TWI841952B - 半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器 - Google Patents

半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器 Download PDF

Info

Publication number
TWI841952B
TWI841952B TW111114376A TW111114376A TWI841952B TW I841952 B TWI841952 B TW I841952B TW 111114376 A TW111114376 A TW 111114376A TW 111114376 A TW111114376 A TW 111114376A TW I841952 B TWI841952 B TW I841952B
Authority
TW
Taiwan
Prior art keywords
semiconductor
layer
substrate
semiconductor substrate
opening
Prior art date
Application number
TW111114376A
Other languages
English (en)
Other versions
TW202309358A (zh
Inventor
小林敏洋
神川剛
青木優太
林雄一郎
Original Assignee
日商京瓷股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商京瓷股份有限公司 filed Critical 日商京瓷股份有限公司
Publication of TW202309358A publication Critical patent/TW202309358A/zh
Application granted granted Critical
Publication of TWI841952B publication Critical patent/TWI841952B/zh

Links

Abstract

本發明之半導體基板具備:主基板;遮罩圖案,其位於較上述主基板更為上方,且包含遮罩部;以及第1半導體部及第2半導體部,其等位於較遮罩圖案更為上方,且相鄰;第1半導體部具有位於遮罩部上之第1下方邊緣、及較第1下方邊緣更向第2半導體部側突出之第1突出部。

Description

半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器
本發明係關於一種半導體基板等。
例如,於專利文獻1中揭示有如下方法:使用ELO(Epitaxial Lateral Overgrowth,磊晶橫向生長)法,形成與複數個遮罩之開口部分別對應之複數個半導體層。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2011-66390號公報
[發明所欲解決之問題]
專利文獻1之構成中,於在較複數個半導體層更為上層形成功能層之情形時,原料到達半導體層間之遮罩之上,形成沈積物。其結果,有於之後之製程中沈積物自遮罩游離之問題。 [解決問題之技術手段]
本發明之半導體基板具備:主基板;遮罩圖案,其位於較上述主基板更為上方,且包含遮罩部;以及第1半導體部及第2半導體部,其等位於較遮罩圖案更為上方(上層),且相鄰;上述第1半導體部具有位於上述遮罩部上之第1下方邊緣、及較上述第1下方邊緣更向上述第2半導體部側突出之第1突出部。 [發明之效果]
根據上述構成,於在較上述第1及第2半導體部更為上層形成功能層之情形時,原料不易到達第1及第2半導體部間之遮罩上,沈積物之形成減少。其結果,改善半導體基板之製造良率。
[半導體基板] 圖1係表示本實施方式之半導體基板之構成之俯視圖及剖視圖。如圖1所示,本實施方式之半導體基板10(半導體晶圓)具備主基板1(僅圖示上表面附近)、位於較主基板1更為上方且包含遮罩部5之遮罩圖案6、以及位於較遮罩圖案6更為上層且相鄰之第1半導體部8F及第2半導體部8S,第1半導體部8F具有位於遮罩部5上之第1下方邊緣8c、及於俯視時較第1下方邊緣8c更向第2半導體部8S側突出之第1突出部H1。遮罩圖案6可為如下構成,即,包含在第1方向(以下,X方向)相鄰之第1開口部K1及第2開口部K2、以及位於第1開口部K1及第2開口部K2之間之遮罩部5。
第1突出部H1只要為相對於第1下方邊緣8c於X方向懸突之構造即可。圖1之第1突出部H1之端面包含2個面,但並不限定於此,可僅包含1個面,亦可包含3個以上之面。第1突出部H1之端面中所包含之面可為平面狀亦可為曲面狀。第1突出部H1亦可包含第1下方邊緣8c並且具有相對於X方向非垂直之面EC。
半導體基板10可為如下構成,即,於主基板1之上方具有包含晶種部3S之基底層4,且第1半導體部8F於第1開口部K1中與晶種部3S相接。第1及第2開口部K1、K2亦可為錐形形狀(寬度朝向基底層4側變窄之形狀)。基底層4只要以至少與第1及第2開口部K1、K2重疊之方式形成即可。
於半導體基板10中,於主基板1上積層有複數個層,可將該積層方向設為「上方向」。又,可將以與半導體基板10之法線方向平行之視線觀察半導體基板10稱為「俯視」。所謂半導體基板,係指包含半導體部之基板之含義,主基板1可為半導體,亦可為非半導體。於本說明書中,有時包含主基板1及基底層4在內稱為基底基板UK,包含主基板1、基底層4及遮罩圖案6在內稱為模板基板(ELO用基板)7。
第1半導體部8F例如包含氮化物半導體。氮化物半導體例如可表示為AlxGayInzN(0≦x≦1;0≦y≦1;0≦z≦1;x+y+z=1),作為具體例,可列舉GaN系半導體、AlN(氮化鋁)、InAlN(氮化銦鋁)、InN(氮化銦)。所謂GaN系半導體,係指包含鎵原子(Ga)及氮原子(N)之半導體,作為典型性的例子,可列舉GaN、AlGaN、AlGaInN、InGaN。第1半導體部8F可為摻雜型(例如,包含供體之n型)亦可為非摻雜型。
包含GaN系半導體之第1半導體部8F可藉由ELO(Epitaxial Lateral Overgrowth)法而形成,但只要為可實現低缺陷之方法則亦可為其他方法。於ELO法中,例如,可使用晶格常數與GaN系半導體不同之異種基板作為主基板1,晶種部3S使用GaN系半導體,遮罩圖案6使用無機化合物膜,於遮罩部5上使GaN系之第1半導體部8F橫向生長。於該情形時,可使第1半導體部8F之厚度方向(Z方向)為GaN系結晶之<0001>方向(c軸方向),使為長邊形狀之第1及第2開口部K1、K2之寬度方向(第1方向,X方向)為GaN系結晶之<11-20>方向(a軸方向),使第1及第2開口部K1、K2之長邊方向(Y方向)為GaN系結晶之<1-100>方向(m軸方向)。有時將利用ELO法形成之層稱為ELO半導體層(包含第1半導體部8F)。
利用ELO法形成之第1半導體部8F包含俯視時與第1開口部K1重疊之錯位繼承部NS、及俯視時與遮罩部5重疊且貫通錯位較錯位繼承部NS少之低缺陷部EK(錯位非繼承部)。當在較第1半導體部8F更為上層包含活性層(例如,電子與電洞耦合之層)時,可設置成使活性層俯視時與低缺陷部EK重疊。
亦可將第1半導體部8F中俯視時與遮罩部5重疊之部分由包含GaN系半導體並且具有與(0001)面(c面)平行之上表面8J及下表面8U之GaN系晶體構成。該GaN系晶體具備與<0001>方向平行之剖面中之非貫通錯位之密度與上表面8J中之貫通錯位之密度為相同程度、或者更大且與<1-100>方向平行的下方邊緣8c、及較下方邊緣更向<11-20>方向突出之突出部(懸突部)H1。與<0001>方向平行之剖面例如為(1-100)面(m面)或者(11-20)面(a面)。
貫通錯位為沿著第1半導體部8F之厚度方向(Z方向),且自第1半導體部8F之下表面或內部向其表面或表層延伸之錯位(缺陷)。貫通錯位能夠藉由對第1半導體部8F之表面(與c面平行)進行CL(Cathode luminescence,陰極發光)測定而觀察。非貫通錯位為於與厚度方向平行之面之剖面中CL測定之錯位,主要為基底面(c面)錯位。
圖2係表示本實施方式之半導體基板之另一構成之剖視圖。如圖2所示,半導體基板10具有主基板1、基底層4、遮罩圖案6、第1及第2半導體部8F、8S、較第1半導體部8F更為上層之第1功能層9F、及較第2半導體部8S更為上層之第2功能層9S,於俯視時,第1半導體部8F及第1功能層9F重疊,第2半導體部8S及第2功能層9S重疊。第1及第2功能層9F、9S分別可為單層體亦可為積層體。
第1功能層9F亦可具有作為半導體裝置之構成要素之功能、光學功能、及感測功能之至少一者。
如圖2所示,由於第1半導體部8F具有第1突出部H1,故而於第1及第2功能層9F、9S之形成時,原料不易到達位於第1及第2半導體部8F、8S間之遮罩部5之上,沈積物之形成減少。又,形成於較第1半導體部8F更為上層之第1功能層9F難以形成於較第1突出部H1之頂部8P更為下側,故而第1功能層9F與第2功能層9S連接之可能性降低。
[半導體基板之製造] 圖3係表示本實施方式之半導體基板之製造方法之一例的流程圖。於圖3之半導體基板之製造方法中,於準備模板基板(ELO生長用基板)7之步驟之後,進行使用ELO法形成第1半導體部8F之步驟。於形成第1半導體部8F之步驟之後,視需要進行形成第1功能層9F之步驟。於準備模板基板7之步驟中,亦可於基底基板UK上形成遮罩圖案6。
圖4係表示本實施方式之半導體基板之製造裝置之一例的方塊圖。圖4之半導體基板之製造裝置70具備:半導體形成部72,其於模板基板7上,形成在X方向(第1方向)相鄰之第1及第2半導體部8F、8S;以及控制部74,其控制半導體形成部72。半導體形成部72藉由ELO法形成具有位於遮罩部5上之第1下方邊緣8c、及於俯視時較第1下方邊緣8c更向X方向(a軸方向)突出之第1突出部H1之第1半導體部8F(參照圖1)。半導體基板之製造裝置70亦可為形成第1功能層9F之構成。
半導體形成部72亦可包含MOCVD(Metal Organic Chemical Vapor Deposition,有機金屬化學氣相沈積)裝置,控制部74亦可包含處理器及記憶體。控制部74例如亦可為如下構成,即,藉由執行儲存於內置記憶體、能夠通信之通信裝置、或能夠訪問之網路上之程式而控制半導體形成部72,該程式及儲存有該程式之記錄媒體等亦包含於本實施方式中。
[半導體裝置之製造] 圖5係表示本實施方式之半導體裝置之製造方法之一例的流程圖。圖6係表示元件部之分離之一例之俯視圖。圖7係表示元件部之分離及離開之一例之剖視圖。於圖5之半導體裝置之製造方法中,於準備半導體基板10之步驟之後,視需要進行於第1半導體部8F上形成第1功能層9F之步驟。然後,如圖6及圖7所示,進行於半導體基板10形成複數個溝槽TR(分離槽)而將元件部DS(包含第1半導體部8F之低缺陷部EK及第1功能層9F)分離之步驟。溝槽TR貫通第1功能層9F及第1半導體部8F。亦可於溝槽TR內露出基底層4及遮罩部5。溝槽TR之開口寬度可設為第1開口部K1之寬度以上。於該階段中,元件部DS係與遮罩部5凡得瓦耦合,為半導體基板10之一部分。
然後,如圖7所示,進行將元件部DS自模板基板7離開,形成為半導體裝置20之步驟。經分離之元件部DS之第1功能層9F包含與X方向垂直之端面9x,端面9x不受由蝕刻所致之端面浸蝕,故而實現優質之第1功能層9F(尤其,活性層)。再者,圖5之準備半導體基板10之步驟亦可包含如圖3所示之半導體基板之製造方法之各步驟。
[半導體裝置] 如圖7所示,藉由使元件部DS自模板基板7離開,可形成半導體裝置20(例如,包含GaN系晶體)。作為離開方法,可使用焊料將半導體裝置20接合於其他載體基板,亦可利用黏著性印模來剝離,該黏著性印模係使用黏著材或者作為矽酮彈性體之聚二甲基矽氧烷(PDMS)等柔軟材料製作而成。
作為半導體裝置20之具體例,可列舉發光二極體(LED)、半導體雷射、肖特基二極體、光電二極體、電晶體(包含功率電晶體、高電子遷移率電晶體)等。
[電子機器] 圖8係表示本實施方式之電子機器之構成之模式圖。圖8之電子機器30包含:半導體基板10(於包含模板基板7之狀態下作為半導體裝置發揮功能之構成,例如於模板基板7為透光性之情形時);驅動基板23,其供安裝半導體基板10;及控制電路25,其控制驅動基板23。
圖9係表示本實施方式之電子機器之另一構成之模式圖。圖9之電子機器30包含:半導體裝置20,其至少包含低缺陷部EK;驅動基板23,其供安裝半導體裝置20;及控制電路25,其控制驅動基板23。
作為電子機器30,可列舉顯示裝置、雷射出射裝置(包含法布里-柏羅型、面發光型)、照明裝置、通信裝置、資訊處理裝置、感測裝置、電力控制裝置等。
[實施例1] (整體構成) 圖10係表示實施例1之半導體基板之構成之俯視圖及剖視圖。如圖10所示,實施例1之半導體基板10具備主基板1、位於主基板1之上方之基底層4、包含於X方向相鄰之第1及第2開口部K1、K2以及位於第1及第2開口部K1、K2之間之遮罩部5之遮罩圖案6、以及位於較遮罩圖案6更為上層之第1及第2半導體部8F、8S。第1及第2半導體部8F、8S利用ELO法形成,相互分離且相鄰。再者,有時將第1及第2半導體部8F、8S稱為ELO半導體層8。亦可將第1及第2半導體部8F、8S稱為第1及第2半導體層。
第1半導體部8F具有於俯視時與第1開口部K1重疊,且較第1下方邊緣8c更向X方向(第2半導體部8S側)突出之第1突出部H1。第2半導體部8S具有於俯視時與第2開口部K2重疊,且較第2下方邊緣8d更向X方向之相反方向(第1半導體部8F側)突出之第2突出部H2。所謂下方邊緣,例如係指半導體層部之下表面之邊緣,所謂上方邊緣,例如係指半導體層部之上表面之邊緣。
(主基板) 主基板1可使用具有與GaN系半導體不同之晶格常數之異種基板。作為異種基板,可列舉單晶之矽(Si)基板、藍寶石(Al 2O 3)基板、碳化矽(SiC)基板等。主基板1之面方位例如為矽基板之(111)面、藍寶石基板之(0001)面、SiC基板之6H-SiC(0001)面。該等為例示,只要為可利用ELO法使ELO半導體層8生長之主基板及面方位,則任何均可。
(基底層) 作為基底層4,可自主基板側依次設置緩衝層2(例如,AlN層)及晶種層3(例如,氮化物半導體)。緩衝層2例如具有減少主基板1與晶種層3直接接觸而相互熔融之功能。於主基板1使用矽基板等之情形時,與作為晶種層3之GaN系半導體相互熔融,故而,例如藉由設置AlN層等緩衝層2,而減少熔融。例如,於使用不與作為GaN系半導體之晶種層3相互熔融之主基板1之情形時,亦可為不設置緩衝層2之構成。作為緩衝層2之一例之AlN層例如可使用MOCVD裝置,形成為厚度10 nm左右~5 μm左右。緩衝層2亦可具有提高晶種層3之結晶性之效果、及緩和ELO半導體層8之內部應力之效果之至少一者。
晶種層3例如可使用包含Al之GaN系半導體。晶種層3包含與遮罩圖案6之第1開口部K1重疊之晶種部3S(ELO半導體層之生長起點)。作為晶種層3,亦可使用Al組成分級地(graded)接近GaN之分級層。分級層例如為自緩衝層側起依次設置有作為第1層之Al 0.7Ga 0.3N層、及作為第2層之Al 0.3Ga 0.7N層之積層體。於該情形時,第2層(Al:Ga:N=0.3:0.7:1)中之Ga之組成比(0.7/2=0.35)大於第1層(Al:Ga:N=0.7:0.3:1)中之Ga的組成比(0.3/2=0.15)。分級層可利用MOCVD法容易地形成,亦可由3層以上構成。藉由晶種層3使用分級層,可緩和來自作為異種基板之主基板1之應力。可使晶種層3為包含GaN層之構成。於該情形時,可使晶種層3為GaN之單層,亦可使作為晶種層3之分級層之最上層為GaN層。
亦可使緩衝層2(例如,氮化鋁)及晶種層3(例如,GaN系半導體)之至少一者使用濺鍍裝置(PSD:pulse sputter deposition、PLD:pulase laser depodition等)成膜。
(遮罩圖案) 遮罩圖案6(遮罩層)包含遮罩部5及第1及第2開口部K1、K2。第1及第2開口部K1、K2具有使晶種部3S露出,使ELO半導體層8之生長開始之生長開始用孔之功能,遮罩部5亦可具有使ELO半導體層8橫向生長之選擇生長用遮罩之功能。第1及第2開口部K1、K2為遮罩圖案6中之無遮罩部5之部分(非形成部),亦可不由遮罩部5包圍。
作為遮罩圖案6,例如,可使用包含氧化矽膜(SiOx)、氮化鈦膜(TiN等)、氮化矽膜(SiNx)、氮氧化矽膜(SiON)、及具有高熔點(例如1000℃以上)之金屬膜之任一者之單層膜、或包含該等之至少兩者之積層膜。
例如,於基底層4上,使用濺鍍法整面形成厚度100 nm左右~4 μm左右(較佳為150 nm左右~2 μm左右)之氧化矽膜,於氧化矽膜之整面塗佈光阻劑。然後,使用光微影法將光阻劑圖案化,形成具有條紋狀之複數個開口部之光阻劑。然後,藉由氫氟酸(HF)、緩衝氫氟酸(BHF)等濕式蝕刻劑將氧化矽膜之一部分去除而形成複數個開口部(包含K1、K2),利用有機洗淨去除光阻劑,藉此形成遮罩圖案6。
第1及第2開口部K1、K2為長邊形狀(狹縫狀),且週期地排列於ELO半導體層8之a軸方向(X方向)。第1及第2開口部K1、K2之寬度設為0.1 μm~20 μm左右。各開口部之寬度越小,則自各開口部傳播至ELO半導體層8之貫通錯位之數量越減少。又,於後步驟中ELO半導體層8自模板基板7之剝離(離開)亦變得容易。進而,可使表面缺陷較少之低缺陷部EK(例如,GaN系晶體)之面積變大。
氧化矽膜於ELO半導體層8之成膜中微量分解、蒸發,且有時納入至ELO半導體層8中,但氮化矽膜、氮氧化矽膜則具有於高溫下不易分解、蒸發之優點。
因此,可使遮罩圖案6為氮化矽膜或者氮氧化矽膜之單層膜,亦可為於基底層4上依次形成氧化矽膜及氮化矽膜之積層膜,亦可為於基底層4上依次形成氮化矽膜及氧化矽膜之積層體膜,亦可為於基底層上依次形成氮化矽膜、氧化矽膜及氮化矽膜之積層膜。
遮罩部5之針孔等異常部位可藉由於成膜後進行有機洗淨等,再次導入至成膜裝置形成同種膜,而使異常部位消失。亦可使用一般性的氧化矽膜(單層),使用此種再成膜方法形成優質之遮罩圖案6。
(模板基板之具體例) 主基板1使用具有(111)面之矽基板,基底層4之緩衝層2設為AlN層(例如,30 nm)。基底層4之晶種層3設為作為第1層之Al 0.6Ga 0.4N層(例如,300 nm)與作為第2層之GaN層(例如,1~2 μm)依次形成之分級層。即,第2層(Ga:N=1:1)中之Ga之組成比(1/2=0.5)大於第1層(Al:Ga:N=0.6:0.4:1)中之Ga的組成比(0.6/2=0.3)。
遮罩圖案6使用依次形成有氧化矽膜(SiO 2)與氮化矽膜(SiN)之積層體。氧化矽膜之厚度例如為0.3 μm,氮化矽膜之厚度例如為70 nm。氧化矽膜及氮化矽膜各者之成膜使用電漿化學氣相沈積(CVD)法。
(ELO半導體層之成膜) 於實施例1中,使ELO半導體層8為GaN層,藉由圖4之半導體形成部72中所包含之MOCVD裝置而於模板基板7上進行氮化鎵(GaN)之ELO成膜。作為ELO成膜條件之一例,可採用基板溫度:1120℃,生長壓力:50 kPa,TMG(三甲基鎵):22 sccm,NH 3:15 slm,V/III=6000(V族原料之供給量相對於III族原料之供給量之比)。
於該情形時,於露出於第1及第2開口部K1、K2之晶種部3S(晶種層3之最上層GaN層)上選擇生長第1及第2半導體部8F、8S,繼而於遮罩部5上橫向生長。然後,於遮罩部5上自其兩側橫向生長之第1及第2半導體部8F、8S會合之前使該等之橫生長停止。於第1及第2半導體部8F、8S之生長停止前,亦可包含如圖10之下側間隔Pc不實質性地變化,而下側傾斜面EC於懸突狀態下擴大其面積之期間。
遮罩部5之寬度Wm為50 μm,第1及第2開口部K1、K2之寬度為5 μm,ELO半導體層8之橫幅為53 μm,低缺陷部EK之寬度(X方向之尺寸)為24 μm,ELO半導體層8之層厚為5 μm。ELO半導體層8之縱橫比成為53 μm/5 μm=10.6,實現了非常高之縱橫比。
於ELO半導體層8之成膜中,較佳為減少ELO半導體層8與遮罩部5之相互反應,形成為ELO半導體層8與遮罩部5利用凡得瓦爾力接觸之狀態。
於實施例1中之ELO半導體層8之形成中,提高橫向成膜速率。提高橫向成膜速率之方法如以下所述。首先,於自第1及第2開口部K1、K2露出之晶種部3S上,形成在Z方向(c軸方向)生長之縱生長層,然後,形成在X方向(a軸方向)生長之橫生長層。此時,藉由使縱生長層之厚度為10 μm以下、5 μm以下、3 μm以下、或者1 μm以下,可將橫生長層之厚度抑制得較低,提高橫向成膜速率。
圖11係表示ELO半導體層之橫生長之一例之剖視圖。如圖11所示,較理想的是,於晶種部3S上形成初始生長層(錯位繼承部NS之一部分)SL,然後,自初始生長層SL使第1及第2半導體部8F、8S橫向生長。初始生長層SL成為第1及第2半導體部8F、8S之橫向生長之起點。藉由適當控制ELO成膜條件,能夠進行控制而使第1及第2半導體部8F、8S於Z方向(c軸方向)生長,或者於X方向(a軸方向)生長。關於圖10之第1及第2突出部H1、H2之形狀,亦可藉由ELO成膜條件(X方向生長條件)而控制。
於第1及第2半導體部8F、8S之成膜中,可使用以下方法:於初始生長層SL之邊緣即將覆蓋遮罩部5之上表面之前(與遮罩部5之側面上端相接之階段)、或剛覆蓋遮罩部5之上表面之後之時序停止初始生長層SL之成膜(即,於該時序,將ELO成膜條件自c軸方向成膜條件切換為a軸方向成膜條件)。若如此而行,則初始生長層SL從自遮罩部5稍微突出之狀態而橫向成膜進展,故而厚度方向之生長所消耗之材料減少,可使第1及第2半導體部8F、8S以高速橫向生長。初始生長層SL可形成為50 nm~5.0 μm(例如,80 nm~2 μm)之厚度。亦可使遮罩部5之厚度、及初始生長層SL之厚度為500 nm以下。
關於第1及第2半導體部8F、8S,如圖11所示,藉由使初始生長層SL成膜之後橫向生長,可使低缺陷部EK內部之非貫通錯位變多(降低低缺陷部EK表面中之貫通錯位密度)。又,可控制低缺陷部EK內部中之雜質濃度(例如,矽、氧)之分佈。
若使用圖11之方法,則第1半導體部8F之縱橫比(X方向之尺寸相對於厚度之比=WL/d1)飛躍地提高為3.5以上、5.0以上、6.0以上、8.0以上、10以上、15以上、20以上、30以上、或者50以上。又,若使用圖11之方法,則第1半導體部8F之寬度(WL)相對於第1開口部K1之寬度之比可為3.5以上、5.0以上、6.0以上、8.0以上、10以上、15以上、20以上、30以上、或者50以上,低缺陷部EK之比率提高。圖11所示之第1及第2半導體部8F、8S可為氮化物半導體結晶(例如,GaN結晶、AlGaN結晶、InGaN結晶、或者InAlGaN結晶)。
作為一例,藉由減少氨之供給量,以低V/III(<1000)程度成膜,而於橫向成膜進展時,容易形成倒錐形形狀。推測為因為於ELO半導體層8之側面部之刻面成膜中,容易成膜倒錐形之結晶面。於將低V/III(<1000)之成膜以如低於1000℃之低溫下進行之情形時,較佳為使用三乙基鎵(TEG)作為鎵原料氣體。TEG與TMG相比,由於以低溫將有機原料高效率地分解,故而可提高橫向成膜速率。
作為另一例,若使縱生長層(初始生長層)之厚度為2 μm以上之厚度,於在遮罩部5上橫向生長之膜彼此會合之前結束成膜,則藉由縱生長層之厚度,不易對間隙部供給Ga原料或氨原料,可抑制ELO半導體層8之端面下側之生長。於該情形時,若以高溫(例如,1050℃以上之成膜溫度)以高V/III(>5000)程度之條件進行成膜,則容易獲得倒錐形之結晶面。
關於ELO半導體層8之成膜溫度,較超過1200℃之高溫而言,較佳為1150℃以下之溫度。於如低於1000℃之低溫中亦能夠形成ELO半導體層8,自減少相互反應之觀點而言可謂之更佳。於此種低溫成膜中,可知若使用三甲基鎵(TMG)作為鎵原料,則原料不充分地分解,鎵原子與碳原子同時較通常更多地納入至ELO半導體層8。認為其原因在於,ELO法由於a軸方向之成膜較快,c軸方向之成膜較慢,故而於c面成膜時較多地納入。
判明納入至ELO半導體層8之碳(carbon)減少與遮罩部5之反應,減少遮罩部5與ELO半導體層8之黏連等。因此,於ELO半導體層8之低溫成膜中,藉由減少氨之供給量,以低V/III(<1000)程度進行成膜,可將原料或者腔室環境內之碳元素納入至ELO半導體層8,減少與遮罩部5之反應。於該情形時,ELO半導體層(第1及第2半導體部8F、8S)成為包含碳(carbon)之構成。
(ELO半導體層之形狀例) 於圖10之半導體基板10中,第1半導體部8F具有:第1上方邊緣8a,其於俯視時位於遮罩部中央5c與第1開口部K1之間;第1下方邊緣8c,其於俯視時位於遮罩部中央5c與第1開口部K1之間(位於遮罩部5上);及第1突出部H1,其於俯視時較第1下方邊緣8c更向X方向(第2半導體部8S側)突出。
第2半導體部8S具有:第2上方邊緣8b,其於俯視時位於遮罩部中央5c與第2開口部K2之間;第2下方邊緣8d,其於俯視時位於遮罩部中央5c與第2開口部K2之間(位於遮罩部5上);及第2突出部H2,其於俯視時較第2下方邊緣8d更向X方向(第1半導體部8F側)突出。
第1及第2半導體部8F、8S中俯視時與遮罩部5重疊之部分為包含GaN系半導體,並且具有與(0001)面(c面)平行之上表面8J及下表面8U之GaN系晶體GK。GaN系晶體GK具備與<0001>方向平行之剖面中之非貫通錯位密度大於上表面8J中之貫通錯位密度且與<1-100>方向平行之下方邊緣8c、及較下方邊緣更向<11-20>方向突出之突出部(懸突部)H1。
GaN系晶體GK之非貫通錯位密度可為貫通錯位密度之10倍以上,例如20倍以上。貫通錯位密度例如可為5×10 6[個/cm 2]以下。GaN系晶體GK之寬度(X方向之尺寸)例如可為10 μm以上。於GaN系晶體GK中,亦具有抑制對半導體裝置之特性有影響之貫通錯位,另一方面,藉由使幾乎無影響之非貫通錯位存在而緩和膜應力之效果。
關於GaN系晶體GK,與(11-20)面(a面)平行之面之剖面之非貫通錯位密度亦可大於與(1-100)面(m面)平行之面之剖面的非貫通錯位密度。GaN系晶體GK由於藉由橫向(X方向)生長而形成,故而關於X方向(第1方向),可為較處於生長初期之一個端部而言處於生長末期之另一個端部之雜質(遮罩圖案6中所包含之原子,例如矽、氧)之濃度更低的構成。
於實施例1中,於X方向,第1開口部K1與第1突出部H1之最大距離L1大於第1開口部K1與第1上方邊緣8a之距離La,於X方向,第2開口部K2與第2突出部H2之最大距離L2大於第2開口部K2與第2上方邊緣8b之距離Lb。
第1半導體部之側面ES包括包含第1下方邊緣8c之下側傾斜面EC、及包含第1上方邊緣8a之上側傾斜面EA,下側傾斜面EC與垂直於X方向之面VF所成之第1銳角θ1小於上側傾斜面EA與垂直於X方向之面VF所成之第2銳角θ2。第1銳角θ1亦可為30°以下、20°以下、或者15°以下。遮罩部5與第1突出部之頂部8P之距離Hp大於第1半導體部8F之厚度d1的一半。第2銳角θ2亦可為75°以上、80°以上、或者85°以上。
第1半導體部8F與第2半導體部8S之最小間隔Px小於表示第1下方邊緣8c及第2下方邊緣8d之間隔之下側間隔Pc、及表示第1上方邊緣8a及第2上方邊緣8b之間隔之上側間隔Pa,上側間隔Pa大於下側間隔Pc。最小間隔Px例如為5 μm以下,下側間隔Pc例如為7 μm以下,上側間隔Pa例如為8 μm以下。下側間隔Pc亦可小於第1及第2開口部K1、K2之開口寬度。最小間隔Px亦可小於第1及第2開口部K1、K2之開口寬度。
如此,藉由於相鄰之第1及第2半導體部8F、8S間設置間隙(間隙空間)Gp,可減少ELO半導體層8之內部應力,減少產生於ELO半導體層8之裂縫、缺陷。該效果尤其於主基板1為異種基板之情形時較大。
(功能層) 圖12係表示實施例1之半導體基板之另一構成之剖視圖。於圖12中,於第1半導體部8F上配置第1功能層9F,於第2半導體部8S上配置第2功能層9S。功能層9(包含第1及第2功能層9F、9S)例如可為包含n型半導體層(例如,GaN系)、非摻雜半導體層(例如,GaN系)、p型半導體層(例如,GaN系)、導電層、及絕緣層之至少一者之構成。亦可使非摻雜半導體層為活性層(電子與電洞耦合之層)。功能層9只要利用任意之方法形成即可。
由於在第1半導體部8F形成有第1突出部H1,在第2半導體部8S形成有第2突出部H2,故而於第1及第2功能層9F、9S之形成時,原料(鋁源、銦源)等不易到達位於第1及第2半導體部8F、8S間之遮罩部5之上,沈積物之形成減少。又,亦可抑制功能層9F、9S彼此連接。
如圖12所示,形成於較第1半導體部8F更為上層之第1功能層9F不易形成於較第1突出部H1之頂部8P更為下側,形成於較第2半導體部8S更為上層之第2功能層9S不易形成於較第2突出部H2之頂部8Q更為下側,故而第1及第2功能層9F、9S於形成時自己分離(自分離)。藉此,將元件部DS分離之步驟之良率提高。尤其,較理想的是,第1功能層9F中所包含之活性層為不到達第1下方邊緣8c之形狀,第2功能層9S中所包含之活性層為不到達第2下方邊緣8d之形狀。
於在功能層9形成例如GaN系之p型半導體層之情形時,有納入自矽系之遮罩圖案6(例如,氧化矽膜)分離之矽、氧,而補償p型摻雜劑(例如,Mg)之虞。於ELO半導體層8為GaN系之n型半導體之情形時,矽等亦可能自ELO半導體層8分離。於實施例1中,由於矽等n型摻雜劑之上升受第1及第2突出部H1、H2阻礙,故而n型摻雜劑不易納入至p型半導體層,可提高p型半導體層之功能。
於第1功能層9F包括包含銦作為組成之層(例如,In xGa (1 x)N層,x為1以下之正數)之情形時,由於In原子大於Ga原子,故而起因於與ELO半導體層8之晶格失配,有時產生結晶缺陷、膜內應力,但藉由將第1功能層9F自其他功能層分斷,可謀求結晶缺陷之傳播抑制、膜內應力之緩和。又,於第1功能層9F包括包含鋁作為組成之層(例如,Al xGa (1 x)N層,x為1以下之正數)之情形時,若Al之組成變大,則起因於與ELO半導體層8之晶格失配、熱膨脹係數之差異等,有時產生裂縫、結晶面之結晶滑動(例如,GnN系半導體層之m面滑動)等結晶缺陷、膜內應力。但藉由將第1功能層9F自其他功能層分斷,可謀求結晶缺陷之傳播抑制、膜內應力之緩和。
圖13係表示本實施方式之半導體基板之另一構成之剖視圖。於形成功能層9之情形時,如圖13所示有時產生邊緣生長9G(角部)。例如,為功能層9包含AlGaN層之情形時。邊緣生長亦有時成為10 μm以上之寬度、高度200~300 nm左右之尺寸,成為後步驟之障礙,藉由將間隙Gp之最小寬度Px(最小間隔)抑制為未達10 μm可大幅度減少(例如,高度100 nm以下)邊緣生長9G。
(元件部之分離及離開) 圖14係表示實施例1中之元件部之分離之步驟的俯視圖。圖15係表示實施例1中之元件部之離開之步驟的剖視圖。於實施例1中,如圖14所示,使用乾式蝕刻形成沿X方向延伸之複數個溝槽TR,將元件部DS分離。於俯視時,元件部DS由2個溝槽TR與沿Y方向延伸之2個間隙Gp包圍,可將較圖6更大型之元件部DS分離。乾式蝕刻利用一般性的光微影法實現。蝕刻結束後,必須將作為蝕刻時之遮罩之光阻劑去除,例如若進行使用弱超音波之有機洗淨,則元件部DS自遮罩部5剝落之虞較少。
於將元件部DS分離之後,如圖15所示,亦可將半導體基板10浸漬於蝕刻劑ET中而溶解遮罩圖案6,然後,在ELO半導體層8之表面貼附膠帶(例如,於切割半導體晶圓時使用之黏著質之切割保護膠帶),直接使用珀爾帖元件(未圖示),將貼有膠帶之狀態之半導體基板10降低至低溫。此時,一般而言熱膨脹係數較半導體大之膠帶大幅度收縮,對ELO半導體層8施加應力。因ELO半導體層8僅與模板基板7之基底層4(晶種部)耦合,又去除遮罩部5,故而來自膠帶之應力有效地施加至與(模板基板7之)基底層4之耦合部,可機械地劈開或破壞耦合部。即,可不將耦合部蝕刻去除。
(去除錯位繼承部之構成) 圖16係表示實施例1之半導體基板之另一構成之剖視圖。如圖16所示,亦可相對於圖10之半導體基板10,去除第1及第2半導體部8F、8S之錯位繼承部NS(俯視時與第1及第2開口部K1、K2重疊之部分)。又,亦可去除基底層4中俯視時與第1及第2開口部K1、K2重疊之部分。圖17係表示實施例1之半導體基板10之另一構成之剖視圖。如圖17所示,亦可於圖16之第1及第2半導體部8F、8S上設置第1及第2功能層9F、9S。
圖18係表示實施例1中之元件部之離開之另一步驟的剖視圖。圖17之ELO半導體層8與遮罩部5由於利用凡得瓦爾力(較弱之力)耦合,故而,如圖18所示,藉由利用印模裝置ST等之引力(黏著力、吸引力、靜電力等)提拉功能層9,可容易地將元件部DS自模板基板剝離,而形成為半導體裝置20。可使用黏彈性彈性體印模、靜電接著印模等自遮罩部5直接剝離,於成本、產能等方面有較大之優點。亦可於使黏彈性彈性體印模、靜電接著印模等與ELO半導體層8接觸之後,例如施加超音波之振動等。藉由該振動等,可進而容易地自遮罩部5剝離ELO半導體層8。
[實施例2] 圖19係表示實施例2之半導體基板之構成之剖視圖。於圖19之半導體基板10中,第1半導體部8F具有:第1上方邊緣8a,其於俯視時位於遮罩部中央5c與第1開口部K1之間;第1下方邊緣8c,其於俯視時位於遮罩部中央5c與第1開口部K1之間(位於遮罩部5上);及第1突出部H1,其於俯視時較第1下方邊緣8c更向X方向(第2半導體部8S側)突出。
第2半導體部8S具有:第2上方邊緣8b,其於俯視時位於遮罩部中央5c與第2開口部K2之間;第2下方邊緣8d,其於俯視時位於遮罩部中央5c與第2開口部K2之間(位於遮罩部5上);及第2突出部H2,其於俯視時較第2下方邊緣8d更向X方向(第1半導體部8F側)突出。
第1及第2半導體部8F、8S中俯視時與遮罩部5重疊之部分為包含GaN系半導體,並且具有與(0001)面(c面)平行之上表面8J及下表面8U之GaN系晶體GK。GaN系晶體GK具備與<0001>方向平行之剖面中之非貫通錯位密度大於上表面8J中之貫通錯位密度且與<1-100>方向平行之下方邊緣8c、及較下方邊緣更向<11-20>方向突出之突出部(懸突部)H1。
於圖18之半導體基板10中,第1上方邊緣8a為第1突出部H1之頂部,第2上方邊緣8b為第2突出部H2之頂部。於X方向,第1開口部K1與第1上方邊緣8a之距離La大於第1開口部K1與第1下方邊緣8c之距離Lc,第2開口部K2與第2上方邊緣8b之距離Lb大於第2開口部K2與第2下方邊緣8d之距離Ld。位於第1半導體部8F與第2半導體部8S之間之間隙空間(間隙)Gp具有遮罩部5側成為寬幅之倒錐形形狀。
於圖19中,表示第1上方邊緣8a及第2上方邊緣8b之間隔之上側間隔Pa小於5 μm。上側間隔Pa相對於遮罩部之寬度Wm之比未達0.5,表示第1下方邊緣8c及第2下方邊緣8d之間隔之下側間隔Pc相對於遮罩部的寬度Wm之比未達0.7。包含第1上方邊緣8a及第1下方邊緣8c之面EF與垂直於X方向之面VF所成之銳角θ為15°以下。
圖20係表示實施例2之半導體基板之另一構成之剖視圖。於圖20中,於第1半導體部8F上配置第1功能層9F,於第2半導體部8S上配置第2功能層9S。
於圖20中,亦由於形成於較第1半導體部8F更為上層之第1功能層9F不易形成於較第1突出部H1之頂部8P更為下側,形成於較第2半導體部8S更為上層之第2功能層9S不易形成於較第2突出部H2之頂部8Q更為下側,故而第1及第2功能層9F、9S相互分離。藉此,分離元件部DS之步驟之良率提高。
又,於在功能層9形成例如GaN系之p型半導體層之情形時,矽等n型摻雜劑之上升藉由第1及第2突出部H1、H2而大幅度減少,故而n型摻雜劑不易納入至p型半導體層,可提高p型半導體層之功能。
圖21係表示實施例2之半導體基板之另一構成之剖視圖。於圖21之半導體基板10中,第1半導體部8F具有:第1上方邊緣8a,其於俯視時位於遮罩部中央5c與第1開口部K1之間;第1下方邊緣8c,其於俯視時位於遮罩部中央5c與第1開口部K1之間(位於遮罩部5上);及第1突出部H1,其於俯視時較第1下方邊緣8c更向X方向(第2半導體部8S側)突出。
第2半導體部8S具有:第2上方邊緣8b,其於俯視時位於遮罩部中央5c與第2開口部K2之間;第2下方邊緣8d,其於俯視時位於遮罩部中央5c與第2開口部K2之間(位於遮罩部5上);及第2突出部H2,其於俯視時較第2下方邊緣8d更向X方向(第1半導體部8F側)突出。
第1及第2半導體部8F、8S中俯視時與遮罩部5重疊之部分為包含GaN系半導體,並且具有與(0001)面(c面)平行之上表面8J及下表面8U之GaN系晶體GK。GaN系晶體GK具備與<0001>方向平行之剖面中之非貫通錯位密度大於上表面8J中之貫通錯位密度且與<1-100>方向平行之下方邊緣8c、及較下方邊緣更向<11-20>方向突出之突出部(懸突部)H1。
於圖21之半導體基板10中,第1半導體部之側面ES(端面)包括包含第1上方邊緣8a之上側傾斜面EA、與X方向垂直之垂直面EJ、及包含第1下方邊緣8c之下側傾斜面EC。
圖22係表示實施例2之半導體基板之另一構成之剖視圖。如圖22所示,亦可於圖21之第1及第2半導體部8F、8S上設置第1及第2功能層9F、9S。
[實施例3] 於實施例1、2中,使ELO半導體層8為GaN層,但並不限定於此。作為實施例1、2之ELO半導體層8,亦可形成作為GaN系半導體層之InGaN層。InGaN層之橫向成膜例如以如低於1000℃之低溫進行。其原因在於,於高溫中銦之蒸氣壓變高,不會有效地納入至膜中。藉由成膜溫度成為低溫,而具有遮罩部5與InGaN層之相互反應減少之效果。又,InGaN層與GaN層相比亦具有與遮罩部5之反應性更低之效果。若將銦以In組成水準1%以上納入至InGaN層,則與遮罩部5之反應性進而降低,故而較理想。作為鎵原料氣體,較佳為使用三乙基鎵(TEG)。
[實施例4] 圖23係表示實施例4之構成之模式性剖視圖。於實施例4中,於ELO半導體層8上,成膜構成LED之功能層9。ELO半導體層8例如為摻雜有矽等之n型。功能層9自下層側起依次包含活性層34、電子阻擋層35、及GaN系p型半導體層36。活性層34為MQW(Multi-Quantum Well,多量子井),且包含InGaN層及GaN層。電子阻擋層35例如為AlGaN層。GaN系p型半導體層36例如為GaN層。陽極38以與GaN系p型半導體層36接觸之方式配置,陰極39以與半導體層8接觸之方式配置。藉由使ELO半導體層8及功能層9自模板基板7離開可獲得半導體裝置20(包含GaN系晶體)。亦可成膜至ELO半導體層8為止,將半導體基板10暫時自成膜裝置取出,利用另一裝置成膜功能層9。於該情形時,亦可於ELO半導體層8與功能層9之間插入n型之GaN層作為成為再生長時之緩衝之中間層。中間層之厚度可為0.1 μm左右~3 μm左右。
圖24係表示對實施例4之電子機器之應用例之剖視圖。藉由實施例4,可獲得紅色微型LED20R、綠色微型LED20G、藍色微型LED20B,藉由將該等安裝於驅動基板(TFT基板)23,可構成微LED顯示器30D(電子機器)。作為一例,將紅色微型LED20R、綠色微型LED20G、藍色微型LED20B經由導電樹脂24(例如,各向異性導電樹脂)等而安裝於驅動基板23之複數個像素電路27,然後,將控制電路25及驅動器電路29等安裝於驅動基板23。驅動器電路29之一部分亦可包含於驅動基板23。
[實施例5] 圖25係表示實施例5之構成之模式性剖視圖。於實施例5中,於ELO半導體層8上,成膜構成半導體雷射之功能層9。功能層9自下層側起依次包含n型包覆層41、n型導引層42、活性層43、電子阻擋層44、p型導引層45、p型包覆層46、及GaN系p型半導體層47。各導引層42、45可使用InGaN層。各包覆層41、46可使用GaN層或AlGaN層。陽極48以與GaN系p型半導體層47接觸之方式配置,陰極49以與ELO半導體層8接觸之方式配置。藉由將ELO半導體層8及功能層9自模板基板7離開可獲得半導體裝置20(包含GaN系晶體)。
[實施例6] 圖26係表示實施例6之構成之剖視圖。於實施例6中,主基板1使用經表面凹凸加工之藍寶石基板。基底層4具有緩衝層2及晶種層3。於實施例6中,於主基板1上成膜具有(20-21)面之GaN層作為基底層4。於該情形時,ELO半導體層8成為於基底層4中作為結晶主面之(20-21)面,可獲得半極性面之ELO半導體層8。藉由於半極性面上設置雷射、LED用之功能層,而具有於活性層中電子與電洞之再耦合機率提高之優點。再者,藉由使用經表面凹凸加工之藍寶石基板,亦可於主基板1上成膜具有(11-22)面之GaN層作為基底層4。
[實施例7] 基底層4亦可不形成於基板整體。於基底層4包含與主基板1不同之材料之情形時,起因於熱膨脹係數、晶格常數等之差異而於半導體基板內(ELO半導體層、功能層)會產生應力。因此,亦可使基底層4(緩衝層及晶種層之至少一者)以與遮罩圖案6之各開口部重疊之方式局部地設置。又,亦可為不設置基底層4之構成。
圖27係表示實施例7之構成之剖視圖。亦可使模板基板(ELO生長用基板)7例如以圖27之方式構成。例如,可由主基板1與遮罩圖案6構成模板基板7(不設置基底層),使主基板1之表層中與第1開口部K1重疊之部分作為晶種部發揮功能。於該情形時,作為主基板1,可使用GaN塊狀基板、或6H-SiC塊狀基板或者4H-SiC塊狀基板。所謂塊狀基板,係指自塊狀晶體切出之晶圓(自支撐基板)。
又,可由主基板1、以俯視時與第1開口部K1重疊之方式局部地配置之晶種層3(晶種部)、及遮罩圖案6構成模板基板7。於該情形時,亦可使主基板1為矽基板,晶種層3為包含AlN之構成,亦可使主基板1為碳化矽基板,晶種層3為包含GaN系半導體之構成。
又,可由主基板1、覆蓋主基板1之緩衝層2、以俯視時與第1開口部K1重疊之方式局部地配置之晶種層3(晶種部)、及遮罩圖案6構成模板基板7。例如,可為主基板1為矽基板,緩衝層2為包含AlN及SiC之至少一者之構成,晶種層3包含GaN系半導體之構成。
又,可由主基板1、以俯視時與第1開口部K1重疊之方式局部地配置之緩衝層2(緩衝部)、以俯視時與第1開口部K1重疊之方式局部地配置之晶種層3(晶種部)、及遮罩圖案6構成模板基板7。例如,可為主基板1為矽基板,緩衝層2為包含AlN及碳化矽之至少一者之構成,晶種層3包含GaN系半導體之構成。
1:主基板 2:緩衝層 3:晶種層 3S:晶種部 4:基底層 5:遮罩部 5c:遮罩部中央 6:遮罩圖案 7:模板基板(ELO用基板) 8:ELO半導體層 8a:第1上方邊緣 8b:第2上方邊緣 8c:第1下方邊緣 8d:第2下方邊緣 8F:第1半導體部 8J:上表面 8P:頂部 8Q:頂部 8S:第2半導體部 8U:下表面 9:功能層 9F:第1功能層 9S:第2功能層 9x:端面 10:半導體基板 20:半導體裝置 20B:藍色微型LED 20G:綠色微型LED 20R:紅色微型LED 23:驅動基板 24:導電樹脂 25:控制電路 27:像素電路 29:驅動器電路 30:電子機器 30D:微LED顯示器 34:活性層 35:電子阻擋層 36:GaN系p型半導體層 38:陽極 39:陰極 41:n型包覆層 42:n型導引層 43:活性層 44:電子阻擋層 45:p型導引層 46:p型包覆層 47:GaN系p型半導體層 48:陽極 49:陰極 70:半導體基板之製造裝置 72:半導體形成部 74:控制部 d1:厚度 DS:元件部 EA:上側傾斜面 EC:下側傾斜面 EF:面 EJ:垂直面 EK:低缺陷部 ES:側面 GK:GaN系晶體 Gp:間隙(間隙空間) H1:第1突出部 H2:第2突出部 Hp:距離 K1:第1開口部 K2:第2開口部 L1:最大距離 L2:最大距離 La:距離 Lb:距離 NS:錯位繼承部 Pa:上側間隔 Pc:下側間隔 Px:最小間隔 SL:初始生長層 ST:印模裝置 TR:溝槽 UK:基底基板 VF:面 WL:寬度 Wm:寬度 θ:銳角 θ1:第1銳角 θ2:第2銳角
圖1係表示本實施方式之半導體基板之構成之俯視圖及剖視圖。 圖2係表示本實施方式之半導體基板之另一構成之剖視圖。 圖3係表示本實施方式之半導體基板之製造方法之一例的流程圖。 圖4係表示本實施方式之半導體基板之製造裝置之一例的方塊圖。 圖5係表示本實施方式之半導體裝置之製造方法之一例的流程圖。 圖6係表示元件部之分離之一例之俯視圖。 圖7係表示元件部之分離及離開之一例之剖視圖。 圖8係表示本實施方式之電子機器之構成之模式圖。 圖9係表示本實施方式之電子機器之另一構成之模式圖。 圖10係表示實施例1之半導體基板之構成之俯視圖及剖視圖。 圖11係表示ELO半導體層之橫生長之一例之剖視圖。 圖12係表示實施例1之半導體基板之另一構成之剖視圖。 圖13係表示本實施方式之半導體基板之另一構成之剖視圖。 圖14係表示實施例1中之元件部之分離之步驟的俯視圖。 圖15係表示實施例1中之元件部之離開之步驟的剖視圖。 圖16係表示實施例1之半導體基板之另一構成之剖視圖。 圖17係表示實施例1之半導體基板10之另一構成之剖視圖。 圖18係表示元件部之離開之另一例之剖視圖。 圖19係表示實施例2之半導體基板之構成之剖視圖。 圖20係表示實施例2之半導體基板之另一構成之剖視圖。 圖21係表示實施例2之半導體基板之另一構成之剖視圖。 圖22係表示實施例2之半導體基板之另一構成之剖視圖。 圖23係表示實施例4之構成之模式性剖視圖。 圖24係表示對實施例4之電子機器之應用例之剖視圖。 圖25係表示實施例5之構成之模式性剖視圖。 圖26係表示實施例6之構成之剖視圖。 圖27係表示實施例7之構成之剖視圖。
1:主基板
3S:晶種部
4:基底層
5:遮罩部
6:遮罩圖案
7:模板基板(ELO用基板)
8:ELO半導體層
8a:第1上方邊緣
8c:第1下方邊緣
8F:第1半導體部
8J:上表面
8P:頂部
8S:第2半導體部
8U:下表面
10:半導體基板
EC:下側傾斜面
EK:低缺陷部
Gp:間隙(間隙空間)
H1:第1突出部
K1:第1開口部
K2:第2開口部
NS:錯位繼承部
UK:基底基板

Claims (38)

  1. 一種半導體基板,其具備:模板基板,其包含主基板以及第1晶種部及第2晶種部;以及與上述第1晶種部相接之第1半導體部及與上述第2晶種部相接之第2半導體部;上述第1半導體部及上述第2半導體部包含氮化物半導體,且在上述氮化物半導體之a軸方向上相鄰,上述第1半導體部具有:第1下方邊緣,其沿上述氮化物半導體之m軸方向;及第1突出部,其較上述第1下方邊緣更向上述第2半導體部側突出,上述第1半導體部在a軸方向上之長度大於上述第1半導體部在c軸方向上之長度。
  2. 如請求項1之半導體基板,其中上述第2半導體部具有:第2下方邊緣,其於上述氮化物半導體之m軸方向延伸;及第2突出部,其較上述第2下方邊緣更向上述第1半導體部側突出,上述第1下方邊緣及上述第2下方邊緣之間隔小於上述第1半導體部及上述第2半導體部之厚度。
  3. 如請求項1之半導體基板,其中上述模板基板包含遮罩圖案,上述遮罩圖案包含在第1方向相鄰之第1開口部及第2開口部、以及位於上述第1及第2開口部之間之上述遮罩部, 上述第1晶種部位於上述第1開口部下,上述第2晶種部位於上述第2開口部下,上述第1下方邊緣於俯視時位於上述遮罩部中央與上述第1開口部之間,上述第2半導體部具有:第2下方邊緣,其於俯視時位於上述遮罩部中央與上述第2開口部之間;及第2突出部,其於俯視時較上述第2下方邊緣更向上述第1半導體部之側突出。
  4. 如請求項3之半導體基板,其中上述第1半導體部具有於俯視時位於上述遮罩部中央與上述第1開口部之間之第1上方邊緣,於上述第1方向,上述第1開口部與上述第1突出部之最大距離大於上述第1開口部與上述第1上方邊緣之距離。
  5. 如請求項4之半導體基板,其中上述第2半導體部具有於俯視時位於上述遮罩部中央與上述第2開口部之間之第2上方邊緣,於上述第1方向,上述第2開口部與上述第2突出部之最大距離大於上述第2開口部與上述第2上方邊緣之距離。
  6. 如請求項4之半導體基板,其中上述第1半導體部之側面包括包含上述第1下方邊緣之下側傾斜面、及包含上述第1上方邊緣之上側傾斜面。
  7. 如請求項6之半導體基板,其中上述下側傾斜面與垂直於上述第1方向之面所成的第1銳角小於上述上側傾斜面與垂直於上述第1方向之面所成 的第2銳角。
  8. 如請求項7之半導體基板,其中上述第1銳角為12°以下。
  9. 如請求項4至8中任一項之半導體基板,其中上述遮罩部與上述第1突出部之頂部之距離大於上述第1半導體部之厚度的一半。
  10. 如請求項9之半導體基板,其中上述第1半導體部與上述第2半導體部之最小間隔小於表示上述第1上方邊緣及上述第2上方邊緣之間隔的上側間隔。
  11. 如請求項10之半導體基板,其中上述上側間隔大於上述下側間隔。
  12. 如請求項3之半導體基板,其中上述第1半導體部具有於俯視時位於上述遮罩部中央與上述第1開口部之間之第1上方邊緣,上述第1上方邊緣為上述第1突出部之頂部。
  13. 如請求項12之半導體基板,其中上述第2半導體部具有於俯視時位於上述遮罩部中央與上述第2開口部之間之第2上方邊緣,上述第2上方邊緣為上述第2突出部之頂部。
  14. 如請求項13之半導體基板,其中於上述第1方向,上述第1開口部與上述第1上方邊緣之距離大於上述第1開口部與上述第1下方邊緣之距離。
  15. 如請求項14之半導體基板,其中於上述第1方向,上述第2開口部與上述第2上方邊緣之距離大於上述第2開口部與上述第2下方邊緣之距離。
  16. 如請求項15之半導體基板,其中位於上述第1半導體部與上述第2半導體部之間之間隙空間具有上述遮罩部側成為寬幅之倒錐形形狀。
  17. 如請求項13至16中任一項之半導體基板,其中表示上述第1上方邊緣及上述第2上方邊緣之間隔之上側間隔小於5μm。
  18. 如請求項13至16中任一項之半導體基板,其中表示上述第1上方邊緣及上述第2上方邊緣之間隔之上側間隔相對於上述遮罩部的寬度之比未達0.5。
  19. 如請求項13至16中任一項之半導體基板,其中表示上述第1下方邊緣及上述第2下方邊緣之間隔之下側間隔相對於上述遮罩部的寬度之比未達0.7。
  20. 如請求項13至16中任一項之半導體基板,其中包含上述第1上方邊緣及上述第1下方邊緣之面相對於垂直於上述第1方向之面呈12°以下。
  21. 如請求項3之半導體基板,其中上述第1半導體部具有於俯視時位於上述遮罩部中央與上述第1開口部之間之第1上方邊緣, 上述第1半導體部之側面包括包含上述第1上方邊緣之上側傾斜面、與上述第1方向垂直之垂直面、及包含上述第1下方邊緣之下側傾斜面。
  22. 如請求項3之半導體基板,其中於較上述第1半導體部更為上層配置有第1功能層。
  23. 如請求項22之半導體基板,其中上述第1功能層包含活性層,上述活性層不到達上述第1下方邊緣。
  24. 如請求項22之半導體基板,其中於較上述第2半導體部更為上層配置有第2功能層,上述第1功能層與上述第2功能層分離。
  25. 如請求項22之半導體基板,其中上述第1功能層包含GaN系之p型半導體層,上述遮罩圖案包含氧化矽膜及氮化矽膜之至少一者。
  26. 如請求項3之半導體基板,其中上述第1及第2開口部將與上述第1方向正交之第2方向作為長邊方向,於俯視時,上述第1半導體部與上述第1開口部重疊,並且上述第2半導體部與上述第2開口部重疊。
  27. 如請求項3之半導體基板,其中於上述主基板之上方配置晶種層, 上述第1半導體部於上述第1開口部中與上述晶種層相接。
  28. 如請求項3之半導體基板,其中上述第1半導體部具有於俯視時與上述遮罩部重疊之低缺陷部,上述低缺陷部之貫通錯位密度為5×106[個/cm2]以下,上述低缺陷部之上述第1方向之尺寸為10μm以上。
  29. 如請求項3之半導體基板,其中上述第1半導體部具有於俯視時與上述遮罩部重疊之低缺陷部,於上述低缺陷部中,與厚度方向平行之剖面中之非貫通錯位密度大於上表面中之貫通錯位密度。
  30. 如請求項1之半導體基板,其中上述主基板為晶格常數與上述氮化物半導體不同之異種基板。
  31. 如請求項30之半導體基板,其中上述氮化物半導體為GaN,上述異種基板為矽基板,上述第1方向為GaN中之<11-20>方向。
  32. 一種GaN系晶體,其包含GaN系半導體,且具有與(0001)面平行之上表面及下表面,與<0001>方向平行之剖面中之非貫通錯位密度大於上述上表面中之貫通錯位密度, 具備與<1-100>方向平行之下方邊緣、及較上述下方邊緣更向<11-20>方向突出之突出部。
  33. 一種半導體裝置,其包含如請求項32之GaN系晶體。
  34. 一種電子機器,其包含如請求項1至31中任一項之半導體基板。
  35. 一種電子機器,其包含如請求項33之半導體裝置。
  36. 一種半導體基板之製造方法,其係如請求項1至31中任一項之半導體基板之製造方法,且藉由ELO法形成上述第1及第2半導體部。
  37. 如請求項36之半導體基板之製造方法,其係以小於1000之V/III比使包含III族氮化物半導體之上述第1及第2半導體部生長。
  38. 一種半導體基板之製造裝置,其係如請求項1至31中任一項之半導體基板之製造裝置,且具備藉由ELO法形成上述第1及第2半導體部之半導體形成部、及控制上述半導體形成部之控制部。
TW111114376A 2021-04-16 2022-04-15 半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器 TWI841952B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-069969 2021-04-16
JP2021069969 2021-04-16

Publications (2)

Publication Number Publication Date
TW202309358A TW202309358A (zh) 2023-03-01
TWI841952B true TWI841952B (zh) 2024-05-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112352319A (zh) 2018-06-29 2021-02-09 京瓷株式会社 半导体器件以及电子装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112352319A (zh) 2018-06-29 2021-02-09 京瓷株式会社 半导体器件以及电子装置

Similar Documents

Publication Publication Date Title
JP3036495B2 (ja) 窒化ガリウム系化合物半導体の製造方法
WO2022145454A1 (ja) 半導体基板、半導体デバイス、電子機器
JP2001185493A (ja) Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
US20240136181A1 (en) Semiconductor substrate, method for manufacturing the same, apparatus for manufacturing the same, and template substrate
JP2000091253A (ja) 窒化ガリウム系化合物半導体の製造方法
KR20140107797A (ko) 질화물 기판 제조 방법
TWI841952B (zh) 半導體基板及其製造方法、以及其製造裝置、GaN系晶體、半導體裝置、電子機器
WO2022220124A1 (ja) 半導体基板並びにその製造方法および製造装置、GaN系結晶体、半導体デバイス、電子機器
JP2000091252A (ja) 窒化ガリウム系化合物半導体及び半導体素子
TWI838676B (zh) 半導體基板、半導體裝置、電子機器
US20240191391A1 (en) SEMICONDUCTOR SUBSTRATE, MANUFACTURING METHOD AND MANUFACTURING APPARATUS THEREFOR, GaN-BASED CRYSTAL BODY, SEMICONDUCTOR DEVICE, AND ELECTRONIC DEVICE
EP4362115A1 (en) Semiconductor device manufacturing method and manufacturing device, semiconductor device and electronic device
US20240145622A1 (en) Template substrate, method and apparatus for manufacturing template substrate, semiconductor substrate, method and apparatus for manufacturing semiconductor substrate
TWI837788B (zh) 半導體裝置之製造方法及製造裝置
WO2023027086A1 (ja) 半導体デバイスの製造方法および製造装置
WO2024085243A1 (ja) 半導体基板、テンプレート基板、並びにテンプレート基板の製造方法および製造装置
EP4328956A1 (en) Semiconductor substrate and production method and production device for same, semiconductor device and production method and production device for same, electronic apparatus
TW202414535A (zh) 半導體基板以及其製造方法及製造裝置、半導體元件以及其之製造方法及製造裝置、電子機器
CN117769613A (zh) 模板基板和其制造方法以及制造装置、半导体基板和其制造方法以及制造装置、半导体器件、电子设备
TW202403126A (zh) 半導體基板、模片基板、半導體基板之製造方法及製造裝置