WO2024085335A1 - 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 - Google Patents

리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2024085335A1
WO2024085335A1 PCT/KR2023/005130 KR2023005130W WO2024085335A1 WO 2024085335 A1 WO2024085335 A1 WO 2024085335A1 KR 2023005130 W KR2023005130 W KR 2023005130W WO 2024085335 A1 WO2024085335 A1 WO 2024085335A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
additive
secondary battery
weight
paragraph
Prior art date
Application number
PCT/KR2023/005130
Other languages
English (en)
French (fr)
Inventor
유보경
우명희
김상훈
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024085335A1 publication Critical patent/WO2024085335A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This description relates to additives for lithium secondary batteries, electrolyte solutions for lithium secondary batteries containing the same, and lithium secondary batteries.
  • Lithium secondary batteries are rechargeable, and compared to conventional lead storage batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel-zinc batteries, the energy density per unit weight is more than 3 times higher and high-speed charging is possible, so they can be used in laptops, cell phones, and power tools. , is being commercialized for electric bicycles, and research and development to further improve energy density is actively underway.
  • These lithium secondary batteries include a positive electrode containing a positive electrode active material capable of intercalating and deintercalating lithium, and a negative electrode containing a negative electrode active material capable of intercalating and deintercalating lithium. It is used by injecting an electrolyte into a battery cell containing.
  • the electrolyte uses an organic solvent in which lithium salt is dissolved, and this electrolyte is important in determining the stability and performance of lithium secondary batteries.
  • LiPF 6 which is most commonly used as a lithium salt in an electrolyte solution, has the problem of reacting with the organic solvent of the electrolyte solution, accelerating the depletion of the solvent and generating a large amount of gas.
  • LiPF 6 decomposes LiF and PF 5 are generated, which causes electrolyte depletion in the battery, resulting in deterioration of high-temperature performance and vulnerability to safety.
  • One embodiment is to provide an additive for lithium secondary batteries with improved thermal stability.
  • Another embodiment is to provide an electrolyte for a lithium secondary battery with improved lifespan characteristics, high-temperature safety, and high-temperature reliability by applying the additive.
  • Another embodiment is to provide a lithium secondary battery containing the electrolyte for the lithium secondary battery.
  • An additive for a lithium secondary battery includes a core containing a foaming agent, and a shell surrounding the core, and the shell includes a polymer having a melting point of 90°C to 120°C.
  • the ratio of the thickness of the core to the thickness of the shell may be 1:1 to 4:1.
  • the core may have a thickness of 0.1 ⁇ m to 2.0 ⁇ m
  • the shell may have a thickness of 0.025 ⁇ m to 0.5 ⁇ m.
  • the blowing agent may include a glass blowing agent, a hydrocarbon-based compound, a hydrofluoroolefin (HFO)-based compound, or a combination thereof.
  • a glass blowing agent a hydrocarbon-based compound, a hydrofluoroolefin (HFO)-based compound, or a combination thereof.
  • HFO hydrofluoroolefin
  • the glass blowing agent may include silicon dioxide, sodium oxide, and water.
  • the glass blowing agent may include 60% to 70% by weight of silicon dioxide, 20% to 30% by weight of sodium oxide, and 5% to 20% by weight of water.
  • the polymer includes poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP, Poly(vinylidene fluoride-hexafluoropropylene)), polyacrylic acid, polyethylene, and poly(methyl). methacrylate)), polyalkylene oxide, polyalkylene succinate, or a combination thereof.
  • PVDF-HFP poly(vinylidene fluoride-hexafluoropropylene)
  • PVDF-HFP Poly(vinylidene fluoride-hexafluoropropylene)
  • polyacrylic acid polyethylene
  • polyalkylene oxide polyalkylene succinate, or a combination thereof.
  • the additive may be in the form of a fiber formed using electrospinning.
  • an electrolyte solution for a lithium secondary battery containing a non-aqueous organic solvent, a lithium salt, and the above-described additive for a lithium secondary battery is provided.
  • the additive for a lithium secondary battery may be included in an amount of 0.1 wt% to 10 wt%, 0.1 wt% to 5.0 wt%, or 0.1 wt% to 3.0 wt% based on the total weight of the electrolyte for the lithium secondary battery.
  • a positive electrode including a positive electrode active material; A negative electrode containing a negative electrode active material; And it provides a lithium secondary battery containing the above-mentioned electrolyte solution.
  • the additive for lithium secondary batteries has excellent electrolyte impregnation properties and can maintain battery characteristics without increasing battery resistance when applied to an electrolyte solution.
  • the occurrence of short circuit is suppressed due to an increase in resistance above the battery operating temperature, and the safety of the battery can be improved.
  • 1 is a cross-sectional view of an additive according to one embodiment.
  • Figure 2 is a schematic diagram showing a lithium secondary battery according to one embodiment.
  • “at least one of A, B, or C,” “one of A, B, C, or a combination thereof,” and “one of A, B, C, and a combination thereof,” refer to each component and combination thereof. (e.g., A; B; A and B; A and C; B and C; or A, B, and C).
  • combination includes a mixture of two or more, mutual substitution, and a stacked structure of two or more.
  • 1 is a cross-sectional view of an additive according to one embodiment.
  • the additive 1 includes a core 3 and a shell 5 surrounding the core 3.
  • the core 3 contains a foaming agent
  • the shell 5 contains a polymer having a melting point of 90°C to 120°C.
  • the additive (1) does not increase the resistance of the battery when the battery is driven, thereby maintaining battery characteristics.
  • the melting point of the shell 5 is within the above range, the shell 5 can be appropriately melted at high temperature, and the foaming agent of the core 3 can be released in time to effectively suppress the occurrence of short circuit in the battery.
  • the core 3 contains a foaming agent, when the shell 5 of the additive melts at a high temperature, the foaming agent is released to the outside of the core 3 and swells, increasing the resistance of the battery and causing a voltage drop, which can cause a short circuit in the battery. It can be suppressed.
  • the ratio of the thickness of the core 3 to the thickness of the shell 5 may be 1:1 to 4:1, for example 3:2, for example 2:1, for example For example, it may be 5:2, for example, it may be 3:1, but is not limited to these.
  • the thickness ratio of the core 3 and the shell 5 is within the above range, the time required for melting of the shell 5 and release of the core material can be adjusted to an appropriate range, and the occurrence of electrode shorts can be effectively controlled in high temperature conditions. can do.
  • the temperature is not high, the shell 5 is not easily damaged, thereby preventing unnecessary increases in battery resistance and deterioration of battery characteristics.
  • the “thickness of the core” refers to the straight line length from the center of the circle, which is the cross-section of the fiber, to a point on the circumference of the core.
  • “Shell thickness” is the straight line length between a point where the line segment meets the core perimeter and a point where the line segment meets the shell perimeter when connecting a line segment from the center of a circle, which is the cross-section of the fiber, to a point on the circumference of the shell.
  • the “thickness of the core” refers to the length of the line segment from the center of the sphere to a point on the surface of the core
  • the “thickness of the shell” refers to the center of the sphere.
  • the thickness of the core 3 may be 0.1 ⁇ m to 2.0 ⁇ m, for example 0.1 ⁇ m to 1.5 ⁇ m, for example 0.1 ⁇ m to 1.2 ⁇ m, for example 0.1 ⁇ m to 1.0 ⁇ m may be, for example, 0.3 ⁇ m to 2 ⁇ m, for example, may be 0.3 ⁇ m to 1.5 ⁇ m, may be, for example, 0.3 ⁇ m to 1.2 ⁇ m, may be, for example, 0.5 ⁇ m to 1.0 ⁇ m, , but is not limited to these.
  • the core material is released along with the melting of the shell 5 in a timely manner, effectively controlling the occurrence of electrode short circuits, without deteriorating the electrolyte impregnability and eliminating the need for battery resistance. Battery characteristics can be maintained by not increasing it too much.
  • the foaming agent contained in the core 3 may be a commonly used foaming agent, and may include, for example, a glass foaming agent, a hydrocarbon-based compound, a hydrofluoroolefin (HFO)-based compound, or a combination thereof. there is.
  • the glass blowing agent may include silicon dioxide, sodium oxide, and water.
  • the silicon dioxide may be included in an amount of 60% to 70% by weight, for example, 65% by weight, based on 100% by weight of the glass blowing agent, but is not limited thereto.
  • the sodium oxide may be included in an amount of 20% to 30% by weight, for example, 25% by weight, based on 100% by weight of the glass blowing agent, but is not limited thereto.
  • the water is the remaining components excluding silicon dioxide and sodium oxide in the glass blowing agent, and may be included in an amount of, for example, 5% to 20% by weight, for example, 10% by weight, but is not limited thereto.
  • the hydrocarbon-based compound may include hydrocarbons having 1 to 6 carbon atoms, and may include, for example, chlorinated hydrocarbon compounds, non-chlorinated hydrocarbon compounds, or combinations thereof.
  • the above hydrocarbon compounds include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, n-butane, isobutane, n-pentane, isopentane, cyclopentane, n-hexane, and It may include at least one selected from a combination of these, but is not limited to these.
  • the hydrofluoroolefin-based compound may include, for example, a chlorinated hydrofluoroolefin-based compound, a non-chlorinated hydrofluoroolefin-based compound, or all of these.
  • the thickness of the shell 5 may be 0.025 ⁇ m to 0.5 ⁇ m, for example, 0.025 ⁇ m to 0.45 ⁇ m, for example, 0.025 ⁇ m to 0.4 ⁇ m, for example, 0.025 ⁇ m to 0.35 ⁇ m,
  • it may be 0.025 ⁇ m to 0.3 ⁇ m, for example it may be 0.05 ⁇ m to 0.5 ⁇ m, for example it may be 0.1 ⁇ m to 0.5 ⁇ m, for example it may be 0.15 ⁇ m to 0.5 ⁇ m, for example
  • it may be 0.2 ⁇ m to 0.5 ⁇ m, for example, may be 0.2 ⁇ m to 0.45 ⁇ m, for example, may be 0.2 ⁇ m to 0.4 ⁇ m, but is not limited thereto.
  • the shell 5 may include a polymer having a melting point of 90° C. to 120° C., for example, the polymer may be a thermoplastic resin. These polymers have excellent ionic conductivity and can melt at a specific temperature while remaining stable within the operating temperature range of the battery, thereby contributing to the safety of the battery. Additionally, the polymer included in the shell 5 can improve electrolyte wettability.
  • the thermoplastic resin is poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP, poly(vinylidene fluoride-hexafluoropropylene)), polyacrylic acid, polyethylene, and polymethyl methacrylic acid. (poly(methyl methacrylate)), polyalkylene oxide, polyalkylene succinate, or a combination thereof, for example, poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP, poly(vinylidene It may be fluoride-hexafluoropropylene)), polyalkylene oxide, polyalkylene succinate, or a combination thereof, but is not limited thereto.
  • the polyalkylene oxide may be polyethylene oxide, polypropylene oxide, polybutylene oxide, polypentylene oxide, polyhexylene oxide, polyheptylene oxide, etc., for example, polyethylene oxide, polypropylene oxide, or polybutylene. It may be oxide, etc., for example, polyethylene oxide, polypropylene oxide, etc., but is not limited thereto.
  • the polyalkylene succinate may be polyethylene succinate, polypropylene succinate, polybutylene succinate, polypentylene succinate, polyhexylene succinate, polyheptylene succinate, or polyoxylene succinate,
  • it may be polyethylene succinate, polypropylene succinate, or polybutylene succinate, for example, polybutylene succinate, but is not limited thereto.
  • the polymer included in the shell 5 may have a melting point of 90°C to 120°C, for example, the melting point of the polymer may be 90°C or higher, for example 95°C or higher, for example 100°C or higher, e.g.
  • the melting point of the polymer may be 120°C or lower, for example, 115°C or lower, for example, 110°C or lower, but is not limited thereto. Since the melting point of the polymer contained in the shell 5 is within the above range, the shell 5 is maintained stably in the operating temperature range during charging and discharging of the battery, and the resistance of the battery is not increased, and the shell 5 is maintained at a high temperature of 100°C or higher. This can be properly melted, and the foaming agent of the core 3 can be released in a timely manner, effectively suppressing the occurrence of short circuit in the battery.
  • the additive 1 may be in the form of a fiber formed using electrospinning, that is, in the form of a fiber.
  • the core material is effectively eluted at high temperatures, and battery resistance can be quickly increased, effectively suppressing the short circuit phenomenon of the battery.
  • the additive 1 may have a shape such as amorphous, plate-shaped, or spherical as long as it has a structure including a core 3 and a shell 5 surrounding it, but is not limited thereto.
  • the electrospinning process can be performed by a known process taking into account the melting temperature of the foaming agent and the thermoplastic resin.
  • An electrolyte solution for a lithium secondary battery includes a non-aqueous organic solvent, a lithium salt, and the above-described additives.
  • the additive (1) may be included in an amount of 0.1% by weight to 10% by weight based on the total weight of the electrolyte for a lithium secondary battery.
  • the additive is present in an amount of 0.2% by weight or more, for example, 0.3% by weight or more, 0.4% by weight or more, 0.5% by weight or more, 0.6% by weight or more, 0, based on the total weight of the electrolyte for a lithium secondary battery.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the non-aqueous organic solvent may be carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent.
  • the carbonate-based solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), and ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), etc.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MEC methylpropyl carbonate
  • MEC methylethyl carbonate
  • EC propylene carbonate
  • PC butylene carbonate
  • the ester-based solvents include methyl acetate, ethyl acetate, n-propyl acetate, t-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, decanolide, and mevalonolactone. ), caprolactone
  • the ether-based solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used. Additionally, cyclohexanone, etc. may be used as the ketone-based solvent.
  • the alcohol-based solvent may be ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent may be R-CN (R is a straight-chain, branched, or ring-shaped hydrocarbon group having 2 to 20 carbon atoms. , may contain a double bond aromatic ring or an ether bond), amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, etc. can be used. .
  • the non-aqueous organic solvents can be used alone or in a mixture of one or more, and when used in a mixture of more than one, the mixing ratio can be appropriately adjusted according to the desired battery performance, which is widely understood by those working in the field. It can be.
  • the non-aqueous organic solvent may further include an aromatic hydrocarbon-based organic solvent in addition to the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based solvent may be mixed at a volume ratio of 1:1 to 30:1.
  • aromatic hydrocarbon-based solvent an aromatic hydrocarbon-based compound of the following formula (1) may be used.
  • R 201 to R 206 are the same or different from each other and may be hydrogen, halogen, an alkyl group having 1 to 10 carbon atoms, a haloalkyl group, or a combination thereof.
  • aromatic hydrocarbon solvent examples include benzene, fluorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, and 1,2,3-trifluo.
  • the electrolyte may further include vinylene carbonate, vinyl ethylene carbonate, or an ethylene-based carbonate-based compound of the following formula (2) as a life-enhancing additive.
  • R 207 and R 208 are the same or different from each other and are selected from hydrogen, a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a fluorinated alkyl group having 1 to 5 carbon atoms, where R At least one of 207 and R 208 is selected from a halogen group, a cyano group (CN), a nitro group (NO 2 ), or a fluorinated alkyl group having 1 to 5 carbon atoms, provided that both R 207 and R 208 are not hydrogen.
  • ethylene carbonate compounds include difluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, or fluoroethylene carbonate. I can hear it. When using more of these life-enhancing additives, the amount used can be adjusted appropriately.
  • the lithium salt is a substance that dissolves in a non-aqueous organic solvent and acts as a source of lithium ions in the battery, enabling the operation of a basic lithium secondary battery and promoting the movement of lithium ions between the positive and negative electrodes. .
  • lithium salt examples include LiPF 6 , LiBF 4 , LiDFOP, LiDFOB, LiPO 2 F 2 , LiSbF 6 , LiAsF 6 , LiN(SO 2 C 2 F 5 ) 2 , Li(CF 3 SO 2 ) 2 N, LiN( SO 3 C 2 F 5 ) 2 , Li(FSO 2 ) 2 N (lithium bis(fluorosulfonyl)imide: LiFSI), LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN ( C One or two or more selected from C 2 O 4 ) 2 (lithium bis(oxalato) borate (LiBOB) may be mentioned.
  • the concentration of lithium salt be used within the range of 0.1M to 2.0M.
  • the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be achieved and lithium ions can move effectively.
  • the additives and electrolyte solution can be applied to lithium secondary batteries.
  • a lithium secondary battery includes a positive electrode 114 including a positive electrode active material; A negative electrode (112) containing a negative electrode active material; and the electrolyte solution described above.
  • Lithium secondary batteries can be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries depending on the type of separator and electrolyte used, and can be classified into cylindrical, prismatic, coin, pouch, etc. depending on their shape. , Depending on the size, it can be divided into bulk type and thin film type. The structures and manufacturing methods of these batteries are widely known in the field, so detailed descriptions are omitted.
  • FIG. 2 schematically shows the structure of a lithium secondary battery according to one embodiment.
  • the lithium secondary battery 100 according to one embodiment is disposed between the positive electrode 114, the negative electrode 112 located opposite the positive electrode 114, and the positive electrode 114 and the negative electrode 112.
  • a battery cell including a separator 113 and an electrolyte solution (not shown) impregnating the positive electrode 114, the negative electrode 112, and the separator 113, a battery container 120 containing the battery cell, and the battery. It includes a sealing member 140 that seals the container 120.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer located on the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound) can be used.
  • at least one type of complex oxide of a metal containing cobalt, manganese, nickel, or a combination thereof and lithium can be used.
  • a part of the metal of the complex oxide may be substituted with a metal other than another metal, or it may be a phosphoric acid compound of the complex oxide, such as at least one selected from LiFePO 4 , LiCoPO 4 , or LiMnPO 4 , and the complex oxide Those having a coating layer on the surface may be used, or a mixture of the above complex oxide and a complex oxide having a coating layer may be used.
  • the coating layer may include at least one coating element compound selected from the oxide of the coating element, the hydroxide of the coating element, the oxyhydroxide of the coating element, the oxycarbonate of the coating element, or the hydroxycarbonate of the coating element. .
  • the compound forming the coating layer may be amorphous or crystalline.
  • Coating elements included in the coating layer may include Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or mixtures thereof.
  • any coating method may be used as long as the above compounds can be coated with these elements in a manner that does not adversely affect the physical properties of the positive electrode active material (e.g., spray coating, dipping method, etc.). Since this is well-understood by people working in the field, detailed explanation will be omitted.
  • the positive electrode active material may be, for example, one or more types of lithium complex oxides represented by the following Chemical Formula 3.
  • M 1 , M 2 and M 3 are each independently Ni, Co, Mn, Al, Sr, Mg or It may be any one selected from metals such as La and combinations thereof.
  • the nickel content is It may be 60% or more (a ⁇ 0.6), and more specifically, it may be 80% or more (a ⁇ 0.8).
  • the nickel content may be 60% or more (e ⁇ 0.6), more specifically 80% or more (e ⁇ 0.8 ) can be.
  • the content of the positive electrode active material may be 90% by weight to 98% by weight based on the total weight of the positive electrode active material layer.
  • the positive active material layer may optionally include a conductive material and a binder.
  • the content of the conductive material and binder may be 1.0% by weight to 5.0% by weight, respectively, based on the total weight of the positive electrode active material layer.
  • the conductive material is used to provide conductivity to the positive electrode.
  • any electronically conductive material can be used as long as it does not cause chemical change. Examples include natural graphite, artificial graphite, carbon black, acetylene black, and Ketjen. Carbon-based materials such as black and carbon fiber; Metallic substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • the binder serves to attach the positive electrode active material particles to each other well and also to attach the positive electrode active material to the current collector.
  • Representative examples include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, and polyvinyl alcohol. Chloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, etc. can be used, but are not limited to these.
  • Al may be used as the positive electrode current collector, but is not limited thereto.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer including a negative electrode active material formed on the negative electrode current collector.
  • the negative electrode active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • the material capable of reversibly intercalating/deintercalating lithium ions is a carbon material.
  • Any carbon-based negative electrode active material commonly used in lithium secondary batteries can be used, and representative examples include crystalline carbon, Amorphous carbon or a combination thereof can be used.
  • Examples of the crystalline carbon include graphite such as amorphous, plate-shaped, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon or hard carbon ( hard carbon), mesophase pitch carbide, calcined coke, etc.
  • the alloy of the lithium metal includes lithium and a metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al and Sn. alloys can be used.
  • Materials capable of doping and dedoping lithium include Si, Si-C composite, SiOx (0 ⁇ x ⁇ 2), and Si-Q alloy (where Q is an alkali metal, alkaline earth metal, group 13 element, group 14 element, 15 Elements selected from group elements, group 16 elements, transition metals, rare earth elements, and combinations thereof, but not Si), Sn, SnO 2 , Sn-R (wherein R is an alkali metal, alkaline earth metal, group 13 element, 14 Elements selected from group elements, group 15 elements, group 16 elements, transition metals, rare earth elements, and combinations thereof, but not Sn, may be included, and at least one of these may be mixed with SiO 2 . .
  • the elements Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, One selected from S, Se, Te, Po, and combinations thereof can be used.
  • the transition metal oxide may include vanadium oxide, lithium vanadium oxide, or lithium titanium oxide.
  • the negative electrode active material may be a Si-C composite containing a Si-based active material and a carbon-based active material.
  • the average particle diameter of the Si-based active material in the Si-C composite may be 50 nm to 200 nm.
  • volume expansion that occurs during charging and discharging can be suppressed, and disconnection of the conductive path due to particle crushing during charging and discharging can be prevented.
  • the Si-based active material may be included in an amount of 1 to 60% by weight based on the total weight of the Si-C composite, for example, 3 It may be included in 60% by weight.
  • the negative electrode active material may further include crystalline carbon along with the Si-C composite described above.
  • the Si-C composite and crystalline carbon may be included in the form of a mixture, in which case the Si-C composite and crystalline carbon have a ratio of 1:99 to 50. : Can be included in a weight ratio of 50. More specifically, the Si-C composite and crystalline carbon may be included in a weight ratio of 5:95 to 20:80.
  • the crystalline carbon may include, for example, graphite, and more specifically, may include natural graphite, artificial graphite, or mixtures thereof.
  • the average particle diameter of the crystalline carbon may be 5 ⁇ m to 30 ⁇ m.
  • the average particle diameter may be the particle size at 50% by volume (D50) in the cumulative size-distribution curve.
  • the Si-C composite may further include a shell surrounding the surface of the Si-C composite, and the shell may include amorphous carbon.
  • the amorphous carbon may include soft carbon, hard carbon, mesophase pitch carbide, calcined coke, or mixtures thereof.
  • the amorphous carbon may be included in an amount of 1 to 50 parts by weight, for example, 5 to 50 parts by weight, or 10 to 50 parts by weight, based on 100 parts by weight of the carbon-based active material.
  • the content of the negative electrode active material in the negative electrode active material layer may be 95% by weight to 99% by weight based on the total weight of the negative electrode active material layer.
  • the anode active material layer includes a binder and may optionally further include a conductive material.
  • the content of the binder in the negative electrode active material layer may be 1% to 5% by weight based on the total weight of the negative electrode active material layer.
  • 90% to 98% by weight of the negative electrode active material, 1% to 5% by weight of the binder, and 1% to 5% by weight of the conductive material can be used.
  • the binder serves to adhere the negative electrode active material particles to each other and also helps the negative electrode active material to adhere to the current collector.
  • the binder may be a water-insoluble binder, a water-soluble binder, or a combination thereof.
  • the water-insoluble binder includes polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamidoimide, polyimide, or A combination of these can be mentioned.
  • the water-soluble binder examples include a rubber binder or a polymer resin binder.
  • the rubber-based binder may be selected from styrene-butadiene rubber, acrylated styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluorine rubber, and combinations thereof.
  • the polymer resin binder is polytetrafluoroethylene, ethylene propylene copolymer, polyethylene oxide, polyvinylpyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, and ethylene propylene diene copolymer. , polyvinylpyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and combinations thereof.
  • a cellulose-based compound capable of imparting viscosity may be further included as a thickener.
  • a cellulose-based compound capable of imparting viscosity may be further included as a thickener.
  • the cellulose-based compound one or more types of carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, or alkali metal salts thereof may be used. Na, K, or Li can be used as the alkali metal.
  • the amount of the thickener used may be 0.1 to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the conductive material is used to provide conductivity to the electrode, and in the battery being constructed, any electronically conductive material can be used as long as it does not cause chemical change.
  • any electronically conductive material can be used as long as it does not cause chemical change. Examples include natural graphite, artificial graphite, carbon black, acetylene black, and Ketjen.
  • Carbon-based materials such as black and carbon fiber; Metallic substances such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers; Conductive polymers such as polyphenylene derivatives; Alternatively, a conductive material containing a mixture thereof may be used.
  • the negative electrode current collector may be selected from copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • a separator may exist between the positive and negative electrodes.
  • the separator is a porous substrate; Or it may be a composite porous substrate.
  • the porous substrate is a substrate containing pores, and lithium ions can move through the pores.
  • the porous substrate may be, for example, polyethylene, polypropylene, polyvinylidene fluoride, or a multilayer film of two or more layers thereof, and may be used as a polyethylene/polypropylene two-layer separator, a polyethylene/polypropylene/polyethylene three-layer separator, or a polypropylene/polyethylene/ A mixed multilayer membrane such as a polypropylene three-layer separator may be used.
  • the composite porous substrate may be in a form including a porous substrate and a functional layer located on the porous substrate.
  • the functional layer may be, for example, at least one of a heat-resistant layer and an adhesive layer.
  • the heat-resistant layer may include a heat-resistant resin and optionally a filler.
  • the adhesive layer may include an adhesive resin and optionally a filler.
  • the filler may be an organic filler or an inorganic filler.
  • the additive for a lithium secondary battery may be included in the electrolyte solution as described above, and may also be applied to a current collector, electrode tab, separator, etc. of a lithium secondary battery.
  • the additive When the additive is applied to a current collector or an electrode tab, the additive may be dispersed in an appropriate solvent and coated with the additive on the uncoated portion of the current collector or the electrode tab.
  • a coating solution containing the additive in the separator component or dispersing the additive in an appropriate solvent may be coated on at least one side of the separator.
  • Polymer solutions containing 1 wt% of foaming agent (SMG-200B, Hanmir) and 10 wt% of poly(vinylidene fluoride hexafluoropropylene) (PVDF-HFP) were prepared, and the thickness ratio of the core and shell was 1: An additive in the form of a fiber was manufactured by electrospinning to 1.
  • a polymer solution containing 2 wt% of a foaming agent (SMG-200B, Hanmir) and 10 wt% of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared, and the thickness of the core and shell were 2:
  • An additive in the form of a fiber was manufactured by electrospinning to 1.
  • a polymer solution containing 4 wt% of a foaming agent (SMG-200B, Hanmir Co., Ltd.) and 10 wt% of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared, and the thickness of the core and shell were 4:
  • An additive in the form of a fiber was manufactured by electrospinning to 1.
  • An additive in the form of a fiber was manufactured in the same manner as in Synthesis Example 1, except that electrospinning was performed so that the thickness of the core and shell was 1:2.
  • a fiber-type additive was manufactured in the same manner as in Synthesis Example 1, except that electrospinning was performed so that the thickness of the core and shell was 5:1.
  • a fiber-type additive was prepared in the same manner as Synthesis Example 1, except that a polymer solution containing polyethylene glycol (PEG) was used instead of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP). .
  • PEG polyethylene glycol
  • PVDF-HFP poly(vinylidene fluoride-hexafluoropropylene)
  • a fiber-type additive was prepared in the same manner as Synthesis Example 1, except that a polymer solution containing polypropylene (PP) was used instead of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP). .
  • PP polypropylene
  • PVDF-HFP poly(vinylidene fluoride-hexafluoropropylene)
  • a lithium secondary battery was manufactured using LiCoO 2 as the anode, artificial graphite as the cathode, and the electrolyte having the composition as follows.
  • Additive 3 parts by weight of fluoroethylene carbonate, 2 parts by weight of the additive prepared according to Synthesis Example 1 (however, in the electrolyte composition, “part by weight” refers to the additive for 100 weight of the entire electrolyte solution (lithium salt and non-aqueous organic solvent) refers to the relative weight of .)
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.5 parts by weight of the additive prepared according to Synthesis Example 2 was used instead of the additive prepared in Synthesis Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 1.25 parts by weight of the additive prepared in Synthesis Example 3 was used instead of the additive prepared in Synthesis Example 1.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the additive prepared in Synthesis Example 1 was not used.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that 0.1 parts by weight of a foaming agent (SMG-200B, Hanmir) was used instead of the additive prepared in Synthesis Example 1.
  • a foaming agent SMG-200B, Hanmir
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that 1 part by weight of a foaming agent (SMG-200B, Hanmir) was used instead of the additive prepared in Synthesis Example 1.
  • a foaming agent SMG-200B, Hanmir
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 2 parts by weight of the additive prepared in Comparative Synthesis Example 1 was used instead of the additive prepared in Synthesis Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that 2 parts by weight of the additive prepared according to Comparative Synthesis Example 2 was used instead of the additive prepared in Synthesis Example 1.
  • the lithium secondary batteries according to Examples 1 to 3 have lower ⁇ OCV values when evaluated for high temperature storage compared to the lithium secondary batteries according to Comparative Examples 3 and 4. From this, it can be seen that the lithium secondary battery according to the example has a better cell capacity retention rate at high temperatures than the lithium secondary battery according to the comparative example.
  • Lithium secondary batteries according to Examples 1 to 3 and Comparative Examples 1 to 5 were placed in a chamber, the temperature was increased at a rate of 5 ⁇ 2°C per minute from room temperature (25°C), and maintained at this temperature for about 1 hour. Changes in the lithium secondary battery were observed, the above process was performed twice, and the results are shown in Table 2 below.
  • Examples 1 to 3 show that when exposed to high temperature, the shell of the additive according to one embodiment melts, the foaming agent contained in the core is released, the volume of the foaming agent increases, and the battery resistance rapidly increases, resulting in a temperature increase of up to 136°C.
  • Thermal runaway phenomenon does not appear in high-temperature thermal exposure evaluation.
  • thermal runaway phenomenon was observed in Comparative Examples 1, 2, and 5 when exposed to a temperature of 130°C. This is interpreted to mean that when the additive according to the present invention is not included or a small amount of foaming agent is added, a thermal runaway phenomenon occurs because there is no device to control short circuit between electrodes at high temperatures.
  • the lithium secondary battery according to the example maintains battery characteristics in the battery operating temperature range and has excellent safety at high temperatures compared to the lithium secondary battery according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

발포제를 포함하는 코어, 및 상기 코어를 둘러싸는 쉘을 포함하고, 상기 쉘은 90 ℃ 내지 120 ℃의 융점을 가지는 고분자를 포함하는 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지를 제공한다.

Description

리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
본 기재는 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 재충전이 가능하며, 종래 납 축전지, 니켈-카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하기 때문에 노트북이나 핸드폰, 전동공구, 전기자전거용으로 상품화되고 있으며, 추가적인 에너지 밀도 향상을 위한 연구 개발이 활발하게 진행되고 있다.
이러한 리튬 이차 전지는 리튬을 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.
특히, 전해액은 리튬염이 용해된 유기 용매를 사용하고 있으며, 이러한 전해액은 리튬 이차 전지의 안정성 및 성능을 결정하는데 중요하다.
전해액의 리튬염으로 가장 많이 사용되고 있는 LiPF6는 전해액의 유기 용매와 반응하여 용매의 고갈을 촉진시키고 다량의 가스를 발생시키는 문제를 가지고 있다. LiPF6가 분해되면 LiF와 PF5를 생성하고, 이는 전지에서 전해액 고갈을 야기하며 고온 성능 열화 및 안전성에 취약한 결과를 초래한다.
이에, 고온 조건에서도 성능 저하 없이 안전성이 향상된 전해액이 요구되고 있다.
일 구현예는 열적 안정성이 개선된 리튬 이차 전지용 첨가제를 제공하는 것이다.
다른 구현예는 상기 첨가제를 적용함으로써 수명 특성, 고온 안전성 및 고온 신뢰성이 개선된 리튬 이차 전지용 전해액을 제공하는 것이다.
또 다른 구현예는 상기 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지를 제공하는 것이다.
일 구현예에 따른 리튬 이차 전지용 첨가제는 발포제를 포함하는 코어, 및 상기 코어를 둘러싸는 쉘을 포함하고, 상기 쉘은 90 ℃ 내지 120 ℃의 융점을 가지는 고분자를 포함한다.
상기 코어의 두께와 상기 쉘의 두께의 비는 1:1 내지 4:1일 수 있다.
상기 코어는 두께가 0.1㎛ 내지 2.0㎛이고, 상기 쉘은 두께가 0.025㎛ 내지 0.5㎛일 수 있다.
상기 발포제는 유리 발포제, 탄화수소계 화합물, 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 또는 이들의 조합을 포함할 수 있다.
상기 유리 발포제는 이산화규소, 산화나트륨, 및 물을 포함할 수 있다.
상기 유리 발포제는 이산화규소 60 중량% 내지 70 중량%, 산화나트륨 20 중량% 내지 30 중량%, 및 물 5 중량% 내지 20 중량%을 포함할 수 있다.
상기 고분자는 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP, Poly(vinylidene fluoride-hexafluoropropylene)), 폴리아크릴산(polyacrylic acid), 폴리에틸렌(polyethylene), 폴리메틸메타크릴산(poly(methyl methacrylate)), 폴리알킬렌옥사이드, 폴리알킬렌숙시네이트, 또는 이들의 조합을 포함할 수 있다.
상기 첨가제는 전기 방사를 이용하여 형성된 파이버 형태일 수 있다.
다른 일 구현예에 따르면, 비수성 유기 용매, 리튬염, 및 전술한 리튬 이차 전지용 첨가제를 포함하는 리튬 이차 전지용 전해액을 제공한다.
상기 리튬 이차 전지용 첨가제는 상기 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량%, 0.1 중량% 내지 5.0 중량% 또는 0.1 중량% 내지 3.0 중량%의 양으로 포함될 수 있다.
또 다른 일 구현예에 따르면, 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전술한 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 리튬 이차 전지용 첨가제는 전해액 함침성이 우수하고, 전해액에 적용 시 전지 저항의 상승 없이 전지 특성을 유지시킬 수 있다.
또한, 일 구현예에 따른 리튬 이차 전지용 첨가제를 포함하는 리튬 이차 전지는 전지 구동 온도 이상에서는 저항의 상승으로 쇼트 발생이 억제되고, 전지의 안전성이 개선될 수 있다.
도 1은 일 구현예에 따른 첨가제의 단면도이다.
도 2는 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다.
<부호의 설명>
100: 리튬 이차 전지
112: 음극
113: 세퍼레이터
114: 양극
120: 전지 용기
140: 봉입 부재
이하, 구현예에 대하여 해당 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 실제 적용되는 구조는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다.
층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
본 명세서에서 "A, B 또는 C중 적어도 하나", "A, B, C 또는 이들의 조합 중 하나" 및 "A, B, C 및 이들의 조합 중 하나"는 각각의 구성요소 및 이들의 조합을 모두 의미한다(예를 들어 A; B; A 및 B; A 및 C; B 및 C; 또는 A, B, 및 C).
이하에서 "조합"이란 둘 이상의 혼합물, 상호치환 및 둘 이상의 적층 구조를 포함한다.
이하 일 구현예에 따른 리튬 이차 전지용 첨가제를 도 1을 참고하여 설명한다.
도 1은 일 구현예에 따른 첨가제의 단면도이다.
도 1을 참고하면 일 구현예에 따른 첨가제(1)는 코어(3), 및 상기 코어(3)를 둘러싸는 쉘(5)을 포함한다. 상기 코어(3)는 발포제를 포함하며, 상기 쉘(5)은 90 ℃내지 120 ℃의 융점을 가지는 고분자를 포함한다.
상기 첨가제(1)는 전지 구동 시 전지의 저항을 높이지 않아 전지 특성을 유지할 수 있다. 상기 쉘(5)의 융점이 상기 범위를 가짐으로써 고온에서 쉘(5)이 적절히 용융될 수 있고, 코어(3)의 발포제가 제때에 방출되어 전지의 쇼트 발생을 효과적으로 억제할 수 있다. 또한, 상기 코어(3)가 발포제를 포함함으로써 고온에서 상기 첨가제의 쉘(5)이 용융되면 발포제가 코어(3) 외부로 방출됨과 함께 부풀어 전지의 저항을 높이고 전압 강하를 일으켜 전지의 쇼트 발생을 억제할 수 있다.
상기 코어(3)의 두께와 상기 쉘(5)의 두께의 비는 1:1 내지 4:1 일 수 있고, 예를 들어 3:2 일 수 있고, 예를 들어 2:1 일 수 있고, 예를 들어 5:2 일 수 있고, 예를 들어 3:1 일 수 있으며, 이들에 제한되지 않는다.
상기 코어(3)와 쉘(5)의 두께비가 상기의 범위에 있는 경우 쉘(5)의 용융과 코어 물질의 방출에 걸리는 시간을 적절한 범위로 조절할 수 있으며, 고온 상태에서 전극 쇼트 발생을 효과적으로 제어할 수 있다. 또한, 고온 상태가 아닌 경우에는 쉘(5)이 쉽게 파손되지 않아 전지 저항을 불필요하게 증가시키고 전지 특성이 저하되는 것을 방지할 수 있다.
코어(3) 및 쉘(5)을 포함하는 첨가제가 섬유(파이버) 형태인 경우, 상기 “코어의 두께”는 섬유 단면인 원의 중심으로부터 코어의 둘레상 한 점에 이르는 선분의 직선 길이를 말하며, “쉘의 두께”는 섬유 단면인 원의 중심으로부터 쉘의 둘레상 한 점에 이르는 선분을 이을 때, 상기 선분이 코어의 둘레와 만나는 한 점과 쉘의 둘레와 만나는 한 점 사이의 직선 길이를 말한다.
코어(3) 및 쉘(5)을 포함하는 첨가제가 구형인 경우, 상기 “코어의 두께”는 구의 중심으로부터 코어의 표면상 한 점에 이르는 선분의 길이를 말하며, “쉘의 두께”는 구의 중심으로부터 쉘의 표면상 한 점에 이르는 선분을 이을 때, 상기 선분이 코어의 표면과 만나는 한 점과 쉘의 표면과 만나는 한 점 사이의 길이를 말한다.
상기 코어(3)의 두께는 0.1㎛ 내지 2.0㎛일 수 있고, 예를 들어 0.1㎛ 내지 1.5㎛일 수 있고, 예를 들어 0.1㎛ 내지 1.2㎛일 수 있고, 예를 들어 0.1㎛ 내지 1.0㎛일 수 있고, 예를 들어 0.3㎛ 내지 2㎛일 수 있고, 예를 들어 0.3㎛ 내지 1.5㎛일 수 있고, 예를 들어 0.3㎛ 내지 1.2㎛일 수 있고, 예를 들어 0.5㎛ 내지 1.0㎛일 수 있고, 이들에 제한되지 않는다.
코어(3)가 상기 범위의 두께를 가짐으로써 제때에 쉘(5)의 용융과 함께 코어 물질이 방출되어 전극 쇼트 발생을 효과적으로 제어할 수 있음과 동시에 전해액 함침성을 저하시키지 않고, 전지 저항을 불필요하게 증가시키지 않아 전지 특성을 유지할 수 있다.
상기 코어(3)에 포함되는 발포제는 일반적으로 사용되는 발포제를 사용할 수 있으며, 예를 들어 유리 발포제, 탄화수소계 화합물, 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 또는 이들의 조합을 포함할 수 있다.
상기 유리 발포제는 이산화규소, 산화나트륨, 및 물을 포함할 수 있다. 상기 이산화규소는 유리 발포제 100 중량%를 기준으로 60 중량% 내지 70 중량%, 예를 들어 65 중량%의 양으로 포함될 수 있으며, 이에 제한되지 않는다. 상기 산화나트륨은 유리 발포제 100 중량%를 기준으로 20 중량% 내지 30중량%, 예를 들어 25 중량%의 양으로 포함될 수 있으며, 이에 제한되지 않는다. 상기 물은 유리 발포제 내 이산화규소 및 산화나트륨을 제외한 나머지 성분으로, 예를 들어 5중량% 내지 20 중량%, 예를 들어 10 중량%의 양으로 포함될 수 있으며, 이에 제한되지 않는다.
상기 탄화수소계 화합물은 탄소 수 1개 내지 6개의 탄화수소를 포함할 수 있고, 예를 들어, 염소화 탄화수소 화합물, 비염소화 탄화수소 화합물, 또는 이들의 조합을 포함할 수 있다.
상기 탄화수소계 화합물은 디클로로에탄, 프로필클로라이드, 이소프로필클로라이드, 부틸클로라이드, 이소부틸클로라이드, 펜틸클로라이드, 이소펜틸클로라이드, n-부탄, 이소부탄, n-펜탄, 이소펜탄, 시클로펜탄, n-헥산 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있으나, 이들에 제한되는 것은 아니다.
상기 히드로플루오로올레핀계 화합물은 예를 들어, 염소화 히드로플루오로올레핀계 화합물, 비염소화 히드로플루오로올레핀계 화합물, 또는 이들 모두를 포함할 수 있다.
상기 히드로플루오로올레핀계 화합물은, 이 기술분야에서 공지된 종류를 사용할 수 있고, 예를 들어, 트랜스 1-클로로-3,3,3-트리플루오로프로펜(trans CF3CH=CClH), 시스 1-클로로-3,3,3-트리플루오로프로펜(cis CF3CH=CClH), 트랜스 1-클로로-2,3,3-트리플루오로프로펜(trans CHF2CF=CClH), 시스 1-클로로-2,3,3-트리플루오로프로펜(cis CHF2CF=CClH), 트랜스 1-클로로-1,3,3-트리플루오로프로펜(trans CHF2CH=CClF), 시스 1-클로로-1,3,3-트리플루오로프로펜(cis CHF2CH=CClF), 트랜스 2-클로로-1,3,3-트리플루오로프로펜(trans CHF2CCl=CHF), 시스 2-클로로-1,3,3-트리플루오로프로펜(cis CHF2CCl=CHF), 트랜스 2-클로로-1,1,3-트리플루오로프로펜(trans CH2FCCl=CF2), 시스 2-클로로-1,1,3-트리플루오로프로펜(cis CH2FCCl=CF2), 트랜스 3-클로로-1,2,3-트리플루오로프로펜(trans CHFClCF=CFH), 시스 3-클로로-1,2,3-트리플루오로프로펜(cis CHFClCF=CFH), 트랜스 3-클로로-1,1,2-트리플루오로프로펜(trans CH2ClCF=CF2), 시스 3-클로로-1,1,2-트리플루오로프로펜(cis CH2ClCF=CF2), 트랜스 3-클로로-2,3,3-트리플루오로프로펜(trans CF2ClCF=CH2), 시스 3-클로로-2,3,3-트리플루오로프로펜(cis CF2ClCF=CH2) 등의 모노클로로트리플루오로프로펜; 2,3,3-트리플루오로프로펜(CHF2CF=CH2), 1,1,2-트리플루오로프로펜(CH3CF=CF2), 1,1,3-트리플루오로프로펜(CH2FCH=CF2), 1,3,3-트리플루오로프로펜(CHF2CH=CHF) 등의 트리플루오로프로펜; 1,2,3,3-테트라플루오로-1-프로펜, 2,3,3,3-테트라플루오로-1-프로펜, 1,3,3,3-테트라플루오로-1-프로펜, 1,1,2,3-테트라플루오로-1-프로펜, 1,1,3,3-테트라플루오로-1-프로펜, 1,2,3,3-테트라플루오로-1-프로펜 등의 테트라플루오로프로펜; 1,2,3,3,3-펜타플루오로-1-프로펜, 1,1,3,3,3-펜타플루오로-1-프로펜, 1,1,2,3,3-펜타플루오로-1-프로펜 등의 펜타플루오로프로펜; 2,3,3,4,4,4-헥사플루오로-1-부텐, 1,1,1,4,4,4-헥사플루오로-2-부텐, 1,3,3,4,4,4-헥사플루오로-1-부텐, 1,2,3,4,4,4-헥사플루오로-1-부텐, 1,2,3,3,4,4-헥사플루오로-1-부텐 1,1,2,3,4,4-헥사플루오로-2-부텐, 1,1,1,2,3,4-헥사플루오로-2-부텐, 1,1,1,2,3,3-헥사플루오로-2-부텐, 1,1,1,3,4,4-헥사플루오로-2-부텐, 1,1,2,3,3,4-헥사플루오로-1-부텐 등의 헥사플루오로부텐 및 이들의 조합에서 선택되는 적어도 하나를 포함할 수 있다.
상기 쉘(5)의 두께는 0.025㎛ 내지 0.5㎛일 수 있고, 예를 들어 0.025㎛ 내지 0.45㎛일 수 있고, 예를 들어 0.025㎛ 내지 0.4㎛일 수 있고, 예를 들어 0.025㎛ 내지 0.35㎛, 예를 들어 0.025㎛ 내지 0.3㎛일 수 있고, 예를 들어 0.05㎛ 내지 0.5㎛일 수 있고, 예를 들어 0.1㎛ 내지 0.5㎛일 수 있고, 예를 들어 0.15㎛ 내지 0.5㎛일 수 있고, 예를 들어 0.2㎛ 내지 0.5㎛일 수 있고, 예를 들어 0.2㎛ 내지 0.45㎛일 수 있고, 예를 들어 0.2㎛ 내지 0.4㎛일 수 있으며, 이들에 제한되지 않는다.
쉘(5)이 상기 범위의 두께를 가짐으로써 제때에 쉘(5)의 용융 및 코어 물질의 방출로 전극 쇼트 발생을 효과적으로 제어할 수 있음과 동시에 전지 저항을 불필요하게 증가시키지 않아 전지 특성을 유지할 수 있다. 일 구현예에서, 상기 쉘(5)은 90 ℃ 내지 120 ℃의 융점을 가지는 고분자를 포함할 수 있고, 예를 들어 고분자는 열가소성 수지일 수 있다. 이러한 고분자는 이온 전도도가 우수하고 전지의 구동 온도 범위에서는 안정하게 유지되면서도 특정 온도에서 용융될 수 있으므로 전지의 안전성에 기여할 수 있다. 또한 상기 쉘(5)에 포함되는 고분자는 전해액 젖음성(wettability)을 개선시킬 수 있다.
일 예로, 상기 열가소성 수지는 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP, poly(vinylidene fluoride-hexafluoropropylene)), 폴리아크릴산(polyacrylic acid), 폴리에틸렌(polyethylene), 폴리메틸메타크릴산(poly(methyl methacrylate)), 폴리알킬렌옥사이드, 폴리알킬렌숙시네이트, 또는 이들의 조합일 수 있고, 예를 들어 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP, poly(vinylidene fluoride-hexafluoropropylene)), 폴리알킬렌옥사이드, 폴리알킬렌숙시네이트, 또는 이들의 조합일 수 있으며, 이들에 제한되지 않는다.
상기 폴리알킬렌옥사이드는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리부틸렌옥사이드, 폴리펜틸렌옥사이드, 폴리헥실렌옥사이드, 폴리헵틸렌옥사이드 등일 수 있고, 예를 들어 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 또는 폴리부틸렌옥사이드 등일 수 있고, 예를 들어, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드 등일 수 있으며, 이들에 제한되지 않는다.
상기 폴리알킬렌숙시네이트는 폴리에틸렌숙시네이트, 폴리프로필렌숙시네이트, 폴리부틸렌숙시네이트, 폴리펜틸렌숙시네이트, 폴리헥실렌숙시네이트, 폴리헵틸렌숙시네이트, 또는 폴리옥실렌숙시네이트 등일 수 있고, 예를 들어 폴리에틸렌숙시네이트, 폴리프로필렌숙시네이트, 또는 폴리부틸렌숙시네이트 등일 수 있고, 예를 들어 폴리부틸렌숙시네이트 등일 수 있으며, 이들에 제한되지 않는다.
상기 쉘(5)에 포함되는 고분자는 90 ℃ 내지 120 ℃의 융점을 가질 수 있고, 예를 들어 고분자의 융점은 90℃이상, 예를 들어 95℃이상, 예를 들어 100℃이상일 수 있고, 예를 들어 고분자의 융점이 120℃이하, 예를 들어 115℃이하, 예를 들어 110℃이하일 수 있고, 이들의 제한되지 않는다. 쉘(5)에 포함되는 고분자의 융점이 상기 범위를 가짐으로써 전지의 충방전시 구동 온도 범위에서는 쉘(5)이 안정하게 유지되어 전지의 저항을 상승시키지 않으며 100℃ 이상의 고온에서 쉘(5)이 적절히 용융될 수 있고, 코어(3)의 발포제가 제때에 방출되어 전지의 쇼트 발생을 효과적으로 억제할 수 있다.
상기 첨가제(1)는 전기 방사를 이용하여 형성된 파이버 형태, 즉 섬유 형태일 수 있다. 상기 첨가제가 섬유 형태인 경우 고온에서 코어 물질의 용출이 효과적으로 일어나고, 전지 저항을 빠르게 증가시켜 전지의 쇼트 현상을 효과적으로 억제할 수 있다. 상기 섬유 형태 이외에도 코어(3) 및 이를 둘러싸는 쉘(5)을 포함하는 구조를 가질 수 있으면 첨가제(1)는 무정형, 판상형, 구형 등의 형태일 수 있고, 이들에 제한되지 않는다.
코어-쉘 구조의 첨가제(1) 제조 시 전기 방사 공정은 발포제 및 열가소성 수지의 용융 온도를 고려하여 공지된 공정에 의해 실시할 수 있다.
다른 구현예에 따른 리튬 이차 전지용 전해액은 비수성 유기 용매, 리튬염 및 전술한 첨가제를 포함한다.
상기 첨가제(1)는 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 포함될 수 있다. 예를 들어, 상기 첨가제는 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.2 중량% 이상, 예를 들어, 0.3 중량% 이상, 0,4 중량% 이상, 0.5 중량% 이상, 0.6 중량% 이상, 0,7 중량% 이상, 0.8 중량% 이상, 0.9 중량% 이상, 또는 1 중량% 이상 및 9.0 중량% 이하, 예를 들어, 8.0 중량% 이하, 7.0 중량% 이하, 6.0 중량% 이하, 5.0 중량% 이하, 4.0 중량% 이하, 또는 3.0 중량% 이하로 포함될 수 있으며, 이들에 제한되지 않는다.
첨가제(1)의 함량이 상기 범위 내인 경우 전지 구동 온도에서는 전지 저항 증가가 없어 전지 특성을 유지시키고, 전지 구동 온도 이상에서는 전지 저항을 높여 안전성이 개선된 리튬 이차 전지를 구현할 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, t-부틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 비수성 유기 용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 1]
Figure PCTKR2023005130-appb-img-000001
상기 화학식 1에서, R201 내지 R206은 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기, 또는 이들의 조합일 수 있다.
상기 방향족 탄화수소계 용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합에서 선택되는 것이다.
상기 전해액은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트, 비닐 에틸렌 카보네이트 또는 하기 화학식 2의 에틸렌계 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.
[화학식 2]
Figure PCTKR2023005130-appb-img-000002
상기 화학식 2에서, R207 및 R208은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2), 또는 불소화된 탄소수 1 내지 5의 알킬기에서 선택되며, 상기 R207 및 R208 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2), 불소화된 탄소수 1 내지 5의 알킬기에서 선택되나, 단 R207 및 R208가 모두 수소는 아니다.
상기 에틸렌계 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다.
상기 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiDFOP, LiDFOB, LiPO2F2, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, Li(FSO2)2N(리튬 비스플루오로설포닐이미드 (lithium bis(fluorosulfonyl)imide: LiFSI), LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI, 또는 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)에서 선택되는 하나 또는 둘 이상을 들 수 있다.
리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 첨가제 및 전해액은 리튬 이차 전지에 적용될 수 있다.
이하에서는 일 구현예에 따른 리튬 이차 전지를 도 2를 참고하여 설명한다.
일 구현예에 따른 리튬 이차 전지는 양극 활물질을 포함하는 양극(114); 음극 활물질을 포함하는 음극(112); 및 전술한 전해액을 포함한다.
리튬 이차 전지는 사용하는 분리막과 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지 등으로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
여기서는 리튬 이차 전지의 일 예로 원통형 리튬 이차 전지를 예시적으로 설명한다. 도 2는 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다. 도 2를 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(114), 양극(114)과 대향하여 위치하는 음극(112), 양극(114)과 음극(112) 사이에 배치되어 있는 세퍼레이터(113) 및 양극(114), 음극(112) 및 세퍼레이터(113)를 함침하는 전해액(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 밀봉 부재(140)를 포함한다. 상기 양극은 양극 집전체 및 상기 양극 집전체에 상에 위치하는 양극 활물질 층을 포함하며, 상기 양극 활물질 층은 양극 활물질을 포함한다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 구체적으로는 코발트, 망간, 니켈 또는 이들의 조합을 포함하는 금속과 리튬과의 복합 산화물 중 적어도 1종을 사용할 수 있다.
상기 복합 산화물의 금속의 일부가 다른 금속 이외의 금속으로 치환된 것을 사용할 수도 있고, 상기 복합 산화물의 인산 화합물, 예컨대 LiFePO4, LiCoPO4, 또는 LiMnPO4에서 선택되는 적어도 1종일 수도 있으며, 상기 복합 산화물의 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 복합 산화물과 코팅층을 갖는 복합 산화물을 혼합하여 사용할 수도 있다. 상기 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 상기 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
양극 활물질은 예컨대 하기 화학식 3으로 표현되는 리튬 복합 산화물 중 1종 이상일 수 있다.
[화학식 3]
LixM1 yM2 zM3 1-y-zO2
상기 화학식 3에서,
0.5≤x≤1.8, 0<y≤1, 0≤z≤1, 0≤y+z≤1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, Sr, Mg 또는 La 등의 금속 및 이들의 조합에서 선택되는 어느 하나일 수 있다.
일 구현예에서 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiNiaMnbCocO2 (a+b+c=1), LiNiaMnbCocAldO2 (a+b+c+d=1) 또는 LiNieCofAlgO2 (e+f+g=1)에서 선택되는 적어도 1종일 수 있다.
예를 들어 상기 LiNiaMnbCocO2 (a+b+c=1), LiNiaMnbCocAldO2 (a+b+c+d=1) 및 LiNieCofAlgO2 (e+f+g=1)에서 선택되는 양극 활물질은 하이 니켈 (high Ni)계 양극 활물질일 수 있다.
예를 들어 상기 LiNiaMnbCocO2 (a+b+c=1) 및 LiNiaMnbCocAldO2 (a+b+c+d=1)의 경우, 니켈의 함량은 60% 이상 (a ≥ 0.6)일 수 있으며, 더욱 구체적으로 80% 이상 (a ≥ 0.8)일 수 있다.
예를 들어 상기 LiNieCofAlgO2 (e+f+g=1)의 경우, 니켈의 함량은 60% 이상 (e ≥ 0.6)일 수 있으며, 더욱 구체적으로 80% 이상 (e ≥ 0.8)일 수 있다.
상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
상기 양극 활물질 층은 선택적으로 도전재 및 바인더를 포함할 수 있다. 이때, 상기 도전재 및 바인더의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1.0 중량% 내지 5.0 중량%일 수 있다.
상기 도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이들에 제한되는 것은 아니다.
상기 양극 집전체로는 Al을 사용할 수 있으나 이들에 제한되는 것은 아니다.
상기 음극은 음극 집전체 및 이 음극 집전체 위에 형성되는 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다.
상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
구체적인 일 구현예에서 상기 음극 활물질은 Si계 활물질 및 탄소계 활물질을 포함하는 Si-C 복합체일 수 있다.
상기 Si-C 복합체에서 Si계 활물질의 평균 입경은 50 nm 내지 200 nm일 수 있다. 상기 Si계 활물질의 평균 입경이 상기 범위에 포함되는 경우, 충방전시 발생하는 부피 팽창을 억제할 수 있고, 충방전시 입자 파쇄에 의한 전도성 경로(conductive path)의 단절을 막을 수 있다.
상기 Si계 활물질은 상기 Si-C 복합체의 전체 중량에 대하여 1 내지 60 중량%로 포함될 수 있으며, 예컨대 3 내지 60 중량%로 포함될 수 있다.
구체적인 다른 구현예에서 상기 음극 활물질은 전술한 Si-C 복합체와 함께 결정질 탄소를 더욱 포함할 수 있다.
상기 음극 활물질이 Si-C 복합체 및 결정질 탄소를 함께 포함하는 경우, 상기 Si-C 복합체 및 결정질 탄소는 혼합물의 형태로 포함될 수 있으며, 이 경우 상기 Si-C 복합체 및 결정질 탄소는 1 : 99 내지 50 : 50의 중량비로 포함될 수 있다. 더욱 구체적으로는 상기 Si-C 복합체 및 결정질 탄소는 5 : 95 내지 20 : 80의 중량비로 포함될 수 있다.
상기 결정질 탄소는 예컨대 흑연을 포함할 수 있으며, 더욱 구체적으로는 천연 흑연, 인조 흑연 또는 이들의 혼합물을 포함할 수 있다.
상기 결정질 탄소의 평균 입경은 5 ㎛ 내지 30 ㎛일 수 있다.
본 명세서에서, 평균 입경은 누적 분포 곡선(cumulative size-distribution curve)에서 부피비로 50%에서의 입자 크기 (D50)일 수 있다.
상기 Si-C 복합체는 Si-C 복합체의 표면을 둘러싸는 쉘을 더 포함할 수 있으며, 상기 쉘은 비정질 탄소를 포함할 수 있다. 상기 비정질 탄소는 소프트 카본, 하드 카본, 메조페이스 피치 탄화물, 소성된 코크스 또는 이들의 혼합물을 포함할 수 있다.
상기 비정질 탄소는 탄소계 활물질 100 중량부에 대하여 1 내지 50 중량부, 예를 들어 5 내지 50 중량부, 또는 10 내지 50 중량부로 포함될 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
일 구현예에서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 에틸렌프로필렌 공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로서 더욱 포함할 수 있다. 상기 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합에서 선택되는 것을 사용할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 상기 세퍼레이터는 다공성 기재이거나; 또는 복합 다공성 기재일 수 있다.
상기 다공성 기재는 공극을 포함하는 기재로서 상기 공극을 통하여 리튬 이온이 이동할 수 있다. 상기 다공성 기재는 예컨대 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있다.
상기 복합 다공성 기재는 다공성 기재 및 상기 다공성 기재 상에 위치하는 기능층을 포함하는 형태일 수 있다. 상기 기능층은 추가적인 기능 부가가 가능하게 되는 관점에서, 예를 들면 내열층, 및 접착층 중 적어도 하나일 수 있으며, 예컨대 상기 내열층은 내열성 수지 및 선택적으로 필러를 포함할 수 있다. 또한, 상기 접착층은 접착성 수지 및 선택적으로 필러를 포함할 수 있다. 상기 필러는 유기 필러이거나 무기 필러일 수 있다.
일 구현예에 따른 리튬 이차 전지용 첨가제는 전술한 바와 같이 전해액에 포함될 수 있으며, 이외에 리튬 이차 전지의 집전체, 전극 탭, 분리막 등에 적용할 수 있다.
상기 첨가제가 집전체 또는 전극 탭에 적용되는 경우 상기 첨가제는 적절한용매에 분산시킨 코팅액을 집전체의 무지부 또는 전극 탭에 첨가제에 코팅할 수 있다. 상기 첨가제가 분리막에 적용되는 경우 분리막 성분에 상기 첨가제를 포함시키거나 첨가제를 적절한 용매에 분산시킨 코팅액을 분리막의 적어도 하나의 일면에 코팅할 수 있다.
이하 실시예를 통하여 상술한 본 발명의 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 본 발명의 범위를 제한하는 것은 아니다.
첨가제의 제조
합성예 1
발포제(SMG-200B, 한미르社) 1wt%와, 폴리(비닐리덴플로라이드 헥사플루오로프로필렌) (PVDF-HFP) 10wt%를 포함하는 고분자 용액을 각각 준비하고, 코어와 쉘의 두께의 비가 1:1이 되도록 전기 방사하여 파이버 형태의 첨가제를 제조하였다.
합성예 2
발포제(SMG-200B, 한미르社) 2wt%와, 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP) 10wt%를 포함하는 고분자 용액을 각각 준비하고, 코어와 쉘의 두께가 2:1이 되도록 전기 방사하여 파이버 형태의 첨가제를 제조하였다.
합성예 3
발포제(SMG-200B, 한미르社) 4wt%와, 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP) 10wt%를 포함하는 고분자 용액을 각각 준비하고, 코어와 쉘의 두께가 4:1이 되도록 전기 방사하여 파이버 형태의 첨가제를 제조하였다.
합성예 4
코어와 쉘의 두께가 1:2가 되도록 전기 방사하는 것을 제외하고는 상기 합성예 1과 동일한 방법으로 파이버 형태의 첨가제를 제조하였다.
합성예 5
코어와 쉘의 두께가 5:1이 되도록 전기 방사하는 것을 제외하고는 상기 합성예 1과 동일한 방법으로 파이버 형태의 첨가제를 제조하였다.
비교합성예 1
폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP) 대신 폴리에틸렌글리콜(PEG)을 포함하는 고분자 용액을 사용하는 것을 제외하고는 상기 합성예 1과 동일한 방법으로 파이버 형태의 첨가제를 제조하였다.
비교합성예 2
폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP) 대신 폴리프로필렌(PP)을 포함하는 고분자 용액을 사용하는 것을 제외하고는 상기 합성예 1과 동일한 방법으로 파이버 형태의 첨가제를 제조하였다.
리튬 이차 전지의 제조
실시예 1
양극으로 LiCoO2를 사용하고, 음극으로 인조 흑연을 사용하며, 전해액은 아래와 같이 조성을 가지도록 리튬 이차 전지를 제조하였다.
(전해액 조성)
염: LiPF6 1.3 M
용매: 에틸렌 카보네이트: 프로필렌 카보네이트: 에틸 프로피오네이트: 프로필 프로피오네이트 (EC:PC:EP:PP=15:15:25:45의 부피비)
첨가제 : 플루오로에틸렌 카보네이트 3 중량부, 상기 합성예 1에 따라 제조된 첨가제 2 중량부(단, 상기 전해액 조성에서 “중량부”는 전해액 전체(리튬염 및 비수성 유기 용매) 100 중량에 대한 첨가제의 상대적인 중량을 의미한다.)
실시예 2
상기 합성예 1로부터 제조된 첨가제 대신 상기 합성예 2에 따라 제조된 첨가제 1.5 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬이차 전지를 제조하였다.
실시예 3
상기 합성예 1로부터 제조된 첨가제 대신 상기 합성예 3에 따라 제조된 첨가제 1.25 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬이차 전지를 제조하였다.
비교예 1
상기 합성예 1로부터 제조된 첨가제를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 2
상기 합성예 1로부터 제조된 첨가제 대신 발포제(SMG-200B, 한미르社) 0.1 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 3
상기 합성예 1로부터 제조된 첨가제 대신 발포제(SMG-200B, 한미르社) 1 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 4
상기 합성예 1로부터 제조된 첨가제 대신 상기 비교합성예 1에 따라 제조된 첨가제 2 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 5
상기 합성예 1로부터 제조된 첨가제 대신 상기 비교합성예 2에 따라 제조된 첨가제 2 중량부를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
평가 1: 용량 유지율 평가
실시예 1 내지 3, 비교예 1 내지 5에 따른 리튬 이차 전지에 대하여 0.5C /4.4V 0.05C Cut-off 충전한 후, 60℃에서 4주 동안 저장 후에 delta OCV(Δ OCV)를 측정하여 그 결과를 하기 표 1에 나타냈다. Δ OCV 값이 작다는 것은 용량 유지율이 우수함을 의미한다.
60℃ 고온 저장(After 4 weeks)
Δ OCV(V)
실시예 1 0.23
실시예 2 0.21
실시예 3 0.29
비교예 3 0.42
비교예 4 0.39
상기 표 1을 참조하면, 실시예 1 내지 실시예 3에 따른 리튬 이찬 전지가 비교예 3 및 비교예 4에 따른 리튬 이차 전지 대비 고온 저장 평가 시에 △OCV 값이작게 나타난다. 이로써, 실시예에 따른 리튬 이차 전지가 비교예에 따른 리튬 이차 전지에 비해 고온에서 셀의 용량 유지율이 좋음을 알 수 있다.
평가 2: 열노출 평가
실시예 1 내지 3, 비교예 1 내지 5에 따른 리튬 이차 전지를 챔버에 넣고 온도를 상온(25℃)에서 분당 5±2℃의 상승 속도로 온도를 증가시키고, 상기 온도에서 1시간 가량 유지시키면서 리튬 이차 전지의 변화를 관찰하였고, 상기 과정을 2번 실시하여 그 결과를 하기 표 2에 나타냈다.
열노출 온도
130℃ 132℃ 134℃ 136℃
1회 2회 1회 2회 1회 2회 1회 2회
실시예 1 OK OK OK OK OK OK OK OK
실시예 2 OK OK OK OK OK OK OK OK
실시예 3 OK OK OK OK OK OK OK OK
비교예 1 NG NG - - - - - -
비교예 2 NG NG - - - - - -
비교예 5 NG NG - - - - - -
상기 표 2에서, 상기“NG”는 상기 노출 온도에서 열폭주 현상이 관찰된 것을 의미하며, 상기“OK”는 상기 노출온도에서 열폭주 현상이 없음을 의미한다. 또한, (-)는 열노출 평가를 실시하지 않은 것을 의미한다.
실시예 1 내지 실시예 3은 고온에 노출 시 일 구현예에 따른 첨가제의 쉘이 용융되고, 코어에 포함된 발포제가 방출되어 발포제의 부피가 증가하여 전지 저항의 급상승이 나타남에 따라 136℃까지의 고온 열노출 평가에서도 열폭주 현상이 나타나지 않는다. 반면, 비교예 1, 비교예 2, 및 비교예 5는 130℃의 온도에 노출 시 열폭주 현상이 관찰된다. 이는 본 발명상의 첨가제를 포함하지 않거나, 발포제를 소량 첨가하는 경우 고온에서 전극 간 쇼트를 제어할 장치가 없어 열폭주 현상이 나타난 것으로 해석된다.
이로써, 실시예에 따른 리튬 이차 전지가 비교예에 따른 리튬 이차 전지에 비해 전지 구동 온도 범위에서는 전지 특성이 유지되면서, 고온에서는 안전성이 우수함을 알 수 있다.
이상에서 본원 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만, 발명의 권리범위는 이에 한정되는 것이 아니고, 이하 기재된 청구범위에서 정의하고 있는 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본원 발명의 권리범위에 속하는 것이다.

Claims (13)

  1. 발포제를 포함하는 코어, 및 상기 코어를 둘러싸는 쉘을 포함하고,
    상기 쉘은 90 ℃ 내지 120 ℃의 융점을 가지는 고분자를 포함하는 리튬 이차 전지용 첨가제.
  2. 제1항에서,
    상기 코어의 두께와 상기 쉘의 두께의 비는 1:1 내지 4:1인 리튬 이차 전지용 첨가제.
  3. 제1항에서,
    상기 코어는 두께가 0.1㎛ 내지 2.0㎛이고, 상기 쉘은 두께가 0.025㎛ 내지 0.5㎛인 리튬 이차 전지용 첨가제.
  4. 제1항에서,
    상기 발포제는 유리 발포제, 탄화수소계 화합물, 히드로플루오로올레핀(hydrofluoroolefin, HFO)계 화합물, 또는 이들의 조합을 포함하는 리튬 이차 전지용 첨가제.
  5. 제4항에서,
    상기 유리 발포제는 이산화규소, 산화나트륨, 및 물을 포함하는 리튬 이차 전지용 첨가제.
  6. 제4항에서,
    상기 유리 발포제는 이산화규소 60 중량% 내지 70 중량%, 산화나트륨 20 중량% 내지 30 중량%, 및 물 5 중량% 내지 20 중량%을 포함하는 리튬 이차 전지용 첨가제.
  7. 제1항에서,
    상기 고분자는 폴리(비닐리덴플로라이드-헥사플루오로프로필렌)(PVDF-HFP, Poly(vinylidene fluoride-hexafluoropropylene)), 폴리아크릴산(polyacrylic acid), 폴리에틸렌(polyethylene), 폴리메틸메타크릴산(poly(methyl methacrylate)), 폴리알킬렌옥사이드, 폴리알킬렌숙시네이트, 또는 이들의 조합을 포함하는 리튬 이차 전지용 첨가제.
  8. 제1항에서,
    상기 첨가제는 전기 방사를 이용하여 형성된 파이버 형태인 리튬 이차 전지용 첨가제.
  9. 비수성 유기 용매,
    리튬염, 및
    제1항 내지 제8항 중 어느 한 항에 따른 리튬 이차 전지용 첨가제
    를 포함하는 리튬 이차 전지용 전해액.
  10. 제9항에서,
    상기 리튬 이차 전지용 첨가제는 상기 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 포함되는 리튬 이차 전지용 전해액.
  11. 제9항에서,
    상기 리튬 이차 전지용 첨가제는 상기 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 5.0 중량% 포함되는 리튬 이차 전지용 전해액.
  12. 제9항에서,
    상기 리튬 이차 전지용 첨가제는 상기 리튬 이차 전지용 전해액의 총 중량을 기준으로 0.1 중량% 내지 3.0 중량% 포함되는 리튬 이차 전지용 전해액.
  13. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    제9항의 전해액;
    을 포함하는 리튬 이차 전지.
PCT/KR2023/005130 2022-10-18 2023-04-14 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 WO2024085335A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0133893 2022-10-18
KR1020220133893A KR20240053857A (ko) 2022-10-18 2022-10-18 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2024085335A1 true WO2024085335A1 (ko) 2024-04-25

Family

ID=90738038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005130 WO2024085335A1 (ko) 2022-10-18 2023-04-14 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR20240053857A (ko)
WO (1) WO2024085335A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008405A (ko) * 2005-07-13 2007-01-17 주식회사 엘지화학 첨가제 담지 서방성 캡슐을 포함하고 있는 리튬 이차전지
KR101054745B1 (ko) * 2009-04-21 2011-08-05 주식회사 엘지화학 안전성 향상을 위한 전기화학 소자 첨가제
KR20130052409A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 전지화학소자용 세퍼레이터 및 이를 구비하는 전기화학소자
JP2013201133A (ja) * 2007-11-30 2013-10-03 Kyoritsu Kagaku Sangyo Kk 導電性組成物
KR20170116710A (ko) * 2016-04-12 2017-10-20 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070008405A (ko) * 2005-07-13 2007-01-17 주식회사 엘지화학 첨가제 담지 서방성 캡슐을 포함하고 있는 리튬 이차전지
JP2013201133A (ja) * 2007-11-30 2013-10-03 Kyoritsu Kagaku Sangyo Kk 導電性組成物
KR101054745B1 (ko) * 2009-04-21 2011-08-05 주식회사 엘지화학 안전성 향상을 위한 전기화학 소자 첨가제
KR20130052409A (ko) * 2011-11-11 2013-05-22 주식회사 엘지화학 전지화학소자용 세퍼레이터 및 이를 구비하는 전기화학소자
KR20170116710A (ko) * 2016-04-12 2017-10-20 에스케이이노베이션 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
KR20240053857A (ko) 2024-04-25

Similar Documents

Publication Publication Date Title
WO2020009340A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022220474A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2019139271A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020067795A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2021194073A1 (ko) 리튬 이차 전지
WO2021194074A1 (ko) 리튬 이차 전지의 전해질용 첨가제, 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021071109A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2023200106A1 (ko) 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
WO2021118085A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018070733A1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2024085335A1 (ko) 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2024085333A1 (ko) 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2018221844A1 (ko) 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
WO2024085334A1 (ko) 리튬 이차 전지용 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2023224190A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액, 양극, 및 리튬 이차 전지
WO2021194097A1 (ko) 리튬 이차 전지
WO2023200105A1 (ko) 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지
WO2021194098A1 (ko) 리튬 이차 전지
WO2023140429A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2023096036A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2022158702A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879921

Country of ref document: EP

Kind code of ref document: A1