WO2024085234A1 - 充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラム - Google Patents
充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラム Download PDFInfo
- Publication number
- WO2024085234A1 WO2024085234A1 PCT/JP2023/037895 JP2023037895W WO2024085234A1 WO 2024085234 A1 WO2024085234 A1 WO 2024085234A1 JP 2023037895 W JP2023037895 W JP 2023037895W WO 2024085234 A1 WO2024085234 A1 WO 2024085234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- time
- control device
- battery
- battery bank
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 74
- 238000012937 correction Methods 0.000 claims abstract description 82
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000007599 discharging Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- the present invention relates to a charging control device, a power storage system, a method for notifying remaining charge time, and a program for notifying remaining charge time.
- Patent Document 1 discloses a battery bank unit (hereinafter also referred to as an “energy storage system”) that discharges power to a load device connected to an external power source when a power outage causes the external power source to be unable to supply power.
- the battery bank unit includes multiple battery banks (hereinafter also referred to as “energy storage devices"). Each of the multiple battery banks is made up of multiple secondary batteries and is connected in parallel with each other. The multiple battery banks are charged in normal times with power from the external power source.
- the battery bank unit is configured so that multiple battery banks are charged in sequence, and battery banks that are not being charged can discharge to a load device. This allows the battery bank unit to discharge to a load device even while it is being charged.
- the object of the present invention is to provide a charging control device, a power storage system, a method for notifying a user of the remaining charge time, and a program for notifying a user of the remaining charge time, which are capable of allowing the user to know the time required for charging to be completed more accurately and earlier.
- One aspect of the charging control device is to a processing unit that corrects a calculated value of a remaining charge time calculated at the start of charging of a power storage device while the power storage device is being charged, and obtains, at the start of charging, information indicating a correction timing at which the calculated value of the remaining charge time is corrected; a notification unit that notifies the correction timing at the start of charging and notifies a correction value of the calculated remaining charge time during charging; has.
- One aspect of the power storage system according to the present invention is The above-mentioned charging control device;
- the power storage device has.
- One aspect of the remaining charge time notification method is to A method for notifying remaining charge time executed in a charge control device, the method correcting a calculated value of remaining charge time calculated at the start of charging of a power storage device while the power storage device is being charged, and notifying the corrected value, comprising: acquiring information indicating a correction timing at which the calculated value of the remaining charge time is corrected at the start of charging; The correction timing is notified at the start of charging.
- One aspect of the remaining charge time notification program according to the present invention is to The above-mentioned remaining charge time notification method is executed by a computer.
- the present invention allows the user to know more accurately and earlier how long it will take to complete charging.
- FIG. 1 is a schematic diagram showing a battery bank unit according to an embodiment of the present invention
- FIG. 1 is a block diagram of a battery bank unit according to an embodiment of the present invention
- FIG. 2 is a diagram showing a first table stored in a storage unit of a control device in the battery bank unit according to the embodiment of the present invention
- FIG. 13 is a diagram showing an example of a notification screen displayed on a user's terminal device based on a notification from the battery bank unit according to the embodiment of the present invention.
- FIG. 11 is a diagram showing a second table stored in a storage unit of a control device in a battery bank unit according to a modified example of an embodiment of the present invention.
- FIG. 1 is a schematic diagram of a battery bank unit 1 according to the present embodiment.
- the battery bank unit 1 supplies power to a load device 3 connected to an external power source 2 when the external power source 2 experiences a power outage.
- the battery bank unit 1 is also charged by the power of the external power source 2.
- the battery bank unit 1 is an example of a power storage system according to the present invention.
- the external power source 2 is, for example, a device that converts commercial AC power into DC power and outputs it.
- the load device 3 is a device (for example, a server device) that operates on DC power.
- the battery bank unit 1 includes an input/output terminal 10, first and second battery banks 20, 30, a charge/discharge circuit 40, and a control device 50.
- the combination of the first and second battery banks 20, 30 is an example of an energy storage device in the present invention
- the control device 50 is an example of a charge control device in the present invention.
- the input/output terminal 10 is connected to a power line 4 that supplies power from an external power source 2 to a load device 3.
- the first and second battery banks 20, 30 are each configured with a plurality of secondary batteries (e.g., nickel-hydrogen secondary batteries) connected in series, for example.
- the secondary batteries may be secondary batteries other than nickel-hydrogen secondary batteries, such as lithium-ion secondary batteries.
- the first and second battery banks 20, 30 are each configured in the same way as each other.
- the first and second battery banks 20, 30 are connected in parallel with each other.
- the charge/discharge circuit 40 functions as a circuit that charges and discharges the first and second battery banks 20, 30 via the input/output terminals 10.
- the charge/discharge circuit 40 includes a step-up DC/DC converter 41, a changeover switch 42, a first charge switch 43, a first discharge switch 44, a second charge switch 45, and a second discharge switch 46.
- the step-up DC/DC converter 41 is a power conversion device that steps up and outputs the power supplied from the external power source 2.
- the changeover switch 42 switches the voltage value applied to the first and second battery banks 20, 30.
- the first terminal 42a is connected to the output terminal of the step-up DC/DC converter 41
- the second terminal 42b is connected to the input/output terminal 10.
- the third terminal 42c is connected to the first and second battery banks 20, 30 via the first and second charging switches 43, 45.
- the changeover switch 42 When the changeover switch 42 is in the on state, the first terminal 42a and the third terminal 42c are connected, and the power output from the step-up DC/DC converter 41 is supplied to the first and second battery banks 20, 30 via the first and second charging switches 43, 45.
- the changeover switch 42 when the changeover switch 42 is in the off state, the second terminal 42b and the third terminal 42c are connected, and the power output from the external power source 2 is supplied to the first and second battery banks 20, 30 via the first and second charging switches 43, 45.
- the first charging switch 43 When the first charging switch 43 is in the on state, it allows charging of the first battery bank 20, and when it is in the off state, it does not allow charging of the first battery bank 20.
- the first terminal 43a is connected to the third terminal 42c of the changeover switch 42, and the second terminal 43b is connected to the positive electrode of the first battery bank 20.
- the negative electrode of the first battery bank 20 is connected to ground.
- the first discharge switch 44 When the first discharge switch 44 is in the on state, it allows the first battery bank 20 to discharge, and when the first discharge switch 44 is in the off state, it does not allow the first battery bank 20 to discharge.
- the first terminal 44a is connected to the positive electrode of the first battery bank 20
- the second terminal 44b is connected to the input/output terminal 10.
- the second charging switch 45 allows charging of the second battery bank 30 when it is in the on state, and does not allow charging of the second battery bank 30 when it is in the off state.
- the first terminal 45a is connected to the third terminal 42c of the changeover switch 42, and the second terminal 45b is connected to the positive electrode of the second battery bank 30.
- the negative electrode of the second battery bank 30 is connected to ground.
- the second discharge switch 46 allows the second battery bank 30 to discharge when it is in the on state, and does not allow the second battery bank 30 to discharge when it is in the off state.
- the first terminal 46a is connected to the positive electrode of the second battery bank 30, and the second terminal 46b is connected to the input/output terminal 10.
- FIG. 2 is a block diagram of the battery bank unit 1. As shown in FIG. 2, the battery bank unit 1 further includes a current sensor 60, a first voltage sensor 61, a first temperature sensor 62, a second voltage sensor 63, and a second temperature sensor 64.
- the current sensor 60 detects the value of a current flowing in from the power supply line 4 via the input/output terminal 10 or flowing out to the power supply line 4. Specifically, the current sensor 60 detects the value of a current between the input/output terminal 10 and the connection point 40a of the charge/discharge circuit 40.
- the first voltage sensor 61 detects the voltage value of the first battery bank 20.
- the first temperature sensor 62 detects the temperature of the first battery bank 20.
- the second voltage sensor 63 detects the voltage value of the second battery bank 30.
- the second temperature sensor 64 detects the temperature of the second battery bank 30.
- the current sensor 60, the first voltage sensor 61, the first temperature sensor 62, the second voltage sensor 63, and the second temperature sensor 64 each transmit their detection values to the control device 50.
- the battery bank unit 1 also includes a third voltage sensor (not shown) that detects a power supply voltage value, which is the voltage value of the external power supply 2.
- the control device 50 detects a power outage of the external power supply 2 based on the power supply voltage value detected by the third voltage sensor.
- the control device 50 controls the charging and discharging of the battery bank unit 1 by controlling the state of each of the switches 42 to 46.
- the control device 50 has a memory unit 51, a processing unit 52, and a communication unit 53, and is realized, for example, by a computer.
- the processing unit 52 is realized, for example, by a CPU (Central Processing Unit).
- the memory unit 21 includes a storage device realized, for example, by a HDD (Hard Disk Drive) and a memory device realized, for example, by a RAM (Random Access Memory).
- the memory unit 51 stores the first table T1 shown in FIG. 3.
- the communication unit 53 is realized, for example, by a communication device capable of communicating with a user's terminal device (not shown) located remotely via a wired or wireless communication network.
- the processing unit 52 reads out from the storage device various control programs or instructions for implementing each function of the battery bank unit 1, and data related to the programs or instructions (hereinafter simply referred to as "programs, etc.") from the storage device, stores them in the memory device, and executes the various control programs or instructions while using the data, etc.
- the data, etc. include a first table T1, etc.
- the programs, etc. include a remaining charge time notification program for implementing the remaining charge time notification method in a computer.
- the programs, etc. may be stored in a removable storage medium such as a flash memory.
- the control device 50 is configured to be able to attach and detach the removable storage medium, and reads the programs, etc. from the storage medium.
- the communication unit 53 may download the programs, etc. from an external source via a communication network.
- the storage devices, memory devices, and removable storage media described above are examples of non-transient storage media.
- the first table T1 is a table that is referenced when the control device 50 calculates the remaining charge time (hereinafter also simply referred to as "remaining time"), which is the time required for the battery bank unit 1 described below to be fully charged.
- the temperature, the total charge time, the charge stop time, and the correction timing are associated with each other.
- the temperature is divided into a total of six temperature zones, and between 0°C and 40°C, there are four zones of 10°C each. It goes without saying that the temperature range of each temperature zone and the number of temperature zones are not limited to those shown in FIG. 3.
- the total charge time, the charge stop time, and the correction timing will be described in detail later.
- the temperature zones are an example of the reference values of temperature in the present invention.
- the control device 50 also calculates the SOC (State of Charge) of the battery bank unit 1, i.e., the state of charge, using a known method based on the current value detected by the current sensor 60.
- the SOC of the battery bank unit 1 is the charging rate (%) that corresponds to the total charge amount of the first and second battery banks 20 and 30.
- the changeover switch 42 and the first and second charging switches 43, 45 are in the OFF state, and the first and second discharging switches 44, 46 are in the ON state, allowing the first and second battery banks 20, 30 to discharge.
- the first and second battery banks 20, 30 are configured in the same way as each other and connected in parallel. Therefore, the voltage values and charge amounts of the first and second battery banks 20, 30 are approximately equal. Therefore, the SOC of the battery bank unit 1 and the SOC of the first and second battery banks 20, 30 are approximately equal.
- the control device 50 starts charging control when it detects a connection to the external power source 2 based on the detection value of the third voltage sensor, or when it detects the end of a power outage of the external power source 2.
- the control device 50 starts the batch charging process in S1.
- the batch charging process is a process for charging the first and second battery banks 20, 30 at the same time. Specifically, as shown in FIG. 5, the control device 50 switches the changeover switch 42 and the first and second charging switches 43, 45 from an OFF state and an ON state to an ON state (time t0) from an ON state to an ON state.
- the first and second discharge switches 44, 46 remain in the on state. This allows the battery bank unit 1 to discharge to the load device 3 even if the external power source 2 experiences a power outage during the batch charging process.
- the voltage value of the solid line indicates the voltage value of the first battery bank 20
- the voltage value of the dashed line indicates the voltage value of the second battery bank 30.
- the control device 50 determines whether the bank voltage value, which is the voltage value of the battery bank unit 1, is equal to or greater than the power supply voltage value.
- the bank voltage value is the average value of the voltage value of the first battery bank 20 and the voltage value of the second battery bank 30. Note that the bank voltage value may be the voltage value of one of the first and second battery banks 20, 30. If the bank voltage value is lower than the power supply voltage value (NO in S2), the batch charging process continues.
- the control device 50 ends the batch charging process in S3 and starts the first bank charging process.
- the first bank charging process is a process for charging only the first battery bank 20.
- the first battery bank 20 In the first bank charging process, the first battery bank 20 is fully charged to a voltage value higher than the power supply voltage value.
- the second battery bank 30 In the first bank charging process, the second battery bank 30 is not charged.
- the control device 50 switches the second charging switch 45 to the OFF state and switches the first discharging switch 44 to the OFF state (time t1).
- This causes power from the step-up DC/DC converter 41 to be supplied only to the first battery bank 20, and the voltage value of the first battery bank 20 further increases from the power supply voltage value.
- the first discharging switch 44 is in the OFF state, and the first battery bank 20 is not discharged. This makes it possible to prevent a voltage value higher than the power supply voltage value from being applied to the load device 3, and ultimately prevents failure of the load device 3.
- the second discharge switch 46 is in the on state. Therefore, even if the external power source 2 experiences a power outage during the first bank charging process, the second battery bank 30 can discharge to the load device 3.
- the control device 50 determines in S4 whether the first battery bank 20 is fully charged. Specifically, the control device 50 determines whether the detection value of the first temperature sensor 62 is a predetermined first temperature. The first temperature is the temperature when the first battery bank 20 is fully charged. If the detection value of the first temperature sensor 62 is lower than the first temperature (NO in S4), the control device 50 continues charging only the first battery bank 20.
- the control device 50 stops charging the first battery bank 20 in S5.
- the control device 50 switches the first charging switch 43 to the OFF state (time t2). This stops charging the first battery bank 20, and the voltage value of the first battery bank 20 gradually decreases due to self-discharge. At this time, the temperature of the first battery bank 20 is higher than the temperature of the second battery bank 30. Therefore, the amount of drop in the voltage value of the first battery bank 20 per unit time is greater than the amount of drop in the voltage value of the second battery bank 30 per unit time.
- the control device 50 determines whether the voltage value of the first battery bank 20 is equal to or lower than the power supply voltage value. If the voltage value of the first battery bank 20 is higher than the power supply voltage value (NO in S6), the control device 50 maintains the state in which charging of the first and second battery banks 20, 30 is stopped.
- the control device 50 ends the first bank charging process in S7 and starts the second bank charging process.
- the second bank charging process is a process for charging only the second battery bank 30.
- the second battery bank 30 In the second bank charging process, the second battery bank 30 is fully charged to a voltage value higher than the power supply voltage value.
- the first battery bank 20 In the second bank charging process, the first battery bank 20 is not charged.
- the control device 50 switches the second charging switch 45 to the ON state, switches the first discharging switch 44 to the ON state, and switches the second discharging switch 46 to the OFF state (time t3).
- the control device 50 switches the second charging switch 45 to the ON state, switches the first discharging switch 44 to the ON state, and switches the second discharging switch 46 to the OFF state (time t3).
- power is supplied from the step-up DC/DC converter 41 only to the second battery bank 30, and the voltage value of the second battery bank 30 rises and exceeds the power supply voltage value.
- the second discharging switch 46 is in the OFF state, and the second battery bank 30 is not discharged. This makes it possible to prevent a voltage value higher than the power supply voltage value from being applied to the load device 3, and ultimately prevents failure of the load device 3, etc.
- the first discharge switch 44 is in the on state. Therefore, even if the external power source 2 experiences a power outage during the second bank charging process, the first battery bank 20 can discharge to the load device 3.
- the control device 50 determines in S8 whether the second battery bank 30 is fully charged. Specifically, the control device 50 determines whether the detection value of the second temperature sensor 64 is a predetermined second temperature. The second temperature is the temperature when the second battery bank 30 is fully charged. If the detection value of the second temperature sensor 64 is lower than the second temperature (NO in S8), the control device 50 continues charging only the second battery bank 30. Note that the second temperature may be the same as the first temperature, which is the temperature when the first battery bank 20 is fully charged.
- the control device 50 stops charging the second battery bank 30 in S9.
- the control device 50 switches the second charging switch 45 to the OFF state (time t4). This stops charging the second battery bank 30, and the voltage value of the second battery bank 30 gradually decreases due to self-discharge. At this time, the temperature of the second battery bank 30 is higher than the temperature of the first battery bank 20. Therefore, the amount of drop in the voltage value of the second battery bank 30 per unit time is greater than the amount of drop in the voltage value of the first battery bank 20 per unit time.
- the control device 50 determines whether the voltage value of the second battery bank 30 is equal to or lower than the power supply voltage value. If the voltage value of the second battery bank 30 is higher than the power supply voltage value (NO in S10), the control device 50 maintains the state in which charging of the first and second battery banks 20, 30 is stopped.
- the control device 50 ends the second bank charging process in S11. Specifically, the control device 50 switches the changeover switch 42 to the OFF state and the second discharge switch 46 to the ON state (time t5). This ends the charging of the battery bank unit 1.
- the control device 50 determines the SOC of the battery bank unit 1 at the time when charging of the battery bank unit 1 is completed to be 100%.
- the battery bank unit 1 may have three or more battery banks.
- the m battery banks are charged at once in the batch charging process.
- each of the m battery banks is charged one by one in turn, similar to the first and second bank charging processes described above.
- the remaining time is the time required until charging of the battery bank unit 1 is completed.
- the control device 50 calculates the remaining time while executing the above-mentioned charging control, specifically, between times t0 and t5 in FIG. 5.
- the control device 50 reads and acquires from the first table T1 each piece of information on the total charging time, charging stop time, and correction timing that is associated with the temperature at the start of charging of the battery bank unit 1.
- the temperature of the battery bank unit 1 is, for example, the average temperature of the first and second battery banks 20, 30. Note that the temperature of the battery bank unit 1 may be the temperature of one of the first and second battery banks 20, 30.
- the total charging time and charging stop time are used to calculate the remaining time using equation (1) described later.
- the "start of charging" in this embodiment does not have to be exactly the same point in time as the start of charging, and may be, for example, a point in time that is slightly shifted before or after the start of charging.
- the total charging time is specifically the time required for the SOC of the battery bank unit 1 at the start of charging to reach 100% from a first charging rate (e.g., 0%), and is determined in advance for each temperature range by actual measurement in an experiment or the like, and stored in the first table T1.
- the first charging rate is an arbitrary value used in an experiment or the like that determines the total charging time to be stored in advance in the first table T1.
- the battery bank unit 1 with its SOC at the first charging rate is used to perform the batch charging process and the first and second bank charging processes as described above, and the time required for the SOC of the battery bank unit 1 to reach 100% from the first charging rate is measured as the total charging time.
- the charging stop time is specifically the time equivalent to the time from when charging of the first battery bank 20 stops to when charging of the second battery bank 30 starts (i.e., the time from time t2 to time t3 in FIG. 5), and is determined in advance for each temperature range by actual measurement in an experiment or the like and stored in the first table T1. In the experiment to determine the total charging time described above, the time during which charging of the battery bank is stopped while the battery bank unit 1 is charging is measured as the charging stop time.
- the control device 50 When charging control starts, for example, if the temperature of the battery bank unit 1 is 25°C, the control device 50 obtains the total charging time "A3" and the charging stop time "B3" corresponding to the temperature "20°C or more and less than 30°C" from the first table T1 in FIG. 3.
- the control device 50 calculates the remaining time. Specifically, the control device 50 calculates the remaining time at the start of charging, which is the remaining time at the start of charging, using formula (1).
- Ts and Tt are the charging stop time and the total charging time obtained from the first table T1. So (%) is the SOC of the battery bank unit 1 at the start of charging control (time t0). ⁇ (%) is the first charging rate, which is the SOC of the battery bank unit at the start of the experiment that determines the total charging time to be stored in the first table T1.
- So may be the SOC of one of the first and second battery banks 20, 30 at the start of charging control.
- the control device 50 sets the SOC of the first and second battery banks 20, 30 to 100% when charging of the battery bank unit 1 is completed.
- first and second battery banks 20, 30 are configured similarly to each other as described above, and the surrounding environments (temperature, humidity, etc.) of the first and second battery banks 20, 30 are approximately the same. Therefore, the time during which charging is stopped in the second bank charging process (the time from time t4 to time t5 in FIG. 5) can be considered to be equal to the time during which charging is stopped in the first bank charging process (the time from time t2 to time t3). Therefore, in an experiment to determine the total charging time to be stored in the first table T1, if the battery bank unit 1 has m battery banks, the total time during which charging of any of the battery banks is stopped is the product of m and the charging stop time (Ts). In other words, "m x Ts" in formula (1) corresponds to the total time during which charging of any of the battery banks is stopped while the battery bank unit 1 is charging.
- (100-So)/(100- ⁇ ) in formula (1) is the ratio of the charge amount required for the SOC of the battery bank unit 1 to change from So to 100% to the charge amount required for the SOC of the battery bank unit 1 to change from ⁇ to 100%.
- formula (1) the time required for the SOC of a battery bank unit 1 having m battery banks to reach 100% from So is calculated by adding the time during which any of the battery banks are being charged (Tt-m x Ts) x (100-So)/(100- ⁇ ) and the total time during which charging of any of the battery banks is stopped (m x Ts).
- formula (1) is a formula for calculating the remaining time at the start of charging as the time from the start of charging to the completion of charging of a battery bank unit 1 having m battery banks in charging control when the SOC is So at the start of charging.
- the control device 50 notifies the terminal device (not shown) of the user who manages the load device 3 of the calculated remaining time at the start of charging.
- the terminal device displays a notification screen 70 (see FIG. 7) indicating the remaining time at the start of charging on a display unit such as a display. This allows the manager of the load device 3 to know the time from the start of charging to the completion of charging of the battery bank unit 1.
- the notification screen 70 may be in a display format in which the remaining time at the start of charging is displayed as is, or in a display format in which an estimated charging completion time calculated based on the remaining time at the start of charging is displayed.
- the terminal device may convert the remaining time at the start of charging notified by the control device 50 into an estimated charging completion time, or the control device 50 may convert the remaining time at the start of charging into an estimated charging completion time and notify the terminal device of the estimated charging completion time.
- the estimated charging completion time is displayed in the estimated charging completion time display unit 71 on the notification screen 70 illustrated in FIG. 7, for example.
- the control device 50 measures the time that has elapsed since the start of charging the battery bank unit 1. Then, at every predetermined time interval, the control device 50 subtracts the elapsed time from the remaining time at the start of charging calculated in S21 to calculate the remaining time at that time and updates the remaining time to the latest one, and notifies the terminal device of the updated remaining time. The terminal device displays the updated remaining time on the display unit.
- the control device 50 notifies the terminal device of the correction timing information obtained by reading from the first table T1.
- the correction timing information is information indicating the correction timing
- the correction timing is the timing at which the calculated value of the remaining time is corrected.
- the correction timing is expressed as a time interval from the start of charging to the execution of correction.
- the terminal device displays a notification screen 70 indicating the correction timing information together with the remaining time at the start of charging on the display unit. This allows the administrator of the load device 3 to understand the timing at which the remaining time is corrected.
- the display format of the correction timing on the notification screen 70 may be one that indicates how many minutes (or how many hours) after the current time the correction of the remaining time will be executed, or one that displays the scheduled time (scheduled correction time) at which the correction of the remaining time will be executed.
- the terminal device may convert the correction timing notified by the control device 50 into the scheduled correction time, or the control device 50 may convert the correction timing into the scheduled correction time and notify the terminal device of the scheduled correction time.
- the scheduled correction time is displayed in the scheduled correction time display section 72 on the notification screen 70 illustrated in FIG. 7, for example.
- the control device 50 determines in S22 whether the first bank charging process has ended. If the batch charging process or the first bank charging process is being executed (NO in S22), the control device 50 continues to update and notify the remaining time. In addition, while executing S22, the control device 50 measures the time actually required for each of the batch charging process and the first bank charging process (hereinafter referred to as the actual batch charging time and the actual first bank charging time).
- the control device 50 determines in S23 whether or not it is necessary to correct the remaining time at the time when the first bank charging process is completed, that is, at time t3 in FIG. 5. The control device 50 determines that it is necessary to correct the remaining time at time t3 when the time difference between the remaining time at the start of charging calculated in S21 and the corrected remaining time at the start of charging, which will be described later, is equal to or greater than a predetermined time difference.
- the correction start remaining time is the time from the start of charging to the completion of charging of the battery bank unit 1, calculated based on the time actually required to end the first bank charging process during charging control.
- the time required to charge each of the multiple battery banks is approximately equal if each of the multiple battery banks is configured similarly to one another. Therefore, the actual first bank charging time and the time actually required for the second bank charging process are approximately equal.
- the correction start remaining time is the sum of the actual lump-sum charging time and twice the actual first bank charging time. Note that when the number of battery banks is m, the correction start remaining time is the sum of the actual lump-sum charging time and m times the actual first bank charging time.
- the control device 50 If the time difference is smaller than the predetermined time difference (NO in S23), the control device 50 does not correct the remaining time at time t3. On the other hand, if the time difference is equal to or greater than the predetermined time difference (YES in S23), the control device 50 corrects the remaining time at time t3 in S24. Specifically, the control device 50 replaces the remaining time at time t3 (the end of the first bank charging process) with the actual first bank charging time. Furthermore, when the control device 50 corrects the remaining time at time t3, it updates the latest remaining time as follows. That is, after time t3, the control device 50 subtracts the elapsed time from time t3 from the actual first bank charging time at predetermined intervals to calculate the remaining time at that time and update the latest remaining time. The control device 50 then notifies the terminal device of the updated remaining time.
- the first and second battery banks 20, 30 are configured similarly to each other as described above, and the surrounding environments (temperature, humidity, etc.) of the first and second battery banks 20, 30 are approximately equal. Therefore, the time actually required for the second bank charging process is approximately equal to the actual first bank charging time. In other words, when the first bank charging process is completed, the control device 50 can accurately correct the remaining time by replacing the remaining time with the actual first bank charging time, and notify the corrected remaining time. Note that the control device 50 may correct the remaining time in S24 without determining whether or not the remaining time needs to be corrected in S23.
- the control device 50 notifies the terminal device of the correction value (updated remaining time) of the calculated remaining time.
- the timing of this correction is notified in advance from the control device 50 to the terminal device in S21. Therefore, the user can know the correction timing at which a more accurate remaining time is obtained at the time of starting charging, and can check the remaining time through the notification screen 70 as soon as the correction timing arrives. That is, according to this embodiment, the user can know the more accurate remaining time earlier.
- the charging curve in charging control for example, the fluctuation curve of the voltage value of the first and second battery banks 20, 30 shown in FIG. 5
- the correction timing at which the estimated charging completion time is more accurate than at the time of starting charging is notified in S21 at the time of starting charging, and the user can know the accurate charging completion time without delay, thereby improving user convenience.
- control device 50 determines whether the second bank charging process has ended. If the second bank charging process is being performed (NO in S25), the control device 50 continues updating and notifying the remaining time.
- the control device 50 updates the first table T1 in S26.
- the control device 50 updates the total charging time in the first table T1 corresponding to the temperature at the start of charging the battery bank unit 1 based on the actual total charging time.
- the actual total charging time is the time actually required from the start of charging the battery bank unit 1 to the completion of charging the battery bank unit 1 in the charging control.
- the control device 50 subtracts the remaining time at the start of charging calculated in S21 from the total charging time acquired in S20, and calculates an updated total charging time by adding the actual total charging time to the subtracted time.
- the updated total charging time is the charging time from the first charging rate ( ⁇ ) to the SOC (So) at the start of charging, which is calculated by subtracting the remaining time at the start of charging calculated in S21 from the total charging time acquired in S20, plus the charging time actually required from the SOC (So) at the start of charging to 100% (actual total charging time).
- the updated total charging time is the total charging time stored in the first table T1 corrected using the difference between the actual measured value (actual total charging time) of the time from the start of charging to the completion of charging of the battery bank unit 1 in charging control and the calculated value (the remaining time at the start of charging calculated in S21).
- the control device 50 updates the total charging time in the first table T1 corresponding to the temperature at the start of charging the battery bank unit 1 with the calculated updated total charging time. For example, if the temperature of the battery bank unit 1 is 25°C at the start of charging control, the control device 50 updates the total charging time "A3" in the first table T1 corresponding to a temperature of "20°C or more and less than 30°C" with the calculated updated total charging time.
- control device 50 updates the charging stop time in the first table T1 that corresponds to the temperature of the battery bank unit 1 at the start of charging the battery bank unit 1 with the actual charging stop time.
- the actual charging stop time is the time that actually elapses from the stop of charging the first battery bank 20 to the start of charging the second battery bank 30 in charging control.
- the charging stop time stored in the first table T1 is updated with the time that charging actually stopped in the first bank charging process.
- the control device 50 updates the charging stop time "B3" corresponding to a temperature of "20°C or more and less than 30°C" in the first table T1 with the actual charging stop time.
- control device 50 updates the correction timing in the first table T1, which corresponds to the temperature of the battery bank unit 1 at the start of charging the battery bank unit 1, with the actual correction timing.
- the actual correction timing is the time interval that actually elapses from the start of charging to the execution of correction in charging control.
- the control device 50 updates the correction timing "C3" in the first table T1, which corresponds to a temperature of "20°C or higher and lower than 30°C," with the actual correction timing.
- the actual total charging time, the actual charging stop time, and the actual correction timing vary depending on the surrounding environment of the battery bank unit 1, the power supply voltage value, the temperatures of the first and second battery banks 20, 30, the aging of the battery bank unit 1, and the degree of deterioration of the first and second battery banks 20, 30 (hereinafter referred to as the surrounding environment of the battery bank unit 1). Therefore, by updating the first table T1 with the updated total charging time, the actual charging stop time, and the actual correction timing, the values stored in the first table T1 can be adapted to the surrounding environment of the battery bank unit 1. Therefore, by updating the first table T1 to correspond to changes in the surrounding environment of the battery bank unit 1 each time charging of the first and second battery banks 20, 30 is performed, the control device 50 can accurately calculate the remaining time when charging control is performed, and can improve the reliability of notifications.
- the control device 50 After updating the first table T1 in S26, the control device 50 ends the control of calculating the remaining time. The control device 50 also ends the notification of the remaining time. Note that if a power outage occurs in the external power source 2 during charging control of the battery bank unit 1 and at least one of the first and second battery banks 20, 30 discharges, the control device 50 ends the control of calculating the remaining time without updating the first table T1.
- the memory unit 51 may store multiple tables. Below, a case will be described where the memory unit 51 further stores the second table T2 of FIG. 7.
- the second table T2 the temperature, the total charging time, the charging stop time, and the correction timing are associated with each other in the same manner as in the first table T1.
- the values stored in the total charging time, the charging stop time, and the correction timing are different from those in the first table T1.
- the control device 50 selects the table from which to obtain information, from the first or second table T1, T2, based on the SOC of the battery bank unit 1 at the start of charging. Specifically, the control device 50 selects the first table T1 when the SOC of the battery bank unit 1 at the start of charging is lower than a predetermined second charging rate (e.g., 90%). On the other hand, the control device 50 selects the second table T2 when the SOC of the battery bank unit 1 at the start of charging is equal to or higher than the second charging rate.
- the second charging rate is an arbitrary value determined based on the characteristics of the battery bank unit 1 during charging, which will be described later.
- the control device 50 selects the first table T1.
- the control device 50 selects the second table T2 based on the fact that the SOC at the start of charging control is equal to or higher than the second charging rate (90%).
- the SOC of the battery bank affects characteristics such as how the voltage and temperature of the battery bank rise during charging. Therefore, if the SOC of the battery bank unit 1 at the start of charging is different, characteristics during charging such as the amount of increase per unit time in the bank voltage value of the battery bank unit 1 and the amount of increase per unit time in the temperature of the battery bank unit 1 will differ, and the way the charging rate rises will also differ. Therefore, the control device 50 can accurately calculate the remaining time by selecting an appropriate table based on the SOC of the battery bank unit 1 at the start of charging.
- the first and second battery banks 20, 30 may also be configured differently from each other.
- the charging stop time in the first bank charging process, the second charging stop time in the second bank charging process, the temperature, and the total charging time may be associated with each other in the first and second tables T1, T2.
- the second charging stop time corresponds to the time during which charging is stopped in the second bank charging process in the experiment that determines the total charging time to be stored in the first table T1.
- the remaining time may not be corrected at the end of the first bank charging process, i.e., S23 and S24 in FIG. 6 may not be executed.
- control device 50 may execute the first bank charging process and the second bank charging process in the charging control without executing the lump-sum charging process. In this case, S1 and S2 in FIG. 4 are not executed, and the actual lump-sum charging time is zero in the calculation of the correction start time remaining time.
- the battery bank unit 1 may also be configured so that the first and second battery banks 20, 30 can be detachably attached.
- the battery bank unit 1 may not have the first and second battery banks 20, 30 as its own components.
- the battery bank unit 1 may be configured to include an input/output terminal 10, a charge/discharge circuit 40, a control device 50, and sensors 60-64.
- the battery bank unit 1 can function as a backup device for the external power source 2 by retrofitting the first and second battery banks 20, 30 that are separately arranged.
- the memory unit 51 may also be configured to be separate from the control device 50 and to be able to communicate with the control device 50.
- the memory unit 51 may be connected to be able to communicate with the control device 50 via a network such as the Internet.
- a network such as the Internet.
- the control device 50 which is a charging control device, corrects the calculated value of the remaining charge time calculated at the start of charging of the first and second battery banks 20, 30 while charging of the first and second battery banks 20, 30 is being performed, and has a processing unit 52 that acquires, at the start of charging, information indicating the correction timing at which the calculated value of the remaining charge time is corrected, and a notification unit 53 that notifies the correction timing at the start of charging and notifies the correction value of the calculated value of the remaining charge time while charging is being performed.
- the user can know the correction timing that will give a more accurate remaining time when charging starts, and can check the corrected remaining time as soon as the correction timing arrives. In other words, the user can know the more accurate remaining time at an earlier stage.
- control device 50 further has a memory unit 51 that stores a table (T1, T2) including information indicating the correction timing, the processing unit 52 reads out the correction timing from the table (T1, T2) when charging starts, and the notification unit 53 notifies the read correction timing.
- table (T1, T2) including information indicating the correction timing
- the tables (T1, T2) indicate the correction timing for each reference value (temperature zone) of the temperature of the first and second battery banks 20, 30, which are power storage devices, and the processing unit 52 reads out the correction timing corresponding to the temperatures of the first and second battery banks 20, 30 at the start of charging from the tables (T1, T2).
- the processing unit 52 updates the correction timing in the table (T1, T2) based on the correction result (actual correction timing) of the calculated value of the remaining charge time.
- the contents of the table can be adapted to the surrounding environment in which the power storage device is installed, further improving the reliability of the notified correction timing.
- the battery bank unit 1 which is an electricity storage system, includes the control device 50 described in Appendix 1, and first and second battery banks 20 , 30 .
- the remaining charge time notification method is executed by a control device 50 which corrects a calculated value of the remaining charge time calculated at the start of charging of the first and second battery banks 20, 30 while charging of the first and second battery banks 20, 30 is being performed and notifies the corrected value (S24), and the method obtains information indicating a correction timing for correcting the calculated value of the remaining charge time at the start of charging (S20), and notifies the correction timing at the start of charging (S21).
- This configuration makes it possible to provide a method for notifying the remaining charge time that achieves the effect of supplementary note 1 above.
- the remaining charge time notification program causes a computer to execute the remaining charge time notification method described in Supplementary Note 6.
- This configuration makes it possible to provide a remaining charge time notification program that achieves the effect of supplementary note 1 above.
- the present invention is ideal for use as a battery bank unit.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
充電が完了するまでに要するより正確な時間をより早期にユーザに把握させること。充電制御装置は、蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正すると共に、前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部と、前記補正タイミングを、充電開始時に通知し、前記充電残時間の算出値の補正値を、充電実行中に通知する通知部と、を有する。
Description
本発明は、充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラムに関する。
特許文献1には、停電によって外部電源が電力供給不能になったときに、外部電源に接続された負荷装置に放電するバッテリバンクユニット(以下、「蓄電システム」ともいう)が開示されている。バッテリバンクユニットは、複数のバッテリバンク(以下、「蓄電装置」ともいう)を備えている。複数のバッテリバンクは、複数の二次電池によってそれぞれ構成され、互いに並列に接続されている。複数のバッテリバンクは、外部電源からの電力によって平時に充電される。
バッテリバンクユニットは、複数のバッテリバンクが順番に切り替えられて充電され、且つ、充電中ではないバッテリバンクが負荷装置に放電できるように構成されている。これにより、バッテリバンクユニットの充電中においても、バッテリバンクユニットは負荷装置に放電することができる。
例えば負荷装置の管理において、バッテリバンクユニットの充電中にバッテリバンクユニットの充電が完了するまでに要する時間(以下、「充電残時間」ともいう)をより正確に且つより早期に把握したいという要望がある。
本発明の目的は、充電が完了するまでに要するより正確な時間をより早期にユーザに把握させることができる充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラムを提供することである。
本発明に係る充電制御装置の一態様は、
蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正すると共に、前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部と、
前記補正タイミングを、充電開始時に通知し、前記充電残時間の算出値の補正値を、充電実行中に通知する通知部と、
を有する。
蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正すると共に、前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部と、
前記補正タイミングを、充電開始時に通知し、前記充電残時間の算出値の補正値を、充電実行中に通知する通知部と、
を有する。
本発明に係る蓄電システムの一態様は、
上記の充電制御装置と、
前記蓄電装置と、
を有する。
上記の充電制御装置と、
前記蓄電装置と、
を有する。
本発明に係る充電残時間通知方法の一態様は、
蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正して通知する充電制御装置において実行される充電残時間通知方法であって、
前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得し、
前記補正タイミングを、充電開始時に通知する。
蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正して通知する充電制御装置において実行される充電残時間通知方法であって、
前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得し、
前記補正タイミングを、充電開始時に通知する。
本発明に係る充電残時間通知プログラムの一態様は、
上記の充電残時間通知方法をコンピュータに実行させる。
上記の充電残時間通知方法をコンピュータに実行させる。
本発明によれば、充電が完了するまでに要するより正確な時間をより早期にユーザに把握させることができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
図1は、本実施の形態のバッテリバンクユニット1の概要図である。バッテリバンクユニット1は、外部電源2が停電になったときに、外部電源2に接続された負荷装置3に電力を供給する。また、バッテリバンクユニット1は、外部電源2の電力によって充電される。バッテリバンクユニット1は、本発明における蓄電システムの一例である。
外部電源2は、例えば商用の交流電力を直流電力に変換して出力する装置である。負荷装置3は、直流電力で動作する装置(例えばサーバ装置)である。
図1に示されるように、バッテリバンクユニット1は、入出力端子10、第1、2のバッテリバンク20、30、充放電回路40、及び、制御装置50を備えている。第1、2のバッテリバンク20、30の組合せは、本発明における蓄電装置の一例であり、制御装置50は、本発明における充電制御装置の一例である。
入出力端子10は、外部電源2から負荷装置3へ電力を供給する電源ライン4に接続されている。
第1、2のバッテリバンク20、30はそれぞれ、複数の二次電池(例えばニッケル水素二次電池)が例えば直列に接続されて構成されている。なお、二次電池は、リチウムイオン二次電池等、ニッケル水素二次電池以外の二次電池であってもよい。第1、2のバッテリバンク20、30は、それぞれ互いと同様に構成されている。第1、2のバッテリバンク20、30は、互いに並列に接続されている。
充放電回路40は、入出力端子10を介して第1、2のバッテリバンク20、30の充電及び放電をする回路として機能する。充放電回路40は、昇圧DC/DCコンバータ41、切替スイッチ42、第1充電スイッチ43、第1放電スイッチ44、第2充電スイッチ45、及び、第2放電スイッチ46を備えている。
昇圧DC/DCコンバータ41は、外部電源2から供給された電力を昇圧して出力する電源変換装置である。
切替スイッチ42は、第1、2のバッテリバンク20、30に印加される電圧値を切り替える。切替スイッチ42において、第1端子42aが昇圧DC/DCコンバータ41の出力端子に接続され、第2端子42bが入出力端子10に接続されている。また、第3端子42cは、第1、2充電スイッチ43、45を介して第1、2のバッテリバンク20、30に接続されている。
切替スイッチ42がオン状態である場合、第1端子42aと第3端子42cとが接続され、昇圧DC/DCコンバータ41から出力された電力が第1、2充電スイッチ43、45を介して第1、2のバッテリバンク20、30に供給される。一方、切替スイッチ42がオフ状態である場合、第2端子42bと第3端子42cとが接続され、外部電源2から出力された電力が第1、2充電スイッチ43、45を介して第1、2のバッテリバンク20、30に供給される。
第1充電スイッチ43は、オン状態である場合に第1のバッテリバンク20の充電を許容し、オフ状態である場合に第1のバッテリバンク20の充電を許容しない。第1充電スイッチ43において、第1端子43aが切替スイッチ42の第3端子42cに接続され、第2端子43bが第1のバッテリバンク20の正極に接続されている。なお、第1のバッテリバンク20の負極はグランドに接続されている。
第1放電スイッチ44は、オン状態である場合に第1のバッテリバンク20の放電を許容し、オフ状態である場合に第1のバッテリバンク20の放電を許容しない。第1放電スイッチ44において、第1端子44aが第1のバッテリバンク20の正極に接続され、第2端子44bが入出力端子10に接続されている。
第2充電スイッチ45は、オン状態である場合に第2のバッテリバンク30の充電を許容し、オフ状態である場合に第2のバッテリバンク30の充電を許容しない。第2充電スイッチ45において、第1端子45aが切替スイッチ42の第3端子42cに接続され、第2端子45bが第2のバッテリバンク30の正極に接続されている。なお、第2のバッテリバンク30の負極はグランドに接続されている。
第2放電スイッチ46は、オン状態である場合に第2のバッテリバンク30の放電を許容し、オフ状態である場合に第2のバッテリバンク30の放電を許容しない。第2放電スイッチ46において、第1端子46aが第2のバッテリバンク30の正極に接続され、第2端子46bが入出力端子10に接続されている。
図2は、バッテリバンクユニット1のブロック図である。図2に示されるように、バッテリバンクユニット1は、電流センサ60、第1電圧センサ61、第1温度センサ62、第2電圧センサ63、及び、第2温度センサ64をさらに備えている。
電流センサ60は、入出力端子10を介して電源ライン4から流入する、又は、電源ライン4に流出する電流値を検出する。電流センサ60は、具体的には、入出力端子10と充放電回路40の接続点40aとの間の電流値を検出する。第1電圧センサ61は、第1のバッテリバンク20の電圧値を検出する。第1温度センサ62は、第1のバッテリバンク20の温度を検出する。
第2電圧センサ63は、第2のバッテリバンク30の電圧値を検出する。第2温度センサ64は、第2のバッテリバンク30の温度を検出する。電流センサ60、第1電圧センサ61、第1温度センサ62、第2電圧センサ63、及び、第2温度センサ64は、それぞれ、検出値を制御装置50に送信する。
また、バッテリバンクユニット1は、外部電源2の電圧値である電源電圧値を検出する第3電圧センサ(不図示)をさらに備えている。制御装置50は、第3電圧センサによって検出された電源電圧値に基づいて、外部電源2の停電を検出する。
制御装置50は、各スイッチ42~46それぞれの状態を制御することで、バッテリバンクユニット1の充電及び放電を制御する。制御装置50は、記憶部51、処理部52、及び、通信部53を有し、例えばコンピュータ等により実現される。処理部52は、例えばCPU(Central Processing Unit)等により実現される。記憶部21は、例えばHDD(Hard Disk Drive)等により実現されるストレージ装置と例えばRAM(Random Access Memory)等により実現されるメモリ装置とを含む。記憶部51は、図3に示される第1のテーブルT1を記憶している。通信部53は、例えば遠隔に配置されたユーザの端末装置(不図示)と有線又は無線の通信ネットワークを介して通信可能な通信機器により実現される。
処理部52は、バッテリバンクユニット1の各機能を実現させるための各種制御用のプログラム又は指示、及び当該プログラム又は指示に関連するデータ等(以下、単に「プログラム等」ともいう)を、ストレージ装置から読み出してメモリ装置に記憶させ、データ等を使用しつつ各種制御用のプログラム又は指示を実行する。本実施の形態では、データ等は、第1のテーブルT1等を含み、プログラム等は、充電残時間通知方法をコンピュータに実現させるための充電残時間通知プログラムを含む。
プログラム等は、フラッシュメモリ等の着脱可能な記憶媒体に記憶されてもよい。この場合、制御装置50は、着脱可能な記憶媒体を着脱可能に構成され、記憶媒体からプログラム等を読み出す。なお、通信部53がプログラム等を通信ネットワーク経由で外部からダウンロードするようにしてもよい。
上述したストレージ装置、メモリ装置及び着脱可能な記憶媒体は、非一時的な記憶媒体の一例である。
第1のテーブルT1は、制御装置50が後述するバッテリバンクユニット1の充電完了までに要する時間である充電残時間(以下、単に「残時間」ともいう)を算出する際に参照されるテーブルである。第1のテーブルT1では、温度と、トータル充電時間と、充電停止時間と、補正タイミングとが互いに対応づけられている。第1のテーブルT1において、温度は、全部で6つの温度帯に区分けされており、0℃から40℃の間では10℃ずつ4つに区分けされている。各温度帯の温度範囲及び温度帯の個数が、図3に示されるものに限定されないことは言うまでもない。トータル充電時間、充電停止時間及び補正タイミングの詳細は後述する。温度帯は、本発明における温度の基準値の一例である。
また、制御装置50は、電流センサ60によって検出された電流値に基づいて、バッテリバンクユニット1のSOC(State of Charge)つまり充電状態を公知の方法によって算出する。バッテリバンクユニット1のSOCは、第1、2のバッテリバンク20、30それぞれの充電量を合わせた合計充電量に対応する充電率(%)である。
次に、制御装置50が実行するバッテリバンクユニット1の充電制御について、図4のフローチャート、及び、図5のタイムチャートを用いて説明する。
充電制御が開始されていない状態では、切替スイッチ42及び第1、2充電スイッチ43、45それぞれがオフ状態、且つ、第1、2放電スイッチ44、46それぞれがオン状態であり、第1、2のバッテリバンク20、30それぞれの放電が許容されている。また、上記のように第1、2のバッテリバンク20、30それぞれは互いと同様に構成され、並列接続されている。よって、第1、2のバッテリバンク20、30それぞれの電圧値及び充電量はほぼ等しい。したがって、バッテリバンクユニット1のSOCと、第1、2のバッテリバンク20、30のSOCそれぞれとは、ほぼ等しい。
制御装置50は、第3電圧センサの検出値に基づいて外部電源2との接続を検出したとき、又は、外部電源2の停電の終了を検出したときに充電制御を開始する。
制御装置50は、S1にて、一括充電処理を開始する。一括充電処理は、第1、2のバッテリバンク20、30を一括で充電する処理である。制御装置50は、具体的には、図5に示されるように、切替スイッチ42及び第1、2充電スイッチ43、45それぞれがオフ状態、且つ、第1、2放電スイッチ44、46それぞれがオン状態である状態から、切替スイッチ42及び第1、2充電スイッチ43、45それぞれをオン状態に切り替える(時刻t0)。
第1、2放電スイッチ44、46それぞれは、オン状態のままである。これにより、一括充電処理中に外部電源2が停電しても、バッテリバンクユニット1は負荷装置3に放電することができる。
一括充電処理が開始されると(時刻t0)、昇圧DC/DCコンバータ41から電力が第1、2のバッテリバンク20、30に供給され、第1、2のバッテリバンク20、30の電圧値が上昇する。
図5において、実線の電圧値は、第1のバッテリバンク20の電圧値を示し、一点鎖線の電圧値は、第2のバッテリバンク30の電圧値を示している。一括充電処理が開始される前、及び、一括充電処理中において、第1、2のバッテリバンク20、30の電圧値は、ほぼ等しい。つまり、第1、2のバッテリバンク20、30の電圧値を示す線は重なっており、実線で示されている。
続けて、制御装置50は、S2にて、バッテリバンクユニット1の電圧値であるバンク電圧値が電源電圧値以上であるか否かを判定する。バンク電圧値は、具体的には、第1のバッテリバンク20の電圧値及び第2のバッテリバンク30の電圧値の平均値である。なお、バンク電圧値は、第1、2のバッテリバンク20、30の一方の電圧値でもよい。バンク電圧値が電源電圧値より低い場合(S2にてNO)、一括充電処理を継続する。
一方、第1、2のバッテリバンク20、30の電圧値が上昇し、バンク電圧値が電源電圧値以上となった場合(時刻t1;S2にてYES)、制御装置50は、S3にて、一括充電処理を終了し、第1バンク充電処理を開始する。
第1バンク充電処理は、第1のバッテリバンク20のみを充電する処理である。第1バンク充電処理において、第1のバッテリバンク20は、電源電圧値より高い電圧値で満充電にされる。第1バンク充電処理において、第2のバッテリバンク30は充電されない。
制御装置50は、具体的には、第2充電スイッチ45をオフ状態に切り替え、且つ、第1放電スイッチ44をオフ状態に切り替える(時刻t1)。これにより、昇圧DC/DCコンバータ41の電力が第1のバッテリバンク20のみに供給され、第1のバッテリバンク20の電圧値が電源電圧値からさらに上昇する。第1バンク充電処理において、第1放電スイッチ44はオフ状態であり、第1のバッテリバンク20の放電は行われない。よって、電源電圧値より高い電圧値が負荷装置3に印加されることを未然に防止することができ、ひいては、負荷装置3の故障等を防止できる。
一方、第2のバッテリバンク30の充電は停止され、第2のバッテリバンク30の電圧値が自己放電によって徐々に低下する。第1バンク充電処理において、第2放電スイッチ46はオン状態である。よって、第1バンク充電処理中に外部電源2が停電しても、第2のバッテリバンク30は負荷装置3に放電することができる。
続けて、制御装置50は、S4にて、第1のバッテリバンク20が満充電状態となったか否かを判定する。制御装置50は、具体的には、第1温度センサ62の検出値が予め定められている第1温度となったか否かを判定する。第1温度は、第1のバッテリバンク20が満充電状態となったときの温度である。第1温度センサ62の検出値が第1温度より低い場合(S4にてNO)、制御装置50は、第1のバッテリバンク20のみの充電を継続する。
一方、第1のバッテリバンク20が満充電状態になり、第1温度センサ62の検出値が第1温度に到達した場合(時刻t2;S4にてYES)、制御装置50は、S5にて、第1のバッテリバンク20の充電を停止する。
制御装置50は、具体的には、第1充電スイッチ43をオフ状態に切り替える(時刻t2)。これにより、第1のバッテリバンク20の充電が停止され、第1のバッテリバンク20の電圧値が自己放電によって徐々に低下する。このとき、第1のバッテリバンク20の温度は、第2のバッテリバンク30の温度より高い。よって、第1のバッテリバンク20の電圧値の単位時間当たりの降下量は、第2のバッテリバンク30の電圧値の単位時間当たりの降下量より大きい。
続けて、制御装置50は、S6にて、第1のバッテリバンク20の電圧値が電源電圧値以下となったか否かを判定する。第1のバッテリバンク20の電圧値が電源電圧値より高い場合(S6にてNO)、制御装置50は、第1、2のバッテリバンク20、30の充電が停止されている状態を継続する。
一方、第1のバッテリバンク20の電圧値が電源電圧値以下となった場合(時刻t3;S6にてYES)、制御装置50は、S7にて、第1バンク充電処理を終了し、第2バンク充電処理を開始する。
第2バンク充電処理は、第2のバッテリバンク30のみを充電する処理である。第2バンク充電処理において、第2のバッテリバンク30は、電源電圧値より高い電圧値で満充電にされる。第2バンク充電処理において、第1のバッテリバンク20は充電されない。
制御装置50は、具体的には、第2充電スイッチ45をオン状態に切り替え、第1放電スイッチ44をオン状態に切り替え、且つ、第2放電スイッチ46をオフ状態に切り替える(時刻t3)。これにより、昇圧DC/DCコンバータ41から電力が第2のバッテリバンク30のみに供給され、第2のバッテリバンク30の電圧値が上昇して電源電圧値を超える。第2バンク充電処理において、第2放電スイッチ46はオフ状態であり、第2のバッテリバンク30の放電は行われない。よって、電源電圧値より高い電圧値が負荷装置3に印加されることを未然に防止することができ、ひいては、負荷装置3の故障等を防止できる。
一方、第1のバッテリバンク20の充電は停止されたままであり、第1のバッテリバンク20の電圧値が自己放電によって徐々に低下する。第2バンク充電処理において、第1放電スイッチ44はオン状態である。よって、第2バンク充電処理中に外部電源2が停電しても、第1のバッテリバンク20は負荷装置3に放電することができる。
続けて、制御装置50は、S8にて、第2のバッテリバンク30が満充電状態となったか否かを判定する。制御装置50は、具体的には、第2温度センサ64の検出値が予め定められている第2温度となったか否かを判定する。第2温度は、第2のバッテリバンク30が満充電状態となったときの温度である。第2温度センサ64の検出値が第2温度より低い場合(S8にてNO)、制御装置50は、第2のバッテリバンク30のみの充電を継続する。なお、第2温度は、第1のバッテリバンク20が満充電状態となったときの温度である第1温度と同じであっても良い。
一方、第2のバッテリバンク30が満充電状態になり、第2温度センサ64の検出値が第2温度に到達した場合(時刻t4;S8にてYES)、制御装置50は、S9にて、第2のバッテリバンク30の充電を停止する。
制御装置50は、具体的には、第2充電スイッチ45をオフ状態に切り替える(時刻t4)。これにより、第2のバッテリバンク30の充電が停止され、第2のバッテリバンク30の電圧値が自己放電によって徐々に低下する。このとき、第2のバッテリバンク30の温度は、第1のバッテリバンク20の温度より高い。よって、第2のバッテリバンク30の電圧値の単位時間当たりの降下量は、第1のバッテリバンク20の電圧値の単位時間当たりの降下量より大きい。
続けて、制御装置50は、S10にて、第2のバッテリバンク30の電圧値が電源電圧値以下となったか否かを判定する。第2のバッテリバンク30の電圧値が電源電圧値より高い場合(S10にてNO)、制御装置50は、第1、2のバッテリバンク20、30の充電が停止されている状態を継続する。
一方、第2のバッテリバンク30の電圧値が電源電圧値以下となった場合(時刻t5;S10にてYES)、制御装置50は、S11にて、第2バンク充電処理を終了する。制御装置50は、具体的には、切替スイッチ42をオフ状態に、且つ、第2放電スイッチ46をオン状態に切り替える(時刻t5)。これにより、バッテリバンクユニット1の充電を終了する。制御装置50は、バッテリバンクユニット1の充電を終了した時点におけるバッテリバンクユニット1のSOCを100%と定める。
なお、バッテリバンクユニット1は、3つ以上のバッテリバンクを有してもよい。バッテリバンクの個数がm個である場合、一括充電処理では、m個のバッテリバンクが一括に充電される。また、一括充電処理が終了すると、上記の第1、2バンク充電処理と同様に、m個のバッテリバンクそれぞれが1つずつ順番に充電される。
次に、制御装置50が実行する残時間を算出する制御について、図6のフローチャートを用いて説明する。残時間は、バッテリバンクユニット1の充電完了までに要する時間である。制御装置50は、上記の充電制御を実行している最中に、具体的には、図5の時刻t0からt5までの間に、残時間を算出する。
制御装置50は、S20にて、第1のテーブルT1から、バッテリバンクユニット1の充電開始時の温度に対応づけられているトータル充電時間、充電停止時間及び補正タイミングの各情報を読み出して取得する。バッテリバンクユニット1の温度は、例えば、第1、2のバッテリバンク20、30の平均温度である。なお、バッテリバンクユニット1の温度は、第1、2のバッテリバンク20、30の温度のうち、一方のバッテリバンクの温度でもよい。トータル充電時間及び充電停止時間は、後述する式(1)にて残時間を算出するために用いられる。また、本実施の形態でいう「充電開始時」とは、充電開始と完全に同じ時点である必要はなく、例えば充電開始の時点から多少前後にずれた時点であってもよい。
トータル充電時間は、具体的には、バッテリバンクユニット1の充電開始時のSOCが第1充電率(例えば0%)から100%となるまでに要する時間であり、実験等で実測されることで温度帯毎に予め定められて、第1のテーブルT1に格納されている。第1充電率は、第1のテーブルT1に予め格納するトータル充電時間を定める実験等において用いられる任意の値である。トータル充電時間を定める実験では、SOCが第1充電率である状態のバッテリバンクユニット1を用いて、上記のように一括充電処理及び第1、2バンク充電処理が行われ、バッテリバンクユニット1のSOCが第1充電率から100%になるまでに要する時間がトータル充電時間として測定される。
充電停止時間は、具体的には、第1のバッテリバンク20の充電停止から第2のバッテリバンク30の充電開始までの時間(すなわち図5の時刻t2から時刻t3までの時間)に相当する時間であり、実験等で実測されることで温度帯毎に予め定められて、第1のテーブルT1に格納されている。上記のトータル充電時間を定める実験において、バッテリバンクユニット1の充電中に、バッテリバンクの充電が停止している時間が充電停止時間として測定される。
充電制御の開始時において、例えば、バッテリバンクユニット1の温度が25℃である場合、制御装置50は、図3の第1のテーブルT1から、温度「20℃以上30℃未満」に対応するトータル充電時間「A3」、及び、充電停止時間「B3」を取得する。
続けて、制御装置50は、S21にて、残時間を算出する。制御装置50は、具体的には、式(1)を用いて充電開始時の残時間である、充電開始時残時間を算出する。
(数1)
充電開始時残時間=m×Ts
+(Tt-m×Ts)×(100-So)/(100-α) …(1)
充電開始時残時間=m×Ts
+(Tt-m×Ts)×(100-So)/(100-α) …(1)
式(1)において、mはバッテリバンクの個数である。本実施の形態において、m=2である。Ts及びTtは第1のテーブルT1から取得した充電停止時間及びトータル充電時間である。So(%)は、充電制御の開始時(時刻t0)におけるバッテリバンクユニット1のSOCである。α(%)は、第1充電率であり、第1のテーブルT1に格納するトータル充電時間を定める実験の開始時におけるバッテリバンクユニットのSOCである。
なお、Soは、充電制御の開始時における第1、2のバッテリバンク20、30の一方のSOCでもよい。この場合、制御装置50は、バッテリバンクユニット1の充電を終了した時点における第1、2のバッテリバンク20、30のSOCをそれぞれ100%と定める。
また、第1、2のバッテリバンク20、30は、それぞれ、上記のように互いに同様に構成されており、第1、2のバッテリバンク20、30それぞれの周囲の環境(温度及び湿度等)はほぼ等しい。よって、第2バンク充電処理において充電が停止する時間(図5の時刻t4から時刻t5までの時間)は、第1バンク充電処理において充電が停止する時間(時刻t2から時刻t3までの時間)と等しいとみなすことができる。よって、第1のテーブルT1に格納するトータル充電時間を定める実験においてバッテリバンクユニット1がバッテリバンクをm個有する場合、何れかのバッテリバンクの充電が停止している時間の合計は、mと充電停止時間(Ts)とを乗算した値となる。つまり、式(1)の「m×Ts」は、バッテリバンクユニット1の充電中において、何れかのバッテリバンクの充電が停止されている時間の合計に相当する。
なお、すでに説明したように、バッテリバンクユニット1の充電制御中において充電が停止されている時間帯では、充電が停止されているバッテリバンクから負荷装置3への放電は行われない。例えば、図5の時刻t2と時刻t3との間では、第1のバッテリバンク20からの放電は行われない。よって、充電が停止されているバッテリバンクのSOCを、電流センサ60の検出値に基づいて算出することはできない。つまり、制御装置50は、バッテリバンクユニット1の充電制御中において充電が停止されている時間を、SOCを用いて算出することができない。
式(1)の「(Tt-m×Ts)」は、バッテリバンクをm個有するバッテリバンクユニット1を用いた第1のテーブルT1に格納するトータル充電時間を定める実験において、トータル充電時間(Tt)から、何れかのバッテリバンクの充電が停止されている時間の合計(m×Ts)を減算した時間に相当する。つまり、式(1)の「(Tt-m×Ts)」は、バッテリバンクをm個有するバッテリバンクユニット1のSOCがαから100%になるまでに要する時間のうち、いずれかのバッテリバンクが充電されている時間に相当する。
また、式(1)の「(100-So)/(100―α)」は、バッテリバンクユニット1のSOCがαから100%になるまでの充電量に対する、バッテリバンクユニット1のSOCがSoから100%になるまでの充電量の比である。
したがって、「(Tt-m×Ts)」と「(100-So)/(100―α)」とを乗算した式(1)の「(Tt-m×Ts)×(100-So)/(100―α)」は、バッテリバンクをm個有するバッテリバンクユニット1のSOCがSoから100%になるまでに要する時間のうち、いずれかのバッテリバンクが充電されている時間に相当する。
すなわち、式(1)では、バッテリバンクをm個有するバッテリバンクユニット1のSOCがSoから100%になるまでに要する時間のうち、いずれかのバッテリバンクが充電されている時間「(Tt-m×Ts)×(100-So)/(100―α)」と、いずれかのバッテリバンクの充電が停止されている時間の合計「m×Ts」とが加算されている。つまり、式(1)は、充電制御において、バッテリバンクの個数がmであるバッテリバンクユニット1の充電開始時にSOCがSoである場合におけるバッテリバンクユニット1の充電開始から充電完了までの時間を、充電開始時残時間として算出する式である。
また、S21にて、制御装置50は、算出された充電開始時残時間を、負荷装置3を管理するユーザの端末装置(不図示)に通知する。端末装置は、充電開始時残時間を示す通知画面70(図7参照)をディスプレイ等の表示部に表示する。これにより、負荷装置3の管理者は、バッテリバンクユニット1の充電開始から充電完了までの時間を把握することができる。なお、通知画面70は、充電開始時残時間がそのまま表示される表示形式であってもよいし、充電開始時残時間に基づいて算出される推定充電完了時刻が表示される表示形式であってもよい。充電開始時残時間が推定充電完了時刻として表示される場合、制御装置50が通知した充電開始時残時間を端末装置が推定充電完了時刻に換算してもよいし、制御装置50が充電開始時残時間を推定充電完了時刻に換算して推定充電完了時刻を端末装置に通知してもよい。推定充電完了時刻は、例えば図7に例示される通知画面70において推定充電完了時刻表示部71に表示される。
さらに、制御装置50は、充電制御中に、バッテリバンクユニット1の充電開始時からの経過時間を計測する。そして、制御装置50は、予め定められている所定時間毎に、S21で算出された充電開始時残時間から、経過時間を減じることで、その時点における残時間を算出するとともに最新の残時間を更新し、更新された残時間を端末装置に通知する。端末装置は、更新された残時間を表示部に表示する。
また、S21にて、制御装置50は、第1のテーブルT1から読み出して取得した補正タイミング情報を、端末装置に通知する。補正タイミング情報とは、補正タイミングを示す情報であり、補正タイミングとは、残時間の算出値が補正されるタイミングである。例えば、補正タイミングは、充電開始から補正実行までの時間間隔として表される。端末装置は、充電開始時残時間と共に補正タイミング情報を示す通知画面70を表示部に表示する。これにより、負荷装置3の管理者は、残時間が補正されるタイミングを把握することができる。なお、通知画面70における補正タイミングの表示形式は、残時間の補正が現在時刻から何分後(或いは何時間後)に実行されるかを表示するものであってもよいし、残時間の補正が実行される予定時刻(予定補正時刻)を表示するものであってもよい。補正タイミングが予定補正時刻として表示される場合、制御装置50が通知した補正タイミングを端末装置が予定補正時刻に換算してもよいし、制御装置50が補正タイミングを予定補正時刻に換算して予定補正時刻を端末装置に通知してもよい。予定補正時刻は、例えば図7に例示される通知画面70において予定補正時刻表示部72に表示される。
続けて、制御装置50は、S22にて、第1バンク充電処理が終了したか否かを判定する。一括充電処理又は第1バンク充電処理が実行されている場合(S22にてNO)、制御装置50は、残時間の更新及び通知を継続する。また、制御装置50は、S22の実行中に、一括充電処理及び第1バンク充電処理それぞれが実際に要した時間(以下、実一括充電時間及び、実第1バンク充電時間と記載する。)を計測する。
第1バンク充電処理が終了した場合(S22にてYES)、制御装置50は、S23にて、第1バンク充電処理が終了した時点、つまり図5の時刻t3における残時間の補正が必要か否かを判定する。制御装置50は、S21で算出された充電開始時残時間と、後に説明する修正開始時残時間との差である時間差が予め定められている所定時間差以上である場合に、時刻t3における残時間の補正が必要であると判定する。
修正開始時残時間とは、充電制御中に、第1バンク充電処理の終了までに実際に要した時間に基づいて算出されるバッテリバンクユニット1の充電開始から充電完了までの時間である。複数のバッテリバンクそれぞれを充電するのに必要な時間は、複数のバッテリバンクそれぞれが互いに同様に構成されている場合、ほぼ等しい。よって、実第1バンク充電時間と第2バンク充電処理に実際に要する時間とは、ほぼ等しくなる。本実施の形態における修正開始時残時間は、実一括充電時間と、実第1バンク充電時間を2倍した時間とを加算した時間である。なお、バッテリバンクの個数がm個である場合、修正開始時残時間は、実一括充電時間と、実第1バンク充電時間をm倍した時間とを加算した時間となる。
時間差が所定時間差より小さい場合(S23にてNO)、制御装置50は、時刻t3における残時間を補正しない。一方、時間差が所定時間差以上である場合(S23にてYES)、制御装置50は、S24にて、時刻t3における残時間を補正する。制御装置50は、具体的には、時刻t3(第1バンク充電処理の終了時)における残時間を、実第1バンク充電時間に差し替える。また、制御装置50は、時刻t3における残時間を補正した場合、以下のように最新の残時間を更新する。すなわち、制御装置50は、時刻t3以降、所定時間毎に、時刻t3からの経過時間を実第1バンク充電時間から減じることで、その時点における残時間を算出するとともに最新の残時間を更新する。そして、制御装置50は、更新された残時間を端末装置に通知する。
第1、2のバッテリバンク20、30は、それぞれ、上記のように互いと同様に構成されており、第1、2のバッテリバンク20、30それぞれの周囲の環境(温度及び湿度等)はほぼ等しい。したがって、第2バンク充電処理に実際に要する時間は、実第1バンク充電時間とほぼ等しくなる。つまり、制御装置50は、第1バンク充電処理が終了した時点で、残時間を実第1バンク充電時間に差し替えることで残時間を精度よく補正し、補正した残時間を通知することができる。なお、制御装置50は、S23にて残時間の補正が必要か否か判断せずに、S24にて残時間の補正をしてもよい。
このように、S24では、制御装置50が、残時間の算出値の補正値(更新された残時間)を端末装置に通知する。この補正が実行されるタイミングは、前述の通り、予めS21にて制御装置50から端末装置に通知されている。したがって、ユーザは、より正確な残時間が得られる補正タイミングを充電開始の時点で把握することができるので、補正タイミングが到来すると速やかに通知画面70を通じて残時間の確認を行うことができる。すなわち、本実施の形態によれば、ユーザは、より正確な残時間をより早期に把握することができる。一般に、充電制御における充電カーブ(例えば図5に示される、第1、2のバッテリバンク20、30の電圧値の変動曲線)は非線形であるため、充電開始の時点では、完全に正確な充電完了時刻をユーザに対して提供することが困難である。本実施の形態では、充電開始の時点で完全に正確な充電完了時刻を提供する代わりに、充電開始時よりも推定充電完了時刻が正確となる補正タイミングを充電開始時にS21にて通知しておき、ユーザが正確な充電完了時刻を遅滞なく把握することを可能にすることで、ユーザの利便性向上を図るものである。
続けて、制御装置50は、S25にて、第2バンク充電処理が終了したか否かを判定する。第2バンク充電処理が実行されている場合(S25にてNO)、制御装置50は、残時間の更新及び通知を継続する。
第2バンク充電処理が終了した場合(S25にてYES)、制御装置50は、S26にて、第1のテーブルT1を更新する。制御装置50は、第1のテーブルT1においてバッテリバンクユニット1の充電開始時の温度に対応するトータル充電時間を、実トータル充電時間に基づいて更新する。実トータル充電時間は、充電制御において、バッテリバンクユニット1の充電開始からバッテリバンクユニット1の充電完了までに実際に要した時間である。
制御装置50は、具体的には、S20にて取得したトータル充電時間から、S21で算出された充電開始時残時間を減算し、その減算された時間に実トータル充電時間を加算した更新トータル充電時間を算出する。つまり、更新トータル充電時間は、S20にて取得したトータル充電時間から、S21で算出された充電開始時残時間を減算することで算出される第1充電率(α)から充電開始時のSOC(So)までの充電時間に、充電開始時のSOC(So)から100%までの実際に要した充電時間(実トータル充電時間)を加えた時間である。換言すれば、更新トータル充電時間は、第1のテーブルT1に記憶されているトータル充電時間を、充電制御におけるバッテリバンクユニット1の充電開始から充電完了までの時間の実測値(実トータル充電時間)と、計算値(S21で算出された充電開始時残時間)との差を用いて修正した時間である。
制御装置50は、算出された更新トータル充電時間で、バッテリバンクユニット1の充電開始時の温度に対応する第1のテーブルT1のトータル充電時間を更新する。例えば、充電制御の開始時においてバッテリバンクユニット1の温度が25℃である場合、制御装置50は、第1のテーブルT1において、温度「20℃以上30℃未満」に対応するトータル充電時間「A3」を、算出された更新トータル充電時間で更新する。
さらに、制御装置50は、第1のテーブルT1においてバッテリバンクユニット1の充電開始時のバッテリバンクユニット1の温度に対応する充電停止時間を、実充電停止時間で更新する。実充電停止時間は、充電制御において、第1のバッテリバンク20の充電停止から第2のバッテリバンク30の充電開始までに実際に経過した時間である。すなわち、第1のテーブルT1に記憶されている充電停止時間は、第1バンク充電処理において実際に充電が停止された時間で更新される。
例えば、バッテリバンクユニット1の充電開始時においてバッテリバンクユニット1の温度が25℃である場合、制御装置50は、第1のテーブルT1において、温度「20℃以上30℃未満」に対応する充電停止時間「B3」を、実充電停止時間で更新する。
さらに、制御装置50は、第1のテーブルT1においてバッテリバンクユニット1の充電開始時のバッテリバンクユニット1の温度に対応する補正タイミングを、実補正タイミングで更新する。実補正タイミングは、充電制御において、充電が開始されたタイミングから補正が実行されたタイミングまでに実際に経過した時間間隔である。
例えば、バッテリバンクユニット1の充電開始時においてバッテリバンクユニット1の温度が25℃である場合、制御装置50は、第1のテーブルT1において、温度「20℃以上30℃未満」に対応する補正タイミング「C3」を、実補正タイミングで更新する。
実トータル充電時間、実充電停止時間及び実補正タイミングは、バッテリバンクユニット1の周囲の環境、電源電圧値、第1、2のバッテリバンク20、30の温度、バッテリバンクユニット1の経年変化及び第1、2のバッテリバンク20、30の劣化度合い(以下、バッテリバンクユニット1の周囲の環境等と記載する。)によって変動する。よって、更新トータル充電時間、実充電停止時間及び実補正タイミングによって第1のテーブルT1が更新されることで、第1のテーブルT1に格納されている値を、バッテリバンクユニット1の周囲の環境等に対応させることができる。したがって、制御装置50は、第1、2のバッテリバンク20、30の充電が実行される度に、バッテリバンクユニット1の周囲の環境等の変化に対応するように第1のテーブルT1を更新することで、充電制御が実行される際に、残時間を精度よく算出することができ、通知の信頼性を向上することができる。
制御装置50は、S26にて第1のテーブルT1を更新すると、残時間を算出する制御を終了する。また、制御装置50は、残時間の通知を終了する。なお、バッテリバンクユニット1の充電制御中において、外部電源2の停電が発生して第1、2のバッテリバンク20、30の少なくとも一方が放電した場合、制御装置50は、第1のテーブルT1の更新を実行せずに、残時間を算出する制御を終了する。
以上、本開示の実施の形態を具体的に説明したが、本開示は上述した特定の実施の形態に限定されるものではない。特許請求の範囲に記載された本開示の要旨の範囲内で、上記実施の形態に記載された具体例に対する種々の変形及び変更が可能である。
例えば、記憶部51は、複数のテーブルを記憶してもよい。以下、記憶部51が、図7の第2のテーブルT2をさらに記憶している場合について説明する。第2のテーブルT2は、温度と、トータル充電時間と、充電停止時間と、補正タイミングとが、第1のテーブルT1と同様に互いに対応づけられている。第2のテーブルT2は、トータル充電時間、充電停止時間及び補正タイミングに格納されている値が第1のテーブルT1と異なる。
制御装置50は、充電制御中に充電開始時残時間を算出する際に、バッテリバンクユニット1の充電開始時のSOCに基づいて、第1、2のテーブルT1、T2の中から情報取得元となるテーブルを選択する。制御装置50は、具体的には、バッテリバンクユニット1の充電開始時のSOCが予め定められている第2充電率(例えば90%)より低い場合、第1のテーブルT1を選択する。一方、制御装置50は、バッテリバンクユニット1の充電開始時のSOCが第2充電率以上である場合、第2のテーブルT2を選択する。第2充電率は、後述するバッテリバンクユニット1の充電時の特性に基づいて定められる任意の値である。
例えば、バッテリバンクユニット1が外部電源2に接続されて充電制御が開始される時に、バッテリバンクユニット1のSOCが第2充電率(90%)より低い例えば20%である場合、制御装置50は、第1のテーブルT1を選択する。
一方、バッテリバンクユニット1が外部電源2及び負荷装置3に接続されている場合、外部電源2の停電が発生しなくても、自然放電等によってバッテリバンクユニット1のSOCが低下する。バッテリバンクユニット1のSOCが低下して90%となることで充電制御が開始されるように定められている場合、制御装置50は、充電制御の開始時のSOCが第2充電率(90%)以上であることに基づいて、第2のテーブルT2を選択する。
バッテリバンクのSOCは、充電時におけるバッテリバンクの電圧の上がり方及びバッテリバンクの温度の上がり方等の特性に影響を及ぼす。よって、充電開始時のバッテリバンクユニット1のSOCが異なると、バッテリバンクユニット1のバンク電圧値の単位時間あたりの上昇量、及び、バッテリバンクユニット1の温度の単位時間あたりの上昇量等の充電時の特性が異なり、充電率の上がり方が異なる。よって、制御装置50は、充電開始時のバッテリバンクユニット1のSOCに基づいて、適切なテーブルを選択することで、残時間を精度よく算出することができる。
また、第1、2のバッテリバンク20、30は、互いに異なるように構成されてもよい。この場合、第1、2のテーブルT1、T2において、第1バンク充電処理での充電停止時間、第2バンク充電処理での第2の充電停止時間、温度及びトータル充電時間が互いに対応づけられていてもよい。第2の充電停止時間は、第1のテーブルT1に格納するトータル充電時間を定める実験において、第2バンク充電処理で充電が停止している時間に相当する。
また、第1、2のバッテリバンク20、30が互いに異なるように構成されている場合、充電停止時間と第2の充電停止時間とが等しいとみなすことができない。この場合、式(1)の「m×Ts」は、バッテリバンクの個数が2個であるとき、テーブルに格納されている充電停止時間と第2の充電停止時間とを加算する式に差し替えられる。
また、第1、2のバッテリバンク20、30が互いに異なるように構成されている場合、第1バンク充電処理の終了時点で残時間が補正されないように、すなわち、図6においてS23、24が実行されないようにしてもよい。
また、制御装置50は、充電制御において、一括充電処理を行わずに、第1バンク充電処理、及び、第2バンク充電処理を実行するようにしてもよい。この場合、図4のS1及びS2は実行されず、修正開始時残時間の算出において実一括充電時間はゼロとなる。
また、バッテリバンクユニット1は、第1、2のバッテリバンク20、30を着脱可能に構成されてもよい。また、バッテリバンクユニット1は、バッテリバンクユニット1自身の構成要素として第1、2のバッテリバンク20、30を備えていなくてもよい。つまり、バッテリバンクユニット1は、入出力端子10と、充放電回路40と制御装置50と、各センサ60~64とを備えることで構成されていてもよい。この場合、別途手配された第1、2のバッテリバンク20、30を後付けすることによって、バッテリバンクユニット1が外部電源2のバックアップ装置として機能することができる。
また、記憶部51は、制御装置50とは別体且つ制御装置50と通信可能に構成されてもよい。この場合、記憶部51は、インターネット等のネットワークを介して、制御装置50と通信可能に接続されてもよい。このように構成することにより、テーブルの情報を複数のバッテリバンクユニット1で共用することができ、さらに、複数のバッテリバンクユニット1でより精度が高い情報を格納したテーブルに更新していくことができる。また、制御装置50は、バッテリバンクユニット1とは別体に構成されていてもよい。この場合、制御装置50は、インターネット等のネットワークを介して、遠隔でバッテリバンクユニット1を制御し、且つ、残時間を算出することができる。
<付記>
本実施の形態の開示内容を纏めると、以下の通りである。
本実施の形態の開示内容を纏めると、以下の通りである。
<付記1>
充電制御装置である制御装置50は、第1、第2のバッテリバンク20、30の充電開始時に算出される充電残時間の算出値を、第1、第2のバッテリバンク20、30の充電実行中に補正すると共に、充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部52と、補正タイミングを、充電開始時に通知し、充電残時間の算出値の補正値を、充電実行中に通知する通知部53と、を有する。
充電制御装置である制御装置50は、第1、第2のバッテリバンク20、30の充電開始時に算出される充電残時間の算出値を、第1、第2のバッテリバンク20、30の充電実行中に補正すると共に、充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部52と、補正タイミングを、充電開始時に通知し、充電残時間の算出値の補正値を、充電実行中に通知する通知部53と、を有する。
この構成によれば、ユーザは、より正確な残時間が得られる補正タイミングを充電開始の時点で把握することができるので、補正タイミングが到来すると速やかに補正後の残時間の確認を行うことができる。すなわち、ユーザは、より正確な残時間をより早期に把握することができる。
<付記2>
付記1記載の構成において、制御装置50は、補正タイミングを示す情報を含むテーブル(T1、T2)を記憶する記憶部51をさらに有し、処理部52は、充電開始時に補正タイミングをテーブル(T1、T2)から読み出し、通知部53は、読み出された補正タイミングを通知する。
付記1記載の構成において、制御装置50は、補正タイミングを示す情報を含むテーブル(T1、T2)を記憶する記憶部51をさらに有し、処理部52は、充電開始時に補正タイミングをテーブル(T1、T2)から読み出し、通知部53は、読み出された補正タイミングを通知する。
この構成によれば、テーブルを参照して補正タイミングを取得することにより、上記付記1の効果を、処理部の負荷を著しく増大させることなく実現することができる。
<付記3>
付記2記載の構成において、テーブル(T1、T2)は、蓄電装置である第1、第2のバッテリバンク20、30の温度の基準値(温度帯)毎に補正タイミングを示し、処理部52は、充電開始時の第1、第2のバッテリバンク20、30の温度に対応する補正タイミングをテーブル(T1、T2)から読み出す。
付記2記載の構成において、テーブル(T1、T2)は、蓄電装置である第1、第2のバッテリバンク20、30の温度の基準値(温度帯)毎に補正タイミングを示し、処理部52は、充電開始時の第1、第2のバッテリバンク20、30の温度に対応する補正タイミングをテーブル(T1、T2)から読み出す。
この構成によれば、蓄電装置の温度によって異なる補正タイミングを個別に保存することができるので、蓄電装置の温度が変動しても、通知される補正タイミングの信頼性を確保することができる。
<付記4>
付記2記載の構成において、処理部52は、充電残時間の算出値の補正実績(実補正タイミング)に基づいて、テーブル(T1、T2)内の補正タイミングを更新する。
付記2記載の構成において、処理部52は、充電残時間の算出値の補正実績(実補正タイミング)に基づいて、テーブル(T1、T2)内の補正タイミングを更新する。
この構成によれば、テーブルの内容を、蓄電装置が設置された周囲の環境等に適合させることができるので、通知される補正タイミングの信頼性を一層向上させることができる。
<付記5>
蓄電システムであるバッテリバンクユニット1は、付記1記載の制御装置50と、第1、第2のバッテリバンク20、30と、を有する。
蓄電システムであるバッテリバンクユニット1は、付記1記載の制御装置50と、第1、第2のバッテリバンク20、30と、を有する。
この構成によれば、上記付記1の効果を実現する蓄電システムを提供することができる。
<付記6>
充電残時間通知方法は、第1、第2のバッテリバンク20、30の充電開始時に算出される充電残時間の算出値を、第1、第2のバッテリバンク20、30の充電実行中に補正して通知(S24)する制御装置50において実行される充電残時間通知方法であって、充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得し(S20)、補正タイミングを、充電開始時に通知する(S21)。
充電残時間通知方法は、第1、第2のバッテリバンク20、30の充電開始時に算出される充電残時間の算出値を、第1、第2のバッテリバンク20、30の充電実行中に補正して通知(S24)する制御装置50において実行される充電残時間通知方法であって、充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得し(S20)、補正タイミングを、充電開始時に通知する(S21)。
この構成によれば、上記付記1の効果を実現する充電残時間通知方法を提供することができる。
<付記7>
充電残時間通知プログラムは、付記6記載の充電残時間通知方法をコンピュータに実行させる。
充電残時間通知プログラムは、付記6記載の充電残時間通知方法をコンピュータに実行させる。
この構成によれば、上記付記1の効果を実現する充電残時間通知プログラムを提供することができる。
2022年10月19日出願の特願2022-167597の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
本発明は、バッテリバンクユニットとして好適に利用される。
1 バッテリバンクユニット
2 外部電源
3 負荷装置
4 電源ライン
10 入出力端子
20 第1のバッテリバンク
30 第2のバッテリバンク
40 充放電回路
41 昇圧DC/DCコンバータ
42 切替スイッチ
43 第1充電スイッチ
44 第1放電スイッチ
45 第2充電スイッチ
46 第2放電スイッチ
50 制御装置
51 記憶部
52 処理部
53 通信部
60 電流センサ
61 第1電圧センサ
62 第1温度センサ
63 第2電圧センサ
64 第2温度センサ
70 通知画面
71 推定充電完了時刻表示部
72 予定補正時刻表示部
T1 第1のテーブル
T2 第2のテーブル
2 外部電源
3 負荷装置
4 電源ライン
10 入出力端子
20 第1のバッテリバンク
30 第2のバッテリバンク
40 充放電回路
41 昇圧DC/DCコンバータ
42 切替スイッチ
43 第1充電スイッチ
44 第1放電スイッチ
45 第2充電スイッチ
46 第2放電スイッチ
50 制御装置
51 記憶部
52 処理部
53 通信部
60 電流センサ
61 第1電圧センサ
62 第1温度センサ
63 第2電圧センサ
64 第2温度センサ
70 通知画面
71 推定充電完了時刻表示部
72 予定補正時刻表示部
T1 第1のテーブル
T2 第2のテーブル
Claims (7)
- 蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正すると共に、前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得する処理部と、
前記補正タイミングを、充電開始時に通知し、前記充電残時間の算出値の補正値を、充電実行中に通知する通知部と、
を有する充電制御装置。 - 前記補正タイミングを示す情報を含むテーブルを記憶する記憶部をさらに有し、
前記処理部は、前記充電開始時に前記補正タイミングを前記テーブルから読み出し、
前記通知部は、読み出された前記補正タイミングを通知する、
請求項1に記載の充電制御装置。 - 前記テーブルは、前記蓄電装置の温度の基準値毎に前記補正タイミングを示し、
前記処理部は、前記充電開始時の前記蓄電装置の温度に対応する前記補正タイミングを前記テーブルから読み出す、
請求項2に記載の充電制御装置。 - 前記処理部は、前記充電残時間の算出値の補正実績に基づいて、前記テーブル内の前記補正タイミングを更新する、
請求項2に記載の充電制御装置。 - 請求項1に記載の充電制御装置と、
前記蓄電装置と、
を有する蓄電システム。 - 蓄電装置の充電開始時に算出される充電残時間の算出値を、前記蓄電装置の充電実行中に補正して通知する充電制御装置において実行される充電残時間通知方法であって、
前記充電残時間の算出値が補正される補正タイミングを示す情報を、充電開始時に取得し、
前記補正タイミングを、充電開始時に通知する、
充電残時間通知方法。 - 請求項6に記載の充電残時間通知方法をコンピュータに実行させるための、充電残時間通知プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022167597 | 2022-10-19 | ||
JP2022-167597 | 2022-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024085234A1 true WO2024085234A1 (ja) | 2024-04-25 |
Family
ID=90737943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037895 WO2024085234A1 (ja) | 2022-10-19 | 2023-10-19 | 充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024085234A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206024A (ja) * | 1998-01-19 | 1999-07-30 | Matsushita Electric Ind Co Ltd | 二次電池の充電完了時間予測方法、二次電池の充電完了時間予測装置、電池パック及び電子機器 |
JP2006238598A (ja) * | 2005-02-24 | 2006-09-07 | Seiko Epson Corp | 充電時間算出装置 |
JP2006262605A (ja) * | 2005-03-16 | 2006-09-28 | Seiko Epson Corp | 充電残り時間算出装置 |
JP2012165599A (ja) * | 2011-02-08 | 2012-08-30 | Toyota Motor Corp | 充電制御装置および充電制御方法 |
JP2014018002A (ja) * | 2012-07-10 | 2014-01-30 | Omron Automotive Electronics Co Ltd | 充電装置 |
CN112666463A (zh) * | 2020-12-31 | 2021-04-16 | 蜂巢能源科技有限公司 | 电池充电剩余时间修正显示方法、修正装置及存储装置 |
-
2023
- 2023-10-19 WO PCT/JP2023/037895 patent/WO2024085234A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11206024A (ja) * | 1998-01-19 | 1999-07-30 | Matsushita Electric Ind Co Ltd | 二次電池の充電完了時間予測方法、二次電池の充電完了時間予測装置、電池パック及び電子機器 |
JP2006238598A (ja) * | 2005-02-24 | 2006-09-07 | Seiko Epson Corp | 充電時間算出装置 |
JP2006262605A (ja) * | 2005-03-16 | 2006-09-28 | Seiko Epson Corp | 充電残り時間算出装置 |
JP2012165599A (ja) * | 2011-02-08 | 2012-08-30 | Toyota Motor Corp | 充電制御装置および充電制御方法 |
JP2014018002A (ja) * | 2012-07-10 | 2014-01-30 | Omron Automotive Electronics Co Ltd | 充電装置 |
CN112666463A (zh) * | 2020-12-31 | 2021-04-16 | 蜂巢能源科技有限公司 | 电池充电剩余时间修正显示方法、修正装置及存储装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6361643B2 (ja) | 蓄電サービスシステム | |
US8954777B2 (en) | Electronic apparatus and image forming apparatus | |
JP5680769B2 (ja) | 蓄電池システム及びその制御方法 | |
EP2933896B1 (en) | Charging and discharging control method, charging and discharging control system and charging and discharging control device | |
JP5897701B2 (ja) | 電池状態推定装置 | |
JP4215013B2 (ja) | 充電残り時間算出装置 | |
CN109477871B (zh) | 蓄电装置、蓄电系统以及电源系统 | |
CN102998626A (zh) | 用于确定电池组健康状态的系统和方法 | |
WO2019135300A1 (ja) | 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法 | |
US10283987B1 (en) | Dynamic adjustment of capacity threshold for a battery unit | |
CN113567862A (zh) | 锂电池备电系统soh估算方法及装置 | |
JP5919531B2 (ja) | エネルギーマネジメント装置、エネルギーマネジメントシステムおよびプログラム | |
JP2015195653A (ja) | 電池システム、充放電制御プログラム、充放電制御方法 | |
WO2016051701A1 (ja) | 電源装置 | |
JP5945820B2 (ja) | エネルギー管理装置、エネルギー管理システム、プログラム | |
JP2015211618A (ja) | 蓄電池制御装置および蓄電池の制御方法 | |
WO2024085234A1 (ja) | 充電制御装置、蓄電システム、充電残時間通知方法、及び、充電残時間通知プログラム | |
JP4011303B2 (ja) | 鉛蓄電池の状態監視方法 | |
JP2011015589A (ja) | 放電制御装置、無停電電源装置、負荷平準化システム、および放電制御プログラム | |
JP2007322353A (ja) | 電池容量判定装置および方法ならびにそれを用いる電池パック | |
JP2007101209A (ja) | 二次電池容量計算装置、二次電池監視装置および二次電池監視方法 | |
US20230141602A1 (en) | Battery bank unit, remaining charge time calculation method, and remaining charge time calculation program | |
JP2023069402A (ja) | バッテリバンクユニット、充電残時間算出方法、および、充電残時間算出プログラム | |
WO2017022251A1 (ja) | 二次電池の充放電装置、二次電池を用いた蓄電システム、二次電池の充放電方法、および二次電池の充放電プログラムが格納された非一時的なコンピュータ可読媒体 | |
US20240055882A1 (en) | Storage battery control device and storage battery control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879877 Country of ref document: EP Kind code of ref document: A1 |