WO2024087491A1 - 一种耳机 - Google Patents

一种耳机 Download PDF

Info

Publication number
WO2024087491A1
WO2024087491A1 PCT/CN2023/083546 CN2023083546W WO2024087491A1 WO 2024087491 A1 WO2024087491 A1 WO 2024087491A1 CN 2023083546 W CN2023083546 W CN 2023083546W WO 2024087491 A1 WO2024087491 A1 WO 2024087491A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
pressure relief
relief hole
center
hole
Prior art date
Application number
PCT/CN2023/083546
Other languages
English (en)
French (fr)
Inventor
张磊
童珮耕
解国林
李永坚
徐江
招涛
武多多
戢澳
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2023/079404 external-priority patent/WO2024087440A1/zh
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to US18/334,401 priority Critical patent/US20240147108A1/en
Priority to US18/468,676 priority patent/US20240007804A1/en
Priority to US18/472,180 priority patent/US20240015452A1/en
Priority to US18/476,212 priority patent/US20240031724A1/en
Priority to US18/476,225 priority patent/US20240031725A1/en
Publication of WO2024087491A1 publication Critical patent/WO2024087491A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones

Definitions

  • the present application relates to the field of acoustic technology, and in particular to a headset.
  • acoustic devices such as headphones
  • electronic devices such as mobile phones and computers
  • acoustic devices can generally be divided into in-ear, head-mounted, ear-hook, etc.
  • An embodiment of the present application provides an earphone, which includes: a sound-emitting part, including: a transducer, including a diaphragm, for generating sound under the action of an excitation signal; and a shell, the shell forming a cavity for accommodating the transducer; and a suspension structure, which, in a worn state, is used to wear the sound-emitting part near the ear canal but not block the ear canal, wherein a sound outlet hole is provided on the inner side surface of the shell facing the auricle, for guiding the sound generated by the front side of the diaphragm out of the shell and transmitting it to the ear canal, and a first pressure relief hole is provided on the other side surface of the shell, for guiding the sound generated by the rear side of the diaphragm out of the shell, wherein the distance from the center of the sound outlet hole to the midpoint of the upper boundary of the inner side surface is greater than the distance from the center of the first pressure relief hole to the midpoint of the upper boundary of
  • the ratio of the distance from the center of the sound outlet hole to the midpoint of the upper boundary of the inner side surface to the distance from the center of the first pressure relief hole to the midpoint of the upper boundary of the inner side surface is in the range of 1.3-2.1.
  • a ratio of a ratio of an area of the sound outlet hole to a depth of the sound outlet hole to a ratio of an area of the first pressure relief hole to a depth of the first pressure relief hole is in a range of 1.10-1.75.
  • the ratio of the area of the sound outlet hole to the area of the first pressure relief hole is in the range of 0.5-1.5.
  • the ratio of the distance from the projection point of the center of the sound outlet in the sagittal plane to the centroid of the projection of the ear canal opening in the sagittal plane to the distance from the projection point of the center of the first pressure relief hole in the sagittal plane to the centroid of the projection of the ear canal opening in the sagittal plane is in the range of 0.10-0.35.
  • the suspension structure includes an ear hook.
  • the first part of the ear hook When worn, the first part of the ear hook is hung between the user's auricle and the head, the second part of the ear hook extends to the side of the auricle away from the head and is connected to the sound-emitting part, and the ratio of the distance between the center of the sound outlet and the upper vertex of the ear hook to the distance between the center of the first pressure relief hole and the upper vertex of the ear hook is in the range of 1.10-1.70.
  • the transducer also includes a magnetic circuit assembly, which is used to provide a magnetic field, and the absolute value of the difference between the distance from the center of the sound outlet hole to the center plane of the long axis of the magnetic circuit assembly and the distance from the center of the first pressure relief hole to the center plane of the long axis is in the range of 4.0 mm-6.1 mm.
  • the difference between the distance from the center of the sound outlet hole to the bottom surface of the magnetic circuit assembly and the distance from the center of the first pressure relief hole to the bottom surface of the magnetic circuit assembly is in the range of 3.65 mm-7.05 mm.
  • a second pressure relief hole is further provided on other side surfaces of the shell, and the area of the first pressure relief hole is larger than the area of the second pressure relief hole.
  • the distance between the center of the sound outlet hole and the perpendicular midplane of the line connecting the center of the first pressure relief hole and the center of the second pressure relief hole is 0 mm to 2 mm.
  • the first pressure relief hole is opened on the upper side of the shell, and the second pressure relief hole is opened on the lower side of the shell.
  • the ratio of the distance between the projection point of the center of the sound outlet in the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane to the distance between the projection point of the center of the second pressure relief hole in the sagittal plane and the projection point of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane is in the range of 0.65-1.05.
  • an angle between a line connecting the center of the sound outlet hole and the center of the first pressure relief hole and a line connecting the center of the sound outlet hole and the center of the second pressure relief hole is in the range of 46.40°-114.04°.
  • the distance between the center of the sound outlet hole and the center of the first pressure relief hole is equal to the distance between the center of the sound outlet hole and the second pressure relief hole.
  • the ratio between the distances to the centers of the electrodes is in the range of 0.9-1.1.
  • a ratio of an area of the sound outlet hole to a total area of the first pressure relief hole and the second pressure relief hole is in a range of 0.1-0.99.
  • the diaphragm divides the cavity into a front cavity and a rear cavity corresponding to the front side and the rear side of the diaphragm respectively, wherein the ratio between the volume of the rear cavity and the volume of the front cavity is in the range of 0.1-10.
  • the diaphragm divides the cavity into a front cavity and a rear cavity corresponding to the front side and the rear side of the diaphragm respectively, wherein the ratio between the resonance frequency of the front cavity and the resonance frequency of the rear cavity is in the range of 0.1-5.
  • the ratio of the area of the sound outlet hole to the total area of the first pressure relief hole and the second pressure relief hole is in the range of 1-10.
  • the diaphragm divides the cavity into a front cavity and a rear cavity corresponding to the front side and the rear side of the diaphragm respectively, wherein the ratio between the volume of the rear cavity and the volume of the front cavity is in the range of 0.1-10.
  • the diaphragm divides the cavity into a front cavity and a rear cavity corresponding to the front side and the rear side of the diaphragm respectively, wherein the ratio between the resonance frequency of the front cavity and the resonance frequency of the rear cavity is in the range of 0.5-10.
  • a ratio of the sound pressure at the sound outlet hole to the total sound pressure at the first pressure relief hole and the second pressure relief hole is in the range of 0.4-0.6.
  • the ratio of the difference between the area of the first pressure relief hole and the area of the second pressure relief hole to the area of the sound outlet hole is in the range of 2.5-3.9.
  • an acoustic resistance net is disposed at the location of at least one of the sound outlet hole, the first pressure relief hole, and the second pressure relief hole, and the thickness of the acoustic resistance net is in the range of 40 ⁇ m-150 ⁇ m.
  • the acoustic resistance mesh at the sound outlet includes a steel mesh, and the mesh number of the steel mesh is in the range of 60-100.
  • the acoustic resistance mesh at the sound outlet includes a steel mesh, and the mesh number of the steel mesh is in the range of 70-90.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present specification
  • FIG2 is an exemplary structural diagram of an earphone according to some embodiments of this specification.
  • FIG3 is a schematic diagram of two point sound sources and a listening position according to some embodiments of this specification.
  • FIG4 is a comparison diagram of sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of this specification;
  • FIG5 is a schematic diagram of an exemplary distribution of a baffle disposed between two sound sources of a dipole sound source according to some embodiments of this specification;
  • FIG6 is a diagram of sound leakage index with and without a baffle between two sound sources of a dipole sound source according to some embodiments of the present specification
  • FIG7 is an exemplary wearing diagram of an open-type headset according to some embodiments of this specification.
  • FIG8 is a schematic diagram of the structure of the open-type earphone shown in FIG7 facing the ear;
  • FIG9 is a schematic structural diagram of the housing of the open-type earphone shown in FIG7 ;
  • FIG. 10 is a schematic diagram of an exemplary distribution of a cavity structure arranged around one of the dipole sound sources according to some embodiments of this specification;
  • FIG. 11A is a schematic diagram of a listening principle of a dipole sound source structure and a cavity structure constructed around one of the dipole sound sources according to some embodiments of this specification;
  • FIG. 11B is a schematic diagram of a dipole sound source structure and a sound leakage principle of a cavity structure constructed around one of the dipole sound sources according to some embodiments of this specification;
  • FIG. 12A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present specification.
  • FIG12B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present specification.
  • FIG13 is a comparison diagram of listening index curves of a cavity structure with two openings and one opening according to some embodiments of this specification;
  • FIG14 is an exemplary wearing diagram of an open-type headset according to other embodiments of the present application.
  • FIG15 is a schematic diagram of the structure of the open-type earphone shown in FIG14 facing the ear;
  • FIG16 is a schematic diagram of a projection of an open-type earphone in a wearing state on a sagittal plane according to some embodiments of this specification;
  • FIG17 is a schematic structural diagram of a housing of an open-type earphone according to some embodiments of this specification.
  • FIG. 18 is a contour diagram of the volume ratio of the front and rear cavities, and the ratio of the opening area of the sound outlet hole to the opening area of the pressure relief hole according to some embodiments of the present specification;
  • FIG. 19 is a frequency response curve diagram corresponding to different volumes at a sound outlet according to some embodiments of the present specification.
  • FIG. 20 is a frequency response curve diagram corresponding to different volume levels at the first pressure relief hole according to some embodiments of the present specification.
  • FIG. 21 is a frequency response curve diagram corresponding to different volume levels at the second pressure relief hole according to some embodiments of this specification.
  • FIG22 is an exemplary internal structure diagram of a sound-producing part according to some embodiments of the present specification.
  • FIG. 23 is a diagram showing an exemplary internal structure of a transducer according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • device means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • unit means for distinguishing different components, elements, parts, portions or assemblies at different levels.
  • the words can be replaced by other expressions.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to a fixed connection, a detachable connection, or an integral connection; it can refer to a mechanical connection or an electrical connection; it can refer to a direct connection or an indirect connection through an intermediate medium, it can refer to the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the distance from a specific point to a line or a surface may refer to the shortest distance from the specific point to the line or the surface.
  • FIG. 1 is a schematic diagram of an exemplary ear according to some embodiments of the present application.
  • the ear 100 (also referred to as the auricle) may include an external auditory canal 101, a cavum concha 102, a cymba concha 103, a triangular fossa 104, an antihelix 105, a scaphoid 106, an auricle 107, an earlobe 108, a tragus 109, and an auricle crus 1071.
  • the acoustic device may be supported by one or more parts of the ear 100 to achieve stability in wearing the acoustic device.
  • the external auditory canal 101, the cavum concha 102, the cymba concha 103, the triangular fossa 104, and other parts have a certain depth and volume in three-dimensional space, which can be used to achieve the wearing requirements of the acoustic device.
  • an acoustic device e.g., an in-ear headset
  • the wearing of the acoustic device may be achieved by means of other parts of the ear 100 other than the external auditory canal 101.
  • the acoustic device can be worn with the help of the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107 and other parts or their combination.
  • it in order to improve the comfort and reliability of the acoustic device in wearing, it can also be further used with the user's earlobe 108 and other parts.
  • the user's external auditory canal 101 can be "liberated".
  • the acoustic device When the user wears the acoustic device, the acoustic device will not block the user's external auditory canal 101 (or ear canal or ear canal opening), and the user can receive both the sound from the acoustic device and the sound from the environment (for example, horn sounds, car bells, surrounding human voices, traffic control sounds, etc.), thereby reducing the probability of traffic accidents.
  • the acoustic device that does not block the user's external auditory canal 101 (or ear canal or ear canal opening) can be called an earphone.
  • the acoustic device can be designed to be compatible with the ear 100 according to the structure of the ear 100, so as to enable the sound-emitting part of the acoustic device to be worn at different positions of the ear.
  • the earphone can include a suspension structure (e.g., an ear hook) and a sound-emitting part, and the sound-emitting part is physically connected to the suspension structure, and the suspension structure can be adapted to the shape of the auricle, so as to place the entirety or a portion of the structure of the sound-emitting part on the front side of the tragus 109 (e.g., area J surrounded by dotted lines in FIG1 ).
  • the entirety or a portion of the structure of the sound-emitting part can contact the upper part of the external auditory canal 101 (e.g., the location of one or more parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, and the crus helix 1071).
  • the upper part of the external auditory canal 101 e.g., the location of one or more parts such as the cymba concha 103, the triangular fossa 104, the antihelix 105, the scaphoid 106, the helix 107, and the crus helix 1071).
  • the whole or part of the structure can be located in a cavity formed by one or more parts of the ear 100 (for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.) (for example, the area M1 surrounded by the dotted line in FIG. 1 which includes at least the cymba concha 103 and the triangular fossa 104, and the area M2 which includes at least the cavum concha 102).
  • the cavum concha 102 for example, the cavum concha 102, the cymba concha 103, the triangular fossa 104, etc.
  • the area M2 which includes at least the cavum concha 102
  • a simulator containing a head and its (left and right) ears can be made based on ANSI: S3.36, S3.25 and IEC: 60318-7 standards as a reference for wearing an acoustic device, thereby presenting the scene of most users wearing the acoustic device normally.
  • the ear used as a reference may have the following relevant characteristics: the size of the projection of the auricle on the sagittal plane in the vertical axis direction may be in the range of 49.5mm-74.3mm, and the size of the projection of the auricle on the sagittal plane in the sagittal axis direction may be in the range of 36.6mm-55mm. Therefore, in this application, descriptions such as “user wears”, “in a wearing state” and “in a wearing state” may refer to the acoustic device described in this application being worn on the ear of the aforementioned simulator. Of course, taking into account the individual differences among different users, the structure, shape, size, thickness, etc.
  • the acoustic device may be designed differently. These differentiated designs may be manifested in that the characteristic parameters of one or more parts of the acoustic device (for example, the sound-emitting part, ear hook, etc. mentioned below) may have different ranges of values to adapt to different ears.
  • the sagittal plane refers to a plane perpendicular to the ground along the front-to-back direction of the body, which divides the human body into left and right parts
  • the coronal plane refers to a plane perpendicular to the ground along the left-to-right direction of the body, which divides the human body into front and back parts
  • the horizontal plane refers to a plane parallel to the ground along the vertical direction perpendicular to the body, which divides the human body into upper and lower parts.
  • the sagittal axis refers to an axis along the front-to-back direction of the body and perpendicular to the coronal plane
  • the coronal axis refers to an axis along the left-to-right direction of the body and perpendicular to the sagittal plane
  • the vertical axis refers to an axis along the up-down direction of the body and perpendicular to the horizontal plane.
  • the "front side of the ear" described in this application is a concept relative to the "back side of the ear", the former refers to the side of the ear away from the head, and the latter refers to the side of the ear facing the head.
  • FIG. 2 is an exemplary structural diagram of an earphone according to some embodiments of the present specification.
  • the earphone 10 may include but is not limited to air conduction earphones and bone air conduction earphones, etc. In some embodiments, the earphone 10 may be combined with glasses, headphones, head-mounted display devices, AR/VR helmets, and other products.
  • the earphone 10 may include a sound-emitting portion 11 and an ear hook 12 .
  • the sound-generating part 11 can be worn on the user's body, and the sound-generating part 11 can generate sound to input into the user's ear canal.
  • the sound-generating part 11 may include a transducer (e.g., the transducer 116 shown in FIG. 22 ) and a housing 111 for accommodating the transducer.
  • the housing 111 may be connected to the ear hook 12.
  • the transducer is used to convert an excitation signal (e.g., an electrical signal) into a corresponding mechanical vibration to generate sound.
  • a sound outlet 112 is provided on the side of the housing facing the auricle, and the sound outlet 112 is used to guide the sound generated by the transducer out of the housing 111 and then transmit it to the ear canal, so that the user can hear the sound.
  • the transducer e.g., a diaphragm
  • the transducer can separate the housing 111 into a front cavity (e.g., the front cavity 114 shown in FIG. 22 ) and a rear cavity of the earphone, and the sound outlet 112 can communicate with the front cavity, and guide the sound generated by the front cavity out of the housing 111 and then transmit it to the ear canal.
  • part of the sound derived through the sound outlet 112 can be propagated to the ear canal so that the user can hear the sound, and the other part can be propagated to the outside of the earphone 10 and the ear together with the sound reflected through the ear canal through the gap between the sound-emitting part 11 and the ear (for example, the part of the concha cavity not covered by the sound-emitting part 11), thereby forming a first sound leakage in the far field; at the same time, one or more pressure relief holes 113 (for example, the first pressure relief hole 1131) are generally provided on other sides of the shell 111 (for example, the side away from or away from the user's ear canal).
  • the pressure relief hole 113 is farther away from the ear canal than the sound outlet 112, and the sound propagated from the pressure relief hole 113 generally forms a second sound leakage in the far field.
  • the intensity of the first sound leakage is comparable to that of the second sound leakage, and the phase of the first sound leakage and the phase of the second sound leakage are (close to) opposite to each other, so that the two can cancel each other in the far field, which is beneficial to reduce the sound leakage of the earphone 10 in the far field.
  • at least two pressure relief holes 113 may be provided on the other sides of the shell 111.
  • the sound exported by the sound outlet hole 112 and the sound exported by the pressure relief hole 113 can maintain good consistency in a wider frequency range, and the effect of the two interfering and canceling each other in the far field is better, thereby obtaining a better leakage sound reduction effect.
  • the at least two pressure relief holes 113 may include a first pressure relief hole and a second pressure relief hole (for example, the first pressure relief hole 1131 and the second pressure relief hole 1132 in FIG. 7 or FIG. 14 ), and the two pressure relief holes 113 may be located at opposite sides of the housing 111, for example, arranged opposite to each other in the minor axis direction Y described below, so as to The high-pressure area of the sound field in the back cavity is destroyed to the greatest extent.
  • the main sound heard is the sound transmitted to the ear canal through the sound outlet 112.
  • the setting of the pressure relief hole 113 is mainly used to balance the pressure of the back cavity, so that the low frequency and large amplitude can fully vibrate, which will make the sound sound as good as possible with bass diving and treble penetration, and reduce the sound leaking to the environment through the sound outlet 112.
  • the sound-emitting part 11 please refer to other places in this specification, such as Figure 7, Figure 14, Figure 22, etc. and their descriptions.
  • the ear hook 12 may be connected to the sound-emitting portion 11, and the other end thereof may extend along the junction of the user's ear and head.
  • the ear hook 12 may be an arc-shaped structure adapted to the user's auricle, so that the ear hook 12 may be suspended on the user's auricle.
  • the ear hook 12 may have an arc-shaped structure adapted to the junction of the user's head and ear, so that the ear hook 12 may be hung between the user's auricle and the head.
  • the ear hook 12 may also be a clamping structure adapted to the user's auricle, so that the ear hook 12 may be clamped at the user's auricle.
  • the ear hook 12 may include a hook-shaped portion (a first portion 121 as shown in FIG. 7) and a connecting portion (a second portion 122 as shown in FIG. 7) connected in sequence.
  • the connecting portion connects the hook-shaped portion and the sound-emitting portion 11, so that the earphone 10 is curved in three-dimensional space when it is in a non-wearing state (that is, a natural state).
  • the hook-shaped portion, the connecting portion, and the sound-emitting portion 11 are not coplanar.
  • the hook-shaped portion can be mainly used to hang between the back side of the user's ear and the head, and the sound-emitting portion 11 can be mainly used to contact the front side of the user's ear, thereby allowing the sound-emitting portion 11 and the hook-shaped portion to cooperate to clamp the ear.
  • the connecting portion can extend from the head to the outside of the head, and then cooperate with the hook-shaped portion to provide the sound-emitting portion 11 with a pressing force on the front side of the ear.
  • the sound-emitting portion 11 can be pressed against the areas where the concha cavity 102, the hymen of the concha 103, the triangular fossa 104, the antihelix 105 and other parts are located under the action of the pressing force, so that the earphone 10 does not block the external auditory canal 101 of the ear when it is in a worn state.
  • the earphone 10 may adopt any one of the following methods or a combination thereof.
  • at least a portion of the ear hook 12 is configured as a contoured structure that fits at least one of the back side of the ear 100 and the head, so as to increase the contact area between the ear hook 12 and the ear 100 and/or the head, thereby increasing the resistance of the earphone 10 to falling off from the ear 100.
  • At least a portion of the ear hook 12 is configured as an elastic structure so that it has a certain amount of deformation when being worn, so as to increase the positive pressure of the ear hook 12 on the ear and/or the head, thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • at least a portion of the ear hook 12 is configured to abut against the head when being worn, so as to form a reaction force that presses the ear, so that the sound-generating portion 11 is pressed against the front side of the ear, thereby increasing the resistance of the earphone 10 to falling off from the ear.
  • the sound-emitting part 11 and the ear hook 12 are configured to clamp the area where the antihelix is located and the area where the cavum concha is located from the front and back sides of the ear when the earphone is worn, thereby increasing the resistance of the earphone 10 falling off the ear.
  • the sound-emitting part 11 or the auxiliary structure connected thereto is configured to at least partially extend into the cavities such as the cavum concha, the cymba concha, the triangular fossa and the scaphoid, thereby increasing the resistance of the earphone 10 falling off the ear.
  • the ear hook 12 may include but is not limited to an ear hook, an elastic band, etc., so that the earphone 10 can be better fixed on the user to prevent the user from falling off during use.
  • the earphone 10 may not include the ear hook 12, and the sound-emitting part 11 may be fixed near the ear 100 of the user by hanging or clamping.
  • the sound-emitting portion 11 may be, for example, a regular or irregular shape such as a ring, an ellipse, a runway, a polygon, a U-shape, a V-shape, a semicircle, etc., so that the sound-emitting portion 11 can be directly mounted on the ear 100 of the user.
  • the sound-emitting portion 11 may have a long axis direction X and a short axis direction Y that are perpendicular to the thickness direction Z and orthogonal to each other.
  • the long axis direction X can be defined as the direction with the largest extension dimension in the shape of the two-dimensional projection surface of the sound-emitting portion 11 (for example, the projection of the sound-emitting portion 11 on the plane where its outer side surface is located, or the projection on the sagittal plane) (for example, when the projection shape is a rectangle or an approximate rectangle, the long axis direction is the length direction of the rectangle or the approximate rectangle).
  • the short axis direction Y can be defined as the direction perpendicular to the long axis direction X in the shape of the projection of the sound-emitting portion 11 on the sagittal plane (for example, when the projection shape is a rectangle or an approximate rectangle, the short axis direction is the width direction of the rectangle or the approximate rectangle).
  • the thickness direction Z can be defined as a direction perpendicular to the two-dimensional projection surface, for example, consistent with the direction of the coronal axis, both pointing to the left and right directions of the body.
  • the sound-emitting part 11 when the user wears the earphone 10, the sound-emitting part 11 can be worn near the user's external auditory canal 101 but not blocking the ear canal.
  • the projection of the earphone 10 on the sagittal plane may not cover the user's ear canal.
  • the projection of the sound-emitting part 11 on the sagittal plane may fall on the left and right sides of the head and on the sagittal axis of the human body at a position in front of the tragus (such as the position shown in the solid line frame A in Figure 2).
  • the sound-emitting part 11 is located in front of the user's tragus, the long axis of the sound-emitting part 11 can be in a vertical or approximately vertical state, the projection of the short axis direction Y on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the long axis direction X on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the projection of the sound-emitting part 11 on the sagittal plane can fall on the antihelix 105 (such as the position shown in the dotted line frame C in Figure 2).
  • the sound-emitting part 11 is at least partially located at the antihelix 105, the long axis of the sound-emitting part 11 is in a horizontal or approximately horizontal state, the projection of the long axis direction X of the sound-emitting part 11 on the sagittal plane is consistent with the direction of the sagittal axis, the projection of the short axis direction Y on the sagittal plane is consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the sound-emitting part 11 can be prevented from blocking the ear canal, thereby freeing the user's ears; the contact area between the sound-emitting part 11 and the ear 100 can also be increased, thereby improving the wearing comfort of the earphone 10.
  • the projection of the earphone 10 on the sagittal plane may also cover or at least partially cover the ear canal of the user.
  • the projection of the sound-emitting portion 11 on the sagittal plane may fall within the concha cavity 102 (e.g., the position shown in the dotted box B in FIG. 2 ), and contact the helix crus 1071 and/or the helix 107.
  • the sound-emitting portion 11 is at least partially located within the concha cavity 102, and the sound-emitting portion 11 is in an inclined state.
  • the projection of the short axis direction Y of the sound-emitting portion 11 on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the short axis direction Y is also inclined accordingly, and the projection of the long axis direction X on the sagittal plane may have a certain angle with the direction of the sagittal axis, that is, the long axis direction X is also inclined, and the thickness direction Z is perpendicular to the sagittal plane.
  • the concha cavity 102 has a certain volume and depth, there is a certain distance between the inner side IS of the earphone 10 and the concha cavity, and the ear canal can be connected to the outside world through the gap between the inner side IS and the concha cavity, thereby freeing the user's ears.
  • the sound-emitting portion 11 and the concha cavity can cooperate to form an auxiliary cavity (for example, the cavity structure mentioned below) that is connected to the ear canal.
  • the sound outlet 112 can be at least partially located in the auxiliary cavity, and the sound output from the sound outlet 112 will be restricted by the auxiliary cavity, that is, the auxiliary cavity can gather the sound so that the sound can be more transmitted into the ear canal, thereby increasing the volume and quality of the sound heard by the user in the near field, thereby improving the acoustic effect of the earphone 10.
  • the description of the above-mentioned earphone 10 is for the purpose of illustration only and is not intended to limit the scope of the present application.
  • the earphone 10 may also include a battery assembly, a Bluetooth assembly, etc. or a combination thereof.
  • the battery assembly can be used to power the earphone 10.
  • the Bluetooth assembly can be used to wirelessly connect the earphone 10 to other devices (e.g., a mobile phone, a computer, etc.).
  • FIG3 is a schematic diagram of two point sound sources and a listening position according to some embodiments of the present specification.
  • sound can be transmitted to the outside of the earphone 10 through the sound outlet 112, which can be regarded as a monopole sound source (or point sound source) A, to generate a first sound; sound can be transmitted to the outside of the earphone 10 through the pressure relief hole 113, which can be regarded as a monopole sound source (or point sound source) B, to generate a second sound.
  • the second sound can be opposite or approximately opposite to the first sound in phase, so that they can cancel each other out in the far field, that is, to form an "acoustic dipole" to reduce sound leakage.
  • the line connecting the two monopole sound sources can point to the ear canal (referred to as the "listening position") so that the user can hear a sufficiently loud sound.
  • the sound pressure at the listening position (referred to as Pear) can be used to characterize the strength of the sound heard by the user (i.e., the near-field listening sound pressure).
  • the sound pressure on a sphere centered on the user's listening position or on a sphere centered on the center of the dipole sound source (A and B as shown in FIG.
  • Pfar can be counted, which can be used to characterize the strength of sound leakage radiated from the earphone 10 to the far field (i.e., far-field sound leakage pressure).
  • Pfar can be obtained by a variety of statistical methods, such as taking the average value of the sound pressure at each point on the sphere, or taking the area integral of the sound pressure distribution at each point on the sphere.
  • the method for measuring sound leakage in this specification is only an exemplary description of the principle and effect, and is not limited.
  • the measurement and calculation method of sound leakage can also be reasonably adjusted according to the actual situation. For example, with the center of the dipole sound source as the center of the circle, the sound pressure amplitude of two or more points in the far field is evenly averaged according to a certain spatial angle.
  • the listening measurement method can be to select a position point near the point sound source as the listening position, and use the sound pressure amplitude measured at the listening position as the listening value.
  • the listening position may be on the line connecting the two point sound sources, or may not be on the line connecting the two point sound sources.
  • the measurement and calculation method of listening can also be reasonably adjusted according to the actual situation, for example, the sound pressure amplitude of other points or more than one point in the near field position is averaged. For another example, with a certain point sound source as the center of the circle, the sound pressure amplitude of two or more points in the near field is evenly averaged according to a certain spatial angle. In some embodiments, the distance between the near-field listening position and the point sound source is much smaller than the distance between the point sound source and the far-field sound leakage measurement sphere.
  • the sound pressure Pear transmitted by the earphone 10 to the user's ear should be large enough to improve the listening effect; the sound pressure Pfar in the far field should be small enough to increase the sound leakage reduction effect. Therefore, the sound leakage index ⁇ can be used as an indicator to evaluate the sound leakage reduction ability of the earphone 10:
  • FIG4 is a comparison chart of the sound leakage index of a single-point sound source and a double-point sound source at different frequencies according to some embodiments of this specification.
  • the double-point sound source (also referred to as a dipole sound source) in FIG4 can be a typical double-point sound source, that is, the spacing is fixed, the two-point sound source amplitudes are the same, and the two-point sound sources are opposite in phase.
  • the typical double-point sound source is selected only for the principle and effect description, and the parameters of each point sound source can be adjusted according to actual needs to make it have certain differences from the typical double-point sound source.
  • the sound leakage generated by the double-point sound source increases with the increase of frequency, and the ability to reduce sound leakage weakens with the increase of frequency.
  • the frequency is greater than a certain frequency value (for example, about 8000Hz as shown in FIG4), the sound leakage generated will be greater than that of the single-point sound source, and this frequency (for example, 8000Hz) is the upper limit frequency at which the double-point sound source can reduce sound leakage.
  • a baffle may be provided between the sound outlet 112 and the pressure relief hole 113 .
  • FIG5 is an exemplary distribution diagram of a baffle plate between two sound sources of a dipole sound source according to some embodiments of the present specification.
  • a baffle plate when a baffle plate is provided between a point sound source A1 and a point sound source A2, in the near field, the sound wave of the point sound source A2 needs to bypass the baffle plate to interfere with the sound wave of the point sound source A1 at the listening position, which is equivalent to increasing the sound path from the point sound source A2 to the listening position.
  • the amplitude difference between the sound waves of the point sound source A1 and the point sound source A2 at the listening position increases compared to the case where no baffle plate is provided, thereby reducing the degree of cancellation of the two-way sound at the listening position, thereby increasing the volume at the listening position.
  • the sound waves generated by the point sound source A1 and the point sound source A2 do not need to bypass the baffle plate to interfere in a larger spatial range (similar to the case without a baffle plate), the sound leakage in the far field will not increase significantly compared to the case where there is no baffle plate. Therefore, by providing a baffle structure around one of the point sound sources A1 and A2, the volume at the near-field listening position can be significantly increased without significantly increasing the volume of far-field sound leakage.
  • FIG6 is a diagram of the sound leakage index when a baffle is set and when no baffle is set between the two sound sources of the dipole sound source shown in some embodiments of the present specification.
  • the sound leakage index is much smaller than when no baffle is added, that is, at the same listening volume, the sound leakage in the far field is smaller than when there is no baffle, and the sound leakage reduction capability is significantly enhanced.
  • Fig. 7 is an exemplary wearing diagram of an earphone according to some embodiments of the present specification.
  • Fig. 8 is a structural diagram of the earphone shown in Fig. 7 facing the ear.
  • Fig. 9 is a structural diagram of the housing of the earphone shown in Fig. 7.
  • the ear hook 12 is an arc-shaped structure that fits the junction of the user's head and the ear 100.
  • the sound-emitting part 11 (or the shell 111 of the sound-emitting part 11) may have a connection end CE connected to the ear hook 12 and a free end FE not connected to the ear hook 12.
  • the first part 121 of the ear hook 12 (for example, the hook-shaped part of the ear hook 12) is hung between the user's auricle (for example, the helix 107) and the head, and the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting part 11, so that the sound-emitting part 11 is worn near the ear canal but does not block the ear canal.
  • the first part 121 of the ear hook 12 for example, the hook-shaped part of the ear hook 12
  • the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting part 11, so that the sound-emitting part 11 is worn near the ear canal but does not block the ear canal.
  • the sound-emitting portion 11 may have an inner side surface IS (also referred to as the inner side surface of the shell 111) facing the ear along the thickness direction Z and an outer side surface OS (also referred to as the outer side surface of the shell 111) facing away from the ear in the wearing state, as well as a connecting surface connecting the inner side surface IS and the outer side surface OS.
  • the sound-emitting portion 11 in the wearing state, may be arranged in a circular, elliptical, rounded square, rounded rectangle, etc. shape when observed along the direction of the coronal axis (i.e., the thickness direction Z).
  • the above-mentioned connecting surface may refer to the arc-shaped side surface of the sound-emitting portion 11; and when the sound-emitting portion 11 is arranged in a rounded square, rounded rectangle, etc. shape, the above-mentioned connecting surface may include the lower side surface LS (also referred to as the lower side surface of the shell 111), the upper side surface US (also referred to as the upper side surface of the shell 111), and the rear side surface RS (also referred to as the rear side surface of the shell 111) mentioned later.
  • the upper side surface US and the lower side surface LS may respectively refer to the side of the sound-emitting part 11 away from the external auditory canal 101 and the side close to the external auditory canal 101 along the short axis direction Y in the wearing state; the rear side surface RS may refer to the side of the sound-emitting part 11 facing the back of the head along the length direction X in the wearing state.
  • this specification takes the example of the sound-emitting part 11 being set as a rounded rectangle for exemplary description.
  • the length of the sound-emitting part 11 in the long axis direction X may be greater than the width of the sound-emitting part 11 in the short axis direction Y.
  • the rear side surface RS of the earphone may be a curved surface.
  • a transducer may be provided in the sound-generating part 11, which can convert an electrical signal into a corresponding mechanical vibration to generate sound.
  • the transducer e.g., a diaphragm
  • the transducer can separate the housing 111 into a front cavity and a rear cavity of the earphone.
  • the sound generated in the front cavity and the rear cavity are in opposite phases.
  • a sound outlet hole 112 connected to the front cavity is provided on the inner side IS to guide the sound generated in the front cavity out of the housing 111 and then transmit it to the ear canal so that the user can hear the sound.
  • One or more pressure relief holes 113 connected to the rear cavity may be provided on other sides of the housing 111 (e.g., the outer side OS, the upper side US, or the lower side LS, etc.) to guide the sound generated in the rear cavity out of the housing 111 and then interfere with the sound leaked through the sound outlet hole 112 in the far field.
  • the pressure relief hole 113 is farther away from the ear canal than the sound outlet hole 112 to reduce the anti-phase cancellation between the sound output through the pressure relief hole 113 and the sound output through the sound outlet hole 112 at the listening position (e.g., the ear canal), thereby increasing the sound volume at the listening position.
  • At least two pressure relief holes 113 may be provided on other sides of the shell 111 (for example, the outer side surface OS, the upper side surface US or the lower side surface LS, etc.).
  • the provision of at least two pressure relief holes 113 can destroy the standing waves in the rear cavity, so that the resonance frequency of the sound exported from the pressure relief hole 113 to the outside of the shell 111 is as high as possible, so that the frequency response of the rear cavity has a wider flat area (for example, the area before the resonance peak), and obtains a better sound leakage reduction effect in the mid-high frequency range (for example, 2kHz-6kHz).
  • the pressure relief hole 113 may include a first pressure relief hole 1131 and a second pressure relief hole 1132.
  • the second pressure relief hole 1132 may be closer to the sound outlet 112 relative to the first pressure relief hole 1131.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 may be provided on the same side of the shell 111.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 may be provided on the same side of the shell 111.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 may be respectively arranged on two different sides of the shell 111.
  • the first pressure relief hole 1131 may be arranged on the outer side OS, and the second pressure relief hole 1132 may be arranged on the upper side US.
  • the first pressure relief hole 1131 may be arranged on the outer side OS, and the second pressure relief hole 1132 may be arranged on the lower side LS.
  • the two pressure relief holes 113 may be located on opposite sides of the shell 111.
  • the first pressure relief hole 1131 may be arranged on the upper side US, and the second pressure relief hole 1132 may be arranged on the lower side LS.
  • this specification will take the example that the first pressure relief hole 1131 is arranged on the upper side US and the second pressure relief hole 1132 is arranged on the lower side LS for exemplary description.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 should be as far away from the sound outlet hole 112 as possible.
  • the center of the sound outlet hole 112 can be located on or near the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the center of the sound outlet hole 112 can be 0 mm to 2 mm away from the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the area of the second pressure relief hole 1132 can be reduced to reduce the intensity of the sound output from the second pressure relief hole 1132 and transmitted to the ear canal.
  • the area of the second pressure relief hole 1132 can be smaller than the area of the first pressure relief hole 1131 (as shown in FIG. 17 ).
  • the long axis direction X of the sound-emitting portion 11 can be set horizontally or approximately horizontally (similar to the position C shown in FIG2 ), at which time the sound-emitting portion 11 is at least partially located at the antihelix 105, and the free end FE of the sound-emitting portion 11 can face the back of the head.
  • the sound-emitting portion 11 is in a horizontal or approximately horizontal state, the projection of the long axis direction X of the sound-emitting portion 11 on the sagittal plane can be consistent with the direction of the sagittal axis, the projection of the short axis direction Y on the sagittal plane can be consistent with the vertical axis direction, and the thickness direction Z is perpendicular to the sagittal plane.
  • the inner side surface IS of the shell 111 can be crimped against the surface of the ear 100 (for example, the antihelix 105) to increase the resistance of the earphone 10 to fall off the ear 100.
  • the projection of the sound outlet 112 on the sagittal plane may partially or completely overlap with the projection of the concave structure of the ear (e.g., the hymena concha 103) on the sagittal plane.
  • the hymena concha 103 is connected to the cavum concha 102, the ear canal is located in the cavum concha 102.
  • the long axis dimension of the sound-emitting portion 11 cannot be too long. If it is too long, the projection of the free end FE on the sagittal plane will exceed the projection of the ear on the sagittal plane, affecting the fit between the sound-emitting portion 11 and the ear. Therefore, the long axis dimension of the sound-emitting portion 11 can be designed so that the projection of the free end FE on the sagittal plane does not exceed the projection of the helix 107 on the sagittal plane.
  • each side wall of the shell 111 has a certain thickness, and therefore, the sound outlet hole 112 and the pressure relief hole 113 are holes with a certain depth.
  • the sound outlet hole 112 and the pressure relief hole 113 may both have an inner opening and an outer opening.
  • the center O of the sound outlet hole 112 described above and below may refer to the centroid of the outer opening of the sound hole 112
  • the center of the pressure relief hole 113 described above and below may refer to the centroid of the outer opening of the pressure relief hole 113
  • the center O1 of the first pressure relief hole 1131 may refer to the centroid of the outer opening of the first pressure relief hole 1131
  • the center O2 of the second pressure relief hole 1132 may refer to the centroid of the outer opening of the second pressure relief hole 1132
  • the area of the sound hole 112 and the pressure relief hole 113 can indicate the area of the outer opening of the sound hole 112 and the pressure relief hole 113 (for example, the outer opening area of the sound hole 112 on the inner side surface IS, the outer opening area of the first pressure relief hole 1131 on the upper side surface US, and the outer opening area of the second pressure relief hole 1132 on the lower side surface LS).
  • the area of the sound hole 112 and the pressure relief hole 113 can also indicate other cross-sectional areas of the sound hole 112 and the pressure relief hole 113, such as the area of the inner opening of the sound hole 112 and/or the pressure relief hole 113, or the average of the inner opening area and the outer opening area of the sound hole 112 and/or the pressure relief hole 113.
  • the sound outlet 112 connected to the front cavity can be regarded as the point sound source A1 shown in Figure 5
  • the pressure relief hole 113 connected to the rear cavity (for example, the first pressure relief hole 1131 and/or the second pressure relief hole 1132) can be regarded as the point sound source A2 shown in Figure 5
  • the ear canal can be regarded as the listening position shown in Figure 5.
  • At least part of the shell and/or at least part of the auricle of the sound-emitting part 11 can be regarded as the baffle shown in Figure 5 to increase the sound path difference between the sound outlet 112 and the first pressure relief hole 1131 and/or the second pressure relief hole 1132 to the ear canal, thereby increasing the sound intensity at the ear canal while maintaining the effect of reducing far-field leakage sound.
  • the earphone 10 adopts the structure shown in FIG. 7 , that is, when at least part of the housing 111 is located at the antihelix 105, in terms of the listening effect, the sound waves of the sound outlet 112 can directly reach the ear canal.
  • the sound outlet 112 can be arranged at a position close to the lower side surface LS on the inner side surface IS, and at least one pressure relief hole can be arranged at a position away from the sound outlet 112.
  • the first pressure relief hole 1131 can be arranged at a position away from the sound outlet 112 on the outer side surface OS or the upper side surface US.
  • the first pressure relief hole 1131 can be arranged at a position away from the sound outlet 112 on the outer side surface OS or the upper side surface US.
  • the sound waves of the pressure hole 1131 need to bypass the outside of the sound-emitting part 11 in order to interfere with the sound waves of the sound outlet hole 112 in the ear canal.
  • the convex and concave structures on the auricle will also increase the sound path of the sound from the first pressure relief hole 1131 to the ear canal. Therefore, the sound-emitting part 11 itself and/or at least part of the auricle is equivalent to a baffle between the sound outlet hole 112 and the first pressure relief hole 1131.
  • the baffle increases the sound path from the first pressure relief hole 1131 to the ear canal and reduces the intensity of the sound waves from the first pressure relief hole 1131 in the ear canal, thereby reducing the degree of cancellation of the sounds emitted by the sound outlet hole 112 and the first pressure relief hole 1131 in the ear canal, thereby increasing the volume of the ear canal.
  • the sound leakage effect since the sound waves generated by the sound outlet hole 112 and the first pressure relief hole 1131 and/or the second pressure relief hole 1132 can interfere with each other in a larger space without bypassing the sound-emitting part 11 itself (similar to the case without a baffle), the sound leakage will not increase significantly. Therefore, by setting the sound outlet hole 112 and the first pressure relief hole 1131 and the second pressure relief hole 1132 at appropriate positions, the volume of the ear canal can be significantly increased without significantly increasing the sound leakage volume.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be approximately symmetrically distributed relative to the long axis center plane of the sound-emitting part 11 (for example, the plane NN' perpendicular to the inner side of the paper as shown in FIG8).
  • the difference between the distance a2 of the center O2 of the second pressure relief hole 1132 on the lower side surface LS from the rear side surface RS and the distance a1 of the center O1 of the first pressure relief hole 1131 on the upper side surface US from the rear side surface RS is less than 10%.
  • the difference between the distance a2 of the center O2 of the second pressure relief hole 1132 on the lower side surface LS from the rear side surface RS and the distance a1 of the center O1 of the first pressure relief hole 1131 on the upper side surface US from the rear side surface RS is less than 5%. In some embodiments, the difference between the distance a2 of the center O2 of the second pressure relief hole 1132 on the lower side surface LS from the rear side surface RS and the distance a1 of the center O1 of the first pressure relief hole 1131 on the upper side surface US from the rear side surface RS is less than 2%.
  • the rear side surface RS of the headset may be a curved surface.
  • the distance from a certain position (for example, the center O1 of the first pressure relief hole 1131) to the rear side surface RS may refer to the distance from the position to the section of the rear side surface RS parallel to the minor axis.
  • the second pressure relief hole 1132 on the lower side surface LS should be arranged as far away from the sound outlet hole 112 as possible, so that the effect of the sound emitted by the second pressure relief hole 1132 canceling the sound emitted by the sound outlet hole 112 at the listening position (i.e., the ear canal) is weakened, thereby increasing the volume at the listening position. Therefore, when the sound outlet hole 112 is arranged close to the lower side surface LS and the connecting end CE, the second pressure relief hole 1132 can be arranged close to the rear side surface RS, so that the distance between the sound outlet hole 112 and the second pressure relief hole 1132 is as large as possible.
  • the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS can range from 8.60 mm to 20.27 mm. In some embodiments, the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS can range from 8.60 mm to 12.92 mm. In some embodiments, the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS may be in the range of 9.60 mm to 11.92 mm.
  • the free end FE may contact the ear (e.g., the helix 107), causing part of the upper side surface US and/or the lower side surface LS to be blocked by the ear.
  • the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS may be in the range of 10.10 mm to 11.42 mm.
  • the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS may be in the range of 10.30 mm to 11.12 mm. More preferably, the distance a2 from the center O2 of the second pressure relief hole 1132 to the rear side surface RS may be in the range of 10.60 mm to 11.82 mm.
  • the distance a1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS may be in the range of 8.60 mm to 15.68 mm. In some embodiments, the distance a1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS may be in the range of 8.60 mm to 12.92 mm.
  • the distance a1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS may be in the range of 9.60 mm to 11.92 mm.
  • the distance a1 from the center O1 of the first pressure relief hole 1131 to the rear side surface RS may be in the range of 10.10 mm to 11.42 mm.
  • the distance a1 between the center O1 of the first pressure relief hole 1131 and the rear side surface RS may be in the range of 10.30 mm to 11.12 mm.
  • the distance a1 between the center O1 of the first pressure relief hole 1131 and the rear side surface RS may be in the range of 10.60 mm to 11.82 mm.
  • the first pressure relief hole 1131 may be further away from the sound outlet hole 112 than the second pressure relief hole 1132, and because the gap between the ear 100 and the inner side surface IS is smaller, the sound generated by the first pressure relief hole 1131 is more difficult to transmit to the ear canal than the second pressure relief hole 1132. Therefore, in some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the rear side surface RS may be smaller than the distance between the center O2 of the second pressure relief hole 1132 and the rear side surface RS.
  • the distance between the center O1 of the first pressure relief hole 1131 and the rear side surface RS ranges from 10.44 mm to 15.68 mm, and the distance between the center O2 of the second pressure relief hole 1132 and the rear side surface RS ranges from 13.51 mm to 20.27 mm.
  • the size of the earphone 10 in the thickness direction Z can be increased, thereby improving the sound efficiency of the earphone 10 (i.e., the listening efficiency at the listening position). volume).
  • the first pressure relief hole 1131 and/or the second pressure relief hole 1132 can be arranged away from the inner side surface IS, so as to further increase the sound path from the first pressure relief hole 1131 and/or the second pressure relief hole 1132 to the ear canal, and improve the sound emission efficiency of the earphone 10.
  • the overall size of the sound-emitting portion 11 cannot be too large (for example, the size of the sound-emitting portion 11 in the Z direction cannot be too large), otherwise the overall mass of the earphone 10 will increase, affecting the wearing comfort of the user.
  • the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 4.24mm to 7.96mm. In some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 4.43mm to 7.96mm. In some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 5.43mm to 6.96mm.
  • the wearing state in order to make the projection of the first pressure relief hole 1131 on the horizontal plane less or not overlap with the projection of the ear 100 on the horizontal plane, so as to achieve the purpose of radiating more sound output by the first pressure relief hole 1131 and/or the second pressure relief hole 1132 outward, rather than transmitting to the ear canal or transmitting to the ear canal after being reflected or refracted by some structures of the ear 100 (such as the auricle).
  • the first pressure relief hole 1131 and/or the second pressure relief hole 1132 can be arranged away from the inner side surface IS.
  • the sound path from the first pressure relief hole 1131 and/or the second pressure relief hole 1132 to the ear canal can be further increased, thereby improving the sound generation efficiency of the earphone 10.
  • the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 5.63 mm to 7.96 mm. In some embodiments, the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 6.25 mm to 7.56 mm.
  • the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS may be the same as the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS. In some embodiments, the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 4.43 mm to 7.96 mm. In some embodiments, the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 5.43 mm to 6.96 mm. In some embodiments, the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 5.63 mm to 7.96 mm. In some embodiments, the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 6.25 mm to 7.56 mm.
  • the second pressure relief hole 1132 is closer to the inner side surface IS than the first pressure relief hole 1131.
  • the second pressure relief hole 1132 can be farther away from the inner side surface IS than the first pressure relief hole 1131, that is, the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS can be different from the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS.
  • the distance d1 from the center O1 of the first pressure relief hole 1131 to the inner side surface IS ranges from 5.63 mm to 6.5 mm
  • the distance d2 from the center O2 of the second pressure relief hole 1132 to the inner side surface IS ranges from 6.5 mm to 7.56 mm.
  • the description of the earphone 10 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • the pressure relief hole can be any one of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • the pressure relief hole can be the first pressure relief hole 1131, that is, the pressure relief hole can be provided on the upper side US.
  • the distance range from the center of the pressure relief hole to the inner side IS can be 4.24 mm to 7.96 mm, and the distance range from the center of the pressure relief hole to the rear side RS can be 8.60 mm to 15.68 mm.
  • a cavity structure in order to increase the listening volume, especially the listening volume of mid- and low-frequency sounds, while still retaining the effect of far-field leakage cancellation, can be constructed around one of the double-point sound sources.
  • Figure 10 is an exemplary distribution diagram of a cavity structure arranged around one of the dipole sound sources shown in some embodiments of this specification.
  • the cavity structure 41 when a cavity structure 41 is provided between the dipole sound sources, one of the dipole sound sources and the listening position is inside the cavity structure 41, and the other dipole sound source is outside the cavity structure 41.
  • the sound derived from the dipole sound source inside the cavity structure 41 will be restricted by the cavity structure 41, that is, the cavity structure 41 can gather the sound so that the sound can be more propagated to the listening position, thereby improving the volume and quality of the sound at the listening position.
  • the "cavity structure” can be understood as a semi-enclosed structure surrounded by the side wall of the sound-emitting part 11 and the concha cavity structure, and the semi-enclosed structure makes the interior not completely sealed and isolated from the external environment, but has a leakage structure 42 (for example, an opening, a gap, a pipe, etc.) that is acoustically connected to the external environment.
  • a leakage structure 42 for example, an opening, a gap, a pipe, etc.
  • Exemplary leakage structures may include but are not limited to openings, gaps, pipes, etc., or any combination thereof.
  • the cavity structure 41 may include a listening position and at least one sound source.
  • “include” may mean that at least one of the listening position and the sound source is inside the cavity, or at least one of the listening position and the sound source is at the edge of the cavity.
  • the listening position may be the entrance of the ear canal, or may be the acoustic reference point of the ear.
  • Fig. 11A is a schematic diagram of the listening principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • Fig. 11B is a schematic diagram of the sound leakage principle of a dipole sound source structure and a cavity structure built around one of the dipole sound sources according to some embodiments of this specification.
  • a dipole with a cavity structure is constructed around one of the sound sources. Since one of the sound sources A is wrapped by the cavity structure, most of the sound radiated therefrom will reach the listening position by direct radiation or reflection. In contrast, in the absence of a cavity structure, most of the sound radiated by the sound source will not reach the listening position. Therefore, the setting of the cavity structure significantly increases the volume of the sound reaching the listening position. At the same time, only a small part of the anti-phase sound radiated by the anti-phase sound source B outside the cavity structure will enter the cavity structure through the leakage structure of the cavity structure.
  • the sound generated by the secondary sound source B' has a weak anti-phase cancellation effect on the sound source A in the cavity, which significantly increases the listening volume at the listening position.
  • the sound source A radiates sound to the outside through the leakage structure of the cavity, which is equivalent to generating a secondary sound source A' at the leakage structure. Since almost all the sound radiated by the sound source A is output from the leakage structure, and the structural scale of the cavity is much smaller than the spatial scale of the sound leakage evaluation (at least one order of magnitude difference), it can be considered that the intensity of the secondary sound source A' is equivalent to that of the sound source A.
  • the sound cancellation effect generated by the secondary sound source A' and the sound source B is equivalent to the sound cancellation effect generated by the sound source A and the sound source B. That is, under this cavity structure, a considerable sound leakage reduction effect is still maintained.
  • the leakage structure of the above-mentioned one opening is only an example, and the leakage structure of the cavity structure may include one or more openings, which can also achieve a better listening index, wherein the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • the listening index may refer to the inverse of the leakage index ⁇ , 1/ ⁇ .
  • Equal openings are equivalent to doubling the relative opening size of only one hole (i.e., the ratio of the opening area S of the leakage structure on the cavity structure to the area S0 directly affected by the contained sound source in the cavity structure). As mentioned above, its overall listening index will decrease. In the case of equal opening ratio, even if S/S0 is the same as the structure with only one hole, the distances from the two openings to the external sound source are different, which will also result in different listening indexes.
  • FIG. 12A is a schematic diagram of a cavity structure with two horizontal openings according to some embodiments of the present specification.
  • FIG. 12B is a schematic diagram of a cavity structure with two vertical openings according to some embodiments of the present specification.
  • the line connecting the two openings and the line connecting the two sound sources are parallel (i.e., two horizontal openings)
  • the distances from the two openings to the external sound source are respectively maximum and minimum
  • the two lines are perpendicular (i.e., two vertical openings)
  • the distances from the two openings to the external sound source are equal and take an intermediate value.
  • FIG13 is a comparison diagram of the listening index curves of the cavity structure with two openings and one opening according to some embodiments of the present specification. As shown in FIG13, the overall listening index of the cavity structure with equal openings is lower than that of the cavity structure with one opening. For the cavity structure with equal opening ratio, different listening indexes will be caused due to the different distances between the two openings and the external sound source. It can be seen from FIG12A, FIG12B and FIG13 that the listening index of the leakage structure with equal opening ratio is higher than that of the leakage structure with equal opening ratio, regardless of whether it is a horizontal opening or a vertical opening.
  • the listening index of the horizontal opening is larger, regardless of whether it is a leakage structure with equal opening ratio or a leakage structure with equal opening ratio.
  • the distance from one of the openings in the horizontally opened leakage structure to the external sound source is smaller than the distance between the two sound sources.
  • the secondary sound source thus formed is closer to the external sound source than the original two sound sources, so the listening index is higher, thereby improving the effect of reducing leakage sound. Therefore, in order to improve the effect of reducing leakage sound, the distance from at least one opening to the external sound source can be made smaller than the distance between the two sound sources.
  • a cavity structure with two openings can better improve the resonant frequency of the air sound in the cavity structure than a cavity structure with one opening, so that the entire device has a better listening index in the high frequency band (for example, the sound with a frequency close to 10,000 Hz) than a cavity structure with only one opening.
  • the high frequency band is the frequency band that the human ear is more sensitive to, so there is a greater demand for reduced leakage sound. Therefore, in order to improve the effect of reducing leakage sound in the high frequency band, a cavity structure with more than 1 opening can be selected.
  • Fig. 14 is a schematic diagram of an exemplary wearing method of an earphone according to some other embodiments of the present application.
  • Fig. 15 is a schematic diagram of the structure of the earphone shown in Fig. 14 facing the ear.
  • the earphone 10 shown in FIG14 has a similar structure to the earphone 10 shown in FIG7 , for example, the ear hook 12 is an arc-shaped structure that fits the junction between the user's head and the ear 100.
  • the sound-emitting portion 11 (or the housing 111 of the sound-emitting portion 11) may have a connection end CE connected to the ear hook 12 and a free end FE not connected to the ear hook 12.
  • the first part 121 of the ear hook 12 (for example, the hook-shaped part of the ear hook 12) is hung between the user's auricle (for example, the helix 107) and the head, and the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting portion 11, so that the sound-emitting portion 11 is worn near the ear canal but does not block the ear canal.
  • the first part 121 of the ear hook 12 for example, the hook-shaped part of the ear hook 12
  • the second part 122 of the ear hook 12 (for example, the connection part of the ear hook) extends to the side of the auricle away from the head and is connected to the connection end CE of the sound-emitting portion 11, so that the sound-emitting portion 11 is worn near the ear canal but does not block the ear canal.
  • the earphone 10 shown in FIG14 is similar in structure to the earphone 10 shown in FIG7 , and the main difference is that the sound-emitting portion 11 is tilted, and the housing 111 of the sound-emitting portion 11 is at least partially inserted into the concha cavity 102, for example, the free end FE of the sound-emitting portion 11 can extend into the concha cavity 102.
  • the ear hook 12 and the sound-emitting portion 11 of such a structure have a better fit with the user's ear 100, which can increase the resistance of the earphone 10 to fall off the ear 100, thereby increasing the wearing stability of the earphone 10.
  • connection end CE of the sound-emitting portion 11 when worn, is closer to the top of the head than the free end FE when viewed along the thickness direction Z, so that the free end FE can extend into the concha cavity.
  • the angle between the long axis direction X and the direction of the human body's sagittal axis can be between 15° and 60°. If the aforementioned angle is too small, it is easy to cause the free end FE to fail to extend into the concha. If the angle is too large, the sound-emitting portion 11 cannot be inserted into the concha cavity, and the ear canal is blocked by the sound-emitting portion 11.
  • such a configuration allows the sound-emitting portion 11 to be inserted into the concha cavity, while ensuring that the sound-emitting hole 112 on the sound-emitting portion 11 is at a suitable distance from the ear canal, so that the user can hear more of the sound produced by the sound-emitting portion 11 when the ear canal is not blocked.
  • the sound-emitting portion 11 and the ear hook 12 can clamp the ear region corresponding to the concha cavity from both the front and rear sides of the ear region, thereby increasing the resistance of the earphone 10 to fall off the ear, thereby improving the stability of the earphone 10 when worn.
  • the free end FE of the sound-emitting portion 11 is pressed in the concha cavity in the thickness direction Z.
  • the free end FE abuts against the concha cavity in the major axis direction X and the minor axis direction Y.
  • the two ends of the second part 122 of the ear hook 12 can be connected to the first part 121 of the ear hook 12 and the connection end CE of the sound-emitting part 11, respectively (as shown in FIG. 15 ).
  • the second part 122 of the ear hook 12 can have a lowest point P and a highest point Q along the short axis direction Y of the sound-emitting part 11.
  • the distance h1 between the center of the first pressure relief hole 1131 and the lowest point P in the long axis direction X of the sound-emitting part 11 can be 5.28 mm to 7.92 mm.
  • the distance h2 between the center of the first pressure relief hole 1131 and the highest point Q in the long axis direction X of the sound-emitting part 11 can be 8.68 mm to 13.02 mm.
  • the distance between the center of the first pressure relief hole 1131 and any point on the second part 122 of the ear hook 12 in the long axis direction X of the sound-emitting part 11 ranges from 5.28 mm to 14 mm. In some embodiments, the distance between the center of the first pressure relief hole 1131 and any point on the second part 122 of the ear hook in the long axis direction X of the sound-emitting part 11 ranges from 5.28 mm to 13.02 mm.
  • the distance between the center of the first pressure relief hole 1131 and any point on the second part 122 of the ear hook in the long axis direction X of the sound-emitting part 11 ranges from 6.58 mm to 12.02 mm. In some embodiments, the distance between the center of the first pressure relief hole 1131 and any point on the second part 122 of the ear hook in the long axis direction X of the sound-emitting part 11 ranges from 7.58 mm to 10.02 mm. In some embodiments, the distance between the center of the first pressure relief hole 1131 and any point on the second part 122 of the ear hook in the long axis direction X of the sound-emitting part 11 ranges from 8.58 mm to 9.02 mm.
  • the cavity enclosed by the inner side surface IS of the sound-emitting part 11 and the concha cavity 102 can be regarded as the cavity structure 41 shown in FIG. 10
  • the gap formed between the inner side surface IS and the concha cavity (for example, the first leakage structure UC formed between the inner side surface IS and the concha cavity near the top of the head, and the second leakage structure LC formed between the inner side surface IS and the ear near the ear canal) can be regarded as the leakage structure 42 shown in FIG. 10 .
  • the sound outlet hole 112 arranged on the inner side surface IS can be regarded as a point sound source inside the cavity structure 41 shown in FIG. 10
  • the pressure relief holes 113 for example, the first pressure relief hole 1131 and the second pressure relief hole 1132
  • the sound-emitting part 11 for example, the upper side surface US and/or the lower side surface LS
  • the sound outlet 112 can output the sound to the outside through the gap and cancel the sound generated by the pressure relief hole 113 (for example, the first pressure relief hole 1131 and the second pressure relief hole 1132) in the far field, thereby ensuring the sound leakage reduction effect.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 should be as far away from the sound outlet hole 112 as possible.
  • the center of the sound outlet hole 112 can be located on or near the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the center of the sound outlet hole 112 can be 0 mm to 2 mm away from the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the center of the sound outlet hole 112 can be 0 mm to 1 mm away from the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132. In some embodiments, the center of the sound outlet hole 112 can be 0 mm to 0.5 mm away from the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132.
  • the relationship between the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 (also referred to as the first distance) and the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 (also referred to as the second distance) can be determined so that the center O of the sound outlet hole 112 is approximately on the perpendicular midplane of the line O1O2.
  • the difference between the first distance and the second distance is less than 10%.
  • the difference between the first distance and the second distance is less than 8%.
  • the difference between the first distance and the second distance is less than 5%.
  • the difference between the first distance and the second distance is less than 2%.
  • the sound waves and the sound waves emitted by the sound outlet 112 cancel each other in the near field and affect the user's listening quality.
  • the distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 and the sound outlet 112 cannot be too close.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet 112 can be 4mm-15.11mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet 112 can be 4mm-15mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet 112 can be 5.12mm-15.11mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet 112 can be 5mm-14mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet 112 can be 6mm-13mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 7 mm to 12 mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 may be 8 mm to 10 mm.
  • the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 4mm-16.1mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 4mm-15mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 5mm-14mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 5.12mm-16.1mm.
  • the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 6mm-13mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 7mm-12mm. In some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 may be 8mm-10mm.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 are as far away from the sound outlet 112 as possible. Therefore, in order to make the first pressure relief hole 1131 and the second pressure relief hole 1132 both farther away from the sound outlet 112, the ratio of the distance between the center O of the sound outlet 112 and the center O1 of the first pressure relief hole 1131 and the distance between the center O of the sound outlet 112 and the center O2 of the second pressure relief hole 1132 is in the range of 0.9-1.1.
  • the ratio of the distance between the center O of the sound outlet 112 and the center O1 of the first pressure relief hole 1131 and the distance between the center O of the sound outlet 112 and the center O2 of the second pressure relief hole 1132 is in the range of 0.92-1.08. In some embodiments, the ratio of the distance between the center O of the sound outlet 112 and the center O1 of the first pressure relief hole 1131 and the distance between the center O of the sound outlet 112 and the center O2 of the second pressure relief hole 1132 is in the range of 0.94-1.06.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the center O1 of the first pressure relief hole 1131 and the distance between the center O of the sound outlet hole 112 and the center O2 of the second pressure relief hole 1132 is in the range of 0.96-1.04.
  • the area of the second pressure relief hole 1132 can be reduced to reduce the intensity of the sound exported from the second pressure relief hole 1132 and transmitted to the ear canal.
  • the area of the second pressure relief hole 1132 can be smaller than the area of the first pressure relief hole 1131 (as shown in FIG. 17 ).
  • the angle between the line O1O between the center O1 of the first pressure relief hole 1131 and the center O of the sound outlet hole 112 and the line O2O between the center O2 of the second pressure relief hole 1132 and the center O of the sound outlet hole 112 can be reduced.
  • the angle between the line O1O and the line O2O is in the range of 46.40°-114.04°. In some embodiments, the angle between the line O1O and the line O2O is in the range of 46.40°-90.40°.
  • the angle between the line O1O and the line O2O is in the range of 46.40°-70.04°. In some embodiments, the angle between the line O1O and the line O2O is in the range of 46.40°-60.04°.
  • the angle between the line O1O2 and the line O2O between the center O1 of the first pressure relief hole 1131 and the center O2 of the second pressure relief hole 1132 is 19.72°-101.16°. In some embodiments, the angle between the line O1O2 and the line O2O is 19.71°-97.75°.
  • FIG. 16 is a schematic diagram of a projection on the sagittal plane of the earphone when it is in a wearing state according to some embodiments of the present specification.
  • the free end FE in combination with FIG. 14 and FIG. 16, in order to make the sound-emitting part 11 stably worn on the user's ear, and to facilitate the construction of the cavity structure shown in FIG. 10, and to make the cavity structure have at least two leakage structures, the free end FE can abut against the concha cavity in the long axis direction X and the short axis direction Y.
  • the medial side IS of the sound-emitting part 11 is inclined relative to the sagittal plane, and at this time, there is at least a first leakage structure UC close to the top of the head (i.e., the gap formed between the concha cavity and the upper boundary of the medial side IS) and a second leakage structure LC close to the ear canal (i.e., the gap formed between the concha cavity and the lower boundary of the medial side IS) between the medial side IS of the sound-emitting part and the concha cavity.
  • the listening volume especially the listening volume of the mid-low frequency, can be increased, while still retaining the effect of far-field leakage cancellation, thereby improving the acoustic output performance of the earphone 10.
  • the first leakage structure UC and the second leakage structure LC formed between the inner side surface IS of the sound-emitting portion 11 and the concha cavity have certain dimensions in the long axis direction X and the thickness direction Z.
  • the upper/lower boundaries of the inner side surface IS when the earphone 10 is in the wearing state can be respectively intersected with the ear (for example, the side wall of the concha cavity, the crus of the helix)
  • the midpoint of the two points is used as the position reference point of the first leakage structure UC and the second leakage structure LC.
  • the midpoint of the upper boundary of the inner side surface IS is used as the position reference point of the first leakage structure UC, and the point where the lower boundary of the inner side surface IS is divided into three equal parts near the free end FE (hereinafter referred to as the 1/3 point of the lower boundary of the inner side surface IS) is used as the position reference point of the second leakage structure LC.
  • the midpoint of the upper boundary of the inner side surface IS of the sound-emitting portion 11 can be selected by the following exemplary method.
  • the projection contour of the sound-emitting portion 11 along the thickness direction Z can be determined; the two first positioning points on the sound-emitting portion 11 along the long axis direction X with the maximum vertical distance from the short axis center plane of the magnetic circuit component of the transducer (for example, the magnetic circuit component 1144 described below) and closest to the upper side surface US can be determined; the projection contour of the sound-emitting portion 11 between the two first positioning points can be determined as the projection line of the upper boundary of the inner side surface IS; the line segment on the sound-emitting portion 11 that is closest to the inner side surface IS and whose projection completely overlaps with the projection line of the upper boundary of the inner side surface IS can be determined as the upper boundary of the inner side surface IS.
  • the intersection line between the tangent plane of the inner side surface IS parallel to the X-Y plane (the plane formed by the major axis direction X and the minor axis direction Y) and the tangent plane of the upper side surface US parallel to the Z-X plane (the plane formed by the thickness direction Z and the major axis direction X) can be determined as the upper boundary of the inner side surface IS.
  • the midpoint of the upper boundary of the inner side surface IS can be the intersection point of the upper boundary of the inner side surface IS and the minor axis center plane of the magnetic circuit assembly.
  • the minor axis center plane of the magnetic circuit assembly refers to a plane parallel to the minor axis direction Y and the thickness direction Z of the sound-emitting portion 11 and passing through the center axis of the magnetic circuit assembly.
  • the 1/3 point of the lower boundary of the inner side surface IS of the sound-emitting portion 11 can be selected by the following exemplary method.
  • the projection contour of the sound-emitting portion 11 along the thickness direction Z can be determined; the two second positioning points on the sound-emitting portion 11 along the long axis direction X with the largest vertical distance from the short axis center plane of the magnetic circuit assembly and closest to the lower side surface LS can be determined; the projection contour of the sound-emitting portion 11 between the two second positioning points can be determined as the projection line of the lower boundary of the inner side surface IS; the line segment on the sound-emitting portion 11 closest to the inner side surface IS and whose projection completely coincides with the projection line of the lower boundary of the inner side surface IS can be determined as the lower boundary of the inner side surface IS.
  • the intersection line between the tangent plane of the inner side surface IS parallel to the Y-X plane (the plane formed by the short axis direction Y and the long axis direction X) and the tangent plane of the lower side surface LS parallel to the X-Y plane (the plane formed by the thickness direction Z and the long axis direction X) can be determined as the lower boundary of the inner side surface IS.
  • the 1/3 point of the lower boundary of the inner side surface IS may be the intersection point of the lower boundary of the inner side surface IS and the trisection plane of the magnetic circuit component close to the free end FE.
  • the trisection plane of the magnetic circuit component close to the free end FE refers to a plane parallel to the minor axis direction Y and the thickness direction Z of the sound-emitting portion 11 and passing through the trisection point of the major axis of the magnetic circuit component close to the free end FE.
  • this specification will use the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary as the position reference points of the first leakage structure UC and the second leakage structure LC, respectively. It should be noted that the midpoint of the upper boundary of the inner side surface IS and the 1/3 point of the lower boundary are selected only as exemplary reference points to describe the positions of the first leakage structure UC and the second leakage structure LC. In some embodiments, other reference points can also be selected to describe the positions of the first leakage structure UC and the second leakage structure LC.
  • the first leakage structure UC/second leakage structure LC formed when the earphone 10 is in a wearing state is a gap with a gradually changing width.
  • the reference position of the first leakage structure UC/second leakage structure LC can be the position of the upper boundary/lower boundary of the inner side surface IS close to the area with the largest gap width.
  • the 1/3 point of the upper boundary of the inner side surface IS close to the free end FE can be used as the position of the first leakage structure UC
  • the midpoint of the lower boundary of the inner side surface IS can be used as the position of the second leakage structure LC.
  • the sound hole 112 in combination with Figures 14 to 16, in order to make the projection of the sound hole 112 in the sagittal plane partially or completely located in the concha cavity area when the earphone 10 is worn, and at the same time improve the sound intensity of the sound hole 112 in the ear canal (i.e., the listening position), the sound hole 112 can be set as close to the ear canal as possible.
  • the distance h from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.05mm to 6.05mm.
  • the distance h from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.50mm to 5.85mm. In some embodiments, the distance h from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 4.80mm to 5.50mm. In some embodiments, the distance h from the center O of the sound hole 112 to the lower side surface LS of the sound-emitting part 11 along the Y direction ranges from 5.20mm to 5.55mm.
  • the long axis dimension of the sound-emitting portion 11 cannot be too long.
  • the distance between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction cannot be too close, otherwise the entire or partial area of the sound hole may be blocked due to the contact between the free end FE and the wall of the concha cavity, thereby reducing the effective area of the sound hole.
  • the distance between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.15mm to 12.25mm. In some embodiments, the distance between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.50mm to 12.00mm. In some embodiments, the distance between the center O of the sound hole 112 and the rear side surface RS of the sound-emitting portion 11 along the X direction ranges from 8.85mm to 11.65mm.
  • the distance between the center O of the sound hole 112 and the rear side surface RS of the sound emitting portion 11 along the X direction ranges from 9.25 mm to 11.15 mm. In some embodiments, the distance between the center O of the sound hole 112 and the rear side surface RS of the sound emitting portion 11 along the X direction ranges from 9.60 mm to 10.80 mm.
  • the projection of the upper boundary of the medial surface IS in the sagittal plane may coincide with the projection of the upper surface US in the sagittal plane, and the projection of the lower boundary of the medial surface IS in the sagittal plane may coincide with the projection of the lower surface LS in the sagittal plane.
  • the projection of the position reference point of the first leakage structure UC (i.e., the midpoint of the upper boundary of the medial surface IS) in the sagittal plane is point A
  • the projection of the position reference point of the second leakage structure LC (i.e., the 1/3 point of the lower boundary of the medial surface IS) in the sagittal plane is point C
  • the projection of the center O of the sound outlet 112 in the sagittal plane is point O’
  • the projection of the center O1 of the first pressure relief hole 1131 in the sagittal plane is point O1’
  • the projection of the center O2 of the second pressure relief hole 1132 in the sagittal plane is point O2’.
  • the projection of the sound-emitting part 11 of the earphone 10 on the sagittal plane can at least partially cover the ear canal of the user, but the ear canal can be connected to the outside world through the concha cavity to achieve the liberation of the user's ears.
  • the sound outlet 112 since the sound outlet 112 outputs sound to the outside world through the first leakage structure UC and the second leakage structure LC to cancel the sound output by the first pressure relief hole 1131 and/or the second pressure relief hole 1132 in the far field, in order to ensure the sound leakage cancellation effect, it is necessary to reasonably design the distance between the sound outlet 112 and the first pressure relief hole 1131/the second pressure relief hole 1132 and the first leakage structure UC and the second leakage structure LC. In some embodiments, in order to ensure the sound intensity at the ear canal, it is necessary to make the sound outlet 112 closer to the ear canal when the earphone is in the wearing state.
  • the sound outlet 112 can be arranged closer to the lower side LS than the upper side US, that is, the sound outlet 112 can be far away from the first leakage structure UC.
  • the greater the distance between the sound outlet 112 and the first leakage structure UC the greater the width dimension required by the sound-emitting part 11, the greater the volume V of the cavity structure formed between the sound-emitting part 11 and the concha cavity, and accordingly, the smaller the overall listening index of the earphone 10 (in the full frequency range). This is because of the influence of the air-acoustic resonance in the cavity structure.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane can be 10.0mm ⁇ 15.2mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane is 11.0mm ⁇ 14.2mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane is 12.0mm ⁇ 14.7mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane is 12.5 mm to 14.2 mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial surface IS in the sagittal plane is 13.0 mm to 13.7 mm.
  • the sound leakage of the sound outlet hole 112 through the first leakage structure UC is equivalent to generating a secondary sound source at the first leakage structure UC.
  • the first pressure relief hole 1131 can be set close to the first leakage structure UC.
  • the first pressure relief hole 1131 can be set closer to the first leakage structure UC than the sound outlet hole 112, even if the distance between the center O of the sound outlet hole 112 and the midpoint of the upper boundary of the inner side surface IS is greater than the distance between the center O1 of the first pressure relief hole 1131 and the midpoint of the upper boundary of the inner side surface IS, so as to ensure the sound intensity at the ear canal, so that the effect of sound leakage cancellation is better.
  • the ratio between the distance between the center O of the sound outlet hole 112 and the midpoint of the upper boundary of the inner side surface IS and the distance between the center O1 of the first pressure relief hole 1131 and the midpoint of the upper boundary of the inner side surface IS is in the range of 1.3-2.1. In some embodiments, the ratio of the distance between the center O of the sound outlet hole 112 and the midpoint of the upper boundary of the inner side surface IS to the distance between the center O1 of the first pressure relief hole 1131 and the midpoint of the upper boundary of the inner side surface IS is in the range of 1.4-2.0.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the midpoint of the upper boundary of the inner side surface IS to the distance between the center O1 of the first pressure relief hole 1131 and the midpoint of the upper boundary of the inner side surface IS is in the range of 1.5-1.9. In some embodiments, the ratio of the distance between the center O of the sound outlet hole 112 and the midpoint of the upper boundary of the inner side surface IS to the distance between the center O1 of the first pressure relief hole 1131 and the midpoint of the upper boundary of the inner side surface IS is in the range of 1.6-1.8.
  • the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane may substantially coincide with the projection point A of the midpoint of the upper boundary of the medial side surface IS in the sagittal plane.
  • the distance range between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial side surface IS in the sagittal plane is no greater than 2 mm.
  • the distance range between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial side surface IS in the sagittal plane is no greater than 1 mm. In some embodiments, the distance range between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point A of the midpoint of the upper boundary of the medial side surface IS in the sagittal plane is no greater than 0.5 mm.
  • the projection point O' of the center O of the sound outlet 112 on the sagittal plane is 1/3 of the distance from the lower border of the medial surface IS.
  • the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane ranges from 3.5mm to 5.6mm. In some embodiments, the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane ranges from 3.9mm to 5.2mm.
  • the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the projection point C of the 1/3 point of the lower boundary of the medial surface IS in the sagittal plane ranges from 4.3mm to 4.8mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet hole 112 on the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface IS on the sagittal plane is in the range of 4.5 mm to 4.6 mm.
  • the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface IS in the sagittal plane ranges from 8.16mm to 12.24mm.
  • the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface IS in the sagittal plane ranges from 9.16mm to 11.24mm. In some embodiments, the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface IS in the sagittal plane ranges from 9.66mm to 10.74mm.
  • the sound leakage of the sound outlet hole 112 through the second leakage structure LC is equivalent to generating a secondary sound source at the second leakage structure LC.
  • the second pressure relief hole 1132 is close to the ear canal opening, in order to reduce the degree of cancellation of the sound of the second pressure relief hole 1132 transmitted into the cavity structure through the second leakage structure LC and the sound of the sound outlet hole 112 in the ear canal, the distance between the second pressure relief hole 1132 and the 1/3 point of the lower boundary of the inner side surface IS (i.e., the second leakage structure LC) cannot be too small.
  • the distance between the second pressure relief hole 1132 and the 1/3 point of the lower boundary of the inner side surface IS i.e., the second leakage structure LC
  • the ratio of the distance between the center O of the sound outlet hole 112 and the 1/3 point of the lower boundary of the inner side surface IS (i.e., the second leakage structure LC) and the distance between the center O2 of the second pressure relief hole 1132 and the 1/3 point of the lower boundary of the inner side surface IS (i.e., the second leakage structure LC) can be made within the range of 0.65-1.05. In some embodiments, the ratio of the distance between the center O of the sound outlet hole 112 and the 1/3 point of the lower boundary of the inner side surface IS and the distance between the center O2 of the second pressure relief hole 1132 and the 1/3 point of the lower boundary of the inner side surface IS is within the range of 0.75-1.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the 1/3 point of the lower boundary of the inner side surface IS and the distance between the center O2 of the second pressure relief hole 1132 and the 1/3 point of the lower boundary of the inner side surface IS is within the range of 0.8-0.9.
  • the ratio of the distance from the center O of the sound outlet hole 112 to the 1/3 point of the lower boundary of the inner side surface IS to the distance from the center O2 of the second pressure relief hole 1132 to the 1/3 point of the lower boundary of the inner side surface IS is in the range of 0.82-0.88.
  • the positional relationship among the center O of the sound outlet hole 112, the 1/3 point of the lower boundary of the medial surface IS, and the center O2 of the second pressure relief hole 1132 can also be characterized by the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface in the sagittal plane, and the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface in the sagittal plane.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface in the sagittal plane and the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial surface in the sagittal plane is in the range of 0.28-0.68.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface in the sagittal plane to the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface in the sagittal plane is in the range of 0.33-0.59.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface in the sagittal plane to the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the medial side surface in the sagittal plane is in the range of 0.38-0.51.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane to the distance between the projection point O2' of the center O2 of the second pressure relief hole 1132 in the sagittal plane and the projection point C of the 1/3 point of the lower boundary of the inner side surface in the sagittal plane is in the range of 0.41-0.48.
  • the sound hole 112 since there is a tragus near the opening of the ear canal, the sound hole 112 is easily blocked by the tragus. At this time, in order to make the sound hole 112 as close to the ear canal as possible and not blocked, the sound hole 112 should be kept at a certain distance from the center of the ear canal opening as much as possible.
  • the positional relationship between a certain position (for example, the center O of the sound hole 112) and the center of the ear canal opening can be obtained by comparing the projection point of the position (for example, the center O of the sound hole 112) on the sagittal plane with the center of the ear canal opening on the sagittal plane.
  • the distance between the centroid of the projection of the sound outlet 112 on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane is characterized.
  • the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 2.2mm to 3.8mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 2.4mm to 3.6mm.
  • the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 2.6mm to 3.4mm. In some embodiments, the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 2.8mm to 3.2mm.
  • the shape of the projection of the ear canal opening on the sagittal plane can be approximately regarded as an ellipse, and correspondingly, the centroid of the projection of the ear canal opening on the sagittal plane can be the geometric center of the ellipse.
  • the distance from the projection point A of the midpoint of the upper boundary of the medial surface IS on the sagittal plane to the centroid B of the projection of the ear canal opening on the sagittal plane is in the range of 12 mm to 18 mm
  • the distance from the projection point O2' of the center of the second pressure relief hole on the sagittal plane to the centroid B of the projection of the ear canal opening on the sagittal plane is in the range of 6.88 mm to 10.32 mm.
  • the distance from the projection point A of the midpoint of the upper boundary of the medial surface IS on the sagittal plane to the centroid B of the projection of the ear canal opening on the sagittal plane is in the range of 14 mm to 16 mm, and the distance from the projection point O2' of the center of the second pressure relief hole on the sagittal plane to the centroid B of the projection of the ear canal opening on the sagittal plane is in the range of 7.88 mm to 9.32 mm.
  • the distance between the projection point A of the midpoint of the upper boundary of the inner side surface IS in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane is in the range of 14.5 mm to 15.5 mm, and the distance between the projection point O2' of the center O2 of the second pressure relief hole in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane is in the range of 7.88 mm to 8.32 mm.
  • the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane ranges from 12 mm to 18 mm. In some embodiments, the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane ranges from 14 mm to 16 mm.
  • the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane ranges from 14.5 mm to 15.5 mm.
  • the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 1.76 mm to 2.64 mm. In some embodiments, the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 1.96 mm to 2.44 mm.
  • the distance between the projection point C of the 1/3 point of the lower boundary of the medial surface on the sagittal plane and the centroid B of the projection of the ear canal opening on the sagittal plane ranges from 2.16 mm to 2.24 mm.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the center of the ear canal opening to the distance between the center O1 of the first pressure relief hole 1131 and the center of the ear canal opening can be made within an appropriate range.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane to the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the centroid B of the projection of the ear canal opening in the sagittal plane can be made within an appropriate range.
  • the ratio of the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane to the distance from the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane may be in the range of 0.10-0.35.
  • the ratio of the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane to the distance from the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane is in the range of 0.15-0.28.
  • the ratio of the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane to the distance from the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane is in the range of 0.18-0.25.
  • the ratio of the distance from the projection point O' of the center O of the sound outlet 112 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane to the distance from the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane to the centroid B of the projection of the ear canal opening in the sagittal plane is in the range of 0.19-0.22.
  • the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 22.5 mm to 34.5 mm.
  • the upper vertex of the ear hook 12 may be the position on the outer contour of the ear hook that has the maximum distance in the vertical axis direction relative to a specific point on the user's neck when the user wears an open-type earphone, such as the vertex M shown in Figure 14. In some embodiments, the upper vertex of the ear hook 12 may also be the highest point of the inner contour of the ear hook along the user's vertical axis in the wearing state. In some embodiments, when the user wears the earphone 10, the distance between the center O of the sound outlet 112 and the upper vertex M of the ear hook 12 ranges from 25 mm to 32 mm.
  • the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 ranges from 27.5 mm to 29.5 mm. In some embodiments, when the user wears the earphone 10, the distance between the center O of the sound hole 112 and the upper vertex M of the ear hook 12 ranges from 28 mm to 29 mm. In some embodiments, when the user wears the earphone 10, the distance between the projection point O' of the center O of the sound hole 112 on the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 on the sagittal plane ranges from 18 mm to 30 mm.
  • the distance between the projection of the center O of the sound hole 112 on the sagittal plane and the projection of the upper vertex M of the ear hook 12 on the sagittal plane ranges from 20 mm to 25 mm. It should be noted that in this specification, in the wearing state, the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and a specific point (for example, the projection point M' of the upper vertex M of the ear hook 12 on the sagittal plane) can be determined by the following exemplary method.
  • the earphone 10 In the wearing state, multiple components of the earphone 10 (for example, the sound-emitting part 11, the first part 121 of the ear hook and the second part 122 of the ear hook) can be fixed on the fixing member using fixings or glue, and then the human head model and the auricle structure are removed. At this time, the earphone 10 stabilized on the fixing member is displayed facing the ear side, and its posture is the same as the posture in the wearing state. At this time, the position of the projection point O' of the center O of the sound outlet 112 on the sagittal plane can be determined. Further, the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the specific point can be determined.
  • the position of the projection point O' of the center O of the sound outlet 112 on the sagittal plane can be determined. Further, the distance between the projection point O' of the center O of the sound outlet 112 on the sagittal plane and the specific point can be determined.
  • the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 cannot be too small.
  • the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 cannot be too large.
  • the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 ranges from 16.15mm to 24.25mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 ranges from 17.55mm to 23.25mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 ranges from 19.55mm to 20.55mm. In some embodiments, the positional relationship between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 can also be characterized by the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane.
  • the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane ranges from 15.83mm to 23.75mm. In some embodiments, the distance between the projection point O1' of the center O1 of the first pressure relief hole 1131 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane ranges from 18mm to 20mm.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 is in the range of 1.10-1.70. In some embodiments, when the user wears the earphone 10, the ratio of the distance between the center O of the sound outlet hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 is in the range of 1.25-1.65.
  • the ratio of the distance between the center O of the sound outlet hole 112 and the upper vertex M of the ear hook 12 to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 is in the range of 1.35-1.55.
  • the relative positional relationship between the center O of the sound outlet 112, the upper vertex M of the ear hook 12, and the center O1 of the first pressure relief hole 1131 can also be characterized by the ratio of the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12.
  • the ratio of the distance between the projection point O' of the center O of the sound outlet 112 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 is in the range of 1.11-1.71. In some embodiments, the ratio of the distance between the projection point O' of the center O of the sound outlet hole 112 in the sagittal plane and the projection point M' of the upper vertex M of the ear hook 12 in the sagittal plane to the distance between the center O1 of the first pressure relief hole 1131 and the upper vertex M of the ear hook 12 is in the range of 1.35-1.50.
  • the description of the earphone 10 is for illustrative purposes only and is not intended to limit the scope of the present application.
  • the pressure relief hole can be any one of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • the pressure relief hole can be the first pressure relief hole 1131, that is, the pressure relief hole can be provided on the upper side US.
  • the pressure relief hole can be regarded as the only point sound source outside the cavity structure 41 as shown in Figure 10.
  • the ratio of the distance from the center O of the sound outlet hole 112 to the midpoint of the upper boundary of the inner side surface IS to the distance from the center of the pressure relief hole to the midpoint of the upper boundary of the inner side surface IS is in the range of 1.3-2.1.
  • FIG. 17 is a schematic diagram of the structure of the shell of the earphone according to some embodiments of the present specification.
  • the sound hole 112, the first pressure relief hole 1131, and the second pressure relief hole 1132 may be in a runway shape, wherein the two ends of the runway shape may be inferior arcs or semicircles.
  • the sound hole 112, the first pressure relief hole 1131, and the second pressure relief hole 1132 all adopt a straight cylindrical structure.
  • the sound hole 112, the first pressure relief hole 1131, and the second pressure relief hole 1132 may all adopt a trumpet-shaped structure.
  • the area of the inner opening is smaller than the area of the corresponding outer opening, or the area of the outer opening is smaller than the area of the corresponding inner opening.
  • the shapes of the first pressure relief hole 1131 and the second pressure relief hole 1132 may include, but are not limited to, circular, elliptical, and runway shapes.
  • the following will take the sound outlet hole 112, the first pressure relief hole 1131, and the second pressure relief hole 1132 as a straight cylindrical structure in the shape of a runway as an example for exemplary description.
  • the maximum size of the sound outlet hole 112 in the width direction Y is defined as its corresponding short axis size (width)
  • the maximum size of the first pressure relief hole 1131 and the second pressure relief hole 1132 in the thickness direction Z is defined as its corresponding short axis size (width)
  • the maximum size of the sound outlet hole 112, the first pressure relief hole 1131, and the second pressure relief hole 1132 in the long axis direction X is defined as its corresponding long axis size (length)
  • the size of the sound outlet hole 112 in the thickness direction Z is defined as its corresponding depth
  • the size of the first pressure relief hole 1131 and the second pressure relief hole 1132 in the width direction Y is defined as its corresponding depth.
  • the resonant frequency f1 of the front cavity of the earphone moves toward high frequency.
  • the air in the front cavity is compressed or expanded as the diaphragm vibrates, and the compressed or expanded air can drive the air column at the sound outlet hole to move back and forth, thereby causing the air column to radiate sound outward.
  • the air column in the sound outlet hole 112 has mass, and the mass can correspond to the sound mass of the sound outlet hole 112.
  • the sound mass can be used as part of the acoustic impedance, thereby affecting the acoustic output of the sound-emitting part 11. Therefore, the size of the sound outlet hole 112 will also affect the sound mass Ma of the sound outlet hole 112. Specifically, when the area S3 of the sound outlet hole 112 increases or the depth D3 decreases, the sound mass Ma of the sound outlet hole 112 decreases.
  • the area S3 of the sound outlet hole 112 in order to ensure the sound quality Ma of the sound outlet hole 112 while increasing the resonance frequency f1 of the front cavity, the area S3 of the sound outlet hole 112 needs to be within a suitable value range.
  • the area S3 of the sound outlet hole 112 may be in the range of 2.87mm2-46.10mm2 . In some embodiments, the area S3 of the sound outlet hole 112 may be in the range of 2.875mm2-46mm2 .
  • the area S3 of the sound outlet hole 112 may be in the range of 8mm2-30mm2 . In some embodiments, the area S3 of the sound outlet hole 112 may be in the range of 10mm2-26mm2 . As an example only, the area S3 of the sound outlet hole 112 may be 11 mm 2 -15 mm 2 (eg, 11.49 mm 2 ). For another example, the area S3 of the sound outlet hole 112 may be 25 mm 2 -26 mm 2 (eg, 25.29 mm 2 ).
  • the depth D3 of the sound hole 112 is the thickness of the shell 111. If the thickness of the shell 111 is too small, it may affect the structural strength of the earphone 10, and the corresponding processing technology is more difficult.
  • the depth D3 of the sound hole 112 can range from 0.3mm to 3mm. In some embodiments, the depth D3 of the sound hole 112 can range from 0.3mm to 2mm. In some embodiments, the depth D3 of the sound hole 112 can range from 0.3mm to 1mm.
  • the corresponding ratio S 3 /D 3 2 of the area S 3 of the sound outlet hole 112 to the square of the depth D 3 may range from 0.31 to 512.2. In some embodiments, the ratio S 3 /D 3 2 of the area S 3 of the sound outlet hole 112 to the square of the depth D 3 may range from 1 to 400. In some embodiments, the ratio S 3 /D 3 2 of the area S 3 of the sound outlet hole 112 to the square of the depth D 3 may range from 3 to 300.
  • the ratio S 3 /D 3 2 of the area S 3 of the sound outlet hole 112 to the square of the depth D 3 may range from 5 to 200 . In some embodiments, the ratio S 3 /D 3 2 of the area S 3 of the sound outlet hole 112 to the square of the depth D 3 may range from 10 to 50.
  • the resonance frequency corresponding to the rear cavity of the earphone 10 gradually moves toward the high frequency, and the flat area of the frequency response curve becomes wider.
  • the area of the first pressure relief hole 1131 and/or the area of the second pressure relief hole 1132 is too large, it will have a certain impact on the appearance, structural strength, waterproof and dustproof of the earphone 10 and other aspects.
  • the area S1 of the first pressure relief hole 1131 and/or the area S2 of the second pressure relief hole 1132 should not be too large.
  • the area of the first pressure relief hole 1131 ranges from 3.78 mm 2 to 86.21 mm 2
  • the area of the second pressure relief hole 1132 ranges from 2.78 mm 2 to 54.68 mm 2 .
  • the area of the first pressure relief hole 1131 ranges from 3.78 mm 2 to 22.07 mm 2
  • the area of the second pressure relief hole 1132 ranges from 2.78 mm 2 to 16.07 mm 2 .
  • the area of the first pressure relief hole 1131 ranges from 6.78 mm 2 to 20.07 mm 2
  • the area of the second pressure relief hole 1132 ranges from 4.78 mm 2 to 13.07 mm 2 .
  • the depth D1 of the first pressure relief hole 1131 and the depth D2 of the second pressure relief hole 1132 can be consistent with the depth D3 of the sound outlet hole 112.
  • the depth D1 of the first pressure relief hole 1131 (or the depth D2 of the second pressure relief hole 1132) can be in the range of 0.3mm-3mm.
  • the depth D1 of the first pressure relief hole 1131 (or the depth D2 of the second pressure relief hole 1132) can be in the range of 0.3mm-2mm.
  • the depth D1 of the first pressure relief hole 1131 (or the depth D2 of the second pressure relief hole 1132) can be in the range of 0.3mm-1mm.
  • the resonant frequency f2 of the rear cavity can be close to or equal to the resonant frequency f1 of the front cavity 114.
  • the ratio of the resonant frequency f1 of the front cavity 114 to the resonant frequency f2 of the rear cavity for:
  • the ratio between the resonance frequency f1 of the front cavity 114 and the resonance frequency f2 of the rear cavity can be related to the ratio of the volumes of the front and rear cavities, the ratio of the opening area of the sound outlet hole 112 to the opening area of the pressure relief hole 113, and the ratio of the depth of the sound outlet hole 113 to the depth of the pressure relief hole 113.
  • the range of other parameters can be set based on some of the parameters (for example, the ratio of the opening area of the sound outlet hole 112 to the opening area of the acoustic hole 113), so that the second sound leakage formed by the pressure relief hole 113 can better offset the first sound leakage formed by the sound outlet hole 112 in the far field, thereby improving the output effect of the earphone 10.
  • the ratio of the ratio of the area S3 to the depth D3 of the sound outlet hole 112 to the ratio of the total area of the pressure relief hole 113 to its corresponding depth is within the range of 1.10-1.75. In some embodiments, in order to make the ratio of the resonant frequency of the front cavity to the rear cavity within the range of 0.7-1.3, the ratio of the area S3 to the depth D3 of the sound outlet hole 112 to the ratio of the total area of the pressure relief hole 113 to its corresponding depth is within the range of 1.25-1.65.
  • the ratio of the area S3 to the depth D3 of the sound outlet hole 112 to the ratio of the total area of the pressure relief hole 113 to its corresponding depth is within the range of 1.35-1.55.
  • the shape of the sound outlet hole 112 will also affect the acoustic resistance of the sound outlet hole 112. For example, the narrower and longer the sound outlet hole 112 is, the greater the acoustic resistance of the sound outlet hole 112 is, which is not conducive to the acoustic output of the front cavity. Therefore, in order to ensure that the sound outlet hole 112 produces a better low-frequency output, and to increase the volume of the sound output by the sound outlet hole 112, the ratio of the major axis dimension L3 to the minor axis dimension W3 of the sound outlet hole 112 (or the aspect ratio of the sound outlet hole 112) needs to be within a preset appropriate value range.
  • the aspect ratio of the sound outlet hole 112 can be in the range of 1-10. In some embodiments, the aspect ratio of the sound outlet hole 112 can be 2-7. In some embodiments, the aspect ratio of the sound outlet hole 112 can be 2-3. In some embodiments, the aspect ratio of the sound outlet hole 112 can be 2.
  • the length L3 of the sound hole 112 may have a relatively large value, but at the same time, in order not to reduce the high-frequency output corresponding to the resonance peak of the front cavity and considering the structural stability of the sound-emitting part 11, the length L3 of the sound hole 112 may be no more than 17 mm, and the width W3 of the sound hole 112 may be no more than 10 mm. In some embodiments, the length L3 of the sound hole 112 may be 2 mm-11 mm. In some embodiments, the length L3 of the sound hole 112 may be 3 mm-11 mm.
  • the length L3 of the sound hole 112 may be 3 mm-16 mm. In some embodiments, the length L3 of the sound hole 112 may be 5 mm-13 mm. In some embodiments, the length L3 of the sound hole 112 may be 6 mm-9 mm.
  • the width W3 of the sound outlet hole 112 can be determined.
  • the aspect ratio of the sound outlet hole 112 can be 2, and the width W3 of the sound outlet hole 112 can be 1.5mm-5.5mm.
  • the corresponding area of the runway-shaped sound outlet hole 112 can be 4.02mm2-54mm2 .
  • the area of the runway-shaped sound outlet hole 112 is about 11.5mm2 , and the length L3 of the sound outlet hole 112 can be determined to be 5mm-6mm, and the width W3 of the sound outlet hole 112 can be determined to be 2.5mm-3mm.
  • the earphone 10 can have a flat frequency response curve and sufficient high-frequency output in a wider frequency range; in addition, the value of the area is relatively small, which is also conducive to the stability of the structure.
  • the center of the sound outlet 112 is located on or near the median perpendicular plane of the line connecting the center of the first pressure relief hole 1131 and the center of the second pressure relief hole 1132, and the sound outlet 112 is located on the side of the shell 111 close to the second pressure relief hole 1132 in the Y direction rather than in the middle. Since the sound outlet 112 is arranged close to the external auditory canal, the second pressure relief hole 1132 is closer to the external auditory canal, and the first pressure relief hole 1131 is farther from the external auditory canal.
  • the sound waves transmitted from the second pressure relief hole 1132 are more likely to cancel out the sound waves transmitted from the sound outlet 112 in the near field. Therefore, the sound pressure amplitude at the second pressure relief hole 1132 can be smaller than the sound pressure amplitude at the first pressure relief hole 1131, thereby increasing the listening volume at the ear canal.
  • the acoustic resistance of the second pressure relief hole 1132 can be larger.
  • the size of the second pressure relief hole 1132 may be smaller than that of the first pressure relief hole 1131 , so that the acoustic resistance of the second pressure relief hole 1132 may have a relatively large acoustic resistance.
  • the area of the first pressure relief hole 1131 may be larger than that of the second pressure relief hole 1132 .
  • the volume of the front and rear cavities of the sound-generating part 11 cannot be too large or too small, and in order to make the ratio of the resonance frequency of the front cavity to the rear cavity within the range of 0.3-1.7, the ratio of the area of the sound outlet hole 112 to the total area of the pressure relief holes 113 (for example, the sum of the areas of the first pressure relief holes 1131 and the second pressure relief holes 1132) is between 0.3-0.9.
  • the ratio of the area of the sound outlet hole 112 to the total area of the pressure relief holes 113 is between 0.5-0.85. In some embodiments, in order to make the ratio of the resonance frequency of the front cavity to the rear cavity within the range of 0.7-1.3, the ratio of the area of the sound outlet hole 112 to the total area of the pressure relief holes 113 is between 0.6-0.8. In some embodiments, in order to make the ratio of the resonant frequency of the front cavity to that of the rear cavity within the range of 0.8-1.2, the ratio of the area of the sound outlet hole 112 to the total area of the pressure relief holes 113 is between 0.65-0.75.
  • the ratio of the area S3 of the sound outlet hole 112 to the area of the pressure relief hole is between 0.5-1.5. In some embodiments, when the earphone 10 includes only one pressure relief hole, the ratio of the area S3 of the sound outlet hole 112 to the area of the pressure relief hole is between 0.6-1.3. In some embodiments, when the earphone 10 includes only one pressure relief hole, the ratio of the area S3 of the sound outlet hole 112 to the area of the pressure relief hole is between 0.65-1.25. In some embodiments, when the earphone 10 includes only one pressure relief hole, the ratio of the area S3 of the sound outlet hole 112 to the area of the pressure relief hole is between 0.7-1.2.
  • FIG. 18 is a contour diagram of the ratio of the volume of the front and rear cavities, and the ratio of the opening area of the sound outlet hole to the opening area of the pressure relief hole according to some embodiments of the present specification.
  • the range of the ratio between the resonant frequencies of the front and rear cavities may be related to the ratio between the area of the sound outlet hole and the area of the pressure relief hole and the ratio between the volumes of the front and rear cavities.
  • the ratio between the resonant frequencies of the front and rear cavities may be within the target range. For example, referring to FIG.
  • the opening area S 3 of the sound hole 112 may be smaller than the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • the ratio S 3 /S 1+2 of the opening area S 3 of the sound hole 112 to the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 may be in the range of 0.1-0.99, and the ratio V 2 /V 1 of the volume V 2 of the rear cavity to the volume V 1 of the front cavity may be in the range of 0.1-10.
  • the ratio f 1 /f 2 of the resonance frequency f 1 of the front cavity to the resonance frequency f 2 of the rear cavity is in the range of 0.5-2
  • the ratio S 3 /S 1+2 of the opening area S 3 of the sound hole 112 to the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 can be in the range of 0.2-0.7
  • the ratio V 2 /V 1 of the volume V 2 of the rear cavity to the volume V 1 of the front cavity can be in the range of 1-7.
  • the opening area S3 of the sound outlet hole 112 may be greater than the total opening area S1 +2 of the first pressure relief hole 1131 and the second pressure relief hole 1132.
  • the ratio S3 /S1+2 between the opening area S3 of the sound outlet hole 112 and the total opening area S1 +2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 may be in the range of 1-10
  • the ratio V2 /V1 of the volume V2 of the rear cavity 116 to the volume V1 of the front cavity 114 may be in the range of 0.1-10, and according to FIG.
  • the corresponding ratio f1 / f2 of the resonant frequency f1 of the front cavity 114 to the resonant frequency f2 of the rear cavity 116 may be in the range of 0.5-10.
  • the ratio S 3 /S 1+ 2 of the opening area S 3 of the sound hole 112 and the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 can be between 3-9
  • the ratio V 2 /V 1 of the volume V 2 of the rear cavity 116 to the volume V 1 of the front cavity 114 can be in the range of 2-6
  • the ratio f 1 /f 2 of the resonance frequency f 1 of the front cavity 114 to the resonance frequency f 2 of the rear cavity 116 can be in the range of 1-8 .
  • the value range of S 3 /S 1+ 2 can be determined based on V 2 /V 1, or the value range of V 2 /V 1 can be determined based on S 3 /S 1+2 , so that the resonant frequency f 2 of the rear cavity can be close to or equal to the resonant frequency f 1 of the front cavity, thereby making the second sound leakage formed by the pressure relief hole 113 and the first sound leakage formed by the sound outlet hole 112 in the far field better offset each other, thereby improving the output effect of the earphone 10.
  • the volume V 2 of the rear cavity can be relatively small, for example, V 2 /V 1 can be less than 1.
  • the resonant frequency f 2 of the rear cavity can be close to or equal to the resonant frequency f 1 of the front cavity (for example, the value of f 1 /f 2 is about 1), the value range of S 3 /S 1+2 can be 1-2.5.
  • the volume V1 of the front cavity may be in the range of 190 mm3-220 mm3 ; the volume V2 of the rear cavity may be in the range of 60 mm3-80 mm3 . Accordingly, in some embodiments, the value of V2 / V1 may be in the range of 0.2-0.4. In some embodiments, the value of V2 / V1 may be in the range of 0.25-0.45.
  • the ratio S 3 /S 1+2 between the opening area S 3 of the sound outlet hole 112 and the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 can be adjusted to a range so that the earphone has a better output effect.
  • the length L 3 of the sound outlet hole 112 can be 3 mm-11 mm
  • the ratio between the length L 3 and the width W 3 of the cross section of the sound outlet hole 112 is 2, and the corresponding area of the runway-shaped sound outlet hole 112 can be 4.02 mm 2 -54 mm 2 .
  • the length L 1 of the first pressure relief hole 1131 can be 6 mm, and the width W 1 can be 1.5 mm, and the corresponding area of the first pressure relief hole 1131 can be 8.51 mm 2 , and the length L 2 of the second pressure relief hole 1132 can be 3 mm, and the width W 2 can be 1.5 mm, and the corresponding area of the second pressure relief hole 1132 can be 4.02 mm 2 .
  • the ratio S 3 /S 1+ 2 between the opening area S 3 of the sound outlet hole 112 and the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 may be 0.32-4.31.
  • the length L 1 of the first pressure relief hole 1131 may be 2 mm-8 mm, the width W 1 may be 1.5 mm, and the area of the first pressure relief hole 1131 is 2.517 mm 2 -11.5171 mm 2 ; the length L 2 of the second pressure relief hole 1132 may be 3 mm-6 mm, the width W 2 may be 1.5 mm, and the area of the second pressure relief hole 1132 is 4.017 mm 2 -8.5171 mm 2 .
  • the length L 3 of the sound outlet hole 112 may be 5 mm, the width W 3 may be 2.5 mm, and the corresponding area S 3 is 11.16 mm 2 . Therefore, a ratio S 3 /S 1+2 between the opening area S 3 of the sound outlet hole 112 and the total opening area S 1+2 of the first pressure relief hole 1131 and the second pressure relief hole 1132 is 0.56-1.71.
  • f 1 /f 2 when V 2 /V 1 is in the range of 0.25-0.45 and S 3 /S 1+2 is in the range of 0.32-4.31, f 1 /f 2 is in the range of 0.5-1.5; when V 2 /V 1 is in the range of 0.25-0.45 and S 3 /S 1+2 is in the range of 0.56-1.71, f 1 /f 2 is in the range of 0.5-0.9. It can be seen that The volume ratio and/or area ratio may be determined based on the above ranges so that the resonance frequency f2 of the rear cavity may be close to or equal to the resonance frequency f1 of the front cavity.
  • FIG. 19 is a frequency response curve corresponding to different volumes at the sound outlet according to some embodiments of the present specification
  • FIG. 20 is a frequency response curve corresponding to different volumes at the first pressure relief hole according to some embodiments of the present specification
  • FIG. 21 is a frequency response curve corresponding to different volumes at the second pressure relief hole according to some embodiments of the present specification. As shown in FIG. 19-FIG. 21, as the volume gradually decreases from the maximum volume, the sound pressure at the sound outlet 112, the sound pressure at the first pressure relief hole 1131, and the sound pressure at the second pressure relief hole 1132 all gradually decrease.
  • the sound pressure at the sound outlet 112, the sound pressure at the first pressure relief hole 1131, and the sound pressure at the second pressure relief hole 1132 refer to the sound pressure at a distance of 4 mm from the sound outlet 112, the distance of 4 mm from the first pressure relief hole 1131, and the distance of 4 mm from the second pressure relief hole 1132, respectively.
  • no blockage is caused to other holes. For example, when measuring the sound pressure at the sound outlet 112, the first pressure relief hole 1131 and the second pressure relief hole 1132 are not blocked or blocked.
  • the sound waves emitted by the pressure relief hole (the first pressure relief hole 1131 or the second pressure relief hole 1132) and the sound leakage generated by the sound outlet hole 112 can be canceled in the far field, which is beneficial to reduce the far-field sound leakage, and the sound waves emitted by the pressure relief hole have less effect on the near-field listening. Therefore, in some embodiments, the sound pressure amplitude at the pressure relief hole 113 (the first pressure relief hole 1131 or the second pressure relief hole 1132) can be close to the sound pressure amplitude at the sound outlet hole 112, so as to effectively reduce the far-field sound leakage without affecting the near-field listening.
  • the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the first pressure relief hole 1131 can be in the range of 0.8-1.2. In some embodiments, the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the first pressure relief hole 1131 may be in the range of 0.9-1.1. In some embodiments, the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the first pressure relief hole 1131 may be in the range of 0.95-1.05.
  • the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the second pressure relief hole 1132 may be in the range of 0.8-1.2. In some embodiments, the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the second pressure relief hole 1132 may be in the range of 0.9-1.1. In some embodiments, the ratio between the sound pressure at the sound outlet hole 112 and the sound pressure at the second pressure relief hole 1132 may be in the range of 0.95-1.05.
  • the ratio between the sound pressure at the sound outlet hole 112 and the total sound pressure at the first pressure relief hole 1131 and the second pressure relief hole 1132 may be in the range of 0.4-0.6. In some embodiments, the ratio of the sound pressure at the sound outlet 112 to the total sound pressure at the first pressure relief hole 1131 and the second pressure relief hole 1132 can be in the range of 0.45-0.55. It should be noted that the sound pressure at the sound outlet 112, the sound pressure at the first pressure relief hole 1131, and the sound pressure at the second pressure relief hole 1132 refer to the sound pressures at the corresponding frequencies at the same volume.
  • the sound pressure of the sound outlet 112 is 103.54 dB
  • the sound pressure of the first pressure relief hole 1131 is 104.5 dB
  • the sound pressure of the second pressure relief hole 1132 is 100.74 dB.
  • the sound pressure at the sound outlet 112 is close to the sound pressure at the first pressure relief hole 1131 and the sound pressure at the second pressure relief hole 1132, respectively, so that far-field sound leakage can be effectively reduced.
  • the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 cannot be too small.
  • the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 cannot be too large.
  • the ratio of the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 to the area S 3 of the sound outlet hole 112 can be within a range of 2.5-3.9. In some embodiments, the ratio of the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 to the area S 3 of the sound outlet hole 112 can be within a range of 2.7-3.7.
  • the ratio of the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 to the area S 3 of the sound outlet hole 112 can be within a range of 2.85-3.45 . In some embodiments, the ratio of the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 to the area S 3 of the sound outlet hole 112 may be in the range of 2.9-3.4.
  • the ratio of the difference (S 1 -S 2 ) between the area S 1 of the first pressure relief hole 1131 and the area S 2 of the second pressure relief hole 1132 to the area S 3 of the sound outlet hole 112 may be in the range of 3.1-3.3.
  • FIG. 22 is a diagram showing an exemplary internal structure of a sound-producing part according to some embodiments of the present specification.
  • the sound-emitting part 11 may include a housing 111 connected to the ear hook 12 and a transducer 116 disposed in the housing 111.
  • the sound-emitting part 11 may also include a main control circuit board 13 disposed in the housing 111 and a battery (not shown) disposed at an end of the ear hook 12 away from the sound-emitting part 11, and the battery and the transducer 116 are electrically connected to the main control circuit board 13, respectively, so as to allow the battery to power the transducer 116 under the control of the main control circuit board 13.
  • the battery and the transducer 116 may also be disposed in the sound-emitting part 11, and the battery may be closer to the connection end CE and the transducer 116 may be closer to the free end FE.
  • the earphone 10 may include an adjustment mechanism connecting the sound-emitting portion 11 and the ear hook 12. Different users can adjust the relative position of the sound-emitting portion 11 on the ear through the adjustment mechanism when wearing the earphone, so that the sound-emitting portion 11 is located at a suitable position, so that the sound-emitting portion 11 and the concha cavity form a cavity structure. In addition, due to the existence of the adjustment mechanism, the user can also adjust the earphone 10 to a more stable and comfortable position.
  • the concha cavity has a certain volume and depth, after the free end FE extends into the concha cavity, there can be a certain distance between the inner side IS of the sound-emitting part 11 and the concha cavity.
  • the sound-emitting part 11 can cooperate with the concha cavity to form a cavity structure connected to the external auditory canal in the worn state, and a sound outlet hole 112 is provided on the sound-emitting part 11 (for example, the inner side IS), and the sound outlet hole 112 can be at least partially located in the aforementioned cavity structure.
  • the sound waves propagated from the sound outlet hole 112 will be restricted by the aforementioned cavity structure, that is, the aforementioned cavity structure can gather the sound waves so that the sound waves can be better propagated into the external auditory canal, thereby improving the volume and sound quality of the sound heard by the user in the near field, which is conducive to improving the acoustic effect of the earphone 10. Furthermore, since the sound-emitting part 11 can be arranged not to block the external auditory canal in the worn state, the aforementioned cavity structure can be arranged in a semi-open state.
  • a part of the sound waves propagated from the sound outlet 112 can be propagated to the ear canal so that the user can hear the sound, and the other part can be propagated together with the sound reflected from the ear canal through the gap between the sound-emitting part 11 and the ear (for example, the part of the concha cavity not covered by the sound-emitting part 11) to the outside of the earphone 10 and the ear, thereby forming a first sound leakage in the far field;
  • the sound waves propagated through the pressure relief holes 113 for example, the first pressure relief hole 1131 and the second pressure relief hole 1132 opened on the sound-emitting part 11 generally form a second sound leakage in the far field, and the intensity of the aforementioned first sound leakage is equivalent to the intensity of the aforementioned second sound leakage, and the phase of the aforementioned first sound leakage and the phase of the aforementioned second sound leakage are (close to) opposite to each other, so that the two can cancel each other out in
  • a front cavity 114 may be formed between the transducer 116 and the housing 111 , and a sound outlet hole 112 is disposed on the housing 111 to surround an area forming the front cavity 114 .
  • the front cavity 114 is connected to the outside through the sound outlet hole 112 .
  • the front cavity 114 is disposed between the diaphragm of the transducer 116 and the housing 111. In order to ensure that the diaphragm has sufficient vibration space, the front cavity 114 may have a larger depth dimension (i.e., the distance dimension between the diaphragm of the transducer 116 and the housing 111 facing it).
  • the sound outlet 112 is disposed on the inner side surface IS in the thickness direction Z. At this time, the depth of the front cavity 114 may refer to the dimension of the front cavity 114 in the Z direction.
  • the depth of the front cavity 114 may be 0.55 mm-1.00 mm. In some embodiments, the depth of the front cavity 114 may be 0.66 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.76 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.96 mm-0.99 mm. In some embodiments, the depth of the front cavity 114 may be 0.97 mm.
  • the resonant frequency of the Helmholtz resonance cavity structure formed by the front cavity 114 and the sound outlet 112 should be as high as possible, so that the overall frequency response curve of the sound-emitting part has a wider flat area.
  • the resonant frequency f1 of the front cavity 114 may be no less than 3kHz. In some embodiments, the resonant frequency f1 of the front cavity 114 may be no less than 4kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 6kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 7kHz. In some embodiments, the resonant frequency of the front cavity 114 may be no less than 8kHz.
  • an acoustic resistance net 118 may be provided at the position corresponding to the first pressure relief hole 1131 and/or the second pressure relief hole 1132.
  • the acoustic resistance net 118 may adjust the amplitude at the resonance frequency of the rear cavity, and also play a role of dustproof and waterproof.
  • an acoustic resistance net 118 may also be provided at the position of the sound outlet hole 112, which may be used to adjust the amplitude of the corresponding resonance peak of the front cavity 114, and also play a role of dustproof and waterproof.
  • the acoustic impedance net 118 may include a gauze net, a steel net, or a combination thereof.
  • the acoustic impedance rate set in the front cavity 114 may be the same as the acoustic impedance rate set in the rear cavity 116, that is, the acoustic impedance rate of the acoustic impedance net 118 set at the sound outlet 112 and the acoustic impedance net 118 set at at least one pressure relief hole (for example, the first pressure relief hole 1131 and/or the second pressure relief hole 1132) may be the same.
  • the same acoustic impedance net 118 may be set at the sound outlet 112 and at least one pressure relief hole.
  • the acoustic impedance rate of the acoustic impedance net 118 set in the front cavity 114 and the acoustic impedance net 118 set in the rear cavity 116 may also be different, that is, the acoustic impedance rate of the acoustic impedance net 118 set at the sound outlet 112 and the acoustic impedance net 118 set at at least one pressure relief hole may be different.
  • acoustic resistance meshes 118 For example, based on other parameters of the front cavity 114 and the rear cavity 116 (for example, the area (or area ratio) of the sound outlet hole 112 and/or the pressure relief hole, the depth of each hole, the aspect ratio, etc.), by setting acoustic resistance meshes 118 with different acoustic impedance rates in the front cavity 114 and the rear cavity 116, a preset output effect can be achieved (for example, by setting acoustic resistance meshes 118 with different acoustic impedance rates, the sound pressure output at the sound outlet hole 112 and the pressure relief hole can be made close, thereby effectively reducing far-field sound leakage).
  • a preset output effect for example, by setting acoustic resistance meshes 118 with different acoustic impedance rates, the sound pressure output at the sound outlet hole 112 and the pressure relief hole can be made close, thereby effectively reducing far-field sound leakage).
  • the thickness of the acoustic resistance net 118 is limited to a certain range.
  • the thickness of the acoustic resistance net 118 provided at the first pressure relief hole 1131 and/or the second pressure relief hole 1132 may range from 35 ⁇ m to 300 ⁇ m.
  • the thickness of the acoustic resistance net 118 provided at the first pressure relief hole 1131 and the second pressure relief hole 1132 may range from 40 ⁇ m to 150 ⁇ m.
  • the thickness of the acoustic resistance net 118 provided at the first pressure relief hole 1131 and the second pressure relief hole 1132 may range from 40 ⁇ m to 150 ⁇ m.
  • the thickness of the acoustic resistance net 118 can range from 50 ⁇ m to 65 ⁇ m.
  • the thickness of the acoustic resistance net 118 disposed at the first pressure relief hole 1131 and the second pressure relief hole 1132 can range from 55 ⁇ m to 62 ⁇ m.
  • the distance between the upper surface of the acoustic resistance net 118 disposed at the first pressure relief hole 1131 and the outer surface of the shell 1111 can be 0.8mm-0.9mm, and the distance between the upper surface of the acoustic resistance net 118 disposed at the second pressure relief hole 1132 and the outer surface of the shell 1111 can be 0.7mm-0.8mm.
  • the distance between the upper surface of the acoustic resistance net 118 disposed at the first pressure relief hole 1131 and the outer surface of the shell 1111 may be 0.82 mm-0.88 mm, and the distance between the upper surface of the acoustic resistance net 118 disposed at the second pressure relief hole 1132 and the outer surface of the shell 1111 may be 0.72 mm-0.76 mm.
  • the distance between the upper surface of the acoustic resistance net 118 disposed at the first pressure relief hole 1131 and the outer surface of the shell 1111 may be 0.86 mm, and the distance between the upper surface of the acoustic resistance net 118 disposed at the second pressure relief hole 1132 and the outer surface of the shell 1111 may be 0.73 mm.
  • the mesh density of different types of acoustic resistance nets 118 may also be different, resulting in different acoustic resistances of the corresponding acoustic holes, thereby affecting the output of the corresponding acoustic cavity. Therefore, it is necessary to design the composition and type of the acoustic resistance net 118.
  • a steel mesh may be used at the first pressure relief hole 1131 and/or the second pressure relief hole 1132 and/or the sound outlet hole 112, or a combination of a gauze mesh and a steel mesh may be used.
  • the acoustic resistance net 118 provided in the front cavity 114 may include a steel mesh (for example, an etched steel mesh), and the mesh number of the steel mesh may be in the range of 60-100.
  • the acoustic resistance net 118 provided in the front cavity 114 may include a steel mesh, and the mesh number of the steel mesh may be in the range of 70-90.
  • the acoustic resistance net 118 provided in the front cavity 114 may include a gauze and a steel mesh (for example, an etched steel mesh), and the acoustic impedance rate of the gauze may be in the range of 2MKS rayls-50MKS rayls, and the mesh number of the steel mesh may be in the range of 60-100.
  • the acoustic resistance net 118 provided in the front cavity 114 may include a gauze and a steel mesh, and the acoustic impedance rate of the gauze may be in the range of 5MKS rayls-20 MKS rayls, and the mesh number of the steel mesh may be in the range of 70-90.
  • the acoustic impedance mesh 118 provided in the front cavity 114 may include a gauze mesh and a steel mesh, and the acoustic impedance rate of the gauze mesh may be in the range of 6MKS rayls-10 MKS rayls, and the mesh number of the steel mesh may be in the range of 75-85.
  • the acoustic impedance rate of the steel mesh may be in the range of 0.1MKS rayls-10 MKS rayls. In some embodiments, the acoustic impedance rate of the steel mesh may be in the range of 0.1MKS rayls-5 MKS rayls. In some embodiments, the acoustic impedance rate of the steel mesh may be in the range of 0.1MKS rayls-3 MKS rayls.
  • FIG. 23 is a diagram showing an exemplary internal structure of a transducer according to some embodiments of the present specification.
  • the housing 111 contains a transducer 116, which includes a diaphragm 1161, a voice coil 1162, a basin 1163, and a magnetic circuit assembly 1164.
  • the basin 1163 is arranged around the diaphragm 1161, the voice coil 1162, and the magnetic circuit assembly 1164 to provide a mounting and fixing platform.
  • the transducer 116 can be connected to the housing 111 through the basin 1163.
  • the diaphragm 1161 covers the voice coil 1162 and the magnetic circuit assembly 1164 in the Z direction.
  • the voice coil 1162 extends into the magnetic circuit assembly 1164 and is connected to the diaphragm 1161.
  • the magnetic field generated by the voice coil 1162 after being energized interacts with the magnetic field formed by the magnetic circuit assembly 1164, thereby driving the diaphragm 1161 to generate mechanical vibration, and then generating sound through the propagation of a medium such as air, and the sound is output through the sound outlet 112.
  • the magnetic circuit assembly 1164 includes a magnetic conductive plate 11641, a magnet 11642, and a container 11643.
  • the magnetic conductive plate 11641 and the magnet 11642 are connected to each other.
  • the side of the magnet 11642 away from the magnetic conductive plate 11641 is installed on the bottom wall of the container 11643, and there is a gap between the peripheral side of the magnet 11642 and the peripheral inner side wall of the container 11643.
  • the peripheral outer side wall of the container 11643 is connected and fixed to the basin frame 1163.
  • the container 11643 and the magnetic conductive plate 11641 can both be made of magnetic conductive materials (such as iron, etc.).
  • the circumference of the diaphragm 1161 may be connected to the basin frame 1163 via a fixing ring 1165.
  • the fixing ring 1165 may be made of stainless steel or other metal materials to adapt to the processing and manufacturing process of the diaphragm 1161.
  • the size of the transducer 116 will be too large, which will cause the shell 111 to be too large, which will easily cause the shell 111 to collide and rub against the auricle, affecting the wearing comfort of the sound-emitting part 11. Therefore, it is necessary to design the size of the shell 111.
  • the short axis size (also referred to as the width size) of the shell 111 in the Y direction can be determined according to the size of the concha cavity along the Y direction (for example, 17 mm).
  • the shell 111 is preferably sized in the X direction and sized in the Y direction, and then a suitable length ratio (i.e., the ratio of the size of the shell 111 in the X direction to the size of the shell 111 in the Y direction) is selected according to the wearing comfort, thereby determining the major axis size (also referred to as the length size) of the shell 111 in the X direction (e.g., 21.49 mm) to match the size of the concha cavity along the X direction.
  • the size of the housing 111 can adopt a value within a preset range. In some embodiments, according to the width size range of the concha cavity along the Y direction, the width size of the housing 111 along the Y direction can be within the range of 11mm-16mm.
  • the width size of the housing 111 along the Y direction can be 11mm-15mm. In some embodiments, the width size of the housing 111 along the Y direction can be 14mm-15mm. In some embodiments, the ratio of the size of the housing 111 in the X direction to the size in the Y direction can be 1.2-5. In some embodiments, the ratio of the size of the housing 111 in the X direction to the size in the Y direction can be 1.4-4. In some embodiments, the ratio of the size of the shell 111 in the X direction to the size in the Y direction may be 1.5-2. In some embodiments, the length of the shell 111 along the X direction may be in the range of 15mm-30mm.
  • the length of the shell 111 along the X direction may be 16mm-28mm. In some embodiments, the length of the shell 111 along the X direction may be 19mm-24mm. In some embodiments, in order to avoid the excessive volume of the shell 111 affecting the wearing comfort of the earphone 10, the thickness of the shell 111 along the Z direction may be in the range of 5mm-20mm. In some embodiments, the thickness of the shell 111 along the Z direction may be 5.1mm-18mm. In some embodiments, the thickness of the shell 111 along the Z direction may be 6mm-15mm. In some embodiments, the thickness of the shell 111 along the Z direction may be 7mm-10mm.
  • the area of the inner side surface IS of the shell 111 (which is equal to the product of the length and width of the shell 111 when the inner side surface IS is rectangular) may be 90mm 2 -560mm 2 .
  • the area of the inner side surface IS can be regarded as being approximately equal to the projection area of the diaphragm 1161 along the Z direction.
  • the area of the inner side surface IS differs from the projection area of the diaphragm 1161 along the Z direction by 10%.
  • the area of the inner side surface IS can be 150mm 2 -360mm 2 .
  • the area of the inner side surface IS can be 160mm 2 -240mm 2 .
  • the area of the inner side surface IS can be 180mm 2 -200mm 2 .
  • the size design of the earphone 10 has an acoustic performance that is better than that of existing earphones while meeting the wearing comfort. That is to say, on the premise of achieving equally good acoustic performance, the size of the earphone 10 can be smaller than that of existing earphones.
  • the distance of the center O of the sound outlet 112 from the bottom surface of the magnetic circuit assembly 1164 along the Z direction may be related to the vibration range of the diaphragm 1161 and the thickness of the magnetic circuit assembly 1164.
  • the vibration range of the diaphragm 1161 may affect the amount of air pushed by the transducer of the sound-emitting part 11. The larger the vibration range of the diaphragm 1161, the more air is pushed by the transducer of the sound-emitting part 11, and the higher the sound-emitting efficiency of the sound-emitting part.
  • the thinner the distance of the center O of the sound outlet 112 from the bottom surface of the magnetic circuit assembly 1164 along the Z direction the larger the volume of the back cavity may be.
  • the smaller the resonant frequency of the back cavity the resonance peak of the back cavity moves to the low frequency, and the range of the flat area of the frequency response curve becomes smaller.
  • the resonant frequency of the rear cavity is within a suitable frequency range (for example, 1000Hz-5000Hz), and the user is comfortable enough to wear, taking into account the structural strength, the difficulty of process realization, and the overall thickness of the shell 111
  • the distance between the center O of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1164 (that is, the side of the accommodating member 11643 away from the sound outlet hole 112 along the Z direction) is in the range of 5.65mm to 8.35mm.
  • the distance between the center of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 6.00mm to 8.00mm.
  • the distance between the center of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 6.35mm to 7.65mm. In some embodiments, the distance between the center of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 6.70mm to 7.30mm. In some embodiments, the distance between the center of the sound outlet hole 112 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction ranges from 6.95 mm to 7.05 mm.
  • the volume V of the rear cavity needs to have an appropriate value range.
  • the distance between the center O1 of the first pressure relief hole 1131 and the bottom surface of the magnetic circuit assembly 1164 can be reasonably designed. Referring to Figures 22 and 23, when the thickness of the sound-emitting part 11 in the Z direction is constant, the smaller the distance between the center O1 of the first pressure relief hole 1131 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction, the larger the volume of the rear cavity may be.
  • the resonance frequency of the back cavity is within a suitable frequency range (for example, 2000Hz-6000Hz), and the user is comfortable enough to wear, taking into account the structural strength, the difficulty of process implementation, and the overall thickness of the shell 111, the distance d5 from the center O1 of the first pressure relief hole 1131 along the Z direction to the bottom surface of the magnetic circuit assembly 1164 (that is, the side of the container 11643 away from the sound outlet hole 112 along the Z direction) is in the range of 1.31mm ⁇ 1.98mm.
  • the distance d5 from the center O1 of the first pressure relief hole 1131 along the Z direction to the bottom surface of the magnetic circuit assembly 1164 is in the range of 1.31mm ⁇ 1.98mm. In some embodiments, the distance d5 from the center O1 of the first pressure relief hole 1131 along the Z direction to the bottom surface of the magnetic circuit assembly 1164 is in the range of 1.41mm ⁇ 1.88mm. In some embodiments, the distance d5 from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 1.51 mm to 1.78 mm.
  • the distance d5 from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 1.56 mm to 1.72 mm.
  • the distance d6 from the center O2 of the second pressure relief hole 1132 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 1.31 mm to 1.98 mm.
  • the distance d6 from the center O2 of the second pressure relief hole 1132 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 1.41 mm to 1.88 mm.
  • the distance d6 from the center O2 of the second pressure relief hole 1132 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 1.51 mm to 1.78 mm. In some embodiments, a distance d6 from the center O2 of the second pressure relief hole 1132 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction ranges from 1.56 mm to 1.72 mm.
  • the difference between the distance of the center O of the sound-emitting hole 112 from the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance of the center O1 of the first pressure relief hole 1131 from the bottom surface of the magnetic circuit assembly 1164 along the Z direction cannot be too large or too small.
  • the resonance frequency of the back cavity is within a suitable frequency range (for example, 2000Hz-6000Hz), and the user is comfortable enough to wear
  • the distance between the first pressure relief hole 1131 and the second pressure relief hole 1132 and the sound-emitting hole 112 can be limited in the Z direction, so as to achieve a good sound receiving effect of the sound-emitting hole 112 in the ear canal and a good sound leakage cancellation effect.
  • the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 3.65 mm to 7.05 mm. In some embodiments, the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 4.00 mm to 6.85 mm.
  • the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 4.80 mm to 5.50 mm. In some embodiments, the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 5.20 mm to 5.55 mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction may be the same as the distance between the center O2 of the second pressure relief hole 1132 and the bottom surface of the magnetic circuit assembly 1164 along the Z direction.
  • the second pressure relief hole 1132 in order to weaken the canceling effect of the sound emitted by the second pressure relief hole 1132 at the ear canal (i.e., the listening position) and the sound emitted by the sound outlet hole 112, thereby increasing the listening volume, the second pressure relief hole 1132 can be farther away from the sound outlet hole 112 in the Z direction relative to the first pressure relief hole 1131.
  • the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O1 of the first pressure relief hole 1131 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 3.67 mm to 5.57 mm
  • the difference between the distance from the center O of the sound outlet hole 112 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction and the distance from the center O2 of the second pressure relief hole 1132 to the bottom surface of the magnetic circuit assembly 1164 along the Z direction is in the range of 5.57 mm to 7.04 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 1.45 mm to 2.15 mm.
  • the center plane of the long axis of the magnetic circuit component 1164 refers to a plane parallel to the lower side surface LS of the sound-emitting portion 11 and passing through the geometric center of the magnetic circuit component 1164.
  • the center plane of the long axis of the magnetic circuit component 1164 can divide the magnetic circuit component 1164 into two identical parts along the direction X.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis of the magnetic circuit component 1164 is also the distance from the center O of the sound outlet hole 112 to the center plane of the long axis along the short axis direction Y.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.55 mm to 2.05 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.65 mm to 1.95 mm.
  • the distance between the center O of the sound outlet hole 112 and the center plane of the long axis ranges from 1.75 mm to 1.85 mm.
  • the size of the sound-emitting part 11 along the Y direction can be limited. In some embodiments, the size of the sound-emitting part 11 along the Y direction can be determined by the distance between the center O1 of the first pressure relief hole 1131 and the center plane of the long axis of the magnetic circuit component 1164 (for example, the surface NN' perpendicular to the inner surface of the paper as shown in FIG. 23).
  • the distance between the center O1 of the first pressure relief hole 1131 and the center plane of the long axis of the magnetic circuit component 1164 can be limited. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 5.45 mm to 8.19 mm.
  • the center plane of the long axis of the magnetic circuit component 1164 refers to a plane parallel to the lower side surface LS of the sound-emitting part 11 and passing through the center of mass of the magnetic circuit component 1164.
  • the long axis center plane of the magnetic circuit component 1164 can divide the magnetic circuit component 1164 into two identical parts along the direction X.
  • the distance between the center O1 of the first pressure relief hole 1131 and the long axis center plane of the magnetic circuit component 1164 is also the distance from the center O1 of the first pressure relief hole 1131 to the long axis center plane along the short axis direction Y.
  • the distance between the center O1 of the first pressure relief hole 1131 and the long axis center plane of the magnetic circuit component 1164 ranges from 5.95 mm to 8.69 mm.
  • the center O1 of the first pressure relief hole 1131 is 5.95 mm to 8.69 mm.
  • the distance between the center O1 of the first pressure relief hole 1131 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 6.45 mm to 7.19 mm. In some embodiments, the distance between the center O1 of the first pressure relief hole 1131 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 6.65 mm to 6.99 mm. Similarly, in some embodiments, the distance between the center O2 of the second pressure relief hole 1132 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 5.46 mm to 8.20 mm.
  • the distance between the center O2 of the second pressure relief hole 1132 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 5.96 mm to 8.70 mm. In some embodiments, the distance between the center O1 of the second pressure relief hole 1132 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 6.46 mm to 7.20 mm. In some embodiments, the distance between the center O1 of the second pressure relief hole 1132 and the center plane of the long axis of the magnetic circuit component 1164 ranges from 6.66 mm to 7.00 mm.
  • the sound outlet 112 in order to make the sound outlet 112 close to the ear canal, can be made closer to the second pressure relief hole 1132 than the first pressure relief hole 1131 in the Y direction.
  • the sound outlet 112 can achieve a good sound receiving effect at the ear canal and a good effect of far-field sound leakage cancellation.
  • the absolute value of the difference between the distance from the center O of the sound outlet 112 to the center plane of the long axis of the magnetic circuit assembly 1164 along the Y direction and the distance from the center O1 of the first pressure relief hole 1131 to the center plane of the long axis along the Y direction is in the range of 4.0mm-6.1mm. In some embodiments, the absolute value of the difference between the distance from the center O of the sound outlet 112 to the center plane of the long axis and the distance from the center O1 of the first pressure relief hole 1131 to the center plane of the long axis is in the range of 4.5mm ⁇ 5.5mm.
  • the absolute value of the difference between the distance from the center O of the sound outlet hole 112 to the center plane of the long axis and the distance from the center O1 of the first pressure relief hole 1131 to the center plane of the long axis is in the range of 4.8 mm to 5.2 mm.
  • the air pressure at the position close to the pressure relief hole 113 is close to the external air pressure, and the air pressure at the position far from the pressure relief hole 113 is higher than the external air pressure.
  • the basin frame 1163 is provided with a sound-permeable hole (not shown) connecting the rear side of the diaphragm 1161 and the cavity 115, in order to balance the air pressure between the rear side of the diaphragm 1161 and the cavity 115, the sound-permeable holes on the basin frame can be arranged asymmetrically to better balance the airflow.
  • the size of the sound-permeable hole can be larger; at a position close to the first pressure relief hole 1131 and/or the second pressure relief hole 1132, since the air pressure is relatively low, the size of the sound-permeable hole can be smaller.
  • the low-frequency vibration of the earphone 10 can be made more stable by adjusting the size (for example, area) of the first pressure relief hole 1131, the second pressure relief hole 1132 and/or the sound-transmitting hole.
  • the first pressure relief hole 1131 and the second pressure relief hole 1132 can be staggered in the X direction. At this time, the projections of the first pressure relief hole 1131 and the second pressure relief hole 1132 on the center plane of the long axis are partially overlapped or not overlapped. In some embodiments, the overlapping area of the projections of the first pressure relief hole 1131 and the second pressure relief hole 1132 on the center plane of the long axis is not greater than 10.77 mm 2.
  • the overlapping area of the projections of the first pressure relief hole 1131 and the second pressure relief hole 1132 on the center plane of the long axis is not greater than 6.77 mm 2. In some embodiments, the overlapping area of the projections of the first pressure relief hole 1131 and the second pressure relief hole 1132 on the center plane of the long axis is not greater than 4.77 mm 2 . In some embodiments, the overlapping area of the projections of the first pressure relief hole 1131 and the second pressure relief hole 1132 on the central plane of the long axis is no greater than 2.77 mm 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Headphones And Earphones (AREA)

Abstract

本说明书实施例提供一种耳机,包括:发声部,包括:换能器,包括振膜,用于在激励信号的作用下产生声音;以及壳体,壳体形成用于容纳换能器的腔体;以及悬挂结构,在佩戴状态下,用于将发声部佩戴于耳道附近但不堵塞耳道的位置,其中,壳体朝向耳廓的内侧面上开设有出声孔,用于将振膜前侧产生的声音导出壳体后传向耳道,壳体的其他侧面上开设有第一泄压孔,用于将振膜后侧产生的声音导出壳体,其中,出声孔的中心距内侧面的上边界的中点的距离大于第一泄压孔的中心距内侧面的上边界的中点的距离。

Description

一种耳机
交叉引用
本申请要求于2022年10月28日提交的申请号为202211336918.4的中国申请的优先权,于2022年12月01日提交的申请号为202223239628.6的中国申请的优先权,于2022年12月30日提交的申请号为PCT/CN2022/144339的国际申请的优先权,于2023年03月02日提交的申请号为PCT/CN2023/079411的国际申请的优先权,于2023年03月02日提交的申请号为PCT/CN2023/079404的国际申请的优先权,以及于2023年03月02日提交的申请号为PCT/CN2023/079410的国际申请的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及声学技术领域,具体涉及一种耳机。
背景技术
随着声学输出技术的发展,声学装置(例如,耳机)已广泛地应用于人们的日常生活,其可以与手机、电脑等电子设备配合使用,以便于为用户提供听觉盛宴。按照用户的佩戴方式,声学装置一般可以分为入耳式、头戴式、耳挂式等。
因此,有必要提供一种能够提高用户佩戴舒适度且具有较好的输出性能的耳机。
发明内容
本申请实施例提供了一种耳机,其包括:发声部,包括:换能器,包括振膜,用于在激励信号的作用下产生声音;以及壳体,壳体形成用于容纳换能器的腔体;以及悬挂结构,在佩戴状态下,用于将发声部佩戴于耳道附近但不堵塞耳道的位置,其中,壳体朝向耳廓的内侧面上开设有出声孔,用于将振膜前侧产生的声音导出壳体后传向耳道,壳体的其他侧面上开设有第一泄压孔,用于将振膜后侧产生的声音导出壳体,其中,出声孔的中心距内侧面的上边界的中点的距离大于第一泄压孔的中心距内侧面的上边界的中点的距离。
在一些实施例中,出声孔的中心距内侧面的上边界的中点的距离与第一泄压孔的中心距内侧面的上边界的中点的距离之间的比值在1.3-2.1范围内。
在一些实施例中,出声孔的面积与出声孔的深度的比值与第一泄压孔的面积与第一泄压孔的深度的比值之间的比值在1.10-1.75范围内。
在一些实施例中,出声孔的面积与第一泄压孔的面积的比值在0.5-1.5范围内。
在一些实施例中,在佩戴状态下,出声孔的中心在矢状面的投影点距耳道的耳道口在矢状面的投影的形心的距离与第一泄压孔的中心在矢状面的投影点距耳道口在矢状面的投影的形心的距离的比值在0.10-0.35范围内。
在一些实施例中,悬挂结构包括耳挂,在佩戴状态下,耳挂的第一部分挂设在用户耳廓和头部之间,耳挂的第二部分向耳廓背离头部的一侧延伸并连接发声部,出声孔的中心距耳挂的上顶点之间的距离与第一泄压孔的中心距耳挂的上顶点之间的距离的比值在1.10-1.70范围内。
在一些实施例中,换能器还包括磁路组件,磁路组件用于提供磁场,出声孔的中心距磁路组件的长轴中心面的距离与第一泄压孔的中心距长轴中心面的距离之差的绝对值在4.0mm-6.1mm范围内。
在一些实施例中,出声孔的中心距磁路组件的底面的距离与第一泄压孔的中心距磁路组件的底面的距离之间的差值在3.65mm-7.05mm范围内。
在一些实施例中,壳体的其他侧面上还开设有第二泄压孔,第一泄压孔的面积大于第二泄压孔的面积。
在一些实施例中,出声孔的中心距第一泄压孔的中心与第二泄压孔的中心的连线的中垂面的距离为0mm~2mm。
在一些实施例中,第一泄压孔开设在壳体的上侧面,第二泄压孔开设在壳体的下侧面。
在一些实施例中,在佩戴状态下,出声孔的中心在矢状面的投影点距内侧面的下边界的1/3点在矢状面的投影点的距离与第二泄压孔的中心在矢状面的投影点距内侧面的下边界的1/3点在矢状面的投影点的距离之间的比值在0.65-1.05范围内。
在一些实施例中,出声孔的中心与第一泄压孔的中心的连线与出声孔的中心与第二泄压孔的中心的连线之间的夹角在46.40°-114.04°范围内。
在一些实施例中,出声孔的中心距第一泄压孔的中心的距离与出声孔的中心距第二泄压孔 的中心的距离之间的比值在0.9-1.1范围内。
在一些实施例中,出声孔的面积与第一泄压孔和第二泄压孔的总面积之间的比值在0.1-0.99范围内。
在一些实施例中,振膜将腔体分为分别与振膜前侧和后侧对应的前腔和后腔,其中,后腔的体积与前腔的体积之间的比值在0.1-10范围内。
在一些实施例中,振膜将腔体分为分别与振膜前侧和后侧对应的前腔和后腔,其中,前腔的谐振频率与后腔的谐振频率之间的比值在0.1-5范围内。
在一些实施例中,出声孔的面积与第一泄压孔和第二泄压孔的总面积之间的比值在1-10范围内。
在一些实施例中,振膜将腔体分为分别与振膜前侧和后侧对应的前腔和后腔,其中,后腔的体积与前腔的体积之间的比值在0.1-10范围内。
在一些实施例中,振膜将腔体分为分别与振膜前侧和后侧对应的前腔和后腔,其中,前腔的谐振频率与后腔的谐振频率之间的比值在0.5-10范围内。
在一些实施例中,出声孔处的声压与第一泄压孔处和第二泄压孔处的总声压之间的比值在0.4-0.6范围内。
在一些实施例中,第一泄压孔的面积与第二泄压孔的面积之差与出声孔的面积的比值在2.5-3.9范围内。
在一些实施例中,出声孔处、第一泄压孔和第二泄压孔中至少一者的位置处设置有声阻网,声阻网的厚度在40μm-150μm范围内。
在一些实施例中,出声孔处的声阻网包括钢网,钢网的目数在60-100范围内。
在一些实施例中,出声孔处的声阻网包括钢网,钢网的目数在70-90范围内。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性耳部的示意图;
图2是根据本说明书一些实施例所示的耳机的示例性结构图;
图3是根据本说明书一些实施例所示的两个点声源与听音位置的示意图;
图4是根据本说明书一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图;
图5是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图;
图6是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数图;
图7是根据本说明书一些实施例所示的开放式耳机的示例性佩戴示意图;
图8是图7所示的开放式耳机朝向耳部一侧的结构示意图;
图9是图7所示的开放式耳机的壳体的结构示意图;
图10是根据本说明书一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图;
图11A是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图;
图11B是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图;
图12A是根据本说明书一些实施例所示的具有两个水平开口的腔体结构的示意图;
图12B是根据本说明书一些实施例所示的具有两个垂直开口的腔体结构的示意图;
图13是根据本说明书一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图;
图14是根据本申请另一些实施例所示的开放式耳机的示例性佩戴示意图;
图15是图14所示的开放式耳机朝向耳部一侧的结构示意图;
图16是根据本说明书一些实施例所示的开放式耳机处于佩戴状态时在矢状面的投影示意图;
图17是根据本说明书一些实施例所示的开放式耳机的壳体的结构示意图;
图18是根据本说明书一些实施例所示的前、后腔体积比、出声孔开口面积与泄压孔开口面积之比的等值线图;
图19是根据本说明书一些实施例所示的出声孔处不同音量对应的频率响应曲线图;
图20是根据本说明书一些实施例所示的第一泄压孔处不同音量对应的频率响应曲线图;
图21是根据本说明书一些实施例所示的第二泄压孔处处不同音量对应的频率响应曲线图;
图22是根据本说明书一些实施例所示的发声部的示例性内部结构图;
图23是根据本说明书一些实施例所示的换能器的示例性内部结构图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本说明书中,除非另有明确的规定和限定,术语“连接”、“固定”等术语应做广义理解。例如,术语“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
在本说明书中,除非另有明确的规定和限定,某特定点到某线或面的距离可以指该特定点到该线或面的最短距离。
图1是根据本申请的一些实施例所示的示例性耳部的示意图。参见图1,耳部100(也可以称为耳廓)可以包括外耳道101、耳甲腔102、耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳垂108、耳屏109以及耳轮脚1071。在一些实施例中,可以借助耳部100的一个或多个部位对声学装置的支撑,实现声学装置佩戴的稳定。在一些实施例中,外耳道101、耳甲腔102、耳甲艇103、三角窝104等部位在三维空间中具有一定的深度及容积,可以用于实现声学装置的佩戴需求。例如,声学装置(例如,入耳式耳机)可以佩戴于外耳道101中。在一些实施例中,可以借助耳部100中除外耳道101外的其他部位,实现声学装置的佩戴。例如,可以借助耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107等部位或其组合实现声学装置的佩戴。在一些实施例中,为了改善声学装置在佩戴方面的舒适度及可靠性,也可以进一步借助用户的耳垂108等部位。通过借助耳部100中除外耳道101之外的其他部位,实现声学装置的佩戴和声音的传播,可以“解放”用户的外耳道101。当用户佩戴声学装置时,声学装置不会堵塞用户外耳道101(或耳道或耳道口),用户既可以接收来自声学装置的声音又可以接收来自环境中的声音(例如,鸣笛声、车铃声、周围人声、交通指挥声等),从而能够降低交通意外的发生概率。在本书明书中,当用户佩戴时,不会堵塞用户外耳道101(或耳道或耳道口)的声学装置可以称为耳机。在一些实施例中,可以根据耳部100的构造,将声学装置设计成与耳部100适配的结构,以实现声学装置的发声部在耳部各个不同位置的佩戴。例如,声学装置为耳机时,耳机可以包括悬挂结构(例如,耳挂)和发声部,发声部与悬挂结构通过物理方式进行连接,悬挂结构可以与耳廓的形状相适配,以将发声部的整体或者部分结构置于耳屏109的前侧(例如,图1中虚线围成的区域J)。又例如,在用户佩戴耳机时,发声部的整体或者部分结构可以与外耳道101的上部(例如,耳甲艇103、三角窝104、对耳轮105、耳舟106、耳轮107、耳轮脚1071等一个或多个部位所在的位置)接触。再例如,在用户佩戴耳机 时,发声部的整体或者部分结构可以位于耳部100的一个或多个部位(例如,耳甲腔102、耳甲艇103、三角窝104等)所形成的腔体内(例如,图1中虚线围成的至少包含耳甲艇103、三角窝104的区域M1和与至少包含耳甲腔102的区域M2)。
不同的用户可能存在个体差异,导致耳部存在不同的形状、大小等尺寸差异。为了便于描述和理解,如果没有特别说明,本说明书将主要以具有“标准”形状和尺寸的耳部模型作为参考,进一步描述不同实施例中的声学装置在该耳部模型上的佩戴方式。例如,可以以基于ANSI:S3.36,S3.25和IEC:60318-7标准制得一含头部及其(左、右)耳部的模拟器,例如GRAS 45BC KEMAR,作为佩戴声学装置的参照物,以此呈现出大多数用户正常佩戴声学装置的情景。仅仅作为示例,作为参考的耳部可以具有如下相关特征:耳廓在矢状面上的投影在垂直轴方向的尺寸可以在49.5mm-74.3mm的范围内,耳廓在矢状面上的投影在矢状轴方向的尺寸可以在36.6mm-55mm的范围内。因此,本申请中,诸如“用户佩戴”、“处于佩戴状态”及“在佩戴状态下”等描述可以指本申请所述的声学装置佩戴于前述模拟器的耳部。当然,考虑到不同的用户存在个体差异,耳部100中一个或多个部位的结构、形状、大小、厚度等可以具有一定区别,为了满足不同用户的需求,可以对声学装置进行差异化设计,这些差异化设计可以表现为声学装置中一个或多个部位(例如,下文中的发声部、耳挂等)的特征参数可以具有不同范围的数值,以此适应不同的耳部。
需要说明的是:在医学、解剖学等领域中,可以定义人体的矢状面(Sagittal Plane)、冠状面(Coronal Plane)和水平面(Horizontal Plane)三个基本切面以及矢状轴(Sagittal Axis)、冠状轴(Coronal Axis)和垂直轴(Vertical Axis)三个基本轴。其中,矢状面是指沿身体前后方向所作的与地面垂直的切面,它将人体分为左右两部分;冠状面是指沿身体左右方向所作的与地面垂直的切面,它将人体分为前后两部分;水平面是指沿垂直于身体的上下方向所作的与地面平行的切面,它将人体分为上下两部分。相应地,矢状轴是指沿身体前后方向且垂直于冠状面的轴,冠状轴是指沿身体左右方向且垂直于矢状面的轴,垂直轴是指沿身体上下方向且垂直于水平面的轴。进一步地,本申请所述的“耳部的前侧”是一个相对于“耳部的后侧”的概念,前者指耳部背离头部的一侧,后者指耳部朝向头部的一侧。其中,沿人体冠状轴所在方向观察上述模拟器的耳部,可以得到图1所示的耳部的前侧轮廓示意图。
图2是根据本说明书一些实施例所示的耳机的示例性结构图。
在一些实施例中,耳机10可以包括但不限于气传导耳机及骨气导耳机等。在一些实施例中,耳机10可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合。
如图2所示,耳机10可以包括发声部11和耳挂12。
发声部11可以用于佩戴在用户的身体上,发声部11可以产生声音输入用户耳道。在一些实施例中,发声部11可以包括换能器(例如图22所示的换能器116)和用于容纳换能器的壳体111。壳体111可以与耳挂12连接。换能器用于将激励信号(例如电信号)转换为相应的机械振动从而产生声音。在一些实施例中,壳体朝向耳廓的侧面上开设有出声孔112,出声孔112用于将换能器产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。在一些实施例中,换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔(例如图22所示的前腔114)和后腔,出声孔112可以连通前腔,并将前腔产生的声音导出壳体111后传向耳道。在一些实施例中,经由出声孔112导出的声音,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳部之间的缝隙(例如耳甲腔未被发声部11覆盖的一部分)传播至耳机10及耳部的外部,从而在远场形成第一漏音;与此同时,壳体111的其他侧面(例如,远离或背离用户耳道的侧面)上一般会开设有一个或多个泄压孔113(例如第一泄压孔1131)。泄压孔113相较于出声孔112更远离耳道,泄压孔113传播出去的声音一般会在远场形成第二漏音,前述第一漏音的强度和前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场相消,有利于降低耳机10在远场的漏音。在一些实施例中,除了壳体111朝向耳廓的侧面,壳体111的其他侧面上可以开设有至少两个泄压孔113。通过设置至少两个泄压孔113,不仅可以将后腔产生的声音导出壳体111,还可以破坏后腔中声场的高压区,使得后腔中驻波的波长变短,进而使得泄压孔113导出至壳体111外部的声音的谐振频率尽可能地高,例如大于4kHz。此时,由出声孔112导出的声音与由泄压孔113导出的声音能够在更宽的频率范围内保持较好的一致性,两者在远场干涉相消的效果更好,从而获得更好的降漏音效果。为了便于描述,本说明书将以发声部11上设置有两个泄压孔为例进行示例性的说明。仅作为示例,至少两个泄压孔113可以包括第一泄压孔和第二泄压孔(例如,如图7或图14中的第一泄压孔1131和第二泄压孔1132),两个泄压孔113可以分别位于壳体111的相对两侧,例如,在下述短轴方向Y上相背设置,以期在 最大程度上破坏后腔中声场的高压区。简而言之,用户佩戴耳机10时主要听到的是经由出声孔112向耳道传输的声音,泄压孔113的设置主要是用于平衡后腔的压力,使得低频大振幅下可以充分振动,这会使得该声音尽可能听起来具备低音下潜、高音穿透的音质,且降低经由出声孔112泄露到环境的声音。更多关于发声部11的描述参见本说明书其他地方,例如图7、图14、图22等及其描述。
耳挂12的一端可以与发声部11连接,其另一端沿用户耳部与头部的交界处延伸。在一些实施例中,耳挂12可以为与用户耳廓相适配的弧状结构,以使耳挂12可以悬挂于用户耳廓上。例如,耳挂12可以具有与用户头部与耳部交界处相适配的弧状结构,以使耳挂12可以挂设在用户耳廓和头部之间。在一些实施例中,耳挂12也可以为与用户耳廓相适配的夹持结构,以使耳挂12可以夹持于用户耳廓处。示例性地,耳挂12可以包括依次连接的钩状部(如图7所示的第一部分121)和连接部(如图7所示的第二部分122)。其中,连接部连接钩状部与发声部11,以使得耳机10处于非佩戴状态(也即是自然状态)时在三维空间中呈弯曲状。换言之,在三维空间中,钩状部、连接部、发声部11不共面。如此设置,以在耳机10处于佩戴状态时,钩状部可以主要是用于挂设在用户的耳部的后侧与头部之间,发声部11可以主要是用于接触用户的耳部的前侧,进而允许发声部11和钩状部配合以夹持耳部。作为示例性地,连接部可以从头部向头部的外侧延伸,进而与钩状部配合为发声部11提供对耳部的前侧的压紧力。其中,发声部11在压紧力的作用下具体可以抵压于耳甲腔102、耳甲艇103、三角窝104、对耳轮105等部位所在的区域,以使得耳机10处于佩戴状态时不遮挡耳部的外耳道101。
在一些实施例中,为了改善耳机10在佩戴状态下的稳定性,耳机10可以采用以下几种方式中的任何一种或其组合。其一,耳挂12的至少部分设置成与耳部100的后侧和头部中的至少一者贴合的仿形结构,以增加耳挂12与耳部100和/或头部的接触面积,从而增加耳机10从耳部100上脱落的阻力。其二,耳挂12的至少部分设置成弹性结构,使之在佩戴状态下具有一定的形变量,以增加耳挂12对耳部和/或头部的正压力,从而增加耳机10从耳部上脱落的阻力。其三,耳挂12至少部分设置成在佩戴状态下抵靠在头部上,使之形成压持耳部的反作用力,以使得发声部11压持在耳部的前侧,从而增加耳机10从耳部上脱落的阻力。其四,发声部11和耳挂12设置成在佩戴状态下从耳部的前后两侧夹持对耳轮所在区域、耳甲腔所在区域等,从而增加耳机10从耳部上脱落的阻力。其五,发声部11或者与之连接的辅助结构设置成至少部分伸入耳甲腔、耳甲艇、三角窝及耳舟等腔体内,从而增加耳机10从耳部上脱落的阻力。
在一些实施例中,耳挂12可以包括但不限于耳挂、弹性带等,使得耳机10可以更好地固定在用户身上,防止用户在使用时发生掉落。在一些实施例中,耳机10可以不包括耳挂12,发声部11可以采用悬挂或夹持的方式固定在用户的耳部100的附近。
在一些实施例中,发声部11可以为例如,圆环形、椭圆形、跑道形、多边形、U型、V型、半圆形等规则或不规则形状,以便发声部11可以直接挂靠在用户的耳部100处。在一些实施例中,发声部11可以具有垂直于厚度方向Z且彼此正交的长轴方向X和短轴方向Y。其中,长轴方向X可以定义为发声部11的二维投影面(例如,发声部11在其外侧面所在平面上的投影,或在矢状面上的投影)的形状中具有最大延伸尺寸的方向(例如,当投影形状为长方形或近似长方形时,长轴方向即长方形或近似长方形的长度方向)。短轴方向Y可以定义为发声部11在矢状面上投影的形状中垂直于长轴方向X的方向(例如,当投影形状为长方形或近似长方形时,短轴方向即长方形或近似长方形的宽度方向)。厚度方向Z可以定义为垂直于二维投影面的方向,例如,与冠状轴的方向一致,均指向身体左右的方向。
在一些实施例中,当用户佩戴耳机10时,发声部11可以佩戴于用户的外耳道101附近但不堵塞耳道的位置。在一些实施例中,在佩戴状态下,耳机10在矢状面上的投影可以不覆盖用户的耳道。例如,发声部11在矢状面上的投影可以落在头部的左右两侧且在人体矢状轴上位于耳屏前侧的位置上(如,图2中实线框A所示的位置)。这时,发声部11位于用户的耳屏前侧,发声部11的长轴可以处于竖直或近似竖直状态,短轴方向Y在矢状面上的投影与矢状轴的方向一致,长轴方向X在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。又例如,发声部11在矢状面上投影可以落在对耳轮105上(如,图2中的虚线框C所示的位置)。这时的发声部11至少部分位于对耳轮105处,发声部11的长轴处于水平或近似水平状态,发声部11的长轴方向X在矢状面上的投影与矢状轴的方向一致,短轴方向Y在矢状面上的投影与垂直轴方向一致,厚度方向Z垂直于矢状面。如此,既可以避免发声部11遮挡耳道,进而解放用户的双耳;还可以增加发声部11与耳部100之间的接触面积,进而改善耳机10的佩戴舒适性。
在一些实施例中,在佩戴状态下,耳机10在矢状面上的投影也可以覆盖或至少部分覆盖用户的耳道,例如,发声部11在矢状面上的投影可以落在耳甲腔102内(如,图2中虚线框B所示的位置),并与耳轮脚1071和/或耳轮107接触。这时,发声部11至少部分位于耳甲腔102内,发声部11处于倾斜状态,发声部11的短轴方向Y在矢状面上的投影可与矢状轴的方向具有一定夹角,即短轴方向Y也相应倾斜设置,长轴方向X在矢状面上的投影可以与矢状轴的方向具有一定夹角,即长轴方向X也倾斜设置,厚度方向Z垂直于矢状面。此时,由于耳甲腔102具有一定的容积及深度,使得耳机10的内侧面IS与耳甲腔之间具有一定的间距,耳道可以通过内侧面IS与耳甲腔之间的缝隙与外界连通,进而解放用户的双耳。同时,发声部11与耳甲腔可以配合形成与耳道连通的辅助腔体(例如,后文提及的腔体结构)。在一些实施例中,出声孔112可以至少部分位于前述辅助腔体中,出声孔112导出的声音会受到前述辅助腔体的限制,即前述辅助腔体能够聚拢声音,使得声音能够更多地传播至耳道内,从而提高用户在近场听到的声音的音量和质量,从而改善耳机10的声学效果。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,耳机10还可以包括电池组件、蓝牙组件等或其组合。电池组件可用于给耳机10供电。蓝牙组件可以用于将耳机10无线连接至其他设备(例如,手机、电脑等)。这些变化和修改仍处于本申请的保护范围之内。
图3是根据本说明书一些实施例所示的两个点声源与听音位置的示意图。在一些实施例中,结合图3,经出声孔112可以向耳机10外部传输声音,其可以视作单极子声源(或点声源)A,产生第一声音;经泄压孔113可以向耳机10外部传输声音,其可以视作单极子声源(或点声源)B,产生第二声音。第二声音与第一声音可以相位相反或近似相反,使之能够在远场反相相消,也即是形成“声偶极子”,以降漏音。在一些实施例中,在佩戴状态下,两个单极子声源的连线可以指向耳道(记作“听音位置”),以便于用户听到足够大的声音。其中,听音位置处的声压大小(记作Pear)可以用来表征用户听到的声音强弱(即,近场听音声压)。进一步地,可以统计以用户听音位置为中心的球面上(或者以偶极子声源(如图3所示的A和B)中心为圆心、半径为r的球面上)的声压大小(记作Pfar),可以用来表征耳机10向远场辐射的漏音强弱(即,远场漏音声压)。其中,可以采用多种统计方式获得Pfar,例如取球面各点处声压的平均值,再例如,取球面各点声压分布进行面积分等。
需要知道的是,本说明书中测量漏音的方法仅作原理和效果的示例性说明,并不作限制,漏音的测量和计算方式也可以根据实际情况进行合理调整。例如,以偶极子声源中心为圆心,在远场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,听音的测量方式可以为选取点声源附近的一个位置点作为听音位置,以该听音位置测量得到的声压幅值作为听音的值。在一些实施例中,听音位置可以在两个点声源的连线上,也可以不在两个点声源的连线上。听音的测量和计算方式也可以根据实际情况进行合理调整,例如,取近场位置的其他点或一个以上的点的声压幅值进行平均。又例如,以某个点声源为圆心,在近场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均。在一些实施例中,近场听音位置与点声源之间的距离远小于点声源与远场漏音测量球面的距离。
显然,耳机10传递到用户耳部的声压Pear应该足够大,以增加听音效果;远场的声压Pfar应该足够小,以增加降漏音效果。因此,可以取漏音指数α作为评价耳机10降漏音能力的指标:
通过公式(1)可知,漏音指数越小,耳机的降漏音能力越强,在听音位置处近场听音音量相同的情况下,远场的漏音越小。
图4是根据本说明书一些实施例所示的单点声源和双点声源在不同频率下的漏音指数对比图。图4中的双点声源(也可称为偶极子声源)可以为典型双点声源,即间距固定,两点声源幅值相同,两点声源相位相反。应当理解的是,选用典型双点声源只作原理和效果说明,可以根据实际需要调整各点声源参数,使其与典型双点声源具有一定差异。如图4所示,在间距固定的情况下,双点声源产生的漏音随频率的增加而增加,降漏音能力随频率的增加而减弱。当频率大于某一频率值(例如,如图4所示8000Hz左右)时其产生的漏音会大于单点声源,此频率(例如,8000Hz)即为双点声源能够降漏音的上限频率。
在一些实施例中,为了提高耳机10的声学输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量,可以在出声孔112和泄压孔113之间设置挡板。
图5是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板的示例性分布示意图。如图5所示,当点声源A1和点声源A2之间设有挡板时,在近场,点声源A2的声波需要绕过挡板才能与点声源A1的声波在听音位置处产生干涉,相当于增加了点声源A2到听音位置的声程。因此,假设点声源A1和点声源A2具有相同的幅值,则相比于没有设置挡板的情况,点声源A1和点声源A2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源A1和点声源A2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源A1和点声源A2的其中一个声源周围设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
图6是根据本说明书一些实施例所示的偶极子声源的两个声源之间设置挡板和不设置挡板的漏音指数图。双点声源之间增加挡板以后,在近场相当于增加了两个点声源之间的距离,在近场听音位置的音量相当于由一个距离较大的双点声源产生,近场的听音音量相对于无挡板的情况明显增加;在远场,两个点声源的声场受挡板的影响很小,产生的漏音相当于是一个距离较小的双点声源产生。因此,如图6所示,增加挡板以后,漏音指数相比于不加挡板时小很多,即在相同听音音量下,远场的漏音比在无挡板的情况下小,降漏音能力明显增强。
图7是根据本说明书一些实施例所示的耳机的示例性佩戴示意图。图8是图7所示的耳机朝向耳部一侧的结构示意图。图9是图7所示的耳机的壳体的结构示意图。
如图7所示,耳挂12为与用户头部与耳部100的交界处相贴合的弧状结构。发声部11(或发声部11的壳体111)可以具有与耳挂12连接的连接端CE和不与耳挂12连接的自由端FE。耳机10处于佩戴状态时,耳挂12的第一部分121(例如,耳挂12的钩状部)挂设在用户耳廓(例如,耳轮107)和头部之间,耳挂12的第二部分122(例如,耳挂的连接部)向耳廓背离头部的一侧延伸并与发声部11的连接端CE连接,以将发声部11佩戴于耳道附近但不堵塞耳道的位置。
结合图7和图8所示,发声部11可以具有在佩戴状态下沿厚度方向Z朝向耳部的内侧面IS(也称为壳体111的内侧面)和背离耳部的外侧面OS(也称为壳体111的外侧面),以及连接内侧面IS和外侧面OS的连接面。需要说明的是:在佩戴状态下,沿冠状轴所在方向(即厚度方向Z)观察,发声部11可以设置成圆形、椭圆形、圆角正方形、圆角矩形等形状。其中,当发声部11设置成圆形、椭圆形等形状时,上述连接面可以指发声部11的弧形侧面;而当发声部11设置成圆角正方形、圆角矩形等形状时,上述连接面可以包括后文中提及的下侧面LS(也称为壳体111的下侧面)、上侧面US(也称为壳体111的上侧面)和后侧面RS(也称为壳体111的后侧面)。其中,上侧面US和下侧面LS可以分别指在佩戴状态下发声部11沿短轴方向Y背离外耳道101的侧面和靠近外耳道101的侧面;后侧面RS可以指在佩戴状态下发声部11沿长度方向X朝向脑后的侧面。为了便于描述,本说明书以发声部11设置成圆角矩形为例进行示例性的说明。其中,发声部11在长轴方向X上的长度可以大于发声部11在短轴方向Y上的宽度。在一些实施例中,为了提升耳机的美观度及佩戴舒适度,耳机的后侧面RS可以为弧面。
发声部11内可以设置有换能器,其可以将电信号转换为相应的机械振动从而产生声音。换能器(例如,振膜)可以将壳体111分隔形成耳机的前腔和后腔。前腔和后腔中产生的声音相位相反。内侧面IS上开设有与前腔连通的出声孔112,以将前腔产生的声音导出壳体111后传向耳道,以便于用户能够听到声音。壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有与后腔连通的一个或多个泄压孔113,以用于将后腔产生的声音导出壳体111后与经由出声孔112泄露的声音在远场干涉相消。在一些实施例中,泄压孔113相较于出声孔112更远离耳道,以减弱经泄压孔113输出的声音与经出声孔112输出的声音之间在听音位置(例如,耳道)的反相相消,提高听音位置处的声音音量。
在一些实施例中,除了内侧面IS,壳体111的其他侧面上(例如,外侧面OS、上侧面US或下侧面LS等)可以开设有至少两个泄压孔113,至少两个泄压孔113的设置可以破坏后腔中驻波,使得泄压孔113导出至壳体111外部的声音的谐振频率尽可能地高,从而使得后腔的频响具有较宽的平坦区域(例如,在谐振峰之前的区域),并在中高频范围内(例如2kHz-6kHz)获得更好的降漏音效果。仅作为示例,泄压孔113可以包括第一泄压孔1131和第二泄压孔1132。第二泄压孔1132相对于第一泄压孔1131可以更靠近出声孔112。在一些实施例中,第一泄压孔1131和第二泄压孔1132可以设置在壳体111的同一个侧面上,例如,第一泄压孔1131和第二泄压孔113可以 同时设置在外侧面OS、上侧面US或下侧面LS上。在一些实施例中,第一泄压孔1131和第二泄压孔1132可以分别设置在壳体111的两个不同侧面上,例如,第一泄压孔1131可以设置在外侧面OS上,第二泄压孔1132可以设置在上侧面US上,或者,第一泄压孔1131可以设置在外侧面OS上,第二泄压孔1132可以设置在下侧面LS上。在一些实施例中,为最大程度上破坏后腔中的驻波,两个泄压孔113可以位于壳体111的相对两侧,例如,第一泄压孔1131可以设置在上侧面US上,第二泄压孔1132可以设置在下侧面LS上。为了便于描述,本说明书将以第一泄压孔1131设置在上侧面US上、第二泄压孔1132设置在下侧面LS上为例进行示例性的说明。
在一些实施例中,为避免第一泄压孔1131和第二泄压孔1132输出的声音影响出声孔112输出的声音在听音位置的音量,第一泄压孔1131和第二泄压孔1132应尽可能远离出声孔112,例如,可以使出声孔112的中心位于第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面上或者中垂面附近。在一些实施例中,出声孔112的中心可以距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~2mm。在一些实施例中,为了进一步避免第二泄压孔1132发出的声音在耳道(即听音位置)与出声孔112发出的声音反相相消而降低听音音量,可以减小第二泄压孔1132的面积以减少从第二泄压孔1132导出并传向耳道的声音强度,此时,第二泄压孔1132的面积可以小于第一泄压孔1131的面积(如图17所示)。
在一些实施例中,如图7所示,当耳机10处于佩戴状态时,发声部11的长轴方向X可以水平或近似水平设置(与图2所示的位置C类似),此时发声部11至少部分地位于对耳轮105处,发声部11的自由端FE可以朝向脑后。发声部11处于水平或近似水平状态,发声部11的长轴方向X在矢状面上的投影可以与矢状轴的方向一致,短轴方向Y在矢状面上的投影可以与垂直轴方向一致,厚度方向Z垂直于矢状面。
在一些实施例中,为提高耳机10与耳部100的贴合度,提高耳机10佩戴的稳定性,壳体111的内侧面IS可以压接于耳部100(例如,对耳轮105)表面,以增加耳机10从耳部100上脱落的阻力。
在一些实施例中,结合图7和图8,当耳机10压接于耳部100时,为了使内侧面IS上的出声孔112不被耳部组织阻挡,出声孔112在矢状面的投影可以部分或全部与耳部的内凹结构(例如,耳甲艇103)在矢状面的投影重合。在一些实施例中,由于耳甲艇103与耳甲腔102连通,耳道位于耳甲腔102内,当出声孔112在矢状面上的至少部分投影位于耳甲艇103内时,出声孔112输出的声音可以无阻碍地到达耳道,从而使耳道接收的音量较高。在一些实施例中,发声部11的长轴尺寸不能过长,过长会使自由端FE在矢状面的投影超出耳部在矢状面的投影,影响发声部11与耳部的贴合效果。因此,发声部11的长轴尺寸可以设计得使得自由端FE在矢状面的投影不越过耳轮107在矢状面的投影。
需要知道的是,由于出声孔112和泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)设置在壳体111上,壳体111的各个侧壁均具有一定厚度,因此,出声孔112和泄压孔113均为具有一定深度的孔洞。此时,出声孔112和泄压孔113可以均具有内开口和外开口。为便于描述,在本申请中,上述及下述出声孔112的中心O可以指出声孔112的外开口的形心,上述及下述泄压孔113的中心可以指泄压孔113的外开口的形心(例如,第一泄压孔1131的中心O1可以指第一泄压孔1131的外开口的形心,第二泄压孔1132的中心O2可以指第二泄压孔1132的外开口的形心)。在本说明书中,为便于描述,出声孔112和泄压孔113(例如,第一泄压孔1131和/或第二泄压孔1132)的面积可以指出声孔112和泄压孔113的外开口的面积(例如,出声孔112在内侧面IS上的外开口面积、第一泄压孔1131在上侧面US上的外开口面积及第二泄压孔1132在下侧面LS上的外开口面积)。需要知道的是,在其他一些实施例中,出声孔112和泄压孔113的面积也可以指出声孔112和泄压孔113其他截面面积,例如出声孔112和/或泄压孔113的内开口的面积,或者出声孔112和/或泄压孔113的内开口面积和外开口面积的平均值等。
在一些实施例中,连通前腔的出声孔112可以视为图5所示的点声源A1,连通后腔的泄压孔113(例如,第一泄压孔1131和/或第二泄压孔1132)可以视为图5所示的点声源A2,耳道可以视为图5所示的听音位置。发声部11的至少部分壳体和/或至少部分耳廓可以视为图5所示的挡板,以增大出声孔112与第一泄压孔1131和/或第二泄压孔1132到耳道的声程差,从而增大耳道处的声音强度,同时维持远场降漏音的效果。当耳机10采用图7所示的结构时,即壳体111的至少部分位于对耳轮105处时,就听音效果而言,出声孔112的声波可以直接到达耳道,此时,出声孔112可以设置在内侧面IS上靠近下侧面LS的位置,至少一个泄压孔可以设置在远离出声孔112的位置,例如,第一泄压孔1131可以设置在外侧面OS或上侧面US上远离出声孔112的位置。第一泄 压孔1131的声波需要绕过发声部11的外侧才能与出声孔112的声波在耳道处产生干涉。此外,耳廓上上凸下凹的结构(例如,在其传播路径上的对耳轮、耳屏等)也会增加第一泄压孔1131的声音传导至耳道的声程。因此,发声部11本身和/或至少部分耳廓相当于出声孔112与第一泄压孔1131之间的挡板,挡板增加了第一泄压孔1131到耳道的声程且减小了第一泄压孔1131的声波在耳道的强度,从而使出声孔112与第一泄压孔1131发出的声音在耳道进行相消的程度减少,使得耳道的音量增大。就漏音效果而言,由于出声孔112与第一泄压孔1131和/或第二泄压孔1132产生的声波在较大的空间范围内都不需要绕过发声部11本身就可以发生干涉(类似于无挡板的情形),漏音不会明显增加。因此,通过设置出声孔112和第一泄压孔1131及第二泄压孔1132合适的位置,可以在漏音音量不显著增加的情况下,显著提升耳道的音量。
在一些实施例中,当自由端FE在矢状面的投影不越过耳轮107在矢状面的投影时,为了便于生产制造,第一泄压孔1131与第二泄压孔1132相对于发声部11的长轴中心面(例如,如图8所示的垂直于纸面向里的面NN’)可以近似对称分布。在一些实施例中,下侧面LS上的第二泄压孔1132的中心O2距离后侧面RS的距离a2与上侧面US上的第一泄压孔1131的中心O1距离后侧面RS的距离a1之差小于10%。在一些实施例中,下侧面LS上的第二泄压孔1132的中心O2距离后侧面RS的距离a2与上侧面US上的第一泄压孔1131的中心O1距离后侧面RS的距离a1之差小于5%。在一些实施例中,下侧面LS上的第二泄压孔1132的中心O2距离后侧面RS的距离a2与上侧面US上的第一泄压孔1131的中心O1距离后侧面RS的距离a1之差小于2%。需要知道的是,在一些实施例中,为了提升耳机的美观度及佩戴舒适度,耳机的后侧面RS可以为弧面。当后侧面RS为弧面时,某位置(例如,第一泄压孔1131中心O1)到后侧面RS的距离可以指该位置到后侧面RS的平行于短轴的切面的距离。
在一些实施例中,由于出声孔112设置得靠近耳道,下侧面LS上的第二泄压孔1132应当设置得尽量远离出声孔112,使第二泄压孔1132发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加。因此,当出声孔112设置在靠近下侧面LS以及连接端CE时,可以使得第二泄压孔1132设置靠近后侧面RS,以此使出声孔112与第二泄压孔1132的距离尽可能大。在一些实施例中,当自由端FE在矢状面的投影不越过耳轮107在矢状面的投影时,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为8.60mm~20.27mm。在一些实施例中,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为8.60mm~12.92mm。在一些实施例中,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为9.60mm~11.92mm。在一些实施例中,当耳机10在佩戴状态下,自由端FE有可能与耳部(例如,耳轮107)接触,导致部分上侧面US和/或下侧面LS被耳部遮挡,此时,为了避免下侧面LS上的第二泄压孔1132(或上侧面US的第一泄压孔1131)不被耳部100遮挡,从而影响耳机10的声学性能,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为10.10mm~11.42mm。更优选地,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为10.30mm~11.12mm。更优选地,第二泄压孔1132的中心O2距后侧面RS的距离a2范围可以为10.60mm~11.82mm。
在一些实施例中,在第二泄压孔1132的中心O2距离后侧面RS的距离a2与第一泄压孔1131的中心O1距离后侧面RS的距离a1之差小于10%的情况下,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为8.60mm~15.68mm。在一些实施例中,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为8.60mm~12.92mm。在一些实施例中,为使第一泄压孔1131在矢状面的投影可以较大部分地与耳部的内凹结构在矢状面的投影重合,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为9.60mm~11.92mm。优选地,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为10.10mm~11.42mm。更优选地,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为10.30mm~11.12mm。更优选地,第一泄压孔1131的中心O1距后侧面RS的距离a1范围可以为10.60mm~11.82mm。
在一些实施例中,第一泄压孔1131相对于第二泄压孔1132可以更远离出声孔112,且由于耳部100与内侧面IS之间的缝隙较小,相对于第二泄压孔1132,第一泄压孔1131产生的声音更难传输至耳道。因此,在一些实施例中,第一泄压孔1131的中心O1距离后侧面RS的距离可以小于第二泄压孔1132的中心O2距离后侧面RS的距离。例如,第一泄压孔1131的中心O1距后侧面RS的距离的范围为10.44mm~15.68mm,第二泄压孔1132的中心O2距后侧面RS的距离的范围为13.51mm~20.27mm。
在一些实施例中,参照图9,为了增加第一泄压孔1131和/或第二泄压孔1132到耳道的声程,可以增加耳机10在厚度方向Z的尺寸,从而提高耳机10的发声效率(即,在听音位置的听音 音量)。进一步地,可以将第一泄压孔1131和/或第二泄压孔1132设置得远离内侧面IS,从而进一步增大第一泄压孔1131和/或第二泄压孔1132到耳道的声程,提高耳机10的发声效率。此外,发声部11的整体尺寸的限制不能太大(例如,发声部11在Z方向的尺寸不能过大),否则会使耳机10的整体质量增大,影响用户的佩戴舒适度。在一些实施例中,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为4.24mm~7.96mm。在一些实施例中,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为4.43mm~7.96mm。在一些实施例中,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为5.43mm~6.96mm。在一些实施例中,在佩戴状态下,为了使第一泄压孔1131在水平面上的投影能够较少地或不与耳部100在水平面上的投影重合,以达到第一泄压孔1131和/或第二泄压孔1132输出的声音能够更多地向外辐射的目的,而不是向耳道传递或经耳部100的部分结构(例如耳廓)反射、折射后向耳道传递,第一泄压孔1131和/或第二泄压孔1132可以设置得远离内侧面IS。通过如此设置,还可以进一步增加第一泄压孔1131和/或第二泄压孔1132到耳道的声程,提高耳机10的发声效率。在一些实施例中,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为5.63mm~7.96mm。在一些实施例中,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为6.25mm~7.56mm。
在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2可以与第一泄压孔1131的中心O1距内侧面IS的距离d1相同。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为4.43mm~7.96mm。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为5.43mm~6.96mm。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为5.63mm~7.96mm。在一些实施例中,第二泄压孔1132中心O2距内侧面IS的距离d2范围为6.25mm~7.56mm。
在一些实施例中,为使出声孔112靠近耳道以增大听音位置,需要使得出声孔112靠近下侧面LS。在这种情况下,第二泄压孔1132相对于第一泄压孔1131更靠近内侧面IS。为使第二泄压孔1132发出的声音在听音位置(即耳道)与出声孔112发出的声音相消的效果减弱,进而使得听音位置的音量增加,在Z方向上,第二泄压孔1132相对于第一泄压孔1131可以更远离内侧面IS,即,第二泄压孔1132中心O2距内侧面IS的距离d2可以与第一泄压孔1131的中心O1距内侧面IS的距离d1不同。例如,第一泄压孔1131的中心O1距内侧面IS的距离d1范围为5.63mm~6.5mm,第二泄压孔1132中心O2距内侧面IS的距离d2范围为6.5mm~7.56mm。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,当发声部11上只设置有一个泄压孔时,该泄压孔可以是上述第一泄压孔1131和第二泄压孔1132中的任意一个。例如,该泄压孔可以是上述第一泄压孔1131,即该泄压孔可以设置在上侧面US。该泄压孔的中心距内侧面IS的距离范围可以为4.24mm~7.96mm,该泄压孔距的中心距后侧面RS的距离范围可以为8.60mm~15.68mm。这些变化和修改仍处于本申请的保护范围之内。
在一些实施例中,为了提高听音音量,特别是中低频的听音音量,同时仍然保留远场漏音相消的效果,可以在双点声源的其中一个声源周围构建一个腔体结构。图10是根据本说明书一些实施例所示的偶极子声源的其中一个声源周围设置腔体结构的示例性分布示意图。
如图10所示,偶极子声源之间设有腔体结构41时,使得其中一个偶极子声源和听音位置在腔体结构41的内部,另外一个偶极子声源在腔体结构41的外部。腔体结构41的内部的偶极子声源导出的声音会受到腔体结构41的限制,即腔体结构41能够聚拢声音,使得声音能够更多地传播至听音位置内,从而提高听音位置的声音的音量和质量。本申请中,“腔体结构”可以理解为由发声部11的侧壁与耳甲腔结构共同围成的半封闭结构,该半封闭结构使得内部与外部环境并非完全密闭隔绝,而是具有与外部环境声学联通的泄漏结构42(例如,开口、缝隙、管道等)。示例性的泄漏结构可以包括但不限于开口、缝隙、管道等,或其任意组合。
在一些实施例中,腔体结构41中可以包含听音位置和至少一个声源。这里的“包含”可以表示听音位置和声源至少有一者在腔体内部,也可以表示听音位置和声源至少有一者在腔体内部边缘处。在一些实施例中,听音位置可以是耳道入口,也可以是耳朵声学参考点。
图11A是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的听音原理示意图。图11B是根据本说明书一些实施例所示的偶极子声源结构和偶极子声源的其中一个声源周围构建腔体结构的漏音原理示意图。
对于近场听音来说,如图11A所示的其中一个声源周围构建有腔体结构的偶极子,由于其中一个声源A被腔体结构包裹,其辐射出来的声音大部分会通过直射或反射的方式到达听音位置。 相对地,在没有腔体结构的情况,声源辐射出的声音大部分不会到达听音位置。因此,腔体结构的设置使得到达听音位置的声音音量得到显著提高。同时,腔体结构外的反相声源B辐射出来的反相声音只有较少的一部分会通过腔体结构的泄漏结构进入腔体结构。这相当于在泄漏结构处生成了一个次级声源B’,其强度显著小于声源B,亦显著小于声源A。次级声源B’产生的声音在腔体内对声源A产生反相相消的效果微弱,使听音位置的听音音量显著提高。
对于漏音来说,如图11B所示,声源A通过腔体的泄漏结构向外界辐射声音相当于在泄漏结构处生成了一个次级声源A’,由于声源A辐射的几乎所有声音均从泄漏结构输出,且腔体的结构尺度远小于评价漏音的空间尺度(相差至少一个数量级),因此可认为次级声源A’的强度与声源A相当。对于外界空间来说,次级声源A’与声源B产生的声音相消效果与声源A与声源B产生的声音相消效果相当。即该腔体结构下,仍然保持了相当的降漏音效果。
应当理解的是,上述一个开口的泄漏结构仅为示例,腔体结构的泄漏结构可以包含一个或一个以上的开口,其也能实现较优的听音指数,其中,听音指数可以指漏音指数α的倒数1/α。以设置两个开口结构为例,下面分别分析等开孔和等开孔率的情况。以只开一个孔的结构作为对比,这里的“等开孔”指设置两个尺寸与只开一个孔的结构相同的开口,“等开孔率”指设置的两个孔开口面积之和与只开一个孔的结构相同。等开孔相当于将只开一个孔的相对开口大小(即腔体结构上泄漏结构的开口面积S与腔体结构中受被包含的声源直接作用的面积S0的比值)扩大了一倍,由之前所述,其整体的听音指数会下降。在等开孔率的情况,即使S/S0与只开一个孔的结构相同,但两个开口至外部声源的距离不同,因而也会造成不同的听音指数。
图12A是根据本说明书一些实施例所示的具有两个水平开口的腔体结构的示意图。图12B是根据本说明书一些实施例所示的具有两个垂直开口的腔体结构的示意图。如图12A所示,当两个开口连线和两个声源连线平行(即为两个水平开口)时,两个开口到外部声源的距离分别取得最大和最小;如图12B所示,当两连线垂直(即为两个垂直开口)时,两开口到外部声源的距离相等并取得中间值。
图13是根据本说明书一些实施例所示的具有两个开口和一个开口的腔体结构的听音指数曲线对比图。如图13所示,等开孔的腔体结构较一个开口的腔体结构的整体听音指数会下降。对于等开孔率的腔体结构,由于两个开口至外部声源的距离不同,因而也会造成不同的听音指数。结合图12A、图12B和图13可以看出,无论水平开口还是垂直开口,等开孔率的泄漏结构的听音指数都高于等开孔的泄漏结构。这是因为相对于等开孔的泄漏结构,等开孔率的泄漏结构的相对开口大小S/S0相比于等开孔的泄漏结构缩小了一倍,因此听音指数更大。结合图12A、图12B和图13还可以看出,无论是等开孔的泄漏结构还是等开孔率的泄漏结构,水平开口的听音指数都更大。这是因为水平开口的泄漏结构中其中一个开口到外部声源的距离小于两个声源的距离,这样形成的次级声源与外部声源由于距离相对原来两个声源更近,因此听音指数更高,进而提高了降漏音效果。因此,为了提高降漏音效果,可以使至少一个开口到外部声源的距离小于两个声源之间的距离。
此外,如图13所示,采用了两个开口的腔体结构相对于一个开口的腔体结构能更好地提高腔体结构内气声的谐振频率,使得整个装置相对于只有一个开口的腔体结构在高频段(例如,频率接近10000Hz的声音)有更好的听音指数。高频段是人耳更敏感的频段,因此对降漏音的需求更大。因此,为了提高高频段的降漏音效果,可以选择开口数量大于1的腔体结构。
图14是根据本申请另一些实施例所示的耳机的示例性佩戴示意图。图15是图14所示的耳机朝向耳部一侧的结构示意图。
图14所示的耳机10与图7所示的耳机10的结构类似,例如,耳挂12为与用户头部与耳部100的交界处相贴合的弧状结构。发声部11(或发声部11的壳体111)可以具有与耳挂12连接的连接端CE和不与耳挂12连接的自由端FE。耳机10处于佩戴状态时,耳挂12的第一部分121(例如,耳挂12的钩状部)挂设在用户耳廓(例如,耳轮107)和头部之间,耳挂12的第二部分122(例如,耳挂的连接部)向耳廓背离头部的一侧延伸并与发声部11的连接端CE连接,以将发声部11佩戴于耳道附近但不堵塞耳道的位置。图14所示的耳机10与图7所示的耳机10的结构类似,其主要区别在于:发声部11倾斜设置,发声部11的壳体111至少部分插入耳甲腔102,例如,发声部11的自由端FE可以伸入耳甲腔102内。如此结构的耳挂12和发声部11与用户耳部100适配度较好,能够增加耳机10从耳部100上脱落的阻力,从而增加耳机10的佩戴稳定性。
在一些实施例中,在佩戴状态下,沿厚度方向Z观察,发声部11的连接端CE相较于自由端FE更靠近头顶,以便于自由端FE伸入耳甲腔内。基于此,长轴方向X与人体矢状轴所在方向之间的夹角可以介于15°~60°之间。其中,如果前述夹角太小,容易导致自由端FE无法伸入耳甲 腔内,以及发声部11上的出声孔112与耳道相距太远;如果前述夹角太大,同样容易导致发声部11无法伸入耳甲腔内,以及耳道被发声部11堵住。换言之,如此设置,既允许发声部11伸入耳甲腔内,又使得发声部11上的出声孔112与耳道具有合适的距离,以在耳道不被堵住的情况下,用户能够更多地听到发声部11产生的声音。
在一些实施例中,发声部11和耳挂12可以从耳甲腔所对应的耳部区域的前后两侧共同夹持前述耳部区域,从而增加耳机10从耳部上脱落的阻力,进而改善耳机10在佩戴状态下的稳定性。例如,发声部11的自由端FE在厚度方向Z上压持在耳甲腔内。再例如,自由端FE在长轴方向X和短轴方向Y上抵接在耳甲腔内。
在一些实施例中,耳挂12的第二部分122的两端可以分别与耳挂12的第一部分121和发声部11的连接端CE相连(如图15所示)。在一些实施例中,耳挂12的第二部分122可以在沿发声部11的短轴方向Y上具有最低点P和最高点Q。当耳机10处于佩戴状态时,为了使第一泄压孔1131不被耳部结构(例如,耳轮或耳屏)遮挡,第一泄压孔1131的中心与最低点P在发声部11长轴方向X上的距离h1可以为5.28mm~7.92mm。在一些实施例中,为了使得用户佩戴耳机10时耳机能与用户耳部贴合,第一泄压孔1131的中心与最高点Q在发声部11长轴方向X上的距离h2可以为8.68mm~13.02mm。在一些实施例中,当用户佩戴耳机时,第一泄压孔1131的中心与耳挂12的第二部分122上任意一点在发声部11长轴方向X的距离范围为5.28mm~14mm。在一些实施例中,第一泄压孔1131的中心与耳挂的第二部分122上任意一点在发声部11长轴方向X的距离范围为5.28mm~13.02mm。在一些实施例中,第一泄压孔1131的中心与耳挂的第二部分122上任意一点在发声部11长轴方向X的距离范围为6.58mm~12.02mm。在一些实施例中,第一泄压孔1131的中心与耳挂的第二部分122上任意一点在发声部11长轴方向X的距离范围为7.58mm~10.02mm。在一些实施例中,第一泄压孔1131的中心与耳挂的第二部分122上任意一点在发声部11长轴方向X的距离范围为8.58mm~9.02mm。
如图14所示,当用户佩戴耳机10时,通过将发声部11的壳体111设置为至少部分插入耳甲腔102,发声部11的内侧面IS与耳甲腔102共同围成的腔体可以视为如图10所示的腔体结构41,内侧面IS与耳甲腔之间形成的缝隙(例如,内侧面IS与耳甲腔之间形成的靠近头顶的第一泄露结构UC、内侧面IS与耳部之间形成的靠近耳道的第二泄露结构LC)可以视为如图10所示的泄漏结构42。设置在内侧面IS上的出声孔112可以视为如图10所示的腔体结构41内部的点声源,设置在发声部11其他侧面(例如,上侧面US和/或下侧面LS)的泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)可以视为如图10所示的腔体结构41外部的点声源。由此根据图10-图13的相关描述,当耳机10以至少部分插入耳甲腔的佩戴方式佩戴时,即以如图14所示的佩戴方式佩戴,就听音效果而言,出声孔112辐射出来的声音大部分可以通过直射或反射的方式到达耳道,可以使得到达耳道的声音音量得到显著提高,特别是中低频的听音音量。同时,泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)辐射出来的反相声音只有较少的一部分会通过缝隙(第一泄露结构UC和第二泄露结构LC)进入耳甲腔,与出声孔112产生反相相消的效果微弱,使耳道的听音音量显著提高。就漏音效果而言,出声孔112可以通过缝隙向外界输出声音并与泄压孔113(如,第一泄压孔1131和第二泄压孔1132)产生的声音在远场相消,以此保证降漏音效果。
在一些实施例中,为避免第一泄压孔1131和第二泄压孔1132输出的声音影响出声孔112输出的声音在听音位置的音量,第一泄压孔1131和第二泄压孔1132应尽可能远离出声孔112,例如,可以使出声孔112的中心位于第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面上或者中垂面附近。在一些实施例中,出声孔112的中心可以距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~2mm。在一些实施例中,出声孔112的中心可以距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~1mm。在一些实施例中,出声孔112的中心可以距第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面0mm~0.5mm。
在一些实施例中,可以通过确定第一泄压孔1131的中心O1与出声孔112的中心O的距离(也可以称为第一距离)与第二泄压孔1132的中心O2与出声孔112的中心O的距离(也可以称为第二距离)之间的关系,以使出声孔112的中心O近似在连线O1O2的中垂面上。在一些实施例中,第一距离与第二距离之差小于10%。在一些实施例中,第一距离与第二距离之差小于8%。在一些实施例中,第一距离与第二距离之差小于5%。在一些实施例中,第一距离与第二距离之差小于2%。
在一些实施例中,为了避免泄压孔(例如,第一泄压孔1131和第二泄压孔1132)发出的 声波与出声孔112发出的声波在近场相消而影响用户的听音质量,第一泄压孔1131和第二泄压孔1132与出声孔112之间的距离不能太近。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为4mm-15.11mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为4mm-15mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为5.12mm-15.11mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为5mm-14mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为6mm-13mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为7mm-12mm。在一些实施例中,第一泄压孔1131的中心O1与出声孔112的中心O的距离可以为8mm-10mm。
在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O之间的距离可以为4mm-16.1mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为4mm-15mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为5mm-14mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O之间的距离可以为5.12mm-16.1mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为6mm-13mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为7mm-12mm。在一些实施例中,第二泄压孔1132的中心O2与出声孔112的中心O的距离可以为8mm-10mm。
在一些实施例中,为减小泄压孔对出声孔处输出声音的影响,第一泄压孔1131和第二泄压孔1132同时离出声孔112越远越好,因此,为了使第一泄压孔1131和第二泄压孔1132都能距出声孔112较远,出声孔112的中心O距第一泄压孔1131的中心O1与出声孔112的中心O距第二泄压孔1132的中心O2的距离之间的比值在0.9-1.1范围内。在一些实施例中,出声孔112的中心O距第一泄压孔1131的中心O1与出声孔112的中心O距第二泄压孔1132的中心O2的距离之间的比值在0.92-1.08范围内。在一些实施例中,出声孔112的中心O距第一泄压孔1131的中心O1与出声孔112的中心O距第二泄压孔1132的中心O2的距离之间的比值在0.94-1.06范围内。在一些实施例中,出声孔112的中心O距第一泄压孔1131的中心O1与出声孔112的中心O距第二泄压孔1132的中心O2的距离之间的比值在0.96-1.04范围内。
在一些实施例中,为了进一步避免第二泄压孔1132发出的声音在耳道(即听音位置)与出声孔112发出的声音相消而降低听音音量,可以减小第二泄压孔1132的面积以减少从第二泄压孔1132导出并传向耳道的声音强度,此时,第二泄压孔1132的面积可以小于第一泄压孔1131的面积(如图17所示)。
在一些实施例中,为尽可能地拉大第一泄压孔1131或第二泄压孔1132与出声孔112之间的距离,可以减小第一泄压孔1131的中心O1与出声孔112的中心O之间的连线O1O与第二泄压孔1132的中心O2与出声孔112的中心O之间的连线O2O之间的夹角角度。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°-114.04°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°-90.40°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°-70.04°。在一些实施例中,连线O1O与连线O2O之间的角度范围为46.40°-60.04°。
在一些实施例中,第一泄压孔1131的中心O1与第二泄压孔1132的中心O2的连线O1O2与连线O2O之间的角度范围为19.72°-101.16°。在一些实施例中,连线O1O2与连线O2O之间的角度范围为19.71°-97.75°。
图16是根据本说明书一些实施例所示的耳机处于佩戴状态时在矢状面的投影示意图。
在一些实施例中,结合图14和图16,为了使发声部11稳定地佩戴在用户耳部,且便于构造如图10所示的腔体结构,并使得腔体结构具有至少两个泄露结构,自由端FE可以在长轴方向X和短轴方向Y上抵接在耳甲腔内,此时,发声部11的内侧面IS相对于矢状面倾斜,并且此时发声部的内侧面IS与耳甲腔之间至少具有靠近头顶的第一泄露结构UC(即耳甲腔与内侧面IS上边界之间形成的缝隙)和靠近耳道的第二泄露结构LC(即耳甲腔与内侧面IS下边界之间形成的缝隙)。由此,可以提高听音音量,特别是中低频的听音音量,同时仍然保留远场漏音相消的效果,从而提升耳机10的声学输出性能。
在一些实施例中,当耳机10以图14所示的佩戴方式进行佩戴时,发声部11的内侧面IS与耳甲腔之间形成的第一泄露结构UC和第二泄露结构LC在长轴方向X上和厚度方向Z上均具有一定的尺度。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以将耳机10处于佩戴状态时内侧面IS的上/下边界分别与耳部(例如,耳甲腔的侧壁、耳轮脚)相交 而形成的两点的中点作为第一泄露结构UC和第二泄露结构LC的位置参考点。在一些实施例中,为了便于理解第一泄露结构UC和第二泄露结构LC的位置,可以在耳机10处于佩戴状态时,将内侧面IS的上边界的中点作为第一泄露结构UC的位置参考点,以内侧面IS的下边界靠近自由端FE的三等分点(以下简称内侧面IS的下边界的1/3点)作为第二泄露结构LC的位置参考点。
需要说明的是,当内侧面IS与上侧面US和/或下侧面LS之间的交界处为弧形时,发声部11的内侧面IS上边界的中点可以通过下述示例性的方法进行选取。可以确定发声部11沿厚度方向Z的投影轮廓;可以确定发声部11上沿长轴方向X距换能器的磁路组件(例如,下文描述的磁路组件1144)的短轴中心面的垂直距离最大且最靠近上侧面US的两个第一定位点;可以确定两个第一定位点之间的发声部11的投影轮廓为内侧面IS的上边界的投影线;可以确定发声部11上最靠近内侧面IS的且其投影与内侧面IS的上边界的投影线完全重合的线段作为内侧面IS的上边界。在一些替代的实施例中,当发声部11的一个或多个侧面(例如,内侧面IS、上侧面US和/或下侧面LS)为弧面时,可以确定内侧面IS的平行于X-Y平面(长轴方向X和短轴方向Y和形成的平面)的切面与上侧面US的平行于Z-X平面(厚度方向Z和长轴方向X形成的平面)的切面之间的相交线为内侧面IS的上边界。内侧面IS的上边界的中点可以是内侧面IS的上边界与磁路组件的短轴中心面的相交点。磁路组件的短轴中心面是指平行于发声部11的短轴方向Y和厚度方向Z且通过磁路组件的中心轴的平面。
类似地,发声部11的内侧面IS下边界的1/3点可以通过下述示例性的方法进行选取。可以确定发声部11沿厚度方向Z的投影轮廓;可以确定发声部11上沿长轴方向X距磁路组件的短轴中心面的垂直距离最大且最靠近下侧面LS的两个第二定位点;可以确定两个第二定位点之间的发声部11的投影轮廓为内侧面IS的下边界的投影线;可以确定发声部11上最靠近内侧面IS的且其投影与内侧面IS的下边界的投影线完全重合的线段作为内侧面IS的下边界。在一些替代的实施例中,当发声部11的一个或多个侧面(例如,内侧面IS、上侧面US和/或下侧面LS)为弧面时,可以确定内侧面IS的平行于Y-X平面(短轴方向Y和长轴方向X形成的平面)的切面与下侧面LS的平行于X-Y平面(厚度方向Z和长轴方向X形成的平面)的切面之间的相交线为内侧面IS的下边界。内侧面IS的下边界的1/3点可以是内侧面IS的下边界与磁路组件的靠近自由端FE的三等分面的相交点。磁路组件的靠近自由端FE的三等分面是指平行于发声部11的短轴方向Y和厚度方向Z且通过磁路组件的长轴的靠近自由端FE的三等分点的平面。
仅作为示例,本说明书将以内侧面IS的上边界的中点以及下边界的1/3点分别作为第一泄露结构UC和第二泄露结构LC的位置参考点。需要知道的是,选定的内侧面IS的上边界的中点以及下边界的1/3点,只是作为示例性的参考点来描述第一泄露结构UC和第二泄露结构LC的位置。在一些实施例中,还可以选定其他参考点用以描述第一泄露结构UC和第二泄露结构LC的位置。例如,由于不同用户耳部的差异性,导致当耳机10处于佩戴状态时所形成的第一泄露结构UC/第二泄露结构LC为一宽度渐变的缝隙,此时,第一泄露结构UC/第二泄露结构LC的参考位置可以为内侧面IS的上边界/下边界上靠近缝隙宽度最大的区域的位置。例如,可以以内侧面IS的上边界靠近自由端FE的1/3点作为第一泄露结构UC的位置,以内侧面IS的下边界的中点作为第二泄露结构LC的位置。
在一些实施例中,结合图14-图16,为了使耳机10佩戴时出声孔112在矢状面的投影能够部分或全部位于耳甲腔区域内,同时提升出声孔112在耳道(即,听音位置)的声音强度,可以将出声孔112尽可能设置在距离耳道较近的位置。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h的范围为4.05mm~6.05mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h的范围为4.50mm~5.85mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h的范围为4.80mm~5.50mm。在一些实施例中,出声孔112的中心O沿Y方向距发声部11的下侧面LS的距离h的范围为5.20mm~5.55mm。
在一些实施例中,为了使发声部11至少部分插入耳甲腔,发声部11的长轴尺寸不能太长。在保证发声部11至少部分插入耳甲腔的前提下,出声孔112中心O沿X方向距发声部11的后侧面RS的距离不能太近,否则可能导致出声孔的全部或部分面积由于自由端FE与耳甲腔壁面的抵接而被遮挡,使得出声孔的有效面积减小。因此,在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离的范围为8.15mm~12.25mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离的范围为8.50mm~12.00mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离的范围为8.85mm~11.65mm。在一些 实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离的范围为9.25mm~11.15mm。在一些实施例中,出声孔112的中心O沿X方向距发声部11的后侧面RS的距离的范围为9.60mm~10.80mm。
在一些实施例中,如图16所示,内侧面IS的上边界在矢状面的投影可以与上侧面US在矢状面的投影重合,内侧面IS的下边界在矢状面的投影可以与下侧面LS在矢状面的投影重合。第一泄露结构UC的位置参考点(即内侧面IS的上边界的中点)在矢状面的投影为点A,第二泄露结构LC的位置参考点(即内侧面IS的下边界的1/3点)在矢状面的投影为点C,出声孔112的中心O在矢状面的投影为点O’,第一泄压孔1131的中心O1在矢状面的投影为点O1’,第二泄压孔1132的中心O2在矢状面的投影为点O2’。
如图16所示,在一些实施例中,在佩戴状态下,耳机10的发声部11在矢状面上的投影可以至少部分覆盖用户的耳道,但耳道可以通过耳甲腔与外界连通,以实现解放用户的双耳。在一些实施例中,由于出声孔112通过第一泄露结构UC及第二泄露结构LC向外界输出声音以与第一泄压孔1131和/或第二泄压孔1132输出的声音在远场相消,为保证漏音相消效果,需要合理设计出声孔112及第一泄压孔1131/第二泄压孔1132与第一泄露结构UC及第二泄露结构LC之间的距离。在一些实施例中,为了保证耳道处的声音强度,需要使得耳机处于佩戴状态下时出声孔112距离耳道较近,因此,可以使出声孔112相较于上侧面US更靠近下侧面LS设置,即出声孔112可以远离第一泄露结构UC。同时考虑到出声孔112距离第一泄露结构UC的距离越大,发声部11需要的宽度尺寸可能越大,此时发声部11与耳甲腔之间形成的腔体结构的体积V越大,相应地,耳机10整体(全频段范围内)的听音指数可能越小。这是因为受到腔体结构内气声谐振的影响,在腔体结构的谐振频率上,腔体结构内会产生气声谐振并向外辐射远大于泄压孔的声音,造成了漏音的极大提高,进而使得听音指数在该谐振频率附近显著变小。
因此,在一些实施例中,在发声部11至少部分地插入耳甲腔内的前提下,为了使出声孔112能够靠近耳道设置,且使腔体结构具有合适体积V,以使耳道的收音效果较好,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围可以为10.0mm~15.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为11.0mm~14.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为12.0mm~14.7mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为12.5mm~14.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围为13.0mm~13.7mm。
在一些实施例中,出声孔112经由第一泄露结构UC泄露声音相当于在第一泄露结构UC处生成了一个次级声源。为了保证第一泄压孔1131输出的声音与出声孔112经由第一泄露结构UC泄露的声音在远场的相消效果,可以使第一泄压孔1131靠近第一泄露结构UC设置。在一些实施例中,可以使第一泄压孔1131相较于出声孔112更靠近第一泄露结构UC设置,即使出声孔112的中心O距内侧面IS的上边界的中点的距离大于第一泄压孔1131的中心O1距内侧面IS的上边界的中点的距离,以在保证耳道处的声音强度的情况下,使漏音相消的效果较好。在一些实施例中,出声孔112的中心O距内侧面IS的上边界的中点的距离与第一泄压孔1131的中心O1距内侧面IS的上边界的中点的距离之间的比值在1.3-2.1范围内。在一些实施例中,出声孔112的中心O距内侧面IS的上边界的中点的距离与第一泄压孔1131的中心O1距内侧面IS的上边界的中点的距离之间的比值在1.4-2.0范围内。在一些实施例中,出声孔112的中心O距内侧面IS的上边界的中点的距离与第一泄压孔1131的中心O1距内侧面IS的上边界的中点的距离之间的比值在1.5-1.9范围内。在一些实施例中,出声孔112的中心O距内侧面IS的上边界的中点的距离与第一泄压孔1131的中心O1距内侧面IS的上边界的中点的距离之间的比值在1.6-1.8范围内。
在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’与内侧面IS的上边界的中点在矢状面的投影点A可以基本重合。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于2mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于1mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距内侧面IS的上边界的中点在矢状面的投影点A的距离范围不大于0.5mm。
在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3 点在矢状面的投影点C的距离越大,腔体结构的体积V越大。因此,在发声部11至少部分地插入耳甲腔内的前提下,为了使出声孔112能够靠近耳道设置,且使腔体结构具有合适体积V,以使耳道的收音效果较好。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.5mm~5.6mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为3.9mm~5.2mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.3mm~4.8mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为4.5mm~4.6mm。
在一些实施例中,为了增大第二泄压孔1132与出声孔112的距离以减少第二泄压孔1132的声音通过第二泄露结构LC传入腔体结构与出声孔112的声音相消,第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为8.16mm~12.24mm。在一些实施例中,第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为9.16mm~11.24mm。在一些实施例中,第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面IS的下边界的1/3点在矢状面的投影点C的距离范围为9.66mm~10.74mm。
在一些实施例中,出声孔112经由第二泄露结构LC泄露声音相当于在第二泄露结构LC处生成了一个次级声源。考虑到第二泄压孔1132距离耳道口的距离较近,为了减弱第二泄压孔1132的声音通过第二泄露结构LC传入腔体结构与出声孔112的声音在耳道内的相消程度,第二泄压孔1132距内侧面IS的下边界的1/3点(即第二泄露结构LC)的距离不能太小。同时,为了保证第二泄压孔1132输出的声音与出声孔112经由第二泄露结构LC泄露的声音在远场的相消效果,第二泄压孔1132距内侧面IS的下边界的1/3点(即第二泄露结构LC)的距离也不能太大。在一些实施例中,可以使出声孔112的中心O距内侧面IS的下边界的1/3点(即第二泄露结构LC)的距离与第二泄压孔1132的中心O2距内侧面IS的下边界的1/3点(即第二泄露结构LC)的距离之间的比值在0.65-1.05范围内。在一些实施例中,出声孔112的中心O距内侧面IS的下边界的1/3点的距离与第二泄压孔1132的中心O2距内侧面IS的下边界的1/3点的距离之间的比值在0.75-1范围内。在一些实施例中,出声孔112的中心O距内侧面IS的下边界的1/3点的距离与第二泄压孔1132的中心O2距内侧面IS的下边界的1/3点的距离之间的比值在0.8-0.9范围内。在一些实施例中,为了减弱第二泄压孔1132的声音通过第二泄露结构LC传入腔体结构与出声孔112的声音在耳道内的相消程度,同时保证第二泄压孔1132输出的声音与出声孔112经由第二泄露结构LC泄露的声音在远场的相消效果,出声孔112的中心O距内侧面IS的下边界的1/3点的距离与第二泄压孔1132的中心O2距内侧面IS的下边界的1/3点的距离之间的比值在0.82-0.88范围内。
在一些实施例中,出声孔112的中心O、内侧面IS的下边界的1/3点、以及第二泄压孔1132的中心O2三者之间的位置关系还可以通过出声孔112的中心O在矢状面的投影点O’距内侧面的下边界的1/3点在矢状面的投影点C的距离与第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面的下边界的1/3点在矢状面的投影点C的距离之间的比值表征。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面的下边界的1/3点在矢状面的投影点C的距离与第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面的下边界的1/3点在矢状面的投影点C的距离之间的比值在0.28-0.68范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面的下边界的1/3点在矢状面的投影点C的距离与第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面的下边界的1/3点在矢状面的投影点C的距离之间的比值在0.33-0.59范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面的下边界的1/3点在矢状面的投影点C的距离与第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面的下边界的1/3点在矢状面的投影点C的距离之间的比值在0.38-0.51范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距内侧面的下边界的1/3点在矢状面的投影点C的距离与第二泄压孔1132的中心O2在矢状面的投影点O2’距内侧面的下边界的1/3点在矢状面的投影点C的距离之间的比值在0.41-0.48范围内。
在一些实施例中,由于耳道口附近存在耳屏,出声孔112很容易被耳屏遮挡,此时,为了尽可能使出声孔112在离耳道较近的位置且不被遮挡,出声孔112应尽可能与耳道口的中心保持一定距离。在一些实施例中,为便于描述,某特定位置(例如,出声孔112的中心O)与耳道口的中心之间的位置关系可以通过该位置(例如,出声孔112的中心O)在矢状面的投影点与耳道口在矢 状面的投影的形心之间的距离表征。例如,在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离范围为2.2mm~3.8mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离范围为2.4mm~3.6mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离范围为2.6mm~3.4mm。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离范围为2.8mm~3.2mm。需要说明的是,耳道口在矢状面上的投影的形状可以近似视为椭圆形,相对应地,耳道口在矢状面的投影的形心可以为该椭圆形的几何中心。
在一些实施例中,为了保证发声部11伸入耳甲腔且内侧面IS的上边界与耳甲腔之间存在适当的缝隙(形成腔体结构的开口),内侧面IS的上边界的中点在矢状面上的投影点A距耳道口在矢状面的投影的形心B的距离范围为12mm~18mm,第二泄压孔的中心O2在矢状面的投影点O2’距耳道口在矢状面的投影的形心B的距离范围为6.88mm~10.32mm。在一些实施例中,内侧面IS的上边界的中点在矢状面的投影点A距耳道口在矢状面的投影的形心B的距离范围为14mm~16mm,第二泄压孔的中心O2在矢状面的投影点O2’距耳道口在矢状面的投影的形心B的距离范围为7.88mm~9.32mm。在一些实施例中,内侧面IS的上边界的中点在矢状面的投影点A距耳道口在矢状面的投影的形心B的距离范围为14.5mm~15.5mm,第二泄压孔的中心O2在矢状面的投影点O2’距耳道口在矢状面的投影的形心B的距离范围为7.88mm~8.32mm。
在一些实施例中,为了保证发声部11伸入耳甲腔且内侧面IS的上边界与耳甲腔之间存在适当的缝隙(形成腔体结构的开口),第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离范围为12mm~18mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离范围为14mm~16mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离范围为14.5mm~15.5mm。
在一些实施例中,为了保证发声部11伸入耳甲腔且内侧面IS的上边界与耳甲腔之间存在适当的缝隙(形成腔体结构的开口),内侧面的下边界的1/3点在矢状面的投影点C距耳道口在矢状面的投影的形心B的距离范围为1.76mm~2.64mm。在一些实施例中,内侧面的下边界的1/3点在矢状面的投影点C距耳道口在矢状面的投影的形心B的距离范围为1.96mm~2.44mm。在一些实施例中,内侧面的下边界的1/3点在矢状面的投影点C距耳道口在矢状面的投影的形心B的距离范围为2.16mm~2.24mm。
在一些实施例中,为了使发声部11能够伸入耳甲腔且第一泄压孔1131不被耳部结构遮挡,同时为了尽可能使出声孔112在离耳道较近的位置且不被遮挡,可以使出声孔112的中心O距耳道口中心的距离与第一泄压孔1131的中心O1距耳道口中心的距离的比值在适宜范围内。相应地,可以使出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离与第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离的比值在适宜范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离与第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离的比值可以在0.10-0.35范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离与第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离的比值在0.15-0.28范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离与第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离的比值在0.18-0.25范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳道口在矢状面的投影的形心B的距离与第一泄压孔1131的中心O1在矢状面的投影点O1’距耳道口在矢状面的投影的形心B的距离的比值在0.19-0.22范围内。
结合图14-图16,在一些实施例中,在保证发声部11至少部分插入耳甲腔的前提下,为了使出声孔112在矢状面的投影能够部分或全部位于耳甲腔区域内,当用户佩戴耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为22.5mm~34.5mm。在一些实施例中,耳挂12的上顶点可以是用户佩戴开方式耳机时,耳挂的外轮廓上相对用户脖颈处特定点在垂直轴方向具有最大距离的位置,例如,图14中所示的顶点M。在一些实施例中,耳挂12的上顶点也可以为佩戴状态下耳挂的内轮廓沿用户垂直轴的最高点。在一些实施例中,当用户佩戴耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为25mm~32mm。在一些实施例中,当 用户佩戴耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为27.5mm~29.5mm。在一些实施例中,当用户佩戴耳机10时,出声孔112的中心O与耳挂12的上顶点M之间的距离的范围为28mm~29mm。在一些实施例中,当用户佩戴所述耳机10时,出声孔112的中心O在矢状面的投影点O’与耳挂12的上顶点M在矢状面的投影点M’之间的距离的范围为18mm~30mm。在一些实施例中,当用户佩戴所述耳机10时,出声孔112的中心O在矢状面的投影与耳挂12的上顶点M在矢状面的投影之间的距离的范围为20mm~25mm。需要说明的是,在本说明书,在佩戴状态下,出声孔112的中心O在矢状面的投影点O’距某特定点(例如,耳挂12的上顶点M在矢状面的投影点M’)之间的距离可以通过下述示例性的方法进行确定。可以在佩戴状态下,采用固定件或者胶水将耳机10的多个部件(例如,发声部11、耳挂的第一部分121和耳挂的第二部122)固定在稳固件上,然后将人头模型及耳廓结构去除,此时,稳定在稳固件上的耳机10展示为朝向耳部一侧,且其姿态与佩戴状态的姿态相同。此时,可以确定出声孔112的中心O在矢状面的投影点O’的位置。进一步地,可以确定出声孔112的中心O在矢状面的投影点O’距该特定点之间的距离。
在一些实施例中,为了防止在发声部11伸入耳甲腔时第一泄压孔1131被遮挡,第一泄压孔1131的中心O1距耳挂12的上顶点M的距离不能太小。此外,在发声部11能够至少部分伸入耳甲腔的情况下,第一泄压孔1131的中心O1距耳挂12的上顶点M的距离也不能太大。在一些实施例中,第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的范围为16.15mm-24.25mm。在一些实施例中,第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的范围为17.55mm-23.25mm。在一些实施例中,第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的范围为19.55mm-20.55mm。在一些实施例中,第一泄压孔1131的中心O1与耳挂12的上顶点M位置关系还可以通过第一泄压孔1131的中心O1在矢状面的投影点O1’与耳挂12的上顶点M在矢状面的投影点M’的距离表征。例如,在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距耳挂12的上顶点M在矢状面的投影点M’的距离的范围为15.83mm-23.75mm。在一些实施例中,第一泄压孔1131的中心O1在矢状面的投影点O1’距耳挂12的上顶点M在矢状面的投影点M’的距离的范围为18mm-20mm。
在一些实施例中,在如图14的佩戴方式下,出声孔112的中心O距耳挂12的上顶点M之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值在1.10-1.70范围内。在一些实施例中,当用户佩戴耳机10时,出声孔112的中心O距耳挂12的上顶点M之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值在1.25-1.65范围内。优选地,出声孔112的中心O距耳挂12的上顶点M之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值在1.35-1.55范围内。在一些实施例中,出声孔112的中心O、耳挂12的上顶点M、以及第一泄压孔1131的中心O1之间的相对位置关系还可以通过出声孔112的中心O在矢状面的投影点O’距耳挂12的上顶点M在矢状面的投影点M’之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值表征。例如,在一些实施例中,在如图14的佩戴方式下,出声孔112的中心O在矢状面的投影点O’距耳挂12的上顶点M在矢状面的投影点M’之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值在1.11-1.71范围内。在一些实施例中,出声孔112的中心O在矢状面的投影点O’距耳挂12的上顶点M在矢状面的投影点M’之间的距离与第一泄压孔1131的中心O1距耳挂12的上顶点M的距离的比值在1.35-1.50范围内。
关于上述耳机10的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,当发声部11上只设置有一个泄压孔时,该泄压孔可以是上述第一泄压孔1131和第二泄压孔1132中的任意一个。例如,该泄压孔可以是上述第一泄压孔1131,即该泄压孔可以设置在上侧面US。此时,该泄压孔可以视为如图10所示的腔体结构41外部的有且仅有的一个点声源。出声孔112的中心O距内侧面IS的上边界的中点的距离与该泄压孔的中心距内侧面IS的上边界的中点的距离之间的比值在1.3-2.1范围内。这些变化和修改仍处于本申请的保护范围之内。
图17是根据本说明书一些实施例所示的耳机的壳体的结构示意图。
在一些实施例中,如图17所示,出声孔112、第一泄压孔1131及第二泄压孔1132可以采用跑道形,其中,跑道形的两端可以为劣弧形或半圆形。在一些实施例中,出声孔112、第一泄压孔1131及第二泄压孔1132均采用直筒状结构。在一些实施例中,为了便于加工制造,降低工艺难度,出声孔112、第一泄压孔1131及第二泄压孔1132均可以采用喇叭状结构,例如,内开口的面积小于对应外开口的面积,或者外开口的面积小于对应内开口的面积。需要说明的是,出声孔112、 第一泄压孔1131及第二泄压孔1132的形状可以包括但不限于圆形、椭圆形、跑道形等。为便于描述,以下将以出声孔112、第一泄压孔1131及第二泄压孔1132设置成跑道形的直筒状结构为例进行示例性的说明。此时,出声孔112在宽度方向Y上的最大尺寸定义为其对应的短轴尺寸(宽度),第一泄压孔1131及第二泄压孔1132在厚度方向Z上的最大尺寸定义为其对应的短轴尺寸(宽度);出声孔112、第一泄压孔1131及第二泄压孔1132在长轴方向X上的最大尺寸定义为其对应的长轴尺寸(长度);出声孔112在厚度方向Z上的尺寸定义为其对应的深度,第一泄压孔1131及第二泄压孔1132在宽度方向Y上的尺寸定义为其对应的深度。
在一些实施例中,由于出声孔112的外开口面积S3(以下简称为面积)增大或出声孔112的深度D3减小时,耳机前腔的谐振频率f1向高频移动。在振膜振动过程中,前腔中的空气随着振膜的振动而被压缩或膨胀,所述被压缩或膨胀的空气可以带动出声孔处的空气柱来回运动,进而引起空气柱向外辐射声音。在一些实施例中,出声孔112内的空气柱具有质量,质量可以对应出声孔112的声质量。所述声质量可以作为声阻抗的一部分,从而影响发声部11的声学输出。由此,出声孔112的尺寸也会对出声孔112的声质量Ma造成影响,具体出声孔112的面积S3增大或深度D3减小,出声孔112的声质量Ma减小。
在一些实施例中,为了在提高前腔的谐振频率f1的同时,保证出声孔112的声质量Ma,出声孔112的面积S3需要具有合适的取值范围内。另外,出声孔112的面积S3过大,可能对耳机10的外观、结构强度等其他方面产生一定的影响。由此,在一些实施例中,出声孔112的面积S3的取值范围可以为2.87mm2-46.10mm2。在一些实施例中,出声孔112的面积S3的取值范围可以为2.875mm2-46mm2。在一些实施例中,出声孔112的面积S3的取值范围可以为8mm2-30mm2。在一些实施例中,出声孔112的面积S3的取值范围可以为10mm2-26mm2。仅作为示例,出声孔112的面积S3的取值可以为11mm2-15mm2(例如,11.49mm2)。再例如,出声孔112的面积S3的取值可以为25mm2-26mm2(例如,25.29mm2)。
为了保证前腔具有足够大的谐振频率,出声孔112的深度D3的取值越小越好。但是由于出声孔112设置于壳体111上,因此出声孔112的深度D3即为壳体111的厚度。壳体111的厚度过小时,可能会对耳机10的结构强度造成影响,且相应的加工工艺难度较高。在一些实施例中,出声孔112的深度D3的取值范围可以为0.3mm-3mm。在一些实施例中,出声孔112的深度D3的取值范围可以为0.3mm-2mm。在一些实施例中,出声孔112的深度D3的取值可以为0.3mm-1mm。
在一些实施例中,出声孔112的面积的取值范围为2.875mm2-46mm2,出声孔112的深度D3的取值范围可以为0.3mm-3mm时,对应的出声孔112的面积S3与深度D3的平方之比S3/D3 2的取值范围可以为0.31-512.2。在一些实施例中,出声孔112的面积S3与深度D3的平方之比S3/D3 2的取值范围可以为1-400。在一些实施例中,出声孔112的面积S3与深度D3的平方之比S3/D3 2的取值范围可以为3-300。在一些实施例中,出声孔112的面积S3与深度D3的平方之比S3/D3 2的取值范围可以为5-200。在一些实施例中,出声孔112的面积S3与深度D3的平方之比S3/D3 2的取值范围可以为10-50。
在一些实施例中,当其他结构(例如,出声孔112等)固定时,随着泄压孔113(例如,第一泄压孔1131和/或第二泄压孔1132)的面积逐渐增大,耳机10的后腔所对应的谐振频率逐渐向高频移动,频响曲线的平坦区域变宽。此外,在实际的应用中,第一泄压孔1131的面积和/或第二泄压孔1132的面积过大,会对耳机10的外观、结构强度、防水防尘等其他方面产生一定的影响,因此,第一泄压孔1131的面积S1和/或第二泄压孔1132的面积S2也不能太大。在一些实施例中,第一泄压孔1131的面积范围为3.78mm2-86.21mm2,第二泄压孔1132的面积范围为2.78mm2-54.68mm2。在一些实施例中,第一泄压孔1131的面积范围为3.78mm2~22.07mm2,第二泄压孔1132的面积范围为2.78mm2~16.07mm2。在一些实施例中,第一泄压孔1131的面积范围为6.78mm2~20.07mm2,第二泄压孔1132的面积范围为4.78mm2~13.07mm2
在一些实施例中,由于第一泄压孔1131、第二泄压孔1132及出声孔112设置于壳体111上,为便于加工和设计,第一泄压孔1131的深度D1、第二泄压孔1132的深度D2可以与出声孔112的深度D3一致。在一些实施例中,第一泄压孔1131的深度D1(或第二泄压孔1132的深度D2)的取值范围可以为0.3mm-3mm。在一些实施例中,第一泄压孔1131的深度D1(或第二泄压孔1132的深度D2)的取值范围可以为0.3mm-2mm。在一些实施例中,第一泄压孔1131的深度D1(或第二泄压孔1132的深度D2)的取值可以为0.3mm-1mm。
在一些实施例中,为了使得由泄压孔113形成的第二漏音可以与出声孔112在远场形成的第一漏音更好地相互抵消,后腔的谐振频率f2可以与前腔114的谐振频率f1接近或相等。根据公式 (2),前腔114的谐振频率f1与后腔的谐振频率f2的比值为:
根据公式(2),前腔114的谐振频率f1与后腔的谐振频率f2之间的比值可以与前后腔的体积之比、出声孔112开口面积与泄压孔113开口面积之比、以及出声孔113深度与泄压孔113深度之比相关。可以基于其中部分参数(例如,出声孔112开口面积与声学孔113开口面积之比)设置其他参数(例如,前后腔的体积之比)的范围,使得泄压孔113形成的第二漏音可以与出声孔112在远场形成的第一漏音更好地相互抵消,改善耳机10的输出效果。
在一些实施例中,为了使前腔与后腔的谐振频率之比在0.5-1.5范围内,出声孔112的面积S3与深度D3的比值与泄压孔113的总面积与其对应深度的比值之间的比值在1.10-1.75范围内。在一些实施例中,为了使前腔与后腔的谐振频率之比在0.7-1.3范围内,出声孔112的面积S3与深度D3的比值与泄压孔113的总面积与其对应深度的比值之间的比值在1.25-1.65范围内。在一些实施例中,为了使前腔与后腔的谐振频率之比在0.8-1.2范围内,出声孔112的面积S3与深度D3的比值与泄压孔113的总面积与其对应深度的比值之间的比值在1.35-1.55范围内。
在一些实施例中,出声孔112的形状也会对出声孔112的声阻造成影响。例如,出声孔112越狭长,出声孔112的声阻也较大,不利于前腔的声学输出。因此,为了保证出声孔112产生较好的低频输出,也为了提高出声孔112输出的声音音量,出声孔112的长轴尺寸L3与短轴尺寸W3之比(或称为出声孔112的长宽比)需要在预设的适当取值范围内。在一些实施例中,当出声孔112的面积一定时,为了保证前腔的频响曲线在低频的频响较强,出声孔112的长宽比可以在1-10范围内。在一些实施例中,出声孔112的长宽比可以为2-7。在一些实施例中,出声孔112的长宽比可以为2-3。在一些实施例中,出声孔112的长宽比可以为2。在一些实施例中,为了使得前腔的谐振峰的谐振频率尽可能高,出声孔112的长度L3可以具有相对较大的取值,但同时为了不降低前腔的谐振峰对应的高频输出且考虑发声部11的结构稳定性,出声孔112的长度L3可以不大于17mm,出声孔112的宽度W3可以不大于10mm。在一些实施例中,出声孔112的长度L3可以为2mm-11mm。在一些实施例中,出声孔112的长度L3可以为3mm-11mm。在一些实施例中,出声孔112的长度L3可以为3mm-16mm。在一些实施例中,出声孔112的长度L3可以为5mm-13mm。在一些实施例中,出声孔112的长度L3可以为6mm-9mm。
在一些实施例中,基于长度L3以及长宽比,可以确定出声孔112的宽度W3。例如,出声孔112的长宽比可以为2,则出声孔112的宽度W3可以为1.5mm-5.5mm。对应的跑道形的出声孔112的面积可以为4.02mm2-54mm2。通过设置出声孔112的长度L3的范围,可以在增大频响曲线平坦区域的范围从而提升耳机10音质的同时,兼顾发声部11的结构设计。仅作为示例,跑道形的出声孔112的面积为11.5mm2左右,相应可以确定出声孔112的长度L3为5mm-6mm,出声孔112的宽度W3为2.5mm-3mm。在上述尺寸范围内,可以使得耳机10在较宽频率范围具有平坦的频响曲线以及充足的高频输出;另外,该面积的取值相对较小,也有利于结构的稳定性。
在一些实施例中,结合图14-图16及其描述,出声孔112的中心位于第一泄压孔1131的中心与第二泄压孔1132的中心的连线的中垂面上或者中垂面附近,出声孔112在Y方向上位于壳体111靠近第二泄压孔1132的一侧而非中间位置。而由于出声孔112靠近外耳道设置,因此第二泄压孔1132距离外耳道更近,第一泄压孔1131距离外耳道更远。相较于第一泄压孔1131,第二泄压孔1132传出的声波更容易与出声孔112传出的声波在近场相消。因此,第二泄压孔1132处的声压幅值可以小于第一泄压孔1131处的声压幅值,进而增大耳道处的听音音量。在一些实施例中,相较于第一泄压孔1131,第二泄压孔1132的声阻可以较大。例如,第二泄压孔1132的尺寸可以小于第一泄压孔1131的尺寸,从而使第二泄压孔1132的声阻可以具有相对较大的声阻。例如,第一泄压孔1131的面积可以大于第二泄压孔1132的面积。
在一些实施例中,在保证发声部11的发声效率足够高,且其能至少部分插入耳甲腔的情况下,发声部11的前后腔体积不能太大或太小,为了使前腔与后腔的谐振频率之比在0.3-1.7范围内,出声孔112的面积与泄压孔113的总面积(例如,第一泄压孔1131与第二泄压孔1132的面积之和)之比在0.3-0.9之间。在一些实施例中,为了使前腔与后腔的谐振频率之比在0.5-1.5范围内,出声孔112的面积与泄压孔113的总面积之比在0.5-0.85之间。在一些实施例中,为了使前腔与后腔的谐振频率之比在0.7-1.3范围内,出声孔112的面积与泄压孔113的总面积之比在0.6-0.8之间。在 一些实施例中,为了使前腔与后腔的谐振频率之比在0.8-1.2范围内,出声孔112的面积与泄压孔113的总面积之比在0.65-0.75之间。
在一些实施例中,当耳机10只包括一个泄压孔时,出声孔112的面积S3与泄压孔的面积之比在0.5-1.5之间。在一些实施例中,当耳机10只包括一个泄压孔时,出声孔112的面积S3与泄压孔的面积之比在0.6-1.3之间。在一些实施例中,当耳机10只包括一个泄压孔时,出声孔112的面积S3与泄压孔的面积之比在0.65-1.25之间。在一些实施例中,当耳机10只包括一个泄压孔时,出声孔112的面积S3与泄压孔的面积之比在0.7-1.2之间。
图18是根据本说明书一些实施例所示的前、后腔体积比、出声孔开口面积与泄压孔开口面积之比的等值线图。在一些实施例中,如图18所示,前后腔体的谐振频率之间的比值的范围可以与出声孔的面积与泄压孔的面积之间的比值以及前后腔体的体积之间的比值相关。由此,可以通过设置出声孔的面积与泄压孔的面积之间的比值以及前后腔体的体积之间的比值,使得前后腔体的谐振频率之间的比值在目标范围内。例如,请参照图18,如果使前腔的谐振频率f1与后腔的谐振频率f2的比值f1/f2的取值范围为0.1-5,出声孔112的开口面积S3可以小于第一泄压孔1131和第二泄压孔1132的总开口面积S1+2,例如,出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2可以在0.1-0.99范围内,后腔的体积V2与前腔的体积V1的比值V2/V1的取值范围可以为0.1-10。再例如,如果使前腔的谐振频率f1与后腔的谐振频率f2的比值f1/f2的取值范围可以为0.5-2,则出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2可以在0.2-0.7之间,后腔的体积V2与前腔的体积V1的比值V2/V1的取值范围可以为1-7。
在一些实施例中,出声孔112的开口面积S3可以大于第一泄压孔1131和第二泄压孔1132的总开口面积S1+2。例如,出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2可以在1-10范围内,后腔116的体积V2与前腔114的体积V1的比值V2/V1的取值范围可以为0.1-10,根据图18,对应的前腔114的谐振频率f1与后腔116的谐振频率f2的比值f1/f2的取值范围可以为0.5-10。再例如,出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2可以在3-9之间,后腔116的体积V2与前腔114的体积V1的比值V2/V1的取值范围可以为2-6,根据图18,前腔114的谐振频率f1与后腔116的谐振频率f2的比值f1/f2的取值范围可以为1-8。
在一些实施例中,参考图18所示的等值线,可以基于V2/V1确定S3/S1+2的取值范围,或者,可以基于S3/S1+2确定V2/V1的取值范围,使得后腔的谐振频率f2可以与前腔的谐振频率f1接近或相等,进而使得泄压孔113形成的第二漏音可以与出声孔112在远场形成的第一漏音更好地相互抵消,改善耳机10的输出效果。例如,根据公式(2)可知,为了使后腔具有足够大的谐振频率f2,后腔的体积V2可以相对较小,例如,V2/V1可以小于1。结合图18,如果使后腔的谐振频率f2可以与前腔的谐振频率f1接近或相等(例如,f1/f2值约为1),S3/S1+2的取值范围可以为1-2.5。
仅作为示例,前腔的体积V1可以在190mm3-220mm3范围内;后腔的体积V2可以在60mm3-80mm3范围内。相应地,在一些实施例中,V2/V1的值可以在0.2-0.4范围内。在一些实施例中,V2/V1的值可以在0.25-0.45范围内。
在一些实施例中,结合上述相关内容,可以调整出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2的范围,使得耳机具有较好的输出效果。例如,出声孔112的长度L3可以3mm-11mm,出声孔112的横截面的长度L3与宽度W3之间的比值为2,对应的跑道形的出声孔112的面积可以为4.02mm2-54mm2。第一泄压孔1131的长度L1可以为6mm,宽度W1可以为1.5mm,对应的第一泄压孔1131的面积可以为8.51mm2,第二泄压孔1132的长度L2可以为3mm,宽度W2可以为1.5mm,对应的第二泄压孔1132的面积可以为4.02mm2。由此,出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2可以为0.32-4.31。再例如,第一泄压孔1131的长度L1可以为2mm-8mm,宽度W1可以为1.5mm,第一泄压孔1131的面积为2.517mm2-11.5171mm2;第二泄压孔1132的长度L2可以为3mm-6mm,宽度W2可以为1.5mm,第二泄压孔1132的面积为4.017mm2-8.5171mm2。出声孔112的长度L3可以为5mm,宽度W3可以为2.5mm,对应的面积S3为11.16mm2。由此,出声孔112的开口面积S3与第一泄压孔1131和第二泄压孔1132的总开口面积S1+2之间的比值S3/S1+2为0.56-1.71。
结合图18,当V2/V1在0.25-0.45范围内,S3/S1+2在0.32-4.31范围内时,f1/f2在0.5-1.5范围内;当V2/V1在0.25-0.45范围内,S3/S1+2在0.56-1.71范围内时,f1/f2值在0.5-0.9范围内。可以看出, 可以基于上述范围确定体积比和/或面积比,使得后腔的谐振频率f2可以与前腔的谐振频率f1接近或相等。
图19是根据本说明书一些实施例所示的出声孔处不同音量对应的频率响应曲线图,图20是根据本说明书一些实施例所示的第一泄压孔处不同音量对应的频率响应曲线图,图21是根据本说明书一些实施例所示的第二泄压孔处处不同音量对应的频率响应曲线图。如图19-图21所示,随着音量从最大音量逐渐减小,出声孔112处的声压、第一泄压孔1131处的声压、第二泄压孔1132处的声压均逐渐降低。
需要说明的是,出声孔112处的声压、第一泄压孔1131处的声压、第二泄压孔1132处的声压,分别指与出声孔112距离4mm处、与第一泄压孔1131距离4mm处、与第二泄压孔1132距离4mm处的声压。在对各孔的声压进行测量的过程中,不对其他孔造成堵塞。例如,在测量出声孔112处的声压时,第一泄压孔1131与第二泄压孔1132未被遮挡或堵塞。
在一些实施例中,结合图10-图13及其描述,通过设置类腔体结构,可以使泄压孔(第一泄压孔1131或第二泄压孔1132)发出的声波与出声孔112产生的漏音在远场相消,从而有利于降低远场漏音,并且泄压孔发出的声波对近场听音影响较小。由此,在一些实施例中,可以使泄压孔113(第一泄压孔1131或第二泄压孔1132)处的声压幅值与出声孔112处的声压幅值接近,从而在有效降低远场漏音的同时不影响近场听音。在一些实施例中,为了有效降低远场漏音,在特定频率范围内(例如,在3.5kHz-4.5kHz范围内),出声孔112处的声压与第一泄压孔1131处声压之间的比值可以在0.8-1.2范围内。在一些实施例中,出声孔112处的声压与第一泄压孔1131处声压之间的比值可以在0.9-1.1范围内。在一些实施例中,出声孔112处的声压与第一泄压孔1131处的声压之间的比值可以在0.95-1.05范围内。在一些实施例中,为了有效降低远场漏音,出声孔112处的声压与第二泄压孔1132处的声压之间的比值可以在0.8-1.2范围内。在一些实施例中,出声孔112处的声压与第二泄压孔1132处的声压之间的比值可以在0.9-1.1范围内。在一些实施例中,出声孔112处的声压与第二泄压孔1132处的声压之间的比值可以在0.95-1.05范围内。在一些实施例中,为了有效降低远场漏音,出声孔112处的声压与第一泄压孔1131处和第二泄压孔1132处的总声压之间的比值可以在0.4-0.6范围内。在一些实施例中,出声孔112处的声压与第一泄压孔1131处和第二泄压孔1132处的总声压之间的比值可以在0.45-0.55范围内。需要知道的是,所述的出声孔112处的声压以及第一泄压孔1131处的声压、第二泄压孔1132处的声压,是指同一音量下对应频率处各自对应的声压。
结合图19-图21,在最大音量下,4000Hz时,出声孔112的声压为103.54dB,第一泄压孔1131的声压为104.5dB,第二泄压孔1132的声压为100.74dB。此时,出声孔112处的声压分别与第一泄压孔1131处的声压以及第二泄压孔1132处的声压接近,从而可以有效降低远场漏音。
在一些实施例中,在减小第二泄压孔1132的声压的情况下(这是为了减弱第二泄压孔1132产生的声音在耳道处与出声孔112产生的声音的相消程度),同时保证第二泄压孔1132输出的声音与出声孔112经由第二泄露结构LC泄露的声音在远场的相消效果,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)不能太小。同时,为了避免第一泄压孔1131处和第二泄压孔1132处的声阻差异影响破坏后腔中驻波的效果,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)不能太大。在一些实施例中,为了使出声孔112处的声压与第一泄压孔1131处和第二泄压孔1132处的总声压之间的比值在合适范围内(例如,0.4-0.6),可以使第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)与出声孔112的面积S3的比值在2.5-3.9范围内。在一些实施例中,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)与出声孔112的面积S3的比值可以在2.7-3.7范围内。在一些实施例中,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)与出声孔112的面积S3的比值可以在2.85-3.45范围内。在一些实施例中,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)与出声孔112的面积S3的比值可以在2.9-3.4范围内。在一些实施例中,第一泄压孔1131的面积S1和第二泄压孔1132的面积S2之差(S1-S2)与出声孔112的面积S3的比值可以在3.1-3.3范围内。
图22是根据本说明书一些实施例所示的发声部的示例性内部结构图。
如图22所示,发声部11可以包括与耳挂12连接的壳体111和设置在壳体111内的换能器116。在一些实施例中,发声部11还可以包括设置在壳体111内的主控电路板13和设置在耳挂12远离发声部11一端的电池(未示出),电池和换能器116分别与主控电路板13电性连接,以允许电池在主控电路板13的控制下为换能器116供电。当然,电池和换能器116也可以均设置在发声部11内,且电池可以更靠近连接端CE而换能器116则可以更靠近自由端FE。
在一些实施例中,耳机10可以包括连接发声部11和耳挂12的调节机构,不同的用户在佩戴状态下能够通过调节机构调节发声部11在耳部上的相对位置,以使得发声部11位于一个合适的位置,从而使得发声部11与耳甲腔形成腔体结构。除此之外,由于调节机构的存在,用户也能够调节耳机10佩戴至更加稳定、舒适的位置。
由于耳甲腔具有一定的容积及深度,使得自由端FE伸入耳甲腔内之后,发声部11的内侧面IS与耳甲腔之间能够具有一定的间距。换言之,发声部11在佩戴状态下与耳甲腔可以配合形成与外耳道连通的腔体结构,发声部11(例如,内侧面IS)上设有出声孔112,且出声孔112可以至少部分位于前述腔体结构内。如此,在佩戴状态下,由出声孔112传播而出的声波会受到前述腔体结构的限制,也即前述腔体结构能够聚拢声波,使得声波能够更好地传播至外耳道内,从而提高用户在近场听到的声音的音量和音质,这样有利于改善耳机10的声学效果。进一步地,由于发声部11可以设置成在佩戴状态下不堵住外耳道,使得前述腔体结构可以呈半开放式设置。如此,由出声孔112传播而出的声波,其一部分可以传播至耳道从而使用户听到声音,其另一部分可以与经耳道反射的声音一起经由发声部11与耳部之间的缝隙(例如耳甲腔未被发声部11覆盖的一部分)传播至耳机10及耳部的外部,从而在远场形成第一漏音;与此同时,经由发声部11上开设的泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)传播出去的声波一般会在远场形成第二漏音,前述第一漏音的强度和前述第二漏音的强度相当,且前述第一漏音的相位和前述第二漏音的相位(接近)互为反相,使得两者能够在远场相消,这样有利于降低耳机10在远场的漏音。
在一些实施例中,换能器116与壳体111之间可以形成前腔114,出声孔112设置于壳体111上包围形成前腔114的区域,前腔114通过出声孔112与外界连通。
在一些实施例中,前腔114设置于换能器116的振膜与壳体111之间,为了保证振膜具有充足的振动空间,前腔114可以具有较大的深度尺寸(即换能器116的振膜与其正对的壳体111之间的距离尺寸)。在一些实施例中,如图22所示,出声孔112设置于厚度方向Z上的内侧面IS上,此时前腔114的深度可以是指前腔114在Z方向上的尺寸。但是,前腔114的深度过大,又会导致发声部11的尺寸增大,影响耳机10的佩戴舒适性。在一些实施例中,前腔114的深度可以为0.55mm-1.00mm。在一些实施例中,前腔114的深度可以为0.66mm-0.99mm。在一些实施例中,前腔114的深度可以为0.76mm-0.99mm。在一些实施例中,前腔114的深度可以为0.96mm-0.99mm。在一些实施例中,前腔114的深度可以为0.97mm。
为了提升耳机10的出声效果,前腔114和出声孔112构成的类似亥姆霍兹共振腔结构的谐振频率要尽可能的高,以此使得发声部的整体的频率响应曲线具有较宽的平坦区域。在一些实施例中,前腔114的谐振频率f1可以不低于3kHz。在一些实施例中,前腔114的谐振频率f1可以不低于4kHz。在一些实施例中,前腔114的谐振频率可以不低于6kHz。在一些实施例中,前腔114的谐振频率可以不低于7kHz。在一些实施例中,前腔114的谐振频率可以不低于8kHz。
请参照图22,在一些实施例中,对应第一泄压孔1131和/或第二泄压孔1132的位置可以设置有声阻网118,声阻网118可以调节后腔的谐振频率处的幅值,同时也可以起到防尘、防水作用。在一些实施例中,出声孔112的位置也可以设置有声阻网118,可以用于调节前腔114对应谐振峰的幅值,同时也可以起到防尘、防水作用。
在一些实施例中,声阻网118可以包括纱网、钢网或其组合。在一些实施例中,前腔114设置的声阻抗率与后腔116设置的声阻抗率可以相同,即出声孔112处设置的声阻网118与至少一个泄压孔(例如第一泄压孔1131和/或第二泄压孔1132)处设置的声阻网118的声阻抗率可以相同。例如,为了便于结构装配(例如,降低物料种类和/或避免混料),增加外观一致性,出声孔112处与至少一个泄压孔处可以设置相同的声阻网118。在一些实施例中,前腔114设置的声阻网118与后腔116设置的声阻网118的声阻抗率也可以不同,即出声孔112处设置的声阻网118与至少一个泄压孔处设置的声阻网118的声阻抗率可以不同。例如,可以基于前腔114与后腔116的其他参数(例如,出声孔112和/或泄压孔的面积(或面积比)、每个孔部的深度、长宽比等),通过在前腔114和后腔116设置不同声阻抗率的声阻网118,达到预设的输出效果(例如,通过设置不同声阻抗率的声阻网118,使出声孔112和泄压孔处输出的声压接近,从而可以有效降低远场漏音)。
当声阻网118的其他参数一定时,其声阻的大小与其厚度相关,不同厚度的声阻网会对相应的声学孔的声学输出性能产生一定的影响。因此声阻网118的厚度具有一定范围的限制。在一些实施例中,设置于第一泄压孔1131处和/或第二泄压孔1132处的声阻网118的厚度范围可以为35μm-300μm。在一些实施例中,设置于第一泄压孔1131处和第二泄压孔1132处的声阻网118的厚度范围可以为40μm-150μm。在一些实施例中,设置于第一泄压孔1131处和第二泄压孔1132处 的声阻网118的厚度范围可以为50μm-65μm。在一些实施例中,设置于第一泄压孔1131处和第二泄压孔1132处的声阻网118的厚度范围可以为55μm-62μm。另一方面,声阻网118朝向壳体111外部的一端(即声阻网118的上表面)与壳体111的外表面之间的距离越大,对应声阻网118的设置位置越靠近后腔,后腔的体积越小。在一些实施例中,设置于第一泄压孔1131处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.8mm-0.9mm,设置于第二泄压孔1132处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.7mm-0.8mm。在一些实施例中,设置于第一泄压孔1131处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.82mm-0.88mm,设置于第二泄压孔1132处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.72mm-0.76mm。在一些实施例中,设置于第一泄压孔1131处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.86mm,设置于第二泄压孔1132处的声阻网118的上表面与壳体1111的外表面之间的距离可以为0.73mm。
在一些实施例中,不同类型的声阻网118的网孔密度也可能不一样,导致对应声学孔的声阻不同,从而对对应声学腔体的输出造成影响。因此需要对声阻网118的组成及类型进行设计。在一些实施例中,为了在防水、防尘的同时提高结构稳定性,可以在第一泄压孔1131和/或第二泄压孔1132和/或出声孔112处使用钢网,也可以使用纱网和钢网的组合。在一些实施例中,为了提高发声部11的频率响应曲线的平滑程度,同时使发声部11具有较大的输出声压,前腔114设置的声阻网118可以包括钢网(例如,蚀刻钢网),所述钢网的目数可以在60-100范围内。在一些实施例中,为了进一步减小声阻网118的声阻抗率,以增大发声部11的输出声压,前腔114设置的声阻网118可以包括钢网,所述钢网的目数可以在70-90范围内。在一些实施例中,为了提高发声部11的频率响应曲线的平滑程度,同时使发声部11具有较大的输出声压,前腔114设置的声阻网118可以包括纱网与钢网(例如,蚀刻钢网),所述纱网的声阻抗率可以在2MKS rayls-50MKS rayls范围内,所述钢网的目数可以在60-100范围内。在一些实施例中,为了提高发声部11的频率响应曲线的平滑程度,同时使发声部11具有较大的输出声压,前腔114设置的声阻网118可以包括纱网与钢网,所述纱网的声阻抗率可以在5MKS rayls-20 MKS rayls范围内,所述钢网的目数可以在70-90范围内。在一些实施例中,为了提高发声部11的频率响应曲线的平滑程度,同时使发声部11具有较大的输出声压,前腔114设置的声阻网118可以包括纱网与钢网,所述纱网的声阻抗率可以在6MKS rayls-10 MKS rayls范围内,所述钢网的目数可以在75-85范围内。在一些实施例中,当前腔114设置的声阻网118包括钢网(例如,蚀刻钢网)或者纱网与钢网的组合时,所述钢网的声阻抗率可以在0.1MKS rayls-10 MKS rayls范围内。在一些实施例中,所述钢网的声阻抗率可以在0.1MKS rayls-5 MKS rayls范围内。在一些实施例中,所述钢网的声阻抗率可以在0.1MKS rayls-3 MKS rayls范围内。
图23是根据本说明书一些实施例所示的换能器的示例性内部结构图。
如图23所示,壳体111容纳有换能器116,换能器116包括振膜1161、音圈1162、盆架1163以及磁路组件1164。其中,盆架1163环绕振膜1161、音圈1162及磁路组件1164设置,用于提供安装固定平台,换能器116可以通过盆架1163与壳体111相连,振膜1161在Z方向上覆盖音圈1162和磁路组件1164,音圈1162伸入磁路组件1164且与振膜1161相连,音圈1162通电之后产生的磁场与磁路组件1164所形成的磁场相互作用,从而驱动振膜1161产生机械振动,进而经由空气等媒介的传播产生声音,声音通过出声孔112输出。
在一些实施例中,磁路组件1164包括导磁板11641、磁体11642与容纳件11643,导磁板11641与磁体11642相互连接,磁体11642远离导磁板11641的一侧安装于容纳件11643的底壁,且磁体11642的周侧与容纳件11643的周侧内侧壁之间具有间隙。在一些实施例中,容纳件11643的周侧外侧壁与盆架1163连接固定。在一些实施例中,容纳件11643与导磁板11641均可以采用导磁材质(例如铁等)。
在一些实施例中,振膜1161的周侧可以通过固定环1165连接至盆架1163上。在一些实施例中,固定环1165的材质可以包括不锈钢材质或其他金属材质,以适应振膜1161的加工制造工艺。
参照图22和图23,在一些实施例中,为了提升发声部11的声学输出(尤其是低频输出)效果,提升振膜1161推动空气的能力,振膜1161沿Z方向的投影面积越大越好,但是振膜1161的面积过大会导致换能器116的尺寸过大,由此导致壳体111过大,从而容易导致壳体111与耳廓碰撞摩擦,影响发声部11的佩戴舒适度。因此需要对壳体111的尺寸进行设计。示例性地,可以根据耳甲腔沿Y方向的尺寸(例如17mm)确定壳体111在Y方向上的短轴尺寸(也可以称为宽度尺 寸),再根据佩戴舒适度选取适宜的长短比(即壳体111在X方向尺寸与在Y方向的尺寸之比),从而确定壳体111在X方向的长轴尺寸(也可以称为长度尺寸)(例如21.49mm),以与耳甲腔沿X方向的尺寸相匹配。
在一些实施例中,为了便于大多数用户的佩戴(例如,使大多数用户在佩戴耳机10时发声部11能够插入到耳甲腔中或者抵靠在对耳轮区域),以形成较好的声学效果的腔体结构,例如,使得耳机10在佩戴时与用户耳部之间形成第一泄露结构UC和第二泄露结构LC,以提高耳机的声学性能,壳体111的尺寸可以采用预设范围的取值。在一些实施例中,根据耳甲腔沿Y方向的宽度尺寸范围,壳体111沿Y方向上的宽度尺寸可以在11mm-16mm范围内。在一些实施例中,壳体111沿Y方向上的宽度尺寸可以为11mm-15mm。在一些实施例中,壳体111沿Y方向上的宽度尺寸可以为14mm-15mm。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.2-5。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.4-4。在一些实施例中,壳体111在X方向尺寸与在Y方向尺寸之比的取值可以为1.5-2。在一些实施例中,壳体111沿X方向的长度尺寸可以在15mm-30mm范围内。在一些实施例中,壳体111沿X方向的长度尺寸可以为16mm-28mm。在一些实施例中,壳体111沿X方向的长度尺寸可以为19mm-24mm。在一些实施例中,为了避免壳体111的体积过大影响耳机10佩戴舒适度,壳体111沿Z方向的厚度尺寸可以在5mm-20mm范围内。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为5.1mm-18mm。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为6mm-15mm。在一些实施例中,壳体111沿Z方向的厚度尺寸可以为7mm-10mm。在一些实施例中,壳体111的内侧面IS面积(在内侧面IS为矩形的情况下等于壳体111的长度尺寸与宽度尺寸的乘积)可以为90mm2-560mm2。在一些实施例中,内侧面IS面积可以视为近似于振膜1161沿Z方向的投影面积。例如,内侧面IS的面积与振膜1161沿Z方向的投影面积相差10%。在一些实施例中,内侧面IS的面积可以为150mm2-360mm2。在一些实施例中,内侧面IS的面积可以为160mm2-240mm2。在一些实施例中,内侧面IS的面积可以为180mm2-200mm2。基于图10-图13所述的原理,以如图14所示的方式进行佩戴,耳机10的尺寸设计在满足佩戴舒适度的基础上,其声学性能是优于现有的耳机,也就是说,在达到同等优良的声学性能的前提下,耳机10的尺寸可以小于现有的耳机。
参照图22和图23,在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离可以与振膜1161的振动范围、磁路组件1164的厚度相关。振膜1161的振动范围可以影响发声部11的换能器推动空气的量。振膜1161的振动范围越大,发声部11的换能器推动空气的量越多,发声部的发声效率越高。磁路组件1164的厚度越大,发声部11的总重量越大,从而影响用户佩戴的舒适性。此外,当发声部在Z方向的厚度一定时,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离越小,后腔的体积可能越大,此时,后腔的谐振频率越小,后腔的谐振峰向低频移动,频率响应曲线的平坦区域的范围变小。为了保证发声部的发声效率足够高、后腔谐振频率在合适频率范围内(例如,1000Hz-5000Hz)以及用户佩戴足够舒适,在综合考虑到结构强度、工艺实现难度以及壳体111的整体厚度的情况下,出声孔112的中心O沿Z方向距磁路组件1164的底面(即容纳件11643沿Z方向远离出声孔112的侧面)的距离的范围为5.65mm~8.35mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1164的底面的距离的范围为6.00mm~8.00mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1164的底面的距离的范围为6.35mm~7.65mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1164的底面的距离的范围为6.70mm~7.30mm。在一些实施例中,出声孔112的中心沿Z方向距磁路组件1164的底面的距离的范围为6.95mm~7.05mm。
在一些实施例中,为了使得后腔的谐振频率较大的同时,后腔也具有较大的声容Ca,后腔的体积V需要具有适当的取值范围。在一些实施例中,为了使后腔的体积具有适当的取值范围,可以合理设计第一泄压孔1131的中心O1距磁路组件1164的底面的距离。参照图22和图23,当发声部11在Z方向的厚度一定时,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离越小,后腔的体积可能越大,此时,后腔的声容Ca增加,但是对应的后腔的谐振频率减小。为了保证发声部11的发声效率足够高、后腔谐振频率在合适频率范围内(例如,2000Hz-6000Hz)以及用户佩戴足够舒适,在综合考虑到结构强度、工艺实现难度以及壳体111的整体厚度的情况下,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面(即容纳件11643沿Z方向远离出声孔112的侧面)的距离d5的范围为1.31mm~1.98mm。在一些实施例中,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离d5的范围为1.31mm~1.98mm。在一些实施例中,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离d5的范围为1.41mm~1.88mm。在 一些实施例中,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离d5的范围为1.51mm~1.78mm。在一些实施例中,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离d5的范围为1.56mm~1.72mm。类似地,在一些实施例中,第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离d6的范围为1.31mm~1.98mm。在一些实施例中,第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离d6的范围为1.41mm~1.88mm。在一些实施例中,第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离d6的范围为1.51mm~1.78mm。在一些实施例中,第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离d6的范围为1.56mm~1.72mm。
在一些实施例中,在发声部厚度一定的情况下,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值不能太大,也不能太小;太大,容易导致前腔体积过大,从而使前腔谐振频率较小;太小,容易导致前腔体积过小,使振膜1161的振动范围较小,影响发声部11的换能器推动空气的量,从而影响发声部11的发声效率。在一些实施例中,为了保证发声部11的发声效率足够高、后腔谐振频率在合适频率范围内(例如,2000Hz-6000Hz)以及用户佩戴足够舒适,可以在Z方向上限制第一泄压孔1131及第二泄压孔1132与出声孔112的距离,以实现出声孔112在耳道处的收音效果较好的同时漏音相消的效果好。在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值在3.65mm~7.05mm范围内。在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值在4.00mm~6.85mm范围内。在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值在4.80mm~5.50mm范围内。在一些实施例中,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值在5.20mm~5.55mm范围内。
在一些实施例中,第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离与第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离可以相同。在一些实施例中,为了减弱第二泄压孔1132发出的声音在耳道处(即听音位置)与出声孔112发出的声音的相消效果,从而提高听音音量,第二泄压孔1132相对于第一泄压孔1131可以在Z方向上更远离出声孔112,例如,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第一泄压孔1131的中心O1沿Z方向距磁路组件1164的底面的距离之间的差值在3.67mm~5.57mm范围内时,出声孔112的中心O沿Z方向距磁路组件1164的底面的距离与第二泄压孔1132的中心O2沿Z方向距磁路组件1164的底面的距离之间的差值在5.57mm~7.04mm范围内。
在一些实施例中,出声孔112的中心O距离磁路组件1164的长轴中心面(例如,如图23所示的垂直于纸面向里的面NN’)的距离的范围为1.45mm~2.15mm。在本说明书中,磁路组件1164的长轴中心面是指平行于发声部11的下侧面LS且通过磁路组件1164的几何中心的平面。也就是说,磁路组件1164的长轴中心面可以沿着方向X将磁路组件1164分为相同的两部分。出声孔112的中心O与磁路组件1164的长轴中心面的距离也即是出声孔112的中心O沿短轴方向Y到长轴中心面的距离。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.55mm~2.05mm。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.65mm~1.95mm。在一些实施例中,出声孔112的中心O距长轴中心面的距离的范围为1.75mm~1.85mm。
在一些实施例中,为使发声部11的尺寸能够与耳甲腔的尺寸相适配,可以对发声部11沿Y方向的尺寸进行限定。在一些实施例中,发声部11沿Y方向的尺寸可以由第一泄压孔1131的中心O1距离磁路组件1164的长轴中心面(例如,如图23所示的垂直于纸面向里的面NN’)的距离决定。在一些实施例中,为便于设计,可以对第一泄压孔1131的中心O1距离磁路组件1164的长轴中心面(例如,如图23所示的垂直于纸面向里的面NN’)的距离进行限定。在一些实施例中,第一泄压孔1131的中心O1距磁路组件1164的长轴中心面的距离范围为5.45mm~8.19mm。在本申请中,磁路组件1164的长轴中心面是指平行于发声部11的下侧面LS且通过磁路组件1164的质心的平面。也就是说,磁路组件1164的长轴中心面可以沿着方向X将磁路组件1164分为相同的两部分。第一泄压孔1131的中心O1与磁路组件1164的长轴中心面的距离也即是第一泄压孔1131的中心O1沿短轴方向Y到长轴中心面的距离。在一些实施例中,第一泄压孔1131的中心O1距离磁路组件1164的长轴中心面的距离范围为5.95mm~8.69mm。在一些实施例中,第一泄压孔1131的中 心O1距离磁路组件1164的长轴中心面的距离范围为6.45mm~7.19mm。在一些实施例中,第一泄压孔1131的中心O1距离磁路组件1164的长轴中心面的距离范围为6.65mm~6.99mm。类似地,在一些实施例中,第二泄压孔1132的中心O2距离磁路组件1164的长轴中心面的距离范围为5.46mm~8.20mm。在一些实施例中,第二泄压孔1132的中心O2距离磁路组件1164的长轴中心面的距离范围为5.96mm~8.70mm。在一些实施例中,第二泄压孔1132的中心O1距离磁路组件1164的长轴中心面的距离范围为6.46mm~7.20mm。在一些实施例中,第二泄压孔1132的中心O1距离磁路组件1164的长轴中心面的距离范围为6.66mm~7.00mm。
在一些实施例中,为了使出声孔112靠近耳道,可以使出声孔112在Y方向上相较于第一泄压孔1131更靠近第二泄压孔1132。通过在Y方向上限制第一泄压孔1131及第二泄压孔1132与出声孔112的距离,可以实现出声孔112在耳道处的收音效果较好的同时远场漏音相消的效果好。在一些实施例中,出声孔112的中心O沿Y方向距磁路组件1164的长轴中心面的距离与第一泄压孔1131的中心O1沿Y方向距长轴中心面的距离之间的差值的绝对值在4.0mm-6.1mm范围内。在一些实施例中,出声孔112的中心O距长轴中心面的距离与第一泄压孔1131的中心O1距长轴中心面的距离之间的差值的绝对值在4.5mm~5.5mm范围内。在一些实施例中,出声孔112的中心O距长轴中心面的距离与第一泄压孔1131的中心O1距长轴中心面的距离之间的差值的绝对值在4.8mm-5.2mm范围内。
在一些实施例中,由于泄压孔113(例如,第一泄压孔1131和第二泄压孔1132)的存在,在后腔内,靠近泄压孔113的位置的气压与外界气压相近,远离泄压孔113的位置的气压比外界气压更高。由于盆架1163上设有连通振膜1161后侧与腔体115的透声孔(未示出),为了使振膜1161后侧与腔体115的气压平衡,因此,盆架上的透声孔可以非对称设置,以更好地平衡气流。具体地,在距离第一泄压孔1131和/或第二泄压孔1132较远的位置,由于气压比较高,因此透声孔的尺寸可以较大;在距离第一泄压孔1131和/或第二泄压孔1132较近的位置,由于气压较低,因此透声孔的尺寸可以较小。在一些实施例中,通过调节第一泄压孔1131、第二泄压孔1132和/或透声孔的尺寸大小(例如,面积大小)可以使得耳机10的低频的振动更平稳。在一些实施例中,为了使后腔中的气压更加平稳,从而使振膜振动更加平稳,可以使第一泄压孔1131与第二泄压孔1132在X方向上错开设置。此时,第一泄压孔1131与第二泄压孔1132在长轴中心面上的投影部分重合或不重合设置。在一些实施例中,第一泄压孔1131与第二泄压孔1132在长轴中心面上的投影重合面积不大于10.77mm2。在一些实施例中,第一泄压孔1131与第二泄压孔1132在长轴中心面上的投影重合面积不大于6.77mm2。在一些实施例中,第一泄压孔1131与第二泄压孔1132在长轴中心面上的投影重合面积不大于4.77mm2。在一些实施例中,第一泄压孔1131与第二泄压孔1132在长轴中心面上的投影重合面积不大于2.77mm2
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
本申请记载的具体实施方式仅为示例性的,具体实施方式中的一个或者多个技术特征是可选的或者附加的,并非构成本申请发明构思的必要技术特征。换言之,本申请的保护范围涵盖并远大于具体实施方式。

Claims (25)

  1. 一种耳机,包括:
    发声部,包括:
    换能器,包括振膜,用于在激励信号的作用下产生声音;以及
    壳体,所述壳体形成用于容纳所述换能器的腔体;以及
    悬挂结构,在佩戴状态下,用于将所述发声部佩戴于耳道附近但不堵塞耳道的位置,其中,
    所述壳体朝向耳廓的内侧面上开设有出声孔,用于将所述振膜前侧产生的声音导出所述壳体后传向所述耳道,
    所述壳体的其他侧面上开设有第一泄压孔,用于将所述振膜后侧产生的声音导出所述壳体,其中,所述出声孔的中心距所述内侧面的上边界的中点的距离大于所述第一泄压孔的中心距所述内侧面的上边界的中点的距离。
  2. 根据权利要求1所述的耳机,其中,所述出声孔的中心距所述内侧面的上边界的中点的距离与所述第一泄压孔的中心距所述内侧面的上边界的中点的距离之间的比值在1.3-2.1范围内。
  3. 根据权利要求1或2所述的耳机,其中,所述出声孔的面积与所述出声孔的深度的比值与所述第一泄压孔的面积与所述第一泄压孔的深度的比值之间的比值在1.10-1.75范围内。
  4. 根据权利要求1-3中任一项所述的耳机,其中,所述出声孔的面积与所述第一泄压孔的面积的比值在0.5-1.5范围内。
  5. 根据权利要求1-4中任一项所述的耳机,其中,在佩戴状态下,所述出声孔的中心在矢状面的投影点距所述耳道的耳道口在所述矢状面的投影的形心的距离与所述第一泄压孔的中心在所述矢状面的投影点距所述耳道口在所述矢状面的投影的形心的距离的比值在0.10-0.35范围内。
  6. 根据权利要求1-5中任一项所述的耳机,其中,所述悬挂结构包括耳挂,在佩戴状态下,所述耳挂的第一部分挂设在用户耳廓和头部之间,所述耳挂的第二部分向所述耳廓背离所述头部的一侧延伸并连接所述发声部,所述出声孔的中心距所述耳挂的上顶点之间的距离与所述第一泄压孔的中心距所述耳挂的上顶点之间的距离的比值在1.10-1.70范围内。
  7. 根据权利要求1-6中任一项所述的耳机,其中,所述换能器还包括磁路组件,所述磁路组件用于提供磁场,所述出声孔的中心距所述磁路组件的长轴中心面的距离与所述第一泄压孔的中心距所述长轴中心面的距离之差的绝对值在4.0mm-6.1mm范围内。
  8. 根据权利要求7所述的耳机,其中,所述出声孔的中心距所述磁路组件的底面的距离与所述第一泄压孔的中心距所述磁路组件的底面的距离之间的差值在3.65mm-7.05mm范围内。
  9. 根据权利要求1所述的耳机,其中,所述壳体的其他侧面上还开设有第二泄压孔,所述第一泄压孔的面积大于所述第二泄压孔的面积。
  10. 根据权利要求9所述的耳机,其中,所述出声孔的中心距所述第一泄压孔的中心与所述第二泄压孔的中心的连线的中垂面的距离为0mm~2mm。
  11. 根据权利要求10所述的耳机,其中,所述第一泄压孔开设在所述壳体的上侧面,所述第二泄压孔开设在所述壳体的下侧面。
  12. 根据权利要求9-11中任一项所述的耳机,其中,在佩戴状态下,所述出声孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离与所述第二泄压孔的中心在所述矢状面的投影点距所述内侧面的下边界的1/3点在所述矢状面的投影点的距离之间的比值在0.65-1.05范围内。
  13. 根据权利要求9-12中任一项所述的耳机,其中,所述出声孔的中心与所述第一泄压孔的中心的连线与所述出声孔的中心与所述第二泄压孔的中心的连线之间的夹角在46.40°-114.04°范围内。
  14. 根据权利要求9-13中任一项所述的耳机,其中,所述出声孔的中心距所述第一泄压孔的中心的距离与所述出声孔的中心距所述第二泄压孔的中心的距离之间的比值在0.9-1.1范围内。
  15. 根据权利要求9-14中任一项所述的耳机,其中,所述出声孔的面积与所述第一泄压孔和所述第二泄压孔的总面积之间的比值在0.1-0.99范围内。
  16. 根据权利要求15所述的耳机,其中,所述振膜将所述腔体分为分别与所述振膜前侧和后侧对应的前腔和后腔,其中,所述后腔的体积与所述前腔的体积之间的比值在0.1-10范围内。
  17. 根据权利要求15所述的耳机,其中,所述振膜将所述腔体分为分别与所述振膜前侧和后侧对应的前腔和后腔,其中,所述前腔的谐振频率与所述后腔的谐振频率之间的比值在0.1-5范围内。
  18. 根据权利要求9-14中任一项所述的耳机,其中,所述出声孔的面积与所述第一泄压孔和所述第二泄压孔的总面积之间的比值在1-10范围内。
  19. 根据权利要求18所述的耳机,其中,所述振膜将所述腔体分为分别与所述振膜前侧和后侧对应的前腔和后腔,其中,所述后腔的体积与所述前腔的体积之间的比值在0.1-10范围内。
  20. 根据权利要求18所述的耳机,其中,所述振膜将所述腔体分为分别与所述振膜前侧和后侧对应的前腔和后腔,其中,所述前腔的谐振频率与所述后腔的谐振频率之间的比值在0.5-10范围内。
  21. 根据权利要求9-20中任一项所述的耳机,其中,所述出声孔处的声压与所述第一泄压孔处和所述第二泄压孔处的总声压之间的比值在0.4-0.6范围内。
  22. 根据权利要求9-21中任一项所述的耳机,其中,所述第一泄压孔的面积与所述第二泄压孔的面积之差与所述出声孔的面积的比值在2.5-3.9范围内。
  23. 根据权利要求9-22中任一项所述的耳机,其中,所述出声孔处、所述第一泄压孔和所述第二泄压孔中至少一者的位置处设置有声阻网,所述声阻网的厚度在40μm-150μm范围内。
  24. 根据权利要求23所述的耳机,其中,所述出声孔处的声阻网包括钢网,所述钢网的目数在60-100范围内。
  25. 根据权利要求23所述的耳机,其中,所述出声孔处的声阻网包括钢网,所述钢网的目数在70-90范围内。
PCT/CN2023/083546 2014-01-06 2023-03-24 一种耳机 WO2024087491A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/334,401 US20240147108A1 (en) 2022-10-28 2023-06-14 Earphones
US18/468,676 US20240007804A1 (en) 2014-01-06 2023-09-15 Systems and methods for suppressing sound leakage
US18/472,180 US20240015452A1 (en) 2014-01-06 2023-09-21 Systems and methods for suppressing sound leakage
US18/476,212 US20240031724A1 (en) 2020-07-29 2023-09-27 Earphone
US18/476,225 US20240031725A1 (en) 2020-07-29 2023-09-27 Earphone

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202211336918.4 2022-10-28
CN202211336918 2022-10-28
CN202223239628 2022-12-01
CN202223239628.6 2022-12-01
CN2022144339 2022-12-30
CNPCT/CN2022/144339 2022-12-30
CNPCT/CN2023/079411 2023-03-02
CNPCT/CN2023/079410 2023-03-02
PCT/CN2023/079404 WO2024087440A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079411 WO2024087444A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
PCT/CN2023/079410 WO2024087443A1 (zh) 2022-10-28 2023-03-02 一种开放式耳机
CNPCT/CN2023/079404 2023-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/334,401 Continuation US20240147108A1 (en) 2014-01-06 2023-06-14 Earphones

Publications (1)

Publication Number Publication Date
WO2024087491A1 true WO2024087491A1 (zh) 2024-05-02

Family

ID=89155729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083546 WO2024087491A1 (zh) 2014-01-06 2023-03-24 一种耳机

Country Status (2)

Country Link
CN (3) CN220693317U (zh)
WO (1) WO2024087491A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235321A1 (en) * 2002-06-20 2003-12-25 Aiptek International Inc. Earphone device of head-hanging type
US20170289667A1 (en) * 2016-03-29 2017-10-05 Audio-Technica Corporation Earphone
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235321A1 (en) * 2002-06-20 2003-12-25 Aiptek International Inc. Earphone device of head-hanging type
US20170289667A1 (en) * 2016-03-29 2017-10-05 Audio-Technica Corporation Earphone
CN114286240A (zh) * 2020-07-29 2022-04-05 深圳市韶音科技有限公司 一种耳机
CN115209285A (zh) * 2021-04-09 2022-10-18 深圳市韶音科技有限公司 一种耳机
CN216217487U (zh) * 2021-10-21 2022-04-05 深圳市大十科技有限公司 一种开放式耳挂型可穿戴发声装置

Also Published As

Publication number Publication date
CN117956351A (zh) 2024-04-30
CN220210579U (zh) 2023-12-19
CN220693317U (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2024087491A1 (zh) 一种耳机
WO2024087440A1 (zh) 一种开放式耳机
WO2024087908A1 (zh) 一种耳机
WO2024087488A1 (zh) 一种发声部
TW202418844A (zh) 一種耳機
TW202418827A (zh) 一種開放式耳機
TW202418829A (zh) 一種開放式耳機
WO2024087907A1 (zh) 一种耳机
WO2024088223A1 (zh) 一种耳机
TW202418835A (zh) 一種開放式耳機
TW202418822A (zh) 一種開放式耳機
TW202418843A (zh) 一種開放式耳機
TW202418826A (zh) 一種開放式耳機
US20240147110A1 (en) Open earphones
CN118138938A (zh) 一种开放式耳机
US20240147108A1 (en) Earphones
US11902731B1 (en) Open earphones
WO2024087490A1 (zh) 一种耳机
CN220457584U (zh) 一种发声部
TW202418840A (zh) 一種發聲部
TW202418836A (zh) 一種開放式耳機