WO2023189872A1 - 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置 - Google Patents

半導体基板、テンプレート基板、半導体基板の製造方法および製造装置 Download PDF

Info

Publication number
WO2023189872A1
WO2023189872A1 PCT/JP2023/011064 JP2023011064W WO2023189872A1 WO 2023189872 A1 WO2023189872 A1 WO 2023189872A1 JP 2023011064 W JP2023011064 W JP 2023011064W WO 2023189872 A1 WO2023189872 A1 WO 2023189872A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride semiconductor
region
seed
substrate
unit
Prior art date
Application number
PCT/JP2023/011064
Other languages
English (en)
French (fr)
Inventor
雄一郎 林
克明 正木
剛 神川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023189872A1 publication Critical patent/WO2023189872A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present disclosure relates to semiconductor substrates and the like.
  • Patent Document 1 discloses a method of forming a GaN-based semiconductor layer on a different substrate (for example, a sapphire substrate) using the ELO (Epitaxial Lateral Overgrowth) method.
  • a semiconductor substrate includes a base substrate including a substrate material other than a nitride semiconductor, and includes a growth suppression region, an independent first seed region whose longitudinal direction is a first direction, and a second seed region different from the first direction.
  • a template substrate including an independent second seed region whose longitudinal direction is a longitudinal direction; an island-shaped first nitride semiconductor portion disposed from above the first seed region to above the growth suppression region; and an island-shaped second nitride semiconductor portion disposed from above the second seed region to above the growth suppression region.
  • FIG. 1 is a plan view showing an example of the configuration of a semiconductor substrate according to the present embodiment.
  • FIG. 2 is an enlarged plan view of a part of FIG. 1;
  • FIG. 1 is a cross-sectional view showing a configuration example of a semiconductor substrate according to the present embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration example of a semiconductor substrate according to the present embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration example of a semiconductor substrate according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing another example of the semiconductor substrate according to the present embodiment.
  • FIG. 3 is an enlarged plan view of a part of FIG. 2;
  • FIG. 3 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 7 is an enlarged plan view of a part of FIG. 6;
  • FIG. 3 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 9 is an enlarged plan view of a part of FIG. 8;
  • FIG. 3 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 11 is an enlarged plan view of a part of FIG. 10;
  • FIG. 3 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 13 is an enlarged plan view of a part of FIG. 12;
  • FIG. 3 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 15 is an enlarged plan view of a part of FIG. 14;
  • FIG. 15 is an enlarged plan view of a part of FIG. 14;
  • FIG. 2 is a plan view showing a configuration example of a template substrate according to the present embodiment.
  • FIG. 17 is an enlarged plan view of a part of FIG. 16;
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a template substrate according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of a template substrate according to the present embodiment.
  • 3 is a flowchart showing a method for manufacturing a semiconductor substrate according to the present embodiment.
  • FIG. 1 is a block diagram showing a semiconductor substrate manufacturing apparatus according to the present embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a nitride semiconductor forming apparatus according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the configuration of a base substrate.
  • FIG. 1 is a cross-sectional view showing a method for manufacturing a semiconductor substrate according to Example 1.
  • FIG. 3 is a cross-sectional view showing a method for manufacturing a semiconductor device according to Example 2.
  • FIG. 3 is a plan view showing a method for manufacturing a semiconductor device according to Example 2.
  • FIG. 1 is a cross-sectional view showing a configuration example of a semiconductor substrate according to the present embodiment.
  • FIG. 1 is a plan view showing a configuration example of a semiconductor substrate according to this embodiment.
  • FIG. 2 is an enlarged plan view of a part of FIG. 1.
  • 3A to 3C are cross-sectional views showing examples of the structure of a semiconductor substrate according to this embodiment. As shown in FIGS.
  • the semiconductor substrate 10 (semiconductor wafer) according to the present embodiment includes a base substrate BS containing a substrate material other than a nitride semiconductor, and includes (i) a growth suppression region; SP, (ii) an independent first seed region J1 whose longitudinal direction is the first direction D1, and (iii) an independent second seed region J2 whose longitudinal direction is a second direction D2 different from the first direction D1.
  • a template substrate TS including a template substrate TS, an island-shaped first nitride semiconductor portion 8F arranged from above the first seed region J1 to above the growth suppression region SP, and a growth suppression region SP from above the second seed region J2.
  • the first and second directions D1 and D2 are, for example, different directions on a plane parallel to the base substrate BS, and on this plane, Y1 is a direction perpendicular to the first direction D1, and a direction perpendicular to the second direction D2.
  • Y2 be Y2, and Z be the normal direction of this plane (thickness direction of the first and second nitride semiconductor parts 8F and 8S).
  • the template substrate TS has a mask pattern 6 having a mask portion 5 and a first opening K1 and a second opening K2 on a base substrate BS.
  • the upper surface of the mask portion 5 is a growth suppression region SP
  • the upper surface of the base substrate BS has a first seed region J1 overlapping with the first opening K1 and a second seed region J2 overlapping with the second opening K2. May be included.
  • the seed region including the first and second seed regions J1 and J2 will be collectively referred to as the seed region J
  • the openings of the mask pattern 6 including the first and second openings K1 and K2 will be collectively referred to as the opening K.
  • the nitride semiconductor portion including the first and second nitride semiconductor portions 8F and 8S is collectively referred to as a nitride semiconductor portion 8.
  • the mask pattern 6 may be a mask layer, and the nitride semiconductor portion 8 may be a nitride semiconductor layer.
  • the direction from the base substrate BS to the nitride semiconductor section 8 is "upward.” Viewing an object with a line of sight parallel to the normal direction of the semiconductor substrate 10 (including perspectively viewing) is sometimes referred to as "planar viewing.”
  • the nitride semiconductor portion 8 contains a nitride semiconductor as a main material.
  • Specific examples of nitride semiconductors include GaN-based semiconductors, AlN (aluminum nitride), InAlN (indium aluminum nitride), and InN (indium nitride).
  • a GaN-based semiconductor is a semiconductor containing gallium atoms (Ga) and nitrogen atoms (N), and typical examples include GaN, AlGaN, AlGaInN, and InGaN.
  • the nitride semiconductor portion 8 may be doped (for example, n-type including a donor) or non-doped.
  • a semiconductor substrate means a substrate containing a nitride semiconductor, and the base substrate BS may include a semiconductor other than a nitride semiconductor (for example, silicon, silicon carbide, etc.) or a non-semiconductor.
  • the base substrate BS and the mask pattern 6 are sometimes referred to as a template substrate TS.
  • the first nitride semiconductor section 8F can be formed by the ELO (Epitaxial Lateral Overgrowth) method starting from the first seed region J1 (the upper surface of the base substrate BS exposed below the first opening K1).
  • the first direction D1 may be the m-axis direction ( ⁇ 1-100> direction) of the first nitride semiconductor portion 8F.
  • the width direction of the first seed region J1 (direction Y1 perpendicular to the first direction D1) may be the a-axis direction ( ⁇ 11-20> direction) of the first nitride semiconductor portion 8F.
  • the thickness direction Z of the first nitride semiconductor portion 8F may be the c-axis direction ( ⁇ 0001> direction).
  • the second nitride semiconductor section 8S can be formed by the ELO method starting from the second seed region J2 (the upper surface of the base substrate BS exposed below the first opening K1).
  • the second direction D2 may be the m-axis direction ( ⁇ 1-100> direction) of the second nitride semiconductor section 8S.
  • the width direction of the second seed region J2 (direction Y2 perpendicular to the second direction D2) may be the a-axis direction ( ⁇ 11-20> direction) of the second nitride semiconductor portion 8S.
  • the thickness direction Z of the second nitride semiconductor portion 8S may be the c-axis direction ( ⁇ 0001> direction).
  • the part located above the seed region J becomes a dislocation inheritance part with many threading dislocations
  • the part located above the growth suppression region SP (the wing on the mask part 5 The part) becomes a low-defect part YS where the threading dislocation density is lower than that of the dislocation inheritance part.
  • the substrate material (non-nitride semiconductor) included in the base substrate BS may have a smaller coefficient of thermal expansion than the nitride semiconductor (eg, GaN).
  • Each of the first and second nitride semiconductor parts 8F and 8S may be a hexagonal crystal, and the acute angle formed by the first direction D1 and the second direction D2 may be 60 degrees.
  • the template substrate TS includes one or more first unit areas A1 in which a plurality of independent seed areas J including a first seed area J1 and having a longitudinal direction in the first direction D1 are arranged, and a second seed area J2. may have one or more second unit areas A2 in which a plurality of independent seed areas J having the second direction D2 as the longitudinal direction are arranged.
  • a plurality of first unit regions A1 may be distributed in a plane, and a plurality of second unit regions A2 may be distributed in a plane.
  • the plurality of first unit areas A1 and the plurality of second unit areas A2 may be arranged such that the first unit areas A1 are not adjacent to each other and the second unit areas A2 are not adjacent to each other.
  • Each of the plurality of first unit areas A1 and the plurality of second unit areas A2 may have the same shape.
  • the template substrate TS includes an independent third seed region J3 having a longitudinal shape in a third direction D3 different from the first direction D1 and the second direction D2, and extends from above the third seed region J3 to above the growth suppression region SP.
  • the island-shaped third nitride semiconductor portion 8T may be arranged as shown in FIG.
  • the mask pattern 6 includes an independent third opening K3 having a longitudinal shape in the third direction D3, and a third seed region J3 overlapping with the third opening K3 is provided on the upper surface of the base substrate BS. may be included.
  • the third direction D3 is a direction different from the first and second directions D1 and D2 on a plane parallel to the base substrate BS, and a direction perpendicular to the third direction D3 on this plane is defined as Y3.
  • the third nitride semiconductor portion 8T may be a hexagonal crystal, and the acute angle formed by the first direction D1 and the third direction D3 may be 60 degrees.
  • the template substrate TS may have one or more third unit areas A3, including the third seed area J3, in which a plurality of independent openings having a longitudinal shape in the third direction D3 are arranged.
  • a plurality of third unit regions A3 may be distributed in a plane.
  • the third unit areas A3 may be arranged so as not to be adjacent to each other.
  • a plurality of elongated seed regions J are formed on a template substrate TS having a different type of substrate (a main substrate containing a substrate material other than a nitride semiconductor), the longitudinal directions of which are not aligned within the substrate plane (the longitudinal direction is not aligned in a single direction).
  • the nitride semiconductor portions 8 grown laterally from the seed region J may be independent in the form of islands. Compared to the case where the longitudinal direction of the seed region J is a single direction and a large warp occurs in a single direction, the absolute value of the warp becomes smaller because the board warp is dispersed in a plurality of directions.
  • warping can be effectively reduced by the strain relaxation layer structure of the base substrate BS.
  • abnormal growth for example, angular bulges
  • this can be avoided by making each seed region J an independent shape. Such abnormal growth can be avoided.
  • each of the first and second nitride semiconductor parts 8F and 8S may have a tapered shape.
  • ELO of a nitride semiconductor crystal for example, GaN
  • the a-axis direction is the growth direction
  • the m-axis direction is the stable direction (non-growth direction)
  • the m-plane spreads from both ends of the nitride semiconductor crystal. Therefore, the nitride semiconductor portion 8 obtained by stopping ELO while the a-plane of the nitride semiconductor crystal is exposed has a tapered shape.
  • FIG. 4 is a cross-sectional view showing the configuration of another semiconductor substrate of this embodiment.
  • a buffer section 2 may be provided so as to cover the mask pattern 6.
  • the buffer section 2 a highly reactive AlGaN film can be used.
  • the upper surface of the buffer section 2 (AlGaN film) includes a growth suppression region SP that overlaps with the mask section 5 in plan view, and a seed region J that overlaps with opening K in plan view.
  • a region located above the mask section 5 has low crystallinity and therefore functions as a growth suppressing region SP.
  • a region located above the opening K (above the exposed portion of the base substrate BS) has high crystallinity and thus functions as a seed region J.
  • FIG. 5 is an enlarged plan view of a part of FIG. 2.
  • each of the plurality of first unit areas A1, the plurality of second unit areas A2, and the plurality of third unit areas A3 has a regular hexagonal shape, and the adjacent first unit areas A1 One of the two sides faces one side of the second unit area A2, the other side faces one side of the third unit area A3, the first direction D1 is perpendicular to the pair of opposing sides of the first unit area A1, and the first direction D1 is perpendicular to the pair of opposing sides of the first unit area A1.
  • the acute angle between the first direction D1 and the second direction D2 and the acute angle between the first direction D1 and the third direction D3 may each be 60°.
  • a plurality of seed regions J including the first seed region J1 and having the same stretching direction and the same length are formed in the first unit region A1, and a plurality of seed regions J including the second seed region J2 in the same stretching direction are formed in the second unit region A2.
  • a plurality of seed regions J having the same length may be formed, and a plurality of seed regions J including the third seed region J3 may be formed in the third unit region A3, extending in the same direction and having the same length.
  • a plurality of nitride semiconductor parts 8 including a first nitride semiconductor part 8F are formed in the same extending direction and the same length on the first unit area A1, and a second nitride semiconductor part 8 is formed on the second unit area A2.
  • a plurality of nitride semiconductor parts 8 are formed in the same stretching direction and the same length, including a semiconductor part 8S, and on the third unit region A3, a plurality of nitride semiconductor parts 8 are formed in the same stretching direction and the same length, including a third nitride semiconductor part 8T.
  • a plurality of lengths of nitride semiconductor portions 8 may be formed. In this case, since many nitride semiconductor parts 8 can be formed in the same stretching direction and the same length, the mass productivity of semiconductor devices using the nitride semiconductor parts 8 is excellent.
  • FIG. 6 is a plan view showing another example of the structure of the semiconductor substrate according to the present embodiment.
  • FIG. 7 is an enlarged plan view of a part of FIG. 6.
  • the shapes of the plurality of first unit areas A1, the plurality of second unit areas A2, and the plurality of third unit areas A3 are regular hexagons, and One of the two sides faces one side of the second unit area A2, the other side faces one side of the third unit area A3, and the first direction D1 is parallel to the pair of opposing sides of the first unit area A1,
  • the acute angle between the first direction D1 and the second direction D2 and the acute angle between the first direction D1 and the third direction D3 may each be 60 degrees.
  • a plurality of seed regions J including a first seed region J1 are formed in the first unit region A1 and have the same stretching direction and a plurality of different lengths, and a plurality of seed regions J including a second seed region J2 are formed in the second unit region A2.
  • a plurality of seed regions J in the stretching direction and a plurality of different lengths are formed, and a plurality of seed regions J in the same stretching direction and a plurality of different lengths are formed in the third unit area A3, including the third seed region J3. may be done.
  • a plurality of nitride semiconductor parts 8 including a first nitride semiconductor part 8F are formed on the first unit region A1 and have a plurality of different lengths in the same extending direction, and a second nitride semiconductor part 8 is formed on the second unit region A2.
  • a plurality of nitride semiconductor parts 8 including a nitride semiconductor part 8S, extending in the same stretching direction and having a plurality of different lengths, are formed on the third unit region A3, including a third nitride semiconductor part 8T, extending in the same stretching direction.
  • a plurality of nitride semiconductor portions 8 having a plurality of different lengths may be formed.
  • the nitride semiconductor crystal can be grown to the vicinity of the edge of each unit region without waste, and the crystal yield can be increased.
  • a long nitride semiconductor portion 8 can be formed in the center of the unit region.
  • FIG. 8 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 9 is an enlarged plan view of a part of FIG. 8.
  • each of the plurality of first unit areas A1, the plurality of second unit areas A2, and the plurality of third unit areas A3 has an equilateral triangular shape, and the adjacent first unit areas A1 One of the two sides faces one side of the second unit area A2, the other side faces one side of the third unit area A3, and the first direction D1 defines an angle sandwiched by two adjacent sides of the first unit area A1. It is parallel to the bisecting direction, and the acute angle between the first direction D1 and the second direction D2 and the acute angle between the first direction D1 and the third direction D3 may each be 60°.
  • a plurality of seed regions J including a first seed region J1 are formed in the first unit region A1 and have the same stretching direction and a plurality of different lengths, and a plurality of seed regions J including a second seed region J2 are formed in the second unit region A2.
  • a plurality of seed regions J in the stretching direction and a plurality of different lengths are formed, and a plurality of seed regions J in the same stretching direction and a plurality of different lengths are formed in the third unit area A3, including the third seed region J3. may be done.
  • a plurality of nitride semiconductor portions 8 including a first nitride semiconductor portion 8F are formed in the same extending direction and with a plurality of different lengths
  • a plurality of nitride semiconductor portions 8 including a first nitride semiconductor portion 8F are formed on the second unit region A2
  • a plurality of nitride semiconductor portions 8 including a first nitride semiconductor portion 8F are formed on the second unit region A2.
  • a plurality of nitride semiconductor parts 8 including a second nitride semiconductor part 8S are formed in the same extending direction and have a plurality of different lengths
  • a plurality of nitride semiconductor parts 8 including a third nitride semiconductor part 8T are formed on the third unit area A3.
  • a plurality of nitride semiconductor portions 8 having different lengths in the extending direction may be formed.
  • FIG. 10 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 11 is an enlarged plan view of a part of FIG. 10.
  • each of the plurality of first unit regions A1, the plurality of second unit regions A2, and the plurality of third unit regions A3 have a square shape, and two opposing sides of the first unit region A1.
  • One side faces one side of the second unit area A2, the other side faces one side of the third unit area A3, the first direction D1 is parallel to two opposing sides of the first unit area A1, and the first direction D1 is parallel to two opposing sides of the first unit area A1.
  • the acute angle between D1 and the second direction D2 and the acute angle between the first direction D1 and the third direction D3 may each be 60°.
  • a plurality of seed regions J including the first seed region J1 and having the same stretching direction and the same length are formed in the first unit region A1, and a plurality of seed regions J including the second seed region J2 in the same stretching direction are formed in the second unit region A2.
  • a plurality of seed regions J having the same length may be formed, and a plurality of seed regions J including the third seed region J3 may be formed in the third unit region A3, extending in the same direction and having the same length.
  • a plurality of nitride semiconductor parts 8 including a first nitride semiconductor part 8F are formed in the same extending direction and the same length on the first unit area A1, and a second nitride semiconductor part 8 is formed on the second unit area A2.
  • a plurality of nitride semiconductor parts 8 are formed in the same stretching direction and the same length, including a semiconductor part 8S, and on the third unit region A3, a plurality of nitride semiconductor parts 8 are formed in the same stretching direction and the same length, including a third nitride semiconductor part 8T.
  • a plurality of lengths of nitride semiconductor portions 8 may be formed.
  • FIG. 12 is a plan view showing another example of the structure of the semiconductor substrate according to this embodiment.
  • FIG. 13 is an enlarged plan view of a part of FIG. 12.
  • each of the plurality of first unit regions A1 and the plurality of second unit regions A2 has a square shape, and one of the two opposing sides of the first unit region A1 is the second unit region A2.
  • the first direction D1 may be parallel to two opposing sides of the first unit area A1, and the angle formed by the first direction D1 and the second direction D2 may be 90°.
  • a plurality of seed regions J including the first seed region J1 and having the same stretching direction and the same length are formed in the first unit region A1, and a plurality of seed regions J including the second seed region J2 in the same stretching direction are formed in the second unit region A2.
  • a plurality of seed regions J having the same length may be formed.
  • a plurality of nitride semiconductor parts 8 including a first nitride semiconductor part 8F are formed in the same extending direction and the same length on the first unit area A1, and a second nitride semiconductor part 8 is formed on the second unit area A2.
  • a plurality of nitride semiconductor parts 8 including the nitride semiconductor part 8S may be formed in the same extending direction and the same length.
  • FIG. 14 is a plan view showing another configuration example of the semiconductor substrate according to the present embodiment.
  • FIG. 15 is an enlarged plan view of a part of FIG. 14.
  • the mask pattern 6 has one or more unit areas AS in which a first seed area J1 and a second seed area J2 are arranged, and growth is suppressed from above the first seed area J1.
  • An island-shaped first nitride semiconductor section 8F is arranged to extend over the region SP
  • an island-shaped second nitride semiconductor section 8S is arranged to extend from above the second seed region J2 to above the growth suppression region SP. You can leave it there.
  • a plurality of unit areas AS may be arranged in a matrix within the plane.
  • An independent third seed region J3 having a longitudinal shape in a third direction D3 different from the first direction D1 and the second direction D2 may be arranged in the unit region AS, and growth is suppressed from above the third seed region J3.
  • An island-shaped third nitride semiconductor portion 8T may be arranged so as to extend over the region SP.
  • the acute angle between the first direction D1 and the second direction D2 and the acute angle between the first direction D1 and the third direction D3 may each be 60°.
  • the unit area AS includes a plurality of seed regions J of the same size extending in the first direction D1, including a first seed region J1, and a plurality of seed regions J of the same size extending in the second direction D2, including a second seed region J2.
  • a seed region J and a plurality of openings having the same size and extending in the third direction D3, including the third seed region J3, may be formed.
  • nitride semiconductor parts 8 of the same size extending in the first direction D1 including the first nitride semiconductor part 8F, and a second direction D2 including the second nitride semiconductor part 8S.
  • a plurality of nitride semiconductor parts 8 of the same size extending in the direction D3 and a plurality of nitride semiconductor parts 8 of the same size extending in the third direction D3 including the third nitride semiconductor part 8T may be formed. .
  • FIG. 16 is a plan view showing a configuration example of a template substrate according to this embodiment.
  • FIG. 17 is an enlarged plan view of a part of FIG. 16.
  • 18 and 19 are cross-sectional views showing an example of the structure of a template substrate according to this embodiment.
  • the template substrate TS according to the present embodiment includes a base substrate BS, a growth suppression region SP, an independent first seed region J1 whose longitudinal direction is the first direction D1, and a first seed region J1 whose longitudinal direction is the first direction D1.
  • the mask pattern 6 includes an independent second seed region J2 whose longitudinal direction is a second direction D2 different from the first direction D1.
  • the first and second directions D1 and D2 are, for example, different directions on a plane parallel to the base substrate BS, and on this plane, Y1 is a direction perpendicular to the first direction D1, and a direction perpendicular to the second direction D2. Let Y2 be Y2, and Z be the normal direction of this plane.
  • the template substrate TS has a mask portion 5 and a mask pattern 6 having a first opening K1 and a second opening K2 on a base substrate BS, and the upper surface of the mask portion 5 is a growth suppression region SP,
  • the upper surface of the base substrate BS may include a first seed region J1 overlapping with the first opening K1 and a second seed region J2 overlapping with the second opening K2.
  • the template substrate TS includes one or more first unit areas A1 in which a plurality of independent seed areas J including a first seed area J1 and having a longitudinal direction in the first direction D1 are arranged, and a second seed area J2. may have one or more second unit areas A2 in which a plurality of independent seed areas J having the second direction D2 as the longitudinal direction are arranged.
  • a plurality of first unit areas A1 may be distributed in a plane
  • a plurality of second unit areas A2 may be distributed in a plane.
  • the plurality of first unit areas A1 and the plurality of second unit areas A2 may be arranged such that the first unit areas A1 are not adjacent to each other and the second unit areas A2 are not adjacent to each other.
  • the template substrate TS may include an independent third seed region J3 having a longitudinal shape in a third direction D3 different from the first direction D1 and the second direction D2.
  • the mask pattern 6 may include an independent third opening K3 having a longitudinal shape in the third direction D3, and the upper surface of the base substrate BS may include a third seed region J3 overlapping with the third opening K3. .
  • the plurality of first unit areas A1 and the plurality of second unit areas A2 may each have the same shape.
  • the template substrate TS may have one or more third unit areas A3 including a third seed area J3, in which a plurality of independent seed areas J having a longitudinal shape in the third direction D3 are arranged.
  • a plurality of third unit regions A3 may be distributed in a plane.
  • the third unit areas A3 may be arranged so as not to be adjacent to each other.
  • FIG. 20 is a flowchart showing a method for manufacturing a semiconductor substrate according to this embodiment.
  • the method for manufacturing a semiconductor substrate according to the present embodiment includes a step of preparing a template substrate TS, and a step of supplying a nitride semiconductor raw material to the template substrate TS, which rotates about the substrate normal as a rotation axis. including.
  • FIG. 21 is a block diagram showing a semiconductor substrate manufacturing apparatus according to this embodiment.
  • the semiconductor substrate manufacturing method according to the present embodiment includes a device M1 that prepares a template substrate TS, and a nitride semiconductor raw material that is supplied to the template substrate TS that rotates about the substrate normal as a rotation axis. equipment M2 (nitride semiconductor forming equipment).
  • FIG. 22 is a schematic diagram showing the configuration of the nitride semiconductor forming apparatus according to this embodiment.
  • the semiconductor substrate manufacturing apparatus 20 includes a stage 21 on which a template substrate TS including a base substrate BS, a growth suppression region SP and a seed region J is mounted, and a stage 21 on which a nitride semiconductor is placed on the template substrate TS. It includes a raw material supply device 22 that supplies raw materials for growing the portion 8 and a control device 24 that controls the raw material supply device 22. Even if the semiconductor substrate manufacturing apparatus 20 is provided with a chamber 25 including a stage SG, a flow channel 27 passing through the chamber 25, and a heating device 26 that heats the chamber 25, and the semiconductor substrate 10 is placed in the flow channel 27, good.
  • the stage 21 may perform a rotation operation (with the axis in the normal direction of the template substrate TS as the rotation axis).
  • the raw material supply device 22 causes the raw material gas to flow horizontally (in a direction parallel to the upper surface of the template substrate) into the flow channel 27, and is exhausted horizontally, but the present invention is not limited thereto.
  • the raw material gas may be caused to flow vertically (in the normal direction of the template substrate TS).
  • FIG. 23 is a cross-sectional view showing an example of the structure of the base substrate.
  • the base substrate BS may include the main substrate 1 which is a different substrate having a different lattice constant from the nitride semiconductor portion 8 .
  • the nitride semiconductor portion 8 may include a GaN-based semiconductor, and the main substrate 1, which is a different type of substrate, may be a silicon substrate.
  • the heterogeneous substrate include, in addition to a silicon substrate, a sapphire (Al 2 O 3 ) substrate, a silicon carbide (SiC) substrate, and the like.
  • the plane orientation of the main substrate 1 is, for example, the (111) plane of a silicon substrate, the (0001) plane of a sapphire substrate, or the 6H-SiC (0001) plane of a SiC substrate. These are just examples, and any substrate and surface orientation may be used as long as the nitride semiconductor portion 8 can be grown by the ELO method.
  • the base substrate BS includes the main substrate 1 and a base portion 4 on the main substrate 1, and the nitride semiconductor portion 8 may be grown from the upper surface (seed region J) of the base portion 4 exposed in the opening K.
  • Base portion 4 may include a GaN-based semiconductor.
  • the base portion 4 may include at least one of the buffer portion 2 and the seed portion 3.
  • As the buffer section 2 a GaN-based semiconductor, AlN, SiC, etc. can be used.
  • As the seed portion 3 a nitride semiconductor (eg, GaN-based semiconductor, AlN) can be used.
  • the base substrate BS may be composed of a free-standing single crystal substrate such as SiC (for example, a wafer cut from a bulk crystal), and the mask pattern 6 may be arranged on the single crystal substrate.
  • the base portion 4 does not need to be formed on the entire surface of the main substrate 1, and may be provided locally so as to overlap the opening K in a plan view (the base portion 4 is exposed from the opening K).
  • Mask pattern 6 includes a mask portion 5 and an opening K.
  • the opening K functions as a growth start hole that exposes the seed region J and starts the growth of the nitride semiconductor section 8, and the mask section 5 serves as a selective growth mask for laterally growing the nitride semiconductor section 8.
  • (Deposition suppression mask) As the mask portion 5, for example, a silicon oxide film (SiOx), a titanium nitride film (TiN, etc.), a silicon nitride film (SiNx), a silicon oxynitride film (SiON), and a metal film having a high melting point (for example, 1000 degrees or higher) are used.
  • a single layer film containing any one of these or a laminated film containing at least two of these can be used.
  • a thermal oxide film obtained by thermally oxidizing a silicon substrate, a silicon nitride substrate, or the like may be used as the mask portion 5.
  • a laminated film in which a silicon oxide film and a silicon nitride film are formed in this order can be used.
  • the nitride semiconductor portion 8 and the mask portion 5 may react and become fixed, so the upper layer film in contact with the nitride semiconductor portion 8 may be a silicon nitride film.
  • the film on the support substrate 1 lower layer film
  • the use of a film in the lower layer also has the effect of improving the yield of the process.
  • FIG. 24 is a cross-sectional view showing a method for manufacturing a semiconductor substrate according to Example 1.
  • the nitride semiconductor portion 8 was made of a GaN layer, and ELO film formation was performed on the template substrate TS using an MOCVD apparatus that is an example of the apparatus M2 (nitride semiconductor forming apparatus) in FIG.
  • MOCVD apparatus that is an example of the apparatus M2 (nitride semiconductor forming apparatus) in FIG.
  • substrate temperature 1120°C
  • growth pressure 50 kPa
  • TMG trimethyl gallium
  • NH 3 15 slm
  • the initial growth portion 8p serves as a starting point for the lateral growth of the nitride semiconductor portion 8.
  • the initial growth layer 8p can be formed to have a thickness of, for example, 30 nm to 1000 nm, 50 nm to 400 nm, or 70 nm to 350 nm.
  • the nitride semiconductor parts 8 grown laterally in opposite directions from two adjacent openings K do not contact (meet) each other on the mask part 5 and have a gap GP. Internal stress can be reduced. Thereby, cracks and defects (dislocations) occurring in the nitride semiconductor portion 8 can be reduced. This effect is particularly effective when the main substrate 1 is a different type of substrate.
  • the width of the gap GP can be, for example, 10 ⁇ m or less, 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less.
  • the part located above the initial growth part 8p becomes a dislocation inheritance part with many threading dislocations
  • the part (wing part) above the mask part 5 has a threading dislocation density lower than that of the dislocation inheritance part. becomes a low-defect part YS where the defect is 1/10 or less.
  • a threading dislocation is a dislocation (defect) that extends in the nitride semiconductor portion 8 in its c-axis direction ( ⁇ 0001> direction).
  • the threading dislocation density of the low defect portion YS can be, for example, 5 ⁇ 10 6 [pieces/cm 2 ] or less.
  • the light emitting part is formed above the low defect part YS (so as to overlap the low defect part YS in plan view).
  • Department can be arranged.
  • the ratio (W1/d1) of the size W1 in the a-axis direction to the thickness d1 can be, for example, 2.0 or more. If the method of Example 1 is used, W1/d1 can be set to 1.5 or more, 2.0 or more, 4.0 or more, 5.0 or more, 7.0 or more, or 10.0 or more. By setting W1/d1 to 1.5 or more, the internal stress of the nitride semiconductor portion 8 is reduced, and the warpage of the semiconductor substrate 10 is reduced.
  • the nitride semiconductor section 8 (including the initial growth section 8p) shown in FIG. 24 can be a nitride semiconductor crystal (for example, a GaN crystal, an AlGaN crystal, an InGaN crystal, or an InAlGaN crystal).
  • a nitride semiconductor crystal for example, a GaN crystal, an AlGaN crystal, an InGaN crystal, or an InAlGaN crystal.
  • FIG. 25 is a cross-sectional view showing a method for manufacturing a semiconductor element according to Example 2.
  • FIG. 26 is a plan view showing a method for manufacturing a semiconductor element according to Example 2.
  • a step of forming a compound semiconductor section 9 and electrodes E1 and E2 on the semiconductor substrate 10 and a stacking process including the nitride semiconductor section 8, the compound semiconductor section 9, and the electrodes E1 and E2 are shown.
  • a step of bonding the body T1 to the support substrate SK via the bonding layers H1 and H2 a step of peeling off the base substrate BS, and a step of separating the support substrate SK into a plurality of supports ST and laminating them on the support ST.
  • the method includes a step of forming a semiconductor element SD in which the body T1 is held.
  • the mask portion 5 may be removed by wet etching or the like.
  • the semiconductor substrate 10 is cut along the edges of the first to third unit regions A1 to A3 of the template substrate TS, and the first unit A polygonal substrate P1 including a plurality of laminates T1 on an area A1, a polygonal substrate P2 including a plurality of laminates T2 on a second unit area A2, and a plurality of laminates T3 on a third unit area A3.
  • a polygonal substrate P3 including the polygonal substrate P3 may be formed.
  • the polygonal substrates P1 to P3 also have the same structure, which facilitates post-processing.
  • the nitride semiconductor portion 8 may be an n-type semiconductor crystal.
  • the compound semiconductor portion 9 may include a GaN-based semiconductor.
  • the compound semiconductor section 9 may include an active section (for example, an active layer such as a quantum well structure) and a p-type semiconductor section, or may include an n-type semiconductor section (for example, a regrowth layer, an n-type contact layer) under the active section. good.
  • the active part of the compound semiconductor part 9 includes a light emitting part
  • the light emitting part can be arranged above the low defect part YS (so as to overlap the low defect part YS in plan view). Thereby, luminous efficiency can be increased.
  • the electrode E1 located above the low defect portion YS may be an anode, and the electrode E2 may be a cathode.
  • the support substrate SK may have a conductive pad in contact with the bonding layer H1 and a conductive pad in contact with the bonding layer H2.
  • the bonding layers H1 and H2 may be formed of a solder material.
  • the elongated laminate T1 may be divided into a plurality of pieces (by cutting in the transverse direction).
  • the nitride semiconductor portion 8 and the compound semiconductor The dividing step may be performed by cleaving the portion 9 (for example, m-plane cleavage in which the cleavage plane is the m-plane).
  • end face coating formation of a reflective mirror film
  • the laminate T1 is transferred from the base substrate BS to the support substrate SK, but the present invention is not limited thereto. It may be transferred from the base substrate BS to a tape or the like one or more times.
  • the semiconductor element SD may function as an LED (light emitting diode) element or a semiconductor laser element.
  • the support ST may be a submount substrate.
  • Embodiment 2 includes electronic equipment (for example, a lighting device, a laser device, a display device, a measuring device, an information processing device, etc.) having the semiconductor element SD.
  • FIG. 27 is a cross-sectional view showing a configuration example of a semiconductor substrate according to this embodiment.
  • the upper part of the growth suppression region SP of the nitride semiconductor portion 8 (8F, 8S, 8T)
  • the low-defect portion (wing portion YS) located in the region may be grown so as to be separated from the growth suppression region SP.
  • the seed regions J J1, J2, J3 are located below the growth suppression region SP, but the present invention is not limited thereto.
  • the seed region J may be located flush with the growth suppression region SP, or may be located above it.

Abstract

半導体基板は、窒化物半導体結晶と格子定数の異なる結晶を含むベース基板を含み、成長抑制領域、第1方向を長手方向とする独立した第1シード領域、および第1方向とは異なる第2方向を長手方向とする独立した第2シード領域を有するテンプレート基板と、第1シード領域上から成長抑制領域の上方に至るように配された島状の第1窒化物半導体部と、第2シード領域上から成長抑制領域上の上方に至るように配された島状の第2窒化物半導体部とを備える。

Description

半導体基板、テンプレート基板、半導体基板の製造方法および製造装置
 本開示は、半導体基板等に関する。
 特許文献1には、ELO(Epitaxial Lateral Overgrowth)法を用いて、GaN系半導体層を、異種基板(例えば、サファイヤ基板)上に形成する手法が開示されている。
日本国特開2013-251304号公報
 本開示にかかる半導体基板は、窒化物半導体でない基板材料を含むベース基板を含み、成長抑制領域、第1方向を長手方向とする独立した第1シード領域、および前記第1方向とは異なる第2方向を長手方向とする独立した第2シード領域を含むテンプレート基板と、前記第1シード領域上から前記成長抑制領域の上方に至るように配された島状の第1窒化物半導体部と、前記第2シード領域上から前記成長抑制領域の上方に至るように配された島状の第2窒化物半導体部とを備える。
本実施形態に係る半導体基板の構成例を示す平面図である。 図1の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の構成例を示す断面図である。 本実施形態に係る半導体基板の構成例を示す断面図である。 本実施形態に係る半導体基板の構成例を示す断面図である。 本実施形態に係る半導体基板の別例を示す断面図である。 図2の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の別構成例を示す平面図である。 図6の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の別構成例を示す平面図である。 図8の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の別構成例を示す平面図である。 図10の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の別構成例を示す平面図である。 図12の一部を拡大して示す平面図である。 本実施形態に係る半導体基板の別構成例を示す平面図である。 図14の一部を拡大して示す平面図である。 本実施形態に係るテンプレート基板の構成例を示す平面図である。 図16の一部を拡大して示す平面図である。 本実施形態に係るテンプレート基板の構成例を示す断面図である。 本実施形態に係るテンプレート基板の構成例を示す断面図である。 本実施形態に係る半導体基板の製造方法を示すフローチャートである。 本実施形態に係る半導体基板の製造装置を示すブロック図である。 本実施形態に係る窒化物半導体形成装置の構成を示す模式図である。 ベース基板の構成例を示す断面図である。 実施例1にかかる半導体基板の製造方法を示す断面図である。 実施例2にかかる半導体素子の製造方法を示す断面図である。 実施例2にかかる半導体素子の製造方法を示す平面図である。 本実施形態に係る半導体基板の構成例を示す断面図である。
 〔半導体基板〕
 図1は、本実施形態に係る半導体基板の構成例を示す平面図である。図2は、図1の一部を拡大して示す平面図である。図3A~図3Cは、本実施形態に係る半導体基板の構成例を示す断面図である。図1、図2、図3A~図3Cに示すように、本実施形態に係る半導体基板10(半導体ウエハー)は、窒化物半導体でない基板材料を含むベース基板BSを含み、(i)成長抑制領域SP、(ii)第1方向D1を長手方向とする独立した第1シード領域J1、および(iii)第1方向D1とは異なる第2方向D2を長手方向とする独立した第2シード領域J2を含むテンプレート基板TSと、第1シード領域J1上から成長抑制領域SPの上方に至るように配された島状の第1窒化物半導体部8Fと、第2シード領域J2上から成長抑制領域SPの上方に至るように配された島状の第2窒化物半導体部8Sとを備えている。第1および第2方向D1・D2は、例えば、ベース基板BSに平行な平面上の異なる方向であり、この平面上において第1方向D1に直交する方向をY1、第2方向D2に直交する方向をY2とし、この平面の法線方向(第1および第2窒化物半導体部8F・8Sの厚み方向)をZとする。
 半導体基板10では、図3Aおよび図3Bに示すように、テンプレート基板TSが、ベース基板BS上に、マスク部5並びに第1開口部K1および第2開口部K2を有するマスクパターン6を有しており、マスク部5の上面が成長抑制領域SPであり、ベース基板BSの上面に、第1開口部K1と重なる第1シード領域J1と、第2開口部K2と重なる第2シード領域J2とが含まれていてもよい。以下では、第1および第2シード領域J1・J2を含む、シード領域の総称をシード領域J、第1および第2開口部K1・K2を含む、マスクパターン6の開口部の総称を開口部K、第1および第2窒化物半導体部8F・8Sを含む、窒化物半導体部の総称を窒化物半導体部8とする。マスクパターン6がマスク層、窒化物半導体部8が窒化物半導体層であってもよい。半導体基板10では、ベース基板BSから窒化物半導体部8への向きを「上向き」とする。半導体基板10の法線方向と平行な視線で対象物を視る(透視的な場合を含む)ことを「平面視」と呼ぶことがある。
 窒化物半導体部8は主材料として窒化物半導体を含む。窒化物半導体は、III-V族半導体であってよく、例えば、AlxGayInzN(0≦x≦1;0≦y≦1;0≦z≦1;x+y+z=1)と表すことができる。窒化物半導体の具体例として、GaN系半導体、AlN(窒化アルミニウム)、InAlN(窒化インジウムアルミニウム)、InN(窒化インジウム)を挙げることができる。GaN系半導体とは、ガリウム原子(Ga)および窒素原子(N)を含む半導体であり、典型的な例として、GaN、AlGaN、AlGaInN、InGaNを挙げることができる。
 窒化物半導体部8は、ドープ型(例えば、ドナーを含むn型)でもノンドープ型でもよい。半導体基板とは、窒化物半導体を含む基板という意味であり、ベース基板BSが窒化物半導体でない半導体(例えば、シリコン、炭化シリコン等)あるいは非半導体を含んでいてもよい。ベース基板BSおよびマスクパターン6を含めてテンプレート基板TSと呼ぶことがある。
 第1窒化物半導体部8Fは、第1シード領域J1(第1開口部K1下に露出したベース基板BSの上面)を起点として、ELO(Epitaxial Lateral Overgrowth)法によって形成することができる。第1方向D1は、第1窒化物半導体部8Fのm軸方向(<1-100>方向)であってもよい。第1シード領域J1の幅方向(第1方向D1に直交する方向Y1)は第1窒化物半導体部8Fのa軸方向(<11-20>方向)であってもよい。第1窒化物半導体部8Fの厚み方向Zはc軸方向(<0001>方向)であってもよい。
 第2窒化物半導体部8Sは、第2シード領域J2(第1開口部K1下に露出したベース基板BSの上面)を起点として、ELO法によって形成することができる。第2方向D2は、第2窒化物半導体部8Sのm軸方向(<1-100>方向)であってもよい。第2シード領域J2の幅方向(第2方向D2に直交する方向Y2)は第2窒化物半導体部8Sのa軸方向(<11-20>方向)であってもよい。第2窒化物半導体部8Sの厚み方向Zはc軸方向(<0001>方向)であってもよい。
 窒化物半導体部8(8F・8S)のうち、シード領域Jの上方に位置する部分は、貫通転位が多い転位継承部となり、成長抑制領域SPの上方に位置する部分(マスク部5上のウイング部)は、転位継承部と比較して貫通転位密度が小さい低欠陥部YSとなる。
 図1~図2に示すように、第1および第2シード領域J1・J2の長手方向を異ならせることで、第1および第2窒化物半導体部8F・8Sの延伸方向が異なることとなり、窒化物半導体部8およびベース基板BSの熱膨張係数の差異に起因する半導体基板10の反りを低減することができる。ベース基板BSに含まれる基板材料(非窒化物半導体)が、窒化物半導体(例えば、GaN)よりも熱膨張係数が小さくてもよい。
 第1および第2窒化物半導体部8F・8Sそれぞれが六方晶の結晶体であり、第1方向D1および第2方向D2のなす鋭角が60度であってもよい。
 テンプレート基板TSは、第1シード領域J1を含む、第1方向D1を長手方向とする独立した複数のシード領域Jが配置された1個以上の第1単位領域A1と、第2シード領域J2を含む、第2方向D2を長手方向とする独立した複数のシード領域Jが配置された1個以上の第2単位領域A2とを有していてもよい。
 テンプレート基板TSにおいては、図1に示すように、複数の第1単位領域A1が面内に分散配置され、複数の第2単位領域A2が面内に分散配置されていてもよい。複数の第1単位領域A1および複数の第2単位領域A2を、第1単位領域A1同士は隣り合わず、第2単位領域A2同士は隣り合わないように配置してもよい。複数の第1単位領域A1および複数の第2単位領域A2それぞれが同一の形状であってもよい。
 テンプレート基板TSは、第1方向D1および第2方向D2とは異なる第3方向D3を長手形状とする独立した第3シード領域J3を含み、第3シード領域J3上から成長抑制領域SP上に至るように島状の第3窒化物半導体部8Tが配されていてもよい。図3Cに示すように、マスクパターン6が、第3方向D3を長手形状とする独立した第3開口部K3を含み、ベース基板BSの上面に、第3開口部K3と重なる第3シード領域J3が含まれていてもよい。なお、第3方向D3は、ベース基板BSに平行な平面上における第1および第2方向D1・D2とは異なる方向であり、この平面上において第3方向D3に直交する方向をY3とする。
 第3窒化物半導体部8Tが六方晶の結晶体であり、第1方向D1および第3方向D3のなす鋭角が60度であってもよい。
 テンプレート基板TSは、第3シード領域J3を含む、第3方向D3を長手形状とする独立した複数の開口部が配置された1個以上の第3単位領域A3を有していてもよい。テンプレート基板TSにおいては、複数の第3単位領域A3が面内に分散配置されていてもよい。この場合、第3単位領域A3同士は隣り合わないように配置してもよい。
 半導体基板10では、異種基板(窒化物半導体でない基板材料を含む主基板)を有するテンプレート基板TSに、長手形状の複数のシード領域Jが、長手方向が基板面内で揃わず(単一方向とならず)、かつ互いに交わらないように形成されており、シード領域Jから横方向成長した窒化物半導体部8が島状に独立していてもよい。シード領域Jの長手方向が単一方向であって単一方向に大きな反りが生じる場合と比較して、基板反りが複数方向に分散さることで反りの絶対値が小さくなる。また、複数方向の反りになることで、ベース基板BSの歪み緩和層構造による反り低減が効果的になる。複数のシード領域Jが交わる場合は、交わり部分から成長した半導体結晶に異常成長(例えば、角状の盛り上り)が生じることがあるが、各シード領域Jを独立した形状とすることで、このような異常成長を回避することができる。
 第1および第2窒化物半導体部8F・8Sそれぞれの端部が先細り形状であってもよい。窒化物半導体結晶(例えば、GaN)のELOにおいては、a軸方向が成長方向、m軸方向が安定方向(非成長方向)であって、窒化物半導体結晶の両端からm面が広がっていく。このため、窒化物半導体結晶のa面が出ている間にELOを止めて得られる窒化物半導体部8は先細り形状となる。
 図4は、本実施形態の別の半導体基板の構成を示す断面図である。図4に示すように、テンプレート基板TSにおいては、マスクパターン6を覆うようにバッファ部2を設けてもよい。バッファ部2には、反応性の高いAlGaN膜を用いることができる。この場合、バッファ部2(AlGaN膜)の上面は、平面視でマスク部5と重なる成長抑制領域SPと、平面視で開口部Kと重なるシード領域Jとを含む。バッファ部2の上面(AlGaN膜表面)においては、マスク部5の上方に位置する領域は結晶性が低く、したがって成長抑制領域SPとして機能する。一方、開口部Kの上方(ベース基板BSの露出部の上方)に位置する領域は結晶性が高く、したがってシード領域Jとして機能する。
 図5は、図2の一部を拡大して示す平面図である。図2および図5に示すように、複数の第1単位領域A1、複数の第2単位領域A2および複数の第3単位領域A3それぞれの形状が正六角形であり、第1単位領域A1の隣り合う2辺の一方が第2単位領域A2の一辺と対向し、他方が第3単位領域A3の一辺と対向し、第1方向D1は、第1単位領域A1の一対の向かい合う辺に直交し、第1方向D1および第2方向D2がなす鋭角、並びに第1方向D1および第3方向D3がなす鋭角それぞれが60°であってもよい。
 第1単位領域A1に、第1シード領域J1を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成され、第2単位領域A2に、第2シード領域J2を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成され、第3単位領域A3に、第3シード領域J3を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成されてもよい。
 第1単位領域A1上には、第1窒化物半導体部8Fを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成され、第2単位領域A2上には、第2窒化物半導体部8Sを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成され、第3単位領域A3上には、第3窒化物半導体部8Tを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成されてもよい。この場合、同じ延伸方向かつ同じ長さの窒化物半導体部8を多く形成することができるため、窒化物半導体部8を用いた半導体素子の量産性に優れている。
 図6は、本実施形態に係る半導体基板の別構成例を示す平面図である。図7は、図6の一部を拡大して示す平面図である。図6および図7に示すように、複数の第1単位領域A1、複数の第2単位領域A2および複数の第3単位領域A3それぞれの形状が正六角形であり、第1単位領域A1の隣り合う2辺の一方が第2単位領域A2の一辺と対向し、他方が第3単位領域A3の一辺と対向し、第1方向D1は、第1単位領域A1の一対の向かい合う辺に平行であり、第1方向D1および第2方向D2がなす鋭角、並びに第1方向D1および第3方向D3がなす鋭角それぞれが60°であってもよい。
 第1単位領域A1に、第1シード領域J1を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成され、第2単位領域A2に、第2シード領域J2を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成され、第3単位領域A3に、第3シード領域J3を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成されてもよい。
 第1単位領域A1上には、第1窒化物半導体部8Fを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成され、第2単位領域A2上に、第2窒化物半導体部8Sを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成され、第3単位領域A3上に、第3窒化物半導体部8Tを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成されていてもよい。この場合、各単位領域のエッジ近傍まで無駄なく窒化物半導体結晶を成長させることができ、結晶収率を高めることができる。また、単位領域の中央部に長い窒化物半導体部8を形成することができる。
 図8は、本実施形態に係る半導体基板の別構成例を示す平面図である。図9は、図8の一部を拡大して示す平面図である。図8および図9に示すように、複数の第1単位領域A1、複数の第2単位領域A2および複数の第3単位領域A3それぞれの形状が正三角形であり、第1単位領域A1の隣り合う2辺の一方が第2単位領域A2の一辺と対向し、他方が第3単位領域A3の一辺と対向し、第1方向D1は、第1単位領域A1の隣り合う2辺によって挟まれる角を二等分する方向に平行であり、第1方向D1および第2方向D2がなす鋭角、並びに第1方向D1および第3方向D3がなす鋭角それぞれが60°であってもよい。
 第1単位領域A1に、第1シード領域J1を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成され、第2単位領域A2に、第2シード領域J2を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成され、第3単位領域A3に、第3シード領域J3を含む、同じ延伸方向かつ複数種の長さの複数のシード領域Jが形成されてもよい。
 第1単位領域A1上には、第1窒化物半導体部8Fを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成され、第2単位領域A2上には、第2窒化物半導体部8Sを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成され、第3単位領域A3上には、第3窒化物半導体部8Tを含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部8が形成されていてもよい。
 図10は、本実施形態に係る半導体基板の別構成例を示す平面図である。図11は、図10の一部を拡大して示す平面図である。図10および図11に示すように、複数の第1単位領域A1、複数の第2単位領域A2および複数の第3単位領域A3それぞれの形状が正方形であり、第1単位領域A1の向かい合う2辺の一方が第2単位領域A2の一辺と対向し、他方が第3単位領域A3の一辺と対向し、第1方向D1は、第1単位領域A1の向かい合う2辺に平行であり、第1方向D1および第2方向D2がなす鋭角、並びに第1方向D1および第3方向D3がなす鋭角それぞれが60°であってもよい。
 第1単位領域A1に、第1シード領域J1を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成され、第2単位領域A2に、第2シード領域J2を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成され、第3単位領域A3に、第3シード領域J3を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成されてもよい。
 第1単位領域A1上には、第1窒化物半導体部8Fを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成され、第2単位領域A2上には、第2窒化物半導体部8Sを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成され、第3単位領域A3上には、第3窒化物半導体部8Tを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成されていてもよい。
 図12は、本実施形態に係る半導体基板の別構成例を示す平面図である。図13は、図12の一部を拡大して示す平面図である。図12および図13に示すように、複数の第1単位領域A1および複数の第2単位領域A2それぞれの形状が正方形であり、第1単位領域A1の向かい合う2辺の一方が第2単位領域A2の一辺と対向し、第1方向D1は、第1単位領域A1の向かい合う2辺に平行であり、第1方向D1および第2方向D2がなす角が90°であってもよい。
 第1単位領域A1に、第1シード領域J1を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成され、第2単位領域A2に、第2シード領域J2を含む、同じ延伸方向かつ同じ長さの複数のシード領域Jが形成されてもよい。
 第1単位領域A1上には、第1窒化物半導体部8Fを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成され、第2単位領域A2上には、第2窒化物半導体部8Sを含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部8が形成されてもよい。
 図14は、本実施形態に係る半導体基板の別構成例を示す平面図である。図15は、図14の一部を拡大して示す平面図である。図14および図15に示すように、マスクパターン6は、第1シード領域J1および第2シード領域J2が配置された1個以上の単位領域ASを有し、第1シード領域J1上から成長抑制領域SP上に至るように島状の第1窒化物半導体部8Fが配され、第2シード領域J2上から成長抑制領域SP上に至るように島状の第2窒化物半導体部8Sが位置していてもよい。テンプレート基板TSにおいては、複数の単位領域ASが面内にマトリクス配置されていてもよい。
 単位領域ASに、第1方向D1および第2方向D2とは異なる第3方向D3を長手形状とする独立した第3シード領域J3が配置されていてもよく、第3シード領域J3上から成長抑制領域SP上に至るように島状の第3窒化物半導体部8Tが配されていてもよい。第1方向D1および第2方向D2がなす鋭角、並びに第1方向D1および第3方向D3がなす鋭角それぞれが60°であってもよい。
 単位領域ASに、第1シード領域J1を含む、第1方向D1に延伸する複数の同サイズのシード領域Jと、第2シード領域J2を含む、第2方向D2に延伸する複数の同サイズのシード領域Jと、第3シード領域J3を含む、第3方向D3に延伸する複数の同サイズの開口部とが形成されていてもよい。
 単位領域AS上には、第1窒化物半導体部8Fを含む、第1方向D1に延伸する複数の同サイズの窒化物半導体部8と、第2窒化物半導体部8Sを含む、第2方向D2に延伸する複数の同サイズの窒化物半導体部8と、第3窒化物半導体部8Tを含む、第3方向D3に延伸する複数の同サイズの窒化物半導体部8とが形成されていてもよい。
 〔テンプレート基板〕
 図16は、本実施形態に係るテンプレート基板の構成例を示す平面図である。図17は、図16の一部を拡大して示す平面図である。図18および図19は、本実施形態に係るテンプレート基板の構成例を示す断面図である。図16~図19に示すように、本実施形態に係るテンプレート基板TSは、ベース基板BSを含み、成長抑制領域SP、第1方向D1を長手方向とする独立した第1シード領域J1、および第1方向D1とは異なる第2方向D2を長手方向とする独立した第2シード領域J2を含むマスクパターン6とを備える。第1および第2方向D1・D2は、例えば、ベース基板BSに平行な平面上の異なる方向であり、この平面上において第1方向D1に直交する方向をY1、第2方向D2に直交する方向をY2とし、この平面の法線方向をZとする。テンプレート基板TSが、ベース基板BS上に、マスク部5並びに第1開口部K1および第2開口部K2を有するマスクパターン6を有しており、マスク部5の上面が成長抑制領域SPであり、ベース基板BSの上面に、第1開口部K1と重なる第1シード領域J1と、第2開口部K2と重なる第2シード領域J2とが含まれていてもよい。
 テンプレート基板TSは、第1シード領域J1を含む、第1方向D1を長手方向とする独立した複数のシード領域Jが配置された1個以上の第1単位領域A1と、第2シード領域J2を含む、第2方向D2を長手方向とする独立した複数のシード領域Jが配置された1個以上の第2単位領域A2とを有していてもよい。テンプレート基板TSにおいては、図16に示すように、複数の第1単位領域A1が面内に分散配置され、複数の第2単位領域A2が面内に分散配置されていてもよい。複数の第1単位領域A1および複数の第2単位領域A2を、第1単位領域A1同士は隣り合わず、第2単位領域A2同士は隣り合わないように配置してもよい。
 テンプレート基板TSは、第1方向D1および第2方向D2とは異なる第3方向D3を長手形状とする独立した第3シード領域J3を含んでいてもよい。マスクパターン6が、第3方向D3を長手形状とする独立した第3開口部K3を含み、ベース基板BSの上面に、第3開口部K3と重なる第3シード領域J3が含まれていてもよい。
 複数の第1単位領域A1および複数の第2単位領域A2それぞれが同一の形状であってもよい。テンプレート基板TSは、第3シード領域J3を含む、第3方向D3を長手形状とする独立した複数のシード領域Jが配置された1個以上の第3単位領域A3を有していてもよい。テンプレート基板TSにおいては、複数の第3単位領域A3が面内に分散配置されていてもよい。この場合、第3単位領域A3同士は隣り合わないように配置してもよい。
 〔製造方法および製造装置〕
 図20は、本実施形態に係る半導体基板の製造方法を示すフローチャートである。図20に示すように、本実施形態に係る半導体基板の製造方法は、テンプレート基板TSを準備する工程と、基板法線を回転軸として回転するテンプレート基板TSに窒化物半導体の原料を供給する工程とを含む。
 図21は、本実施形態に係る半導体基板の製造装置を示すブロック図である。図21に示すように、本実施形態に係る半導体基板の製造方法は、テンプレート基板TSを準備する装置M1と、基板法線を回転軸として回転するテンプレート基板TSに窒化物半導体の原料を供給する装置M2(窒化物半導体形成装置)とを含む。
 図22は、本実施形態に係る窒化物半導体形成装置の構成を示す模式図である。図22に示すように、半導体基板の製造装置20は、ベース基板BSを含み、成長抑制領域SPおよびシード領域Jを有するテンプレート基板TSを載置するステージ21と、テンプレート基板TS上に窒化物半導体部8を成長させるための原料を供給する原料供給装置22と、原料供給装置22を制御する制御装置24とを含む。半導体基板の製造装置20に、ステージSGを含むチャンバー25と、チャンバー25を通るフローチャネル27と、チャンバー25を加熱する加熱装置26が設けられ、半導体基板10がフローチャネル27内に配されてもよい。
 ステージ21が回転動作(テンプレート基板TSの法線方向の軸を回転軸とする)を行ってもよい。図21では、原料供給装置22が、フローチャネル27内に原料ガスを横向き(テンプレート基板上面に平行な方向)に流し、横向きの排気としているが、これに限定されない。原料ガスを縦向き(テンプレート基板TSの法線方向)に流してもよい。
 〔実施例1〕
 (ベース基板)
 図23は、ベース基板の構成例を示す断面図である。ベース基板BSは、窒化物半導体部8と格子定数の異なる異種基板である主基板1を有してもよい。窒化物半導体部8がGaN系半導体を含み、異種基板である主基板1がシリコン基板であってもよい。異種基板としては、シリコン基板のほかに、サファイア(Al)基板、シリコンカーバイド(SiC)基板等を挙げることができる。主基板1の面方位は、例えば、シリコン基板の(111)面、サファイア基板の(0001)面、SiC基板の6H-SiC(0001)面である。これらは例示であって、窒化物半導体部8をELO法で成長させることができる基板および面方位であれば何でもよい。
 ベース基板BSが、主基板1と主基板1上の下地部4とを含み、窒化物半導体部8は、開口部Kに露出する下地部4の上面(シード領域J)から成長してもよい。下地部4は、GaN系半導体を含んでもよい。下地部4は、バッファ部2およびシード部3の少なくとも一方を含んでもよい。バッファ部2としては、GaN系半導体、AlN、SiC等を用いることができる。シード部3としては、窒化物半導体(例えば、GaN系半導体、AlN)を用いることができる。ベース基板BSが、SiC等の自立型単結晶基板(例えば、バルク結晶から切り出されたウェハ)で構成され、単結晶基板上にマスクパターン6が配されていてもよい。下地部4は、主基板1上に全面形成しなくてもよく、平面視で開口部Kと重なる(開口部Kから下地部4が露出する)ように局所的に設けてもよい。
 (マスクパターン)
 マスクパターン6は、マスク部5および開口部Kを含む。開口部Kはシード領域Jを露出させ、窒化物半導体部8の成長を開始させる、成長開始用ホールとして機能し、マスク部5は、窒化物半導体部8を横方向成長させるための選択成長マスク(堆積抑制マスク)として機能していてもよい。マスク部5として、例えば、シリコン酸化膜(SiOx)、窒化チタン膜(TiN等)、シリコン窒化膜(SiNx)、シリコン酸窒化膜(SiON)、および高融点(例えば1000度以上)をもつ金属膜のいずれか1つを含む単層膜、またはこれらの少なくとも2つを含む積層膜を用いることができる。シリコン基板、窒化シリコン基板等を熱酸化処理を施して得られる熱酸化膜をマスク部5として用いてもよい。
 マスク部5として、シリコン酸化膜およびシリコン窒化膜をこの順に形成した積層膜を用いることができる。成膜条件によっては、窒化物半導体部8およびマスク部5が反応し固着することがあるので、窒化物半導体部8に接する上層膜はシリコン窒化膜としてもよい。また、局所的にシード部3を形成するプロセスでは、支持基板1上の膜(下層の膜)を除去する場合があり、支持基板1上の膜を完全に除去することが容易なシリコン酸化膜を下層の膜に用いることも、プロセスの歩留まりを向上させる効果がある。
 (窒化物半導体部の成膜)
 図24は、実施例1にかかる半導体基板の製造方法を示す断面図である。実施例1では、窒化物半導体部8をGaN層とし、図21の装置M2(窒化物半導体形成装置)の一例であるMOCVD装置を用いてテンプレート基板TS上にELO成膜を行った。ELO成膜条件の一例として、基板温度:1120℃、成長圧力:50kPa、TMG(トリメチルガリウム):22sccm、NH:15slm、V/III=6000(III族原料の供給量に対する、V族原料の供給量の比)を採用することができる。
 初期成長部8pは、窒化物半導体部8の横方向成長の起点となる。初期成長層8pは、例えば、30nm~1000nmあるいは50nm~400nm、または70nm~350nmの厚さに形成することができる。初期成長部8pがマスク部5からわずかに突出している状態から横方向成長させることで、窒化物半導体部8のc軸方向(厚み方向)への成長を抑え、窒化物半導体部8を高速にかつ高結晶性をもって横方向成長させることができ、消費原料も低減する。これにより、薄く広く低欠陥の窒化物半導体部8(GaN等の窒化物半導体の結晶体)を低コストで形成することができる。
 隣り合う2つの開口部Kから逆向きに横方向成長した窒化物半導体部8同士がマスク部5上で接触(会合)せず、ギャップ(間隙)GPをもつことで、窒化物半導体部8の内部応力を低減することができる。これにより、窒化物半導体部8に生じるクラック、欠陥(転位)を低減することができる。この効果は、主基板1が異種基板である場合に特に効果的となる。ギャップGPの幅は、例えば、10μm以下、5μm以下、3μm以下、または2μm以下とすることができる。
 窒化物半導体部8のうち、初期成長部8p上に位置する部分は、貫通転位が多い転位継承部となり、マスク部5上の部分(ウイング部)は、転位継承部と比較して貫通転位密度が1/10以下である低欠陥部YSとなる。貫通転位とは、窒化物半導体部8中を、そのc軸方向(<0001>方向)に延びる転位(欠陥)である。低欠陥部YSの貫通転位密度は、例えば、5×10〔個/cm〕以下とすることができる。後述のように、窒化物半導体部8の上方に発光部を含む活性部(活性層)を形成する場合は、低欠陥部YSの上方に(平面視で低欠陥部YSを重なるように)発光部を配することができる。
 低欠陥部YSについては、厚みd1に対するa軸方向のサイズW1の比(W1/d1)を、例えば2.0以上とすることができる。実施例1の手法を用いれば、W1/d1を、1.5以上、2.0以上、4.0以上、5.0以上、7.0以上、あるいは10.0以上とすることができる。W1/d1を、1.5以上とすることで、窒化物半導体部8の内部応力が低減し、半導体基板10の反りが低減する。
 窒化物半導体部8のアスペクト比(厚みに対するX方向のサイズの比=WL/d1)は、3.5以上、5.0以上、6.0以上、8.0以上、10以上、15以上、20以上、30以上、あるいは50以上とすることができる。また、実施例1の手法を用いれば、開口部Kの幅WKに対する窒化物半導体部8のX方向のサイズWLの比(WL/WK)を、3.5以上、5.0以上、6.0以上、8.0以上、10以上、15以上、20以上、30以上、あるいは50以上とすることができ、低欠陥部の比率を高めることができる。図24に示す窒化物半導体部8(初期成長部8pを含む)は、窒化物半導体結晶(例えば、GaN結晶、AlGaN結晶、InGaN結晶、あるいはInAlGaN結晶)とすることができる。
 〔実施例2〕
 図25は、実施例2にかかる半導体素子の製造方法を示す断面図である。図26は、実施例2にかかる半導体素子の製造方法を示す平面図である。図25では、半導体基板10を準備した後に、半導体基板10上に化合物半導体部9および電極E1・E2を形成する工程と、窒化物半導体部8、化合物半導体部9および電極E1・E2を含む積層体T1を、接合層H1・H2を介して支持基板SKに接合する工程と、ベース基板BSを剥離する工程と、支持基板SKを複数の支持体STに個片化し、支持体ST上に積層体T1が保持された半導体素子SDを形成する工程とを含む。ベース基板BSを剥離する前に、ウェットエッチング等によりマスク部5を除去してもよい。図26のように、化合物半導体部9および電極E1・E2を形成した後に、半導体基板10を、テンプレート基板TSの第1~第3単位領域A1~A3のエッジに沿ってカットし、第1単位領域A1上の複数の積層体T1を含む多角形基板P1と、第2単位領域A2上の複数の積層体T2を含む多角形基板P2と、第3単位領域A3上の複数の積層体T3を含む多角形基板P3とを形成してもよい。第1~第3単位領域A1~A3が同一形状である場合は多角形基板P1~P3も同一構造となるため、後工程が容易になる。
 窒化物半導体部8がn型半導体結晶であってもよい。化合物半導体部9がGaN系半導体を含んでいてもよい。化合物半導体部9は、活性部(例えば、量子井戸構造等の活性層)およびp型半導体部を含んでもよく、活性部下にn型半導体部(例えば、リグロース層、n型コンタクト層)を含んでもよい。化合物半導体部9の活性部が発光部を含む場合は、低欠陥部YSの上方に(平面視で低欠陥部YSを重なるように)発光部を配することができる。これにより、発光効率を高めることができる。
 低欠陥部YSの上方に位置する電極E1がアノード、電極E2がカソードであってもよい。支持基板SKが、接合層H1と接する導電パッドおよび接合層H2と接する導電パッドを有していてもよい。接合層H1・H2がはんだ材で形成されていてもよい。支持基板SKへの接合前あるいは接合時または接合後に、長手形状の積層体T1を(短手方向の切断によって)複数に分割しておいてもよく、この場合、窒化物半導体部8および化合物半導体部9に対する劈開(例えば、劈開面がm面となるm面劈開)によって分割工程を行ってもよい。半導体レーザ素子とする場合は、劈開面であるm面に端面コート(反射鏡膜の形成)を行ってもよい。図25では積層体T1を、ベース基板BSから支持基板SKに転写しているが、これに限定されない。ベース基板BSからテープ等に1回以上転写してもよい。
 半導体素子SDは、LED(発光ダイオード)素子、半導体レーザ素子として機能してもよい。支持体STがサブマウント基板でもよい。実施例2には、半導体素子SDを有する電子機器(例えば、照明装置、レーザ装置、表示装置、測定装置、情報処理装置等)が含まれる。
 図27は、本実施形態に係る半導体基板の構成例を示す断面図である。図1および図27に示すように、第1単位領域A1、第2単位領域A2および第3単位領域A3それぞれにおいて、窒化物半導体部8(8F・8S・8T)のうち成長抑制領域SPの上方にある低欠陥部(ウィング部YS)を、成長抑制領域SPから離隔するように成長させてもよい。このように、ウィング部YSが空隙Qを介して成長抑制領域SPと向かい合うように成長させることで、窒化物半導体部8の応力の影響がより低減し、窒化物半導体部8を含む半導体基板10の反りをさらに低減することができる。図27では、シード領域J(J1・J2・J3)が成長抑制領域SPに対して下側となる位置にあるがこれに限定されない。シード領域Jは、成長抑制領域SPに対して面一となる位置にあってもよく、上側となる位置にあってもよい。
 (附記事項)
 以上の開示は例示および説明を目的とするものであり、限定を目的とするものではない。これら例示および説明に基づけば、多くの変形形態が当業者にとって自明となるのであるから、これら変形形態も実施形態に含まれることに留意されたい。
 1 主基板
 5 マスク部
 6 マスクパターン
 SP 成長抑制領域
 8F 第1窒化物半導体部
 8S 第2窒化物半導体部
 8T 第3窒化物半導体部
 10 半導体基板
 20 半導体基板の製造装置
 BS ベース基板
 TS テンプレート基板
 A1 第1単位領域
 A2 第2単位領域
 A3 第3単位領域
 D1 第1方向
 D2 第2方向
 D3 第3方向
 J1 第1シード領域
 J2 第2シード領域
 J3 第3シード領域
 K1 第1開口部
 K2 第2開口部
 K3 第3開口部
 YS 低欠陥部

Claims (26)

  1.  窒化物半導体でない基板材料を含むベース基板を含み、成長抑制領域、第1方向を長手方向とする独立した第1シード領域、および前記第1方向とは異なる第2方向を長手方向とする独立した第2シード領域を含むテンプレート基板と、
     前記第1シード領域上から前記成長抑制領域の上方に至るように配された島状の第1窒化物半導体部と、
     前記第2シード領域上から前記成長抑制領域の上方に至るように配された島状の第2窒化物半導体部とを備える、半導体基板。
  2.  前記テンプレート基板は、前記第1方向および前記第2方向とは異なる第3方向を長手形状とする独立した第3シード領域を含み、
     前記第3シード領域上から前記成長抑制領域の上方に至るように、島状の第3窒化物半導体部が配されている、請求項1に記載の半導体基板。
  3.  前記第1窒化物半導体部および第2窒化物半導体部それぞれが六方晶の結晶体であり、
     前記第1方向および前記第2方向のなす鋭角が60度である、請求項1または2に記載の半導体基板。
  4.  前記第3窒化物半導体部が六方晶の結晶体であり、
     前記第1方向および前記第3方向のなす鋭角が60度である、請求項2に記載の半導体基板。
  5.  前記テンプレート基板は、前記第1シード領域を含む、第1方向を長手方向とする独立した複数のシード領域が配置された1個以上の第1単位領域と、前記第2シード領域を含む、第2方向を長手方向とする独立した複数のシード領域が配置された1個以上の第2単位領域とを有する、請求項1~4のいずれか1項に記載の半導体基板。
  6.  前記テンプレート基板においては、複数の第1単位領域が面内に分散配置され、複数の第2単位領域が面内に分散配置されている、請求項5に記載の半導体基板。
  7.  第1単位領域同士は隣り合わず、前記第2単位領域同士は隣り合わない、請求項6に記載の半導体基板。
  8.  前記複数の第1単位領域および前記複数の第2単位領域それぞれが同一の形状である、請求項6または7に記載の半導体基板。
  9.  前記テンプレート基板は、前記第1方向および前記第2方向とは異なる第3方向を長手形状とする独立した複数のシード領域が配置された1個以上の第3単位領域を有する、請求項5~8のいずれか1項に記載の半導体基板。
  10.  前記テンプレート基板においては、複数の第3単位領域が面内に分散配置されている、請求項9に記載の半導体基板。
  11.  前記形状が、正三角形、正方形および正六角形のいずれか1つである、請求項8に記載の半導体基板。
  12.  前記形状が正六角形であり、前記第1単位領域の一辺と前記第2単位領域の一辺とが対向し、
     前記第1方向は、前記第1単位領域の一対の向かい合う辺と直交し、前記第1方向および前記第2方向のなす鋭角が60°であり、
     前記第1単位領域に、前記第1シード領域を含む、同じ延伸方向かつ同じ長さの複数のシード領域が形成され、前記第2単位領域に、前記第2シード領域を含む、同じ延伸方向かつ同じ長さの複数のシード領域が形成され、
     前記第1単位領域の上方には、第1窒化物半導体部を含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部が形成され、前記第2単位領域の上方には、第2窒化物半導体部を含む、同じ延伸方向かつ同じ長さの複数の窒化物半導体部が形成されている、請求項11に記載の半導体基板。
  13.  前記形状が正六角形であり、前記第1単位領域の一辺と前記第2単位領域の一辺とが対向し、
     前記第1方向は、前記第1単位領域の一対の向かい合う辺と平行であり、前記第1方向および前記第2方向がなす鋭角が60°であり、
     前記第1単位領域に、前記第1シード領域を含む、同じ延伸方向かつ複数種の長さの複数のシード領域が形成され、前記第2単位領域に、前記第2シード領域を含む、同じ延伸方向かつ複数種の長さの複数のシード領域が形成され、
     前記第1単位領域の上方には、第1窒化物半導体部を含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部が形成され、前記第2単位領域の上方には、第2窒化物半導体部を含む、同じ延伸方向かつ複数種の長さの複数の窒化物半導体部が形成されている、請求項11に記載の半導体基板。
  14.  前記テンプレート基板は、前記第1シード領域および前記第2シード領域が配置された1個以上の単位領域を有する、請求項1に記載の半導体基板。
  15.  前記テンプレート基板においては、複数の単位領域が面内にマトリクス配置されている、請求項14に記載の半導体基板。
  16.  各単位領域に、前記第1方向および前記第2方向とは異なる第3方向を長手形状とする独立した第3シード領域が配置されている、請求項14に記載の半導体基板。
  17.  前記第1方向は、前記第1窒化物半導体部の<1-100>方向であり、
     前記第2方向は、前記第2窒化物半導体部の<1-100>方向である、請求項1に記載の半導体基板。
  18.  前記第3方向は、前記第3窒化物半導体部の<1-100>方向である、請求項2に記載の半導体基板。
  19.  前記第1窒化物半導体部および第2窒化物半導体部それぞれの端部が先細り形状である、請求項1~18のいずれか1項に記載の半導体基板。
  20.  前記基板材料がシリコンまたは炭化シリコンである、請求項1に記載の半導体基板。
  21.  前記第1窒化物半導体部および第2窒化物半導体部がGaN系半導体を含む、請求項1~20のいずれか1項に記載の半導体基板。
  22.  前記ベース基板が円盤状である、請求項1~21のいずれか1項に記載の半導体基板。
  23.  前記テンプレート基板は、マスク部と、前記第1方向を長手方向とする独立した第1開口部と、前記第2方向を長手方向とする独立した第2開口部とを含むマスクパターンを有し、
     前記マスク部の上面が前記成長抑制領域であり、
     前記ベース基板の上面に、前記第1開口部と重なる前記第1シード領域と、前記第2開口部と重なる前記第2シード領域とが含まれる、請求項1~22のいずれか1項に記載の半導体基板。
  24.  窒化物半導体でない基板材料を含むベース基板を備え、成長抑制領域、第1方向を長手方向とする独立した第1シード領域、および前記第1方向とは異なる第2方向を長手方向とする独立した第2シード領域を有する、テンプレート基板。
  25.  窒化物半導体でない基板材料を含むベース基板を含み、成長抑制領域、第1方向を長手方向とする独立した第1シード領域、および前記第1方向とは異なる第2方向を長手方向とする独立した第2シード領域を有するテンプレート基板を準備する工程と、
     基板法線を回転軸として回転する前記テンプレート基板に、窒化物半導体の原料を供給する工程とを含む、半導体基板の製造方法。
  26.  請求項25に記載の各工程を行う、半導体基板の製造装置。
PCT/JP2023/011064 2022-03-28 2023-03-22 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置 WO2023189872A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052494 2022-03-28
JP2022052494 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189872A1 true WO2023189872A1 (ja) 2023-10-05

Family

ID=88201234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011064 WO2023189872A1 (ja) 2022-03-28 2023-03-22 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置

Country Status (2)

Country Link
TW (1) TW202403126A (ja)
WO (1) WO2023189872A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066390A (ja) * 2009-08-20 2011-03-31 Pawdec:Kk 半導体素子の製造方法
WO2013021606A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
JP2013251304A (ja) * 2012-05-30 2013-12-12 Furukawa Co Ltd 積層体および積層体の製造方法
US10847625B1 (en) * 2019-11-19 2020-11-24 Opnovix Corp. Indium-gallium-nitride structures and devices
JP2020200235A (ja) * 2020-09-03 2020-12-17 三菱ケミカル株式会社 C面GaN基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066390A (ja) * 2009-08-20 2011-03-31 Pawdec:Kk 半導体素子の製造方法
WO2013021606A1 (ja) * 2011-08-09 2013-02-14 パナソニック株式会社 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
JP2013251304A (ja) * 2012-05-30 2013-12-12 Furukawa Co Ltd 積層体および積層体の製造方法
US10847625B1 (en) * 2019-11-19 2020-11-24 Opnovix Corp. Indium-gallium-nitride structures and devices
JP2020200235A (ja) * 2020-09-03 2020-12-17 三菱ケミカル株式会社 C面GaN基板

Also Published As

Publication number Publication date
TW202403126A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US11508620B2 (en) Method of removing a substrate with a cleaving technique
US20240079856A1 (en) Method of fabricating a resonant cavity and distributed bragg reflector mirrors for a vertical cavity surface emitting laser on a wing of an epitaxial lateral overgrowth region
WO2022145454A1 (ja) 半導体基板、半導体デバイス、電子機器
EP4300605A1 (en) Semiconductor substrate, method for producing same, apparatus for producing same, and template substrate
JP2003055097A (ja) 窒化物半導体から成る単体基板及びその製造方法
EP2239790A2 (en) Method for manufacturing light emitting device
US20140151714A1 (en) Gallium nitride substrate and method for fabricating the same
JP2023162378A (ja) 半導体素子
JP2023139075A (ja) 半導体デバイスの製造方法および半導体デバイス並びにテンプレート基板
WO2023189872A1 (ja) 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置
US20210013365A1 (en) Method of fabricating non-polar and semi-polar devices using epitaxial lateral overgrowth
JP2002329672A (ja) 窒化物半導体から成る単体基板の製造方法
KR100834698B1 (ko) 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판
TWI838676B (zh) 半導體基板、半導體裝置、電子機器
WO2023182194A1 (ja) 半導体基板の製造方法および製造装置
JP2023171128A (ja) 半導体基板、テンプレート基板、半導体基板の製造方法および製造装置、半導体デバイスの製造方法および製造装置、半導体デバイス
WO2022220124A1 (ja) 半導体基板並びにその製造方法および製造装置、GaN系結晶体、半導体デバイス、電子機器
US20240136181A1 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
TWI837788B (zh) 半導體裝置之製造方法及製造裝置
EP4362115A1 (en) Semiconductor device manufacturing method and manufacturing device, semiconductor device and electronic device
WO2023238923A1 (ja) 半導体レーザデバイスの製造方法および製造装置
WO2023145763A1 (ja) レーザ素子の製造方法および製造装置、レーザ素子並びに電子機器
WO2024084634A1 (ja) 半導体基板、半導体基板の製造方法および製造装置
WO2023027086A1 (ja) 半導体デバイスの製造方法および製造装置
CN117769613A (zh) 模板基板和其制造方法以及制造装置、半导体基板和其制造方法以及制造装置、半导体器件、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779886

Country of ref document: EP

Kind code of ref document: A1