WO2024082771A1 - 多联机回油控制方法、装置、电子设备及多联机系统 - Google Patents

多联机回油控制方法、装置、电子设备及多联机系统 Download PDF

Info

Publication number
WO2024082771A1
WO2024082771A1 PCT/CN2023/110549 CN2023110549W WO2024082771A1 WO 2024082771 A1 WO2024082771 A1 WO 2024082771A1 CN 2023110549 W CN2023110549 W CN 2023110549W WO 2024082771 A1 WO2024082771 A1 WO 2024082771A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil return
indoor unit
stage
return stage
preset
Prior art date
Application number
PCT/CN2023/110549
Other languages
English (en)
French (fr)
Inventor
余凯
傅英胜
张辉
薛寒冬
倪毅
杨力
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024082771A1 publication Critical patent/WO2024082771A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/30Velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of multi-split systems, and in particular to a multi-split oil return control method, device and multi-split system.
  • the oil return control method is a one-stage control, as shown in Figure 1, a schematic diagram of the oil return stage of the related technology.
  • the horizontal axis represents the time of the oil return stage
  • the vertical axis represents the compressor frequency.
  • the embodiments of the present application provide a multi-split oil return control method, device and multi-split system to take into account both the oil return effect of the unit's oil return process and the reduction of liquid flow noise.
  • the present application provides a multi-split oil return control method, wherein the method includes: when the multi-split system needs to enter the oil return operation, it is divided into a first indoor unit and a second indoor unit according to the operating status of each indoor unit; wherein the oil return operation includes multiple oil return stages; different control strategies are adopted in each oil return stage to control the compressor frequency of the multi-split system, and to control the opening of the indoor valve of at least one of the first indoor unit or the second indoor unit.
  • the operation status of each indoor unit is divided into a first indoor unit and a second indoor unit, including: determining whether the operation status of the indoor unit is in the on state and has not reached the preset shutdown temperature point; if so, dividing into The first internal machine has a capacity requirement; if not, it is classified as a second internal machine without a capacity requirement.
  • different control strategies are adopted in each oil return stage to control the compressor frequency of the multi-split system, including: in each oil return stage, controlling the compressor to operate according to a preset frequency corresponding to each oil return stage; wherein the preset frequency corresponding to the subsequent oil return stage is smaller than the preset frequency corresponding to the previous oil return stage.
  • different control strategies are adopted in each oil return stage to control the compressor frequency of the multi-split system, including: calculating a preset frequency according to a corresponding formula in each oil return stage; and controlling the compressor to operate according to the corresponding preset frequency in each oil return stage.
  • the preset frequency is calculated according to a corresponding formula, including:
  • Q I ⁇ rated capacity of the internal unit when powered on*A c + ⁇ rated capacity of the internal unit when powered off* ⁇ ;
  • Q II ⁇ rated capacity of the internal machine when powered on*A c ;
  • a c ⁇ [(T i-env - T1) ⁇ A1+A2]+A3 ⁇ (T o-env - T2) ⁇ /A4;
  • Q I and Q II are capacity requirements
  • k is the compressor displacement coefficient
  • is the shutdown indoor unit compensation correction coefficient
  • Y1 is the first compensation coefficient
  • Y2 is the second compensation system
  • Ti-env is the indoor ambient temperature
  • To-env is the outdoor ambient temperature
  • T1 and T2 are preset temperature values
  • A1, A2, A3, and A4 are all preset values
  • the F I ⁇ H1, the F II ⁇ H2 H1 is the minimum operating frequency of the compressor in the first oil return stage
  • H2 is the minimum operating frequency of the compressor in the second oil return stage.
  • different control strategies are adopted in each oil return stage to control the internal machine valve opening of at least one of the first internal machine or the second internal machine, including at least one of the following: in each oil return stage of the oil return operation, the internal machine superheat of the first internal machine is obtained in real time; the corresponding internal machine valve opening is determined according to the internal machine superheat, and the internal machine valve of the first internal machine is adjusted in real time accordingly; or, in each oil return stage of the oil return operation, a preset internal machine valve opening corresponding to each oil return stage is determined; and the internal machine valve of the second internal machine is adjusted according to the preset internal machine valve opening.
  • the present application also provides a multi-split oil return control device, wherein the device comprises: a setting module for dividing the multi-split system into a first indoor unit and a second indoor unit according to the operating state of each indoor unit when the multi-split system needs to enter the oil return operation Indoor unit; wherein the oil return operation includes multiple oil return stages; a control module, used to adopt different control strategies in each oil return stage to control the compressor frequency of the multi-split system, and to control the opening of the indoor unit valve of at least one of the first indoor unit or the second indoor unit.
  • the present application also provides a multi-split system, wherein the multi-split system includes the multi-split oil return control device mentioned above.
  • the present application also provides a computer-readable storage medium having a computer program stored thereon, wherein the program implements the above method when executed by a processor.
  • the present application also provides an electronic device, which includes: one or more processors; a storage device for storing one or more programs, when the one or more programs are executed by the one or more processors, the one or more processors implement the above method.
  • the present application also provides a computer program for causing a processor to execute any one of the methods mentioned above.
  • the complete oil return operation is divided into multiple oil return stages.
  • the indoor units with capacity requirements and the indoor units without capacity requirements are controlled differently, thereby ensuring that the oil return operation noise is controlled while meeting the oil return effect, thereby reducing the liquid flow noise of the refrigerant during the entire oil return operation.
  • FIG1 is a schematic diagram of the oil return stage of the related art
  • FIG2 is a flow chart of a multi-split oil return control method according to an embodiment of the present application.
  • FIG3 is a schematic diagram of an oil return stage according to an embodiment of the present application.
  • FIG4 is a schematic diagram of the opening of the internal valve of the related art
  • FIG5 is a schematic diagram of the opening of the internal machine valve according to an embodiment of the present application.
  • FIG6 is a flow chart of a multi-split oil return control method according to an embodiment of the present application.
  • FIG. 7 is a structural block diagram of a multi-split oil return control device according to an embodiment of the present application.
  • the words “if” and “if” may be interpreted as “at the time of” or “when” or “in response to determining” or “in response to detecting”, depending on the context.
  • the phrases “if it is determined” or “if (stated condition or event) is detected” may be interpreted as “when it is determined” or “in response to determining” or “when detecting (stated condition or event)” or “in response to detecting (stated condition or event)", depending on the context.
  • FIG2 is a flow chart of a multi-split oil return control method according to an embodiment of the present application. As shown in FIG2 , the method includes the following steps.
  • Step S201 when the multi-split system needs to enter the oil return operation, it is divided into a first indoor unit and a second indoor unit according to the operating status of each indoor unit; wherein the oil return operation includes multiple oil return stages.
  • Step S202 in each oil return stage, different control strategies are adopted to control the compressor frequency of the multi-split system, and to control the opening of the valve of at least one of the first indoor unit or the second indoor unit.
  • the valve is an electronic expansion valve.
  • the complete oil return operation is divided into multiple oil return stages, as shown in the oil return stage schematic diagram in FIG3 , where the horizontal axis represents the time of the oil return stage, and the vertical axis represents the compressor frequency. In different oil return stages, the compressor frequency is different.
  • the indoor unit with capacity demand and the indoor unit without capacity demand can be selected in each oil return stage. The required indoor units are controlled differently, so as to ensure that the oil return effect is met while the oil return operation noise is controlled, reducing the liquid flow noise of the refrigerant during the entire oil return operation.
  • the duration of each oil return stage is preset, such as a factory preset value. In some embodiments, the duration of each oil return stage is determined according to the maximum length of the pipeline that can be matched with the unit. In some embodiments, if it is divided into two oil return stages, the time ratio of the first oil return stage to the second oil return stage can be set to between 1:1 and 1:4.
  • the multi-split system after the multi-split system enters the oil return operation, it controls the electronic expansion valves of all indoor units to open (regardless of the indoor units with startup requirements or shutdown requirements) at a certain frequency, and continues for a certain period of time until the oil return is completed.
  • the above oil return operation does not take into account the oil return of indoor units without capacity requirements, which poses a greater noise hazard.
  • the present application divides the indoor units according to whether there is a capacity requirement, that is, it is divided into indoor units with capacity requirements and indoor units without capacity requirements.
  • the operating state of the indoor unit is in the startup state and has not reached the preset shutdown temperature point; if so, it is divided into the first indoor unit with capacity requirements; if not, it is divided into the second indoor unit with no capacity requirements. Based on this, it is possible to differentiate and control the indoor units with capacity requirements and the indoor units without capacity requirements to avoid the loud noise when the indoor units without capacity requirements return oil.
  • this embodiment adopts different control strategies for the valve (electronic expansion valve) opening of the first indoor unit with capacity demand and the second indoor unit without capacity demand.
  • Figure 4 is a schematic diagram of the valve opening of the internal machine in the related art, in which the horizontal axis represents the time of the oil return stage, and the vertical axis represents the valve opening of the internal machine.
  • the horizontal axis represents the time of the oil return stage
  • the vertical axis represents the valve opening of the internal machine.
  • control of the valve opening of the internal machine is realized by at least one of the following implementation modes: in each oil return stage of the oil return operation, the internal machine superheat of the first internal machine is obtained in real time; the corresponding internal machine valve opening is determined according to the internal machine superheat, and the internal machine valve of the first internal machine is adjusted in real time accordingly; or, in each oil return stage of the oil return operation, the preset internal machine valve opening corresponding to each oil return stage is determined; and the internal machine valve of the second internal machine is adjusted according to the preset internal machine valve opening.
  • the horizontal axis represents the time of the oil return stage
  • the vertical axis represents the internal machine valve opening.
  • the first internal machine with capacity demand and the second internal machine without capacity demand have different control strategies for their internal machine valve opening.
  • the internal machine superheat of the first internal machine and the second internal machine is controlled simultaneously according to demand; in some embodiments, the internal machine superheat of the first internal machine and the second internal machine is controlled separately.
  • the control of the compressor frequency of the multi-split system is achieved through some implementations: In each oil return stage, the compressor is controlled to operate according to a preset frequency corresponding to each oil return stage; wherein the preset frequency corresponding to the next oil return stage is smaller than the preset frequency corresponding to the previous oil return stage.
  • the valve opening of the second indoor unit without capacity demand needs to be larger in the previous oil return stage than in the next oil return stage.
  • the larger opening in the previous oil return stage is mainly due to the oil return of the second indoor unit without capacity demand.
  • the valve opening is smaller or even closed because the oil has been returned in the previous oil return stage.
  • the compressor output in the previous oil return stage is larger, so the preset frequency corresponding to the previous oil return stage needs to be greater than the preset frequency corresponding to the next oil return stage.
  • the control of the compressor frequency of the multi-split system is achieved through other implementation methods: that is, in each oil return stage, the preset frequency is calculated according to the corresponding formula; and the compressor is controlled to operate according to the corresponding preset frequency in each oil return stage.
  • Q I ⁇ rated capacity of the internal unit when powered on*A c + ⁇ rated capacity of the internal unit when powered off* ⁇ ;
  • Q II ⁇ rated capacity of the internal machine when powered on*A c ;
  • a c ⁇ [(T i-env - T1) ⁇ A1+A2]+A3 ⁇ (T o-env - T2) ⁇ /A4;
  • Q I and Q II are capacity requirements (unit is 100w), k is the compressor displacement coefficient, ⁇ is the shutdown internal unit compensation correction coefficient (for example, the value is 0.1 ⁇ 0.5); Y1 is the first compensation coefficient (for example, the value is: -10 ⁇ 10), Y2 is the second compensation coefficient (for example, the value is: -10 ⁇ 10), Y1 and Y2 are set to be equal or unequal; Ti-env is the indoor ambient temperature, To-env is the outdoor ambient temperature, T1 (for example, the temperature value is 27), T2 (for example, the temperature value is 35) are preset temperature values, A1 (for example, the value is 1.0 ⁇ 4.0), A2 (for example, the value is 50 ⁇ 200), A3 (for example, the value is 0.5 ⁇ 1.5), A4 (for example, the value is 50 ⁇ 200) are all preset values; F I ⁇ H1, F II ⁇ H2, H1 is the minimum operating frequency of the compressor in the first oil return stage (for example, a value of 60Hz), and
  • the left and right sides of the formula are both numerical calculation relationships, that is, after obtaining the specific numerical value according to the calculation on the right side of the formula, the unit of frequency (for example, Hz) is attached to the preset frequency F I .
  • the left and right sides of the formula are both numerical calculation relationships, that is, according to the formula After the specific value is calculated on the right, the frequency unit (such as Hz) is attached to the preset frequency F II .
  • the more appropriate compressor frequency value for each oil return stage can be calculated according to the formula for that stage, thereby realizing the regulation of the compressors of indoor units with capacity requirements and indoor units without capacity requirements.
  • the complete oil return operation is divided into multiple oil return stages, such as a first oil return stage and a second oil return stage.
  • the first oil return stage is further subdivided into multiple oil return stages
  • the second oil return stage is further subdivided into multiple oil return stages.
  • settings are made according to the application scenarios and operation requirements of the multi-split system. This embodiment is introduced by taking the complete oil return operation including the first oil return stage and the second oil return stage as an example.
  • FIG6 is a flow chart of some embodiments of a multi-split oil return control method according to the present application. As shown in FIG6 , the method includes the following steps:
  • Step S601 the process starts.
  • the indoor unit that is in the on state before the unit enters the oil return state and has not stopped at the temperature point is classified as an indoor unit with capacity demand, otherwise it is classified as an indoor unit without capacity demand (including the indoor unit that has been shut down).
  • Step S602 detect whether the multi-split system meets the oil return operation condition; if yes, execute step S603, if not, execute step S601.
  • the oil return operation condition is the judgment condition of whether oil return is needed at present, which belongs to the conventional judgment condition.
  • Step S603 entering the first oil return stage, the compressor of the multi-split system outputs according to FI , the electronic expansion valve of the first indoor unit with capacity demand outputs according to EXVI op , and the electronic expansion valve of the second indoor unit without capacity demand outputs according to EXVI cl .
  • Step S604 entering the second oil return stage, the compressor of the multi-split system outputs according to F II , the electronic expansion valve of the first indoor unit with capacity demand outputs according to EXVII op , and the electronic expansion valve of the second indoor unit without capacity demand outputs according to EXVII cl .
  • Step S605 the oil return operation ends.
  • This embodiment introduces the control of the compressor frequency in each oil return stage: when the multi-split system enters the first oil return stage, the compressor frequency is output according to F I ; when entering the second oil return stage, the compressor frequency is output according to F II .
  • Q I ⁇ rated capacity of the internal unit when powered on*A c + ⁇ rated capacity of the internal unit when powered off* ⁇ ;
  • the preset frequency F II is calculated according to the following formula:
  • Q II ⁇ rated capacity of the internal machine when powered on*A c ;
  • a c ⁇ [(T i-env - T1) ⁇ A1+A2]+A3 ⁇ (T o-env - T2) ⁇ /A4;
  • the first indoor unit EXV with capacity demand outputs according to EXVI op When the multi-connected system enters the first oil return stage, the first indoor unit EXV with capacity demand outputs according to EXVI op ; the second indoor unit EXV without capacity demand outputs according to EXVI cl .
  • the first indoor unit EXV with capacity demand outputs according to EXVII op When the multi-connected system enters the second oil return stage, the first indoor unit EXV with capacity demand outputs according to EXVII op , and the second indoor unit EXV without capacity demand outputs according to EXVII cl .
  • EXVI op and EXVII op are controlled according to the superheat of the indoor unit (the value of the refrigerant outlet pipe temperature before evaporation - the value of the refrigerant outlet pipe temperature after evaporation), which is a conventional method. Compared with the operation without oil return, the superheat of the indoor unit will be appropriately reduced, and a proper amount of liquid refrigerant will be retained during the evaporation process, which is conducive to taking away the internal lubricating oil of the indoor unit with the required capacity.
  • EXVI cl and EXVII cl operate at preset opening degrees, wherein EXVI cl operates at ⁇ , and EXVII cl operates at ⁇ , ⁇ .
  • This embodiment divides the complete oil return operation into multiple oil return stages, and in each oil return stage, differentiates and controls the indoor units with capacity requirements and the indoor units without capacity requirements, thereby ensuring that the oil return operation noise is controlled while meeting the oil return effect, thereby reducing the liquid flow noise of the refrigerant during the entire oil return operation.
  • FIG. 7 is a structural block diagram of the multi-split oil return control device according to an embodiment of the present application. As shown in FIG. 7 , the device includes:
  • the module 10 is used to divide the operation of the multi-connected system into two parts according to the operation status of each indoor unit when the multi-connected system needs to enter the oil return operation. It is divided into a first indoor unit and a second indoor unit; wherein the oil return operation includes multiple oil return stages;
  • the control module 20 is connected to the setting module 10 and is used to adopt different control strategies in each oil return stage to control the compressor frequency of the multi-split system, and to control the opening of the valve of at least one of the first indoor unit or the second indoor unit.
  • This embodiment also provides a multi-split system, including the multi-split oil return control device mentioned above.
  • This embodiment can divide the complete oil return operation into multiple oil return stages, and in each oil return stage, differentiate and control the indoor units with and without capacity requirements.
  • the specific technical means for implementation have been introduced in detail above and will not be repeated here. Based on this embodiment, it is ensured that the oil return operation noise is controlled while meeting the oil return effect, thereby reducing the liquid flow noise of the refrigerant during the entire oil return operation.
  • the embodiment of the present application provides a software, which is used to execute the technical solution described in the above embodiment.
  • An embodiment of the present application provides a non-volatile computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions can execute the multi-split oil return control method in any of the above method embodiments.
  • the above-mentioned software is stored in the above-mentioned storage medium, which includes but is not limited to: a CD, a floppy disk, a hard disk, an erasable memory, etc.
  • the above-mentioned product can execute the method provided in the embodiment of the present application, and has the functional modules and beneficial effects corresponding to the execution method.
  • the method provided in the embodiment of the present application please refer to the method provided in the embodiment of the present application.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution can essentially or contribute to the part in the form of a software product, which can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机回油控制方法、装置及多联机系统。多联机回油控制方法包括:在多联机系统需进入回油操作时,根据每个内机的运行状态划分为第一内机和第二内机,其中,所述回油操作包括多个回油阶段;在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,以及,控制所述第一内机或所述第二内机中至少一项的内机阀门开度。

Description

多联机回油控制方法、装置、电子设备及多联机系统
相关申请的交叉引用
本申请是以CN申请号为202211274297.1,申请日为2022年10月18日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本申请涉及多联机系统技术领域,具体而言,涉及一种多联机回油控制方法、装置及多联机系统。
背景技术
多联机在制冷模式运行时,回油控制方法都是一段式控制,如图1所示的相关技术的回油阶段示意图,图中横坐标表示回油阶段的时间,纵坐标表示压缩机频率,进入回油操作后按照一定的频率,所有室内机电子膨胀阀打开(无论是有开机需求的内机还是关机需求的内机),持续一定的时间直至回油结束,此类回油控制方案未考虑到无能力需求的室内机回油情况存在较大的噪音隐患。
各个厂家为了抑制运行过程中的噪音也采取了一些手段,例如将系统内的内机进行分类(需要静音,无需静音),在一定的条件下无需静音的内机进行回油,避免需要静音的内机出现回油噪音问题。但是上述方案无法保证需要静音的内机的回油效果。
发明内容
本申请实施例中提供一种多联机回油控制方法、装置及多联机系统,以兼顾机组回油过程的回油效果和降低液流噪音。
为解决上述技术问题,本申请提供了一种多联机回油控制方法,其中,所述方法包括:在多联机系统需进入回油操作时,根据每个内机的运行状态划分为第一内机和第二内机;其中,所述回油操作包括多个回油阶段;在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,以及,控制所述第一内机或所述第二内机中至少一种的内机阀门开度。
在一些实施例中,根据每个内机的运行状态划分为第一内机和第二内机,包括:判断内机的运行状态是否是处于开机状态且未到预设停机温度点;如果是,则划分为 有能力需求的第一内机;如果否,则划分为无能力需求的第二内机。
在一些实施例中,在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,包括:在每个回油阶段,控制所述压缩机按照与每个回油阶段相应的预设频率运行;其中,后一个回油阶段对应的预设频率比前一个回油阶段对应的预设频率小。
在一些实施例中,在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,包括:在每个回油阶段,按照相应的公式计算预设频率;控制所述压缩机在每个回油阶段按照对应的预设频率运行。
在一些实施例中,所述回油操作包括第一回油阶段和第二回油阶段的情况下,在每个回油阶段,按照相应的公式计算预设频率,包括:
在第一回油阶段,按照以下公式计算预设频率F
F=Q*k/2+Y1;
其中,Q=∑开机内机额定容量*Ac+∑关机内机额定容量*γ;
在第二回油阶段,按照以下公式计算预设频率F
F=Q*k/2+Y2;
其中,Q=∑开机内机额定容量*Ac
Ac={[(Ti-env-T1)×A1+A2]+A3×(To-env-T2)}/A4;
其中,QⅠ、Q为能力需求,k为压缩机排量系数;γ是关机内机补偿修正系数,Y1是第一补偿系数,Y2是第二补偿系统,Ti-env是室内环境温度,To-env是室外环境温度,T1、T2是预设的温度值,A1、A2、A3、A4均是预设的数值;所述F≥H1,所述F≥H2,H1是所述第一回油阶段的压缩机最小运行频率,H2是所述第二回油阶段的压缩机最小运行频率。
在一些实施例中,在每个回油阶段采取不同的控制策略,控制所述第一内机或所述第二内机中至少一项的内机阀门开度,包括以下至少一项:在所述回油操作的每个回油阶段,实时获取所述第一内机的内机过热度;根据所述内机过热度确定对应的内机阀门开度,据此实时调整所述第一内机的内机阀门;或,在所述回油操作的每个回油阶段,确定与每个回油阶段对应的预设内机阀门开度;按照所述预设内机阀门开度调整所述第二内机的内机阀门。
本申请还提供了一种多联机回油控制装置,其中,所述装置包括:设置模块,用于在多联机系统需进入回油操作时,根据每个内机的运行状态划分为第一内机和第二 内机;其中,所述回油操作包括多个回油阶段;控制模块,用于在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,以及,控制所述第一内机或所述第二内机种至少一种的内机阀门开度。
本申请还提供了一种多联机系统,其中,所述多联机系统包括上述的多联机回油控制装置。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述的方法。
本申请还提供了一种电子设备,其中,包括:一个或多个处理器;存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如上述方法。
本申请还提供了一种计算机程序,用于使处理器执行上文中提到的任意一种方法。
应用本申请的技术方案,将完整的回油操作划分为多个回油阶段,在每个回油阶段针对有能力需求的内机与无能力需求的内机进行区分控制,从而保证在满足回油效果的同时对回油运行噪音进行控制,降低了整个回油操作过程中冷媒的液流噪音。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1是相关技术的回油阶段示意图;
图2是根据本申请实施例的多联机回油控制方法的流程图;
图3是根据本申请实施例的回油阶段示意图;
图4是相关技术的内机阀门开度示意图;
图5是根据本申请实施例的内机阀门开度示意图;
图6是根据本申请实施例的多联机回油控制方法的流程图;
图7是根据本申请实施例的多联机回油控制装置的结构框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下 所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本申请的可选实施例。
图2是根据本申请实施例的多联机回油控制方法的流程图,如图2所示,该方法包括以下步骤。
步骤S201,在多联机系统需进入回油操作时,根据每个内机的运行状态划分为第一内机和第二内机;其中,所述回油操作包括多个回油阶段。
步骤S202,在每个回油阶段采取不同的控制策略,控制多联机系统的压缩机频率,以及,控制第一内机或第二内机中至少一项的内机阀门开度。上述阀门是指电子膨胀阀。
本实施例将完整的回油操作划分为多个回油阶段,如图3所示的回油阶段示意图,图中横坐标表示回油阶段的时间,纵坐标表示压缩机频率,在不同的回油阶段,压缩机频率不同。本实施例还能够在每个回油阶段针对有能力需求的内机与无能力需 求的内机进行区分控制,从而保证在满足回油效果的同时对回油运行噪音进行控制,降低了整个回油操作过程中冷媒的液流噪音。
需要说明的是,在一些实施例中,将完整的回油操作划分为多个回油阶段时,每个回油阶段的持续时长为预先设置,例如为厂家预设值。在一些实施例中,每个回油阶段的持续时长根据机组可搭配的管路极限长度决定。在一些实施例中,如果划分为两个回油阶段,第一回油阶段与第二回油阶段的时间占比可以设置为1:1~1:4之间。
在相关技术中,多联机系统进入回油操作后按照一定的频率,控制所有内机的电子膨胀阀打开(无论是有开机需求的内机还是关机需求的内机),持续一定的时间直至回油结束,上述回油操作未考虑到无能力需求的内机回油情况存在较大的噪音隐患。基于此,本申请根据是否有能力需求对内机进行了划分,即划分为有能力需求的内机和无能力需求的内机,具体地,在一些实施例中,判断内机的运行状态是否是处于开机状态且未到预设停机温度点;如果是,则划分为有能力需求的第一内机;如果否,则划分为无能力需求的第二内机。基于此,能够针对有能力需求的内机与无能力需求的内机进行区分控制,避免无能力需求的内机回油时的较大噪音。
在每个回油阶段,对多联机系统的压缩机频率进行调整,同时,本实施例针对有能力需求的第一内机和无能力需求的第二内机的阀门(电子膨胀阀)开度采取不同的控制策略。
图4是相关技术的内机阀门开度示意图,图中横坐标表示回油阶段的时间,纵坐标表示内机阀门开度。在相关技术中,整个回油操作过程中无论是有开机需求的内机还是关机需求的内机发阀门开度,均执行同样的常规操作。
本实施例对于内机阀门开度的控制,通过以下实施方式中的至少一种实现:在回油操作的每个回油阶段,实时获取第一内机的内机过热度;根据内机过热度确定对应的内机阀门开度,据此实时调整第一内机的内机阀门;或,在回油操作的每个回油阶段,确定与每个回油阶段对应的预设内机阀门开度;按照预设内机阀门开度调整第二内机的内机阀门。如图5所示的内机阀门开度示意图,图中横坐标表示回油阶段的时间,纵坐标表示内机阀门开度,在不同的回油阶段,有能力需求的第一内机和无能力需求的第二内机,其内机阀门开度均有不同的控制策略。本实施例在具体实现时,在一些实施例中,根据需求对第一内机和第二内机的内机过热度同时控制;在一些实施例中,对第一内机和第二内机的内机过热度进行单独控制。
在一些实施例中,对于多联机系统的压缩机频率的控制,通过一些实施方式实现: 在每个回油阶段,控制压缩机按照与每个回油阶段相应的预设频率运行;其中,后一个回油阶段对应的预设频率比前一个回油阶段对应的预设频率小。
需要说明的是,在一些实施例中,前一个回油阶段与后一个回油阶段相比,无能力需求的第二内机的阀门开度需要更大,前一个回油阶段开启较大主要是由于回无能力需求的第二内机的油,后一个回油阶段因为前一个回油阶段已经回油,阀门开度更小甚至关闭。对应的,为了保证压力正常以及回油所需的流速,所以前一个回油阶段的压缩机输出更大,因此前一个回油阶段对应的预设频率需要大于后一个回油阶段对应的预设频率。
对于多联机系统的压缩机频率的控制,通过另一些实施方式实现:即在每个回油阶段,按照相应的公式计算预设频率;控制压缩机在每个回油阶段按照对应的预设频率运行。
具体地,回油操作包括第一回油阶段和第二回油阶段的情况下,在第一回油阶段,按照以下公式计算预设频率F
F=Q*k/2+Y1;
其中,Q=∑开机内机额定容量*Ac+∑关机内机额定容量*γ;
在第二回油阶段,按照以下公式计算预设频率F
F=Q*k/2+Y2;
其中,Q=∑开机内机额定容量*Ac
Ac={[(Ti-env-T1)×A1+A2]+A3×(To-env-T2)}/A4;
其中,QⅠ、Q为能力需求(单位是100w),k为压缩机排量系数,γ是关机内机补偿修正系数(例如取值为0.1~0.5);Y1是第一补偿系数(例如取值为:-10~10),Y2是第二补偿系统(例如取值为:-10~10),Y1和Y2设置为相等或不等;Ti-env是室内环境温度,To-env是室外环境温度,T1(例如温度取值为27)、T2(例如温度取值为35)为预设的温度值,A1(例如取值为1.0~4.0)、A2(例如取值为50~200)、A3(例如取值为0.5~1.5)、A4(例如取值为50~200)均是预设的数值;F≥H1,F≥H2,H1是第一回油阶段的压缩机最小运行频率(例如取值为60Hz),H2是第二回油阶段的压缩机最小运行频率(例如取值为45Hz)。需要说明的是,上述计算第一回油阶段的预设频率F的公式中,公式左右均是数值的计算关系,即根据公式右边计算得到具体数值之后,再为预设频率F附上频率的单位(例如Hz)。同样地,上述计算第二回油阶段的预设频率F的公式中,公式左右均是数值的计算关系,即根据公式 右边计算得到具体数值之后,再为预设频率F附上频率的单位(例如Hz)。
基于此,能够根据每个回油阶段的公式,计算该阶段较为合适的压缩机频率值,从而实现对有能力需求的内机与无能力需求的内机的压缩机的调控。
在一些实施例中,将完整的回油操作划分为多个回油阶段,例如第一回油阶段和第二回油阶段。在一些实施例中,将第一回油阶段再细分为多个回油阶段,将第二回油阶段再细分为多个回油阶段。在一些实施例中,根据多联机系统的应用场景和运行需求进行设置。本实施例以完整的回油操作包括第一回油阶段和第二回油阶段为例进行介绍。
图6是根据本申请的多联机回油控制方法的一些实施例的流程图,如图6所示,该方法包括以下步骤:
步骤S601,流程开始。
在流程开始初期,需要进行内机能力需求的判定:机组进入回油前处于开机状态且内机未到温度点停机的内机,划分为有能力需求的内机,否则划分为无能力需求的内机(包含已关机内机)。
步骤S602,检测多联机系统是否满足进入回油运行条件;如果是则执行步骤S603,如果否则执行步骤S601。回油运行条件即当前是否需要回油的判断条件,属于常规判断条件。
步骤S603,进入第一回油阶段,多联机系统的压缩机按照F输出,有能力需求的第一内机的电子膨胀阀按照EXVⅠop输出,无能力需求的第二内机的电子膨胀阀按照EXVⅠcl输出。
步骤S604,进入第二回油阶段,多联机系统的压缩机按照F输出,有能力需求的第一内机的电子膨胀阀按照EXVⅡop输出,无能力需求的第二内机的电子膨胀阀按照EXVⅡcl输出。
步骤S605,回油操作结束。
本实施例介绍了每个回油阶段的压缩机频率的控制:多联机系统进入第一回油阶段时,压缩机频率按照F进行输出;进入第二回油阶段时,压缩机频率按照F进行输出。在一些实施例中,F与F为预设值;在一些实施例中,F与F为根据下述方法进行计算得到:
F=Q*k/2+Y1;
其中,Q=∑开机内机额定容量*Ac+∑关机内机额定容量*γ;
在第二回油阶段,按照以下公式计算预设频率F
F=Q*k/2+Y2;
其中,Q=∑开机内机额定容量*Ac
Ac={[(Ti-env-T1)×A1+A2]+A3×(To-env-T2)}/A4;
其中,QⅠ、Q为能力需求(单位是100w),k为压缩机排量系数,γ是关机内机补偿修正系数(例如取值为0.1~0.5);Y1是第一补偿系数(例如取值为:-10~10),Y2是第二补偿系统(例如取值为:-10~10),Y1和Y2设置为相等或不等;Ti-env是室内环境温度,To-env是室外环境温度,T1(例如温度取值为27)、T2(例如温度取值为35)为预设的温度值,A1(例如取值为1.0~4.0)、A2(例如取值为50~200)、A3(例如取值为0.5~1.5)、A4(例如取值为50~200)均是预设的数值;F≥H1,F≥H2,H1是第一回油阶段的压缩机最小运行频率(例如取值为60Hz),H2是第二回油阶段的压缩机最小运行频率(例如取值为45Hz)。
本实施例还介绍了每个回油阶段的第一内机和第二内机的阀门开度的控制:
多联机系统进入第一回油阶段时,有能力需求的第一内机EXV按照EXVⅠop进行输出;无能力需求的第二内机EXV按照EXVⅠcl进行输出。多联机系统进入第二回油阶段时,有能力需求的第一内机EXV按照EXVⅡop进行输出,无能力需求的第二内机EXV按照EXVⅡcl进行输出。
在一些实施例中,EXVⅠop和EXVⅡop按照内机过热度(冷媒出管温度蒸发前的数值-冷媒出管温度蒸发后的数值)进行控制,属于常规手段。相对于非回油时运行,内机过热度会适当降低,蒸发过程中保留适量的液相冷媒,有利于带走有能力需求的室内机内部润滑油。
在一些实施例中,EXVⅠcl和EXVⅡcl按照预设的开度运行,其中EXVⅠcl按照α运行,EXVⅡcl按照β运行,β<α。
本实施例将完整的回油操作划分为多个回油阶段,在每个回油阶段针对有能力需求的内机与无能力需求的内机进行区分控制,从而保证在满足回油效果的同时对回油运行噪音进行控制,降低了整个回油操作过程中冷媒的液流噪音。
对应于上述实施例介绍的多联机回油控制方法,本实施例提供了一种多联机回油控制装置,图7是根据本申请实施例的多联机回油控制装置的结构框图,如图7所示,该装置包括:
设置模块10,用于在多联机系统需进入回油操作时,根据每个内机的运行状态划 分为第一内机和第二内机;其中,回油操作包括多个回油阶段;
控制模块20,连接至设置模块10,用于在每个回油阶段采取不同的控制策略,控制多联机系统的压缩机频率,以及,控制第一内机或第二内机中至少一种的内机阀门开度。
本实施例还提供了一种多联机系统,包括上述多联机回油控制装置。
本实施例能够实现将完整的回油操作划分为多个回油阶段,在每个回油阶段针对有能力需求的内机与无能力需求的内机进行区分控制,具体实现的技术手段前面已经进行了详细介绍,在此不再赘述。基于本实施例,保证在满足回油效果的同时对回油运行噪音进行控制,降低了整个回油操作过程中冷媒的液流噪音。
本申请实施例提供了一种软件,该软件用于执行上述实施例中描述的技术方案。
本申请实施例提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的多联机回油控制方法。
上述存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行 等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种多联机回油控制方法,包括:
    在多联机系统需进入回油操作时,根据每个内机的运行状态将内机划分为第一内机和第二内机,其中,所述回油操作包括多个回油阶段;
    在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,以及,控制所述第一内机或所述第二内机中至少一种的内机阀门开度。
  2. 根据权利要求1所述的多联机回油控制方法,其中,所述根据每个内机的运行状态将所述内机划分为第一内机和第二内机,包括:
    判断内机的运行状态是否是处于开机状态且未到预设停机温度点;
    如果内机处于开机状态且未到预设停机温度点,则划分为有能力需求的第一内机;
    如果内机未处于开机状态,或达到预设停机温度点,则划分为无能力需求的第二内机。
  3. 根据权利要求1所述的多联机回油控制方法,其中,所述在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,包括:
    在每个回油阶段,控制所述压缩机按照与回油阶段相应的预设频率运行,其中,后一个回油阶段对应的预设频率比前一个回油阶段对应的预设频率小。
  4. 根据权利要求1所述的多联机回油控制方法,其中,所述在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,包括:
    根据开机内机的额定功率和关机内机的额定功率,以及室内环境温度和室外环境温度,确定在第一回油阶段的预设频率;
    根据开机内机的额定容量,以及室内环境温度和室外环境温度,确定在第二回油阶段的预设频率;
    控制所述压缩机在所述第一回油阶段和所述第二回油阶段分别按照对应的预设频率运行。
  5. 根据权利要求1所述的多联机回油控制方法,其中,所述在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,包括:
    在每个回油阶段,按照相应的公式计算预设频率;
    控制所述压缩机在每个回油阶段按照对应的预设频率运行。
  6. 根据权利要求5所述的多联机回油控制方法,其中,所述回油操作包括第一回油阶段和第二回油阶段的情况下,在每个回油阶段,按照相应的公式计算预设频率,包括:
    在第一回油阶段,按照以下公式计算预设频率F
    F=Q*k/2+Y1,
    其中,Q=∑开机内机额定容量*Ac+∑关机内机额定容量*γ;
    在第二回油阶段,按照以下公式计算预设频率F
    F=Q*k/2+Y2,
    其中,Q=∑开机内机额定容量*Ac
    Ac={[(Ti-env-T1)×A1+A2]+A3×(To-env-T2)}/A4;
    其中,QⅠ、Q为能力需求,k为压缩机排量系数,γ是关机内机补偿修正系数,Y1是第一补偿系数,Y2是第二补偿系统,Ti-env是室内环境温度,To-env是室外环境温度,T1、T2是预设的温度值,A1、A2、A3、A4均是预设的数值;所述F≥H1,所述F≥H2,H1是所述第一回油阶段的压缩机最小运行频率,H2是所述第二回油阶段的压缩机最小运行频率。
  7. 根据权利要求1所述的多联机回油控制方法,其中,在每个回油阶段采取不同的控制策略,控制所述第一内机的内机阀门开度包括:
    在所述回油操作的每个回油阶段,实时获取所述第一内机的内机过热度;和
    根据所述内机过热度确定对应的内机阀门开度,据此实时调整所述第一内机的内机阀门。
  8. 根据权利要求1或7所述的多联机回油控制方法,其中,在每个回油阶段采取不同的控制策略,控制所述第二内机的内机阀门开度包括:
    在所述回油操作的每个回油阶段,确定与每个回油阶段对应的预设内机阀门开度;和
    按照所述预设内机阀门开度调整所述第二内机的内机阀门。
  9. 根据权利要求8所述的方法,其中,在所述回油操作包括两个回油阶段的情况下,第二内机在后一个回油阶段的预设内机阀门开度小于前一个回油阶段的预设内机阀门开度。
  10. 根据权利要求1所述的方法,其中,每个回油阶段的持续时长为预先设置或 根据机组允许搭配的管路的极限长度确定。
  11. 一种多联机回油控制装置,包括:
    设置模块,被配置为在多联机系统需进入回油操作时,根据每个内机的运行状态将内机划分为第一内机和第二内机,其中,所述回油操作包括多个回油阶段;
    控制模块,被配置为在每个回油阶段采取不同的控制策略,控制所述多联机系统的压缩机频率,以及,控制所述第一内机或所述第二内机中至少一种的内机阀门开度。
  12. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1至10中任一项所述的方法。
  13. 一种多联机系统,包括权利要求7所述的多联机回油控制装置,或权利要求12所述的电子设备。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1至10中任一项所述的方法。
  15. 一种计算机程序,用于使处理器执行权利要求1至10任意一项所述的方法。
PCT/CN2023/110549 2022-10-18 2023-08-01 多联机回油控制方法、装置、电子设备及多联机系统 WO2024082771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211274297.1 2022-10-18
CN202211274297.1A CN115654645B (zh) 2022-10-18 2022-10-18 一种多联机回油控制方法、装置及多联机系统

Publications (1)

Publication Number Publication Date
WO2024082771A1 true WO2024082771A1 (zh) 2024-04-25

Family

ID=84988677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110549 WO2024082771A1 (zh) 2022-10-18 2023-08-01 多联机回油控制方法、装置、电子设备及多联机系统

Country Status (2)

Country Link
CN (1) CN115654645B (zh)
WO (1) WO2024082771A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654645B (zh) * 2022-10-18 2024-06-14 珠海格力电器股份有限公司 一种多联机回油控制方法、装置及多联机系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116805A (ja) * 2002-09-24 2004-04-15 Fujitsu General Ltd 多室形空気調和機の制御方法
CN107940811A (zh) * 2017-12-25 2018-04-20 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN108613434A (zh) * 2018-04-12 2018-10-02 珠海格力电器股份有限公司 空调的回油控制方法及装置
CN110296547A (zh) * 2019-07-04 2019-10-01 宁波奥克斯电气股份有限公司 一种多联机回油控制方法、系统及空调器
CN111023272A (zh) * 2019-12-30 2020-04-17 宁波奥克斯电气股份有限公司 多联机空调系统的控制方法、装置和多联机空调系统
CN111059797A (zh) * 2019-11-22 2020-04-24 广州万居隆电器有限公司 一种变频热风机空调系统及其控制方法
CN111271901A (zh) * 2019-12-24 2020-06-12 宁波奥克斯电气股份有限公司 一种回油控制方法、系统、空调器及计算机可读存储介质
CN115654645A (zh) * 2022-10-18 2023-01-31 珠海格力电器股份有限公司 一种多联机回油控制方法、装置及多联机系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180563B (zh) * 2013-05-27 2017-06-20 珠海格力电器股份有限公司 多联机系统制热时的回油方法
CN103486785B (zh) * 2013-09-18 2016-05-04 Tcl空调器(中山)有限公司 变频空调压缩机的回油控制方法及其装置
CN106091479B (zh) * 2016-06-16 2018-06-01 珠海格力电器股份有限公司 空调器及其回油控制方法和装置
CN107726558B (zh) * 2017-09-22 2021-04-20 青岛海尔空调器有限总公司 高湿制热工况下空调的控制方法及系统
CN107576016B (zh) * 2017-09-22 2020-04-24 青岛海尔空调器有限总公司 空调的控制方法及系统
CN108444057A (zh) * 2018-03-31 2018-08-24 青岛海尔空调器有限总公司 制热模式下空调的控制方法
CN109489210B (zh) * 2018-10-15 2020-12-29 珠海格力电器股份有限公司 多联机系统回油控制方法、装置、回油控制设备及空调
CN110749039B (zh) * 2019-10-17 2021-02-09 珠海格力电器股份有限公司 多联机系统的控制方法、装置、存储介质及多联机系统
CN111426102B (zh) * 2020-04-13 2022-02-22 宁波奥克斯电气股份有限公司 一种提升变频空调回油可靠性的系统、方法及装置
CN113203166B (zh) * 2021-04-27 2022-06-28 宁波奥克斯电气股份有限公司 一种多联空调的降噪控制方法、装置及多联空调
CN113739339B (zh) * 2021-09-17 2022-11-04 宁波奥克斯电气股份有限公司 一种多联机的辅助回油控制方法、压缩机辅助回油装置、多联机
CN114623579B (zh) * 2022-03-16 2023-04-25 珠海格力电器股份有限公司 一种空调的回油控制方法、装置、存储介质及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116805A (ja) * 2002-09-24 2004-04-15 Fujitsu General Ltd 多室形空気調和機の制御方法
CN107940811A (zh) * 2017-12-25 2018-04-20 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN108613434A (zh) * 2018-04-12 2018-10-02 珠海格力电器股份有限公司 空调的回油控制方法及装置
CN110296547A (zh) * 2019-07-04 2019-10-01 宁波奥克斯电气股份有限公司 一种多联机回油控制方法、系统及空调器
CN111059797A (zh) * 2019-11-22 2020-04-24 广州万居隆电器有限公司 一种变频热风机空调系统及其控制方法
CN111271901A (zh) * 2019-12-24 2020-06-12 宁波奥克斯电气股份有限公司 一种回油控制方法、系统、空调器及计算机可读存储介质
CN111023272A (zh) * 2019-12-30 2020-04-17 宁波奥克斯电气股份有限公司 多联机空调系统的控制方法、装置和多联机空调系统
CN115654645A (zh) * 2022-10-18 2023-01-31 珠海格力电器股份有限公司 一种多联机回油控制方法、装置及多联机系统

Also Published As

Publication number Publication date
CN115654645A (zh) 2023-01-31
CN115654645B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2024082771A1 (zh) 多联机回油控制方法、装置、电子设备及多联机系统
CN108518807A (zh) 控制方法、控制装置、制冷设备和计算机可读存储介质
CN108224697A (zh) 空调电子膨胀阀调节方法、计算机装置、存储介质
WO2022227606A1 (zh) 用于控制空调的方法、装置和智能空调
CN113531801B (zh) 多联式空调器的控制方法、装置和可读存储介质
CN112664455B (zh) 一种压缩机的润滑调节方法、装置、电子设备及存储介质
CN110486984A (zh) 一种可自由调控冷热能力的方法及机组
CN110530075B (zh) 一种零负荷输出不停机的控制方法、装置及机组
CN105588286A (zh) 多联机的控制方法及装置
CN113280540A (zh) 一种电子膨胀阀的开度控制方法、装置及制冷陈列柜
CN111102691B (zh) 模块组合空调系统
CN110779146B (zh) 空调器及其电子膨胀阀控制方法、存储介质及计算机设备
CN118156687A (zh) 一种电池热管理系统的控制方法、可读存储介质及设备
WO2024007676A1 (zh) 一种回油控制方法、装置及空调
CN210425631U (zh) 一种可自由调控冷热能力的机组
CN113944979B (zh) 膨胀阀控制方法、装置、多联空调、计算机存储介质
CN113834246B (zh) 旁通阀的控制方法、装置、控制器及制冷设备
CN113390205B (zh) 家用电器的回油控制方法、家用电器及计算机可读存储介质
Larsen et al. Control methods utilizing energy optimizing schemes in refrigeration systems
CN114206071A (zh) 基于双曲线冷却塔的数据中心冷却系统
CN113865016A (zh) 一种空调系统控制方法、装置及空调系统
CN117450623B (zh) 压缩机频率控制方法及空调机组
CN113465109B (zh) 多联机的低能耗待机控制方法及装置、介质
CN118687268A (zh) 一种制冷机组及其控制方法、空调
CN115111724B (zh) 空调控制方法、装置及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878767

Country of ref document: EP

Kind code of ref document: A1