WO2024087240A1 - 一种阻燃聚酯的回收方法 - Google Patents

一种阻燃聚酯的回收方法 Download PDF

Info

Publication number
WO2024087240A1
WO2024087240A1 PCT/CN2022/129262 CN2022129262W WO2024087240A1 WO 2024087240 A1 WO2024087240 A1 WO 2024087240A1 CN 2022129262 W CN2022129262 W CN 2022129262W WO 2024087240 A1 WO2024087240 A1 WO 2024087240A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
flame
alcoholysis
microwave
retardant
Prior art date
Application number
PCT/CN2022/129262
Other languages
English (en)
French (fr)
Inventor
谢晓琼
吴博
李建军
庞承焕
吴昊
Original Assignee
国高材高分子材料产业创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国高材高分子材料产业创新中心有限公司 filed Critical 国高材高分子材料产业创新中心有限公司
Publication of WO2024087240A1 publication Critical patent/WO2024087240A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to the technical field of recycling polymer compounds, and more specifically to a method for recycling flame-retardant polyester.
  • the global waste electrical and electronic equipment reaches 20 to 50 million tons per year, of which about 26% of WEEE plastics contain flame retardants (FRs).
  • Brominated flame retardants as the most effective flame retardants today, have been widely used to improve the fire resistance of plastic materials, and their global production can reach 200,000 tons/year.
  • the brominated flame retardants with large consumption at home and abroad mainly include tetrabromobisphenol A (TBBPA), decabromodiphenyl ether (DBDPO), hexabromocyclododecane (HBCD), decabromodiphenyl ethane (DBDPE), brominated epoxy resin (BEO), brominated polystyrene (BPS), etc.
  • Bromine is a non-renewable resource. Since 2010, the global price of bromine has continued to rise. The main reason is that the terminal new bromine products are constantly updated. At the same time, the exploitation of bromine resources in the world has made bromine resources increasingly scarce, and the difficulty of its exploitation has gradually increased, which has also aggravated the rise in bromine prices. However, only about 9% of all plastic waste in the world is recycled, 12% is incinerated, and 79% is accumulated in landfills or the natural environment. Recycling and reusing flame retardants and resins from flame retardant plastics can not only reduce the amount of landfill or incineration of waste flame retardant plastics in the environment and reduce the threat of ecological pollution, but also make full use of waste products and reduce the consumption of natural resources.
  • the treatment method for flame-retardant plastics is mainly to remove halogens first and then mechanically recycle the dehalogenated plastics.
  • the research on debromination of waste electronic plastics is mostly focused on pyrolysis, catalytic pyrolysis, hydrothermal treatment and other technologies. These debromination technologies often require the use of high-temperature decomposition of flame retardants, but high-temperature decomposition will also destroy the recycling value of plastics.
  • thermal treatment dehalogenation technology the use of supercritical carbon dioxide extraction of flame retardants or solvent extraction of flame retardants can ensure that the plastic itself is not damaged while dehalogenating.
  • the prior art discloses a method for recovering flame retardants from waste circuit boards, which first crushes the waste circuit boards and then uses CO2 supercritical fluid as an extractant to recover the flame retardants therein, triphenyl phosphate flame retardant.
  • the supercritical extraction operation conditions are harsh, the equipment requirements are high, it is not suitable for large-scale industrial applications, and the resin part is not recovered.
  • the purpose of the present invention is to overcome the defects and shortcomings of residual flame retardants and difficulty in effectively separating fillers in recycled plastics from existing flame retardant plastics, and to provide a method for recovering flame retardant polyesters.
  • the method adopts corresponding separation and recovery methods for different flame retardant polyesters, combines specific alcoholysis and extraction conditions with the separation sequence, efficiently recovers the flame retardants in the flame retardant polyesters, separates the fillers and other impurities from the recovered resin, comprehensively recovers various components in the flame retardant polyester, and realizes efficient recycling of the flame retardant polyester.
  • the flame-retardant polyester is determined as polyester A or polyester B according to the type of flame retardant;
  • the polyester A is a polyester whose flame retardant is one or more of brominated polystyrene, polydibromostyrene, decabromodiphenylethane, decabromodiphenyl ether, hexabromocyclododecane and brominated epoxy;
  • the polyester B is a polyester whose flame retardant is one or more of phosphate flame retardant, tetrabromobisphenol A, tetrabromobisphenol S and brominated polycarbonate;
  • the method comprises the following steps:
  • the polyester A after crushing in S1 is subjected to microwave alcoholysis, and the filtrate X and the residue a are obtained after separation and filtration;
  • the filtrate X in S2 is subjected to microwave alcoholysis, and then separated and purified to obtain monomers or oligomers, filtrate Y, and the filtrate Y is purified to recover alcohols;
  • the alcoholysis agent used in the microwave alcoholysis in S2 and S3 is ethylene glycol or butanediol
  • the targeted extraction agent in S4 is at least one of methanol, ethanol, isopropanol, acetone, chloroform, tetrahydrofuran, toluene and limonene;
  • the method comprises the following steps:
  • the polyester B after the crushing in a1 is extracted with a targeted extractant, and the flame retardant and the insoluble matter N are separated and purified;
  • the filtrate E in a3 is subjected to microwave alcoholysis, and then separated and purified to obtain monomers or oligomers, filtrate F, and the filtrate F is purified to recover alcohols;
  • the targeted extraction agent described in a2 is at least one of methanol, ethanol, isopropanol, acetone, chloroform, tetrahydrofuran, toluene and limonene;
  • the alcoholysis agent used in the microwave alcoholysis described in a3 and a4 is ethylene glycol or butanediol.
  • the inventors found that by taking a small amount of samples and determining the type of flame retardant through conventional component analysis methods, and then using corresponding separation and recovery methods for different flame retardant polyesters according to the type of flame retardant in the flame retardant polyester, combined with specific microwave alcoholysis and extraction processes, the flame retardant in the flame retardant polyester can be fully and efficiently recovered, while the filler and other impurities can be separated from the recycled resin, and each component in the flame retardant polyester can be fully recovered.
  • the flame retardant in the flame retardant polyester is a flame retardant that is not easily hydrolyzed (one or more of brominated polystyrene, polydibromostyrene, decabromodiphenylethane, decabromodiphenyl ether, hexabromocyclododecane and brominated epoxy), the flame retardant has limited solubility in the targeted extractant, and it is difficult to directly extract the flame retardant from the flame retardant polyester. The only way is to first release the flame retardant from the flame retardant polyester by microwave alcoholysis, and then separate and recover the flame retardant and other components by combining extraction with a specific targeted extractant;
  • the flame retardant in the flame retardant polyester is a hydrolyzable flame retardant (one or more of phosphate flame retardant, tetrabromobisphenol A, tetrabromobisphenol S and brominated polycarbonate), it is necessary to first extract and recover the flame retardant from the flame retardant polyester, and then perform microwave alcoholysis to recover the resin.
  • a hydrolyzable flame retardant one or more of phosphate flame retardant, tetrabromobisphenol A, tetrabromobisphenol S and brominated polycarbonate
  • the microwave alcoholysis temperature in S2 and S3 is 220-230° C.
  • the microwave alcoholysis time is 10-30 min.
  • the microwave alcoholysis temperature in a3 and a4 is 200-210° C.
  • the microwave alcoholysis time is 5-10 min.
  • the insoluble matter M is dissolved and separated by ammonia water to recover antimony trioxide
  • the filter residue b in step a3 is treated with zinc chloride solution to recover antimony trioxide.
  • the catalyst used in the microwave alcoholysis described in S2 and S3 of the present invention is any one of zinc acetate, butyl titanate, titanate nanotubes, titanium glycolate, 1,3-dimethylimidazolium ferric chloride ionic liquid, 1-allyl-3-methylimidazolium ionic liquid and ferric chloride.
  • the catalyst used for microwave alcoholysis described in a3 and a4 of the present invention is one or more of zinc acetate, butyl titanate, titanate nanotubes, titanium glycolate, 1,3-dimethylimidazolium ferric chloride ionic liquid, 1-allyl-3-methylimidazolium ionic liquid and ferric chloride.
  • the added amount of the catalyst of the present invention is 0.05% to 1% of the mass of the flame retardant polyester.
  • the extraction in step S4 of the present invention is microwave extraction, and the extraction temperature is 35 to 160° C., and the extraction time is 10 to 120 min.
  • the extraction in step a2 of the present invention is microwave extraction, and the extraction temperature is 35 to 160° C., and the extraction time is 10 to 120 min.
  • the present invention adopts microwave heating. Compared with other heating methods, microwave heating can heat the inside and outside of the material at the same time, with fast and uniform heating speed, which not only greatly shortens the reaction time, but also can effectively reduce the impact on the thermal stability of the bromine-containing flame retardant during extraction. Too high extraction temperature will cause boiling, and too low extraction temperature will reduce the extraction efficiency; too long extraction time will affect the thermal stability of the recovered flame retardant, and too short extraction time will make it difficult to fully recover the flame retardant in the polyester.
  • the average particle size of the polyester A after the crushing treatment in S1 of the present invention is 2 to 10 mm; the average particle size of the polyester B after the crushing treatment in a1 is 0.02 to 1 mm.
  • the average particle size of the flame-retardant polyester A particles ⁇ 10 mm, and the average particle size of the flame-retardant polyester B particles ⁇ 1 mm can meet the application requirements.
  • the present invention has the following beneficial effects:
  • the flame retardant polyester recovery method provided by the present invention adopts a corresponding separation and recovery method for different flame retardant polyesters, combines specific alcoholysis and extraction conditions with a separation sequence, efficiently recovers the flame retardant in the flame retardant polyester, separates the filler and other impurities from the recovered resin, and comprehensively recovers various components in the flame retardant polyester, thereby realizing efficient recycling of the flame retardant polyester, with a recovery rate of the flame retardant reaching 80% to 92%, and a recovery rate of the polyester resin reaching 80% to 95%.
  • FIG1 is a flow chart of recycling waste flame-retardant polyester in Example 1;
  • FIG2 is a flow chart of recycling waste flame-retardant polyester in Example 6;
  • FIG3 is an infrared spectrogram of waste flame-retardant PBT (a) and microwave alcoholysis product (b) in Example 1;
  • FIG. 4 is an infrared spectra of the brominated epoxy resin flame retardant (a) recovered in Example 1 and the brominated epoxy resin original sample (b).
  • the present invention will be further described below in conjunction with specific embodiments, but the embodiments do not limit the present invention in any form.
  • the raw materials and reagents used in the embodiments of the present invention are conventionally purchased raw materials and reagents.
  • Waste flame retardant polyester 1 is flame retardant PBT, and its main components are PBT, brominated epoxy, EVA, antimony trioxide, glass fiber and other additives;
  • Waste flame retardant polyester 2 is flame retardant PET, and its main components are PET, brominated polystyrene, antimony trioxide, glass fiber and other additives;
  • Waste flame retardant polyester 3 is flame retardant PBT/PET, and its main components are PBT/PET, tetrabromobisphenol A, antimony trioxide, glass fiber and other additives;
  • Waste flame retardant polyester 4 is flame retardant PC, and its main components are PC, triphenyl phosphate (BDP), antimony trioxide, glass fiber and other additives;
  • the targeted extractants were methanol, chloroform, tetrahydrofuran, and acetone;
  • Alcoholysis agent 1 is ethylene glycol, and alcoholysis agent 2 is butanediol;
  • Catalyst 1 is zinc acetate, and catalyst 2 is butyl titanate.
  • 2932.15cm -1 is the absorption peak of methylene, indicating that there is methylene in the microwave alcoholysis product;
  • 2960.12cm -1 is the characteristic absorption peak of CH stretching vibration on benzene ring, indicating that the microwave alcoholysis product contains benzene ring;
  • 750.24cm -1 is the strong absorption peak of para-substitution of benzene ring, indicating that the structure of microwave alcoholysis product not only contains benzene ring, but also is the para-substitution of benzene ring;
  • curve a and curve b in Figure 3 it is fully explained that the waste polyester has been completely depolymerized into monomers.
  • curve a is the recovered brominated epoxy resin
  • curve b is the original brominated epoxy resin
  • 910.33cm -1 , 870.55cm -1 , and 797.99cm -1 in curve a are the asymmetric stretching vibration peaks of -COC- in the epoxy group
  • the goniometer (Gonio) method was used for testing.
  • the diffraction crystal was LiF 200
  • the collimator was 150 ⁇ m
  • the detector was a scintillation counter
  • the filter was Al (750 ⁇ m).
  • the external standard method was used for quantitative analysis of bromine.
  • the bromine contents of the waste flame-retardant polyester, the recovered brominated epoxy flame retardant, and the brominated epoxy original sample in Example 1 are shown in Table 1. It can be seen that the bromine content of the recovered brominated epoxy flame retardant is the same as that of the brominated epoxy original sample.
  • the temperature range of the TGA test is 30°C ⁇ 750°C, the heating rate is 10 ⁇ 20°C/min, the test atmosphere is nitrogen, and the initial decomposition temperature is determined by referring to ISO 11358-1:2014 standard analysis.
  • Flame retardant recovery rate mass of recovered flame retardant / mass of flame retardant in flame retardant polyester * 100%;
  • Specific testing method first take a small amount of flame-retardant polyester and determine the type of flame retardant contained by XRF analysis, and then determine the bromine content or phosphorus content in the unit flame retardant component according to the type of flame retardant; then analyze and determine the total bromine content or phosphorus content in the flame-retardant polyester, and divide it by the bromine content or phosphorus content in the corresponding unit flame retardant component to determine the mass of the flame retardant in the flame-retardant polyester; the mass of the recovered flame retardant can be directly weighed, and the flame retardant recovery rate can be calculated using the above formula.
  • Polyester monomer recovery rate (mass of recovered monomer/relative molecular weight of monomer)/(mass of polyester in flame retardant polyester/relative molecular weight of polyester repeating unit)*100%;
  • the mass of polyester in the flame-retardant polyester the mass of the flame-retardant polyester - the mass of the flame retardant in the flame-retardant polyester - the mass of the insoluble matter.
  • the mass of the flame retardant in the flame-retardant polyester is obtained by the above calculation method, and the mass of the insoluble matter can be directly weighed.
  • a method for recycling flame-retardant polyester comprises the following steps (as shown in FIG1 ):
  • the waste flame-retardant polyester 1 was crushed to obtain particles with an average particle size of 10 mm;
  • the filtrate X in S2 is subjected to a second microwave alcoholysis at 220° C. for 30 min, and then separated to obtain a clear solution, and the clear solution is introduced into hot water (100° C.) for repeated crystallization and purification to obtain hydroxybutyl terephthalate, and the remaining solution is subjected to azeotropic vacuum distillation to recover butanediol;
  • the filter residue a described in S2 is washed with ethanol, and tetrahydrofuran is added to remove EVA, filtered, and then the targeted extractant 2 (chloroform) is added to the filter cake for extraction at 50°C for 20 minutes.
  • the flame retardant (brominated epoxy resin) and the insoluble matter M can be obtained, and the insoluble matter M is added to ammonia water to dissolve.
  • the soluble matter is antimony trioxide, and the insoluble matter is glass fiber. The glass fiber is washed with acetone and then recovered.
  • a method for recycling flame-retardant polyester comprises steps substantially the same as those in Example 1, except that the microwave alcoholysis temperature in steps S2 and S3 is 230° C. and the alcoholysis time is 10 min.
  • a method for recycling flame-retardant polyester comprises steps substantially the same as those in Example 1, except that the microwave alcoholysis temperature in steps S2 and S3 is 210° C. and the alcoholysis time is 150 min.
  • a method for recycling flame-retardant polyester comprises steps substantially the same as those in Example 1, except that the microwave alcoholysis temperature in steps S2 and S3 is 215° C. and the alcoholysis time is 60 min.
  • a method for recycling flame-retardant polyester comprising steps substantially the same as those of Example 1, the difference being that the alcoholysis agent in steps S2 and S3 is ethylene glycol, and the waste flame-retardant polyester in step S1 is waste flame-retardant polyester 2;
  • the waste flame retardant polyester 2 was crushed to obtain particles with an average particle size of 10 mm;
  • the filtrate X in S2 is subjected to a second microwave alcoholysis at 195° C. for 30 min, and then separated to obtain a clear solution, and the clear solution is introduced into hot water (100° C.) for repeated crystallization and purification to obtain hydroxyethyl terephthalate, and the remaining solution is subjected to azeotropic vacuum distillation to recover ethylene glycol;
  • the filter residue a described in S2 is washed with ethanol, and tetrahydrofuran is added to remove EVA, filtered, and then the targeted extractant 2 (chloroform) is added to the filter cake for extraction at 50°C for 20 minutes.
  • the flame retardant (brominated epoxy resin) and the insoluble matter M can be obtained, and the insoluble matter M is added to ammonia water to dissolve.
  • the soluble matter is antimony trioxide, and the insoluble matter is glass fiber.
  • the glass fiber is washed with acetone and recovered.
  • a method for recycling flame retardant polyester comprises the following steps (as shown in FIG2 ):
  • the waste flame retardant polyester 3 was crushed to obtain particles with an average particle size of 1 mm;
  • the waste flame retardant polyester 3 crushed in a1 was subjected to microwave extraction at 50°C for 30 min using targeted extractant acetone, and the flame retardant (tetrabromobisphenol A) and insoluble matter N were separated and purified;
  • the filtrate E in a3 is subjected to a second microwave alcoholysis at 195° C. for 20 min, and then separated to obtain a clarified liquid, which is then introduced into hot water (100° C.) for repeated crystallization and purification to obtain hydroxyethyl terephthalate, and the remaining solution is subjected to azeotropic reduced pressure distillation to recover butanediol; at the same time, the filter residue b in S3 is added to a zinc chloride solution for flotation separation to obtain antimony trioxide and glass fiber, and the glass fiber is washed with acetone and recovered.
  • a method for recovering flame-retardant polyester comprises steps substantially the same as those of Example 6, except that the microwave alcoholysis temperature in steps a3 and a4 is 210° C. and the alcoholysis time is 5 min.
  • a method for recovering flame-retardant polyester comprises steps substantially the same as those of Example 6, except that the microwave alcoholysis temperature in steps a3 and a4 is 190° C. and the alcoholysis time is 150 min.
  • a method for recovering flame-retardant polyester comprises steps substantially the same as those of Example 6, except that the microwave alcoholysis temperature in steps a3 and a4 is 200° C. and the alcoholysis time is 10 min.
  • a method for recovering flame-retardant polyester comprises steps substantially the same as those of Example 6, except that the waste flame-retardant polyester in step a1 is waste flame-retardant polyester 4, and the targeted extractant in step a2 is ethanol.
  • a method for recycling flame retardant polyester comprises the following steps (as shown in FIG2 ):
  • the crushed waste flame retardant polyester 1 in a1 was subjected to microwave extraction at 50 ° C for 30 min using a targeted extractant chloroform, and the flame retardant (brominated epoxy resin) and insoluble matter N were separated and purified;
  • the filtrate E in a3 is subjected to a second microwave alcoholysis at 220° C. for 20 min, and then separated to obtain a clarified liquid, which is then introduced into hot water (100° C.) for repeated crystallization and purification to obtain dihydroxybutyl terephthalate, and the remaining solution is subjected to azeotropic reduced pressure distillation to recover butanediol; at the same time, the filter residue b in a3 is added to a zinc chloride solution for flotation separation to obtain antimony trioxide and glass fiber, and the glass fiber is washed with acetone and then recovered.
  • a method for recycling flame-retardant polyester comprises the following steps (as shown in FIG1 ):
  • the waste flame retardant polyester 3 was crushed to obtain particles with an average particle size of 10 mm;
  • the filtrate X in S2 is subjected to a second microwave alcoholysis at 195° C. for 30 min, and then separated to obtain a clear solution, and the clear solution is introduced into hot water (100° C.) for repeated crystallization and purification to obtain hydroxyethyl terephthalate, and the remaining solution is subjected to azeotropic vacuum distillation to recover ethylene glycol;
  • the filter residue a described in S2 is washed with ethanol and then added into a targeted extractant (chloroform) for extraction at 50°C for 20 minutes.
  • a targeted extractant chloroform
  • the flame retardant tetrabromobisphenol A
  • the insoluble matter M is added into ammonia water to dissolve.
  • the soluble matter is antimony trioxide, and the insoluble matter is glass fiber.
  • the glass fiber is washed with acetone and then recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明公开了一种阻燃聚酯的回收方法。本发明的回收方法包括以下步骤:根据阻燃剂的类型将阻燃聚酯确定为聚酯A或聚酯B,所述聚酯A是阻燃剂为十溴二苯乙烷、十溴二苯醚、六溴环十二烷和溴化环氧中一种或几种的聚酯;所述聚酯B是阻燃剂为磷酸酯阻燃剂、四溴双酚A、四溴双酚S和溴化聚碳酸酯中一种或几种的聚酯,其中聚酯A先进行微波醇解再萃取处理回收阻燃剂;而聚酯B先进行萃取处理回收阻燃剂,再通过微波醇解回收聚酯。本发明的回收方法不仅高效回收阻燃聚酯中的阻燃剂,还可以将填料及其他杂质与回收树脂分离,全面回收阻燃聚酯中的各组分,实现阻燃聚酯高效循环利用。

Description

一种阻燃聚酯的回收方法 技术领域
本发明涉及高分子化合物的回收技术领域,更具体地,涉及一种阻燃聚酯的回收方法。
背景技术
全球每年废旧电气和电子设备(WEEE)达到2000~5000万吨,其中26%左右的WEEE塑料中含有阻燃剂(FRs),溴化阻燃剂作为当今最有效的阻燃剂,已被广泛用于提高塑料材料的防火性能,其全球产量可达20万吨/年。目前国内外消耗量较大的溴系阻燃剂主要包括四溴双酚A(TBBPA)、十溴二苯醚(DBDPO)、六溴环十二烷(HBCD)、十溴二苯乙烷(DBDPE)、溴化环氧树脂(BEO)、溴化聚苯乙烯(BPS)等。而溴素是不可再生资源,自2010年起全球溴素的价格不断上涨,其中最主要的原因是终端新型溴产品不断迭代更新,同时世界溴资源的开采使得溴资源日益匮乏,其开采难度逐渐增大,也加剧了溴素价格的上涨。然而全球所有塑料垃圾中仅有约9%被回收、12%被焚烧、79%被堆积在垃圾填埋场或自然环境中,从阻燃塑料中回收再利用阻燃剂和树脂,不仅可以减少废弃阻燃塑料在环境中的填埋或焚烧量,降低污染生态环境的威胁,还可以充分利用废弃产品,减少对自然资源的消耗。
目前针对阻燃塑料的处理方法主要是先脱卤,再对脱卤后的塑料进行机械回收。而废旧电子塑料的脱溴研究多集中在热解、催化热解、水热处理等技术这些脱溴技术,往往需要借助高温分解阻燃剂,但在高温分解同时也会破坏塑料回收再利用价值。相较于热处理脱卤技术,使用二氧化碳超临界萃取阻燃剂或使用溶剂萃取阻燃剂,可以保证脱卤的同时不破坏塑料本身。
例如现有技术中公开一种废旧电路板阻燃剂回收方法,先将废旧电路板破碎后在采用CO 2超临界流体作为萃取剂对其中的阻燃剂进行回收磷酸三苯酯阻燃剂,但超临界萃取操作条件苛刻,设备要求高,不适合大规模工业应用,且未回收树脂部分。此外,彭绍洪等采用反溶剂沉淀法回收废旧电子塑料中的阻燃剂,但该方法不仅需要大量的溶剂和反溶剂多次溶解沉淀萃取回收阻燃剂,而且脱溶剂后的再生塑料中还残留部分多溴二苯醚和未分离的填料(三氧化锑、玻璃纤维、炭黑等),影响再生塑料的使用。
发明内容
本发明的目的是克服现有阻燃塑料回收的再生塑料中阻燃剂残留、填料难以有效分离的缺陷和不足,提供一种阻燃聚酯的回收方法,针对不同的阻燃聚酯采用与之相对应的分离回收方法,将特定的醇解和萃取条件与分离顺序相结合,高效回收阻燃聚酯中的阻燃剂,同时将填料及其他杂质与回收树脂分离,全面回收阻燃聚酯中的各个组分,实现阻燃聚酯高效循环利用。
本发明上述目的通过以下技术方案实现:
一种阻燃聚酯的回收方法,根据阻燃剂的类型将阻燃聚酯确定为聚酯A或聚酯B;所述聚酯A是阻燃剂为溴化聚苯乙烯、聚二溴苯乙烯、十溴二苯乙烷、十溴二苯醚、六溴环十二烷和溴化环氧中一种或几种的聚酯;所述聚酯B是阻燃剂为磷酸酯阻燃剂、四溴双酚A、四溴双酚S和溴化聚碳酸酯中一种或几种的聚酯;
当阻燃聚酯为聚酯A时,包括以下步骤:
S1.将聚酯A进行破碎处理;
S2.将S1中破碎后的聚酯A进行微波醇解,分离过滤后得到滤液X和滤渣a;
S3.将S2中滤液X进行微波醇解,然后进行分离提纯获得单体或低聚物、滤液Y,并将滤液Y纯化回收醇类物质;
S4.将S2中滤渣a采用靶向萃取剂进行萃取,分离纯化后即可获得阻燃剂和不溶物M;
其中,S2和S3中所述微波醇解使用的醇解剂为乙二醇或丁二醇;S4中所述靶向萃取剂为甲醇、乙醇、异丙醇、丙酮、氯仿、四氢呋喃、甲苯和柠檬烯中至少一种;
当阻燃聚酯为聚酯B时,包括以下步骤:
a1.将聚酯B进行破碎处理;
a2.将a1中破碎后的聚酯B采用靶向萃取剂进行萃取处理,分离提纯即获得阻燃剂和不溶物N;
a3.将a2中的不溶物N进行微波醇解,分离过滤后得到滤液E和滤渣b;
a4.将a3中滤液E进行微波醇解,然后进行分离提纯获得单体或低聚物、滤液F,并将滤液F纯化回收醇类物质;
其中,a2所述靶向萃取剂为甲醇、乙醇、异丙醇、丙酮、氯仿、四氢呋喃、 甲苯和柠檬烯中至少一种;a3和a4中所述微波醇解使用的醇解剂为乙二醇或丁二醇。
发明人通过大量研究发现,取少量样品通过常规的成分分析方法确定阻燃剂的类型,再根据阻燃聚酯中阻燃剂的类型,针对不同的阻燃聚酯采用与之相对应的分离回收方法,以特定的微波醇解和萃取工艺相结合,可充分高效回收阻燃聚酯中的阻燃剂,同时将填料及其他杂质与回收树脂分离,全面回收阻燃聚酯中的各个组分。
当阻燃聚酯中的阻燃剂为不易水解型阻燃剂(溴化聚苯乙烯、聚二溴苯乙烯、十溴二苯乙烷、十溴二苯醚、六溴环十二烷和溴化环氧中的一种或几种)时,阻燃剂在靶向萃取剂中溶解有限,难以直接从阻燃聚酯中萃取得到阻燃剂,只能采用先微波醇解将阻燃剂从阻燃聚酯中释放,再结合特定的靶向萃取剂萃取的回收的方式分离回收阻燃剂及其他组分;
而当阻燃聚酯中的阻燃剂为易水解型阻燃剂(磷酸酯阻燃剂、四溴双酚A、四溴双酚S和溴化聚碳酸酯中一种或几种)时,需要先将阻燃剂从阻燃聚酯中萃取回收之后,再进行微波醇解回收树脂,原因在于,回收易水解型阻燃剂时,如果先进行微波醇解,会导致阻燃剂在微波醇解过程中受到破坏,不仅影响回收阻燃剂的品质,还会影响阻燃剂的回收率。
在具体实施方式中,本发明所述醇解剂为丁二醇时,S2和S3中所述微波醇解温度为220~230℃,微波醇解时间为10~30min。
在具体实施方式中,本发明所述醇解剂为乙二醇时,a3和a4中所述微波醇解温度为200~210℃,微波醇解时间为5~10min。
在具体实施方式中,当阻燃聚酯为聚酯A时,所述不溶物M采用氨水溶解分离回收三氧化二锑;当阻燃聚酯为聚酯B时,步骤a3中所述滤渣b采用氯化锌溶液处理回收三氧化二锑。
具体地,本发明S2和S3所述微波醇解使用的催化剂为醋酸锌、钛酸丁酯、钛酸纳米管、乙二醇钛、1,3-二甲基咪唑四氯化铁离子液体、1-烯丙基-3-甲基咪唑基离子液体和氯化铁中任一种。
具体地,本发明a3和a4所述微波醇解使用的催化剂为醋酸锌、钛酸丁酯、钛酸纳米管、乙二醇钛、1,3-二甲基咪唑四氯化铁离子液体、1-烯丙基-3-甲基咪唑基离子液体和氯化铁中的一种或几种。
具体地,本发明所述催化剂的加入量为阻燃聚酯质量的0.05%~1%。
在具体实施方式中,本发明步骤S4中所述萃取为微波萃取,且萃取温度为35~160℃,萃取时间为10~120min。
在具体实施方式中,本发明步骤a2中所述萃取为微波萃取,且萃取温度为35~160℃,萃取时间为10~120min。
本发明采用微波加热的方式,相较于其他加热方式,微波加热可使得物料内部和外部同时加热升温,加热速度快且均匀,不仅大大缩短了反应时间,而且能够有效降低萃取时对含溴阻燃剂热稳定性的影响。萃取温度过高会引起爆沸,萃取温度过低则会降低萃取效率;而萃取时间过长则会影响回收的阻燃剂的热稳定性,萃取时间过短则难以充分回收聚酯中的阻燃剂。
具体地,本发明S1中所述破碎处理后聚酯A的平均粒径为2~10mm;a1中所述破碎处理后聚酯B的平均粒径为0.02~1mm。在实际生产过程中,无论是聚酯A颗粒,还是聚酯B颗粒,其平均粒径越小,越有利于后续处理;但粒径太小会增耗能,综合考虑,阻燃聚酯A颗粒的平均粒径≤10mm,阻燃聚酯B颗粒的平均粒径≤1mm即可满足应用需求。
与现有技术相比,本发明的有益效果是:
本发明提供的阻燃聚酯的回收方法,针对不同的阻燃聚酯采用与之相对应的分离回收方法,将特定的醇解和萃取条件与分离顺序相结合,高效回收阻燃聚酯中的阻燃剂,同时将填料及其他杂质与回收树脂分离,全面回收阻燃聚酯中的各个组分,实现阻燃聚酯高效循环利用,阻燃剂的回收率达到80%~92%,聚酯树脂的回收率达到80%~95%。
附图说明
图1为实施例1中回收废旧阻燃聚酯的流程图;
图2为实施例6中回收废旧阻燃聚酯的流程图;
图3为实施例1中废旧阻燃PBT(a)和微波醇解产物(b)的红外光谱图;
图4为实施例1中回收的溴化环氧树脂阻燃剂(a)和溴化环氧原样(b)的红外光谱图。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明,但实施例并不对本发明做任何形式的限定。除非另有说明,本发明实施例采用的原料试剂为常规购买的原 料试剂。
1、主要原料试剂
废旧阻燃聚酯1为阻燃PBT,其主要组分为PBT、溴化环氧、EVA、三氧化二锑和玻璃纤维和其他助剂;
废旧阻燃聚酯2为阻燃PET,其主要组分为PET、溴化聚苯乙烯、三氧化二锑、玻璃纤维和其他助剂;
废旧阻燃聚酯3为阻燃PBT/PET,其主要组分为PBT/PET、四溴双酚A、三氧化二锑、玻璃纤维和其他助剂;
废旧阻燃聚酯4为阻燃PC,其主要组分为PC、磷酸三苯酯(BDP)、三氧化二锑、玻璃纤维和其他助剂;
靶向萃取剂为甲醇、氯仿、四氢呋喃和丙酮;
醇解剂1为乙二醇,醇解剂2为丁二醇;
催化剂1为醋酸锌,催化剂2为钛酸丁酯。
2、性能测试
(1)红外光谱测试
由图3可知,曲线a为废旧阻燃PBT的红外光谱图,在1717.52cm -1处的吸收峰为酯基的特征吸收峰;曲线b为微波醇解产物的红外光谱图,在3370.45cm -l处有一个强而宽的峰为羟基(-OH)的伸缩振动吸收峰,可以推断聚酯解聚产物中可能有羟基存在。同时,在曲线b中2932.15cm -1处为亚甲基的吸收峰,说明微波醇解产物中有亚甲基存在;2960.12cm -1为苯环上的C-H伸缩振动特征吸收峰,说明微波醇解产物中含有苯环;750.24cm -1处为苯环对位取代的强吸收峰,表明微波醇解产物结构中不仅含有苯环,且为苯环对位取代物;通过图3中的曲线a和曲线b,充分说明废旧聚酯已经完全解聚成单体。由图4可知,曲线a为回收的溴化环氧树脂,曲线b为溴化环氧原样,其中曲线a中910.33cm -1、870.55cm -1、797.99cm -1处为环氧基中-C-O-C-不对称伸缩振动峰;1738cm -1为C=O酯基的伸缩振动峰,其余的吸收峰的归属如下:3081cm -1、1583cm -1和1536cm -1为苯环的特征吸收峰;1467cm -1为亚甲基的特征吸收峰,2967.52cm -1、2929.25cm -1为环氧基中次甲基的特征吸收峰;1065cm -1、1127cm -1、1250cm -1为醚键的反对称伸缩振动;1386cm -1为甲基特征峰;641cm -1、659cm -1、738cm -1为C-Br的特征吸收峰,与溴化环氧原样基本完全重合。
(2)XRF测试
采用测角法(Gonio)测试,衍射晶体为LiF 200,准直仪150μm,探测器为闪烁计数器,滤波器为Al(750μm),本发明采用外标法进行溴的定量分析,实施例1中废旧阻燃聚酯、回收溴化环氧阻燃剂和溴化环氧原样的溴含量如表1所示,可见回收溴化环氧阻燃剂的溴含量与溴化环氧原样的溴含量相同。
表1
项目 溴含量
废旧阻燃聚酯 4.2%
回收溴化环氧阻燃剂 28%
溴化环氧原样 28%
(3)TGA测试
TGA测试的温度范围为30℃~750℃,升温速率为10~20℃/min,测试氛围为氮气,具体参照ISO 11358-1:2014标准分析确定起始分解温度。
(4)阻燃剂和树脂单体的回收率
阻燃剂回收率=回收的阻燃剂的质量/阻燃聚酯中阻燃剂的质量*100%;
具体测试方法:先取少量阻燃聚酯通过XRF分析确定所含阻燃剂的类型,再根据阻燃剂的类型确定单位阻燃剂成分中的溴含量或磷含量;然后分析确定阻燃聚酯中总的溴含量或磷含量,除以相应单位阻燃剂成分中的溴含量或磷含量,即可确定阻燃聚酯中阻燃剂的质量;而回收的阻燃剂的质量可直接称量得到,通过上述公式计算即可获得阻燃剂回收率。
聚酯单体回收率=(回收的单体的质量/单体的相对分子质量)/(阻燃聚酯中聚酯质量/聚酯重复单元的相对分子质量)*100%;
其中,阻燃聚酯中聚酯质量=阻燃聚酯的质量-阻燃聚酯中阻燃剂的质量-不溶物的质量,阻燃聚酯中阻燃剂的质量由上述计算方法得到,不溶物的质量可直接称量得到。
实施例1
一种阻燃聚酯的回收方法,包括以下步骤(如图1所示):
S1.将废旧阻燃聚酯1进行破碎处理,所得颗粒的平均粒径为10mm;
S2.按重量份数计,取150份S1中破碎后的废旧阻燃聚酯1、150份丁二醇 和0.3份醋酸锌加入微波反应装置中在220℃条件下进行微波醇解30min,分离过滤后得到滤液X和滤渣a;
S3.将S2中滤液X在220℃条件下进行第二次微波醇解30min,然后进行分离获得澄清液,并将澄清液导入热水(100℃)中反复结晶纯化得到对苯二甲酸羟丁酯,剩余溶液共沸减压蒸馏回收丁二醇;
S4.将S2中所述滤渣a采用乙醇清洗后加入四氢呋喃除去EVA,过滤,再向滤饼中加入靶向萃取剂2(氯仿)中在50℃条件下进行萃取20min,分离纯化后即可获得阻燃剂(溴化环氧树脂)和不溶物M,并将不溶物M加入氨水中溶解,可溶物为三氧化二锑,不溶物为玻璃纤维,将玻璃纤维使用丙酮洗涤后回收。
实施例2
一种阻燃聚酯的回收方法,包括与实施例1基本相同的步骤,其区别在于:步骤S2和S3中所述微波醇解温度为230℃,醇解时间为10min。
实施例3
一种阻燃聚酯的回收方法,包括与实施例1基本相同的步骤,其区别在于:步骤S2和S3中所述微波醇解温度为210℃,醇解时间为150min。
实施例4
一种阻燃聚酯的回收方法,包括与实施例1基本相同的步骤,其区别在于:步骤S2和S3中所述微波醇解温度为215℃,醇解时间为60min。
实施例5
一种阻燃聚酯的回收方法,包括与实施例1基本相同的步骤,其区别在于:步骤S2和S3中的醇解剂为乙二醇,步骤S1中所述废旧阻燃聚酯为废旧阻燃聚酯2;
S1.将废旧阻燃聚酯2进行破碎处理,所得颗粒的平均粒径为10mm;
S2.按重量份数计,取150份S1中破碎后的废旧阻燃聚酯2、300份乙二醇和0.3份醋酸锌加入微波反应装置中在195℃条件下进行微波醇解30min,分离过滤后得到滤液X和滤渣a;
S3.将S2中滤液X在195℃条件下进行第二次微波醇解30min,然后进行分离获得澄清液,并将澄清液导入热水(100℃)中反复结晶纯化得到对苯二甲酸羟乙酯,剩余溶液共沸减压蒸馏回收乙二醇;
S4.将S2中所述滤渣a采用乙醇清洗后加入四氢呋喃除去EVA,过滤,再向 滤饼中加入靶向萃取剂2(氯仿)中在50℃条件下进行萃取20min,分离纯化后即可获得阻燃剂(溴化环氧树脂)和不溶物M,并将不溶物M加入氨水中溶解,可溶物为三氧化二锑,不溶物为玻璃纤维,将玻璃纤维使用丙酮洗涤后回收。
实施例6
一种阻燃聚酯的回收方法,包括以下步骤(如图2所示):
a1.将废旧阻燃聚酯3进行粉碎处理,所得颗粒的平均粒径为1mm;
a2.将a1中粉碎后的废旧阻燃聚酯3采用靶向萃取剂丙酮在50℃条件下进行微波萃取30min,分离提纯即获得阻燃剂(四溴双酚A)和不溶物N;
a3.按重量份数计,取150份a2中不溶物N、300份乙二醇和0.15份钛酸丁酯加入微波反应装置中在195℃条件下进行微波醇解20min,分离过滤后得到滤液E和滤渣b;
a4.将a3中滤液E在195℃条件下进行第二次微波醇解20min,然后进行分离获得澄清液,并将澄清液导入热水(100℃)中反复结晶纯化得到对苯二甲酸羟乙酯,剩余溶液共沸减压蒸馏回收丁二醇;同时将S3中的滤渣b加入氯化锌溶液中进行浮选分离得到三氧化二锑和玻璃纤维,将玻璃纤维使用丙酮洗涤后回收。
实施例7
一种阻燃聚酯的回收方法,包括与实施例6基本相同的步骤,其区别在于:步骤a3和a4中所述微波醇解温度为210℃,醇解时间为5min。
实施例8
一种阻燃聚酯的回收方法,包括与实施例6基本相同的步骤,其区别在于:步骤a3和a4中所述微波醇解温度为190℃,醇解时间为150min。
实施例9
一种阻燃聚酯的回收方法,包括与实施例6基本相同的步骤,其区别在于:步骤a3和a4中所述微波醇解温度为200℃,醇解时间为10min。
实施例10
一种阻燃聚酯的回收方法,包括与实施例6基本相同的步骤,其区别在于:步骤a1中所述废旧阻燃聚酯为废旧阻燃聚酯4,步骤a2中所述靶向萃取剂为乙醇。
对比例1
一种阻燃聚酯的回收方法,包括以下步骤(如图2所示):
a1.将废旧阻燃聚酯1进行粉碎处理,所得颗粒的平均粒径为1mm;
a2.将a1中粉碎后的废旧阻燃聚酯1采用靶向萃取剂氯仿在50℃条件下进行微波萃取30min,分离提纯即获得阻燃剂(溴化环氧树脂)和不溶物N;
a3.按重量份数计,取150份a2中不溶物N、150份丁二醇和0.15份钛酸丁酯加入微波反应装置中在220℃条件下进行微波醇解20min,分离过滤后得到滤液E和滤渣b;
a4.将a3中滤液E在220℃条件下进行第二次微波醇解20min,然后进行分离获得澄清液,并将澄清液导入热水(100℃)中反复结晶纯化得到对苯二甲酸双羟丁酯,剩余溶液共沸减压蒸馏回收丁二醇;同时将a3中的滤渣b加入氯化锌溶液中进行浮选分离得到三氧化二锑和玻璃纤维,将玻璃纤维使用丙酮洗涤后回收。
对比例2
一种阻燃聚酯的回收方法,包括以下步骤(如图1所示):
S1.将废旧阻燃聚酯3进行粉碎处理,所得颗粒的平均粒径为10mm;
S2.按重量份数计,取150份S1中破碎后的废旧阻燃聚酯3、150份乙二醇和0.75份醋酸锌加入微波反应装置中在195℃条件下进行微波醇解30min,分离过滤后得到滤液X和滤渣a;
S3.将S2中滤液X在195℃条件下进行第二次微波醇解30min,然后进行分离获得澄清液,并将澄清液导入热水(100℃)中反复结晶纯化得到对苯二甲酸羟乙酯,剩余溶液共沸减压蒸馏回收乙二醇;
S4.将S2中所述滤渣a采用乙醇清洗后加入靶向萃取剂(氯仿)中在50℃条件下进行萃取20min,分离纯化后即可获得阻燃剂(四溴双酚A)和不溶物M,并将不溶物M加入氨水中溶解,可溶物为三氧化二锑,不溶物为玻璃纤维,将玻璃纤维使用丙酮洗涤后回收。
按照上述阻燃聚酯回收方法所得产物的性能测试结果如表2所示。
表2各实施例和对比例的测试结果
编号 阻燃剂回收率 阻燃剂起始分解温度 聚酯单体回收率
实施例1 88% 380.2℃ 90%
实施例2 89% 380℃ 92%
实施例3 80% 376℃ 80%
实施例4 86% 380℃ 89%
实施例5 86% 323℃ 95%
实施例6 87% 410℃ 90%
实施例7 86% 408℃ 91%
实施例8 80% 409℃ 81%
实施例9 88% 408℃ 92%
实施例10 92% 408℃ 90%
对比例1 78% 380℃ 90%
对比例2 2% 330℃ 85%
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种阻燃聚酯的回收方法,其特征在于,
    根据阻燃剂的类型将阻燃聚酯确定为聚酯A或聚酯B;所述聚酯A是阻燃剂为溴化聚苯乙烯、聚二溴苯乙烯、十溴二苯乙烷、十溴二苯醚、六溴环十二烷和溴化环氧中一种或几种的聚酯;所述聚酯B是阻燃剂为磷酸酯阻燃剂、四溴双酚A、四溴双酚S和溴化聚碳酸酯中一种或几种的聚酯;
    当阻燃聚酯为聚酯A时,包括以下步骤:
    S1.将聚酯A进行破碎处理;
    S2.将S1中破碎后的聚酯A进行微波醇解,分离过滤后得到滤液X和滤渣a;
    S3.将S2中滤液X进行微波醇解,然后进行分离提纯获得单体或低聚物、滤液Y,并将滤液Y纯化回收醇类物质;
    S4.将S2中滤渣a采用靶向萃取剂进行萃取,分离纯化后即可获得阻燃剂和不溶物M;
    其中,S2和S3中所述微波醇解使用的醇解剂为乙二醇或丁二醇;S4中所述靶向萃取剂为甲醇、乙醇、异丙醇、丙酮、氯仿、四氢呋喃、甲苯和柠檬烯中至少一种;
    当阻燃聚酯为聚酯B时,包括以下步骤:
    a1.将聚酯B进行破碎处理;
    a2.将a1中破碎后的聚酯B采用靶向萃取剂进行萃取,分离提纯即获得阻燃剂和不溶物N;
    a3.将a2中的不溶物N进行微波醇解,分离过滤后得到滤液E和滤渣b;
    a4.将a3中滤液E进行微波醇解,然后进行分离提纯获得单体或低聚物、滤液F,并将滤液F纯化回收醇类物质;
    其中,a2所述靶向萃取剂为甲醇、乙醇、异丙醇、丙酮、氯仿、四氢呋喃、甲苯和柠檬烯中至少一种;a3和a4中所述微波醇解使用的醇解剂为乙二醇或丁二醇。
  2. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,所述醇解剂为丁二醇时,S2和S3中所述微波醇解温度为220~230℃,微波醇解时间为10~30min。
  3. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,所述醇解剂为乙二醇时,a3和a4中所述微波醇解温度为200~210℃,微波醇解时间为5~10min。
  4. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,所述不溶物M采用氨水溶解分离回收三氧化二锑。
  5. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,S2和S3所述微波醇解使用的催化剂为醋酸锌、钛酸丁酯、钛酸纳米管、乙二醇钛、1,3-二甲基咪唑四氯化铁离子液体、1-烯丙基-3-甲基咪唑基离子液体和氯化铁中的一种或几种。
  6. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,a3和a4所述微波醇解使用的催化剂为醋酸锌、钛酸丁酯、钛酸纳米管、乙二醇钛、1,3-二甲基咪唑四氯化铁离子液体、1-烯丙基-3-甲基咪唑基离子液体和氯化铁中的一种或几种。
  7. 如权利要求5或6所述阻燃聚酯的回收方法,其特征在于,所述催化剂的加入量为阻燃聚酯质量的0.05%~1%。
  8. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,S4中所述萃取为微波萃取,且萃取温度为35~160℃,萃取时间为10~120min。
  9. 权利要求1所述阻燃聚酯的回收方法,其特征在于,a2中所述萃取为微波萃取,且萃取温度为35~160℃,萃取时间为10~120min。
  10. 如权利要求1所述阻燃聚酯的回收方法,其特征在于,S1中所述破碎处理后聚酯A的平均粒径为2~10mm;a1中所述破碎处理后聚酯B的平均粒径为0.02~1mm。
PCT/CN2022/129262 2022-10-26 2022-11-02 一种阻燃聚酯的回收方法 WO2024087240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211319550.0 2022-10-26
CN202211319550.0A CN115368627B (zh) 2022-10-26 2022-10-26 一种阻燃聚酯的回收方法

Publications (1)

Publication Number Publication Date
WO2024087240A1 true WO2024087240A1 (zh) 2024-05-02

Family

ID=84073266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129262 WO2024087240A1 (zh) 2022-10-26 2022-11-02 一种阻燃聚酯的回收方法

Country Status (2)

Country Link
CN (1) CN115368627B (zh)
WO (1) WO2024087240A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB762690A (en) * 1954-03-03 1956-12-05 Perfogit Spa Improved process for the recovery of synthetic polyester scrap
WO1998047952A1 (en) * 1997-04-18 1998-10-29 E.I. Du Pont De Nemours And Company Recovery of polyester from contaminated polyester waste
JP2011137081A (ja) * 2009-12-28 2011-07-14 Teijin Ltd リン系難燃剤が共重合されたポリエステル製品のリサイクル方法
CN107739434A (zh) * 2017-09-18 2018-02-27 浙江理工大学 一种废聚酯醇解法制备再生阻燃聚酯的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290424A (ja) * 1999-04-07 2000-10-17 Matsushita Electric Ind Co Ltd 臭素系難燃剤を含有する熱可塑性樹脂組成物の再生処理方法
JP2004359720A (ja) * 2003-06-02 2004-12-24 Matsushita Electric Ind Co Ltd 臭素系難燃剤を含有する熱可塑性樹脂組成物の処理方法
CN100400575C (zh) * 2006-01-06 2008-07-09 华南理工大学 含卤废旧塑料两级真空热化学处理回收方法及其装置
CN101113233B (zh) * 2006-07-28 2011-02-16 佛山市顺德区汉达精密电子科技有限公司 Pc/abs废旧料回收配方
US8846858B2 (en) * 2012-12-21 2014-09-30 Saudi Basic Industries Corporation Method for alcoholysis of polycarbonate compositions containing flame retardant or acrylonitrile-butadiene-styrene
EP2746249B1 (en) * 2012-12-21 2017-06-07 Saudi Basic Industries Corporation Manufacture of dihydroxy aromatic compounds by alcoholysis of flame retardant-containing polycarbonate compositions
CN103694447A (zh) * 2013-11-29 2014-04-02 江南大学 乙二醇解聚废弃聚酯制备阻燃型聚氨酯泡沫的方法
CN105237799B (zh) * 2015-11-05 2018-03-23 广东石油化工学院 含多溴联苯与多溴联苯醚的废旧塑料的再生方法
CN110845761B (zh) * 2019-11-25 2022-05-20 浙江海利环保科技股份有限公司 一种醇解液中杂质去除的方法
CN113321848A (zh) * 2020-07-31 2021-08-31 上海交通大学 从电子废弃物阻燃塑料中同步脱除锑、溴并回收塑料基质的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB762690A (en) * 1954-03-03 1956-12-05 Perfogit Spa Improved process for the recovery of synthetic polyester scrap
WO1998047952A1 (en) * 1997-04-18 1998-10-29 E.I. Du Pont De Nemours And Company Recovery of polyester from contaminated polyester waste
JP2011137081A (ja) * 2009-12-28 2011-07-14 Teijin Ltd リン系難燃剤が共重合されたポリエステル製品のリサイクル方法
CN107739434A (zh) * 2017-09-18 2018-02-27 浙江理工大学 一种废聚酯醇解法制备再生阻燃聚酯的方法

Also Published As

Publication number Publication date
CN115368627A (zh) 2022-11-22
CN115368627B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
JP6050834B2 (ja) プラスチック系複合廃棄物の分別回収方法
CN102617885B (zh) 用溶剂回收废旧热固性树脂及其复合材料的方法
JP2019525980A (ja) 不透明ポリエチレンテレフタラートを含むポリエステルの脱重合方法
CN111171373A (zh) 一种纤维增强复合材料的回收方法
Pérez et al. Recycling thermoset epoxy resin using alkyl-methyl-imidazolium ionic liquids as green solvents
Swain et al. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation
CN1213096C (zh) 一种热固性环氧复合材料的化学回收方法
JP2013006948A (ja) 複合系プラスチック廃棄物の分離回収方法及びそれに用いる分離回収装置
CN1810865A (zh) 含卤废旧塑料两级真空热化学处理回收方法及其装置
WO2022004359A1 (ja) ビス-(2-ヒドロキシエチル)テレフタレートの製造方法および再生ポリエチレンテレフタレートの製造方法
WO2024087240A1 (zh) 一种阻燃聚酯的回收方法
CN114031756A (zh) 一种具有典型绿色低碳特点的闭环回收废旧聚酯制备再生聚酯的方法
CN102532591B (zh) 一种解聚废旧聚酯瓶的方法
KR101441031B1 (ko) 이차전지 폐분리막으로부터 폴리올레핀과 파라핀을 재생하는 방법
CN105237799B (zh) 含多溴联苯与多溴联苯醚的废旧塑料的再生方法
JP5178211B2 (ja) ペットボトル廃棄物より色相を改善したテレフタル酸ジメチルを回収する方法
CN101817737A (zh) 醋酸的回收方法
CN101768286B (zh) 从废旧电子塑料中分离多溴二苯醚的方法
JP6960709B1 (ja) 高純度ビス−(2−ヒドロキシエチル)テレフタレートの製造方法、再生ポリエチレンテレフタレート、脱色溶媒およびビス−(2−ヒドロキシエチル)テレフタレートの精製方法
JPH0632938A (ja) スチレン系合成樹脂からなるプラスチック廃棄物の改良リサイクル法
CN107759826B (zh) 一种热固性聚丙烯酸酯树脂的降解方法
CN205851119U (zh) 一种聚芳酯树脂生产用离心机
CN113087965A (zh) 一种醇解回收聚氨酯材料的方法
CN1331926C (zh) 聚偏二氯乙烯加工边角膜废料的溶液回收法
CN103664513B (zh) 芳香族聚酯复合材料水解与回收单体的方法