WO2024085243A1 - 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置 - Google Patents

半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置 Download PDF

Info

Publication number
WO2024085243A1
WO2024085243A1 PCT/JP2023/037960 JP2023037960W WO2024085243A1 WO 2024085243 A1 WO2024085243 A1 WO 2024085243A1 JP 2023037960 W JP2023037960 W JP 2023037960W WO 2024085243 A1 WO2024085243 A1 WO 2024085243A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor
layer
nitride layer
metal layer
Prior art date
Application number
PCT/JP2023/037960
Other languages
English (en)
French (fr)
Inventor
克明 正木
剛 神川
一真 武内
龍生 多田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024085243A1 publication Critical patent/WO2024085243A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present disclosure relates to a semiconductor substrate, a template substrate, and a method and apparatus for manufacturing a template substrate.
  • Patent Document 1 describes a technique for forming an aluminum nitride (AlN) layer as a buffer layer using a silicon (Si) substrate on which a selective growth mask having openings is formed, and then selectively growing a gallium nitride (GaN) layer.
  • AlN aluminum nitride
  • Si silicon
  • GaN gallium nitride
  • the AlN layer and the GaN layer are formed using a metal-organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal-organic chemical vapor deposition
  • the semiconductor substrate comprises a template substrate including a first seed region and a growth inhibition region, and a first semiconductor portion having a first base portion located above the first seed region and a first wing portion connected to the first base portion and located above the growth inhibition region, the template substrate having a main substrate, a metal layer located above the main substrate, and an aluminum-based nitride layer containing argon located above the metal layer, and the first semiconductor portion includes a nitride semiconductor.
  • the semiconductor substrate comprises a template substrate including a first seed region and a growth inhibition region, and a first semiconductor portion having a first base portion located above the first seed region and a first wing portion connected to the first base portion and located above the growth inhibition region, the template substrate having a main substrate and an aluminum-based nitride layer containing argon, the nitrogen polarity surface of which is bonded to the main substrate, and the first semiconductor portion includes a nitride semiconductor.
  • the template substrate comprises a main substrate, a metal layer located above the main substrate, and an aluminum-based nitride layer containing argon located above the metal layer.
  • a method for manufacturing a template substrate includes a main substrate, and includes the steps of forming a metal layer above the main substrate and forming an aluminum-based nitride layer above the metal layer by using a sputtering method.
  • a method for manufacturing a template substrate includes a main substrate, and includes the steps of forming a metal layer on a temporary substrate, forming an aluminum-based nitride layer above the metal layer by using a sputtering method, and transferring the aluminum-based nitride layer from the temporary substrate to the main substrate.
  • FIG. 1 is a plan view illustrating a schematic configuration of a semiconductor substrate according to an embodiment of the present disclosure.
  • 1 is a cross-sectional view illustrating a schematic configuration of a semiconductor substrate according to an embodiment of the present disclosure.
  • 1 is a flowchart illustrating an example of a method for manufacturing a semiconductor substrate according to an embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of a semiconductor substrate according to another embodiment of the present disclosure.
  • 10 is a flowchart illustrating an example of a method for manufacturing a semiconductor substrate according to another embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing an example of a manufacturing apparatus according to an embodiment of the present disclosure.
  • FIG. 4A to 4C are cross-sectional views showing a method for manufacturing a template substrate in Example 1.
  • 1 is a cross-sectional view illustrating a schematic configuration of a semiconductor substrate according to a first embodiment.
  • 1 is a cross-sectional view showing an example of lateral growth of a semiconductor portion.
  • 10 is a plan view showing another example of the configuration of the semiconductor substrate in the first embodiment;
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the first embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the first embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the first embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the first embodiment.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the first embodiment.
  • FIG. 10 is a plan view showing another example of the configuration of the semiconductor substrate in the first embodiment;
  • FIG. 3A to 3C are plan views showing a method of element isolation in the first embodiment.
  • 4A to 4C are cross-sectional views showing a method of element isolation in the first embodiment.
  • 10 is a plan view showing another example of the configuration of the semiconductor substrate in the first embodiment;
  • FIG. 11 is a plan view illustrating a schematic configuration of a semiconductor substrate according to a second embodiment.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of a semiconductor substrate according to a second embodiment.
  • 10A to 10C are cross-sectional views showing an example of a method for manufacturing a semiconductor substrate in Example 2.
  • FIG. 11 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the second embodiment.
  • FIG. 11 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the second embodiment.
  • FIG. 11 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the second embodiment.
  • FIG. 11 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in the second embodiment.
  • 11A to 11C are cross-sectional views showing an example of a method for manufacturing a semiconductor substrate in Example 3.
  • 13A to 13C are cross-sectional views showing an example of a method for manufacturing a template substrate having another configuration example in the third embodiment.
  • 13A to 13C are cross-sectional views showing an example of a method for manufacturing a template substrate having another configuration example in the third embodiment.
  • 11A to 11C are cross-sectional views showing an example of a method for manufacturing a semiconductor substrate in Example 4.
  • FIG. 1 is a plan view that shows a schematic configuration of a semiconductor substrate 10 according to an embodiment of the present disclosure.
  • Fig. 2 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate 10 according to an embodiment of the present disclosure. Note that, as in Fig. 1 and the like in the present disclosure, in order to clarify the illustration, each member may be hatched even in the plan view, and this is the same in the other drawings described below.
  • the semiconductor substrate 10 comprises a template substrate TS including a first seed region S1 and a growth inhibition region DA, and a first semiconductor portion 8A located above the template substrate TS.
  • the first semiconductor portion 8A has a first base portion B1 located above the first seed region S1, and a first wing portion F1 connected to the first base portion B1 and located above the growth inhibition region DA.
  • the template substrate TS has a main substrate 1, a metal layer ML located above the main substrate 1, and an aluminum-based nitride layer (Al-based nitride layer) 2 containing argon located above the metal layer ML.
  • the first semiconductor portion 8A includes a nitride semiconductor.
  • the template substrate TS may have a mask pattern 6, and the mask pattern 6 may include a mask portion 5 that functions as a growth inhibition region DA and a first opening K1 that corresponds to the first seed region S1.
  • the surface (top surface) of the mask portion 5 may be the growth inhibition region DA.
  • the first semiconductor portion 8A may contain a nitride semiconductor as a main component.
  • a GaN-based semiconductor is a semiconductor that contains gallium atoms (Ga) and nitrogen atoms (N), and typical examples include GaN, AlGaN, AlGaInN, and InGaN.
  • the first semiconductor portion 8A may be doped (e.g., n-type containing a donor) or non-doped.
  • a semiconductor substrate means a substrate containing a nitride semiconductor.
  • the main substrate 1, metal layer ML, and Al-based nitride layer 2 may be collectively referred to as a base substrate.
  • the main substrate 1 is a heterogeneous substrate having a different lattice constant from the first semiconductor portion 8A
  • the Al-based nitride layer 2 is a seed layer including a first seed region S1 and may be in contact with the first base portion B1.
  • the Al-based nitride layer 2 may be, for example, an AlN layer.
  • the first semiconductor portion 8A does not contain argon.
  • the surface (top surface) of the Al-based nitride layer 2 may be the first seed region S1.
  • the first semiconductor portion 8A can be formed on the template substrate TS by the ELO (Epitaxial Lateral Overgrowth) method.
  • ELO Epiaxial Lateral Overgrowth
  • a heterogeneous substrate having a different lattice constant from the nitride semiconductor is used as the main substrate 1
  • an inorganic compound film is used as the mask portion 5
  • the first seed region S1 exposed in the first opening K1 can be used as the starting point for crystal growth. This allows an initial growth layer to be formed on the first seed region S1, and then the first semiconductor portion 8A including the nitride semiconductor can be grown laterally from the initial growth layer onto the mask portion 5.
  • the first base portion B1 located above the first opening K1 becomes a dislocation inheritance portion with many threading dislocations
  • the first wing portion F1 located above the mask portion 5 becomes a low-defect portion with a lower threading dislocation density compared to the dislocation inheritance portion.
  • the template substrate TS may have a second seed region S2 adjacent to the first seed region S1 in the first direction X1 via a growth inhibition region DA.
  • the mask pattern 6 may include a second opening K2 corresponding to the second seed region S2.
  • the template substrate TS may have a shape in which the first seed region S1 and the growth inhibition region DA aligned in the first direction X1 each have a longitudinal direction that is a second direction X2 perpendicular to the first direction X1.
  • the semiconductor substrate 10 in this embodiment may include a second semiconductor portion 8C including a nitride semiconductor.
  • the second semiconductor portion 8C is located above the second seed region S2 and above the growth inhibition region DA.
  • the second semiconductor portion 8C may have a second base portion B2 located above the second seed region, and a second wing portion F2 connected to the second base portion B2 and located above the growth inhibition region DA.
  • the first wing portion F1 and the second wing portion F2 may be aligned in the first direction X1 with a gap GP between them.
  • the second semiconductor portion 8C grows laterally on the mask portion 5 starting from the second seed region S2 exposed in the second opening K2, and the growth may be stopped before it meets with the first semiconductor portion 8A. This causes the semiconductor substrate 10 to have a gap GP between the first semiconductor portion 8A and the second semiconductor portion 8C. As described above for the first semiconductor portion 8A, the second base portion B2 of the second semiconductor portion 8C located above the second opening K2 becomes a dislocation inheritance portion, and the second wing portion F2 located above the mask portion 5 becomes a low defect portion.
  • the first semiconductor portion 8A and the second semiconductor portion 8C may be collectively referred to as semiconductor portion 8, the first base portion B1 and the second base portion B2 as base portion B, and the first wing portion F1 and the second wing portion F2 as wing portion F.
  • the first opening K1 and the second opening K2 of the mask pattern 6 may be collectively referred to as opening K, and the first seed region S1 and the second seed region S2 as seed region S.
  • the semiconductor portion 8 may be a semiconductor layer 8
  • the mask portion 5 may be a mask layer 5.
  • the direction from the main substrate 1 to the semiconductor portion 8 is referred to as "upward," and viewing an object with a line of sight parallel to the normal direction of the semiconductor substrate 10 (including perspective) may be referred to as "planar view.”
  • the seed region S and the growth inhibition region DA may be aligned in a first direction X1 (a direction perpendicular to the thickness direction of the substrate) in a planar view.
  • the seed region S e.g., the surface of the Al-based nitride layer 2
  • the growth inhibition region DA e.g., the surface of the mask portion 5
  • the first direction X1 may be the a-axis direction ( ⁇ 11-20> direction) of the semiconductor portion 8 (nitride semiconductor crystal such as GaN).
  • the second direction X2 perpendicular to the first direction X1 may be the m-axis direction ( ⁇ 1-100> direction) of the semiconductor portion 8.
  • the thickness direction of the semiconductor substrate 10 may be the c-axis direction ( ⁇ 0001> direction) of the semiconductor portion 8.
  • the semiconductor substrate 10 has a metal layer ML above the main substrate 1 and an Al-based nitride layer 2 formed on the metal layer ML, which can reduce warping of the semiconductor substrate 10, for example. This will be explained briefly together with an overview of the findings of this disclosure.
  • a conventional template substrate (hereinafter, for convenience of explanation, referred to as "conventional template substrate C") has a base substrate having, for example, a silicon substrate, an AlN layer serving as a buffer layer, an AlGaN layer serving as a strain relief layer, and a GaN underlayer, in that order.
  • Conventional template substrate C also has a mask pattern formed on the base substrate.
  • the AlN layer is provided to prevent melting (meltback) between the silicon substrate and the GaN underlayer, and to improve the quality of the GaN underlayer.
  • the AlN layer is formed by MOCVD from the viewpoint of improving the quality as a buffer layer, etc.
  • a semiconductor substrate manufactured by loading a conventional template substrate C into an MOCVD apparatus and depositing a GaN layer using the ELO method is prone to warping when the temperature is lowered from the deposition temperature due to the difference in thermal expansion coefficient between the silicon substrate and the GaN layer.
  • Conventional template substrate C uses an inexpensive silicon substrate while being formed using the MOCVD method, making it difficult to reduce manufacturing costs.
  • an AlN layer can also be formed on a silicon substrate using a sputtering method (physical vapor deposition method) instead of the MOCVD method.
  • a sputtering method physical vapor deposition method
  • MOCVD metal vapor deposition method
  • the inventors have discovered that the quality of the AlN layer can be improved by forming a relatively thick metal layer ML above a main substrate 1 such as a silicon substrate, and then forming an AlN layer on the metal layer ML by the sputtering method.
  • a main substrate 1 such as a silicon substrate
  • the reason why the quality of the AlN layer is improved by using a thicker metal layer ML as the base for growth than before is thought to be that the crystal state of the metal layer ML (lattice distortion, residual stress, etc.) may affect the quality of the AlN layer. It was also found that the quality of Al-based nitrides, which have a structure similar to AlN, can be improved by using a thicker metal layer ML as the base for growth than before.
  • the metal layer ML may include a layer whose main component is Al (Al-based metal layer).
  • the main component here refers to the metal element whose molar content is the largest.
  • the metal layer ML may include one or more metals selected from the group consisting of aluminum, platinum, palladium, silver, gold, hafnium, scandium, yttrium, titanium, and zirconium, and may include any metal selected from the above group as a main component.
  • the metal layer ML includes at least one metal whose (111) plane of a face-centered cubic lattice or body-centered cubic lattice or the (0001) plane of a hexagonal close-packed lattice is oriented on the main surface 1a of the main substrate 1.
  • the metal layer ML may be an alloy.
  • the metal layer ML may be formed by a sputtering method, in which case the metal layer ML contains argon.
  • the film formation process is carried out at a high temperature that exceeds the melting point of the Al film used as the metal layer, for example, making it difficult to manufacture a template substrate TS having a metal layer ML.
  • the sputtering method makes it easy to manufacture a template substrate TS having a metal layer ML because the film formation temperature can be lowered.
  • the metal layer ML may be positioned so as to overlap the entire upper surface (main surface 1a) of the main substrate 1 in a plan view seen in the normal direction of the main substrate 1.
  • the Al-based nitride layer 2 may be positioned so as to overlap the mask portion 5.
  • the thickness of the metal layer ML may be 20 nm or more, and may be 100 nm or more and 2000 nm or less.
  • the Al-based nitride layer 2 contains at least aluminum and nitrogen.
  • the Al-based nitride layer 2 may contain a metal other than aluminum, for example, scandium (Sc) or zirconium (Zr).
  • the Al-based nitride layer 2 may be, for example, AlScN or AlZrN.
  • the Al-based nitride layer 2 may contain multiple metal species, in which case the aluminum content may be the highest among the multiple metal species, or the aluminum content may be greater than the total content of the metal species other than aluminum.
  • the Al-based nitride layer 2 may be positioned so as to overlap the entire upper surface of the main substrate 1 in a plan view seen in the normal direction of the main substrate 1.
  • the Al-based nitride layer 2 may also be positioned so as to overlap the entire upper surface (surface MLS) of the metal layer ML in a plan view.
  • the thickness of the Al-based nitride layer 2 may be, for example, 30 nm or more.
  • the thickness of the Al-based nitride layer 2 may be greater than the metal layer ML, and may be, for example, 30 nm or more and 500 nm or less.
  • the internal stress of the Al-based nitride layer 2 can be adjusted by adjusting the processing conditions of the sputtering method.
  • the Al-based nitride layer 2 contains argon that is mixed in when it is formed by the sputtering method. Therefore, by changing the content of argon, the stress state of the Al-based nitride layer 2 at room temperature can be changed.
  • the Al-based nitride layer 2 may be in a compressive stress state and the semiconductor part 8 (first semiconductor part 8A) may be in a tensile stress state at room temperature.
  • the overall warping of the semiconductor substrate 10 can be reduced, which is effective for subsequent processes (device layer formation, peeling, etc.).
  • the Al-based nitride layer 2 and the semiconductor part 8 may be in a tensile stress state at room temperature.
  • the lattice constant of the Al-based nitride layer 2 is smaller than that of the semiconductor part 8, the lattice spacing in the plane perpendicular to the c-axis is expanded due to the Al-based nitride layer 2 being in a tensile stress state, and the effect of the difference in lattice constant between the Al-based nitride layer 2 and the semiconductor part 8 is mitigated.
  • the metal layer ML and the Al-based nitride layer 2 may be in a tensile stress state.
  • the Al-based nitride layer 2 is an aluminum nitride layer (AlN layer)
  • the ratio of impurity metal elements other than aluminum to the total metal elements in the AlN layer may be less than 0.5 atm%.
  • the normal temperature is typically room temperature, for example, 20°C or 25°C.
  • the above stress state (compressive stress state and tensile stress state) is defined based on the generation state of internal stress in a plane with the first direction X1 and the second direction X2 as in-plane directions.
  • the stress state in the height direction of the semiconductor substrate 10 and the stress state in the above plane with the first direction X1 and the second direction X2 as in-plane directions may be different from each other.
  • the semiconductor substrate 10 can be manufactured by manufacturing a template substrate TS on which a relatively high-quality Al-based nitride layer 2 is formed using a sputtering method, and then forming a semiconductor portion 8 on the template substrate TS.
  • the semiconductor portion 8 can be of the same quality as when it is formed on a conventional template substrate C having an AlN layer formed using an MOCVD method.
  • the internal stress of the semiconductor substrate 10 is relieved by the Al-based nitride layer 2 located between the main substrate 1 and the semiconductor portion 8. This makes it possible to effectively reduce warping that occurs in the semiconductor substrate 10 at room temperature.
  • the semiconductor substrate 10 may be such that the nitride semiconductor included in the semiconductor portion 8 is a GaN-based semiconductor, and the main substrate 1 of the template substrate TS is a silicon substrate, a silicon carbide substrate, or a glass substrate.
  • the Al-based nitride layer 2 may have a thermal expansion coefficient at 1000°C that is greater than that of the main substrate 1 and smaller than that of the semiconductor portion 8 (first semiconductor portion 8A).
  • the glass substrate is not specifically limited as long as it is made of a material that is heat resistant to the film formation temperature when the semiconductor portion 8 is formed by the ELO method.
  • Method for manufacturing semiconductor substrate 3 is a flowchart showing an example of a method for manufacturing the semiconductor substrate 10 in this embodiment.
  • the flowchart shown in FIG. 3 also includes an example of a method for manufacturing the template substrate TS.
  • a template substrate TS is formed.
  • the method for manufacturing the template substrate TS includes a step (S10) of forming a metal layer ML above the main substrate 1, and a step (S20) of forming an Al-based nitride layer 2 above the metal layer ML using a sputtering method.
  • a step (S30) of forming a mask pattern 6 including a mask portion 5 that functions as a growth inhibition region DA above the Al-based nitride layer 2 may be performed.
  • a step (S40) of forming a semiconductor portion 8 is performed, thereby manufacturing the semiconductor substrate 10.
  • the metal layer ML may be an aluminum layer, and the aluminum layer may be formed using a sputtering method.
  • Fig. 4 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate 10 according to another embodiment of the present disclosure.
  • Fig. 5 is a flow chart showing an example of a manufacturing method of a semiconductor substrate 10 according to another embodiment of the present disclosure.
  • the template substrate TS does not need to have a metal layer ML, and such a template substrate TS can be formed by forming the metal layer ML and the Al-based nitride layer 2 on a substrate (temporary substrate) different from the main substrate 1, and transferring the Al-based nitride layer 2 onto the main substrate 1.
  • a substrate made of a material suitable for forming the metal layer ML and the Al-based nitride layer 2 can be used.
  • the semiconductor substrate 10 comprises a template substrate TS including a first seed region S1 and a growth inhibition region DA, and a first semiconductor portion 8A
  • the template substrate TS has a main substrate 1 and an Al-based nitride layer 2.
  • the Al-based nitride layer 2 has a nitrogen polarity surface bonded to the main substrate 1 and contains argon.
  • the first semiconductor portion 8A contains a nitride semiconductor.
  • the upper surface (growth surface) of the Al-based nitride layer 2 formed on the metal layer ML is referred to as the first surface 2a
  • the surface located opposite the first surface 2a, i.e., the surface on the side where growth from the metal layer ML begins is referred to as the second surface 2b.
  • the Al-based nitride layer 2 formed above the temporary substrate is transferred to the main substrate 1, so that the first surface 2a is the surface facing the main substrate 1, and the second surface 2b is located on the side farther from the main substrate 1.
  • the second surface 2b of the Al-based nitride layer 2 exposed at the opening K serves as the seed region S.
  • the first surface (upper surface) 2a of the Al-based nitride layer 2 grown in the c-plane on the metal layer ML may be an aluminum polar surface (Al polar surface).
  • Al polar surface aluminum polar surface
  • N polar surface nitrogen polar surface
  • the Al-based nitride layer 2 is formed on the temporary substrate by a sputtering method, the first surface 2a may be an N polar surface, and after transfer to the main substrate 1, the N polar surface may be bonded to the main substrate 1.
  • the method for manufacturing the template substrate TS includes a step (S100) of forming a metal layer ML above a temporary substrate, a step (S200) of forming an Al-based nitride layer 2 above the metal layer ML using a sputtering method, and a step (S250) of transferring the Al-based nitride layer 2 from the temporary substrate to the main substrate 1.
  • the main substrate 1 and the Al-based nitride layer 2 can be surface-activatedly bonded.
  • the main substrate 1 and the Al-based nitride layer 2 can be separated from the temporary substrate.
  • a step (S300) of forming a mask pattern 6 above the Al-based nitride layer 2 may be performed.
  • a step (S400) of forming a semiconductor portion 8 is performed to manufacture the semiconductor substrate 10.
  • the metal layer ML may be an aluminum layer, and the aluminum layer may be formed using a sputtering method.
  • a semiconductor device can be formed by performing a step of forming electrodes instead of the steps S300 and S400.
  • the Al-based nitride layer 2 is transferred from the temporary substrate to the main substrate 1, and therefore does not inherit the crystal structure of the main substrate 1 at the interface with the main substrate 1.
  • the semiconductor substrate 10 may have a bonding trace at the interface between the Al-based nitride layer 2 and the main substrate 1. This bonding trace may be a trace of bonding between the main substrate 1 and the Al-based nitride layer 2 that shows a difference between the Al-based nitride layer 2 when epitaxially grown on the main substrate 1 and the Al-based nitride layer 2 transferred to the main substrate 1.
  • the bonding trace is not particularly limited, but for example, based on the XRD measurement result, it can be determined that the bonding trace is present when the surface orientation of the main substrate 1 and the surface orientation of the first surface 2a of the Al-based nitride layer 2 are not aligned with each other.
  • FIG. 6 is a block diagram showing an example of a manufacturing apparatus 50 according to an embodiment of the present disclosure.
  • the manufacturing apparatus 50 for the semiconductor substrate 10 shown in FIG. 6 includes an apparatus A10 for performing the above-mentioned step S10, an apparatus A20 for performing the above-mentioned step S20, an apparatus A30 for performing the above-mentioned step S30, an apparatus A40 for performing the above-mentioned step S40, and an apparatus A50 for controlling the apparatuses A10 to A40.
  • the apparatus A10 may perform the above-mentioned step S100, and the apparatus A20 may perform the above-mentioned step S200.
  • the manufacturing apparatus 50 may include an apparatus A25 for performing the above-mentioned step S250.
  • the apparatus A50 may control the apparatus A25.
  • the apparatus A30 may perform the above-mentioned step S300, and the apparatus A40 may perform the above-mentioned step S400.
  • Each of the devices A10 and A20 may include a sputtering device.
  • the manufacturing device 50 may have a single device A12 having the functions of the devices A10 and A20, and the device A12 may include a sputtering device.
  • the device A50 may control the device A12.
  • the device A50 may include a processor and a memory.
  • the device A50 may be configured to control the devices A10 and A20 by executing a program stored in, for example, an internal memory, a communication device capable of communication, or an accessible network, and this program and a recording medium on which this program is stored are also included in this embodiment.
  • the semiconductor portion 8 in the semiconductor substrate 10 has wing portions F which are low-defect portions.
  • a semiconductor device can be formed using the wing portions F.
  • Specific examples of semiconductor devices include light emitters (LED chips, semiconductor laser chips, etc.), light-emitting elements in which light emitters are submounted, and light-emitting modules in which light-emitting elements are packaged.
  • the semiconductor device is not limited to light-emitting semiconductor devices, and may be, for example, a light-receiving element (photo diode).
  • the metal layer ML may be a single layer or multiple layers containing the above-mentioned types of metal. When the metal layer ML is multiple layers, at least one layer may contain aluminum as a main component, and the layer in contact with the Al-based nitride layer 2 (the uppermost layer) may contain aluminum as a main component.
  • the metal layer ML may include a first layer made of a metal material and a second layer made of a metal material different from the first layer. Each of the first layer and the second layer may contain one or more metals selected from the group consisting of aluminum, platinum, palladium, silver, gold, hafnium, scandium, yttrium, titanium, and zirconium.
  • the seed region S may be a region that serves as the starting point for the growth of the semiconductor portion 8, and the template substrate TS may have the seed region S above the main substrate 1 and may also have a growth inhibition region DA.
  • the template substrate TS may not have, for example, a mask portion 5.
  • the semiconductor substrate 10 may include a metal nitride layer located between the metal layer ML and the Al-based nitride layer 2.
  • the semiconductor substrate 10 has a semiconductor portion 8 formed by the ELO method, but is not limited to this.
  • the template substrate TS does not need to have a mask pattern 6.
  • the template substrate TS can be used to manufacture semiconductor devices other than optical devices, such as transistors such as HEMTs (High Electron Mobility Transistors) and elements for MEMS (Micro Electro Mechanical Systems) such as BAW (Bulk Acoustic Wave) filters.
  • the semiconductor substrate 10 may have a gap between the wing portion F and the mask portion 5 which is the growth inhibition region DA, and for example, the seed region S may be located above the growth inhibition region DA in the thickness direction of the semiconductor substrate 10.
  • the semiconductor portions 8 that grow laterally in opposite directions from the first opening K1 and the second opening K2 adjacent to each other in the first direction X1 may be in contact (meet) with each other on the mask portion 5.
  • the semiconductor substrate 10 may not have a gap GP.
  • Example 1 In the following, first, the template substrate TS before the semiconductor portion 8 is formed will be described, and then the semiconductor substrate 10 will be described.
  • Fig. 7 is a cross-sectional view showing a schematic configuration of the template substrate TS in Example 1.
  • the template substrate TS in Example 1 may have the same schematic configuration as the template substrate TS in the above-described embodiment 1.
  • the template substrate TS may have a base substrate BS including a main substrate 1, a metal layer ML, and an Al-based nitride layer 2, and a mask pattern 6 may be formed on the base substrate BS.
  • the main substrate 1 may be a silicon substrate or may be any of various glass substrates.
  • the surface orientation of the main substrate 1 is, for example, the (111) surface of a silicon substrate.
  • the main substrate 1 in Example 1 may have a material and a surface orientation that satisfy the following two conditions, and the specific material and surface orientation of the main substrate 1 are not necessarily limited. That is, the main substrate 1 may be, first, capable of manufacturing a base substrate BS by forming a metal layer ML and an Al-based nitride layer 2 above the main substrate 1.
  • the main substrate 1 may be, secondly, capable of growing a semiconductor portion 8 by the ELO method using a template substrate TS manufactured by forming a mask pattern 6 above the base substrate BS including the main substrate 1.
  • the manufacturing costs of the template substrate TS and the semiconductor substrate 10 can be effectively reduced.
  • a silicon carbide (SiC) substrate can also be used as the heterogeneous substrate, the main substrate 1.
  • the surface orientation of the main substrate 1 may be the 6H-SiC (0001) or 4H-SiC (0001) surface of the SiC substrate.
  • the main substrate 1 may also be 3C-SiC. If using an inexpensive substrate is not important, the main substrate 1 may be a sapphire substrate or a nitride substrate (such as a GaN substrate).
  • the metal layer ML may be formed on the main substrate 1.
  • the metal layer ML may also be formed above the main substrate 1, and a heterogeneous layer made of a material different from that of the main substrate 1 and the metal layer ML may be interposed between the main substrate 1 and the metal layer ML.
  • the metal layer ML may overlap the entire main surface 1a of the main substrate 1 in a plan view.
  • the metal layer ML may be an Al layer, and the thickness of the metal layer ML is, for example, 20 nm or more. This can improve the quality of the Al-based nitride layer 2 formed on the metal layer ML.
  • the Al layer as the metal layer ML may be formed by growing Al having a face-centered cubic structure in the ⁇ 111> direction from the main surface 1a of the main substrate 1 (for example, the (111) surface of a silicon substrate), and in this case, the surface MLS of the metal layer ML on the side farther from the main substrate 1 becomes the (111) surface in the face-centered cubic structure.
  • the Al-based nitride layer 2 has a wurtzite structure.
  • the (111) plane in the face-centered cubic structure corresponds to the atomic arrangement of a hexagonal crystal system, so the Al-based nitride layer 2 can be epitaxially grown in the c-axis direction from the surface MLS of the metal layer ML.
  • the surface MLS and the second surface 2b have corresponding plane orientations.
  • Such an Al-based nitride layer 2 can be said to inherit the crystal structure of the metal layer ML.
  • the metal layer ML may contain at least one metal whose (111) plane of a face-centered cubic lattice or a body-centered cubic lattice, or whose (0001) plane of a hexagonal close-packed lattice is oriented on the main surface 1a of the main substrate 1.
  • metals include, for example, platinum, palladium, silver, gold, hafnium, scandium, yttrium, titanium, and zirconium.
  • the surface MLS of the metal layer ML to be the (111) plane of a face-centered cubic lattice or a body-centered cubic lattice, or the (0001) plane of a hexagonal close-packed lattice, making it easier to grow the Al-based nitride layer 2 from the surface MLS.
  • the quality (e.g., orientation) of the Al-based nitride layer 2 can be improved by increasing the thickness of the metal layer ML.
  • the quality of the Al-based nitride layer 2 can be evaluated, for example, by measuring the X-ray rocking curve of the Al-based nitride layer 2 after deposition.
  • the thickness of the metal layer ML is about 1000 nm, the effect of the thickness of the metal layer ML on the quality of the Al-based nitride layer 2 can be blunted.
  • the thickness of the metal layer ML may be 20 nm or more and 2000 nm or less, or 100 nm or more and 2000 nm or less.
  • the thickness of the Al film can be set by considering the balance between the manufacturing cost and the quality of the AlN layer.
  • the Al-based nitride layer 2 may be an AlN layer, and the thickness of the AlN layer may be, for example, 30 nm or more.
  • the thickness of the AlN layer may be greater than the thickness of the Al film as the metal layer ML, and may be, for example, 30 nm or more and 500 nm or less.
  • the metal layer ML and the Al-based nitride layer 2 can be formed continuously in a sputtering device using a sputtering method.
  • the sputtering method can be appropriately selected from DC sputtering, RF sputtering, AC sputtering, DC magnetron sputtering, ECR (Electron Cyclotron Resonance) sputtering, RF magnetron sputtering, PSD (Pulse Sputter Deposition), Laser ablation, and the like.
  • the metal layer ML formed by the sputtering method may contain argon derived from the argon gas introduced into the sputtering device. Depending on the metal species contained in the metal layer ML, argon may be detected by SIMS (secondary ion mass spectrometry).
  • SIMS secondary ion mass spectrometry
  • the degree of vacuum before the film formation in the sputtering device may be 3 ⁇ 10 ⁇ 5 Pa or less or 1 ⁇ 10 ⁇ 5 Pa or less.
  • the main substrate 1 may be pretreated to remove the organic layer and unevenness on the main surface 1a of the main substrate 1, thereby enabling the epitaxial growth of the metal layer ML.
  • Specific examples of the pretreatment include reverse sputtering, acid treatment, UV treatment, etc.
  • Reverse sputtering is a method of cleaning the main surface 1a of the main substrate 1 by colliding plasma atoms with the main substrate 1 side, and has the advantage of easily preventing re-adhesion of impurities after the process.
  • the substrate temperature during film formation may be room temperature, but the film quality can be further improved by performing the film formation process while the main substrate 1 is heated.
  • the heating temperature can be adjusted according to the material of the metal layer ML, and the heating temperature may be, for example, 700° C. to 900° C.
  • the Al-based nitride layer 2 is formed on the metal layer ML by sputtering, and therefore has higher quality than if it were formed directly on the main substrate 1 by sputtering.
  • the Al-based nitride layer 2 contains argon derived from the argon gas introduced into the sputtering device.
  • the argon content of the Al-based nitride layer 2 may be, for example, 0.01 atm% or more and 1.0 atm% or less.
  • the internal stress of the metal layer ML and the Al-based nitride layer 2 can be controlled by adjusting the film formation conditions.
  • the internal stress can be changed from compressive stress to tensile stress by controlling the amount of argon incorporated into the film. This makes it possible to adjust the mutual stress relationship between the semiconductor portion 8 formed on the template substrate TS and the template substrate TS in the semiconductor substrate 10. As a result, warping of the semiconductor substrate 10 can be reduced.
  • the mask pattern 6 is formed on the base substrate BS using a material that suppresses the vertical growth (growth in the c-axis direction) of the nitride semiconductor, and realizes the lateral growth (e.g., growth in the a-axis direction) of the nitride semiconductor.
  • Materials for the mask portion 5 of the mask pattern 6 include, for example, silicon nitride, silicon carbide, silicon carbonitride, diamond-like carbon, silicon oxide, silicon oxynitride, etc.
  • Materials for the mask portion 5 include titanium nitride, molybdenum nitride, tungsten nitride, tantalum carbide, etc. that do not contain silicon, and furthermore, high melting point metals (molybdenum, tungsten, platinum, etc.).
  • the mask portion 5 may be a single layer film made of one of these materials, or a multilayer film combining a plurality of these materials.
  • the thickness of the mask portion 5 may be, for example, about 100 nm to 4 ⁇ m.
  • the width Wm (size in the first direction X1) of the mask portion 5 may be, for example, 10 ⁇ m to 200 ⁇ m. In the first embodiment, the width Wm of the mask portion 5 may be smaller than the size in the first direction X1 of the metal layer ML or the Al-based nitride layer 2.
  • the openings K (exposed portions of the seed regions S) of the mask pattern 6 are the growth starting points of the semiconductor portion 8.
  • the openings K may be elongated with the first direction X1 as the width direction and the second direction X2 (see FIG. 1) as the length direction.
  • the mask pattern 6 may have multiple openings K lined up in the first direction X1.
  • the openings K may be tapered (having a shape that narrows downward).
  • the width WK of the openings K (size in the first direction X1) may be, for example, about 0.1 ⁇ m to 20 ⁇ m.
  • the width WK of the openings K may be smaller than the width Wm of the mask portion 5.
  • (Method of Manufacturing Template Substrate) 8 is a cross-sectional view showing a manufacturing method of the template substrate TS in Example 1.
  • a silicon substrate (Si (111) surface) is used as the main substrate 1.
  • an Al target is sputtered while introducing Ar gas, thereby forming an Al film on the silicon substrate.
  • the thickness of the Al film can be 100 nm
  • the film formation temperature of the Al film can be 400° C.
  • the input power can be 500 W
  • the back pressure during film formation can be 0.3 Pa.
  • a mixed gas of argon gas and nitrogen gas (for example, with a gas ratio of about 1:1) is introduced into the sputtering device while sputtering the Al target, thereby forming an AlN film on the Al film.
  • a mixed gas of argon gas and nitrogen gas for example, with a gas ratio of about 1:1
  • nitrogen gas for example, with a gas ratio of about 1:1
  • the AlN film when an AlN film is epitaxially grown on a sapphire substrate, for example, the AlN film grows in the [0001] direction, and the outermost surface becomes an Al polarity surface.
  • the first surface 2a of the AlN film in the template substrate TS in Example 1, can be an N polarity surface. This is thought to be because the AlN film as the Al-based nitride layer 2 can grow epitaxially in the [000-1] direction from the surface MLS on the Al film as the metal layer ML.
  • the first surface 2a of the Al-based nitride layer 2 can be an N polarity surface, or a surface in which the Al polarity surface and the N polarity surface are mixed (mixed polarity).
  • a mask layer MF (e.g., SiN) having a thickness of 300 nm is formed on the Al-based nitride layer 2 by sputtering.
  • a resist is then applied to the entire surface of the mask layer MF, and the resist is then patterned by photolithography to form a resist Z having multiple stripe-shaped openings with a width of about 3 ⁇ m.
  • a portion of the mask layer MF is removed by a wet etchant such as hydrofluoric acid (HF) or buffered hydrofluoric acid (BHF) to form multiple openings K, and the resist Z is removed by organic cleaning to form the mask pattern 6.
  • a wet etchant such as hydrofluoric acid (HF) or buffered hydrofluoric acid (BHF)
  • the Al-based nitride layer 2 is formed by the MOCVD method, a GaN layer may also be formed in the MOCVD apparatus. Therefore, Ga may be present in the MOCVD apparatus, and in this case, Ga may adhere to the main substrate 1. If meltback occurs due to the adhered Ga, the yield will decrease. Therefore, maintenance of the MOCVD apparatus and cleaning of the internal parts of the apparatus (tray, cover, etc.) must be performed frequently, which results in increased costs.
  • the Al-based nitride layer 2 is formed by the sputtering method, the surface of the main substrate 1 is covered with the metal layer ML, the Al-based nitride layer 2, and the mask pattern 6 at the time of loading into the MOCVD apparatus to form the semiconductor portion 8. Therefore, the possibility of Ga adhering to the surface of the main substrate 1 can be reduced, and the possibility of a decrease in manufacturing yield due to the occurrence of meltback can be reduced. This is of great industrial advantage.
  • Fig. 9 is a cross-sectional view that shows a schematic configuration of a semiconductor substrate 10 in Example 1.
  • Fig. 10 is a cross-sectional view that shows an example of lateral growth of a semiconductor portion 8.
  • Fig. 10 shows an example in which a mask portion 5 in a mask pattern 6 has a tapered opening K.
  • the semiconductor substrate 10 in Example 1 has a first semiconductor portion 8A and a second semiconductor portion 8C formed by the ELO method above a template substrate TS.
  • the base B of the semiconductor portion 8 contacts the first surface 2a of the Al-based nitride layer 2 at the opening K (first opening K1, second opening K2).
  • the semiconductor portion 8 may have an initial growth portion SL in the portion that contacts the first surface 2a.
  • the initial growth portion SL may be an initial growth layer SL.
  • the semiconductor portion 8 formed by the ELO method can be grown laterally as follows. As shown in FIG. 10, an initial growth portion SL may be formed on the seed region S exposed from the opening K, and then the semiconductor portion 8 may be grown laterally from the initial growth portion SL.
  • the initial growth portion SL serves as the starting point for the lateral growth of the semiconductor portion 8.
  • the deposition of the initial growth portion SL may be stopped just before the edge of the initial growth portion SL rises onto the upper surface of the mask portion 5 (at the stage where it is in contact with the upper end of the side surface of the mask portion 5) or just after it rises onto the upper surface of the mask portion 5 (i.e., at this timing, the ELO deposition conditions may be switched from the c-axis deposition conditions to the a-axis deposition conditions).
  • the initial growth portion SL By growing the initial growth portion SL laterally from a state in which it slightly protrudes from the mask portion 5, the growth of the semiconductor portion 8 in the c-axis direction (thickness direction) is suppressed, and the semiconductor portion 8 can be grown laterally at high speed with high crystallinity, and the consumption of raw materials is also reduced. This allows the semiconductor portion 8 (crystal of a nitride semiconductor such as GaN) to be formed thinly and broadly with low defects at low cost.
  • the initial growth portion SL may be formed to a thickness of, for example, 30 nm to 1000 nm, 50 nm to 400 nm, or 70 nm to 350 nm.
  • the semiconductor portions 8 that grow laterally in opposite directions from the two adjacent first openings K1 and second openings K2 do not come into contact (meet) with each other on the mask portion 5, and have a gap (gap) GP, which reduces the internal stress of the semiconductor portion 8. This reduces cracks and defects (dislocations) that occur in the semiconductor portion 8.
  • the width of the gap GP (size in the first direction X1) can be 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less.
  • the base part B which is a part located on the initial growth part SL, becomes a dislocation inheritance part with many threading dislocations
  • the wing part F which is a part located on the mask part 5
  • the threading dislocation is a dislocation (defect) extending in the c-axis direction ( ⁇ 0001> direction) in the semiconductor part 8.
  • the threading dislocation density can be obtained, for example, by subjecting the surface of the semiconductor part 8 to CL (Cathode Luminescence) measurement and counting the number of black spots in the CL measurement image.
  • the threading dislocation density of the wing part F can be, for example, 5 ⁇ 10 6 [pieces/cm 2 ] or less.
  • an active part (active layer) including a light emitting part is formed above the semiconductor part 8
  • the light emitting part can be arranged above the wing part F (so as to overlap with the wing part F in a plan view).
  • the ratio (WF/d1) of the width WF (size in the first direction X1) to the thickness d1 can be, for example, 2.0 or more.
  • WF/d1 can be 2.0 or more, 4.0 or more, 5.0 or more, 7.0 or more, or 10.0 or more.
  • the width WF of the wing portion F can be, for example, 7.0 ⁇ m or more, 10.0 ⁇ m or more, 20.0 ⁇ m or more, or 40.0 ⁇ m or more.
  • the thickness d1 can be 10.0 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less.
  • the density of basal plane dislocations in base B may be 5 ⁇ 10 8 /cm 2 or less.
  • the basal plane dislocations may extend in the in-plane direction of the c-plane of semiconductor portion 8.
  • the basal plane dislocation density here can be determined, for example, by dividing semiconductor portion 8 to expose the side surface of base B and measuring the dislocation density of this side surface by CL measurement.
  • the semiconductor portion 8 may not contain argon.
  • the semiconductor portion 8 not containing argon means that the argon content in the semiconductor portion 8 is less than 0.01 atm%.
  • the base portion B or the initial growth portion SL in the semiconductor portion 8 may contain a small amount of argon diffused from the Al-based nitride layer 2 due to being connected to the Al-based nitride layer 2.
  • the wing portion F may not contain argon diffused from the Al-based nitride layer 2. If the wing portion F also contains argon, the argon concentration in the wing portion F may decrease the farther it is from the base portion B. For example, even if the semiconductor portion 8 contains a small amount of argon diffused from the Al-based nitride layer 2, the argon content in the semiconductor portion 8 is less than 0.01 atm% (the semiconductor portion 8 does not contain argon).
  • Example 1 the semiconductor portion 8 was a GaN layer, and an MOCVD apparatus was used to perform ELO deposition of gallium nitride (GaN) on the template substrate 7.
  • doping may be performed by flowing SiH 4.
  • Si evaporated from the mask portion 5 can be used for Si doping by using a material containing silicon (e.g., SiO 2 or SiN) for the mask portion 5.
  • a material containing silicon e.g., SiO 2 or SiN
  • the width Wm of the mask portion 5 was 50 ⁇ m
  • the width WK of the opening K was 5 ⁇ m
  • the horizontal width of the semiconductor portion 8 was 53 ⁇ m
  • the width WF of the wing portion F was 24 ⁇ m
  • the layer thickness of the semiconductor portion 8 was 5 ⁇ m.
  • the temperature at which the semiconductor portion 8 is formed by the ELO method is preferably 1150°C or lower, rather than a high temperature exceeding 1200°C.
  • the semiconductor portion 8 can also be formed at a low temperature below 1000°C, which is more preferable in terms of reducing mutual reactions.
  • mutual diffusion may occur between the Al film as the metal layer ML and the main substrate 1 or the Al-based nitride layer 2.
  • the main substrate 1 may have an alloy layer (not shown) formed by mutual reaction with the metal layer ML under the ELO film formation conditions.
  • the main substrate 1 may have a higher Al concentration in the main surface 1a than in the back surface 1b located opposite the main surface 1a.
  • the Al-based nitride layer 2 may have an Al-rich composition.
  • the semiconductor portion 8 contains carbon, it is possible to reduce the reaction with the mask portion 5 and reduce adhesion between the mask portion 5 and the semiconductor portion 8. Therefore, in low-temperature film formation of the semiconductor portion 8, for example, by reducing the amount of ammonia supplied and forming the film at a low V/III ( ⁇ 1000), carbon elements in the raw material or chamber atmosphere can be incorporated into the semiconductor portion 8 and the reaction with the mask portion 5 can be reduced.
  • V/III ⁇ 1000
  • the first surface 2a of the Al-based nitride layer 2 may be an N-polarity surface, or a surface in which an Al-polarity surface and an N-polarity surface are mixed (mixed polarity), and the first surface 2a may be the seed region S.
  • the upper surface 8S which is the growth surface of the semiconductor portion 8 can be made into a gallium polarity surface (Ga polarity surface) by polarity reversal due to various factors.
  • the upper surface 8S may be an aluminum polarity surface (Al polarity surface). The polarity of the upper surface 8S can be adjusted to form the semiconductor portion 8 so as to be suitable for the device structure to be manufactured using the semiconductor substrate 10.
  • FIG. 11 is a plan view showing another example of the configuration of the semiconductor substrate 10 in the first embodiment.
  • the semiconductor portion 8 of the semiconductor substrate 10 may be separated into a plurality of parts PA arranged in a second direction X2 perpendicular to the first direction X1.
  • a trench TR may be formed between adjacent parts PA in the second direction X2.
  • the mask portion 5 and the Al-based nitride layer 2 may be exposed in the trench TR.
  • the template substrate TS may have openings K that are periodically divided in the second direction X2, and in this case, the semiconductor portion 8 may also be divided in the second direction X2.
  • the template substrate TS in the semiconductor substrate 10 may have a metal nitride layer NL between the metal layer ML and the Al-based nitride layer 2.
  • the metal nitride layer NL includes a nitride of a metal other than aluminum.
  • the metal nitride layer NL may include a material whose crystal structure is similar to that of the Al-based nitride layer 2, in which case the Al-based nitride layer 2 can be easily epitaxially grown.
  • the metal nitride layer NL may include, for example, titanium nitride (TiN), zirconium nitride (ZrN), scandium nitride (ScN), or hafnium nitride (HfN).
  • TiN titanium nitride
  • ZrN zirconium nitride
  • ScN scandium nitride
  • HfN hafnium nitride
  • the metal nitride layer NL may be formed by a sputtering method, in which case the metal nitride layer NL may include argon.
  • the argon content of the metal nitride layer NL may be, for example, 0.01 atm% or more and 1.0 atm% or less.
  • FIG. 13 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in the first embodiment.
  • the template substrate TS in the semiconductor substrate 10 may include a plurality of different metal layers as the metal layer ML, and the metal layer ML may be a multilayer film.
  • the template substrate TS may include, for example, a first metal layer ML1 located on the main substrate 1 and a second metal layer ML2 located on the first metal layer ML1.
  • the first metal layer ML1 may be formed from a material that has a high affinity with the main substrate 1
  • the second metal layer ML2 may be formed from a material that has a high affinity with the Al-based nitride layer 2. This makes it easier to improve the quality of the Al-based nitride layer 2.
  • the metal layer ML may include three or more types of metal layers. By appropriately switching targets within the sputtering device, multiple metal layers can be formed continuously.
  • FIG. 14 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in Example 1.
  • the template substrate TS in the semiconductor substrate 10 may have a seed portion 3 between the Al-based nitride layer 2 and the mask pattern 6, and in this case, the surface of the seed portion 3 exposed in the opening K may be the seed region S.
  • the seed portion 3 may be a seed layer.
  • the seed portion 3 may be formed in at least a part of the opening K (of the mask pattern 6) and may be planar or patterned (e.g., striped).
  • the seed portion 3 may be a GaN layer, an AlN layer, an AlGaN layer, an AlInN layer, AlGaInN, Al, or the like formed at a low temperature (500°C or less).
  • the seed portion 3 may be formed of a material different from the Al-based nitride layer 2.
  • the seed portion 3 may be formed by a sputtering method, in which case the seed portion 3 may contain argon.
  • the argon content of the seed portion 3 may be, for example, 0.01 atm% or more and 1.0 atm% or less.
  • the thickness of the seed portion 3 may be about 10 nm to 500 nm.
  • the deposition pressure is set to 0.1 Pa, 20 to 40 sccm of nitrogen gas is introduced, the discharge density is set to 5 W/cm 2 , and the deposition temperature is set to room temperature.
  • the introduced gas may contain argon gas.
  • FIG. 15 is a cross-sectional view showing another example of the configuration of the semiconductor substrate in Example 1.
  • FIG. 16 is a plan view showing another example of the configuration of the semiconductor substrate in Example 1.
  • the semiconductor substrate 10 may include an upper layer portion 9 located above the semiconductor portion 8 and including an active layer and a p-type layer.
  • the semiconductor substrate 10 may be removed from the MOCVD apparatus with the semiconductor portion 8 exposed and stored. In this case, the stored semiconductor substrate 10 can be loaded into the MOCVD apparatus to form the upper layer portion 9.
  • the semiconductor portion 8 may be formed in the MOCVD apparatus, and then the upper layer portion 9 may be formed in the MOCVD apparatus.
  • the upper layer portion 9 may be formed on the semiconductor portion 8 by changing the film formation conditions (e.g., by lowering the film formation temperature by about 100°C) after the growth of the semiconductor portion 8 is stopped.
  • the upper layer portion 9 may include at least one of a p-type layer, an n-type layer, and an electron blocking layer in addition to the active layer.
  • the semiconductor substrate 10 may have an anode EA and a cathode EC located on the upper layer 9.
  • the anode EA may be in contact with a p-type layer in the upper layer 9, and the cathode EC may be in contact with an n-type layer in the upper layer 9. Without being limited to this, the cathode EC may be in contact with the upper surface 8S of the semiconductor portion 8.
  • at least a portion of the anode EA may be positioned so as to overlap with the wing portion F, or the entire anode EA may be positioned so as to overlap with the wing portion F.
  • the device structure including the semiconductor portion 8 and the upper layer portion 9 is called the laminate LB.
  • the semiconductor substrate 10 has a plurality of bar-shaped laminates LB.
  • the upper layer portion 9 (device layer) formed on the semiconductor portion 8 by forming at least the active region (e.g., the light-emitting region) above the wing portion F, a very high quality element can be fabricated.
  • the template substrate TS is formed without using an MOCVD apparatus, and the semiconductor portion 8 and the upper layer portion 9 can be formed continuously in the MOCVD apparatus.
  • FIG. 17 is a plan view showing a method of element isolation in Example 1.
  • FIG. 18 is a cross-sectional view showing a method of element isolation in Example 1.
  • the semiconductor substrate 10 may have a plurality of element bodies 20 separated by a plurality of trenches TR on a base substrate BS.
  • the element bodies 20 may include a wing portion F, an upper layer portion 9, an anode EA, and a cathode EC.
  • the semiconductor substrate 10 may have multiple element bodies 20 formed by forming multiple trenches TR in the laminate LB by etching.
  • the semiconductor substrate 10 may also be divided into multiple parts PA (see FIG. 11) by forming multiple trenches TR in the semiconductor portion 8, and then the upper layer 9, anode EA, and cathode EC may be formed on the parts PA.
  • the semiconductor substrate 10 may have multiple element bodies 20 formed by cleaving the laminate LB.
  • the mask portion 5 is removed by etching using hydrofluoric acid, buffered hydrofluoric acid (BHF), or the like.
  • BHF buffered hydrofluoric acid
  • the element body 20 may be bonded to the support substrate SK via bonding layers H1 and H2.
  • the bond between the seed region S and the semiconductor portion 8 is broken, so that the element body 20 can be peeled off from the base substrate BS.
  • the support substrate SK may have a conductive pad in contact with the bonding layer H1 and a conductive pad in contact with the bonding layer H2.
  • the bonding layers H1 and H2 may be formed of a solder material.
  • the element body 20 include light-emitting diodes (LEDs), semiconductor lasers, Schottky diodes, photodiodes, transistors (including power transistors and high electron mobility transistors), etc.
  • LEDs light-emitting diodes
  • semiconductor lasers semiconductor lasers
  • Schottky diodes Schottky diodes
  • photodiodes transistors (including power transistors and high electron mobility transistors), etc.
  • FIG. 19 is a plan view showing another example of the configuration of the semiconductor substrate 10 in the first embodiment.
  • the semiconductor substrate 10 may have the anode EA and the cathode EC formed above the same wing portion F (e.g., the first wing portion F1).
  • a trench TR may be formed in the portion of the laminate LB located above the seed region S.
  • Fig. 20 is a plan view that shows a schematic configuration of the semiconductor substrate 10 in Example 2.
  • Fig. 21 is a cross-sectional view that shows a schematic configuration of the semiconductor substrate 10 in Example 2.
  • the black dots shown at the positions indicated by the lead lines of the symbols J1 and J2 indicate spaces (gap) between the wing portions F and the template substrate TS.
  • the template substrate TS may have a ridge portion R on the upper surface side, and a first seed region S1 may be located on the upper surface of the ridge portion R.
  • a first gap J1 may be present between the first semiconductor portion 8A and the mask portion 5.
  • the first gap J1 can also be said to be a space sandwiched between the growth inhibition region DA and the first wing portion F1.
  • the first wing portion F1 is spaced apart from the mask portion 5 that functions as the growth inhibition region DA.
  • the first seed region S1 (the surface) is located above the growth inhibition region DA, and the first semiconductor portion 8A has a first base portion B1 located on the first seed region S1, and a first wing portion F1 that is connected to the first base portion B1 and faces the growth inhibition region DA via the first gap J1.
  • the Al-based nitride layer 2 does not have to overlap with the mask portion 5 in a plan view.
  • at least a portion of the metal layer ML may be included in the ridge portion R.
  • the metal layer ML and the Al-based nitride layer 2 may be included in the ridge portion R.
  • the upper surface (first seed region S1) of the ridge portion R may be formed of the Al-based nitride layer 2, and the side of the ridge portion R may be covered by the mask portion 5.
  • the template substrate TS may include a part of the mask portion 5 on the side of the ridge portion R.
  • the metal layer ML and the Al-based nitride layer 2 may not be exposed on the side of the ridge portion R.
  • the side of the ridge portion R may not be in contact with the first wing portion F1.
  • the entire side of the ridge portion R may face the first gap J1. This reduces the contact area between the ridge portion R and the first wing portion F1, and as a result, the defect density of the first wing portion F1 can be reduced.
  • the first semiconductor portion 8A can be formed by the ELO (Epitaxial Lateral Overgrowth) method, starting from the Al-based nitride layer 2 exposed under the first opening K1.
  • the Al-based nitride layer 2 may be a seed layer including a first seed region S1.
  • the second semiconductor portion 8C grows laterally on the mask portion 5, starting from the Al-based nitride layer 2 exposed under the second opening K2. Growth may be stopped before the first semiconductor portion 8A and the second semiconductor portion 8C meet, in which case an edge E1 of the first wing portion F1 can be formed above the growth inhibition region DA.
  • the aspect ratio of the first gap J1 (the ratio of the width WJ in the first direction X1 to the thickness TJ) can be set to 5.0 or more, in which case a wide first wing portion F1 with high crystallinity (low defect density) can be quickly formed. In addition, the flatness of the first wing portion F1 is improved.
  • the width WJ of the first gap J1 is the distance in the first direction X1 from the side of the ridge R to the edge E of the first semiconductor portion 8A.
  • the thickness (height) TJ of the first gap is the distance from the upper surface of the mask portion 5 that forms the growth inhibition region DA to the lower surface (rear surface) of the first semiconductor portion 8A.
  • the first wing portion F1 may have a ratio of width in the first direction X1 to thickness of 2.0 or more.
  • the first wing portion F1 may have a width in the first direction X1 of 7.0 ⁇ m or more, for example, 10.0 ⁇ m or more, 20.0 ⁇ m or more, or 40.0 ⁇ m or more.
  • the first wing portion F1 may have a width in the first direction X1 of 80.0 ⁇ m or less. This reduces the possibility that the semiconductor portion 8 will warp toward the substrate due to gravity.
  • the first wing portion F1 may have a thickness in the first direction X1 of, for example, 10.0 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less. As shown in FIG. 21, the width of the gap GP may be greater than the thickness TJ of the first gap J1.
  • the semiconductor substrate 10 may have a second gap J2 between the second semiconductor portion 8C and the mask portion 5, and the second gap J2 may have the same configuration as the first gap J1. Therefore, a repeated explanation of the second gap J2 will be omitted.
  • FIG. 22 is a cross-sectional view showing an example of a method for manufacturing the semiconductor substrate 10 in Example 2.
  • the semiconductor substrate 10 in Example 2 can be manufactured, for example, as follows.
  • a silicon substrate (Si(111) surface) is used as the main substrate 1
  • an Al film is formed on the silicon substrate as the metal layer ML
  • an AlN film is formed on the Al film as the Al-based nitride layer 2.
  • a sputtering method is used to form the metal layer ML and the Al-based nitride layer 2.
  • a stripe-shaped resist Z with a width of about 3 ⁇ m is formed on the top of the Al-based nitride layer 2 using photolithography, and a ridge portion R is formed by a dry etching process.
  • the Al-based nitride layer 2 and a part of the metal layer ML are etched.
  • the resist Z is not removed, and a mask layer MF (e.g., a SiN film with a thickness of 10 nm) that will become the mask portion 5 is formed on the main substrate 1 and on the resist Z.
  • a mask layer MF e.g., a SiN film with a thickness of 10 nm
  • Example 2 when the semiconductor portion 8 comes into contact with the mask portion 5 on the growth inhibition region DA, the mask portion 5 must be at least about 100 nm thick. If the semiconductor portion 8 comes into contact with the mask portion 5, this may interfere with the ELO growth and affect the surface flatness of the semiconductor portion 8. In contrast, in Example 2, the wing portion F is suspended in midair, so that the wing portion F and the mask portion 5 do not come into contact with each other above the growth inhibition region DA. Therefore, even if the mask portion 5 is made very thin, the growth of the wing portion F is not hindered, and the internal stress of the semiconductor portion 8 can be reduced. As a result, it is easier to reduce the warping of the semiconductor substrate 10.
  • the thickness of the mask portion 5 may be, for example, 1 ⁇ m or less, or 50 nm or less. If the thickness of the mask portion 5 is set to 50 nm or less, the flatness is improved, and it can also be set to 30 nm or less.
  • the resist Z is removed to lift off the mask layer MF on the ridge portion R, and a first opening K1 is formed to form a template substrate TS (selective growth substrate).
  • a template substrate TS selective growth substrate
  • the template substrate TS is transported into the MOCVD apparatus, and the semiconductor portion 8 is formed on the template substrate TS by the ELO method.
  • the semiconductor portion 8 is a GaN layer
  • the growth temperature is 1000 to 1200 degrees
  • the V/III ratio is 500 to 20000
  • the growth pressure is 50 kPa.
  • Si may be doped as in the first embodiment. It is preferable to set the film formation conditions in at least two stages. In the first stage, the film formation temperature is about 1030°C, the V/III is about 2000, and a growth nucleus (vertical growth portion) of the ELO layer (semiconductor portion 8) is formed on the opening K.
  • the thickness (height) of the growth nucleus is about 0.2 ⁇ m to 3 ⁇ m, and the width may be about the same as the width of the ridge R or a size that protrudes slightly in the a-axis direction ( ⁇ 11-20> direction).
  • the film formation temperature is raised by about 100°C, and the GaN layer is grown laterally (in the a-axis direction) from the growth nucleus. Growth is stopped when the width of the gap GP between the semiconductor parts 8 (GaN layers) growing in the opposite directions on the void reaches a specified value (10 ⁇ m or less).
  • the semiconductor substrate 10 (with the semiconductor part 8 exposed) obtained in this manner may be removed from the MOCVD apparatus and stored, or an upper layer including an active layer may be subsequently formed in the MOCVD apparatus.
  • FIG. 23 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in Example 2.
  • the main substrate 1 may include a protrusion Q on the main surface 1a, and at least a portion of the protrusion Q may be included in the ridge portion R.
  • the metal layer ML and the Al-based nitride layer 2 may be located on the protrusion Q.
  • the protrusion Q can be formed by removing a portion of the main substrate 1 when forming the ridge portion R by a dry etching process.
  • the first gap J1 can be formed more reliably, making it easier to reduce warping of the semiconductor substrate 10.
  • FIG. 24 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in Example 2.
  • the metal layer ML may include a protrusion MQ on the surface facing the Al-based nitride layer 2, and the Al-based nitride layer 2 may be located on the protrusion MQ. At least a part of the metal layer ML may be located between the main substrate 1 and the mask portion 5. When the ridge portion R is formed by the dry etching process, a part of the metal layer ML on the main substrate 1 remains without being removed, thereby forming the protrusion MQ.
  • FIG. 25 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in Example 2.
  • a metal layer ML is located on the entire surface of the main substrate 1, and an Al-based nitride layer 2 may be located locally on the metal layer ML.
  • the metal layer ML does not need to be included in the ridge portion R.
  • FIG. 26 is a cross-sectional view showing another example of the configuration of the semiconductor substrate 10 in Example 2.
  • the side surface (mask portion 5) of the ridge portion R of the semiconductor substrate 10 may be in contact with the first wing portion F1. If the first wing portion F1 does not contact the mask portion 5 in the growth inhibition region DA, the first gap J1 can be formed, so there is no problem.
  • Example 3 In the above-mentioned Examples 1 and 2, the Al-based nitride layer 2 was formed on the main substrate 1, but this is not limited to this.
  • the Al-based nitride layer 2 can be formed on a substrate other than the main substrate 1 (hereinafter referred to as the temporary substrate 1T), and then the Al-based nitride layer 2 can be transferred to the main substrate 1.
  • FIG. 27 is a cross-sectional view showing an example of a method for manufacturing a semiconductor substrate 10 in Example 3.
  • a metal layer ML and an Al-based nitride layer 2 are formed above a temporary substrate 1T by using a sputtering method.
  • the temporary substrate 1T may be made of any material that is capable of forming the metal layer ML and the Al-based nitride layer 2, and is not particularly limited. Since the temporary substrate 1T is reusable as described below, even if a relatively expensive substrate is used, the impact on manufacturing costs is small.
  • a 4H-SiC substrate can be used as the temporary substrate 1T.
  • a silicon substrate can be used as the main substrate 1.
  • a metal layer ML can be formed on the entire surface of the temporary substrate 1T, and an Al-based nitride layer 2 can be formed on the metal layer ML.
  • an AlN film is formed on a 4H-SiC substrate by sputtering.
  • an Al-based nitride layer 2 is formed on the temporary substrate 1T via a metal layer ML, an Al-based nitride layer 2 of higher quality than conventional can be formed.
  • the first surface 2a of the Al-based nitride layer 2 and the main surface 1a of the main substrate 1 are each subjected to plasma treatment to clean the surfaces. This makes it possible to activate the surfaces (a state in which dangling bonds are present on the surface). Thereafter, the first surface 2a of the Al-based nitride layer 2 and the main surface 1a of the main substrate 1 are brought into contact with each other, thereby enabling the Al-based nitride layer 2 and the main substrate 1 to be surface-activatedly bonded together.
  • the metal layer ML is removed and the temporary substrate 1T is separated, so that the Al-based nitride layer 2 can be transferred to the main substrate 1.
  • Subsequent processing can be the same as in the above-mentioned Example 1, where a mask pattern 6 is formed on the Al-based nitride layer 2, and the semiconductor portion 8 can be formed using the ELO method.
  • Example 3 even if the metal layer ML is formed relatively thick, no problem occurs because the metal layer ML is removed during transfer. This makes it easier to improve the quality of the Al-based nitride layer 2.
  • the temporary substrate 1T can be used repeatedly by removing the metal layer ML on the surface.
  • Example 3 for example, a high-quality Al-based nitride layer 2 formed on a 4H-SiC substrate can be transferred onto a silicon substrate as the main substrate 1.
  • a template substrate TS having an Al-based nitride layer 2 of higher quality than conventional ones can be created on a silicon substrate.
  • a semiconductor substrate 10 can be manufactured using such a template substrate TS. Therefore, the characteristics of various devices can be improved using the semiconductor substrate 10.
  • the main substrate 1 may be, for example, a silicon substrate, and the surface orientation of the main surface 1a may be a (100) surface.
  • electronic circuits and the like can be formed on a Si(100) surface, so by using, for example, a silicon substrate (Si(100) surface) as the main substrate 1, it becomes possible to integrate light-emitting elements and electronic circuits in a semiconductor device formed using the semiconductor substrate 10.
  • the first surface 2a of the Al-based nitride layer 2 facing the principal surface 1a of the main substrate 1 may be, for example, an N-polarity surface, in which case the second surface 2b of the Al-based nitride layer 2 may be an Al-polarity surface.
  • the plane orientation of the principal surface 1a of the main substrate 1 is a (100) plane
  • the first surface 2a of the Al-based nitride layer 2 has a hexagonal crystal structure, and therefore the principal surface 1a and the first surface 2a have different crystal atomic arrangement patterns in the in-plane direction.
  • the x-axis and y-axis directions of the unit cell in the atomic arrangement of the main surface 1a may be different from the x-axis and y-axis directions of the unit cell in the atomic arrangement of the first surface 2a of the Al-based nitride layer 2.
  • the presence of such a bond trace which is a difference between the main surface 1a and the first surface 2a, makes it possible to distinguish between the AlN film epitaxially grown on the main substrate 1 and the Al-based nitride layer 2 transferred onto the main substrate 1.
  • the above bond trace can be confirmed, for example, based on the results of X-ray measurement, etc.
  • FIG. 28 is a cross-sectional view showing an example of a method for manufacturing a template substrate TS of another configuration example in Example 3.
  • a 4H-SiC substrate is used as a temporary substrate 1T, and an Al film (film thickness: 100 nm) is formed as a metal layer ML.
  • an Al-based nitride layer 2 is formed on the Al film.
  • the Al-based nitride layer 2 may be a ScAlN film (film thickness: 1000 nm).
  • a silicon substrate is used as the main substrate 1, and an intermediate layer IL is formed on the main substrate 1.
  • the intermediate layer IL may be, for example, a molybdenum film (film thickness: 1000 nm), and can be formed using a sputtering method.
  • the surface of the intermediate layer IL is cleaned, and the intermediate layer IL and the Al-based nitride layer 2 are activated and bonded.
  • the metal layer ML is removed, and the Al-based nitride layer 2 is transferred onto the intermediate layer IL of the main substrate 1.
  • a template substrate TS including a main substrate 1, an intermediate layer IL on the main substrate 1, and an Al-based nitride layer 2 on the intermediate layer IL.
  • a template substrate TS can be used to manufacture, for example, a BAW filter, in which the Al-based nitride layer 2 serves as a piezoelectric layer and the intermediate layer IL serves as an elastic wave reflector.
  • FIG. 29 is a cross-sectional view showing an example of a method for manufacturing a template substrate TS of another configuration example in Example 3.
  • a 4H-SiC substrate is used as a temporary substrate 1T, and an Al film (film thickness: 100 nm) is formed as the metal layer ML.
  • an AlN film film thickness: 200 nm is formed as the Al-based nitride layer 2 on the Al film.
  • a GaN film film thickness: 1000 nm
  • an AlGaN film film thickness: 10 nm
  • the metal layer ML, the Al-based nitride layer 2, the first layer L1, and the second layer L2 are each formed using a sputtering method.
  • the second layer L2 is temporarily bonded to the support substrate 1S.
  • the material of the support substrate 1S is not particularly limited, and any known method can be used for the temporary bonding.
  • the second surface 2b of the Al-based nitride layer 2 and the main surface 1a of the main substrate 1 are each plasma-treated, and the second surface 2b is brought into contact with the main surface 1a, thereby surface-activating bonding the Al-based nitride layer 2 and the main substrate 1.
  • the temporary bond between the second layer L2 and the support substrate 1S is removed, allowing the Al-based nitride layer 2, the first layer L1, and the second layer L2 to be transferred to the main substrate 1.
  • a template substrate TS including a main substrate 1, an Al-based nitride layer 2 on the main substrate 1, a first layer L1 on the Al-based nitride layer 2, and a second layer L2 on the first layer L1.
  • a template substrate TS can be used, for example, in the manufacture of a HEMT, in which the first layer L1 is an electron passing layer and the second layer L2 is an electron generating layer.
  • Example 4 Fig. 30 is a cross-sectional view showing an example of a method for manufacturing the semiconductor substrate 10 in Example 4. As shown in Fig. 30, the semiconductor substrate 10 can be formed into a structure having a ridge portion R (ridge structure) as in Example 2 by using the template substrate TS of Example 3 described above.
  • a striped resist Z is formed on the Al-based nitride layer 2.
  • a part of the Al-based nitride layer 2 is etched by a dry etching process.
  • a mask layer MF e.g., a 10 nm thick SiN film
  • a mask layer MF that will become the mask portion 5 is formed on the main substrate 1 and the resist Z.
  • the template substrate TS and the semiconductor substrate 10 can be manufactured by carrying out the same process as described above in Example 2.
  • the template substrate TS has a ridge portion R on the upper surface side in which the first seed region S1 is located.
  • a first gap J1 exists between the first semiconductor portion 8A and the growth inhibition region DA.
  • the growth inhibition region DA may be a modified region of the Al-based nitride layer 2
  • the first seed region S1 may be a non-modified region of the Al-based nitride layer 2.
  • the Al-based nitride layer 2 can be modified by, for example, performing a plasma treatment on the Al-based nitride layer 2.
  • argon plasma is irradiated onto a predetermined region of the Al-based nitride layer 2 to modify the surface of the irradiated region, forming a growth inhibition region DA.
  • the plasma treatment can use oxygen plasma, nitrogen plasma, hydrogen plasma, or a mixture of these plasmas in addition to argon plasma.
  • the growth inhibition region DA may contain argon, oxygen, nitrogen, etc. as impurities.
  • the Al-based nitride layer 2 may be aluminum nitride
  • the growth inhibition region DA may be aluminum oxynitride.
  • the Al-based nitride layer 2 may be AlScN (aluminum scandium nitride)
  • the growth inhibition region DA may be AlScON (aluminum scandium oxynitride).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

半導体基板は、第1シード領域および成長抑制領域を含むテンプレート基板と、前記第1シード領域の上方に位置する第1基部および前記第1基部に繋がるとともに前記成長抑制領域の上方に位置する第1ウイング部を有する第1半導体部とを備える。テンプレート基板は、主基板と、前記主基板の上方に位置する金属層と、前記金属層の上方に位置し、アルゴンを含むアルミニウム系窒化物層とを有する。前記第1半導体部は、窒化物半導体を含む。

Description

半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置
 本開示は、半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置に関する。
 特許文献1には、開口部を有する選択成長用マスクが形成されたシリコン(Si)基板を用いて、バッファ層である窒化アルミニウム(AlN)層を形成し、その後、窒化ガリウム(GaN)層を選択成長させる技術について記載されている。特許文献1に記載の手法では、有機金属化学気相成長(MOCVD)法を用いてAlN層およびGaN層を形成している。
日本国特開2008-235709号公報
 本開示の一態様における半導体基板は、第1シード領域および成長抑制領域を含むテンプレート基板と、前記第1シード領域の上方に位置する第1基部および前記第1基部に繋がるとともに前記成長抑制領域の上方に位置する第1ウイング部を有する第1半導体部とを備え、前記テンプレート基板は、主基板と、前記主基板の上方に位置する金属層と、前記金属層の上方に位置し、アルゴンを含むアルミニウム系窒化物層とを有し、前記第1半導体部は、窒化物半導体を含む。
 本開示の一態様における半導体基板は、第1シード領域および成長抑制領域を含むテンプレート基板と、前記第1シード領域の上方に位置する第1基部および前記第1基部に繋がるとともに前記成長抑制領域の上方に位置する第1ウイング部を有する第1半導体部とを備え、前記テンプレート基板は、主基板と、窒素極性面が前記主基板に接合し、かつアルゴンを含むアルミニウム系窒化物層とを有し、前記第1半導体部は、窒化物半導体を含む。
 本開示の一態様におけるテンプレート基板は、主基板と、前記主基板の上方に位置する金属層と、前記金属層の上方に位置し、アルゴンを含むアルミニウム系窒化物層とを備える。
 本開示の一態様におけるテンプレート基板の製造方法は、主基板を含むテンプレート基板の製造方法であって、主基板の上方に金属層を形成する工程と、前記金属層の上方に、スパッタリング法を用いてアルミニウム系窒化物層を形成する工程とを含む。
 本開示の一態様におけるテンプレート基板の製造方法は、主基板を含むテンプレート基板の製造方法であって、仮基板上に金属層を形成する工程と、前記金属層の上方に、スパッタリング法を用いてアルミニウム系窒化物層を形成する工程と、前記アルミニウム系窒化物層を、前記仮基板から主基板に転写する工程とを含む。
本開示の一実施形態における半導体基板の構成を概略的に示す平面図である。 本開示の一実施形態における半導体基板の構成を概略的に示す断面図である。 本開示の一実施形態における半導体基板の製造方法の一例を示すフローチャートである。 本開示の別の一実施形態における半導体基板の構成を概略的に示す断面図である。 本開示の別の一実施形態における半導体基板の製造方法の一例を示すフローチャートである。 本開示の一実施形態における製造装置の一例を示すブロック図である。 実施例1におけるテンプレート基板の構成を概略的に示す断面図である。 実施例1におけるテンプレート基板の製造方法を示す断面図である。 実施例1における半導体基板の構成を概略的に示す断面図である。 半導体部の横方向成長の一例を示す断面図である。 実施例1における半導体基板の別構成例を示す平面図である。 実施例1における半導体基板の別構成例を示す断面図である。 実施例1における半導体基板の別構成例を示す断面図である。 実施例1における半導体基板の別構成例を示す断面図である。 実施例1における半導体基板の別構成例を示す断面図である。 実施例1における半導体基板の別構成例を示す平面図である。 実施例1における素子分離の方法を示す平面図である。 実施例1における素子分離の方法を示す断面図である。 実施例1における半導体基板の別構成例を示す平面図である。 実施例2における半導体基板の構成を概略的に示す平面図である。 実施例2における半導体基板の構成を概略的に示す断面図である。 実施例2における半導体基板の製造方法の一例を示す断面図である。 実施例2における半導体基板の別構成例を示す断面図である。 実施例2における半導体基板の別構成例を示す断面図である。 実施例2における半導体基板の別構成例を示す断面図である。 実施例2における半導体基板の別構成例を示す断面図である。 実施例3における半導体基板の製造方法の一例を示す断面図である。 実施例3における別構成例のテンプレート基板の製造方法の一例を示す断面図である。 実施例3における別構成例のテンプレート基板の製造方法の一例を示す断面図である。 実施例4における半導体基板の製造方法の一例を示す断面図である。
 以下、本開示の実施の形態について図面を参照して説明する。但し、以下の記載は本開示の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本開示を限定するものではない。本出願における各図面に記載した構成の形状および寸法(長さ、幅等)は、実際の形状および寸法を必ずしも反映させたものではなく、図面の明瞭化および簡略化のために適宜変更している。
 〔半導体基板〕
 図1は、本開示の一実施形態における半導体基板10の構成を概略的に示す平面図である。図2は、本開示の一実施形態における半導体基板10の構成を概略的に示す断面図である。なお、本開示における図1等のように、図示の平明化のために、平面図においても各部材にハッチングを付している場合があり、このことは以下に説明する他の図面においても同じである。
 図1および図2に示すように、半導体基板10は、第1シード領域S1および成長抑制領域DAを含むテンプレート基板TSと、テンプレート基板TSの上方に位置する第1半導体部8Aとを備える。第1半導体部8Aは、第1シード領域S1の上方に位置する第1基部B1と、第1基部B1に繋がるとともに成長抑制領域DAの上方に位置する第1ウイング部F1とを有する。テンプレート基板TSは、主基板1と、主基板1よりも上方に位置する金属層MLと、金属層MLよりも上方に位置し、アルゴンを含むアルミニウム系窒化物層(Al系窒化物層)2とを有する。第1半導体部8Aは、窒化物半導体を含む。
 本実施形態における半導体基板10では、テンプレート基板TSは、マスクパターン6を有していてよく、マスクパターン6は、成長抑制領域DAとして機能するマスク部5と、第1シード領域S1に対応する第1開口部K1とを含んでいてよい。具体的には、マスク部5の表面(上面)が成長抑制領域DAとなっていてよい。
 第1半導体部8Aは、主成分として窒化物半導体を含んでいてよい。窒化物半導体は、例えば、AlxGayInzN(0≦x≦1;0≦y≦1;0≦z≦1;x+y+z=1)と表すことができ、具体例として、GaN系半導体、AlN、InAlN(窒化インジウムアルミニウム)、InN(窒化インジウム)を挙げることができる。GaN系半導体とは、ガリウム原子(Ga)および窒素原子(N)を含む半導体であり、典型的な例として、GaN、AlGaN、AlGaInN、InGaNを挙げることができる。
 第1半導体部8Aは、ドープ型(例えば、ドナーを含むn型)でもノンドープ型でもよい。半導体基板とは、窒化物半導体を含む基板という意味である。主基板1、金属層ML、およびAl系窒化物層2を含めてベース基板と称することがある。
 主基板1は、第1半導体部8Aと格子定数が異なる異種基板であり、Al系窒化物層2は、第1シード領域S1を含むシード層であって、第1基部B1に接触していてよい。Al系窒化物層2は、例えばAlN層であってよい。第1半導体部8Aはアルゴンを含まない。具体的には、Al系窒化物層2の表面(上面)が第1シード領域S1となっていてよい。
 第1半導体部8Aは、テンプレート基板TS上に、ELO(Epitaxial Lateral Overgrowth)法によって形成することができる。ELO法では、例えば、主基板1として窒化物半導体と格子定数の異なる異種基板を用い、マスク部5に無機化合物膜を用いて、第1開口部K1において露出する第1シード領域S1を結晶成長の起点とすることができる。これにより、第1シード領域S1上に初期成長層(イニシャル成長層)を形成し、その後、イニシャル成長層からマスク部5上に窒化物半導体を含む第1半導体部8Aを横方向成長させることができる。
 第1半導体部8Aのうち、第1開口部K1の上方に位置する第1基部B1は、貫通転位が多い転位継承部となり、マスク部5の上方に位置する第1ウイング部F1は、転位継承部と比較して貫通転位密度が小さい低欠陥部となる。
 テンプレート基板TSは、成長抑制領域DAを介して第1シード領域S1と第1方向X1に隣り合う第2シード領域S2を有していてよい。マスクパターン6は、第2シード領域S2に対応する第2開口部K2を含んでいてよい。テンプレート基板TSは、第1方向X1に並ぶ第1シード領域S1および成長抑制領域DAそれぞれが、第1方向X1と直交する第2方向X2を長手方向とする形状であってよい。
 本実施形態における半導体基板10は、窒化物半導体を含む第2半導体部8Cを備えていてよい。第2半導体部8Cは、第2シード領域S2の上方および成長抑制領域DAの上方に位置する。第2半導体部8Cは、前記第2シード領域の上方に位置する第2基部B2と、第2基部B2に繋がるとともに成長抑制領域DAの上方に位置する第2ウイング部F2とを有していてよい。第1ウイング部F1および第2ウイング部F2がギャップGPを介して第1方向X1に並んでいてよい。
 第2半導体部8Cは、第2開口部K2において露出する第2シード領域S2を起点として、マスク部5上を横方向に成長し、第1半導体部8Aと会合する前に成長が止められてよい。これにより、半導体基板10は、第1半導体部8Aと第2半導体部8Cとの間にギャップGPを有する。第1半導体部8Aについて上記したことと同じく、第2半導体部8Cのうち、第2開口部K2の上方に位置する第2基部B2は転位継承部となり、マスク部5の上方に位置する第2ウイング部F2は低欠陥部となる。
 以下では、第1半導体部8Aおよび第2半導体部8Cの総称を半導体部8、第1基部B1および第2基部B2の総称を基部B、第1ウイング部F1および第2ウイング部F2の総称をウイング部Fと表現することがある。また、マスクパターン6の第1開口部K1および第2開口部K2の総称を開口部K、第1シード領域S1および第2シード領域S2の総称をシード領域Sと表現することがある。半導体部8は半導体層8であってよく、マスク部5はマスク層5であってよい。
 また、以下では、主基板1から半導体部8への向きを「上向き」とし、半導体基板10の法線方向と平行な視線で対象物を視る(透視的な場合を含む)ことを「平面視」と称することがある。シード領域Sおよび成長抑制領域DAは、平面視において第1方向X1(基板の厚さ方向と直交する方向)に並んでいてよい。シード領域S(例えばAl系窒化物層2の表面)および成長抑制領域DA(例えばマスク部5の表面)は、半導体基板10の厚さ方向(上下方向)における位置(高さ)が互いに異なっていてよく、互いに同一または略同一であってもよい。
 第1方向X1は、半導体部8(GaN等の窒化物半導体結晶)のa軸方向(<11-20>方向)であってよい。第1方向X1と直交する第2方向X2は、半導体部8のm軸方向(<1-100>方向)であってよい。半導体基板10の厚さ方向が半導体部8のc軸方向(<0001>方向)であってよい。
 本実施形態における半導体基板10は、主基板1の上方に金属層MLを有するとともに金属層ML上にAl系窒化物層2が形成されていることにより、例えば、半導体基板10の反りを低減することができる。このことについて本開示の知見の概要と併せて概略的に説明する。
 従来のテンプレート基板(以下、説明の便宜上、「従来のテンプレート基板C」と称する)は、例えば、シリコン基板と、バッファ層であるAlN層と、歪み緩和層であるAlGaN層と、GaN下地層と、をこの順に有するベース基板を有する。そして、従来のテンプレート基板Cは、ベース基板上に形成されたマスクパターンを有する。上記AlN層は、シリコン基板とGaN下地層との溶融(メルトバック)を防ぐとともにGaN下地層の品質を高めるために設けられる。一般に、上記AlN層は、バッファ層としての品質を高める観点等からMOCVD法により形成される。
 従来のテンプレート基板CをMOCVD装置内に装入し、ELO法を用いてGaN層を成膜することにより製造された半導体基板は、成膜温度から温度を低下させると、シリコン基板とGaN層との熱膨張係数の違いに起因して反りが生じ易い。従来のテンプレート基板Cは、安価なシリコン基板を用いている一方でMOCVD法を用いて形成されていることから、製造コストを低減することが難しい。
 ところで、シリコン基板上に、MOCVD法ではなくスパッタリング法(物理気相成長法)を用いてAlN層を形成することもできる。しかし、従来、シリコン基板上に、高い品質を有するAlN層をスパッタリング法により形成することは困難であった。本発明者らは、鋭意検討の結果、シリコン基板等の主基板1の上方に比較的厚い金属層MLを形成し、当該金属層ML上にスパッタリング法を用いてAlN層を形成する場合、AlN層の品質を高めることができるという知見を得た。スパッタリング法によりAlN層を形成する下地として、5nmを超える程度の厚さを有する金属層MLを用いるテンプレート基板はこれまで存在せず、そのようなテンプレート基板の意義については未知であった。
 従来よりも厚い金属層MLを成長の下地とすることによってAlN層の品質が向上する理由について、金属層MLの結晶の状態(格子歪み、残留応力等)が、AlN層の品質に影響し得ると考えられる。そして、AlNと同等の構造を有するAl系窒化物についても、従来よりも厚い金属層MLを成長の下地とすることによって品質を向上させることができることがわかった。
 金属層MLは、主成分がAlである層(Al系金属層)を含んでいてよい。ここでの主成分とは、含有モル数が最大である金属元素をいう。また、金属層MLは、アルミニウム、プラチナ、パラジウム、銀、金、ハフニウム、スカンジウム、イットリウム、チタン、およびジルコニウムからなる群から選ばれる1種以上の金属を含んでいてよく、上記群から選ばれる何れかの金属を主成分として含んでいてよい。金属層MLは、面心立方格子または体心立方格子の(111)面あるいは六方最密格子の(0001)面が主基板1の主面1aに配向している金属を少なくとも1種以上含む。金属層MLは、合金であってもよい。
 金属層MLは、スパッタリング法により形成されていてよく、この場合、金属層MLは、アルゴンを含有する。スパッタ装置内で金属層MLおよびAl系窒化物層2を連続的に形成することによれば、テンプレート基板TSの製造効率を高めることができる。
 従来のようにMOCVD法を用いてAlN層を成膜する場合、例えば金属層としてのAl膜の融点を上回る高温にて成膜処理が行われることになり、金属層MLを有するテンプレート基板TSを製造することは困難である。これに対して、スパッタリング法では、成膜温度を低くできることから、金属層MLを有するテンプレート基板TSを製造し易い。
 金属層MLは、主基板1の法線方向に視る平面視において、主基板1の上面(主面1a)全体と重なるように位置していてよい。Al系窒化物層2は、マスク部5と重なるように位置していてよい。金属層MLの厚さは、20nm以上であってよく、100nm以上2000nm以下であってよい。
 Al系窒化物層2は、少なくともアルミニウムおよび窒素を含む。Al系窒化物層2は、アルミニウム以外の金属を含んでいてよく、例えば、スカンジウム(Sc)またはジルコニウム(Zr)を含んでいてよい。Al系窒化物層2は、例えば、AlScNまたはAlZrNであってよい。Al系窒化物層2は複数の金属種を含んでいてもよく、この場合、複数の金属種のうちアルミニウムの含有量が最も多くなっていてよく、或いは、アルミニウムの含有量が、アルミニウム以外の金属種の合計の含有量よりも多くなっていてよい。
 Al系窒化物層2は、主基板1の法線方向に視る平面視において、主基板1の上面全体と重なるように位置していてよい。また、Al系窒化物層2は、平面視において、金属層MLの上面(表面MLS)全体と重なるように位置していてよい。Al系窒化物層2の厚さは、例えば30nm以上であってよい。Al系窒化物層2の厚さは、金属層MLよりも大きくてよく、例えば30nm以上500nm以下であってよい。
 本実施形態における半導体基板10では、スパッタリング法の処理条件を調整することによってAl系窒化物層2の内部応力を調整できる。例えば、Al系窒化物層2は、スパッタリング法により形成される際に混入するアルゴンを含む。そのため、アルゴンの含有量を変化させることによって、室温におけるAl系窒化物層2の応力状態を変化させることができる。例えば、半導体基板10では、常温において、Al系窒化物層2は圧縮応力状態であり、半導体部8(第1半導体部8A)は引張応力状態であってよい。この場合、半導体基板10の全体の反りを低減することができるため、後のプロセス(デバイス層形成、剥離等)に有効である。また、半導体基板10では、常温において、Al系窒化物層2および半導体部8(第1半導体部8A)が引張応力状態であってもよい。Al系窒化物層2の格子定数が半導体部8の格子定数よりも小さい場合、Al系窒化物層2が引張応力状態であることでc軸に直交する面内の格子間隔が広がり、Al系窒化物層2と半導体部8の格子定数差の影響が緩和される。その結果、半導体部8(特にシード領域S上の基部)の結晶性を高めることができる。金属層MLおよびAl系窒化物層2が引張応力状態であってもよい。Al系窒化物層2が窒化アルミニウム層(AlN層)である場合に、AlN層における、アルミニウム以外の不純物金属元素の金属元素全体に対する割合が、0.5atm%未満であってもよい。常温とは、典型的には室温であり、例えば20℃または25℃である。上記応力状態(圧縮応力状態および引張応力状態)は、第1方向X1および第2方向X2を面内方向とする平面における内部応力の発生状態に基づいて規定される。半導体基板10の高さ方向における応力状態と、第1方向X1および第2方向X2を面内方向とする上記平面における応力状態とは、互いに異なり得る。
 スパッタリング法を用いて比較的高品質のAl系窒化物層2が形成されたテンプレート基板TSを製造し、その後、テンプレート基板TS上に半導体部8を成膜することにより、半導体基板10を製造できる。半導体部8は、MOCVD法を用いて形成されたAlN層を有する従来のテンプレート基板C上に形成された場合と同程度の品質とすることができる。半導体基板10は、主基板1と半導体部8との間に位置するAl系窒化物層2によって内部応力が緩和される。これにより、室温状態にて半導体基板10に生じる反りを効果的に低減することができる。
 半導体基板10は、半導体部8に含まれる窒化物半導体がGaN系半導体であり、テンプレート基板TSの主基板1がシリコン基板若しくは炭化シリコン基板またはガラス基板であってよい。Al系窒化物層2は、1000℃における熱膨張係数が、主基板1よりも大きく半導体部8(第1半導体部8A)よりも小さくてよい。
 上記ガラス基板は、ELO法によって半導体部8を形成する際の成膜温度に対する耐熱性を有する材質により形成されていればよく、当該材質は具体的に限定されない。主基板1として安価な異種基板を用いて、スパッタリング法によりテンプレート基板TSを形成することによれば、テンプレート基板TSの製造コストを効果的に低減できる。
 〔半導体基板の製造方法〕
 図3は、本実施形態における半導体基板10の製造方法の一例を示すフローチャートである。図3に示すフローチャートにはテンプレート基板TSの製造方法の一例も含まれる。
 図3に示すように、半導体基板10の製造方法では、先ず、テンプレート基板TSを形成する。テンプレート基板TSの製造方法は、主基板1の上方に金属層MLを形成する工程(S10)と、金属層MLの上方に、スパッタリング法を用いてAl系窒化物層2を形成する工程(S20)とを含む。次いで、Al系窒化物層2の上方に、成長抑制領域DAとして機能するマスク部5を含むマスクパターン6を形成する工程(S30)が行われてよい。その後、半導体部8を形成する工程(S40)を行うことにより、半導体基板10を製造できる。例えば、金属層MLはアルミニウム層であってよく、アルミニウム層をスパッタリング法を用いて形成してよい。
 〔別の実施形態〕
 図4は、本開示の別の一実施形態における半導体基板10の構成を概略的に示す断面図である。図5は、本開示の別の一実施形態における半導体基板10の製造方法の一例を示すフローチャートである。図4および図5に示すように、テンプレート基板TSは、金属層MLを有していなくてもよく、このようなテンプレート基板TSは、主基板1とは別の基板(仮基板)上において金属層MLおよびAl系窒化物層2を形成し、当該Al系窒化物層2を主基板1上に転写することにより形成できる。上記仮基板としては、金属層MLおよびAl系窒化物層2の成膜に適した材質の基板を用いることができる。
 図4に示す例では、半導体基板10は、第1シード領域S1および成長抑制領域DAを含むテンプレート基板TSと、第1半導体部8Aとを備え、テンプレート基板TSは、主基板1と、Al系窒化物層2とを有する。Al系窒化物層2は、窒素極性面が主基板1に接合し、かつアルゴンを含む。第1半導体部8Aは、窒化物半導体を含む。
 本明細書において、金属層ML上に形成されるAl系窒化物層2の上側表面(成長面)を第1面2aと称し、第1面2aとは反対側に位置する面、すなわち金属層MLからの成長を開始した側の面を第2面2bと称する。図4に示す例では、仮基板の上方にて形成されたAl系窒化物層2を主基板1に転写していることにより、第1面2aが主基板1に対向する対向面となっており、第2面2bが主基板1から遠い側に位置している。そして、開口部Kにおいて露出するAl系窒化物層2の第2面2bがシード領域Sとなっている。
 金属層ML上にc面成長したAl系窒化物層2の第1面(上側表面)2aは、アルミニウム極性面(Al極性面)であり得る。また、金属層ML上においてAl系窒化物層2が-c面成長した場合、第1面2aは窒素極性面(N極性面)であってよい。例えば、Al系窒化物層2は、仮基板上にスパッタリング法で形成された状態において、第1面2aがN極性面であってよく、主基板1に転写後において、N極性面が主基板1に接合していていよい。これらのことについて、より詳しくは後述の実施例にて説明する。
 図5に示す例では、テンプレート基板TSの製造方法は、仮基板の上方に金属層MLを形成する工程(S100)と、金属層MLの上方に、スパッタリング法を用いてAl系窒化物層2を形成する工程(S200)と、Al系窒化物層2を仮基板から主基板1に転写する工程(S250)とを含む。例えば、主基板1とAl系窒化物層2とを表面活性化接合させることができる。金属層MLを除去することによって、主基板1およびAl系窒化物層2を仮基板から分離することができる。そして、Al系窒化物層2の上方に、マスクパターン6を形成する工程(S300)が行われてよい。その後、半導体部8を形成する工程(S400)を行うことにより、半導体基板10を製造できる。例えば、金属層MLはアルミニウム層であってよく、アルミニウム層をスパッタリング法を用いて形成してよい。なお、上記S250の工程の後、上記S300およびS400の工程の代わりに電極形成等の工程を行うことによって半導体デバイスを形成することもできる。
 図5に示す例の製造方法により製造されるテンプレート基板TSでは、Al系窒化物層2は、仮基板から主基板1に転写されていることにより、主基板1との界面において、主基板1の結晶構造を継承していない。半導体基板10は、Al系窒化物層2と主基板1との界面に接合跡を有していてよい。この接合跡としては、仮に主基板1上にエピタキシャル成長した場合のAl系窒化物層2と、主基板1に転写されたAl系窒化物層2との相違を示すような、主基板1とAl系窒化物層2との接合の痕跡であればよい。接合跡は、具体的には特に限定されないが、例えば、XRD測定結果等に基づいて、主基板1の表面の面方位と、Al系窒化物層2の第1面2aの面方位とが互いに揃っていない場合、上記接合跡を有すると判定できる。
 〔半導体基板の製造装置〕
 図6は、本開示の一実施形態における製造装置50の一例を示すブロック図である。図6に示す半導体基板10の製造装置50は、上記S10の工程を行う装置A10と、上記S20の工程を行う装置A20と、上記S30の工程を行う装置A30と、上記S40の工程を行う装置A40と、装置A10~A40を制御する装置A50と、を備える。また、装置A10は、上記S100の工程を行ってよく、装置A20は、上記S200の工程を行ってよい。製造装置50は、上記S250の工程を行う装置A25を備えていてよい。装置A50は、装置A25を制御してよい。装置A30は、上記S300の工程を行ってよく、装置A40は、上記S400の工程を行ってよい。
 装置A10および装置A20は、それぞれスパッタリング装置を含んでいてよい。また、製造装置50は、装置A10および装置A20の機能を有する単一の装置A12を有していてよく、装置A12はスパッタリング装置を含んでいてよい。装置A50は、装置A12を制御してよい。装置A50が、プロセッサおよびメモリを含んでいてよい。装置A50は、例えば、内蔵メモリ、通信可能な通信装置、またはアクセス可能なネットワーク上に格納されたプログラムを実行することで装置A10および装置A20を制御する構成でもよく、このプログラムおよびこのプログラムが格納された記録媒体等も本実施形態に含まれる。
 〔半導体デバイス〕
 半導体基板10における半導体部8は、低欠陥部であるウイング部Fを有する。ウイング部Fを用いて半導体デバイスを形成することができる。半導体デバイスの具体例として、発光体(LEDチップ、半導体レーザチップ等)、発光体がサブマウントされた発光素子、発光素子がパッケージングされた発光モジュール等を挙げることができる。半導体デバイスとしては、発光系の半導体デバイスに限定されず、例えば受光素子(Photo diode)であってもよい。
 〔その他の実施形態〕
 本開示の他の実施形態について概略的に説明すれば以下のとおりである。より詳しくは、後述する実施例において説明する。
 (a)金属層MLは、前述の種類の金属を含む、単層または複層であってよい。金属層MLが複層の場合、少なくとも1層がアルミニウムを主成分として含んでいてよく、Al系窒化物層2と接する層(最上層)がアルミニウムを主成分としてよい。金属層MLは、金属材料からなる第1層と、前記第1層とは異なる金属材料からなる第2層とを含んでいてもよい。第1層および第2層のそれぞれが、アルミニウム、プラチナ、パラジウム、銀、金、ハフニウム、スカンジウム、イットリウム、チタン、およびジルコニウムからなる群から選ばれる1種以上の金属を含んでよい。
 (b)テンプレート基板TSにおいて、シード領域Sは、半導体部8の成長の起点となる領域であればよく、テンプレート基板TSは、主基板1の上方にシード領域Sを有するとともに成長抑制領域DAを有していればよい。テンプレート基板TSは、例えば、マスク部5を有していなくてもよい。
 (c)一構成例における半導体基板10は、金属層MLとAl系窒化物層2との間に位置する金属窒化物層を備えていてよい。
 (d)上述の実施形態における半導体基板10は、ELO法により形成された半導体部8を有していたが、これに限定されない。本開示の別の一態様における半導体基板10では、テンプレート基板TSはマスクパターン6を有していなくてよい。テンプレート基板TSは、光学系以外の半導体デバイスの製造に用いることができ、そのような半導体デバイスとして、例えば、HEMT(High Electron Mobility Transistor)等のトランジスタ、およびBAW(Bulk Acoustic Wave)フィルタ等のMEMS(Micro Electro Mechanical Systems)用の素子が挙げられる。
 (e)本開示の一態様における半導体基板10は、ウイング部Fと成長抑制領域DAであるマスク部5との間に空隙を有していてもよく、例えば、半導体基板10の厚さ方向においてシード領域Sが成長抑制領域DAよりも上方に位置していてよい。
 (f)本開示の一態様における半導体基板10は、第1方向X1に隣り合う第1開口部K1および第2開口部K2のそれぞれから逆向きに横方向成長した半導体部8同士がマスク部5上で接触(会合)していてもよい。半導体基板10は、ギャップGPを有していなくてもよい。
 〔実施例1〕
 以下では、先ず、半導体部8を形成する前のテンプレート基板TSについて説明し、その後、半導体基板10について説明する。
 (テンプレート基板)
 図7は、実施例1におけるテンプレート基板TSの構成を概略的に示す断面図である。図7に示すように、実施例1におけるテンプレート基板TSは、上記実施形態1におけるテンプレート基板TSと同じ概略構成を有していてよい。テンプレート基板TSは、主基板1と、金属層MLと、Al系窒化物層2とを含むベース基板BSを有し、ベース基板BS上にマスクパターン6が形成されていてよい。
 主基板1は、シリコン基板であってよく、各種のガラス基板であってもよい。主基板1の面方位は、例えば、シリコン基板の(111)面である。但し、これらは例示であって、実施例1における主基板1は、下記2点の条件を満たす材質および面方位を有していればよく、主基板1の具体的な材質および面方位は必ずしも限定されない。すなわち、主基板1は、第1に、主基板1の上方に金属層MLおよびAl系窒化物層2を形成してベース基板BSを製造可能であればよい。そして、主基板1は、第2に、主基板1を含むベース基板BSの上方にマスクパターン6を形成することによって製造されるテンプレート基板TSを用いて、ELO法により半導体部8を成長可能であればよい。主基板1として安価な基板を用いることにより、テンプレート基板TSおよび半導体基板10の製造コストを効果的に低減できる。
 異種基板である主基板1としては、炭化シリコン(SiC)基板を用いることも可能であり、この場合、主基板1の面方位は、SiC基板の6H-SiC(0001)または4H-SiC(0001)面であってよい。主基板1は、3C-SiCであってもよい。主基板1は、仮に、安価な基板を用いることを重視しない場合には、サファイア基板であってよく、窒化物基板(GaN基板等)であってもよい。
 金属層MLは、主基板1上に形成されていてよい。また、金属層MLは、主基板1の上方に形成されていてよく、主基板1と金属層MLとの間に、主基板1および金属層MLとは異なる材質の異種層が介在していてもよい。実施例1では、金属層MLは、平面視において、主基板1の主面1aの全面に重なっていてよい。テンプレート基板TSは、金属層MLおよびAl系窒化物層2を有することにより、主基板1としてシリコン基板等を用いる場合であっても、高温下においてシリコンとガリウムとが相互反応する(いわゆるメルトバック)問題が生じる可能性を低減できる。
 実施例1において、金属層MLはAl層であってよく、金属層MLの厚さは、例えば、20nm以上である。これにより、金属層ML上に形成されるAl系窒化物層2の品質を高めることができる。金属層MLとしてのAl層は、主基板1の主面1a(例えばシリコン基板の(111)面)から、面心立方構造を有するAlが<111>方向に成長することにより形成されてよく、この場合、金属層MLにおける主基板1から遠い側の表面MLSは、面心立方構造における(111)面となる。
 Al系窒化物層2は、ウルツ鉱構造を有する。面心立方構造における(111)面は、六方晶系の原子配列に対応するので、金属層MLの表面MLSから、Al系窒化物層2をc軸方向にエピタキシャル成長させることができる。Al系窒化物層2と金属層MLとの界面では、表面MLSと第2面2bとが互いに対応する面方位を有している。このようなAl系窒化物層2は、金属層MLの結晶構造を継承していると表現することができる。
 金属層MLは、面心立方格子若しくは体心立方格子の(111)面、または六方最密格子の(0001)面が主基板1の主面1aに配向している金属を少なくとも1種以上含んでいてよい。そのような金属として、アルミニウムの他、例えば、プラチナ、パラジウム、銀、金、ハフニウム、スカンジウム、イットリウム、チタン、およびジルコニウム等が挙げられる。これにより、金属層MLの表面MLSを、面心立方格子若しくは体心立方格子の(111)面、または六方最密格子の(0001)面とすることができ、表面MLSからAl系窒化物層2を成長させ易くできる。
 金属層MLの層厚が20nm以上の範囲において、金属層MLの厚さを大きくすることにより、Al系窒化物層2の品質(例えば配向性)を向上させることができる。Al系窒化物層2の品質は、例えば、成膜後のAl系窒化物層2についてX線ロッキングカーブを測定することにより評価できる。金属層MLの厚さが1000nm程度になると、金属層MLの厚さがAl系窒化物層2の品質に及ぼす影響が鈍化し得る。金属層MLの厚さは、20nm以上2000nm以下であってよく、100nm以上2000nm以下であってよい。
 本発明者らの検討によれば、例えば、金属層MLとしてのAl膜上に、Al系窒化物層2としてのAlN層を形成し、Al膜の膜厚と、AlN層のX線ロッキングカーブ測定結果の半値幅との関係を調査すると、Al膜の膜厚が大きいほど、上記半値幅が小さくなりAlN層の品質は向上する傾向にあった。Al膜の成膜時間(すなわちAl膜の膜厚)は製造コストに関係するため、製造コストとAlN層の品質とのバランスを考慮して、Al膜の膜厚を設定することができる。
 実施例1において、Al系窒化物層2はAlN層であってよく、AlN層の厚さは、例えば、30nm以上であってよい。AlN層の厚さは、金属層MLとしてのAl膜よりも大きくてよく、例えば30nm以上500nm以下であってよい。
 実施例1では、金属層MLおよびAl系窒化物層2は、スパッタリング法を用いてスパッタ装置内で連続的に形成することができる。スパッタリングの方式としては、DCスパッタリング、RFスパッタリング、ACスパッタリング、DCマグネトロンスパッタリング、ECR(Electron Cyclotron Resonance)スパッタリング、RFマグネトロンスパッタリング法、PSD(Pulse Sputter Deposition)法、Laser ablation法などを適宜選択することができる。
 スパッタリング法により形成された金属層MLは、スパッタ装置内に導入したアルゴンガスに由来するアルゴンを含んでいてよい。金属層MLに含まれる金属種によっては、SIMS(二次イオン質量分析法)によってアルゴンが検出され得る。
 例えばスパッタ装置内の成膜前の真空度を、3×10-5Pa以下または1×10-5Pa以下としてよい。成膜処理を開始する前に主基板1に前処理を施すことで、主基板1の主面1aの有機物層および凹凸を除去し、金属層MLのエピタキシャル成長を可能にしてもよい。前処理の具体例として、逆スパッタ処理、酸処理、UV処理等を挙げることができる。逆スパッタ処理とは主基板1側にプラズマ化した原子を衝突させることで、主基板1の主面1aをクリーニングする方法であり、処理後に不純物などの再付着を防止し易い利点がある。成膜時の基板温度は室温でもよいが、主基板1を加熱した状態で成膜処理を行うことにより、膜質をさらに向上させることができる。主基板1を加熱する場合、金属層MLの材質に対応して加熱温度を調整でき、例えば、加熱温度は700℃~900℃であってよい。
 Al系窒化物層2は、金属層ML上にスパッタリング法を用いて形成されることにより、仮に主基板1上に直接的にスパッタリング法を用いて形成された場合よりも、高い品質を有する。Al系窒化物層2は、スパッタ装置内に導入したアルゴンガスに由来するアルゴンを含む。Al系窒化物層2のアルゴン含有量は、例えば0.01atm%以上1.0atm%以下であってよい。
 スパッタリング法を用いて金属層MLおよびAl系窒化物層2を形成する場合、成膜条件によって、金属層MLおよびAl系窒化物層2の内部応力を制御できる。例えば、膜中に取り込まれるアルゴン量を制御することにより、内部応力を圧縮応力から引張応力まで変化させることができる。これにより、半導体基板10において、テンプレート基板TS上に形成される半導体部8と、テンプレート基板TSとの相互の応力関係を調整することができる。そのため、半導体基板10の反りを低減できる。
 マスクパターン6は、ベース基板BS上に、窒化物半導体の縦成長(c軸方向の成長)を抑制する材料を用いて形成され、窒化物半導体の横方向成長(例えば、a軸方向の成長)を実現するものである。
 マスクパターン6のマスク部5の材料として、例えば、シリコン窒化物、シリコン炭化物、シリコン炭窒化物、ダイヤモンドライクカーボン、シリコン酸化物、シリコン酸窒化物等を挙げることができる。また、マスク部5の材料として、シリコンを含まない、チタン窒化物、モリブデン窒化物、タングステン窒化物、タンタルカーバイド等、更には、高融点金属(モリブデン、タングステン、プラチナ等)、を挙げることができる。マスク部5は、これら材料の1つからなる単層膜でもよいし、これら材料を複数組み合わせた多層膜であってもよい。マスク部5の厚さは、例えば、100nm~4μm程度であってよい。マスク部5の幅Wm(第1方向X1のサイズ)は、例えば、10μm~200μmとすることができる。実施例1では、マスク部5の幅Wmは、金属層MLまたはAl系窒化物層2における第1方向X1のサイズよりも小さくてよい。
 マスクパターン6の開口部K(シード領域Sの露出部)が半導体部8の成長起点となる。開口部Kは、第1方向X1を幅方向、第2方向X2(図1参照)を長手方向とする長手形状であってよい。マスクパターン6は、複数の開口部Kが、第1方向X1に並んでいてもよい。開口部Kはテーパ形状(下方に向けて幅が狭くなる形状)でもよい。開口部Kの幅WK(第1方向X1のサイズ)は、例えば、0.1μm~20μm程度とすることができる。開口部Kの幅WKは、マスク部5の幅Wmよりも小さくてよい。
 (テンプレート基板の製造方法)
 図8は、実施例1におけるテンプレート基板TSの製造方法を示す断面図である。例えば、主基板1としてシリコン基板(Si(111)面)を用いる。スパッタリング装置内において、Arガスを導入しつつAlターゲットをスパッタすることにより、シリコン基板上にAl膜を形成できる。例えば、Al膜の厚さは100nmとすることができ、Al膜の成膜温度は400℃、投入電力は500W、成膜時の背圧は0.3Paとすることができる。
 次いで、スパッタリング装置内にアルゴンガスと窒素ガスとの混合ガス(例えばガス比率は1:1程度)を導入しつつ、Alターゲットをスパッタすることにより、Al膜上にAlN膜を形成できる。このように、同一チャンバー内において、基板を出し入れすることなくAl膜およびAlN膜を連続成膜できる。
 ここで、一般に、例えばサファイア基板上にAlN膜をエピタキシャル成長させると、AlN膜は[0001]方向に成長し、最表面はAl極性面になる。これに対して、実施例1におけるテンプレート基板TSでは、AlN膜の第1面2aは、N極性面であり得る。これは、金属層MLとしてのAl膜上において、表面MLSからAl系窒化物層2としてのAlN膜が[000-1]方向にエピタキシャル成長可能であるためと考えられる。また、Al系窒化物層2の第1面2aは、N極性面であってよく、Al極性面とN極性面とが混在(混在極性)した面であってよい。
 次に、Al系窒化物層2上に、スパッタリング法を用いて、厚さ300nmのマスク層MF(例えば、SiN)を形成する。そして、マスク層MFの全面にレジストを塗布し、その後、フォトリソグラフィ法を用いてレジストをパターニングすることにより、幅3μm程度のストライプ状の複数の開口部を有するレジストZを形成する。その後、フッ酸(HF)、バッファードフッ酸(BHF)等のウェットエッチャントによってマスク層MFの一部を除去して複数の開口部Kとし、レジストZを有機洗浄で除去することでマスクパターン6が形成される。
 仮に、Al系窒化物層2をMOCVD法により成膜する場合、MOCVD装置内でGaN層も成膜することがある。そのため、MOCVD装置内にGaが存在することがあり、この場合、主基板1にGaが付着し得る。付着したGaによってメルトバックが生じると歩留りが低下する。よって、MOCVD装置のメンテナンス並びに装置内部の部品(トレイおよびカバー等)の洗浄等の作業を、高い頻度で行う必要があり、その結果、コストが増大する。これに対して、Al系窒化物層2をスパッタリング法により成膜する場合、半導体部8を形成するためにMOCVD装置に装入される時点において、主基板1の表面は、金属層ML、Al系窒化物層2、マスクパターン6で覆われている。そのため、主基板1の表面にGaが付着する可能性を低減でき、メルトバックの発生によって製造歩留まりが低下する可能性を低減できる。このことは、産業上の利点が大きい。
 (半導体基板)
 図9は、実施例1における半導体基板10の構成を概略的に示す断面図である。図10は、半導体部8の横方向成長の一例を示す断面図である。図10では、マスクパターン6におけるマスク部5が、テーパ形状の開口部Kを有する例を示している。実施例1における半導体基板10は、テンプレート基板TSの上方に、ELO法により形成された第1半導体部8Aおよび第2半導体部8Cを有している。
 図9に示す例では、半導体部8(第1半導体部8A、第2半導体部8C)の基部Bは、開口部K(第1開口部K1、第2開口部K2)において、Al系窒化物層2の第1面2aに接している。半導体部8は、第1面2aと接する部分にイニシャル成長部(初期成長部)SLを有していてよい。イニシャル成長部SLは、イニシャル成長層SLであってよい。
 ELO法によって形成される半導体部8は、以下のように横方向成長させることができる。図10に示すように、開口部Kから露出するシード領域S上に、イニシャル成長部SLを形成し、その後、イニシャル成長部SLから半導体部8を横方向成長させてよい。イニシャル成長部SLは、半導体部8の横方向成長の起点となる。ELO成膜条件を適宜制御することによって、半導体部8を、窒化物半導体のc軸方向に成長させたり、a軸方向(第1方向X1)に成長させたりする制御が可能である。
 例えば、イニシャル成長部SLのエッジが、マスク部5の上面に乗りあがる直前(マスク部5の側面上端に接している段階)、またはマスク部5の上面に乗り上がった直後のタイミングでイニシャル成長部SLの成膜を止めてもよい(すなわち、このタイミングで、ELO成膜条件を、c軸方向成膜条件からa軸方向成膜条件に切り替えてもよい)。イニシャル成長部SLがマスク部5からわずかに突出している状態から横方向成長させることで、半導体部8のc軸方向(厚み方向)への成長を抑え、半導体部8を高速にかつ高結晶性をもって横方向成長させることができ、消費原料も低減する。これにより、薄く広く低欠陥の半導体部8(GaN等の窒化物半導体の結晶体)を低コストで形成することができる。イニシャル成長部SLは、例えば、30nm~1000nmあるいは50nm~400nm、または70nm~350nmの厚さに形成することができる。
 隣り合う2つの第1開口部K1および第2開口部K2のそれぞれから逆向きに横方向成長した半導体部8同士がマスク部5上で接触(会合)せず、ギャップ(間隙)GPをもつことで、半導体部8の内部応力を低減することができる。これにより、半導体部8に生じるクラック、欠陥(転位)を低減することができる。ギャップGPの幅(第1方向X1のサイズ)は、5μm以下、3μm以下、または2μm以下とすることができる。
 半導体部8のうち、イニシャル成長部SL上に位置する部分である基部Bは、貫通転位が多い転位継承部となり、マスク部5上に位置する部分であるウイング部Fは、転位継承部と比較して貫通転位密度が1/5以下である低欠陥部となる。貫通転位とは、半導体部8中を、そのc軸方向(<0001>方向)に延びる転位(欠陥)である。貫通転位密度は、例えば、半導体部8の表面をCL(Cathode Luminescence)測定し、CL測定画像における黒点の数をカウントすることにより求めることができる。ウイング部Fの貫通転位密度は、例えば、5×10〔個/cm〕以下とすることができる。後述のように、半導体部8の上方に発光部を含む活性部(活性層)を形成する場合は、ウイング部Fの上方に(平面視でウイング部Fと重なるように)発光部を配することができる。
 ウイング部Fについては、厚みd1に対する幅WF(第1方向X1のサイズ)の比(WF/d1)を、例えば2.0以上とすることができる。WF/d1は、2.0以上、4.0以上、5.0以上、7.0以上、または10.0以上とすることができる。半導体基板10は、WF/d1を2.0以上とすることにより、半導体部8の内部応力を低減し易い。その結果、半導体基板10の反りを低減できる。ウイング部Fの幅WFは,例えば、7.0μm以上であってよく、10.0μm以上、20.0μm以上、または40.0μm以上であってよい。厚みd1は、10.0μm以下、5.0μm以下、または2.0μm以下であってよい。
 基部Bの基底面転位の密度が5×10/cm以下であってもよい。基底面転位が、半導体部8のc面の面内方向に伸びる転位であってもよい。ここでの基底面転位密度は、例えば、半導体部8を分割して基部Bの側面を出し、この側面の転位密度をCL測定することにより求めることができる。
 半導体部8は、アルゴンを含んでいなくてよい。半導体部8がアルゴンを含まないとは、半導体部8におけるアルゴン含有量が0.01atm%未満であることを意味する。ここで、半導体部8における基部Bまたはイニシャル成長部SLは、Al系窒化物層2に接続していることにより、Al系窒化物層2から拡散した微量のアルゴンを含んでいてもよい。ウイング部FはAl系窒化物層2から拡散したアルゴンを含んでいなくてもよい。仮にウイング部Fにもアルゴンが含まれる場合、ウイング部Fは、基部Bから遠い位置ほどアルゴン濃度が小さくなっていてよい。例えばAl系窒化物層2から拡散した微量のアルゴンを半導体部8が含む場合であっても、半導体部8は、アルゴン含有量が0.01atm%未満となっている(半導体部8はアルゴンを含まない)。
 実施例1では、半導体部8をGaN層とし、MOCVD装置を用いて前述のテンプレート基板7上に窒化ガリウム(GaN)のELO成膜を行った。ELO成膜条件の一例として、基板温度:1120℃、成長圧力:50kPa、TMG(トリメチルガリウム):22sccm、NH:15slm、V/III=6000(III族原料の供給量に対する、V族原料の供給量の比)を採用することができる。半導体部8をn型とするために、SiHを流してドーピングしてもよい。或いは、マスク部5にシリコンを含有する材料(例えばSiOやSiN)を用いることにより、マスク部5から蒸発したSiを利用してSiドーピングを行うこともできる。マスク部5の幅Wmは50μm、開口部Kの幅WKは5μm、半導体部8の横幅は53μm、ウイング部Fの幅WFは24μm、半導体部8の層厚は5μmであった。半導体部8のアスペクト比は、53μm/5μm=10.6となり、非常に高いアスペクト比が実現された。
 ELO法による半導体部8の成膜温度については、1200℃を超える高温よりも、1150℃以下の温度が好ましい。1000℃を下回るような低温においても半導体部8の形成は可能であり、相互反応低減の観点ではより好ましいといえる。実施例1では、金属層MLとしてのAl膜と、主基板1またはAl系窒化物層2との間で相互拡散が生じ得る。半導体基板10において、主基板1は、ELO成膜条件下で金属層MLとの相互反応により生じた合金層(図示省略)を有していてもよい。或いは、主基板1は、主面1aにおけるAl濃度が、主面1aとは反対側に位置する裏面1bにおけるAl濃度よりも高くなっていてよい。半導体基板10において、Al系窒化物層2は、Alリッチな組成となっていてよい。
 半導体部8が炭素(カーボン)を含む場合、マスク部5との反応を低減し、マスク部5と半導体部8との癒着などを低減できることがわかっている。そこで、半導体部8の低温成膜では、例えば、アンモニアの供給量を減らし、低V/III(<1000)程度で成膜することで、原料またはチャンバー雰囲気内の炭素元素を半導体部8に取り込み、マスク部5との反応を低減することができる。1000℃を下回るような低温成膜では、ガリウム原料ガスとしてトリエチルガリウム(TEG)を用いることが好ましい。TEGはトリメチルガリウム(TMG)に比べ、低温で有機原料が効率よく分解するため、横方向成膜レートを高めることができる。
 実施例1では、Al系窒化物層2の第1面2aがN極性面、またはAl極性面とN極性面とが混在(混在極性)した面であるとともに第1面2aがシード領域Sであってよく、このような場合にも、半導体部8の成長面である上面8Sは、様々な要因による極性反転によってガリウム極性面(Ga極性面)にすることができる。或いは、上面8Sは、アルミニウム極性面(Al極性面)となっていてもよい。半導体基板10を用いて製造しようとするデバイス構造に適するように、上面8Sの極性を調整して半導体部8を形成することができる。
 図11は、実施例1における半導体基板10の別構成例を示す平面図である。図11に示すように、半導体基板10の半導体部8は、第1方向X1と直交する第2方向X2に並ぶ複数のパートPAに分離されていてよい。第2方向X2に隣り合うパートPAの間にトレンチTRが形成されていてよい。トレンチTRにはマスク部5およびAl系窒化物層2が露出していてもよい。
 また、別の一例における半導体基板10では、テンプレート基板TSは、第2方向X2において周期的に分断された開口部Kを有していてもよく、この場合、半導体部8も第2方向X2において分断されていてよい。
 図12は、実施例1における半導体基板10の別構成例を示す断面図である。図12に示すように、半導体基板10におけるテンプレート基板TSは、金属層MLとAl系窒化物層2との間に金属窒化物層NLを有していてもよい。金属窒化物層NLは、アルミニウム以外の金属の窒化物を含む。金属窒化物層NLは、結晶構造がAl系窒化物層2と近い材質を含んでいてよく、この場合、Al系窒化物層2をエピタキシャル成長させ易くできる。金属窒化物層NLは、例えば、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化スカンジウム(ScN)、窒化ハフニウム(HfN)を含んでいてよい。金属窒化物層NLはスパッタリング法により形成されていてよく、この場合、金属窒化物層NLはアルゴンを含んでいてよい。金属窒化物層NLのアルゴン含有量は、例えば0.01atm%以上1.0atm%以下であってよい。
 図13は、実施例1における半導体基板10の別構成例を示す断面図である。図13に示すように、半導体基板10におけるテンプレート基板TSは、金属層MLとして、異なる複数の金属層を含んでいてよく、金属層MLは多層膜であってよい。テンプレート基板TSは、例えば、主基板1上に位置する第1金属層ML1と、当該第1金属層ML1上に位置する第2金属層ML2とを含んでいてよい。例えば、主基板1との親和性の高い材料により第1金属層ML1を形成し、Al系窒化物層2との親和性の高い材料により第2金属層ML2を形成してよい。これにより、Al系窒化物層2の品質を高め易くすることができる。
 金属層MLは、3種以上の金属層を含んでいてもよい。スパッタリング装置内でターゲットを適宜切り替えることにより、複数の金属層を連続的に形成することができる。
 図14は、実施例1における半導体基板10の別構成例を示す断面図である。図14に示すように、半導体基板10におけるテンプレート基板TSは、Al系窒化物層2とマスクパターン6との間にシード部3を有していてもよく、この場合、開口部Kにおいて露出するシード部3の表面がシード領域Sとなっていてよい。シード部3はシード層であってよい。
 シード部3は、少なくとも(マスクパターン6の)開口部Kの一部に形成されていればよく、面状であってもパターン状(例えば、ストライプ状)であってもよい。シード部3として、低温(500℃以下)形成されたGaN層、AlN層、AlGaN層、AlInN層、AlGaInN、Al等を用いてもよい。シード部3は、Al系窒化物層2とは異なる材料により形成されていてよい。シード部3は、スパッタリング法により形成されていてよく、この場合、シード部3は、アルゴンを含有していてよい。シード部3のアルゴン含有量は、例えば0.01atm%以上1.0atm%以下であってよい。シード部3の厚さは、10nm~500nm程度であってよい。
 例えば、RFスパッタリング方式でGaN層であるシード部3を形成する場合、窒化ガリウムターゲット(酸素含有量:0.4atom%)を用いて成膜圧力を0.1Paとし、20~40sccmの窒素ガスを導入し、放電密度を5W/cm、成膜温度を室温とすることができる。導入ガスにアルゴンガスを含んでいてもよい。
 図15は、実施例1における半導体基板の別構成例を示す断面図である。図16は、実施例1における半導体基板の別構成例を示す平面図である。図15および図16に示すように、半導体基板10は、半導体部8の上方に位置し、活性層およびp型層を含む上層部9を備えてよい。
 半導体基板10は、MOCVD装置内において半導体部8を形成した後、半導体部8が露出した状態でMOCVD装置から取り出してストックしてもよく、この場合、ストックしていた半導体基板10をMOCVD装置内に装入して、上層部9を形成することができる。或いは、MOCVD装置内において半導体部8を形成した後、引き続いてMOCVD装置内で上層部9が形成されてもよい。例えば、上層部9は、半導体部8の成長を止めた後に、成膜条件を変更して(例えば、成膜温度を100℃程度下げて)半導体部8上に形成してもよい。上層部9は、活性層以外に、p型層、n型層、および電子ブロック層の少なくとも1つを含んでよい。
 半導体基板10は、上層部9上に位置するアノードEAおよびカソードECを有していてよい。アノードEAは、上層部9におけるp型層に接していてよく、カソードECは、上層部9におけるn型層に接していてよい。これに限定されず、カソードECは、半導体部8の上面8Sに接していてもよい。平面視において、アノードEAの少なくとも一部はウイング部Fと重なるように位置していてよく、アノードEAの全てがウイング部Fと重なるように位置していてよい。
 半導体部8と上層部9とを含むデバイス構造体を積層体LBと称する。半導体基板10は、複数のバー状(バー形状)の積層体LBを有している。半導体部8上に形成する上層部9(デバイス層)については、少なくとも活性領域(例えば、発光領域)をウイング部Fの上方に形成することで、非常に高品質な素子を作製することができる。実施例1では、MOCVD装置を用いることなくテンプレート基板TSを形成し、半導体部8および上層部9については、MOCVD装置内にて連続的に形成することができる。
 図17は、実施例1における素子分離の方法を示す平面図である。図18は、実施例1における素子分離の方法を示す断面図である。図17および図18に示すように、半導体基板10は、ベース基板BS上に、複数のトレンチTRによって分断された複数の素子体20を有していてよい。素子体20は、ウイング部F、上層部9、アノードEAおよびカソードECを含んでいてよい。
 半導体基板10は、エッチングによって積層体LBに複数のトレンチTRを形成することにより、複数の素子体20が形成されてよい。また、半導体基板10は、半導体部8に複数のトレンチTRを形成することで複数のパートPA(図11参照)に分割し、その後、パートPA上に上層部9、アノードEA、カソードECが形成されていてもよい。或いは、半導体基板10は、積層体LBを劈開することによって複数の素子体20が形成されていてもよい。
 図17および図18に示す例では、マスク部5をフッ酸、バッファードフッ酸(BHF)などを用いるエッチングによって除去している。これにより、素子体20をベース基板BSから離隔し易くできる。例えば、素子体20は、接合層H1・H2を介して支持基板SKに接合されてよい。次いで、シード領域Sと半導体部8との接合を破断させることにより、ベース基板BSから素子体20を剥離することができる。支持基板SKが、接合層H1と接する導電パッドおよび接合層H2と接する導電パッドを有していてもよい。接合層H1・H2がはんだ材で形成されていてもよい。
 素子体20の具体例として、発光ダイオード(LED)、半導体レーザ、ショットキーダイオード、フォトダイオード、トランジスタ(パワートランジスタ、高電子移動度トランジスタを含む)等を挙げることができる。
 図19は、実施例1における半導体基板10の別構成例を示す平面図である。図19に示すように、半導体基板10は、アノードEAおよびカソードECが同一のウイング部F(例えば第1ウイング部F1)の上方に形成されていてもよい。積層体LBにおける、シード領域Sの上方に位置する部分にトレンチTRを形成してもよい。
 〔実施例2〕
 図20は、実施例2における半導体基板10の構成を概略的に示す平面図である。図21は、実施例2における半導体基板10の構成を概略的に示す断面図である。図21中、符号J1、J2の引き出し線が指し示す位置に図示している中黒点は、ウイング部Fとテンプレート基板TSとの間の空間(空隙)を意味している。
 図20および図21に示すように、実施例2における半導体基板10では、テンプレート基板TSは、上面側にリッジ部Rを有しており、リッジ部Rの上面に第1シード領域S1が位置していてよい。そして、第1半導体部8Aとマスク部5との間に第1空隙J1が存在していてよい。第1空隙J1は、成長抑制領域DAと第1ウイング部F1とで挟まれた空間であるとも言える。第1ウイング部F1は、成長抑制領域DAとして機能するマスク部5から離間している。第1シード領域S1(の表面)は、成長抑制領域DAよりも上側に位置し、第1半導体部8Aは、第1シード領域S1上に位置する第1基部B1と、第1基部B1に繋がり、第1空隙J1を介して成長抑制領域DAと向かい合う第1ウイング部F1とを有する。
 テンプレート基板TSは、平面視において、Al系窒化物層2がマスク部5と重なっていなくてよい。テンプレート基板TSは、金属層MLの少なくとも一部がリッジ部Rに含まれていてよい。実施例2におけるテンプレート基板TSでは、金属層MLおよびAl系窒化物層2はリッジ部Rに含まれていてよい。
 リッジ部Rの上面(第1シード領域S1)はAl系窒化物層2によって構成されてよく、リッジ部Rの側面はマスク部5によって覆われていてよい。テンプレート基板TSは、リッジ部Rの側面に、マスク部5の一部が含まれていてよい。リッジ部Rの側面において、金属層MLおよびAl系窒化物層2が露出していなくてよい。リッジ部Rの側面は、第1ウイング部F1と接触していなくてよい。リッジ部Rの側面は、全体が第1空隙J1に面していてもよい。これにより、リッジ部Rと第1ウイング部F1との接触面積が低減し、その結果、第1ウイング部F1の欠陥密度を低減させることができる。
 第1半導体部8Aは、第1開口部K1下に露出したAl系窒化物層2を起点として、ELO(Epitaxial Lateral Overgrowth)法によって形成することができる。Al系窒化物層2は、第1シード領域S1を含むシード層であってよい。また、第2半導体部8Cは、第2開口部K2下に露出したAl系窒化物層2を起点として、マスク部5上を横方向に成長する。第1半導体部8Aと第2半導体部8Cとが会合する前に成長が止められてよく、この場合、成長抑制領域DAの上方に第1ウイング部F1のエッジE1を形成することができる。
 第1空隙J1のアスペクト比(第1方向X1の幅WJの、厚さTJに対する比)を5.0以上とすることができ、この場合、結晶性が高く(欠陥密度が低く)、幅広の第1ウイング部F1を速やかに形成することができる。また、第1ウイング部F1の平坦性が高められる。第1空隙J1の幅WJは、リッジRの側面から第1半導体部8AのエッジEまでの第1方向X1の距離である。第1空隙の厚さ(高さ)TJは、成長抑制領域DAを形成するマスク部5の上面から第1半導体部8Aの下面(裏面)までの距離である。
 第1ウイング部F1は、第1方向X1の幅の、厚さに対する比が2.0以上であってよい。第1ウイング部F1は、第1方向X1の幅が7.0〔μm〕以上であってよく、例えば10.0μm以上、20.0μm以上または40.0μm以上であってよい。第1ウイング部F1は、第1方向X1の幅が、80.0μm以下であるとよい。これにより、重力により半導体部8が基板方向に反る可能性を低減できる。第1ウイング部F1は、第1方向X1の厚さが、例えば10.0μm以下、5.0μm以下、または2.0μm以下であってよい。図21に示すように、ギャップGPの幅が第1空隙J1の厚さTJよりも大きくてもよい。
 半導体基板10は、第2半導体部8Cとマスク部5との間に第2空隙J2が存在していてよく、第2空隙J2は、第1空隙J1と同じ構成を有していてよい。そのため、第2空隙J2について繰り返して説明することは省略する。
 図22は、実施例2における半導体基板10の製造方法の一例を示す断面図である。実施例2の半導体基板10は、例えば、以下のように製造することができる。主基板1にはシリコン基板(Si(111)面)を用い、シリコン基板上に金属層MLとしてのAl膜を形成し、次いで、Al膜上にAl系窒化物層2としてのAlN膜を成膜する。金属層MLおよびAl系窒化物層2の成膜にはスパッタリング法を用いる。
 次に、フォトリソグラフィ法を用いて、幅3μm程度のストライプ状のレジストZをAl系窒化物層2の上部に形成し、ドライエッチングプロセスによりリッジ部Rを形成する。この際、Al系窒化物層2および金属層MLの一部をエッチングする。ここでは、レジストZは除去せず、主基板1上およびレジストZ上に、マスク部5となるマスク層MF(例えば、厚さ10nmのSiN膜)を形成する。
 前述の実施例1のように、半導体部8が成長抑制領域DA上でマスク部5と接触する場合、マスク部5は少なくとも100nm程度の厚さを要する。そして、半導体部8がマスク部5と接触して、ELO成長に干渉することによって、半導体部8の表面平坦性に影響を及ぼすことがある。これに対して、実施例2では、ウイング部Fが中空に浮いていることにより、成長抑制領域DAの上方においてウイング部Fとマスク部5とが互いに接触しない。そのため、マスク部5を非常に薄くしてもウイング部Fの成長を阻害することがなく、半導体部8の内部応力を低減することができる。その結果、半導体基板10の反りを低減し易い。
 また、マスク部5を薄くすることでウイング部Fの裏面の平坦性が向上する。マスク部5の厚さは、例えば、1μm以下であってよく、50nm以下であってもよい。マスク部5の厚さを50nm以下にすると平坦性が向上し、30nm以下に設定することもできる。
 次に、レジストZを除去してリッジ部R上のマスク層MFをリフトオフし、第1開口部K1を形成することでテンプレート基板TS(選択成長基板)が形成される。MOCVD法を用いることなくテンプレート基板TSを作製することによれば、大幅なコスト削減が実現でき、産業上のメリットが非常に大きい。
 次に、テンプレート基板TSを、MOCVD装置内に搬送し、テンプレート基板TS上に半導体部8をELO法で形成する。実施例2では半導体部8をGaN層とし、成長温度を1000~1200度、V/III比を500~20000、成長圧力を50kPaとした。なお、半導体部8をn型とするために、前述の実施例1と同様に、Siをドーピングしてもよい。成膜条件は、少なくとも2段階に分けて設定することが好ましい。第1段階では、成膜温度を1030℃程度とし、V/IIIは2000程度として、開口部K上にELO層(半導体部8)の成長核(縦成長部)を形成する。成長核の厚さ(高さ)は0.2μm~3μm程度とし、その幅はリッジRの幅と同程度あるいは少しa軸方向(<11-20>方向)にはみ出したサイズとしてよい。第2段階では、成膜温度を100℃程度上げて、GaN層を成長核から横方向(a軸方向)に成長させ、空隙上を逆方向に成長する半導体部8(GaN層)同士のギャップGPの幅が規定値(10μm以下)になった時点で成長を止めた。以上により得られた半導体基板10(半導体部8が露出した状態)については、MOCVD装置から取り出してストックしてもよいし、引き続いてMOCVD装置内で活性層等を含む上層部を形成してもよい。
 図23は、実施例2における半導体基板10の別構成例を示す断面図である。図23に示すように、半導体基板10では、主基板1は、主面1aに凸部Qを含んでいてよく、凸部Qの少なくとも一部がリッジ部Rに含まれていてよい。金属層MLおよびAl系窒化物層2は、凸部Q上に位置していてよい。ドライエッチングプロセスによりリッジ部Rを形成する際に、主基板1の一部を除去することにより、凸部Qを形成することができる。図23に示す例では、第1空隙J1をより確実に形成することができるため、半導体基板10の反りを低減し易くできる。
 図24は、実施例2における半導体基板10の別構成例を示す断面図である。図24に示すように、半導体基板10では、金属層MLがAl系窒化物層2側の面に凸部MQを含んでいてよく、Al系窒化物層2は凸部MQ上に位置していてよい。主基板1とマスク部5との間に金属層MLの少なくとも一部が位置していてよい。ドライエッチングプロセスによりリッジ部Rを形成する際に、主基板1上の金属層MLの一部が除去されずに残存することにより、凸部MQを形成することができる。
 図25は、実施例2における半導体基板10の別構成例を示す断面図である。図25に示すように、半導体基板10では、主基板1上の全面に金属層MLが位置しており、金属層ML上に局所的にAl系窒化物層2が位置していてよい。図25に示す例では、金属層MLはリッジ部Rに含まれていなくてよい。
 図26は、実施例2における半導体基板10の別構成例を示す断面図である。図26に示すように、半導体基板10は、リッジ部Rの側面(マスク部5)が第1ウイング部F1と接触していてもよい。成長抑制領域DAのマスク部5に第1ウイング部F1が接触しなければ、第1空隙J1を形成できるため問題はない。
 〔実施例3〕
 上記実施例1および実施例2では、主基板1上にてAl系窒化物層2を形成していたが、これに限定されず、主基板1とは別の基板(以下、仮基板1Tと称する)上にてAl系窒化物層2を形成し、その後、Al系窒化物層2を主基板1に転写することができる。
 図27は、実施例3における半導体基板10の製造方法の一例を示す断面図である。図27に示すように、先ず、仮基板1Tの上方に、スパッタリング法を用いて、金属層MLおよびAl系窒化物層2を形成する。仮基板1Tは、金属層MLおよびAl系窒化物層2を形成することが可能な材質であればよく、特に限定されない。仮基板1Tは、後述するように再利用可能であるため、比較的高価な基板を用いても、製造コストに対する影響が小さい。仮基板1Tとして、例えば、4H-SiC基板を用いることができる。また、主基板1としてはシリコン基板を用いることができる。
 仮基板1Tの全面に金属層MLを形成し、金属層ML上にAl系窒化物層2を形成することができる。一般に、スパッタリング法により、4H-SiC基板上にAlN膜を形成することがある。図27に示す例のように、仮基板1T上に金属層MLを介してAl系窒化物層2を形成することにより、従来よりも高い品質のAl系窒化物層2を形成することができる。
 次いで、例えば、真空中で、Al系窒化物層2の第1面2aと、主基板1の主面1aとをそれぞれプラズマ処理することにより、表面を清浄化する。これにより、表面を活性化することができる(表面にダングリングボンドが存在する状態となる)。その後、Al系窒化物層2の第1面2aと、主基板1の主面1aとを接触させることにより、Al系窒化物層2と主基板1とを表面活性化接合することができる。
 その後、金属層MLを除去して仮基板1Tを離隔することにより、主基板1にAl系窒化物層2を転写させることができる。その後の処理は前述の実施例1と同様であってよく、Al系窒化物層2上にマスクパターン6を形成し、ELO法を用いて半導体部8を形成することができる。
 実施例3では、金属層MLを比較的厚く形成しても、転写時に金属層MLは除去されるため問題が生じない。そのため、Al系窒化物層2の品質を高め易い。また、仮基板1Tは、表面の金属層MLを除去することによって、繰返し使用することができる。
 以上のように、実施例3では、例えば、4H-SiC基板上にて形成した高品質なAl系窒化物層2を、主基板1としてのシリコン基板上に転写することができる。その結果、シリコン基板上に、従来よりも高品質なAl系窒化物層2を有するテンプレート基板TSを作成することができる。このようなテンプレート基板TSを用いて半導体基板10を製造することができる。したがって、半導体基板10を用いて様々なデバイスの特性を向上させることができる。
 また、実施例3では、主面1a上にAl系窒化物層2がエピタキシャル成長可能でなくてもよいことから、主基板1は例えばシリコン基板であってよく、主面1aの面方位が(100)面であってよい。一般に、Si(100)面には電子回路等を形成可能であることから、主基板1として例えばシリコン基板(Si(100)面)を用いることによれば、半導体基板10を用いて形成される半導体デバイスにおいて、発光素子と電子回路との集積化が可能となる。
 主基板1の主面1aに対向するAl系窒化物層2の第1面2aは例えばN極性面であってよく、この場合、Al系窒化物層2の第2面2bはAl極性面であってよい。主基板1の主面1aにおける面方位が(100)面である場合、Al系窒化物層2の第1面2aは六方晶構造であることから、主面1aと第1面2aとは面内方向において互いに結晶の原子配列パターンが異なる。
 また、主基板1の主面1aにおける面方位が(111)面である場合には、主面1aの原子配列における単位格子のx軸およびy軸方向と、Al系窒化物層2の第1面2aの原子配列における単位格子のx軸およびy軸方向とが異なっていてよい。このような主面1aと第1面2aとの違いである接合跡が存在することにより、主基板1上にエピタキシャル成長させたAlN膜と、主基板1上に転写させたAl系窒化物層2とを区別することができる。上記接合跡は、例えば、X線測定等の結果に基づいて確認することができる。
 図28は、実施例3における別構成例のテンプレート基板TSの製造方法の一例を示す断面図である。図28に示すように、仮基板1Tとして4H-SiC基板を用いて、金属層MLとしてのAl膜(膜厚:100nm)を形成する。そして、Al膜上にAl系窒化物層2を形成する。Al系窒化物層2は、ScAlN膜(膜厚:1000nm)であってよい。
 主基板1としてシリコン基板を用いるとともに、主基板1上に中間層ILを形成する。中間層ILは、例えばモリブデン膜(膜厚:1000nm)であってよく、スパッタリング法を用いて形成することができる。中間層ILの表面を清浄化して、中間層ILとAl系窒化物層2とを活性化接合させる。金属層MLを除去することにより、主基板1の中間層IL上にAl系窒化物層2を転写させる。
 これにより、主基板1と、主基板1上の中間層ILと、中間層IL上のAl系窒化物層2とを含むテンプレート基板TSを製造できる。このようなテンプレート基板TSは、Al系窒化物層2を圧電層とし、中間層ILを弾性波反射板とする、例えばBAWフィルタの製造に用いることができる。
 図29は、実施例3における別構成例のテンプレート基板TSの製造方法の一例を示す断面図である。図29に示すように、仮基板1Tとして4H-SiC基板を用いて、金属層MLとしてのAl膜(膜厚:100nm)を形成する。そして、Al膜上にAl系窒化物層2としてのAlN膜(膜厚:200nm)を形成する。さらに、Al系窒化物層2上に第1層L1としてGaN膜(膜厚:1000nm)を形成し、第1層L1上に第2層L2としてAlGaN膜(膜厚:10nm)を形成する。金属層ML、Al系窒化物層2、第1層L1、および第2層L2はそれぞれスパッタリング法を用いて形成する。
 次いで、支持基板1Sに第2層L2を仮接合させる。支持基板1Sの材質は特に限定されるものではなく、仮接合の手法も公知の手段を適宜用いることができる。金属層MLを除去することにより、支持基板1S上にAl系窒化物層2、第1層L1および第2層L2を転写させる。
 その後、例えば、真空中で、Al系窒化物層2の第2面2bと、主基板1の主面1aとをそれぞれプラズマ処理し、第2面2bと主面1aとを接触させることにより、Al系窒化物層2と主基板1とを表面活性化接合する。そして、第2層L2と支持基板1Sとの仮接合を除去することにより、主基板1にAl系窒化物層2、第1層L1、および第2層L2を転写させることができる。
 これにより、主基板1と、主基板1上のAl系窒化物層2と、Al系窒化物層2上の第1層L1と、第1層L1上の第2層L2とを含むテンプレート基板TSを製造できる。このようなテンプレート基板TSは、第1層L1を電子通過層とし、第2層L2を電子発生層とする、例えばHEMTの製造に用いることができる。
 〔実施例4〕
 図30は、実施例4における半導体基板10の製造方法の一例を示す断面図である。図30に示すように、半導体基板10は、前述の実施例3のテンプレート基板TSを用いて、実施例2のようなリッジ部Rを有する構造(リッジ構造)とすることができる。
 主基板1と、主基板1上に位置するAl系窒化物層2とを有するテンプレート基板TSを用いて、先ず、Al系窒化物層2上にストライプ状のレジストZを形成する。ドライエッチングプロセスによりAl系窒化物層2の一部をエッチングする。主基板1上およびレジストZ上に、マスク部5となるマスク層MF(例えば、厚さ10nmのSiN膜)を形成する。
 その後、実施例2において前述したことと同じ処理を行うことにより、テンプレート基板TSおよび半導体基板10を製造することができる。テンプレート基板TSは、上面側に、第1シード領域S1が位置するリッジ部Rを有する。半導体基板10は、第1半導体部8Aと成長抑制領域DAとの間に第1空隙J1が存在する。
 テンプレート基板TSにおいて、成長抑制領域DAは、Al系窒化物層2の改質領域であり、第1シード領域S1は、Al系窒化物層2の非改質領域であってよい。Al系窒化物層2に対して、例えばプラズマ処理を施すことでAl系窒化物層2を改質することができる。
 プラズマ処置では、例えば、アルゴンプラズマをAl系窒化物層2の所定領域に照射することによって照射領域の表面改質を行い、成長抑制領域DAを形成する。チャンバー内にアルゴンガスだけでなく、酸素ガス、窒素ガス、水素ガスなどを導入することにより、プラズマ処置には、アルゴンプラズマのほかに、酸素プラズマ、窒素プラズマ、水素プラズマまたはこれらの混合プラズマを用いることもできる。これにより、成長抑制領域DAは、不純物としてアルゴン、酸素または窒素等が含まれていてもよい。このような場合、Al系窒化物層2が窒化アルミニウムであり、かつ成長抑制領域DAが酸窒化アルミニウムであってよい。また、Al系窒化物層2がAlScN(窒化アルミニウムスカンジウム)であり、かつ成長抑制領域DAが、AlScON(酸窒化アルミニウムスカンジウム)であってもよい。
 〔附記事項〕
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態および実施例に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
 1 主基板
 2 Al系窒化物層
 5 マスク部
 6 マスクパターン
 8 半導体部
 8A 第1半導体部
 8C 第2半導体部
 10 半導体基板
 B 基部
 DA 成長抑制領域
 F ウイング部
 GP ギャップ
 K 開口部
 ML 金属層
 S シード領域
 TS テンプレート基板

Claims (37)

  1.  第1シード領域および成長抑制領域を含むテンプレート基板と、前記第1シード領域の上方に位置する第1基部および前記第1基部に繋がるとともに前記成長抑制領域の上方に位置する第1ウイング部を有する第1半導体部とを備え、
     前記テンプレート基板は、主基板と、前記主基板の上方に位置する金属層と、前記金属層の上方に位置し、アルゴンを含むアルミニウム系窒化物層とを有し、
     前記第1半導体部は、窒化物半導体を含む、半導体基板。
  2.  前記アルミニウム系窒化物層は、窒化アルミニウム層であり、
     前記主基板は、前記第1半導体部と格子定数が異なる異種基板であり、
     前記窒化アルミニウム層は、前記第1シード領域を含むシード層であって前記第1基部に接触し、
     前記第1半導体部はアルゴンを含まない、請求項1に記載の半導体基板。
  3.  前記金属層は、アルゴンおよび水素の少なくとも一方を含有する、請求項1または2に記載の半導体基板。
  4.  前記金属層は、アルミニウム、プラチナ、パラジウム、銀、金、ハフニウム、スカンジウム、イットリウム、チタン、およびジルコニウムからなる群から選ばれる1種以上の金属を含む、請求項1~3のいずれか1項に記載の半導体基板。
  5.  前記金属層は、面心立方格子または体心立方格子の(111)面あるいは六方最密格子の(0001)面が前記主基板の主面に配向している金属を少なくとも1種以上含む、請求項1~3のいずれか1項に記載の半導体基板。
  6.  前記金属層は、金属材料からなる第1層と、前記第1層とは異なる金属材料からなる第2層とを含む、請求項1~5のいずれか1項に記載の半導体基板。
  7.  前記金属層は、前記主基板の法線方向に視る平面視において、前記主基板の上面全体と重なる、請求項1~6のいずれか1項に記載の半導体基板。
  8.  前記金属層と前記アルミニウム系窒化物層との間に位置する金属窒化物層を備える、請求項1~7のいずれか1項に記載の半導体基板。
  9.  前記金属層の厚さは、20〔nm〕以上である、請求項1~8のいずれか1項に記載の半導体基板。
  10.  前記アルミニウム系窒化物層は、1000℃における熱膨張係数が、前記主基板よりも大きく、前記第1半導体部よりも小さい、請求項1~9のいずれか1項に記載の半導体基板。
  11.  常温において、前記アルミニウム系窒化物層は圧縮応力状態であり、前記第1半導体部は引張応力状態である、請求項1~10のいずれか1項に記載の半導体基板。
  12.  前記テンプレート基板は、前記成長抑制領域として機能するマスク部と、前記第1シード領域に対応する開口部とを含むマスクパターンを有する、請求項1~11のいずれか1項に記載の半導体基板。
  13.  前記アルミニウム系窒化物層は前記マスク部と重なる、請求項12に記載の半導体基板。
  14.  前記アルミニウム系窒化物層は前記マスク部と重ならない、請求項12に記載の半導体基板。
  15.  前記テンプレート基板は、上面側に、前記第1シード領域が位置するリッジ部を有し、
     前記第1半導体部と前記マスク部との間に空隙が存在する、請求項12に記載の半導体基板。
  16.  前記金属層の少なくとも一部が前記リッジ部に含まれる、請求項15に記載の半導体基板。
  17.  前記主基板は、上面側に凸部を有し、
     前記凸部の少なくとも一部が前記リッジ部に含まれる、請求項15または16に記載の半導体基板。
  18.  前記リッジ部の側面に、前記マスク部の一部が含まれる、請求項15~17のいずれか1項に記載の半導体基板。
  19.  第1シード領域および成長抑制領域を含むテンプレート基板と、前記第1シード領域の上方に位置する第1基部および前記第1基部に繋がるとともに前記成長抑制領域の上方に位置する第1ウイング部を有する第1半導体部とを備え、
     前記テンプレート基板は、主基板と、窒素極性面が前記主基板に接合し、かつアルゴンを含むアルミニウム系窒化物層とを有し、
     前記第1半導体部は、窒化物半導体を含む、半導体基板。
  20.  前記アルミニウム系窒化物層は、前記主基板との界面において前記主基板の結晶構造を継承していない、請求項19に記載の半導体基板。
  21.  前記アルミニウム系窒化物層および前記主基板の界面に接合跡を有する、請求項19または20に記載の半導体基板。
  22.  前記テンプレート基板は、上面側に、前記第1シード領域が位置するリッジ部を有し、
     前記第1半導体部と前記成長抑制領域との間に空隙が存在する、請求項19~21のいずれか1項に記載の半導体基板。
  23.  第1方向に並ぶ前記第1シード領域および前記成長抑制領域それぞれが、前記第1方向と直交する第2方向を長手方向とする形状である、請求項1~22のいずれか1項に記載の半導体基板。
  24.  窒化物半導体を含む第2半導体部を備え、
     前記テンプレート基板は、前記成長抑制領域を介して前記第1シード領域と第1方向に隣り合う第2シード領域を有し、
     前記第2半導体部は、前記第2シード領域の上方に位置する第2基部および前記第2基部に繋がるとともに前記成長抑制領域の上方に位置する第2ウイング部を有し、
     前記第1ウイング部および前記第2ウイング部がギャップを介して前記第1方向に並ぶ、請求項1~23のいずれか1項に記載の半導体基板。
  25.  前記窒化物半導体はGaN系半導体であり、
     前記主基板は、シリコン基板若しくは炭化シリコン基板またはガラス基板である、請求項1~24のいずれか1項に記載の半導体基板。
  26.  常温において、前記アルミニウム系窒化物層および第1半導体部それぞれが引張応力状態である、請求項1~10のいずれか1項に記載の半導体基板。
  27.  前記成長抑制領域は、前記アルミニウム系窒化物層の改質領域であり、
     前記第1シード領域は、前記アルミニウム系窒化物層の非改質領域である、請求項1~11のいずれか1項に記載の半導体基板。
  28.  前記窒化アルミニウム層は、アルミニウム以外の不純物金属元素の金属元素全体に対する割合が、0.5atm%未満である、請求項2に記載の半導体基板。
  29.  主基板と、
     前記主基板の上方に位置する金属層と、
     前記金属層の上方に位置し、アルゴンを含むアルミニウム系窒化物層とを備える、テンプレート基板。
  30.  主基板を含むテンプレート基板の製造方法であって、
     主基板の上方に金属層を形成する工程と、
     前記金属層の上方に、スパッタリング法を用いてアルミニウム系窒化物層を形成する工程とを含む、テンプレート基板の製造方法。
  31.  主基板を含むテンプレート基板の製造方法であって、
     仮基板上に金属層を形成する工程と、
     前記金属層の上方に、スパッタリング法を用いてアルミニウム系窒化物層を形成する工程と、
     前記アルミニウム系窒化物層を、前記仮基板から主基板に転写する工程とを含む、テンプレート基板の製造方法。
  32.  前記アルミニウム系窒化物層は、スパッタリング法で形成した際は表面が窒素極性面であり、転写後に表面がAl極性面になっていることを特徴とする、請求項31に記載のテンプレート基板の製造方法。
  33.  前記金属層を除去することで、前記主基板およびアルミニウム系窒化物層を前記仮基板から分離する、請求項31または32に記載のテンプレート基板の製造方法。
  34.  前記仮基板が炭化シリコン基板であり、前記主基板がシリコン基板である、請求項31~33のいずれか1項に記載のテンプレート基板の製造方法。
  35.  前記金属層はアルミニウム層であり、
     前記アルミニウム層をスパッタリング法を用いて形成する、請求項30~34のいずれか1項に記載のテンプレート基板の製造方法。
  36.  前記主基板の上方に、成長抑制領域として機能するマスク部を含むマスクパターンを形成する、請求項30に記載のテンプレート基板の製造方法。
  37.  請求項30または31に記載の各工程を行う、テンプレート基板の製造装置。
PCT/JP2023/037960 2022-10-20 2023-10-20 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置 WO2024085243A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2022/039142 2022-10-20
PCT/JP2022/039142 WO2024084664A1 (ja) 2022-10-20 2022-10-20 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置

Publications (1)

Publication Number Publication Date
WO2024085243A1 true WO2024085243A1 (ja) 2024-04-25

Family

ID=90737170

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/039142 WO2024084664A1 (ja) 2022-10-20 2022-10-20 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置
PCT/JP2023/037960 WO2024085243A1 (ja) 2022-10-20 2023-10-20 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039142 WO2024084664A1 (ja) 2022-10-20 2022-10-20 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置

Country Status (1)

Country Link
WO (2) WO2024084664A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357843A (ja) * 1999-06-15 2000-12-26 Nichia Chem Ind Ltd 窒化物半導体の成長方法
JP2002289539A (ja) * 2001-03-27 2002-10-04 Sony Corp 窒化物半導体素子及びその作製方法
JP2007317752A (ja) * 2006-05-23 2007-12-06 Mitsubishi Cable Ind Ltd テンプレート基板
JP2009283785A (ja) * 2008-05-23 2009-12-03 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法
JP2013194320A (ja) * 2012-03-19 2013-09-30 Takashi Harumoto AlN薄膜の製造方法
WO2016009577A1 (ja) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 窒化物半導体層の成膜方法及び半導体装置の製造方法
JP2019197873A (ja) * 2018-05-11 2019-11-14 株式会社サイオクス 窒化物半導体テンプレート、および、それを用いて製造されたデバイス
JP2021075742A (ja) * 2019-11-06 2021-05-20 國家中山科學研究院 窒化アルミニウムセラミック基板の表面改質方法
JP2022049679A (ja) * 2020-09-16 2022-03-29 エスピーティーエス テクノロジーズ リミティド 成膜方法
WO2022145454A1 (ja) * 2020-12-29 2022-07-07 京セラ株式会社 半導体基板、半導体デバイス、電子機器
WO2022181686A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 半導体基板並びにその製造方法および製造装置、テンプレート基板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000357843A (ja) * 1999-06-15 2000-12-26 Nichia Chem Ind Ltd 窒化物半導体の成長方法
JP2002289539A (ja) * 2001-03-27 2002-10-04 Sony Corp 窒化物半導体素子及びその作製方法
JP2007317752A (ja) * 2006-05-23 2007-12-06 Mitsubishi Cable Ind Ltd テンプレート基板
JP2009283785A (ja) * 2008-05-23 2009-12-03 Showa Denko Kk Iii族窒化物半導体積層構造体およびその製造方法
JP2013194320A (ja) * 2012-03-19 2013-09-30 Takashi Harumoto AlN薄膜の製造方法
WO2016009577A1 (ja) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 窒化物半導体層の成膜方法及び半導体装置の製造方法
JP2019197873A (ja) * 2018-05-11 2019-11-14 株式会社サイオクス 窒化物半導体テンプレート、および、それを用いて製造されたデバイス
JP2021075742A (ja) * 2019-11-06 2021-05-20 國家中山科學研究院 窒化アルミニウムセラミック基板の表面改質方法
JP2022049679A (ja) * 2020-09-16 2022-03-29 エスピーティーエス テクノロジーズ リミティド 成膜方法
WO2022145454A1 (ja) * 2020-12-29 2022-07-07 京セラ株式会社 半導体基板、半導体デバイス、電子機器
WO2022181686A1 (ja) * 2021-02-26 2022-09-01 京セラ株式会社 半導体基板並びにその製造方法および製造装置、テンプレート基板

Also Published As

Publication number Publication date
WO2024084664A1 (ja) 2024-04-25

Similar Documents

Publication Publication Date Title
JP5371430B2 (ja) 半導体基板並びにハイドライド気相成長法により自立半導体基板を製造するための方法及びそれに使用されるマスク層
JP5133927B2 (ja) 化合物半導体基板
US20240072198A1 (en) Semiconductor substrate, semiconductor device, and electronic device
EP4300605A1 (en) Semiconductor substrate, method for producing same, apparatus for producing same, and template substrate
JP5412093B2 (ja) 半導体ウェハ製造方法及び半導体装置製造方法
JP2010056555A (ja) 半導体構造物及びそれを製造する方法
KR20140107797A (ko) 질화물 기판 제조 방법
JP6138974B2 (ja) 半導体基板
JP2023139075A (ja) 半導体デバイスの製造方法および半導体デバイス並びにテンプレート基板
WO2024085243A1 (ja) 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置
KR20050033911A (ko) 질화갈륨계 단결정 기판의 제조방법
TWI841952B (zh) 半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器
JP2003124124A (ja) 半導体素子、エピタキシャル基板、半導体素子の製造方法、及びエピタキシャル基板の製造方法
WO2024085214A1 (ja) 半導体基板、半導体基板の製造方法および製造装置、半導体デバイスの製造方法
WO2022220124A1 (ja) 半導体基板並びにその製造方法および製造装置、GaN系結晶体、半導体デバイス、電子機器
US20240234141A9 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
TWI838676B (zh) 半導體基板、半導體裝置、電子機器
TWI845987B (zh) 模片基板及其製造方法、以及其製造裝置、半導體基板及其製造方法、以及其製造裝置、半導體裝置、電子機器
EP4362115A1 (en) Semiconductor device manufacturing method and manufacturing device, semiconductor device and electronic device
US20240234137A9 (en) Semiconductor substrate, and manufacturing method and manufacturing apparatus of semiconductor substrate
US20240136177A1 (en) Semiconductor substrate, and manufacturing method and manufacturing apparatus of semiconductor substrate
WO2023189872A1 (ja) 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置
WO2023002865A1 (ja) テンプレート基板並びにその製造方法および製造装置、半導体基板並びにその製造方法および製造装置、半導体デバイス、電子機器
JP4748925B2 (ja) エピタキシャル基板、半導体積層構造及びiii族窒化物層群の転位低減方法
CN116802350A (zh) 氮化物半导体基板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879885

Country of ref document: EP

Kind code of ref document: A1