JP2015211618A - 蓄電池制御装置および蓄電池の制御方法 - Google Patents

蓄電池制御装置および蓄電池の制御方法 Download PDF

Info

Publication number
JP2015211618A
JP2015211618A JP2014093951A JP2014093951A JP2015211618A JP 2015211618 A JP2015211618 A JP 2015211618A JP 2014093951 A JP2014093951 A JP 2014093951A JP 2014093951 A JP2014093951 A JP 2014093951A JP 2015211618 A JP2015211618 A JP 2015211618A
Authority
JP
Japan
Prior art keywords
power
storage battery
rate
remaining
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014093951A
Other languages
English (en)
Inventor
和郎 永山
Kazuo Nagayama
和郎 永山
毅 伏本
Takeshi Fushimoto
毅 伏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2014093951A priority Critical patent/JP2015211618A/ja
Publication of JP2015211618A publication Critical patent/JP2015211618A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【目的】突出したピーク電力が生じることを回避することが可能な蓄電池制御装置を提供する。
【構成】蓄電池制御装置100は、商用電力系統から供給される電力のピーク電力設定値を超える超過分の電力を放電する蓄電池のSOCが電力消費量のピーク時間帯における経過時間に応じて低下するSOC低下係数を有する関数を用いて、ピーク時間帯における経過時間に応じた蓄電池装置の基準SOCを演算する基準SOC演算部60と、かかる経過時間を経過時における蓄電池装置の実際に使用可能な有効SOCと演算された基準SOCとの関係に応じて、ピーク電力設定値を可変に制御する可変制御部64と、を備えたことを特徴とする。
【選択図】図1

Description

本発明は、蓄電池制御装置および蓄電池の制御方法に関し、例えば、商用電力系統(系統電源)から供給される電力がピークカット電力を超えないように超過分の電力を補う蓄電池制御装置および蓄電池の制御方法に関する。
現在、日本では、電力会社が提供する商用電力系統から供給される電力使用料金を、予め決められた基本料金と電力使用量に応じた従量料金との合計によって定めている。また、かかる基本料金は、過去1年間における供給電力の最大値(ピーク電力)によって決定される。ピーク電力は、単位時間(30分)あたりの平均電力で定義される。かかる条件のもと、電気事業者は電力会社から電力を購入し、購入した電力を一般家庭等の複数の需要家(負荷)へと電力を供給する取り組みが行われている。そして、電気事業者は、ピーク電力が大きくならないように、予め上限電力(ピークカット電力)を設定し、電力需要が大きいときには設定された上限電力を超えないように商用電力系統とは別系統から電力を負荷側に供給するシステムを市場に導入している。
かかる別系統の電力源として、蓄電池を用いたシステムの導入が行われている。かかるシステムでは、需要電力が上述とは別の設定された上限電力に満たない場合には、商用電力系統からの電力を蓄電池に充電し、電力需要が設定された上限電力を超えるような場合には放電するように制御される(例えば、特許文献1参照)。かかる制御により商用電力系統から供給される電力のピークカットを行っている。
しかしながら、従来の蓄電池の制御手法では、電力需要のピーク時間帯の途中で蓄電池の蓄電量が尽きてしまい、ピーク時間帯におけるその後の上限電力を超える電力が商用電力系統から供給されてしまうといった事態が発生していた。その結果、商用電力系統から供給されるピーク電力が、設定された上限電力よりも大幅に大きくなってしまう場合があるといった問題があった。過去1年間において、わずかな期間であっても、ピーク電力が突出すると、次年度1年間の基本料金がかかる突出したピーク電力に応じた料金となる。そのため、上述した事態が生じると次年度1年間の基本料金が大幅に値上げされた高い料金に設定されてしまい、高くなった分の料金は需要家へ転嫁せざるを得えない状況になってしまうといった問題があった。
特開2013−143866号公報
そこで、本発明の一態様は、上述した問題点を克服すべく、突出したピーク電力が生じることを回避することが可能な蓄電池制御装置および制御方法を提供することを目的とする。
本発明の一態様の蓄電池制御装置は、
商用電力系統から供給される電力の上限設定値を超える超過分の電力を放電する蓄電池の蓄電残量率(SOC:State Of Charge)が電力消費量のピーク時間帯における経過時間に応じて低下する蓄電残量率低下係数を有する関数を用いて、ピーク時間帯における経過時間に応じた蓄電池装置の基準蓄電残量率を演算する基準蓄電残量率演算部と、
かかる経過時間を経過時における蓄電池装置の実際に使用可能な有効蓄電残量率と演算された基準蓄電残量率との関係に応じて、上限設定値を可変に制御する可変制御部と、
を備えたことを特徴とする。
また、かかる経過時間を経過時における蓄電池装置の実際の蓄電残量率から放電を終止する放電終止蓄電残量率を差し引いた有効蓄電残量率を演算する有効蓄電残量率演算部をさらに備え、
可変制御部は、
基準蓄電残量率から第1のマージン率を差し引いた差分値が有効蓄電残量率よりも大きいかどうかを判定する第1の判定部と、
差分値が有効蓄電残量率よりも大きい場合に、上限設定値に第1の補正電力値を加算する加算部と、
を有すると好適である。
また、可変制御部は、
基準蓄電残量率に第2のマージン率を加算した加算値が有効蓄電残量率よりも小さいかどうかを判定する第2の判定部と、
加算値が有効蓄電残量率よりも小さい場合に、上限設定値から第2の補正電力値を差し引く減算部と、
をさらに有すると好適である。
また、可変制御部は、差分値が有効蓄電残量率よりも大きくなく、加算値が有効蓄電残量率よりも小さくない場合に、現在設定されている上限設定値の値を維持するように制御すると好適である。
本発明の一態様の蓄電池の制御方法は、
商用電力系統から供給される電力の上限設定値を超える超過分の電力を放電する蓄電池の蓄電残量率(SOC:State Of Charge)が電力消費量のピーク時間帯における経過時間に応じて低下する蓄電残量率低下係数を有する関数を用いて、ピーク時間帯における経過時間に応じた蓄電池装置の基準蓄電残量率を演算する工程と、
かかる経過時間を経過時における蓄電池装置の実際に使用可能な有効蓄電残量率と演算された基準蓄電残量率との関係に応じて、上限設定値を可変に制御する工程と、
を備えたことを特徴とする。
また、かかる経過時間を経過時における蓄電池装置の実際の蓄電残量率から放電を終止する放電終止蓄電残量率を差し引いた有効蓄電残量率を演算する工程をさらに備え、
かかる上限設定値を可変に制御する工程は、内部工程として、
基準蓄電残量率から第1のマージン率を差し引いた差分値が有効蓄電残量率よりも大きいかどうかを判定する工程と、
差分値が有効蓄電残量率よりも大きい場合に、上限設定値に第1の補正電力値を加算する工程と、
を有すると好適である。
本発明の一態様によれば、電力需要のピーク時間帯の途中で蓄電池の蓄電量が尽きてしまうことを回避できる。よって、突出したピーク電力が生じることを回避できる。よって、電力使用料金の大幅な値上げを回避できる。
実施の形態1における電力供給システムの構成を示す図である。 実施の形態1における電力需要と時刻との関係の一例を示す図である。 実施の形態1における蓄電池の制御方法の要部工程を示すフローチャート図である。 実施の形態1における理想放電推移の一例を示す。 ピーク時間帯(1),(2)の間の時間帯を省略した、実施の形態1における放電推移の一例を示す図である。 実施の形態1におけるピーク時間帯付近の電力需要とピークカット電力と時刻との関係の一例を示す図である。 実施の形態1における充電電力を説明するための図である。
実施の形態1.
図1は、実施の形態1における電力供給システムの構成を示す図である。図1において、電力供給システム500は、蓄電池装置10、系統電源30(商用電力系統)、電圧変換器(トランス)40、測定器(CT)42、及び蓄電池制御装置100を備えている。系統電源30からは、例えば、6000V以上の高圧の電力が供給され、トランス40で電圧変換を行って、一般家庭等の需要家からなる複数の負荷20で使用可能な電圧(例えば210V)に変換される。そして、変換された電力が複数の負荷20に供給される。その際、系統電源30から受電する電流は、CT42で常時測定されている。CT42では、トランス40の2次側の電流を計測し、後述する例えば高速応答タイプのトランスデューサ162にて電力に変換する。CT42で測定された電流値は、蓄電池制御装置100に出力される。また、予め設定された上限電力(ピークカット電力)を超える分の電力は、蓄電池装置10から放電される。以下、蓄電残量率(SOC:State Of Charge)については、「SOC」と示す。
蓄電池制御装置100内には、比較器50、PI(Proportional Integral)制御回路52、符号反転回路54、リミッタ回路56、スイッチ58、制御回路110、磁気ディスク装置等の記憶装置114、比較器150、ローパスフィルタ(LPF)152、符号反転回路154、リミッタ回路156、スイッチ158、切替スイッチ160、及びトランスデューサ(TRD)162が配置される。
制御回路110内には、基準SOC(αot)演算部60、有効SOC(α1)演算部62、可変制御部64、カウンタ回路76、管理部78,79、及びメモリ112が配置される。αot演算部60、α1演算部62、可変制御部64、カウンタ回路76、及び管理部78,79といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。制御回路110内に必要な入力データ或いは演算された結果はその都度メモリ112に記憶される。また、αot演算部60、α1演算部62、可変制御部64、カウンタ回路76、及び管理部78,79の少なくとも1つがソフトウェアで構成される場合には、CPU或いはGPUといった計算器が配置される。
可変制御部64内には、判定部65,66,68、減算部70、加算部72、及び設定部74が配置される。判定部65,66,68、減算部70、加算部72、及び設定部74といった各機能は、プログラムといったソフトウェアで構成されても良い。或いは、電子回路等のハードウェアで構成されてもよい。或いは、これらの組み合わせであってもよい。可変制御部64内に必要な入力データ或いは演算された結果はその都度メモリ112に記憶される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。電力供給システム500にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における電力需要と時刻との関係の一例を示す図である。図2において、縦軸に電力需要(kW)を示し、横軸に1日における時刻(H)を示している。図2の例では、電力供給システム500から電力が供給される複数の負荷20における1日あたりの電力需要が示されている。例えば、朝7時頃に電力需要が第1回目のピーク(1)を迎える。その後、消費電力は低下し、夕方17時頃から電力需要が第2回目のピーク(2)を迎える。そして、23時頃から消費電力は低下し、翌朝まで電力需要は低い状態を維持する。かかるケースにおいて、第1回目のピーク(1)と第2回目のピーク(2)において消費電力(電力需要)が予め設定しておいたピークカット電力P0を超える。そのため、かかる時間帯において、蓄電池装置10が放電し、ピークカット電力P0を超える電力を賄えばよい。従来のシステムでは、単純に系統電源30からの供給をカットするためのピークカット電力P0(上限電力)を超える電力をそのまま放電していたため、上述したように、電力需要のピーク時間帯の途中で蓄電池の蓄電量が尽きてしまうといった問題を抱えていた。そこで、実施の形態1では、かかる電力需要のピーク時間帯(1)(2)において、蓄電池装置10が放電を継続できるように制御する。
ここで、比較器50、PI制御回路52、符号反転回路54、リミッタ回路56、及びスイッチ58は、蓄電池装置10の放電時における回路を示している。放電時は、管理部78が、スイッチ160を放電側に接続するように制御する。これにより、CT42で測定された系統電源30から受電した電流値をトランスデューサ162で電力変換した電力値が比較器50に入力される。トランスデューサ162では、例えば、サンプリング周期が例えば数40〜50msecで系統電源30から購入した受電電力を比較器50に出力する。
記憶装置114には、現状設定されているピークカット電力P0が格納されている。そして、比較器50では、記憶装置114から現状設定されているピークカット電力P0を入力する。そして、ピークカット電力P0から系統電源30からの受電電力を差し引いた差分値(偏差e:超過分の電力)を演算し、PI制御回路52に出力する。
PI制御回路52では、差分値(偏差e:超過分の電力)を入力し、PI(Proportional Integral)制御を行って系統電源30からの受電電力がピークカット電力P0により近づくように制御する信号を出力する。そして、出力された信号を符号反転回路54に出力する。
符号反転回路54では、PI制御回路52から信号を入力し、PI出力信号の符号を反転させて出力する。実施の形態1では、蓄電池装置10への入力信号が正(+)である場合は放電、負(−)である場合は充電として扱うように制御されている。そのため、比較器50の出力である偏差eが負の場合、蓄電池装置10から放電させるために正(+)の信号に変換する。
リミッタ回路56は、符号反転回路54から信号を入力し、上限値を超える場合には値を制限して出力する。リミッタ回路56により、例えば、入力信号(超過分の電力)が蓄電池装置10の定格を超える場合(能力以上の暴走)等を回避できる。
スイッチ58は、管理部78が、放電動作時のみON(閉)となるように制御される。ここでは、電力需要のピーク時間帯(1)(2)において、スイッチ58はON(閉)となる。その他の時間帯はOFF(開)となる。これにより、蓄電池装置10の異常時を含む低負荷時の自己放電等を防ぐことができる。スイッチ58がONの場合に、蓄電池装置10はリミッタ回路56の出力信号(放電指示電力信号)を入力する。
そして、蓄電池装置10は、入力された放電指示電力信号に応じて、かかる電力需要のピーク時間帯(1)(2)において、超過分の電力を放電する。ここで、実施の形態1では、設定されるピークカット電力P0を可変に制御することで、蓄電池装置10の放電量を制御して、電力需要のピーク時間帯の途中で蓄電池の蓄電量が尽きてしまうことを防止する。
図3は、実施の形態1における蓄電池の制御方法の要部工程を示すフローチャート図である。図3において、実施の形態1における蓄電池の制御方法は、ピークカット電力設定値(P0)設定工程(S102)と、判定工程(S104)と、基準SOC(αot)演算工程(S106)と、有効SOC(α1)演算工程(S108)と、可変制御工程(S110)と、判定工程(S132)と、判定工程(S134)と、判定工程(S140)と、充電工程(s142)と、いう一連の工程を実施する。また、可変制御工程(S110)は、その内部工程として、判定工程(S112)と、判定工程(S114)と、減算工程(S116)と、判定工程(S124)と、加算工程(S126)と、ピークカット電力P0再設定工程(S130)と、いう一連の工程を実施する。
ピークカット電力設定値(P0)設定工程(S102)として、設定部74は、まず、ピークカット電力P0の初期値を設定する。ピークカット電力P0の初期値は、例えば、昨年の基本料金の基準となった電力を用いてもよい。或いは、基本料金を下げることを目的に、昨年の基本料金の基準となった電力よりも小さい値を設定してもよい。
判定工程(S104)として、管理部78は、現在の時刻がピーク時間帯かどうかを判定する。現在の時刻がピーク時間帯の場合は、基準SOC(αot)演算工程(S106)に進む。現在の時刻がピーク時間帯でない場合は、判定工程(S104)に戻り、ピーク時間帯になるまで判定処理を繰り返す。
基準SOC(αot)演算工程(S106)として、αot演算部60は、関数を用いて、ピーク時間帯における経過時間Δt(H)に応じた蓄電池装置10の基準SOC(αot)を演算する。かかる関数は、蓄電池装置10のSOCが電力消費量のピーク時間帯における経過時間(Δt)に応じて低下するSOC低下係数を有する。かかる関数は、次の式(1)で定義される。
(1) αot={ΔSOC/(ΣT×6)}・(Δt×6)+SOC1
ここで、使用可能蓄電率(ΔSOC)は、最大充電蓄電率(SOC1)と、放電終止蓄電率(SOC2)を用いて次の式(2)で定義される。なお、SOC1は定期充電終了後のSOC値を示し、100%未満の場合もあり得る。放電終止蓄電率(SOC2)は、蓄電池装置10の構成上それ以上の放電が困難である設計上の蓄電率を示し、10%より大きな値となる。例えば、15%程度となる。
(2)ΔSOC=SOC1−SOC2
また、ΣTは、ピーク時間帯(1)(2)の合計時間(H)を示す。
図4は、実施の形態1における理想放電推移の一例を示す。図4において、第1のピーク時間帯(1)の前に蓄電池装置10のSOCを最大充電蓄電率(SOC1)になるように充電しておく。そして、第1のピーク時間帯(1)では、式(1)のSOC低下係数{ΔSOC/(ΣT×6)}に従って経過時間Δtに応じて蓄電池装置10のSOCが低下する。そして、第1のピーク時間帯(1)が終了し、蓄電池装置10のSOCがSOC’になる。そして、かかる状態を第2のピーク時間帯(2)が到来するまで維持する。そして、第2のピーク時間帯(2)では、同じ傾きとなるSOC低下係数{ΔSOC/(ΣT×6)}に従って経過時間(Δt)に応じて蓄電池装置10のSOCが低下する。そして、第2のピーク時間帯(2)が終了した時点で蓄電池装置10のSOCが放電終止蓄電率(SOC2)付近になる。かかる状態になるようにSOC低下係数{ΔSOC/(ΣT×6)}が設定される。
有効SOC(α1)演算工程(S108)として、α1演算部62は、ピーク時間帯(1)(2)における経過時間Δtを経過時における蓄電池装置10の実際のSOCから放電を終止する放電終止SOCを差し引いた有効SOC(α1)を演算する。有効SOC(α1)は、現在の実SOCと放電終止蓄電率(SOC2)を用いて次の式(3)で定義される。
(3) α1=実SOC−SOC2
よって、蓄電池装置10の実SOCが図4に示す理想放電推移上を進めば、電力需要のピーク時間帯(1)(2)の途中で蓄電池装置10の有効SOC(α1)が尽きてしまうことを防止できると共に、第2のピーク時間帯(2)が終了した時点で蓄電池装置10の実SOCが放電終止蓄電率(SOC2)になるように無駄の無い効率的な放電ができる。しかし、実際には理想通りには進まない。そこで、実施の形態1では、かかる理想放電推移に近づくように、設定されたピークカット電力設定値(P0)を可変に制御する。
可変制御工程(S110)として、可変制御部64は、経過時間(Δt)を経過時における蓄電池装置10の実際に使用可能な有効SOC(α1)と演算された基準SOC(αot)との関係に応じて、設定されたピークカット電力設定値(P0)(上限設定値)を可変に制御する。
図5は、ピーク時間帯(1),(2)の間の時間帯を省略した、実施の形態1における放電推移の一例を示す図である。図5に示すように、最大充電蓄電率SOC1に充電された蓄電池装置10は、ピーク時間帯に入ると、理想的には直線Aに示す傾きに沿って実SOCが低下する。しかし、実際には曲線Cに示すように実SOCが低下する。そのまま、放電を続けると、曲線Cに示すようにピーク時間帯の途中で蓄電池装置10の有効SOC(α1)が尽きてしまう場合が生じる。実施の形態1では、ピークカット電力設定値(P0)にプラスマージン(ΔP2)及びマイナスマージン(ΔP1)を設定して変化させる。これにより、蓄電池装置10の放電量を可変に制御し、実SOCを例えば曲線Bに示すように変化させる。具体的には以下のように動作させる。
判定工程(S112)として、判定部65は、現在の実SOCが放電終止蓄電率(SOC2)より小さいかどうかを判定する。小さい場合には、判定工程(S140)に進む。小さくない場合には判定工程(S114)に進む。
判定工程(S114)として、判定部66(第2の判定部)は、基準SOC(αot)にマージン率(M1)(第2のマージン率)を加算した加算値が有効SOC(α1)よりも小さいかどうかを判定する。小さい場合には、減算工程(S116)へ進む。小さく無い場合には判定工程(S124)に進む。
減算工程(S116)として、減算部70は、加算値が有効SOC(α1)よりも小さい場合に、初期値のピークカット電力設定値(P0)(上限設定値)から補正電力値(ΔP1)(第2の補正電力値)を差し引いた新たなピークカット電力設定値(P0)を演算する。基準SOC(αot)にマージン率(M1)(第2のマージン率)を加算した加算値が有効SOC(α1)よりも小さい場合、まだ蓄電池装置10の有効SOC(α1)に余裕がある状態となる。そこで、かかる場合には、ピークカット電力設定値(P0)を小さくして、蓄電池装置10の放電量を増やす。逆にかかる操作により系統電源30からの受電電力を小さくできる。
判定工程(S124)として、判定部68(第1の判定部)は、基準SOC(αot)からマージン率(M2)(第1のマージン率)を差し引いた差分値が有効SOC(α1)よりも大きいかどうかを判定する。大きい場合には加算工程(S126)に進む。大きくない場合にはピークカット電力設定値(P0)再設定工程(S130)に進む。
加算工程(S126)として、加算部72は、差分値が有効SOC(α1)よりも大きい場合に、初期値のピークカット電力設定値(P0)(上限設定値)に補正電力値(ΔP2)(第1の補正電力値)を加算した新たなピークカット電力設定値(P0)を演算する。基準SOC(αot)からマージン率(M2)(第1のマージン率)を差し引いた差分値が有効SOC(α1)よりも大きい場合、蓄電池装置10の有効SOC(α1)は理想値よりも早く放電が進んでいることを示す。言い換えれば、余裕が無い状態となる。そこで、かかる場合には、ピークカット電力設定値(P0)を大きくして、蓄電池装置10の放電量を減らす。逆にかかる操作により系統電源30からの受電電力が大きくなる。
なお、可変制御部64は、差分値が有効SOC(α1)よりも大きくなく、加算値が有効SOC(α1)よりも小さくない場合に、現在設定されているピークカット電力設定値(P0)の値を維持するように制御する。言い換えれば、有効SOC(α1)が、基準SOC(αot)を挟んでプラス側マージン率(M1)とマイナス側マージン率(M2)との間の値である場合には、現在設定されているピークカット電力設定値(P0)をそのまま維持する。
ピークカット電力設定値(P0)再設定工程(S130)として、設定部74は、上述した各条件で演算された新たなピークカット電力設定値(P0)を現在のピークカット電力設定値(P0)に上書きすることで再設定する。これにより、ピークカット電力設定値(P0)が可変される。
判定工程(S132)として、管理部78は、現在の時刻がピーク時間帯かどうかを判定する。現在の時刻がピーク時間帯の場合は、判定工程(S134)に進む。現在の時刻がピーク時間帯でない場合は、判定工程(S140)に進む。
判定工程(S134)として、カウンタ回路76は、基準SOC(αot)演算工程(S106)から現在までの経過時間(t’)を計測する。そして、管理部79は、計測された経過時間(t’)が可変制御の繰り返し更新周期S’の時間(t0)を経過したかどうかを判定する。経過していない場合には、経過するまで判定工程(S134)に戻る。経過した場合には、基準SOC(αot)演算工程(S106)に戻る。そして、現在の時刻がピーク時間帯でなくなるまで基準SOC(αot)演算工程(S106)から判定工程(S134)までの各工程を繰り返す。例えば、繰り返し更新周期S’の時間(t0)を10分と設定した場合、10分毎に、基準SOC(αot)演算工程(S106)から判定工程(S134)までの各工程が実施される。言い換えれば、10分毎に、ピークカット電力設定値(P0)が可変制御される。
図6は、実施の形態1におけるピーク時間帯付近の電力需要とピークカット電力と時刻との関係の一例を示す図である。電力需要がピークカット電力の初期値を超えるピーク時間帯では、可変制御演算が繰り返し実行されるので、基準SOC(αot)、及び有効SOC(α1)が繰り返し更新周期S’で変動する。かかる変動に応じてピークカット電力設定値(P0)が繰り返し更新周期S’で可変され得る。図6に示すように、ピークカット電力設定値(P0)が小さくなれば、例えば、単位時間(30分)あたりの平均電力を小さくすることができる。一方、ピークカット電力設定値(P0)が大きくなれば、例えば、単位時間(30分)あたりの平均電力が大きくなる。しかし、電力需要のピーク時間帯の途中で蓄電池装置10の蓄電量が尽きてしまい、ピーク時間帯におけるその後に、ピークカット電力設定値(P0)よりも大幅に大きい電力が系統電源30から供給されてしまうといった事態を回避できる。その結果、単位時間(30分)あたりの平均電力が大きくなってしまう場合でもその上昇分を低く抑えることができる。
また、判定工程(S132)において現在の時刻がピーク時間帯の場合は、管理部78は、スイッチ58をOFF(開)にする。
次に、判定工程(S140)として、管理部78は、現在の時刻が充電時間帯かどうかを判定する。電力消費量が低く、例えば夜間電力料金割引が適用される時間帯、例えば、午前3時から6時の間を充電時間として設定する。現在の時刻が充電時間帯でない場合には、判定工程(S140)に戻り、充電時間帯に入るまで判定を繰り返す。現在の時刻が充電時間帯である場合に充電工程(S142)に進む。
充電工程(S142)として、蓄電池装置10の充電を実施する。ここで、比較器150、LPF152、符号反転回路154、リミッタ回路156、及びスイッチ158は、蓄電池装置10の充電時における回路を示している。充電時は、管理部78が、スイッチ160を充電側に接続するように制御する。これにより、CT42で測定された系統電源30から受電した電流値をトランスデューサ162で電力変換した電力値がLPF152を介して比較器150に入力される。
記憶装置114には、初期値のピークカット電力P0が格納されている。そして、比較器50では、記憶装置114から初期値のピークカット電力P0を入力する。そして、ピークカット電力P0から系統電源30からの受電電力を差し引いた差分値(偏差e:超過分の電力)を演算し、符号反転回路154に出力する。充電時は、フィードバック制御を高精度に行う必要がないので放電時のようなPI制御回路を省略しても構わない。また、LPF152についても省略しても構わない。
符号反転回路154では、比較器150から信号を入力し、符号を反転させて出力する。蓄電池装置10に充電させるために負(−)の信号に変換する。
リミッタ回路156は、符号反転回路154から信号を入力し、上限値を超える場合には値を制限して出力する。リミッタ回路156により、例えば、入力信号(超過分の電力)が蓄電池装置10の定格を超える場合(能力以上の暴走)等を回避できる。
スイッチ158は、管理部78が、充電動作時のみON(閉)となるように制御される。ここでは、設定された充電時間帯において、スイッチ158はON(閉)となる。その他の時間帯はOFF(開)となる。これにより、蓄電池装置10の異常時を含む低負荷時や自己放電等を防ぐことができる。スイッチ158がONの場合に、蓄電池装置10はリミッタ回路156の出力信号(充電指示電力信号)を入力する。
図7は、実施の形態1における充電電力を説明するための図である。充電時は、元々、電力需要が初期値のピークカット電力設定値(P0)を超えない時間帯に設定されているので、充電によってピークカット電力設定値(P0)を超えないようにすればよい。ピークカット電力設定値(P0)を下回る電力量(S)が蓄電池装置10の充電に使用されればよい。図7の例では、3時前の時間帯の消費電力がピークカット電力設定値(P0)であるように示されているが、もっと小さくても良いことは言うまでもない。
以上のように実施の形態1によれば、電力需要のピーク時間帯の途中で蓄電池装置10の蓄電量が尽きてしまうことを回避できる。よって、突出したピーク電力が生じることを回避できる。よって、電力使用料金の大幅な値上げを回避できる。また、消費電力が少ない深夜から朝方までの間に充電することで安い電力を使用できる。よって、充電時の安い電力を電力料金が高いピーク時間帯に使用することでピークシフトを行うことができる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての蓄電池制御装置および蓄電池の制御方法は、本発明の範囲に包含される。
10 蓄電池装置
20 負荷
30 系統電源
40 トランス
42 CT
50,150 比較器
52 PI制御回路
54,154 符号反転回路
56,156 リミッタ回路
58,158 スイッチ
60 αot演算部
62 α1演算部
64 可変制御部
65,66,68 判定部
70 減算部
72 加算部
74 設定部
76 カウンタ回路
78,79 管理部
100 蓄電池制御装置
110 制御回路
112 メモリ
114 記憶装置
152 LPF
160 切替スイッチ
162 トランスデューサ
500 電力供給システム

Claims (6)

  1. 商用電力系統から供給される電力の上限設定値を超える超過分の電力を放電する蓄電池の蓄電残量率(SOC:State Of Charge)が電力消費量のピーク時間帯における経過時間に応じて低下する蓄電残量率低下係数を有する関数を用いて、前記ピーク時間帯における経過時間に応じた前記蓄電池装置の基準蓄電残量率を演算する基準蓄電残量率演算部と、
    前記経過時間を経過時における前記蓄電池装置の実際に使用可能な有効蓄電残量率と演算された前記基準蓄電残量率との関係に応じて、前記上限設定値を可変に制御する可変制御部と、
    を備えたことを特徴とする蓄電池制御装置。
  2. 前記経過時間を経過時における前記蓄電池装置の実際の蓄電残量率から放電を終止する放電終止蓄電残量率を差し引いた前記有効蓄電残量率を演算する有効蓄電残量率演算部をさらに備え、
    前記可変制御部は、
    前記基準蓄電残量率にから第1のマージン率を差し引いた差分値が前記有効蓄電残量率よりも大きいかどうかを判定する第1の判定部と、
    前記差分値が前記有効蓄電残量率よりも大きい場合に、前記上限設定値に第1の補正電力値を加算する加算部と、
    を有することを特徴とする請求項1記載の蓄電池制御装置。
  3. 前記可変制御部は、
    前記基準蓄電残量率に第2のマージン率を加算した加算値が前記有効蓄電残量率よりも小さいかどうかを判定する第2の判定部と、
    前記加算値が前記有効蓄電残量率よりも小さい場合に、前記上限設定値から第2の補正電力値を差し引く減算部と、
    をさらに有することを特徴とする請求項2記載の蓄電池制御装置。
  4. 前記可変制御部は、前記差分値が前記有効蓄電残量率よりも大きくなく、前記加算値が前記有効蓄電残量率よりも小さくない場合に、現在設定されている前記上限設定値の値を維持するように制御することを特徴とする請求項3記載の蓄電池制御装置。
  5. 商用電力系統から供給される電力の上限設定値を超える超過分の電力を放電する蓄電池の蓄電残量率(SOC:State Of Charge)が電力消費量のピーク時間帯における経過時間に応じて低下する蓄電残量率低下係数を有する関数を用いて、前記ピーク時間帯における経過時間に応じた前記蓄電池装置の基準蓄電残量率を演算する工程と、
    前記経過時間を経過時における前記蓄電池装置の実際に使用可能な有効蓄電残量率と演算された前記基準蓄電残量率との関係に応じて、前記上限設定値を可変に制御する工程と、
    を備えたことを特徴とする蓄電池の制御方法。
  6. 前記経過時間を経過時における前記蓄電池装置の実際の蓄電残量率から放電を終止する放電終止蓄電残量率を差し引いた前記有効蓄電残量率を演算する工程をさらに備え、
    前記上限設定値を可変に制御する工程は、内部工程として、
    前記基準蓄電残量率から第1のマージン率を差し引いた差分値が前記有効蓄電残量率よりも大きいかどうかを判定する工程と、
    前記差分値が前記有効蓄電残量率よりも大きい場合に、前記上限設定値に第1の補正電力値を加算する工程と、
    を有することを特徴とする請求項5記載の蓄電池の制御方法。
JP2014093951A 2014-04-30 2014-04-30 蓄電池制御装置および蓄電池の制御方法 Pending JP2015211618A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093951A JP2015211618A (ja) 2014-04-30 2014-04-30 蓄電池制御装置および蓄電池の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093951A JP2015211618A (ja) 2014-04-30 2014-04-30 蓄電池制御装置および蓄電池の制御方法

Publications (1)

Publication Number Publication Date
JP2015211618A true JP2015211618A (ja) 2015-11-24

Family

ID=54613438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093951A Pending JP2015211618A (ja) 2014-04-30 2014-04-30 蓄電池制御装置および蓄電池の制御方法

Country Status (1)

Country Link
JP (1) JP2015211618A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038234A (ko) * 2017-09-29 2019-04-08 주식회사 포스코아이씨티 수요전력 예측을 이용한 전력피크 저감시스템 및 방법
WO2019198120A1 (ja) * 2018-04-09 2019-10-17 株式会社 東芝 電力貯蔵装置の運転制御システム、方法及びプログラム
CN111157902A (zh) * 2020-01-06 2020-05-15 上海度普新能源科技有限公司 一种锂离子电池峰值功率测试方法及系统
WO2024029179A1 (ja) * 2022-08-02 2024-02-08 株式会社Nttドコモ 制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190038234A (ko) * 2017-09-29 2019-04-08 주식회사 포스코아이씨티 수요전력 예측을 이용한 전력피크 저감시스템 및 방법
KR102051192B1 (ko) * 2017-09-29 2019-12-03 주식회사 포스코아이씨티 수요전력 예측을 이용한 전력피크 저감시스템 및 방법
WO2019198120A1 (ja) * 2018-04-09 2019-10-17 株式会社 東芝 電力貯蔵装置の運転制御システム、方法及びプログラム
CN111157902A (zh) * 2020-01-06 2020-05-15 上海度普新能源科技有限公司 一种锂离子电池峰值功率测试方法及系统
CN111157902B (zh) * 2020-01-06 2022-05-27 上海度普新能源科技有限公司 一种锂离子电池峰值功率测试方法及系统
WO2024029179A1 (ja) * 2022-08-02 2024-02-08 株式会社Nttドコモ 制御装置

Similar Documents

Publication Publication Date Title
US9620979B2 (en) Storage battery control apparatus, storage battery control method, and storage battery system
US20170324246A1 (en) Control apparatus, control system, control method, and program
JP6145722B2 (ja) 電力制御方法、電力制御装置、電力制御システム
WO2012032776A1 (ja) 電力制御装置、電力制御方法、及び電力供給システム
JP5895157B2 (ja) 充放電制御装置
JP2015211618A (ja) 蓄電池制御装置および蓄電池の制御方法
EP3379677B1 (en) Received power control device and received power control method
US10107864B2 (en) Step-time battery degradation determination
JPWO2017094138A1 (ja) 電力管理装置、電力管理システム、評価方法、及び、プログラム
JP5995653B2 (ja) 充放電制御装置、充放電制御方法、プログラム及び充放電制御システム
JP2017225212A (ja) 充放電制御装置
JP2018023282A (ja) 電力管理装置、電力管理システム及び電力管理方法
JP2016167913A (ja) 電力供給システム及び電力供給方法
JP2014107950A (ja) 蓄電システムおよびその制御方法
JP6204614B2 (ja) 電力制御装置、電力制御方法及び電力制御システム
US20160241072A1 (en) Charge/discharge control device and program
WO2016185671A1 (ja) 蓄電池制御装置
JP6178179B2 (ja) 電力貯蔵装置
JP2005332040A (ja) 電気料金の省コスト評価方法
JP6113030B2 (ja) エネルギー管理装置、エネルギー管理方法及びエネルギー管理システム
KR20160147168A (ko) 전기철도 시스템에서 에너지 저장 장치의 스케줄링 방법 및 장치
KR101675962B1 (ko) 배터리 용량 효율을 반영하는 충전 전력 크기 설정 제어 장치 및 방법
JP2015163010A (ja) デマンド制御方法及びデマンド制御システム
JP2007101209A (ja) 二次電池容量計算装置、二次電池監視装置および二次電池監視方法
JP6447093B2 (ja) 電力管理システム