置的声音强度,可以从Y方向上限定出声孔112的位置,使出声孔112置于发声部11与耳甲腔之间形成的腔体结构内部,因此,在一些实施例中,处于佩戴状态时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为22.5mm~34.5mm。在一些实施例中,处于佩戴状态时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为25mm~32mm。在一些实施例中,处于佩戴状态时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为27.5mm~29.5mm。在一些实施例中,处于佩戴状态时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为28mm~29mm。在一些实施例中,处于佩戴状态时,出声孔112的中心在矢状面的投影与耳挂12的上顶点在矢状面的投影之间的距离的范围为18mm~30mm。
本说明书一些实施例通过基于发声部11从Y方向和/或X方向上限定出声孔112的位置,可以使出声孔112置于发声部11与耳甲腔之间形成的腔体结构内部,保证出声孔112即听音位置的声音强度,因此,可以基于发声部11相对于耳甲腔的位置,从Y方向及X方向上限定出声孔112的位置,使其置于发声部11与耳甲腔之间形成的腔体结构内部,并保证出声孔112在耳道的声音强度。
在一些实施例中,发声部11的部分或整体结构伸入耳甲腔102时,发声部11在矢状面上的投影与耳甲腔在矢状面的投影上具有重叠部分。该重叠部分的面积大小也会前述腔体结构的大小,从而影响发声部11和耳甲腔之间形成的泄漏结构尺寸。为便于描述,将重叠部分的面积与耳甲腔在矢状面上的投影面积的比值定义为发声部11与耳甲腔102的重叠比例,当发声部11与耳甲腔之间的重叠比例比较大时,发声部11可以覆盖耳甲腔较大部分的区域,此时,发声部11与耳甲腔之间的泄漏结构尺寸较小,腔体结构的泄露结构的开口面积较小,发声部11直接向外辐射的声音成分越少,从而保证用户耳道处的听音音量。
图21是根据本说明书一些实施例所示的发声部与耳甲腔在不同重叠比例所对应的示例性 频响曲线示意图。在图21中,横坐标表示频率(单位:Hz),纵坐标表示不同重叠比例所对应的耳道处的频率响应(单位:dB)。由图21可知,用户佩戴耳机且发声部11的至少部分结构覆盖耳甲腔时,即发声部11在矢状面上的投影与耳甲腔在矢状面的投影上具有重叠部分时,相对于发声部11在矢状面上的投影与耳甲腔在矢状面的投影上不具有重叠部分(重叠比例为0%)时用户耳道处的听音音量具有显著的提升,尤其是在中低频频段范围内。在一些实施例中,为了提高用户佩戴耳机时的听音效果,发声部与耳甲腔的重叠比例可以不小于9.26%。继续参考图21,随着发声部与耳甲腔的重叠比例不断增大,用户在耳道处的听音音量得到的提升也越强,尤其是将发声部与耳甲腔的重叠比例由36.58%提升至44.01%时,听音效果具有显著的提升。基于此,为了进一步提高用户的听音效果,发声部与耳甲腔的重叠比例不小于44.01%。在一些实施例中,发声部与耳甲腔的重叠比例不小于57.89%。需要说明的是,关于本说明书实施例中的测取的发声部与耳甲腔的重叠比例对应的频响曲线是在发声部的佩戴角度(上侧面或下侧面与矢状轴的夹角)以及发声部的尺寸一定时,通过改变发声部的佩戴位置(例如,沿矢状轴或垂直轴方向平移)来测取的。
本说明书实施例中提供的耳机,通过将发声部11的至少部分伸入耳甲腔内,且在矢状面上的发声部与耳甲腔的重叠比例控制为不小于44.01%,可以使发声部11与用户的耳甲腔较好地配合以形成腔体结构,从而提高耳机在听音位置的听音音量,特别是中低频的听音音量。
还需要说明的是,为了保证用户在佩戴耳机10时不堵塞用户耳道,使耳道保持开放状态,以便用户在获取耳机10输出的声音的同时,还能够获取外界环境中的声音,发声部与耳甲腔的重叠比例不宜过大。在佩戴状态下,当发声部与耳甲腔的重叠比例过小时,发声部11伸入耳甲腔中的尺寸过小,导致发声部11与用户耳甲腔的贴合面积较小,无法利用耳甲腔对发声部11起到足够的支撑和限位作用,存在佩戴不稳定容易发生脱落的问题,另一方面,发声部11与耳甲腔形成的泄漏结构尺寸过大,影响用户耳道的听音音量。为了保证耳机在不堵塞用户耳道的前提下,保证用户佩戴耳机的稳定性和舒适性以及具有较好的听音效果,在一些实施例中,发声部11与耳甲腔的重叠比例可以为44.01%~77.88%,以使得发声部11的部分或整体结构伸入耳甲腔时,可以通过耳甲腔对发声部11的作用力,对发声部11起到一定的支撑和限位作用,进而提升其佩戴稳定性和舒适性。同时发声部11还可以与耳甲腔形成图13所示的声学模型,保证用户在听音位置(例如,耳道)的听音音量,降低远场的漏音音量。在一些实施例中,发声部11与耳甲腔的重叠比例可以为46%~71.94%。在一些实施例中,发声部11与耳甲腔的重叠比例可以为48%~65%。在一些实施例中,发声部11与耳甲腔的重叠比例可以为57.89%~62%。
不同用户(例如,不同年龄、不同性别、不同身高体重)的耳甲腔大小和轮廓形状可能有所差异,不同用户的耳甲腔在矢状面的投影面积在一定范围内(例如,320mm2~410mm2)。结合上述内容,发声部11在矢状面的投影面积与耳甲腔在矢状面的投影面积的重叠比例不宜过大或过小,相对应地,发声部11的整体尺寸(尤其是沿其长轴方向的尺寸和短轴方向的尺寸)也不宜过大或过小。例如,发声部11在矢状面的投影面积过小时,发声部11无法对耳甲腔进行充分的覆盖,发声部11与耳甲腔之间形成的泄漏结构尺寸较大,导致用户耳道处的听音音量较低。而发声部11在矢状面的投影面积过大时,发声部11可能覆盖用户耳道,使耳道无法保持开放状态,影响用户获取外界环境中的声音。为了保证用户佩戴耳机的听音效果以及同时保持耳道处于开放状态以获取外界环境中的声音,在一些实施例中,发声部11在矢状面上的第一投影的面积可以为202mm2~560mm2。在一些实施例中,发声部11在矢状面上的第一投影的面积可以为220mm2~500mm2。在一些实施例中,发声部11在矢状面上的第一投影的面积可以为300mm2~470mm2。进一步,在一些实施例中,发声部11在矢状面上的第一投影的面积可以为330mm2~440mm2
参照图7,发声部11的形状可以包括长轴方向X和短轴方向Y。在一些实施例中,当发声部11在长轴方向X或短轴方向Y的尺寸过小时,发声部11的体积相对较小,使得其内部设置的振膜面积也相对较小,导致振膜推动发声部11的壳体内部空气产生声音的效率低,影响耳机的声学输出效果。此外,发声部11长轴尺寸过大时,使得发声部11超出耳甲腔的范围,无法伸入耳甲腔,并无法形成腔体结构,或者发声部11与耳甲腔之间形成的泄漏结构的尺寸很大,影响用户佩戴耳机10在耳道的听音音量以及远场的漏音效果。而发声部11的短轴尺寸过大时,发声部11可能覆盖用户耳道,影响用户获取外界环境中的声音信息。在一些实施例中,为了使用户在佩戴耳机10时可以具有较好的声学输出质量,可以使长轴尺寸范围介于12mm~32mm之间。在一些实施例中,长轴尺寸范围介于18mm~29mm之间。在一些实施例中,长轴尺寸范围可以为20mm~27mm,在一些实施例中,长轴尺寸范围可以为22mm~25mm。对应地,短轴尺寸范围介于4.5mm~18mm之间。在一些实施例中,短轴尺寸范围介于10mm~15mm之间。在一些实施例中,短轴尺寸范围可以为 11mm~13.5mm。进一步在一些实施例中,短轴尺寸范围可以为12mm~13mm。
图17所示的发声部11的长轴尺寸与短轴尺寸的比值与图7所示的发声部11的长轴尺寸与短轴尺寸的比值类似:为了使得用户在佩戴耳机时能够体验到较好的声学输出效果,可以使发声部11的长轴尺寸与短轴尺寸的比值介于1.0~3.0之间。在一些实施例中,考虑到在面积一定的情况下,发声部11的长轴尺寸与短轴尺寸的比值越小,则发声部11的短轴尺寸越大,由于发声部11的短轴尺寸过大可能会导致发声部11无法较好地伸入用户耳甲腔,进而造成佩戴稳定性和舒适性问题,因此,为了同时保证佩戴的稳定性和舒适性,可以使发声部11的长轴尺寸与短轴尺寸的比值介于1.4~2.5之间。在一些实施例中,发声部11的长轴尺寸与短轴尺寸的比值可以介于1.4~2.3之间。在一些实施例中,发声部11的长轴尺寸与短轴尺寸的比值可以介于1.45~2.0之间。可以理解,发声部11在具有不同的长宽比例时,发声部11与耳甲腔会具有不同的重叠比例,在一些实施例中,通过将发声部11的长轴尺寸与短轴尺寸的比值控制在1.4~3之间,可以使得发声部11在正常佩戴状态下投影至矢状面的投影面积相对较为适中,既可以避免发声部11在矢状面的投影面积过小而造成发声部11与耳甲腔之间形成的泄漏结构尺寸较大,导致用户耳道处的听音音量较低,同时也可以避免发声部11在矢状面的投影面积过大而使得耳道无法保持开放状态,影响用户获取外界环境中的声音,从而可以使用户具有较好的声学体验。
当发声部11的短轴尺寸确定后,例如,发声部11的短轴尺寸范围为10mm-15mm,在该配置下,为了提升出声孔112在耳道(即,听音位置)的声音强度(音量),可以将出声孔112设置在距离耳道较近的位置,而通过限定出声孔112在Y方向上到发声部11的下侧面LS的距离即可限定佩戴时出声孔112到耳道的距离。故在一些实施例中,发声部11的短轴尺寸范围为10mm-15mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为4.05mm~6.05mm。在一些实施例中,可以减小发声部11的短轴尺寸,以减小发声部11的质量,在此基础上,出声孔112的中心O沿Y方向距发声部11的下侧面LS的最大距离会减小,最小距离会增大,以使出声孔112能够距离耳道较近,故发声部11的短轴尺寸范围为11mm-13.5mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围为4.80mm~5.50mm。在一些实施例中,同理,发声部11的短轴尺寸范围为12mm-13mm,且出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h2的范围5.20mm~5.55mm。
在一些实施例中,壳体111除述内侧面外的其他侧面上开设的与后腔声学耦合的一个或多个泄压孔113中的至少一个包括第一泄压孔1131,第一泄压孔1131可以设置在发声部11的上侧面US、外侧面OS或下侧面LS上。在一些实施例中,由于发声部11位于耳甲腔内,由于其本身的重力,发声部11可能与耳甲腔内靠近耳垂的下侧内壁紧靠,使得发声部11与耳甲腔形成的泄露结构靠近发声部11的上侧面US,为使得第一泄压孔1131输出的声音能够与出声孔112经泄露结构泄出的声音在远场相消,第一泄压孔1131应该靠近泄露结构设置。由于泄露结构可能靠近发声部11的上侧面US,故第一泄压孔设置在上侧面US或外侧面OS上靠近上侧面US的区域。在一些实施例中,为提升第一泄压孔1131输出的声音与经泄露结构泄出的声音在远场相消,提升降漏音效果,第一泄压孔1131设置在上侧面US上。
在一些实施例中,发声部11至少部分插入耳甲腔,保证第一泄压孔1131的全部或部分面积不能由于自由端FE与耳甲腔壁面的抵接而被遮挡,使得第一泄压孔1131的有效面积减小,第一泄压孔1131沿X方向距发声部11的后侧面RS的距离不能太近。因此,在一些实施例中,第一泄压孔1131的中心O1距后侧面RS的距离d1的范围为8.60mm~15.68mm。在一些实施例中,第一泄压孔1131的中心O1距后侧面RS的距离d1的范围为10.44mm~15.68mm。在一些实施例中,第一泄压孔1131的中心O1距后侧面RS的距离d1的范围为11.00mm~14.55mm。在一些实施例中,第一泄压孔1131的中心O1距后侧面RS的距离d1的范围为12.15mm~13.25mm。
在一些实施例中,为了使出声孔112靠近耳道,同时使第一泄压孔1131远离耳道,以尽量避免第一泄压孔1131输出的声音在耳道处与出声孔112输出的声音相消,导致听音效果减弱,从而提升耳道处的听音效果,可以限制出声孔112距离耳道较近,第一泄压孔1131距离耳道较远。因此,在一些实施例中,出声孔112的中心O在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为2.2mm~3.8mm,在此配置下,第一泄压孔1131距离耳道较远,以提升耳道处的听音效果,第一泄压孔1131的中心O1在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为12mm~18mm。其中,第一泄压孔1131距耳道距离的最大值受限于发声部11的尺寸。在一些实施例中,由于耳道附近存在耳屏,出声孔112很容易被耳屏遮挡,此时,为了尽可能使出声孔112在离耳道较近的位置且不被遮挡,出声孔112的中心O在矢状面的投影点距耳道口中心O3在矢状 面的投影点的距离范围为2.4mm~3.4mm,且第一泄压孔1131的中心O1在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为14mm~18mm。在一些实施例中,为进一步提升耳道处的听音效果,可以缩小出声孔112距耳道的距离,并增加第一泄压孔1131距耳道的距离,故出声孔112的中心O在矢状面的投影点距耳道口中心O3在矢状面的投影点的距离范围为2.4mm~3.2mm,且第一泄压孔1131的中心O1在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为15.5mm~18mm。
本说明书一些实施例通过限定第一泄压孔1131与耳道的距离,同时限定出声孔112与耳道的距离,可以使第一泄压孔1131远离耳道设置,避免第一泄压孔1131输出的声音在耳道处与出声孔112输出的声音相消,导致听音效果减弱。
图17所示的发声部11的厚度尺寸与图7所示的发声部11的厚度尺寸类似:为了保证发声部11可以具有较好的声学输出效果以及保证佩戴时的稳定性,在一些实施例中,发声部11的厚度可以为2mm~20mm。在一些实施例中,发声部11的厚度可以为5mm-15mm。在一些实施例中,发声部11的厚度可以设置为6mm-12mm。这时第一泄压孔1131设置在上侧面US上,可以通过限定第一泄压孔1131距内侧面IS的距离,使第一泄压孔1131在Z方向上远离出声孔112设置。故在一些实施例中,发声部11的厚度为6mm-12mm,且第一泄压孔1131的中心O1沿Z方向距发声部11的内侧面IS的距离c1的范围为4.24mm~6.38mm。在一些实施例中,发声部11的厚度为6mm-12mm,且进一步增大第一泄压孔1131的中心O1距内侧面IS的距离,以使第一泄压孔1131在Z方向上更远离出声孔112设置,由此,第一泄压孔1131的中心O1沿Z方向距发声部11的内侧面IS的距离c1的范围为4.80mm~6.38mm。在一些实施例中,为减小发声部11的整体尺寸或质量,减小发声部11的厚度,第一泄压孔1131的中心O1距内侧面IS的最大距离不得不减小,在此基础上,增大第一泄压孔1131的中心O1距内侧面IS的最小距离,保证第一泄压孔1131在Z方向上更远离出声孔112设置,故发声部11的厚度为5mm-12mm,且第一泄压孔1131的中心O1沿Z方向距发声部11的内侧面IS的距离c1的范围为5.20mm~5.55mm。
本说明书一些实施例通过限定发声部11的厚度尺寸及第一泄压孔1131距内侧面IS的距离,可以使第一泄压孔1131远离出声孔112设置,使第一泄压孔1131发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加。
在一些实施例中,壳体111除述内侧面外的其他侧面上开设的与后腔声学耦合的一个或多个泄压孔113中的至少一个包括第二泄压孔1132,第二泄压孔1132可以是与第二泄压孔1132相同的泄压孔,第二泄压孔1132可以设置在发声部11的上侧面US、外侧面OS或下侧面LS上。在一些实施例中,当发声部11的自由端FE与耳甲腔抵靠,使得发声部11与耳甲腔形成的泄露结构靠近发声部11的下侧面LS,为使得第二泄压孔1132输出的声音能够与出声孔112经泄露结构泄出的声音在远场相消,第二泄压孔1132应该靠近泄露结构设置。由于泄露结构可能靠近发声部11的下侧面LS,故第二泄压孔1132设置在下侧面US或外侧面OS上靠近下侧面US的区域。在一些实施例中,为提升第二泄压孔1132输出的声音与经泄露结构泄出的声音在远场相消,提升降漏音效果,第二泄压孔1132设置在下侧面US上。在一些实施例中,发声部11至少部分插入耳甲腔,保证第二泄压孔1132的全部或部分面积不能由于自由端FE与耳甲腔壁面的抵接而被遮挡,使得第二泄压孔1132的有效面积减小,第二泄压孔1132沿X方向距发声部11的后侧面RS的距离不能太近。因此,在一些实施例中,第二泄压孔1132的中心O2距后侧面RS的距离d3的范围为13.51mm~20.27mm。在一些实施例中,第二泄压孔1132的中心O2距后侧面RS的距离d3的范围为15.00mm~19.55mm。在一些实施例中,第二泄压孔1132的中心O2距后侧面RS的距离d3的范围为17.15mm~18.25mm。
与第一泄压孔1131类似地,在一些实施例中,为了使出声孔112靠近耳道,同时使第二泄压孔1132远离耳道,以尽量避免第二泄压孔1132输出的声音在耳道处与出声孔112输出的声音相消,从而提升耳道处的听音效果,可以限制出声孔112距离耳道较近,第二泄压孔1132距离耳道较远。因此,在一些实施例中,出声孔112的中心O在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为2.2mm~3.8mm,在此配置下,第二泄压孔1132距离耳道较远,以提升耳道处的听音效果,第二泄压孔的中心O2在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为6.88mm~10.32mm。其中,第二泄压孔1132距耳道距离的最大值受限于发声部11的尺寸。在一些实施例中,由于耳道附近存在耳屏,出声孔112很容易被耳屏遮挡,此时,为了尽可能使出声孔112在离耳道较近的位置且不被遮挡,出声孔112的中心O在矢状面的投影点距耳道口中心O3在矢状面的投影点的距离范围为2.4mm~3.4mm,且第二泄压孔的中心O2在矢状面的投影点距耳道 的中心O3在矢状面的投影点的距离范围为7.88mm~10.32mm。在一些实施例中,为进一步提升耳道处的听音效果,可以缩小出声孔112距耳道的距离,并增加第二泄压孔1132距耳道的距离,故出声孔112的中心O在矢状面的投影点距耳道口中心O3在矢状面的投影点的距离范围为2.4mm~3.2mm,且第二泄压孔的中心O2在矢状面的投影点距耳道的中心O3在矢状面的投影点的距离范围为8.32mm~10.32mm。
本说明书一些实施例通过限定第二泄压孔1132与耳道的距离,同时限定出声孔112与耳道的距离,可以使第二泄压孔1132远离耳道设置,避免第二泄压孔1132输出的声音在耳道处与出声孔112输出的声音相消,导致听音效果减弱。
与第一泄压孔1131类似地,第二泄压孔1132设置在下侧面上,可以通过限定第二泄压孔1132距内侧面IS的距离,使第二泄压孔1132在Z方向上远离出声孔112设置,避免第二泄压孔1132输出的声音过多地通过泄露结构进入腔体结构内与出声孔112输出的声音相消,导致听音效果减弱。故在一些实施例中,发声部11的厚度为6mm-12mm,且第二泄压孔1132的中心O2沿Z方向距发声部11的内侧面IS的距离c2的范围为4.24mm~6.38mm。在一些实施例中,发声部11的厚度为6mm-12mm,且进一步增大第二泄压孔1132的中心O2距内侧面IS的距离,以使第二泄压孔1132在Z方向上更远离出声孔112设置,由此,第二泄压孔1132的中心O2沿Z方向距发声部11的内侧面IS的距离c2的范围为4.80mm~6.38mm。在一些实施例中,为减小发声部11的整体尺寸或质量,减小发声部11的厚度,第二泄压孔1132的中心O2距内侧面IS的最大距离不得不减小,在此基础上,增大第二泄压孔1132的中心O2距内侧面IS的最小距离,保证第二泄压孔1132在Z方向上更远离出声孔112设置,故发声部11的厚度为5mm-12mm,且第二泄压孔1132的中心O2沿Z方向距发声部11的内侧面IS的距离c2的范围为5.20mm~5.55mm。
本说明书一些实施例通过基于发声部11的厚度尺寸,从Z方向上限定第二泄压孔1132的位置,可以使第二泄压孔1132远离出声孔112设置,避免第二泄压孔1132输出的声音在耳道处与出声孔112输出的声音相消,导致听音效果减弱。
在一些实施例中,发声部11与耳甲腔之间形成的腔体结构,具有至少两个泄露结构,自由端FE可以在长轴方向X和短轴方向Y上抵接在耳甲腔内,此时,发声部11的内侧面IS相对于矢状面倾斜,并且此时发声部的内侧面IS与耳甲腔之间至少具有靠近头顶的第一泄露结构UC(即耳甲腔与内侧面IS上边界之间的缝隙)和靠近耳道的第二泄露结构LC(即耳甲腔与内侧面IS下边界之间的缝隙)。在一些实施例中,当耳机10以图17所示的佩戴方式进行佩戴时,发声部的内侧面IS与耳甲腔之间形成的第一泄露结构UC和第二泄露结构LC在长轴方向X上和厚度方向Z上均具有一定的尺度。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以将耳机10处于佩戴状态时内侧面IS的上/下边界分别与耳部(例如,耳甲腔的侧壁、耳轮脚)相交而形成的两点的中点作为第一泄露结构UC和第二泄露结构LC的位置参考点,以耳道的耳道口中心作为耳道的位置参考点。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以在耳机10处于佩戴状态时,将内侧面IS的上边界的中点作为第一泄露结构UC的位置参考点,以内侧面IS的下边界靠近自由端FE的三等分点(以下简称内侧面IS的下边界的1/3点)作为第二泄露结构LC的位置参考点。在本说明书中,当内侧面IS与上侧面US和/或下侧面LS之间的交界处为弧形时,内侧面IS的上边界可以指内侧面IS与上侧面US之间的相交线,内侧面IS的下边界可以指内侧面IS与下侧面LS之间的相交线。在一些实施例中,当发声部11的一个或多个侧面(例如,内侧面IS、上侧面US和/或下侧面LS)为弧面时,两个侧面的相交线可以指所述两个侧面的距发声部中心最远且平行于发声部长轴或短轴的切面之间的相交线。
仅作为示例,本说明书将以内侧面IS的上边界的中点以及下边界的1/3点分别作为第一泄露结构UC和第二泄露结构LC的位置参考点。需要知道的是,选定的内侧面IS的上边界的中点以及下边界的1/3点,只是作为示例性的参考点来描述第一泄露结构UC和第二泄露结构LC的位置。在一些实施例中,还可以选定其他参考点用以描述第一泄露结构UC和第二泄露结构LC的位置。例如,由于不同用户耳部的差异性,导致当耳机10处于佩戴状态时所形成的第一泄露结构UC/第二泄露结构LC为一宽度渐变的缝隙,此时,第一泄露结构UC/第二泄露结构LC的参考位置可以为内侧面IS的上边界/下边界上靠近缝隙宽度最大的区域的位置。例如,可以以内侧面IS的上边界的中点作为第一泄露结构UC的位置,以内侧面IS的下边界靠近自由端FE的1/3点作为第二泄露结构LC的位置。
图22是根据本说明书一些实施例所示的开放式耳机处于佩戴状态时在矢状面的投影示意图;在一些实施例中,如图22所示,内侧面IS的上边界在矢状面的投影可以与上侧面US在矢状 面的投影重合,内侧面IS的下边界在矢状面的投影可以与下侧面LS在矢状面的投影重合。第一泄露结构UC的位置参考点(即内侧面IS的上边界的中点)在矢状面的投影为点A,第二泄露结构LC的位置参考点(即内侧面IS的下边界的1/3点)在矢状面的投影为点C。其中,“内侧面IS的上边界的中点在矢状面的投影点A”可以是内侧面IS的上边界与换能器的磁路组件的短轴中心面的相交点投影在矢状面上的投影点。磁路组件的短轴中心面是指平行于发声部11的短轴方向且通过磁路组件的几何中心的平面。“内侧面IS的下边界的1/3点在矢状面的投影点C”可以是内侧面IS的下边界靠近自由端FE的三等分点在矢状面上的投影点。
如图22所示,在佩戴状态下,耳机10的发声部11在矢状面上的投影可以至少部分覆盖用户的耳道,但耳道可以通过泄露结构与外界连通,以实现解放用户的双耳。出声孔112的声音可以通过泄露结构泄出,为保证出声孔112较少地泄出声音,出声孔112应该远离泄露结构设置。在一些实施例中,在发声部11至少部分地插入耳甲腔内的前提下,为了使出声孔112远离第二泄露结构设置,避免出声孔112的声音未被耳道接收就过多的泄露,且使腔体结构具有合适体积V,以使耳道的收音效果较好。其中,第一泄压孔1131与第二泄露结构的距离与发声部11的尺寸有关,当第一泄压孔1131与第二泄露结构的距离越大,意味着发声部11的尺寸更大,即腔体结构的体积越大,有利于提升听音效果。故为提升耳道处的听音效果,可以增大出声孔112与第二泄露结构的距离,同时增大第一泄压孔1131与第二泄露结构的距离。但是,发声部11的尺寸也不能过大,否则会影响耳机10在佩戴时的稳定性和舒适性。因此,在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为13.76mm~20.64mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.5mm~5.6mm。在一些实施例中,进一步增大腔体结构,以提升出声孔112输出声音的聚拢性,出声孔112与第二泄露结构的距离也随之增大。第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为15.76mm~20.64mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.9mm~5.6mm。在一些实施例中,为提升用户佩戴耳机的舒适性,避免发声部11的尺寸过大,即避免腔体结构的体积越大,可减小腔体结构,出声孔112与第二泄露结构的距离也随之减小。第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为16.16mm~18.24mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.3mm~4.8mm。
类似地,在一些实施例中,在发声部11至少部分地插入耳甲腔内的前提下,为了使出声孔112远离上泄露结构设置,避免出声孔112的声音未被耳道接收就过多的泄露,且使腔体结构具有合适体积V,以使耳道的收音效果较好。其中,第二泄压孔1132与上泄露结构的距离与发声部11的尺寸有关,当第二泄压孔1132与上泄露结构的距离越大,意味着发声部11的尺寸更大,即腔体结构的体积越大,有利于提升听音效果。故为提升耳道处的听音效果,可以增大出声孔112与上泄露结构的距离,同时增大第二泄压孔1132与上泄露结构的距离。但是,发声部11的尺寸也不能过大,否则会影响耳机10在佩戴时的稳定性和舒适性。因此,在一些实施例中,第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为14.4mm~21.6mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为10.0mm~15.2mm。在一些实施例中,进一步增大腔体结构,以提升出声孔112输出声音的聚拢性,出声孔112与上泄露结构的距离也随之增大。第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为17.4mm~21.6mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为13.0mm~15.2mm。在一些实施例中,为提升用户佩戴耳机的舒适性,避免发声部11的尺寸过大,即避免腔体结构的体积越大,可减小腔体结构,出声孔112与第二泄露结构的距离也随之减小。第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为17.4mm~18.2mm,且出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为13.0mm~14.2mm。
在一些实施例中,由于出声孔112设置得靠近下侧面LS,第二泄压孔1132在Y方向上相对于第一泄压孔1131更靠近出声孔112,下侧面LS上的第二泄压孔1132应当设置得尽量远离出声孔112,使第二泄压孔1132发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加。因此,在一些实施例中,可以使第二泄压孔1132在X方向上远离出声孔112,以使出声孔112与第二泄压孔1132的距离尽可能大。在这种情况下,第二泄 压孔1132可以设置得较第一泄压孔1131更远离后侧面RS(或自由端FE)。
在一些实施例中,为了使出声孔112远离第二泄露结构设置,避免出声孔112的声音未被耳道接收就过多的泄露,且为了尽量避免第二泄压孔1132输出的声音较多地通过第二泄露结构进入腔体结构内,与出声孔112输出的声音相消,导致听音效果减弱,可以使第二泄压孔1132远离第二泄露结构设置。故为提升耳道处的听音效果,可以增大出声孔112与第二泄露结构的距离,同时增大第二泄压孔1132与第二泄露结构的距离。因此,在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.5mm~5.6mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为8.16mm~12.24mm。在一些实施例中,为减少第二泄压孔1132的声音通过第二泄露结构LC传入腔体结构与出声孔112的声音相消,可以增大出声孔112与第二泄露结构的距离,同时增大第二泄压孔1132与第二泄露结构的距离,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.3mm~5.6mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为9.16mm~12.24mm。在一些实施例中,当使出声孔112靠近耳道设置,可以增大出声孔112与第二泄露结构的距离,在此基础上,同时增大第二泄压孔1132与第二泄露结构的距离,可进一步提升耳道处的听音效果,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.8mm~5.6mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为9.66mm~12.24mm。
本说明书一些实施例通过限定第二泄压孔1132与第二泄露结构的距离,可以使第二泄压孔1132远离泄露结构设置,避免第二泄压孔1132输出的声音较多地通过泄露结构进入腔体结构与出声孔112输出的声音相消,导致听音效果减弱。
在一些实施例中,除了内侧面IS,壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有至少两个泄压孔113,至少两个泄压孔113的设置可以破坏后腔中驻波,使得泄压孔113导出至壳体111外部的声音的谐振频率尽可能地高,从而使得后腔的频响具有较宽的平坦区域(例如,在谐振峰之前的区域),并在中高频范围内(例如2kHz~6kHz)获得更好的降漏音效果。仅作为示例,泄压孔113可以包括第一泄压孔1131和第二泄压孔1132。在一些实施例中,第一泄压孔1131和第二泄压孔1132可以设置在壳体111的同一个侧面上,例如,第一泄压孔1131和第二泄压孔113可以同时设置在外侧面OS、上侧面US或下侧面LS上。在一些实施例中,对应第一泄露结构UC和第二泄露结构LC,第一泄压孔1131和第二泄压孔1132可以分别靠近第一泄露结构UC和第二泄露结构LC设置。例如,第一泄压孔1131可以设置在上侧面US上,第二泄压孔1132可以设置在外侧面OS上靠近下侧面LS的区域,或者,第二泄压孔1132可以设置在下侧面LS上,第一泄压孔1131可以设置在外侧面OS上靠近上侧面US的区域。在一些实施例中,为最大程度上破坏后腔中的驻波,两个泄压孔113可以位于壳体111的相对两侧,例如,第一泄压孔1131可以设置在上侧面US上,第二泄压孔1132可以设置在下侧面LS上。为了便于描述,如图17所示,本说明书将以第一泄压孔1131设置在上侧面US上、第二泄压孔1132设置在下侧面LS上为例进行示例性的说明。可以理解的是,前述实施例中涉及的单独设置的第一泄压孔1131或第二泄压孔1132的相关尺寸参数同样适用于同时设置的第一泄压孔1131及第二泄压孔1132。
发声部11的上侧面US上设置有第一泄压孔1131,同时下侧面LS上设置有第二泄压孔1132,当发声部11的短轴尺寸确定后,即,发声部11的短轴尺寸范围为10mm-15mm,在该配置下,为了提升出声孔112在耳道(即,听音位置)的声音强度(音量),可以将出声孔112同时远离第一泄压孔1131、第二泄压孔1132设置,在此基础上,第一泄压孔1131与第二泄压孔1132之间的距离应该设置得较远。故在一些实施例中,发声部11的短轴尺寸范围为10mm-15mm,且第一泄压孔1131的中心O1在矢状面的投影点距第二泄压孔1132的中心O2在矢状面的投影点的距离范围为8.51mm~15.81mm。在一些实施例中,可以减小发声部11的短轴尺寸,以减小发声部11的质量,在此基础上,第一泄压孔1131距第二泄压孔1132的最大距离随之减小,并尽量将第一泄压孔1131距第二泄压孔1132的距离限制在较大范围内,故发声部11的短轴尺寸范围为11mm-13.5mm,且第一泄压孔1131的中心O1在矢状面的投影点距第二泄压孔1132的中心O2在矢状面的投影点的距离范围为10.51mm~14.81mm。在一些实施例中,同理,发声部11的短轴尺寸范围为12mm-13mm,且第一泄压孔1131的中心O1在矢状面的投影点距第二泄压孔1132的中心O2在矢状面的投影点的距离范围为12.51mm~13.81mm。
在一些实施例中,为避免第一泄压孔1131和第二泄压孔1132输出的声音影响出声孔112 输出的声音在听音位置的音量,第一泄压孔1131和第二泄压孔1132应尽可能远离出声孔112,例如,可以使出声孔112的中心位于第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面上或中垂面附近。在一些实施例中,出声孔112的中心O1可以距第一泄压孔1131的中心O1与第二泄压孔1132的中心O2的连线的中垂面0mm~2mm。
本说明书一些实施例通过限定第一泄压孔1131与第二泄压孔1132的距离、出声孔112与第一泄压孔1131与第二泄压孔1132连线的距离,可以使出声孔112同时远离第一泄压孔1131及第二泄压孔1132设置,避免第一泄压孔1131和第二泄压孔1132输出的声音影响出声孔112输出的声音在听音位置的音量。
需要说明的是,第一泄压孔1131设置于上侧面US,由于耳部结构的遮挡,发声部11的上侧面US设置第一泄压孔1131的空间有限,故第一泄压孔1131的中心O1在矢状面的投影点与内侧面IS的上边界的中点在矢状面的投影点A可以基本重合。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于2mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于1mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于0.5mm。在此配置下,可以使第二泄压孔1132远离第二泄露结构设置,以避免第二泄压孔1132输出的声音较多地通过第二泄露结构进入腔体结构内,与出声孔112输出的声音相消,导致听音效果减弱,故为提升耳道处的听音效果,可以增大第二泄压孔1132与第二泄露结构的距离。因此,在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于2mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为8.16mm~12.24mm。在一些实施例中,为减少第二泄压孔1132的声音通过第二泄露结构LC传入腔体结构与出声孔112的声音相消,可以增大第二泄压孔1132与第二泄露结构的距离,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于2mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为9.16mm~12.24mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于2mm,且第二泄压孔1132的中心O2在矢状面的投影点距内侧面IS的下边界的1/3点在矢状面的投影点B的距离范围为9.66mm~12.24mm。
本说明书一些实施例通过限定第二泄压孔1132与第二泄露结构的距离,可以使第二泄压孔1132远离泄露结构设置,避免第二泄压孔1132输出的声音较多地通过泄露结构进入腔体结构与出声孔112输出的声音相消,导致听音效果减弱。
在一些实施例中,可以通过确定第一泄压孔1131的中心O1与出声孔112的中心O的距离(也可以称为第一距离)与第二泄压孔1132的中心O2与出声孔112的中心O的距离(也可以称为第二距离)之间的关系,以使出声孔112的中心O近似在连线O1O2的中垂面上。在一些实施例中,第一距离与第二距离之差小于10%。在一些实施例中,第一距离与第二距离之差小于8%。在一些实施例中,第一距离与第二距离之差小于5%。在一些实施例中,第一距离与第二距离之差小于2%。
在一些实施例中,为了避免泄压孔(例如,第一泄压孔1131和第二泄压孔1132)发出的声波与出声孔112发出的声波在近场相消而影响用户的听音质量,第一泄压孔1131和第二泄压孔1132与出声孔112之间的距离不能太近。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为4mm~15.11mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为4mm~15mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为5.12mm~15.11mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以不小于5mm~14mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以不小于6mm~13mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以不小于7mm~12mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以不小于8mm~10mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为9.55mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O之间的距离可以为4mm~16.1mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以不小于4mm~15mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以不小于5mm~14mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O之间的距离可以为5.12mm~16.1mm。在一些实施例中, 第二泄压孔1132的中心O2与出声孔112的中心O的距离可以不小于6mm~13mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以不小于7mm~12mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以不小于8mm~10mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为9.15mm。
在一些实施例中,为以尽可能地拉大第一泄压孔1131、第二泄压孔1132与出声孔112之间的距离,可以减小第一泄压孔1131的中心O1与出声孔112的中心O之间的连线O1O与第二泄压孔1132的中心O2与出声孔112的中心O之间的连线O2O之间的夹角角度。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°~114.04°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°~90.40°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°~70.04°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°~60.04°。在一些实施例中,第一泄压孔1131的中心O1与第二泄压孔1132的中心O2的连线O1O2与连线O2O之间的角度范围为19.72°~101.16°。在一些实施例中,连线O1O2与连线O2O之间的角度范围为19.71°~97.75°。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,当发声部11上只设置有一个泄压孔时,该泄压孔可以是上述第一泄压孔1131和第二泄压孔1132中的任意一个。这些变化和修改仍处于本申请的保护范围之内。
图23是根据本说明书一些实施例所示的发声部的示例性内部结构图。
如图23所示,发声部11可以包括与耳挂12连接的壳体111和设置在壳体111内的换能器116。在一些实施例中,发声部11还可以包括设置在壳体111内的主控电路板13和设置在耳挂12远离发声部11一端的电池(未示出),电池和换能器116分别与主控电路板13电性连接,以允许电池在主控电路板13的控制下为换能器116供电。当然,电池和换能器116也可以均设置在发声部11内,且电池可以更靠近连接端CE而换能器116则可以更靠近自由端FE。
在一些实施例中,耳机10可以包括连接发声部11和耳挂12的调节机构,不同的用户在佩戴状态下能够通过调节机构调节发声部11在耳部100上的相对位置,以使得发声部11位于一个合适的位置,从而使得发声部11与耳甲腔形成腔体结构。除此之外,由于调节机构的存在,用户也能够调节耳机10佩戴至更加稳定、舒适的位置。
由于耳甲腔具有一定的容积及深度,使得自由端FE伸入耳甲腔内之后,发声部11的内侧面IS与耳甲腔之间能够具有一定的间距。换言之,发声部11在佩戴状态下与耳甲腔可以配合形成与外耳道连通的腔体结构,发声部11(例如,内侧面IS)上设有出声孔112,且出声孔112可以至少部分位于前述腔体结构内。如此,在佩戴状态下,由出声孔112传播而出的声波会受到前述腔体结构的限制,也即前述腔体结构能够聚拢声波,使得声波能够更好地传播至外耳道内,从而提高用户在近场听到的声音的音量和音质,这样有利于改善耳机10的声学效果。进一步地,由于发声部11可以设置成在佩戴状态下不堵住外耳道,使得前述腔体结构可以呈半设置。如此,由出声孔112传播而出的声波,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳部100之间的泄漏结构(例如耳甲腔未被发声部11覆盖的一部分)传播至耳机10及耳部100的外部,从而在远场形成第一漏音;与此同时,经由发声部11上开设的泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)传播出去的声波一般会在远场形成第二漏音,前述第一漏音的强度和前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场相消,这样有利于降低耳机10在远场的漏音。
在一些实施例中,换能器116与壳体111之间可以形成前腔114,出声孔112设置于壳体111上包围形成前腔114的区域,前腔114通过出声孔112与外界连通。
在一些实施例中,前腔114设置于换能器116的振膜与壳体111之间,为了保证振膜具有充足的振动空间,前腔114可以具有较大的深度尺寸(即换能器116的振膜与其正对的壳体111之间的距离尺寸)。在一些实施例中,如图23所示,出声孔112设置于厚度方向Z上的内侧面IS上,此时前腔114的深度可以是指前腔114在Z方向上的尺寸。但是,前腔114的深度过大,又会导致发声部11的尺寸增大,影响耳机10的佩戴舒适性。在一些实施例中,前腔114的深度可以为0.55mm~1.00mm。在一些实施例中,前腔114的深度可以为0.66mm~0.99mm。在一些实施例中,前腔114的深度可以为0.76mm~0.99mm。在一些实施例中,前腔114的深度可以为0.96mm~0.99mm。在一些实施例中,前腔114的深度可以为0.97mm。
为了提升耳机10的出声效果,前腔114和出声孔112构成的类似亥姆霍兹共振腔结构的 谐振频率要尽可能的高,以此使得发声部的整体的频率响应曲线具有较宽的平坦区域。在一些实施例中,前腔114的谐振频率f1可以不低于3kHz。在一些实施例中,前腔114的谐振频率f1可以不低于4kHz。在一些实施例中,前腔114的谐振频率可以不低于6kHz。在一些实施例中,前腔114的谐振频率可以不低于7kHz。在一些实施例中,前腔114的谐振频率可以不低于8kHz。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。

Claims (25)

  1. 一种耳机,包括:
    发声部,包括换能器和容纳所述换能器的壳体,所述发声部朝向用户耳廓的内侧面上开设出声孔,用于将所述换能器产生的声音导出所述壳体后传向用户耳道;以及
    耳挂,在佩戴状态下,将所述发声部佩戴于所述耳道附近但不堵塞耳道口的位置;
    其中,所述发声部的至少部分插入耳甲腔,所述发声部的后侧面在所述矢状面的投影与所述耳甲腔的边缘在所述矢状面的投影的距离范围为0~7.25mm,所述出声孔的中心距所述发声部的后侧面的距离范围为8.15mm~12.25mm。
  2. 根据权利要求1所述的耳机,其中,所述发声部除所述内侧面外的其他侧面上开设有一个或多个泄压孔,所述一个或多个泄压孔的中心距所述发声部的后侧面的距离范围为10.44mm~15.68mm或13.51mm~20.27mm。
  3. 根据权利要求1或2所述的耳机,其中,所述发声部在矢状面上的投影与所述耳甲腔在所述矢状面上的投影具有重叠部分,所述重叠部分的面积与所述耳甲腔在所述矢状面上的投影面积的比值不小于44.01%。
  4. 根据权利要求3所述的耳机,其中,所述发声部在所述矢状面的投影的面积范围为202mm2~560mm2
  5. 根据权利要求1或2所述的耳机,其中,所述出声孔的中心距所述发声部的下侧面的距离范围为4.05mm~6.05mm;且所述发声部的短轴尺寸范围为10mm~15mm。
  6. 根据权利要求2所述的耳机,其中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔,所述第一泄压孔开设在所述发声部的上侧面、外侧面或下侧面上,所述第一泄压孔的中心距所述后侧面的距离范围为10.44mm~15.68mm。
  7. 根据权利要求6所述的耳机,其中,
    所述出声孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为2.2mm~3.8mm;且
    所述第一泄压孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为12mm~18mm。
  8. 根据权利要求6所述的耳机,其中,
    所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为3.5mm~5.6mm;且
    所述第一泄压孔的中心在所述矢状面的投影距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为13.76mm~20.64mm。
  9. 根据权利要求6所述的耳机,其中,
    所述发声部的厚度范围为6mm~12mm;且
    所述第一泄压孔的中心距所述发声部朝向耳廓的所述内侧面的距离范围为4.24mm~6.38mm。
  10. 根据权利要求2或6所述的耳机,其中,所述一个或多个泄压孔中的所述至少一个包括第二泄压孔,所述第二泄压孔开设在所述发声部的上侧面、外侧面或下侧面上,所述第二泄压孔 的中心距所述后侧面的距离范围为13.51mm~20.27mm。
  11. 根据权利要求10所述的耳机,其中,
    所述出声孔的中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为2.2mm~3.8mm;且
    所述第二泄压孔的所述中心在所述矢状面的投影点距所述耳道口的中心在所述矢状面的投影点的距离范围为6.88mm~10.32mm。
  12. 根据权利要求10所述的耳机,其中,
    所述出声孔的所述中心在矢状面的投影点距所述内侧面的上边界的中点在所述矢状面的投影点的距离范围为10.0mm~15.2mm;且
    所述第二泄压孔的所述中心在矢状面的投影点距所述内侧面的上边界的中点在所述矢状面的投影点的距离范围为14.4mm~21.6mm。
  13. 根据权利要求10所述的耳机,其中,
    所述发声部的厚度范围为6mm~12mm;且
    所述第二泄压孔的所述中心距所述发声部朝向所述耳廓的所述内侧面的距离范围为4.24mm~6.38mm。
  14. 根据权利要求10所述的耳机,其中,
    所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为3.5mm~5.6mm;且
    所述第二泄压孔的中心在所述矢状面的投影距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为8.16mm~12.24mm。
  15. 根据权利要求2所述的耳机,其中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔和第二泄压孔,所述第一泄压孔和所述第二泄压孔分别开设于发声部的相对两侧。
  16. 根据权利要求15所述的耳机,其中,
    所述发声部的短轴尺寸范围为10mm~15mm;且
    所述第一泄压孔的中心在所述矢状面的投影点距所述第二泄压孔的中心在所述矢状面的投影点的距离范围为8.51mm~15.81mm。
  17. 根据权利要求16所述的耳机,其中,所述出声孔的中心距所述第一泄压孔的所述中心与所述第二泄压孔的所述中心的连线的中垂面的距离为0mm~2mm。
  18. 根据权利要求15所述的耳机,其中,
    所述第一泄压孔的中心在所述矢状面的投影距所述内侧面的上边界在所述矢状面的投影的中点的距离范围不大于2mm;且
    所述第二泄压孔的所述中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离范围为8.16mm~12.24mm。
  19. 一种耳机,包括:
    发声部,包括换能器和容纳所述换能器的壳体,所述发声部朝向用户耳廓的内侧面上开设出 声孔,用于将所述换能器产生的声音导出所述壳体后传向用户耳道,所述发声部除所述内侧面外的其它侧面上开设有一个或多个泄压孔;以及
    耳挂,在佩戴状态下,将所述发声部佩戴于耳道附近但不堵塞耳道口的位置;
    其中,所述发声部的至少部分位于对耳轮处,所述发声部的后侧面在所述矢状面的投影与所述耳廓的内轮廓在所述矢状面的投影的距离不大于8mm,所述出声孔的中心距所述发声部的后侧面的距离范围为9.5mm~15.0mm,所述一个或多个泄压孔中的至少一个的中心距所述后侧面的距离范围为8.60mm~12.92mm。
  20. 根据权利要求19所述的耳机,其中,
    所述出声孔的中心距所述耳挂的上顶点的距离范围为17.5mm~27.0mm;且
    所述发声部在矢状面上的投影与所述耳甲腔在所述矢状面上的投影具有重叠部分,所述重叠部分的面积与所述耳甲腔在所述矢状面上的投影面积的比值不小于11.82%。
  21. 根据权利要求20所述的耳机,其中,
    所述发声部的短轴尺寸范围为11mm~18mm;且
    所述出声孔的中心距所述发声部的下侧面的距离范围为2.3mm~3.6mm。
  22. 根据权利要求21所述的耳机,其中,所述一个或多个泄压孔中的所述至少一个包括第一泄压孔,所述第一泄压孔开设在所述发声部的上侧面、外侧面或下侧面上。
  23. 根据权利要求22所述的耳机,其中,
    所述发声部的厚度为6mm~12mm;且
    所述第一泄压孔的中心距所述内侧面的距离范围为4.43mm~7.96mm。
  24. 根据权利要求22所述的耳机,其中,所述一个或多个泄压孔中的所述至少一个还包括第二泄压孔,所述第一泄压孔和所述第二泄压孔开设于发声部的相对两侧。
  25. 根据权利要求24所述的耳机,其中,
    所述第二泄压孔的中心距所述内侧面的距离范围为4.43mm~7.96mm;且
    所述出声孔的中心距所述第一泄压孔的中心与所述第二泄压孔的中心的连线的中垂线的距离为0mm~2mm。
PCT/CN2023/117777 2022-10-28 2023-09-08 一种耳机 WO2024087907A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CNPCT/CN2022/144339 2022-12-30
CN2022144339 2022-12-30
CNPCT/CN2023/079412 2023-03-02
PCT/CN2023/079410 WO2024087443A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
CNPCT/CN2023/079410 2023-03-02
CNPCT/CN2023/079404 2023-03-02
PCT/CN2023/079404 WO2024087440A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079412 WO2024087445A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/585,132 Continuation US20240196129A1 (en) 2022-10-28 2024-02-23 Earphones

Publications (1)

Publication Number Publication Date
WO2024087907A1 true WO2024087907A1 (zh) 2024-05-02

Family

ID=90793273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117777 WO2024087907A1 (zh) 2022-10-28 2023-09-08 一种耳机

Country Status (2)

Country Link
CN (1) CN117956363A (zh)
WO (1) WO2024087907A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034574A1 (ja) * 2003-10-02 2005-04-14 Isamu Koizumi ヘッドホンによる立体音響再生装置
WO2017081733A1 (ja) * 2015-11-09 2017-05-18 共栄エンジニアリング株式会社 音響再生装置
CN107113486A (zh) * 2014-10-30 2017-08-29 索尼公司 声音输出设备
CN110958517A (zh) * 2018-09-27 2020-04-03 Jvc 建伍株式会社 线卡合件及具备该线卡合件的耳机
CN111955017A (zh) * 2018-04-12 2020-11-17 理音株式会社 电声换能器和声学装置
CN114286243A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114339511A (zh) * 2020-10-10 2022-04-12 万魔声学(湖南)科技有限公司 无线耳机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034574A1 (ja) * 2003-10-02 2005-04-14 Isamu Koizumi ヘッドホンによる立体音響再生装置
CN107113486A (zh) * 2014-10-30 2017-08-29 索尼公司 声音输出设备
WO2017081733A1 (ja) * 2015-11-09 2017-05-18 共栄エンジニアリング株式会社 音響再生装置
CN111955017A (zh) * 2018-04-12 2020-11-17 理音株式会社 电声换能器和声学装置
CN110958517A (zh) * 2018-09-27 2020-04-03 Jvc 建伍株式会社 线卡合件及具备该线卡合件的耳机
CN114286243A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN114339511A (zh) * 2020-10-10 2022-04-12 万魔声学(湖南)科技有限公司 无线耳机

Also Published As

Publication number Publication date
CN117956363A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2024087907A1 (zh) 一种耳机
WO2024087443A1 (zh) 一种开放式耳机
WO2024087491A1 (zh) 一种耳机
WO2024087908A1 (zh) 一种耳机
US20240196129A1 (en) Earphones
US20240147144A1 (en) Open earphones
WO2024088246A1 (zh) 一种耳机
TW202418843A (zh) 一種開放式耳機
TW202418822A (zh) 一種開放式耳機
TW202418826A (zh) 一種開放式耳機
CN220325780U (zh) 一种耳机
WO2024088223A1 (zh) 一种耳机
US20240187780A1 (en) Earphones
WO2024088222A1 (zh) 一种开放式耳机
TW202418827A (zh) 一種開放式耳機
TW202418829A (zh) 一種開放式耳機
CN118138938A (zh) 一种开放式耳机
TW202418835A (zh) 一種開放式耳機
TW202418844A (zh) 一種耳機
TW202418832A (zh) 一種開放式耳機
TW202418830A (zh) 一種開放式耳機
TW202418833A (zh) 一種開放式耳機
TW202418824A (zh) 一種開放式耳機