WO2024007676A1 - 一种回油控制方法、装置及空调 - Google Patents

一种回油控制方法、装置及空调 Download PDF

Info

Publication number
WO2024007676A1
WO2024007676A1 PCT/CN2023/088752 CN2023088752W WO2024007676A1 WO 2024007676 A1 WO2024007676 A1 WO 2024007676A1 CN 2023088752 W CN2023088752 W CN 2023088752W WO 2024007676 A1 WO2024007676 A1 WO 2024007676A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
oil
round
heat exchange
compressor
Prior art date
Application number
PCT/CN2023/088752
Other languages
English (en)
French (fr)
Inventor
张仕强
陈敏
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024007676A1 publication Critical patent/WO2024007676A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of compressors, and specifically to an oil return control method, device and air conditioner.
  • the compressor of the air conditioner When the compressor of the air conditioner discharges high-temperature and high-pressure gaseous refrigerant, it will carry part of the lubricating oil. After the oil separator separates the refrigerant and oil, the separated oil is sent back to the compressor through the oil return pipeline to prevent the compressor from running out of oil.
  • the current oil return control method can set up an oil level detection module in the oil separator to detect the change speed of the oil level in the oil separator. By comparing the change speed of the oil level in one cycle with the preset value, the next cycle return can be judged. Adjust the opening of the oil expansion valve.
  • Embodiments of the present disclosure provide an oil return control method, device and air conditioner.
  • an oil return control method including:
  • the optimal opening is determined based on the heat exchange capacity of the air conditioner, and the oil quantity regulating component is controlled to continue operating according to the optimal opening.
  • the method before adjusting the oil quantity adjustment component on the oil return line to the first opening, the method further includes:
  • Obtain current preset parameters where the preset parameters include: compressor operating frequency, suction temperature, suction pressure, discharge temperature and discharge pressure;
  • the first opening degree and the first time corresponding to the current preset parameters are determined according to the first pre-stored information, wherein when the opening degree of the oil quantity adjustment component is the first opening degree, the compressor oil discharge quantity is less than Compressor oil return volume.
  • the method before lowering the oil quantity adjusting component to the second opening degree, the method further includes:
  • Obtain current preset parameters where the preset parameters include: compressor operating frequency, suction temperature, suction pressure, discharge temperature and discharge pressure;
  • the current compressor oil discharge volume is calculated based on the current preset parameters
  • the second opening degree is calculated according to the current compressor oil discharge volume, the current compressor operating frequency and the current lubricating oil temperature, wherein, when the opening degree of the oil volume adjusting component is the second opening degree When , the compressor oil discharge amount is equal to the compressor oil return amount, and the second opening degree is smaller than the first opening degree.
  • the optimal opening degree is determined based on the heat exchange capacity of the air conditioner, including:
  • the optimal opening is determined based on whether the optimized opening operation stage has been executed under the current compressor operating frequency
  • the oil quantity adjustment component is controlled to operate at the optimized opening of this round for a second time, so that the internal oil level of the compressor is reduced to the minimum safe oil level and the optimal operating state is achieved; and then the oil is The volume adjustment component is adjusted to the first opening and continues to run for the first time to achieve a reliable optimal operating state; after that, it continues to determine whether to execute the next round of optimized opening operation based on the heat exchange capacity of the air conditioner. stage;
  • the opening degree of the oil quantity adjusting component is an optimized opening degree
  • the compressor oil discharge amount is greater than the compressor return oil amount
  • the optimized opening degree is smaller than the second opening degree
  • judging whether to execute this round of optimized opening operation phase is based on the heat exchange capacity of the air conditioner, including:
  • first heat exchange capacity parameter value of this cycle is greater than or equal to the first threshold, then it is determined based on the second heat exchange capacity parameter value and whether the optimized opening operation stage has been executed under the current compressor operating frequency. Whether to execute this round of optimization opening operation phase.
  • determining the optimized opening of the epicycle includes:
  • the preset opening is reduced based on the optimized opening of the previous round to obtain the optimized opening of this round.
  • determining the second time corresponding to the optimized opening of the current wheel includes: determining the current compressor oil discharge amount and the optimized opening of the current wheel according to the second pre-stored information. The second time.
  • the cumulative heat exchange capacity value corresponding to the second time when the oil volume adjustment component is at the optimized opening of the current wheel and continues to operate is recorded as the first heat exchange capacity parameter of this cycle.
  • judging whether to execute this round of optimized opening operation phase is based on the second heat exchange capacity parameter value and whether the optimized opening operation phase has been executed under the current compressor operating frequency, including:
  • the optimized opening operation stage has not been executed at the current compressor operating frequency, then it is determined whether to execute the optimized opening operation stage of this round based on the second heat exchange capacity parameter value and the second threshold value of this round, where,
  • the second threshold is the heat exchange capability of the oil quantity adjustment component when it is at the second opening degree;
  • the average heat transfer capacity value of this round of optimized opening operation phase is estimated as the second heat transfer capacity parameter value of this round, including:
  • judging whether to execute the optimization opening operation phase of this round is performed based on the second heat exchange capacity parameter value and the second threshold of this round, including:
  • judging whether to execute the optimized opening operation stage of this round is based on the second heat exchange capacity parameter value of this round and the second heat exchange capacity parameter value of the previous round, including:
  • the optimal opening is determined based on whether an optimized opening operating phase has been performed at the current compressor operating frequency, including:
  • the opening in the previous round of optimized opening operation stage is determined as the optimal opening
  • controlling the oil quantity adjustment component to continuously operate according to the optimal opening includes: adjusting the oil quantity adjustment component to the second opening and continuing to operate, or controlling the oil quantity adjustment component to cycle Execute the previous round
  • an oil return control device including:
  • the first control module is used to adjust the oil quantity adjustment component on the oil return line to the first opening degree under the current compressor operating frequency, and maintain the first opening degree to operate for the first time, so that the internal pressure of the compressor The oil level reaches the maximum safe oil level;
  • the second control module is used to lower the oil volume adjustment component to the second opening degree so that the compressor oil discharge volume is equal to the compressor oil return volume;
  • the third control module is used to determine the optimal opening degree according to the heat exchange capacity of the air conditioner, and control the oil quantity adjustment component to continue operating according to the optimal opening degree.
  • an air conditioner including: the oil return control device described in the embodiments of the present disclosure.
  • a computer device including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program, The steps of the methods described in the embodiments of the present disclosure.
  • a non-volatile computer-readable storage medium is also provided, on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method described in the embodiments of the present disclosure are implemented. .
  • Figure 1 is a flow chart of an oil return control method provided by some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of an air conditioner provided by other embodiments of the present disclosure.
  • Figure 3 is an oil return control flow chart provided by other embodiments of the present disclosure.
  • Figure 4 is a schematic diagram 1 of the control of the oil quantity adjustment component provided by other embodiments of the present disclosure.
  • Figure 5 is a second control schematic diagram of the oil quantity adjustment component provided by other embodiments of the present disclosure.
  • Figure 6 is a third control schematic diagram of the oil quantity adjustment component provided by other embodiments of the present disclosure.
  • Figure 7 is a schematic diagram 4 of the control of the oil quantity adjustment component provided by other embodiments of the present disclosure.
  • Fig. 8 is a structural block diagram of an oil return control device provided by some further embodiments of the present disclosure.
  • the refrigerant does not participate in heat exchange, which affects the heat exchange capacity of the air conditioner. If the oil return volume is always large, more refrigerant will return from the oil separator to the suction side of the compressor, which will also have a greater impact on the heat exchange capacity of the air conditioner.
  • Embodiments of the present disclosure provide an oil return control method, device and air conditioner to at least solve the problem in the prior art that the air conditioner oil return control method cannot improve the heat exchange capacity of the air conditioner.
  • This embodiment provides an oil return control method.
  • Figure 1 is a flow chart of an oil return control method provided by some embodiments of the present disclosure. As shown in Figure 1, the method includes the following steps:
  • the oil return control method is executed by an oil return control device.
  • the first opening degree is the over-return oil opening degree at the current compressor operating frequency.
  • the compressor oil discharge amount is less than the compressor oil return amount.
  • the first time is the continuous operation time of the oil quantity regulating component at the first opening degree, which can be called the over-oil return time.
  • the second opening degree is the oil return stable opening degree at the current compressor frequency.
  • the compressor oil discharge quantity is equal to the compressor oil return quantity.
  • the second opening degree is smaller than the first opening degree.
  • the heat exchange capability of the air conditioner is reflected by its operating capacity, operating energy efficiency, or indoor unit air outlet temperature.
  • the optimal opening is smaller than the first opening. The optimal opening can further improve the capacity and energy efficiency of the air conditioner on the premise of reliable oil return, and ensure the maximum heat exchange capacity of the air conditioner.
  • the compressor operating frequency changes, the corresponding first opening, first time, second opening, and optimal opening will all change. Therefore, if a change in the compressor operating frequency is detected, the method described in this embodiment is re-executed to determine the optimal opening at the new compressor operating frequency.
  • the oil volume adjustment component is adjusted to the first opening degree and continues to run for the first time, so that the internal oil level of the compressor reaches the maximum safe oil level, ensuring reliable oil return, so that the compressor Adequate lubrication to avoid oil shortage in the compressor, thus ensuring the reliability of the compressor. Then lower the oil volume adjusting component to the second opening degree so that the compressor oil discharge volume is equal to the compressor oil return volume. Then determine the optimal opening degree based on the heat exchange capacity of the air conditioner, and control the oil volume regulating component to follow the optimal opening degree.
  • Continuous operation on the basis of balancing the compressor oil discharge volume and the compressor oil return volume, perform optimal control of the oil volume adjustment component to reduce oil return, continue to find the optimal opening with higher capacity and energy efficiency, and further Improving the capacity and energy efficiency under reliable oil return conditions can not only achieve optimal capacity and energy efficiency, but also ensure reliable operation of the compressor.
  • the amount of oil return is reduced through less oil return control to ensure that the refrigerant fully participates in heat exchange, improves air conditioning capacity and energy efficiency, makes full use of the capacity improvement effect of the less oil return stage, and takes into account the replacement Factors affecting thermal capability and reliability. And there is no need to install an oil level detection module in the compressor, saving costs.
  • the oil quantity adjustment component on the oil return line to the first opening before adjusting the oil quantity adjustment component on the oil return line to the first opening, it also includes: obtaining current preset parameters, where the preset parameters include: compressor operating frequency, suction temperature, Suction pressure, exhaust temperature and exhaust pressure; determine the first opening degree and the first time corresponding to the current preset parameters according to the first pre-stored information, wherein, when the opening degree of the oil quantity adjustment component is the first opening degree When , the compressor oil discharge volume is less than the compressor return oil volume.
  • the corresponding relationships between different preset parameters, the first opening degree and the first time are preset through experiments, and the above-mentioned corresponding relationships are stored as the first pre-stored information.
  • the corresponding first opening degree and first time can ensure that under the current compressor operating frequency, the oil volume adjustment component is at the first opening degree and the internal oil level of the compressor reaches the maximum after the first time of operation. Safe oil level.
  • the corresponding first opening degree and first time are determined according to the current operating conditions of the air conditioner, and the oil volume adjustment component is adjusted to the first opening degree.
  • the compressor oil discharge volume is less than the compressor oil return volume.
  • the method before lowering the oil quantity adjustment component to the second opening degree, the method further includes: obtaining current preset parameters, where the preset parameters include: compressor operating frequency, suction temperature, suction pressure, Exhaust temperature and exhaust pressure; the current compressor oil discharge volume is calculated based on the current preset parameters; the second compressor oil discharge volume is calculated based on the current compressor oil discharge volume, current compressor operating frequency and current lubricating oil temperature. Opening degree, among which, when the opening degree of the oil quantity adjusting component is the second opening degree, the compressor oil discharge quantity is equal to the compressor oil return quantity, and the second opening degree is smaller at the first opening.
  • the first calculation model and the second calculation model are obtained by fitting the experimental test data.
  • the first calculation model is used to obtain the compressor oil discharge volume under the current operating state of the air conditioner.
  • the inputs of the first calculation model are the compressor operating frequency, suction temperature, suction pressure, discharge temperature and discharge pressure, and the output is the compressor oil discharge volume under these conditions.
  • the second calculation model is used to obtain the second opening degree.
  • the inputs of the second calculation model are the compressor operating frequency, lubricating oil temperature and the compressor oil discharge volume obtained by the first calculation model, and the output is the second opening degree under these conditions.
  • the corresponding second opening degree is determined based on the current operating conditions of the air conditioner, and the oil volume adjustment component is adjusted to the second opening degree.
  • the compressor oil discharge volume is equal to the compressor oil return volume, so that the oil return volume is stable.
  • determining the optimal opening degree based on the heat exchange capacity of the air conditioner includes: judging whether to execute the current round of optimized opening operation phase based on the heat exchange capacity of the air conditioner; if not, determining whether to execute the optimal opening degree operation phase according to the current compressor operation. Whether the optimized opening operation stage has been executed under the frequency to determine the optimal opening; if executed, the oil volume adjustment component is controlled to run at the optimized opening of this round for the second time to reduce the internal oil level of the compressor to a safe minimum.
  • the optimization opening operation stage is used to determine the optimal opening.
  • the optimized opening operation stage includes: capacity optimal operation state and reliability optimal operation state.
  • the optimal operating state of the capacity means that the oil volume adjustment component is adjusted to the optimized opening of this wheel and continues to operate for the second time.
  • the reliable and optimal operating state means that the oil volume adjustment component is adjusted to the first opening and continues to operate for the first time.
  • the compressor oil discharge volume is greater than the compressor return oil volume.
  • the optimal opening is smaller than the second opening.
  • the second time is the continuous operation time of the oil quantity adjustment component at the optimized opening, which can be called the reliable oil return time.
  • Executing the optimized opening operation phase means performing optimized opening adjustment.
  • the optimized opening is lower than the second opening.
  • the compressor oil discharge volume is greater than the compressor oil return volume. If the optimized opening time is too long, the compressor will be short of oil. Therefore, it is necessary to implement reliable and optimal operating conditions for oil return to avoid compressor oil shortage.
  • the optimal opening can be reliably determined by judging and executing the optimal opening operation stage and adjusting the optimal opening.
  • the optimized opening operation stage it first goes through the optimal operating state to optimize the operating capacity and energy efficiency of the air conditioner.
  • the internal oil level of the compressor will be reduced to the minimum safe oil level.
  • the reliable optimal operating state so that the compressor oil discharge volume is less than the compressor oil return volume, ensuring the compressor operation reliability. This takes into account heat exchange capacity and reliability.
  • determining whether to execute the optimized opening operation stage of this cycle includes: determining the optimized opening of this cycle and its corresponding second time; estimating that the oil volume adjustment component is in this cycle.
  • the cumulative heat exchange capacity value corresponding to the optimized opening of the continuous operation for the second time is recorded as the first heat exchange capacity parameter value of this round; compare the first heat exchange capacity parameter value of this round with the first threshold; if this round If the first heat exchange capacity parameter value is less than the first threshold, then the optimization opening operation stage of this round will not be executed; if the first heat exchange capacity parameter value of this round is greater than or equal to the first threshold, then according to the second heat exchange capacity parameter value and whether the optimized opening operation stage has been executed under the current compressor operating frequency, to determine whether to execute the optimized opening operation stage of this round.
  • the first heat exchange capacity parameter value can reflect the cumulative heat exchange capacity corresponding to the optimal operating state of the capacity in the optimized opening operation stage.
  • the first threshold is the cumulative heat exchange capacity value corresponding to the first opening of the oil quantity adjustment component for the first time.
  • the heat exchange capacity of the oil quantity adjustment component when it is at the first opening is obtained, and the integral sum of the heat exchange capacity and the first time is calculated to obtain the first threshold.
  • the first threshold can reflect the cumulative heat exchange capacity corresponding to the reliable optimal operating state in the optimized opening operation stage.
  • the optimized opening operation stage of this round is not executed to avoid air conditioning.
  • the capacity is reduced; when the cumulative heat exchange capacity of the optimal operating state in this round of optimized opening operation is higher than the cumulative heat exchange capacity of the reliable optimal operating state, it is further determined whether to execute the optimized opening operation stage of this round. To ensure optimal capabilities.
  • determining the optimized opening of this round includes: if the optimized opening operation stage has not been executed under the current compressor operating frequency, then determining the optimized opening of this round based on the second opening, where, The optimized opening is smaller than the second opening; if the optimized opening operation stage has been executed at the current compressor operating frequency, the preset opening will be reduced based on the optimized opening of the previous round to obtain the optimization of this round. opening.
  • the optimized opening of this round is determined according to the second opening.
  • an optimized opening value is given according to certain rules on the premise that the optimized opening is smaller than the second opening.
  • the preset opening can be preset according to the actual situation, for example, the preset opening is 3PLS.
  • This embodiment can quickly and reliably determine the optimal opening of this cycle based on whether the optimal opening is adjusted for the first time under the current compressor operating frequency.
  • determining the second time corresponding to the optimized opening of this round includes: determining the second time corresponding to the current compressor oil discharge volume and the optimized opening of this round based on the second pre-stored information.
  • the corresponding relationship between different compressor oil discharge volumes, optimized opening degrees and the second time is preset through experiments, and the above-mentioned corresponding relationships are stored as the second pre-stored information.
  • the corresponding second time can ensure that the oil volume adjustment component is at the optimized opening under the current compressor operating frequency.
  • the internal oil level of the compressor drops to the minimum.
  • the size of the second time is positively correlated with the optimization opening, that is, the smaller the optimization opening, the smaller the second time. This implementation can quickly and reliably determine the second time corresponding to the current operating condition of the air conditioner.
  • the cumulative heat exchange capacity value corresponding to the second time when the oil volume adjustment component is at the optimized opening of this round and continues to operate is recorded as the first heat exchange capacity parameter value of this round, including: the oil volume adjustment component Adjust to the optimized opening of this round; obtain the heat exchange capacity when the oil volume adjustment component is at the optimized opening of this round; calculate the integral sum of the heat exchange capacity and the second time to obtain the first heat exchange capacity parameter of this round value. From this, the cumulative heat exchange capacity corresponding to the optimal operating state can be quickly estimated.
  • judging whether to execute the current round of optimized opening operation phase based on the second heat exchange capacity parameter value and whether the optimized opening operating phase has been executed under the current compressor operating frequency includes: estimating this round of optimization The average heat exchange capacity value in the opening operation stage is used as the second heat exchange capacity parameter value of this round; if the optimized opening operation stage has not been executed under the current compressor operating frequency, the second heat exchange capacity parameter value of this round is used. The capacity parameter value and the second threshold value are used to determine whether to execute the optimized opening operation stage of this round; if the optimized opening operation stage has been executed under the current compressor operating frequency, the second heat exchange capacity parameter value of this round and the above The second heat exchange capacity parameter value of one round is used to determine whether to execute the optimized opening operation stage of this round.
  • the second heat transfer capacity parameter value can reflect the average heat transfer capacity in the optimized opening operation stage.
  • the second threshold is the heat exchange capability when the oil quantity regulating component is at the second opening degree.
  • the second heat exchange capacity parameter value By comparing the second heat exchange capacity parameter value with the second threshold, it can be determined whether the average heat exchange capacity in the optimized opening operation stage and the heat exchange capacity when the oil quantity regulating component is at the second opening are high or low.
  • This implementation method can ensure that if this round of optimized opening operation stage is executed, the heat exchange capacity of the air conditioner will be higher.
  • estimating the average heat transfer capacity value of this round of optimized opening operation stage as the second heat transfer capacity parameter value of this round includes: calculating the sum of the first heat transfer capacity parameter value of this round and the first threshold value , recorded as the first value; count Calculate the sum of the first time and the second time and record it as the second value; calculate the ratio of the first value to the second value to obtain the second heat transfer capacity parameter value of this round.
  • judging whether to execute the optimized opening operation stage of this round based on the second heat exchange capacity parameter value of this round and the second threshold value includes: comparing the second heat exchange capacity parameter value of this round with the second threshold value. ; If the second heat exchange capacity parameter value of this round is less than the second threshold, then the optimization opening operation stage of this round will not be executed; if the second heat exchange capacity parameter value of this round is greater than or equal to the second threshold, then this round of optimization operation phase will be executed. Optimize the opening operation stage. This implementation can ensure that the average heat exchange capacity in the optimized opening operation stage to be executed is higher than the heat exchange capacity when the oil quantity regulating component is at the second opening.
  • judging whether to execute the optimized opening operation stage of this round is based on the second heat exchange capacity parameter value of this round and the second heat exchange capacity parameter value of the previous round, including: comparing the second heat exchange capacity parameter value of this round. Thermal capacity parameter value and the second heat exchange capacity parameter value of the previous round; if the second heat exchange capacity parameter value of this round is less than the second heat exchange capacity parameter value of the previous round, the optimized opening operation of this round will not be executed. stage; if the second heat exchange capacity parameter value of this round is greater than or equal to the second heat exchange capacity parameter value of the previous round, then the optimization opening operation stage of this round is executed.
  • This implementation method can ensure that the average heat exchange capacity of the optimized opening operation stage to be executed is higher than the average heat exchange capacity of the previous round of optimized opening operation stage.
  • the optimal opening is determined based on whether the optimized opening operation phase has been executed at the current compressor operating frequency, including: if the optimized opening operation phase has not been executed at the current compressor operating frequency, Then determine the second opening degree as the optimal opening degree; if the optimized opening degree operation stage has been executed under the current compressor operating frequency, then determine the opening degree in the previous round of optimized opening degree operation stage as the optimal opening degree.
  • controlling the oil volume adjustment component to continue operating according to the optimal opening includes: adjusting the oil volume adjustment component to the second opening to continue running, or controlling the oil volume adjustment component to cycle through the previous round of optimized opening operation stages.
  • This implementation method can determine the optimal opening degree to ensure the heat exchange capacity and energy efficiency of the air conditioner based on the current operating conditions of the air conditioner.
  • the heat exchange capability of the air conditioner is reflected by the operating capacity, operating energy efficiency, or indoor unit outlet air temperature.
  • the higher the air outlet temperature of the indoor unit the higher the heat exchange capacity
  • the lower the air outlet temperature of the indoor unit the higher the heat exchange capacity.
  • the corresponding relationship between the indoor unit air outlet temperature and the heat exchange capacity in the cooling mode is preset, and when judging the optimal opening operation stage, the current indoor unit air outlet temperature is converted into the corresponding
  • the heat exchange capacity is used to calculate relevant parameters, such as the first heat exchange capacity parameter value, the second heat exchange capacity parameter value, the first threshold value and the second threshold value, so as to determine the impact of the process on the operating capacity, operating energy efficiency and indoor unit air outlet temperature. are applicable to all, thereby ensuring the versatility of the judgment process.
  • a corresponding judgment flow is set separately for the air outlet temperature of the indoor unit in the cooling mode. Specifically, in the cooling mode, if the cumulative outlet air temperature of this round is greater than the first threshold of the outlet temperature, the optimization opening operation phase of this round will not be executed; if the cumulative outlet air temperature of this round is less than or equal to the outlet temperature
  • the first threshold value of the wind temperature is determined based on the average outlet air temperature of this round and whether the optimized opening operation stage has been executed at the current compressor operating frequency to determine whether to execute the optimized opening operation stage of this round.
  • the optimization opening operation phase of this round will not be executed; if the average outlet air temperature of this round is less than or equal to the second threshold value of the outlet temperature, this round will be executed. Wheel optimization opening operation stage. If the average air outlet temperature of this round is greater than the average air outlet temperature of the previous round, the optimization opening operation phase of this round will not be executed; if the average outlet air temperature of this round is less than or equal to the average air outlet temperature of the previous round, then Execute this round of optimization opening operation phase.
  • the oil return volume is too large. Although the reliable operation of the compressor can be ensured, the operating capacity and energy efficiency of the air conditioner are reduced. Too little oil return increases the risk of compressor oil shortage. From the perspective of balancing the compressor oil discharge volume and the compressor oil return volume, compared with over-return oil control, both air conditioning capacity and energy efficiency can be improved, but there is still room for further improvement. Under different compressor operating frequencies, suction and exhaust pressures, and suction and exhaust temperatures, the oil discharge rate of the compressor is also different. When it is first started, the opening of the oil volume adjustment component is very large. After stabilization, the oil return volume has reaches the maximum value, which is the reliable oil level.
  • the amount of oil return is reduced through less oil return control to ensure that the refrigerant fully participates in heat exchange and improves air conditioning capacity and energy efficiency. That is to say, there is an interval from the current reliable oil level to the minimum safe oil level. Within this interval, the oil return volume needs to be reduced to optimize the air conditioner's operating capacity and energy efficiency.
  • This embodiment uses two-way control of the air-conditioning heat exchange capacity and compressor operation reliability to optimally control the opening of the oil quantity control component, which can not only optimize the air-conditioning capacity and energy efficiency, but also ensure reliable operation of the compressor.
  • the oil volume adjustment component is adjusted to the first opening degree and continues to run for the first time, so that the internal oil level of the compressor reaches the maximum safe oil level and ensures reliable oil return. , so that the compressor is fully lubricated and avoids oil shortage in the compressor, thereby ensuring the reliability of the compressor. Then lower the oil volume adjusting component to the second opening degree so that the compressor oil discharge volume is equal to the compressor oil return volume. Then determine the optimal opening degree based on the heat exchange capacity of the air conditioner, and control the oil volume regulating component to follow the optimal opening degree.
  • Continuous operation on the basis of balancing the compressor oil discharge volume and the compressor oil return volume, perform optimal control of the oil volume adjustment component to reduce oil return, continue to find the optimal opening with higher capacity and energy efficiency, and further Improving the capacity and energy efficiency under reliable oil return conditions can not only achieve optimal capacity and energy efficiency, but also ensure reliable operation of the compressor.
  • the amount of oil return is reduced through less oil return control to ensure that the refrigerant fully participates in heat exchange, improves air conditioning capacity and energy efficiency, makes full use of the capacity improvement effect of the less oil return stage, and takes into account the replacement Factors affecting thermal capability and reliability.
  • FIG. 2 it is a schematic diagram of an air conditioner.
  • the air conditioner includes: a compressor 1, an oil separator 2, an outdoor heat exchanger 3, a throttling component 4, an indoor heat exchanger 5 and an oil quantity regulating component 6.
  • compressor 1 discharges high-temperature and high-pressure gaseous refrigerant, it will carry part of the lubricating oil.
  • oil separator 2 separates the refrigerant and oil, the separated oil is sent back to compressor 1 through the oil return pipeline.
  • the pipeline connected to the suction side is called the oil return pipeline.
  • the oil return pipeline is provided with an oil quantity adjusting component 6. By changing the opening of the oil quantity adjusting component 6, the compressor oil return quantity can be controlled.
  • the oil quantity adjustment component 6 is a valve component such as a solenoid valve or an electronic expansion valve.
  • the oil return control is to adjust the opening of the oil quantity adjusting component 6.
  • the adjustment of the oil quantity adjustment component goes through three stages: the oil return opening operation stage, the oil return stable opening operation stage, and the oil return opening operation stage.
  • the corresponding over-return oil opening ⁇ 0 i.e., the first opening
  • over-return oil time ⁇ t x i.e., the first time
  • Component 6 is adjusted to the oil return opening ⁇ 0 and continues to run for ⁇ t x time, so that the internal oil level of the compressor reaches the maximum safe oil level.
  • the opening degree of the oil quantity adjusting component 6 is ⁇ 0
  • the compressor oil discharge quantity is less than the compressor return oil quantity.
  • the corresponding over-return oil opening ⁇ 0 and over-oil return time ⁇ t x are obtained according to the preset parameters.
  • the preset parameters are used to obtain the over-return oil opening ⁇ 0 of the oil quantity adjustment component 6 and its corresponding over-return time ⁇ t x .
  • Preset parameters include: compressor operating frequency, suction temperature, discharge temperature, suction pressure and discharge pressure.
  • the corresponding relationships between different preset parameters, the oil return opening ⁇ 0 and the continuous operating time ⁇ t x of the opening are preset through experiments, and the above corresponding relationships are stored, for example, in the form of a relationship table. .
  • the corresponding ⁇ 0 and ⁇ t x can ensure that the internal oil level of the compressor reaches the maximum safe oil level after the oil quantity adjustment component 6 is at the opening ⁇ 0 and runs for ⁇ t x time.
  • the current preset parameters are obtained, and then ⁇ 0 and ⁇ t x corresponding to the current preset parameters are read from the pre-stored correspondence (ie, the first pre-stored information).
  • the corresponding oil return stable opening ⁇ x (i.e., the second opening) is determined based on the current operating conditions of the air conditioner, and the oil quantity adjustment component 6 is adjusted to the oil return stable opening ⁇ x .
  • ⁇ x ⁇ ⁇ 0 when the opening degree of the oil quantity adjusting component 6 is ⁇ x , the compressor oil discharge quantity is equal to the compressor oil return quantity.
  • the oil return stable opening ⁇ x is obtained through the first calculation model and the second calculation model.
  • the first calculation model and the second calculation model are both calculation models fitted based on experimental test data.
  • the first calculation model is used to obtain the compressor oil discharge volume under the current operating state of the air conditioner.
  • the inputs of the first calculation model are the compressor operating frequency, suction temperature, suction pressure, discharge temperature and discharge pressure, and the output is the compressor oil discharge volume under these conditions.
  • Second plan The calculation model is used to obtain the stable oil return opening ⁇ x of the oil quantity regulating component 6. At this opening, the compressor oil return volume is equal to the compressor oil discharge volume under the current operating state.
  • the inputs of the second calculation model are the compressor operating frequency, lubricating oil temperature and the compressor oil discharge volume obtained by the first calculation model, and the output is the oil return stable opening ⁇ x under these conditions.
  • the current compressor operating frequency, suction temperature, suction pressure, discharge temperature and discharge pressure are obtained and input into the first calculation model to obtain the corresponding compressor oil discharge volume, and then the compressor
  • the operating frequency, lubricating oil temperature and oil discharge volume of the compressor are input to the second calculation model to obtain the corresponding stable oil return opening ⁇ x .
  • the optimized opening operation stage includes: capacity optimal operation state and reliability optimal operation state.
  • the optimal operating state of the capacity means that the oil quantity adjustment component 6 is adjusted to the optimized opening ⁇ y and continues to operate for a reliable oil return time ⁇ t y .
  • the reliable and optimal operating state means that the oil quantity adjustment component 6 is adjusted to the oil return opening ⁇ 0 and continues to operate for the oil return time ⁇ t x .
  • ⁇ y ⁇ ⁇ x when the opening degree of the oil quantity adjusting component 6 is ⁇ y , the compressor oil discharge quantity is greater than the compressor return oil quantity.
  • the corresponding optimized opening ⁇ y is determined based on whether the optimized opening adjustment has been performed at the current compressor operating frequency, and the corresponding reliable oil return time ⁇ t is determined based on the current operating conditions of the air conditioner. y (i.e. the second time). Then adjust the oil quantity adjustment component 6 to the optimized opening ⁇ y and continue to run for a time ⁇ t y .
  • This period of time is the optimal operating state of the capacity in the optimized opening operation stage.
  • the capacity optimal operating state is completed (that is, the ⁇ t y time is reached)
  • the internal oil level of the compressor has dropped to the minimum safe oil level. Therefore, before executing the judgment of the next round of optimized opening operation stage, it is necessary to complete the reliable optimal operation state.
  • the oil quantity regulating component 6 is in the over-return oil opening ⁇ 0 and continues to operate for ⁇ t x time.
  • the corresponding optimal opening ⁇ y is determined based on whether optimal opening adjustment has been performed at the current compressor operating frequency, including: when optimal opening adjustment has not been performed at the current compressor operating frequency.
  • assigning an initial value to ⁇ y needs to satisfy ⁇ y ⁇ x .
  • ⁇ y is obtained by continuing to decrease based on the previous round of optimized opening ⁇ y-1 , and ⁇ y ⁇ y-1 ⁇ x . For example, if 5PLS is reduced, if the optimized opening ⁇ y-1 of the previous round is 45PLS and 5PLS is reduced, then the optimized opening ⁇ y of this round is 40PLS.
  • determining the corresponding reliable oil return time ⁇ t y according to the current operating conditions of the air conditioner includes: obtaining the reliable oil return time ⁇ t y corresponding to the optimized opening ⁇ y according to specified parameters .
  • ⁇ t y is the sustainable time when the oil quantity adjustment component 6 is at the ⁇ y opening. During this time, the internal oil level of the compressor continues to decrease to the minimum safe oil level.
  • the size of ⁇ t y is positively correlated with ⁇ y , that is, the smaller ⁇ y is, the smaller ⁇ t y is.
  • the specified parameters are used to obtain the reliable oil return time ⁇ t y corresponding to different optimized openings ⁇ y .
  • the specified parameters include: the compressor oil discharge volume and the current opening of the oil volume regulating component 6 (ie, the optimized opening ⁇ y determined in this step).
  • the corresponding relationship between different specified parameters and the reliable oil return time ⁇ t y is preset through experiments, And store the above corresponding relationship, for example, in the form of a relational table.
  • the corresponding ⁇ t y can ensure that the internal oil level of the compressor drops to the minimum safe oil level and is not lower than the minimum safe oil level after the oil quantity adjustment component 6 is at the opening ⁇ y and runs for ⁇ t y time.
  • the current specified parameter is obtained, and then ⁇ ty corresponding to the current specified parameter is read from the pre-stored correspondence (ie, the second pre-stored information).
  • the first judgment is: obtain the operating capacity Q 0 when the oil quantity regulating component 6 is at the over-return opening ⁇ 0 , obtain the over-return time ⁇ t x corresponding to this opening, calculate the integral sum of Q 0 and ⁇ t x , and record it as The first threshold ⁇ Q 0 .
  • Obtain the operating capacity Q y of the oil quantity regulating component 6 when it is at the optimized opening ⁇ y obtain the reliable oil return time ⁇ t y corresponding to this opening, calculate the integral sum of Q y and ⁇ t y , and record it as the first change of this round.
  • Thermal capacity parameter value ⁇ Q y When ⁇ Q y is less than ⁇ Q 0 , this round of optimization opening operation phase will not be executed; otherwise, the secondary judgment will be entered.
  • Scenario 1 The optimized opening operation stage has not been executed under the current compressor operating frequency. Specifically, the operating capacity Q x of the oil quantity regulating component 6 when it is at the oil return stable opening ⁇ x . Calculate the average capacity of the optimized opening stage, that is, the ratio of the sum of ⁇ Q y and ⁇ Q 0 to the sum of ⁇ t y and ⁇ t x , which is recorded as the second heat transfer capacity parameter value of this round. when When it is less than Q x , this round of optimization opening operation phase will not be executed; otherwise, this round of optimization opening operation phase will be executed.
  • Scenario 2 The optimized opening operation stage has been executed at the current compressor operating frequency. Specifically, the second heat exchange capacity parameter value in the previous round of optimized opening operation stage is calculated and memorized. like less than When , this round of optimization opening operation phase will not be executed; otherwise, this round of optimization opening operation phase will be executed.
  • oil return control includes the following steps:
  • an initial value is assigned to ⁇ y , which needs to satisfy ⁇ y ⁇ ⁇ x .
  • ⁇ y is obtained by continuing to reduce, ⁇ y ⁇ y-1 ⁇ x . For example, if 5PLS is reduced, if the optimized opening ⁇ y-1 of the previous round is 45PLS and 5PLS is reduced, then the optimized opening ⁇ y of this round is 40PLS.
  • S305 Determine whether the first heat exchange capacity parameter value of this round is less than the first threshold. If yes, proceed to S306; if not, proceed to S309.
  • S307 Determine whether the optimal opening adjustment is performed for the first time under the current compressor operating frequency. If so, proceed to S308; if not, proceed to S316.
  • S309 Determine whether the optimal opening adjustment is performed for the first time under the current compressor operating frequency. If so, proceed to S310; if not, proceed to S312.
  • S310 Determine whether the second heat exchange capacity parameter value of this round is less than the second threshold. If yes, proceed to S311. If not, proceed to S313.
  • S312 determine whether the second heat exchange capacity parameter value of this round is smaller than the second heat exchange capacity parameter value of the previous round. If yes, proceed to S315. If not, proceed to S313.
  • the opening optimization operation stage includes: capacity optimal operation state and reliability optimal operation state.
  • the oil quantity regulating component 6 is in the optimized opening ⁇ y and continues to operate for a time ⁇ t y . This period of time is the optimal operating state of the capacity in the optimized opening operation stage.
  • the capacity optimal operating state is completed (that is, the ⁇ t y time is reached)
  • the internal oil level of the compressor has dropped to the minimum safe oil level. Therefore, before executing the judgment of the next round of optimized opening operation stage, it is necessary to complete the reliable optimal operation state.
  • the oil quantity regulating component 6 In the operating state, under the reliable and optimal operating state, the oil quantity regulating component 6 is in the over-return oil opening ⁇ 0 and continues to operate for ⁇ t x time.
  • S314 enter the judgment of the next round of optimization opening operation stage, that is, return to S305 to determine the next round of optimization opening and continue the judgment.
  • step S303 after the oil quantity adjusting component 6 is adjusted down to the stable oil return opening ⁇ x , the judgment of whether to execute the optimized opening operation stage is entered.
  • the oil quantity adjustment component 6 is adjusted down to the stable oil return opening ⁇ Through the predetermined time, it is ensured that the stable operation capability of the oil quantity adjustment component 6 when it is at the oil return stable opening ⁇ x can be obtained, which facilitates subsequent calculations and participates in the judgment of the optimized opening operation stage.
  • the scheduled time is 3 minutes.
  • the oil volume adjustment component 6 presses the optimized opening ⁇ y for a time ⁇ t y . After completing the optimal operation state of the capacity, the oil volume adjustment component 6 increases the opening to ⁇ 0 continues to run for ⁇ t
  • the oil quantity adjustment component 6 returns to the previous round of optimized opening ⁇ y and presses the up One round of optimized opening ⁇ y loop executes the previous round of optimized opening operation stage.
  • the oil quantity adjustment component 6 presses the optimized opening ⁇ y+1 for ⁇ t y+1 . After completing the optimal operating state of capacity, increase the opening to ⁇ 0 and continue running for ⁇ t Optimize the judgment of the opening operation stage. Such a circular judgment.
  • the over-return oil opening operation stage can ensure the reliability of the compressor when the air conditioner is started. After completing this stage, the internal oil level of the compressor reaches the maximum safe oil level, and the heat exchange capacity in this state is obtained at the same time, making it easier to participate in the optimization start-up. Judgment in the running stage. Then it enters the oil return stable opening operation stage, which is mainly to obtain the heat exchange capacity under the oil return stable opening and participate in the judgment of the optimized opening operation stage. In the optimized opening operation stage, the optimal operating state of capacity is first experienced, that is, by optimizing the opening, the compressor oil discharge volume is greater than the compressor oil return volume.
  • the operating capacity and energy efficiency of the air conditioner reach the optimal state, but at the same time the compression
  • the internal oil level of the engine will drop to the minimum safe oil level, therefore, A reliable optimal operating state is required.
  • the compressor oil discharge volume is less than the compressor oil return volume, and the cumulative heat exchange capacity during the continuation of the reliable optimal operating state is less than the cumulative heat exchange capacity during the continuation of the energy-efficient optimal operating state.
  • the average heat exchange capacity in the optimized opening operation stage is higher than the average capacity in the previous round of optimized opening operation stage, and is also higher than the average capacity in the oil return stable opening stage.
  • This embodiment uses two-way control of the heat exchange capacity of the air conditioner and the operation reliability of the compressor to adjust the opening of the oil volume adjustment component. On the basis of the balance between the compressor oil discharge volume and the compressor return oil volume, the oil volume is adjusted. Adjust the components to perform optimization control with less oil return, continue to find the optimal opening with higher capacity and energy efficiency, and further improve the capacity and energy efficiency under reliable oil return conditions, which can not only achieve optimal capacity and energy efficiency, but also ensure compression reliable operation of the machine.
  • the amount of oil return is reduced through less oil return control to ensure that the refrigerant fully participates in heat exchange, improves air conditioning capacity and energy efficiency, makes full use of the capacity improvement effect of the less oil return stage, and takes into account the replacement Factors affecting thermal capability and reliability.
  • an oil return control device for implementing the oil return control method described in the above embodiments.
  • the oil return control device is implemented by software, hardware, or both software and hardware.
  • the oil return control device can generally be integrated into the controller of the air conditioner.
  • FIG 8 is a structural block diagram of an oil return control device provided by some embodiments of the present disclosure. As shown in Figure 8, the oil return control device includes:
  • the first control module 81 is used to adjust the oil quantity adjustment component on the oil return line to a first opening degree under the current compressor operating frequency, and maintain the first opening degree to run for a first time, so that the compressor The internal oil level reaches the maximum safe oil level;
  • the second control module 82 is used to lower the oil volume adjustment component to the second opening degree so that the compressor oil discharge volume is equal to the compressor oil return volume;
  • the third control module 83 is used to determine the optimal opening according to the heat exchange capacity of the air conditioner, and control the oil quantity adjustment component to continue operating according to the optimal opening.
  • the above-mentioned oil return control device further includes:
  • the first acquisition module is used to acquire the current preset parameters before the first control module 81 adjusts the oil quantity adjustment component on the oil return line to the first opening, where the preset parameters include: compressor operating frequency , suction temperature, suction pressure, exhaust temperature and exhaust pressure;
  • Determining module configured to determine the first opening degree and the first time corresponding to the current preset parameter according to the first pre-stored information, wherein when the opening degree of the oil quantity adjustment component is the first opening degree, the compression The oil discharge volume of the machine is less than the oil return volume of the compressor.
  • the above-mentioned oil return control device further includes:
  • the second acquisition module is used to acquire the current preset parameters before the second control module 82 reduces the oil quantity adjustment component to the second opening degree, where the preset parameters include: compressor operating frequency, suction air temperature, suction pressure, discharge temperature and discharge pressure;
  • the first calculation module is used to calculate the current compressor oil discharge volume based on the current preset parameters
  • the second calculation module is used to calculate the second opening degree according to the current compressor oil discharge volume, the current compressor operating frequency and the current lubricating oil temperature, wherein when the opening degree of the oil volume adjustment component At the second opening degree, the compressor oil discharge amount is equal to the compressor oil return amount, and the second opening degree is smaller than the first opening degree.
  • the third control module 83 includes:
  • a determination unit configured to, if not executed, determine the optimal opening degree based on whether the optimized opening degree operation phase has been executed under the current compressor operating frequency
  • the control unit is configured to, if executed, control the oil volume adjustment component to operate at the optimized opening of this round for a second time, so that the internal oil level of the compressor is reduced to the minimum safe oil level and the optimal operating state of capability is achieved; Then adjust the oil quantity adjustment component to the first opening degree and continue to run for the first time to achieve a reliable and optimal operating state; after that, continue to determine whether to execute the next step based on the heat exchange capacity of the air conditioner. Wheel optimization opening operation stage;
  • the opening degree of the oil quantity adjusting component is an optimized opening degree
  • the compressor oil discharge amount is greater than the compressor return oil amount
  • the optimized opening degree is smaller than the second opening degree
  • the judgment unit includes:
  • Determining subunit used to determine the optimized opening of the current round and the corresponding second time
  • Prediction subunit used to estimate the cumulative heat exchange capacity value corresponding to the second time when the oil volume adjustment component is operated at the optimized opening of the current round for the second time, recorded as the first heat exchange capacity of this round parameter value;
  • a comparison subunit used to compare the first heat exchange capacity parameter value of the epicycle with a first threshold value, wherein the first threshold value is when the oil quantity adjustment component is in the first opening degree for the first time.
  • the cumulative heat transfer capacity value corresponding to time;
  • a control subunit configured to not execute the optimization opening operation phase of this round if the first heat exchange capacity parameter value of this round is less than the first threshold
  • Determination subunit used to determine whether optimization has been performed based on the second heat exchange capacity parameter value and the current compressor operating frequency if the first heat exchange capacity parameter value of the current cycle is greater than or equal to the first threshold.
  • Kaidu Luck In the execution stage, it is judged whether to execute this round of optimization opening operation stage.
  • the determination subunit is specifically configured to: if the optimized opening operation phase has not been executed under the current compressor operating frequency, determine the optimized opening of the current cycle according to the second opening, wherein , the optimized opening of this round is smaller than the second opening; if the optimized opening operation stage has been executed under the current compressor operating frequency, the preset value will be reduced based on the optimized opening of the previous round. opening to obtain the optimized opening of the epicycle.
  • the determination subunit is specifically configured to: determine the second time corresponding to the current compressor oil discharge amount and the optimized opening of the current wheel according to the second pre-stored information.
  • the prediction subunit is specifically used to: adjust the oil volume adjustment component to the optimized opening of the epicycle; obtain the fuel volume adjustment component when it is at the optimized opening of the epicycle.
  • Heat exchange capacity calculate the integral sum of the heat exchange capacity and the second time to obtain the first heat exchange capacity parameter value of the current round.
  • the judgment subunit is specifically used to:
  • the optimized opening operation stage has not been executed at the current compressor operating frequency, then it is determined whether to execute the optimized opening operation stage of this round based on the second heat exchange capacity parameter value and the second threshold value of this round, where,
  • the second threshold is the heat exchange capability of the oil quantity adjustment component when it is at the second opening degree;
  • the judgment subunit is specifically configured to: calculate the sum of the first heat exchange capacity parameter value of the current cycle and the first threshold value, and record it as the first value; calculate the sum of the first time and the first threshold value. The sum of the second time is recorded as the second value; the ratio of the first value to the second value is calculated to obtain the second heat exchange capacity parameter value of the current round.
  • the judgment subunit is specifically configured to: compare the second heat exchange capacity parameter value of this round with the second threshold; if the second heat exchange capacity parameter value of this round is less than the third If the value of the second heat exchange capacity parameter of this round is greater than or equal to the second threshold, the current round of optimized opening operation phase will not be executed.
  • the judgment subunit is specifically configured to: compare the second heat exchange capacity parameter value of this round with the second heat exchange capacity parameter value of the previous round; if the second heat exchange capacity parameter value of this round If the thermal capacity parameter value is less than the second heat exchange capacity parameter value of the previous round, the optimization opening operation phase of this round will not be executed; if the second heat exchange capacity parameter value of this round is greater than or equal to the previous round If the second heat exchange capacity parameter value of the round is determined, the optimized opening operation stage of this round will be executed.
  • the determination unit is specifically configured to: if the optimized opening operation phase has not been executed under the current compressor operating frequency, determine the second opening as the optimal opening; If the optimized opening operation stage has been executed at the compressor operating frequency, the opening in the previous round of optimized opening operation stage is determined as the optimal opening.
  • the third control module 83 is specifically used to: adjust the oil quantity adjustment component to the second opening degree and continue to operate, or control the oil quantity adjustment component to cyclically execute the previous round of optimized opening degree operation stage.
  • the above-mentioned oil return control device can execute the oil return control method provided by the embodiment of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • the oil return control method provided by the embodiment of the present disclosure.
  • Still further embodiments of the present disclosure provide an air conditioner, including: the oil return control device described in the above embodiments.
  • Still other embodiments of the present disclosure provide a computer device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the above embodiments are implemented. Describe the steps of the method.
  • Still other embodiments of the present disclosure provide a non-volatile computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method described in the above embodiments are implemented.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开公开了一种回油控制方法、装置及空调。其中,该方法包括:在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;将油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;根据空调换热能力确定最优开度,并控制油量调节部件按照最优开度持续运行。本公开通过第一开度和第一时间保证可靠回油,确保压缩机可靠性;在压缩机排油量与压缩机回油量相平衡的基础上,对油量调节部件进行少回油的寻优控制,寻找具有更高能力、能效的最优开度,进一步提升可靠回油条件下的能力和能效,既可达到能力、能效最优,又可确保压缩机的可靠运行。

Description

一种回油控制方法、装置及空调
相关申请的交叉引用
本申请是以CN申请号为202210795118.2,申请日为2022年7月7日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩机技术领域,具体而言,涉及一种回油控制方法、装置及空调。
背景技术
空调的压缩机排出高温高压气态冷媒时,会携带部分润滑油,油分离器将冷媒和油进行分离后,通过回油管路将分离出来的油送回至压缩机,以避免压缩机缺油。
目前的回油控制方法,可以在油分离器中设置油位检测模块,检测油分离器中油位的变化速度,通过比较一个周期内油位变化速度与预设值的大小来判断下一周期回油膨胀阀的调节开度。
发明内容
本公开实施例提供一种回油控制方法、装置及空调。
根据本公开的一些实施例,提供了一种回油控制方法,包括:
在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持所述第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;
将所述油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;
根据空调的换热能力确定最优开度,并控制所述油量调节部件按照所述最优开度持续运行。
在一些实施例中,在将回油管路上的油量调节部件调至第一开度之前,还包括:
获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
根据第一预存信息确定与当前的预设参数对应的第一开度及第一时间,其中,当所述油量调节部件的开度为所述第一开度时,压缩机排油量小于压缩机回油量。
在一些实施例中,在将所述油量调节部件降低至第二开度之前,还包括:
获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
根据当前的预设参数计算得到当前的压缩机排油量;
根据当前的压缩机排油量、当前的压缩机运行频率和当前的润滑油温度,计算得到所述第二开度,其中,当所述油量调节部件的开度为所述第二开度时,压缩机排油量等于压缩机回油量,所述第二开度小于所述第一开度。
在一些实施例中,根据空调的换热能力确定最优开度,包括:
根据所述空调的换热能力,判断是否执行本轮优化开度运行阶段;
若不执行,则根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定所述最优开度;
若执行,则控制所述油量调节部件处于本轮的优化开度持续运行第二时间,以使压缩机内部油位减少至最小安全油位,完成能力最优运行状态;然后将所述油量调节部件调至所述第一开度且持续运行所述第一时间,以完成可靠最优运行状态;之后,继续根据所述空调的换热能力,判断是否执行下一轮优化开度运行阶段;
其中,当所述油量调节部件的开度为优化开度时,压缩机排油量大于压缩机回油量,所述优化开度小于所述第二开度。
在一些实施例中,根据所述空调的换热能力,判断是否执行本轮优化开度运行阶段,包括:
确定所述本轮的优化开度及其对应的所述第二时间;
预估所述油量调节部件处于所述本轮的优化开度持续运行所述第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值;
比较所述本轮的第一换热能力参数值与第一阈值,其中,所述第一阈值是所述油量调节部件处于所述第一开度持续所述第一时间所对应的累计换热能力值;
若所述本轮的第一换热能力参数值小于所述第一阈值,则不执行本轮优化开度运行阶段;
若所述本轮的第一换热能力参数值大于或等于所述第一阈值,则根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段。
在一些实施例中,确定所述本轮的优化开度,包括:
若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述第二开度 确定所述本轮的优化开度,其中,所述本轮的优化开度小于所述第二开度;
若在当前的压缩机运行频率下执行过优化开度运行阶段,则在上一轮的优化开度的基础上减小预设开度,得到所述本轮的优化开度。
在一些实施例中,确定所述本轮的优化开度对应的所述第二时间,包括:根据第二预存信息确定与当前的压缩机排油量及所述本轮的优化开度对应的第二时间。
在一些实施例中,预估所述油量调节部件处于所述本轮的优化开度持续运行所述第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值,包括:
将所述油量调节部件调至所述本轮的优化开度;
获取所述油量调节部件处于所述本轮的优化开度时的换热能力;
计算所述换热能力与所述第二时间的积分和,得到所述本轮的第一换热能力参数值。
在一些实施例中,根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段,包括:
预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值;
若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,其中,所述第二阈值是所述油量调节部件处于所述第二开度时的换热能力;
若在当前的压缩机运行频率下执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段。
在一些实施例中,预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值,包括:
计算所述本轮的第一换热能力参数值与所述第一阈值的和,记为第一值;
计算所述第一时间与所述第二时间的和,记为第二值;
计算所述第一值与所述第二值的比值,得到所述本轮的第二换热能力参数值。
在一些实施例中,根据所述本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,包括:
比较所述本轮的第二换热能力参数值与所述第二阈值;
若所述本轮的第二换热能力参数值小于所述第二阈值,则不执行本轮优化开度运行阶段;
若所述本轮的第二换热能力参数值大于或等于所述第二阈值,则执行本轮优化开度运行阶段。
在一些实施例中,根据所述本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段,包括:
比较所述本轮的第二换热能力参数值与所述上一轮的第二换热能力参数值;
若所述本轮的第二换热能力参数值小于所述上一轮的第二换热能力参数值,则不执行本轮优化开度运行阶段;
若所述本轮的第二换热能力参数值大于或等于所述上一轮的第二换热能力参数值,则执行本轮优化开度运行阶段。
在一些实施例中,根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定所述最优开度,包括:
若在当前的压缩机运行频率下未执行过优化开度运行阶段,则确定所述第二开度作为所述最优开度;
若在当前的压缩机运行频率下执行过优化开度运行阶段,则确定上一轮优化开度运行阶段中的开度作为所述最优开度;
相应的,控制所述油量调节部件按照所述最优开度持续运行,包括:将所述油量调节部件调至所述第二开度持续运行,或者,控制所述油量调节部件循环执行上一轮
根据本公开的另一些实施例,还提供了一种回油控制装置,包括:
第一控制模块,用于在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持所述第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;
第二控制模块,用于将所述油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;
第三控制模块,用于根据空调的换热能力确定最优开度,并控制所述油量调节部件按照所述最优开度持续运行。
根据本公开的再一些实施例,还提供了一种空调,包括:本公开实施例所述的回油控制装置。
根据本公开的又一些实施例,还提供了一种计算机设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开实施例所述方法的步骤。
根据本公开的还一些实施例,还提供了一种非易失性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本公开实施例所述方法的步骤。
附图说明
图1是本公开一些实施例提供的回油控制方法的流程图;
图2是本公开另一些实施例提供的空调的示意图;
图3是本公开另一些实施例提供的回油控制流程图;
图4是本公开另一些实施例提供的油量调节部件的控制示意图一;
图5是本公开另一些实施例提供的油量调节部件的控制示意图二;
图6是本公开另一些实施例提供的油量调节部件的控制示意图三;
图7是本公开另一些实施例提供的油量调节部件的控制示意图四;
图8是本公开再一些实施例提供的回油控制装置的结构框图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
发明人意识到,在目前的回油控制方法中,设置油位检测模块,会导致成本增加;部分冷媒会随着回油直接从油分离器回到压缩机吸气侧,而未流向换热器,这部分冷 媒没有参与换热,影响空调换热能力,若回油量一直较大,从油分离器回到压缩机吸气侧的冷媒也会较多,对空调换热能力影响也较大。
还有其他回油控制方法,例如,利用实验数据预设压缩机各工作频率与油液流通量的关系,通过获取实际的压缩机运行频率,调节回油管路中控制阀的开度,使当前运行频率下的油液流通量与预设的油液流通量一致。发明人意识到,该方法同样存在上述问题。
针对相关技术中空调回油控制方法无法提升空调换热能力的问题,目前尚未提出有效的解决方案。
本公开实施例提供一种回油控制方法、装置及空调,以至少解决现有技术中空调回油控制方法无法提升空调换热能力的问题。本实施例提供一种回油控制方法,图1是本公开一些实施例提供的回油控制方法的流程图,如图1所示,该方法包括以下步骤:
S101,在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持第一开度运行第一时间,以使压缩机内部油位达到最大安全油位。
S102,将油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量。
S103,根据空调的换热能力确定最优开度,并控制油量调节部件按照最优开度持续运行。
在本公开一些实施例中,回油控制方法由回油控制装置执行。
其中,改变油量调节部件的开度,可以控制压缩机回油量。第一开度是在当前的压缩机运行频率下的过回油开度,当油量调节部件为第一开度时,压缩机排油量小于压缩机回油量。第一时间是油量调节部件处于第一开度的持续运行时间,可称为过回油时间。油量调节部件调至第一开度持续运行第一时间后,压缩机内部油位达到最大安全油位,由此保证可靠回油,使得压缩机充分润滑,避免压缩机缺油,从而确保压缩机的可靠性。
第二开度是在当前的压缩机频率下的回油稳定开度,当油量调节部件为第二开度时,压缩机排油量等于压缩机回油量。第二开度小于第一开度。
在一些实施例中,空调的换热能力通过运行能力、运行能效或室内机出风温度来体现。最优开度小于第一开度。最优开度能够在可靠回油的前提下进一步提升空调的能力和能效,保证空调换热能力的最大化。
若压缩机运行频率改变,相应的第一开度、第一时间、第二开度、最优开度都会 发生改变,因此,若检测到压缩机运行频率变化,则重新执行本实施例所述的方法来确定新的压缩机运行频率下的最优开度。
本实施例在当前的压缩机运行频率下,将油量调节部件调至第一开度持续运行第一时间,以使压缩机内部油位达到最大安全油位,保证可靠回油,使得压缩机充分润滑,避免压缩机缺油,从而确保压缩机的可靠性。然后将油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量,再根据空调换热能力确定最优开度,并控制油量调节部件按照最优开度持续运行,在压缩机排油量与压缩机回油量相平衡的基础上,对油量调节部件进行少回油的寻优控制,继续寻找具有更高能力、能效的最优开度,进一步提升可靠回油条件下的能力和能效,既可达到能力、能效最优,又可确保压缩机的可靠运行。在达到最大安全油位后,通过少回油控制来降低回油量,保证冷媒充分参与到换热中,提高空调能力和能效,充分利用了少回油阶段对能力的提升效果,兼顾了换热能力与可靠性的影响因素。并且不需要在压缩机内设置油位检测模块,节约成本。
在一些实施方式中,在将回油管路上的油量调节部件调至第一开度之前,还包括:获取当前的预设参数,其中,预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;根据第一预存信息确定与当前的预设参数对应的第一开度及第一时间,其中,当油量调节部件的开度为第一开度时,压缩机排油量小于压缩机回油量。
在一些实施方式中,通过试验预先设置不同的预设参数与第一开度、第一时间的对应关系,并存储上述对应关系,作为第一预存信息。针对不同的预设参数,其对应的第一开度及第一时间能够保证在当前的压缩机运行频率下,油量调节部件处于第一开度运行第一时间后压缩机内部油位达到最大安全油位。
本实施方式根据空调当前运行情况确定对应的第一开度及第一时间,将油量调节部件调至第一开度,压缩机排油量小于压缩机回油量,持续运行第一时间后,压缩机内部油位达到最大安全油位,上述过回油控制能够确保压缩机的运行可靠性。
在一些实施方式中,在将油量调节部件降低至第二开度之前,还包括:获取当前的预设参数,其中,预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;根据当前的预设参数计算得到当前的压缩机排油量;根据当前的压缩机排油量、当前的压缩机运行频率和当前的润滑油温度,计算得到第二开度,其中,当油量调节部件的开度为第二开度时,压缩机排油量等于压缩机回油量,第二开度小 于第一开度。
在一些实施方式中,根据实验测试数据拟合得到第一计算模型和第二计算模型。第一计算模型用于获取空调当前运行状态下的压缩机排油量。第一计算模型的输入为压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力,输出为此条件下的压缩机排油量。第二计算模型用于获取第二开度。第二计算模型的输入为压缩机运行频率、润滑油温度以及第一计算模型得到的压缩机排油量,输出为此条件下的第二开度。
本实施方式根据空调当前运行情况确定对应的第二开度,将油量调节部件调至第二开度,压缩机排油量等于压缩机回油量,使得回油稳定。
在一些实施方式中,根据空调的换热能力确定最优开度,包括:根据空调的换热能力,判断是否执行本轮优化开度运行阶段;若不执行,则根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定最优开度;若执行,则控制油量调节部件处于本轮的优化开度持续运行第二时间,以使压缩机内部油位减少至最小安全油位,完成能力最优运行状态;然后将油量调节部件调至第一开度且持续运行第一时间,以完成可靠最优运行状态;之后,继续根据空调的换热能力,判断是否执行下一轮优化开度运行阶段。
其中,优化开度运行阶段用于确定出最优开度。优化开度运行阶段包括:能力最优运行状态和可靠最优运行状态。能力最优运行状态是指油量调节部件调至本轮的优化开度且持续运行第二时间。可靠最优运行状态是指油量调节部件调至第一开度且持续运行第一时间。
当油量调节部件的开度为优化开度时,压缩机排油量大于压缩机回油量。优化开度小于第二开度。第二时间是油量调节部件处于优化开度的持续运行时间,可称为可靠回油时间。
执行过优化开度运行阶段表示进行过优化开度调节。在执行优化开度运行阶段时,优化开度低于第二开度,此时压缩机排油量大于压缩机回油量,若处于优化开度的时间过长,会导致压缩机缺油,因此,需要执行可靠最优运行状态来进行过回油,以避免压缩机缺油。
本实施方式通过判断与执行优化开度运行阶段,对优化开度进行调节,能够可靠地确定出最优开度。在优化开度运行阶段,先经历能力最优运行状态,使空调的运行能力及能效达到最优,但同时压缩机内部油位将会降低至最小安全油位,此时通过可靠最优运行状态,使得压缩机排油量小于压缩机回油量,保证压缩机运行可靠性,由 此兼顾了换热能力与可靠性。
在一些实施方式中,根据空调的换热能力,判断是否执行本轮优化开度运行阶段,包括:确定本轮的优化开度及其对应的第二时间;预估油量调节部件处于本轮的优化开度持续运行第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值;比较本轮的第一换热能力参数值与第一阈值;若本轮的第一换热能力参数值小于第一阈值,则不执行本轮优化开度运行阶段;若本轮的第一换热能力参数值大于或等于第一阈值,则根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段。
其中,第一换热能力参数值能够体现优化开度运行阶段中的能力最优运行状态所对应的累计换热能力。
第一阈值是油量调节部件处于第一开度持续第一时间所对应的累计换热能力值。在一些实施方式中,获取油量调节部件处于第一开度时的换热能力,并计算该换热能力与第一时间的积分和,得到第一阈值。第一阈值能够体现优化开度运行阶段中的可靠最优运行状态所对应的累计换热能力。
通过比较第一换热能力参数值与第一阈值,能够判断出同一个优化开度运行阶段中能力最优运行状态的累计换热能力与可靠最优运行状态的累计换热能力的高低。
本实施方式在本轮优化开度运行阶段中能力最优运行状态的累计换热能力低于可靠最优运行状态的累计换热能力的情况下,不执行本轮优化开度运行阶段,避免空调能力降低;在本轮优化开度运行阶段中能力最优运行状态的累计换热能力高于可靠最优运行状态的累计换热能力的情况下,进一步判断是否执行本轮优化开度运行阶段,以保证能力最优。
具体的,确定本轮的优化开度,包括:若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据第二开度确定本轮的优化开度,其中,本轮的优化开度小于第二开度;若在当前的压缩机运行频率下执行过优化开度运行阶段,则在上一轮的优化开度的基础上减小预设开度,得到本轮的优化开度。
其中,根据第二开度确定本轮的优化开度,在一些实施方式中,在满足优化开度小于第二开度的前提下按照一定的规则给出一个优化开度值。预设开度可以根据实际情况进行预先设置,例如,预设开度为3PLS。
本实施方式根据在当前的压缩机运行频率下是否首次进行优化开度调节,能够快速可靠地确定本轮的优化开度。
具体的,确定本轮的优化开度对应的第二时间,包括:根据第二预存信息确定与当前的压缩机排油量及本轮的优化开度对应的第二时间。在一些实施方式中,通过试验预先设置不同的压缩机排油量、优化开度与第二时间的对应关系,并存储上述对应关系,作为第二预存信息。针对不同的压缩机排油量和优化开度,其对应的第二时间能够保证在当前的压缩机运行频率下油量调节部件处于优化开度运行第二时间后压缩机内部油位降到最小安全油位且不低于最小安全油位。第二时间的大小与优化开度成正相关性,即优化开度越小,第二时间越小。本实施方式能够快速可靠地确定与空调当前运行情况对应的第二时间。
具体的,预估油量调节部件处于本轮的优化开度持续运行第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值,包括:将油量调节部件调至本轮的优化开度;获取油量调节部件处于本轮的优化开度时的换热能力;计算该换热能力与第二时间的积分和,得到本轮的第一换热能力参数值。由此能够快速预估出能力最优运行状态所对应的累计换热能力。
在一些实施方式中,根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段,包括:预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值;若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段;若在当前的压缩机运行频率下执行过优化开度运行阶段,则根据本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段。
其中,第二换热能力参数值能够体现优化开度运行阶段的平均换热能力。第二阈值是油量调节部件处于第二开度时的换热能力。
通过比较第二换热能力参数值与第二阈值,能够判断出优化开度运行阶段的平均换热能力与油量调节部件处于第二开度时的换热能力的高低。
通过比较本轮的第二换热能力参数值与上一轮的第二换热能力参数值,能够判断出本轮优化开度运行阶段的平均换热能力与上一轮优化开度运行阶段的平均换热能力的高低。
本实施方式能够保证若执行本轮优化开度运行阶段,空调的换热能力更高。
具体的,预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值,包括:计算本轮的第一换热能力参数值与第一阈值的和,记为第一值;计 算第一时间与第二时间的和,记为第二值;计算第一值与第二值的比值,得到本轮的第二换热能力参数值。
在一些实施方式中,根据本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,包括:比较本轮的第二换热能力参数值与第二阈值;若本轮的第二换热能力参数值小于第二阈值,则不执行本轮优化开度运行阶段;若本轮的第二换热能力参数值大于或等于第二阈值,则执行本轮优化开度运行阶段。本实施方式能够保证待执行的优化开度运行阶段的平均换热能力高于油量调节部件处于第二开度时的换热能力。
在一些实施方式中,根据本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段,包括:比较本轮的第二换热能力参数值与上一轮的第二换热能力参数值;若本轮的第二换热能力参数值小于上一轮的第二换热能力参数值,则不执行本轮优化开度运行阶段;若本轮的第二换热能力参数值大于或等于上一轮的第二换热能力参数值,则执行本轮优化开度运行阶段。本实施方式能够保证待执行的优化开度运行阶段的平均换热能力高于上一轮优化开度运行阶段的平均换热能力。
在一些实施方式中,根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定最优开度,包括:若在当前的压缩机运行频率下未执行过优化开度运行阶段,则确定第二开度作为最优开度;若在当前的压缩机运行频率下执行过优化开度运行阶段,则确定上一轮优化开度运行阶段中的开度作为最优开度。相应的,控制油量调节部件按照最优开度持续运行,包括:将油量调节部件调至第二开度持续运行,或者,控制油量调节部件循环执行上一轮优化开度运行阶段。本实施方式能够根据空调当前运行情况确定出保证空调换热能力和能效的最优开度。
如前所述,在一些实施方式中,空调的换热能力通过运行能力、运行能效或室内机出风温度来体现。在制热时,室内机出风温度越高,换热能力越高;在制冷时,室内机出风温度越低,换热能力越高。在一些实施方式中,预先设置制冷模式下室内机出风温度与换热能力的对应关系,在进行优化开度运行阶段的判断时,按照对应关系将当前的室内机出风温度转换成对应的换热能力,以计算得到相关参数,如第一换热能力参数值、第二换热能力参数值、第一阈值和第二阈值,使得判断流程对运行能力、运行能效和室内机出风温度均适用,从而保证判断流程的通用性。
在一些实施方式中,针对制冷模式下的室内机出风温度,单独设置对应的判断流 程,具体的,在制冷模式下,若本轮的累计出风温度大于出风温度的第一阈值,则不执行本轮优化开度运行阶段;若本轮的累计出风温度小于或等于出风温度的第一阈值,则根据本轮的平均出风温度以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段。若本轮的平均出风温度大于出风温度的第二阈值,则不执行本轮优化开度运行阶段;若本轮的平均出风温度小于或等于出风温度的第二阈值,则执行本轮优化开度运行阶段。若本轮的平均出风温度大于上一轮的平均出风温度,则不执行本轮优化开度运行阶段;若本轮的平均出风温度小于或等于上一轮的平均出风温度,则执行本轮优化开度运行阶段。
空调在运行过程中,回油量过大,虽然可保证压缩机的可靠运行,但是降低了空调运行能力和能效。回油过少,增大了压缩机缺油的风险。若从平衡压缩机排油量与压缩机回油量的角度出发,与过回油的控制相比,空调能力及能效均可得到改善,但是仍存在继续改善的空间。不同的压缩机运行频率、吸排气压力及吸排气温度条件下,压缩机的排油速率也不相同,刚启动时,油量调节部件的开度很大,稳定后,回油量已经达到最大值,即可靠油位。在达到可靠油位后,通过少回油控制来降低回油量,以保证冷媒充分参与到换热中,提高空调能力和能效。也就是说,存在一个由当前可靠油位降低至最小安全油位的区间,在此区间内,需要降低回油量,以使空调运行能力、能效达到最优。本实施例通过空调换热能力和压缩机运行可靠性双向控制,来对油量控制部件的开度进行寻优控制,既可达到空调能力、能效最优,又可确保压缩机的可靠运行。
应用本公开的技术方案,在当前的压缩机运行频率下,将油量调节部件调至第一开度持续运行第一时间,以使压缩机内部油位达到最大安全油位,保证可靠回油,使得压缩机充分润滑,避免压缩机缺油,从而确保压缩机的可靠性。然后将油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量,再根据空调换热能力确定最优开度,并控制油量调节部件按照最优开度持续运行,在压缩机排油量与压缩机回油量相平衡的基础上,对油量调节部件进行少回油的寻优控制,继续寻找具有更高能力、能效的最优开度,进一步提升可靠回油条件下的能力和能效,既可达到能力、能效最优,又可确保压缩机的可靠运行。在达到最大安全油位后,通过少回油控制来降低回油量,保证冷媒充分参与到换热中,提高空调能力和能效,充分利用了少回油阶段对能力的提升效果,兼顾了换热能力与可靠性的影响因素。
下面结合一个具体实施例对上述回油控制方法进行说明,然而值得注意的是,该 具体实施例仅是为了更好地说明本申请,并不构成对本申请的不当限定。与上述实施例相同或相应的术语解释,本实施例不再赘述。
如图2所示,为空调的示意图,空调包括:压缩机1、油分离器2、室外换热器3、节流部件4、室内换热器5和油量调节部件6。压缩机1排出高温高压气态冷媒时会携带部分润滑油,油分离器2将冷媒和油进行分离后,通过回油管路将分离出来的油送回至压缩机1,油分离器2与压缩机1吸气侧连接的管路称为回油管路,回油管路上设置油量调节部件6,通过改变油量调节部件6的开度,可以控制压缩机回油量。在一些实施方式中,油量调节部件6是电磁阀或电子膨胀阀等阀件。
回油控制就是对油量调节部件6的开度进行调节。本实施例中,油量调节部件的调节经过三个阶段:过回油开度运行阶段、回油稳定开度运行阶段和优化开度运行阶段。
在过回油开度运行阶段,根据空调当前运行情况确定对应的过回油开度δ0(即第一开度)和过回油时间Δtx(即第一时间),并将油量调节部件6调至过回油开度δ0持续运行Δtx时间,以使压缩机内部油位达到最大安全油位。其中,当油量调节部件6的开度为δ0时,压缩机排油量小于压缩机回油量。
具体的,根据预设参数获取对应的过回油开度δ0及过回油时间Δtx。其中,预设参数用于获取油量调节部件6的过回油开度δ0及其对应的过回油时间Δtx。预设参数包括:压缩机运行频率、吸气温度、排气温度、吸气压力和排气压力。在一些实施方式中,通过试验预先设置不同的预设参数与过回油开度δ0及该开度的持续运行时间Δtx的对应关系,并存储上述对应关系,例如以关系表的方式存储。针对不同的预设参数,其对应的δ0及Δtx能够保证油量调节部件6处于开度δ0运行Δtx时间后压缩机内部油位达到最大安全油位。在一些实施方式中,在实际应用中,获取当前的预设参数,然后从预先存储的对应关系(即第一预存信息)中读取与该当前的预设参数对应的δ0及Δtx
在回油稳定开度运行阶段,根据空调当前运行情况确定对应的回油稳定开度δx(即第二开度),并将油量调节部件6调至回油稳定开度δx。其中,δx<δ0,当油量调节部件6的开度为δx时,压缩机排油量与压缩机回油量相等。
具体的,通过第一计算模型和第二计算模型获取回油稳定开度δx。其中,第一计算模型和第二计算模型都是根据实验测试数据拟合的计算模型。第一计算模型用于获取空调当前运行状态下的压缩机排油量。第一计算模型的输入为压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力,输出为此条件下的压缩机排油量。第二计 算模型用于获取油量调节部件6的回油稳定开度δx,在该开度下,压缩机回油量在当前运行状态下与压缩机排油量相等。第二计算模型的输入为压缩机运行频率、润滑油温度以及第一计算模型得到的压缩机排油量,输出为此条件下的回油稳定开度δx。在实际应用中,获取当前的压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力,输入到第一计算模型,以得到对应的压缩机排油量,然后将压缩机运行频率、润滑油温度和该压缩机排油量输入到第二计算模型,以得到对应的回油稳定开度δx
优化开度运行阶段包括:能力最优运行状态和可靠最优运行状态。能力最优运行状态是指油量调节部件6调至优化开度δy且持续运行可靠回油时间Δty。可靠最优运行状态是指油量调节部件6调至过回油开度δ0且持续运行过回油时间Δtx。其中,δy<δx,当油量调节部件6的开度为δy时,压缩机排油量大于压缩机回油量。
在执行优化开度运行阶段时,根据在当前的压缩机运行频率下是否进行过优化开度调节来确定对应的优化开度δy,以及,根据空调当前运行情况确定对应的可靠回油时间Δty(即第二时间)。然后将油量调节部件6调至优化开度δy持续运行Δty时间,这段时间为优化开度运行阶段的能力最优运行状态。当完成能力最优运行状态后(即Δty时间到达),压缩机内部油位已降低至最小安全油位,因此,在执行下一轮优化开度运行阶段的判断之前,需要完成可靠最优运行状态,在可靠最优运行状态下,油量调节部件6处于过回油开度δ0持续运行Δtx时间。
在一些实施方式中,根据在当前的压缩机运行频率下是否进行过优化开度调节来确定对应的优化开度δy,包括:当在当前的压缩机运行频率下未进行过优化开度调节时,对δy赋予一个初始值,需要满足δy<δx。当在当前的压缩机运行频率下进行过优化开度调节时,在上一轮的优化开度δy-1的基础上继续减小得到δy,δy<δy-1<δx。例如,减少5PLS,如果上一轮的优化开度δy-1为45PLS,减少5PLS,那么本轮的优化开度δy为40PLS。
具体的,根据空调当前运行情况确定对应的可靠回油时间Δty,包括:根据指定参数获取优化开度δy对应的可靠回油时间Δty。Δty为油量调节部件6处于δy开度时的可持续时间,在此段时间内,压缩机内部油位不断减少至最小安全油位。Δty的大小与δy成正相关性,即δy越小,Δty越小。
其中,指定参数用于获取不同优化开度δy对应的可靠回油时间Δty。指定参数包括:压缩机排油量和油量调节部件6的当前开度(即本步骤中所确定的优化开度δy)。在一些实施方式中,通过试验预先设置不同的指定参数与可靠回油时间Δty的对应关系, 并存储上述对应关系,例如以关系表的方式存储。针对不同的指定参数,其对应的Δty能够保证油量调节部件6处于开度δy运行Δty时间后压缩机内部油位降到最小安全油位且不低于最小安全油位。在一些实施方式中,在实际应用中,获取当前的指定参数,然后从预先存储的对应关系(即第二预存信息)中读取与该当前的指定参数对应的Δty
此外,是否执行本轮优化开度运行阶段,需要进行首次判断与二次判断,下面以空调的运行能力为例进行说明。
首次判断为:获取油量调节部件6处于过回油开度δ0时的运行能力Q0,获取此开度对应的过回油时间Δtx,计算Q0与Δtx的积分和,记为第一阈值ΣQ0。获取油量调节部件6处于优化开度δy时的运行能力Qy,获取此开度对应的可靠回油时间Δty,计算Qy与Δty的积分和,记为本轮的第一换热能力参数值ΣQy。当ΣQy小于ΣQ0时,不执行本轮优化开度运行阶段;否则,进入二次判断。
二次判断分两种情形:
情形一,在当前的压缩机运行频率下未执行过优化开度运行阶段,具体为:获取油量调节部件6处于回油稳定开度δx时的运行能力Qx,记为第二阈值Qx。计算优化开度运行阶段的平均能力,即ΣQy、ΣQ0之和与Δty、Δtx之和的比值,记为本轮的第二换热能力参数值小于Qx时,不执行本轮优化开度运行阶段;否则,执行本轮优化开度运行阶段。
情形二,在当前的压缩机运行频率下执行过优化开度运行阶段,具体为:计算并记忆上一轮优化开度运行阶段中的第二换热能力参数值小于时,不执行本轮优化开度运行阶段;否则,执行本轮优化开度运行阶段。
如图3所示,以空调的运行能力为例,回油控制包括如下步骤:
S301,获取当前的压缩机运行频率。
S302,根据预设参数获取对应的过回油开度δ0及过回油时间Δtx,并将油量调节部件6调至过回油开度δ0持续运行Δtx时间。
S303,通过第一计算模型和第二计算模型获取回油稳定开度δx,并将油量调节部件6向小调至回油稳定开度δx。其中,δx<δ0
S304,确定本轮的优化开度δy,并将油量调节部件6调至优化开度δy
在一些实施方式中,当在当前的压缩机运行频率下未进行过优化开度调节时,对δy赋予一个初始值,需要满足δy<δx
在一些实施方式中,当在当前的压缩机运行频率下进行过优化开度调节时,在上 一轮的优化开度δy-1的基础上继续减小得到δy,δy<δy-1<δx。例如,减少5PLS,如果上一轮的优化开度δy-1为45PLS,减少5PLS,那么本轮的优化开度δy为40PLS。
根据指定参数获取优化开度δy对应的可靠回油时间Δty
S305,判断是否满足本轮的第一换热能力参数值小于第一阈值,若是,进入S306,若否,进入S309。
S306,不执行本轮优化开度运行阶段,并进入S307。
S307,判断在当前的压缩机运行频率下是否首次进行优化开度调节,若是,进入S308,若否,进入S316。
S308,将油量调节部件6调至回油稳定开度δx,并按此开度持续运行。
S309,判断在当前的压缩机运行频率下是否首次进行优化开度调节,若是,进入S310,若否,进入S312。
S310,判断是否满足本轮的第二换热能力参数值小于第二阈值,若是,进入S311,若否,进入S313。
S311,不执行本轮优化开度运行阶段,并进入S308。
S312,判断是否满足本轮的第二换热能力参数值小于上一轮的第二换热能力参数值,若是,进入S315,若否,进入S313。
S313,执行本轮优化开度运行阶段,然后进入S314。
具体的,优化开度运行阶段包括:能力最优运行状态和可靠最优运行状态。油量调节部件6处于优化开度δy持续运行Δty时间,这段时间为优化开度运行阶段的能力最优运行状态。当完成能力最优运行状态后(即Δty时间到达),压缩机内部油位已降低至最小安全油位,因此,在执行下一轮优化开度运行阶段的判断之前,需要完成可靠最优运行状态,在可靠最优运行状态下,油量调节部件6处于过回油开度δ0持续运行Δtx时间。
S314,进入下一轮优化开度运行阶段的判断,即返回S305确定下一轮的优化开度并继续判断。
S315,不执行本轮优化开度运行阶段,并进入S316。
S316,将油量调节部件6调至上一轮的优化开度,并按此优化开度持续运行上一轮优化开度运行阶段。
S3021,获取油量调节部件6处于过回油开度δ0时的运行能力Q0,计算Q0与Δtx的积分和,记为第一阈值ΣQ0
S3031,获取油量调节部件6处于回油稳定开度δx时的运行能力Qx,记为第二阈值Qx
S3041,获取油量调节部件6处于优化开度δy时的运行能力Qy,获取此开度对应的可靠回油时间Δty,计算Qy与Δty的积分和,记为本轮的第一换热能力参数值ΣQy。计算优化开度运行阶段的平均能力,即ΣQy、ΣQ0之和与Δty、Δtx之和的比值,记为本轮的第二换热能力参数值
在上述步骤S303将油量调节部件6向小调至回油稳定开度δx后,进入是否执行优化开度运行阶段的判断。在一些实施方式中,油量调节部件6向小调至回油稳定开度δx后,在回油稳定开度δx持续预定时间,将油量调节部件6向小调至优化开度δy,通过预定时间,保证能够获取油量调节部件6处于回油稳定开度δx时的稳定运行能力,便于后续计算,参与到优化开度运行阶段的判断中。例如,预定时间是3min。
如图4所示,首次优化开度运行阶段的判断结论为不执行时,将油量调节部件6返回至回油稳定开度δx并持续运行。
如图5所示,当首次优化开度运行阶段的判断结论为执行时,油量调节部件6按优化开度δy持续Δty时间,完成能力最优运行状态后,增大开度至δ0持续运行Δtx时间,完成可靠最优运行状态后,将油量调节部件6的开度降至δy+1,进入下一轮的优化开度运行阶段的判断。
如图6所示,在下一轮的优化开度运行阶段的判断中,当判断为不执行优化开度运行阶段时,油量调节部件6返回至上一轮的优化开度δy,并按上一轮的优化开度δy循环执行上一轮优化开度运行阶段。
如图7所示,在下一轮的优化开度运行阶段的判断中,当判断为执行优化开度运行阶段时,油量调节部件6按优化开度δy+1持续Δty+1时间,完成能力最优运行状态后,增大开度至δ0持续运行Δtx时间,完成可靠最优运行状态后,将油量调节部件6的开度降至δy+2,进入下一轮的优化开度运行阶段的判断。如此循环判断。
过回油开度运行阶段能够在空调启动时确保压缩机的可靠性,完成此阶段后,压缩机内部油位达到最大安全油位,同时获取到此状态下的换热能力,便于参与优化开度运行阶段的判断。然后进入到回油稳定开度运行阶段,主要是获取回油稳定开度下的换热能力,参与到优化开度运行阶段的判断。在优化开度运行阶段中,先经历能力最优运行状态,即通过优化开度使压缩机排油量大于压缩机回油量,此时空调的运行能力及能效达到最优状态,但同时压缩机内部油位将会降低至最小安全油位,因此, 需要进行可靠最优运行状态,此时压缩机排油量小于压缩机回油量,且可靠最优运行状态持续过程中的累计换热能力小于能效最优运行状态持续过程中的累计换热能力。优化开度运行阶段的平均换热能力高于上一轮优化开度运行阶段的平均能力,也高于回油稳定开度时的平均能力。
本实施例通过空调的换热能力与压缩机运行可靠性的双向控制,来调节油量调节部件的开度,在压缩机排油量与压缩机回油量相平衡的基础上,对油量调节部件进行少回油的寻优控制,继续寻找具有更高能力、能效的最优开度,进一步提升可靠回油条件下的能力和能效,既可达到能力、能效最优,又可确保压缩机的可靠运行。在达到最大安全油位后,通过少回油控制来降低回油量,保证冷媒充分参与到换热中,提高空调能力和能效,充分利用了少回油阶段对能力的提升效果,兼顾了换热能力与可靠性的影响因素。
基于同一公开构思,本公开的再一些实施例提供了一种回油控制装置,用于实现上述实施例所述的回油控制方法。在一些实施方式中,该回油控制装置通过软件、硬件、或者,软件和硬件实现,该回油控制装置一般可集成于空调的控制器中。
图8是本公开再一些实施例提供的回油控制装置的结构框图,如图8所示,该回油控制装置包括:
第一控制模块81,用于在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持所述第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;
第二控制模块82,用于将所述油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;
第三控制模块83,用于根据空调的换热能力确定最优开度,并控制所述油量调节部件按照所述最优开度持续运行。
在一些实施例中,上述回油控制装置还包括:
第一获取模块,用于在第一控制模块81将回油管路上的油量调节部件调至第一开度之前,获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
确定模块,用于根据第一预存信息确定与当前的预设参数对应的第一开度及第一时间,其中,当所述油量调节部件的开度为所述第一开度时,压缩机排油量小于压缩机回油量。
在一些实施例中,上述回油控制装置还包括:
第二获取模块,用于在第二控制模块82将所述油量调节部件降低至第二开度之前,获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
第一计算模块,用于根据当前的预设参数计算得到当前的压缩机排油量;
第二计算模块,用于根据当前的压缩机排油量、当前的压缩机运行频率和当前的润滑油温度,计算得到所述第二开度,其中,当所述油量调节部件的开度为所述第二开度时,压缩机排油量等于压缩机回油量,所述第二开度小于所述第一开度。
在一些实施例中,第三控制模块83包括:
判断单元,用于根据所述空调的换热能力,判断是否执行本轮优化开度运行阶段;
确定单元,用于若不执行,则根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定所述最优开度;
控制单元,用于若执行,则控制所述油量调节部件处于本轮的优化开度持续运行第二时间,以使压缩机内部油位减少至最小安全油位,完成能力最优运行状态;然后将所述油量调节部件调至所述第一开度且持续运行所述第一时间,以完成可靠最优运行状态;之后,继续根据所述空调的换热能力,判断是否执行下一轮优化开度运行阶段;
其中,当所述油量调节部件的开度为优化开度时,压缩机排油量大于压缩机回油量,所述优化开度小于所述第二开度。
在一些实施例中,判断单元包括:
确定子单元,用于确定所述本轮的优化开度及其对应的所述第二时间;
预估子单元,用于预估所述油量调节部件处于所述本轮的优化开度持续运行所述第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值;
比较子单元,用于比较所述本轮的第一换热能力参数值与第一阈值,其中,所述第一阈值是所述油量调节部件处于所述第一开度持续所述第一时间所对应的累计换热能力值;
控制子单元,用于若所述本轮的第一换热能力参数值小于所述第一阈值,则不执行本轮优化开度运行阶段;
判断子单元,用于若所述本轮的第一换热能力参数值大于或等于所述第一阈值,则根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运 行阶段,判断是否执行本轮优化开度运行阶段。
在一些实施例中,确定子单元具体用于:若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述第二开度确定所述本轮的优化开度,其中,所述本轮的优化开度小于所述第二开度;若在当前的压缩机运行频率下执行过优化开度运行阶段,则在上一轮的优化开度的基础上减小预设开度,得到所述本轮的优化开度。
在一些实施例中,确定子单元具体用于:根据第二预存信息确定与当前的压缩机排油量及所述本轮的优化开度对应的第二时间。
在一些实施例中,预估子单元具体用于:将所述油量调节部件调至所述本轮的优化开度;获取所述油量调节部件处于所述本轮的优化开度时的换热能力;计算所述换热能力与所述第二时间的积分和,得到所述本轮的第一换热能力参数值。
在一些实施例中,判断子单元具体用于:
预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值;
若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,其中,所述第二阈值是所述油量调节部件处于所述第二开度时的换热能力;
若在当前的压缩机运行频率下执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段。
在一些实施例中,判断子单元具体用于:计算所述本轮的第一换热能力参数值与所述第一阈值的和,记为第一值;计算所述第一时间与所述第二时间的和,记为第二值;计算所述第一值与所述第二值的比值,得到所述本轮的第二换热能力参数值。
在一些实施例中,判断子单元具体用于:比较所述本轮的第二换热能力参数值与所述第二阈值;若所述本轮的第二换热能力参数值小于所述第二阈值,则不执行本轮优化开度运行阶段;若所述本轮的第二换热能力参数值大于或等于所述第二阈值,则执行本轮优化开度运行阶段。
在一些实施例中,判断子单元具体用于:比较所述本轮的第二换热能力参数值与所述上一轮的第二换热能力参数值;若所述本轮的第二换热能力参数值小于所述上一轮的第二换热能力参数值,则不执行本轮优化开度运行阶段;若所述本轮的第二换热能力参数值大于或等于所述上一轮的第二换热能力参数值,则执行本轮优化开度运行阶段。
在一些实施例中,确定单元具体用于:若在当前的压缩机运行频率下未执行过优化开度运行阶段,则确定所述第二开度作为所述最优开度;若在当前的压缩机运行频率下执行过优化开度运行阶段,则确定上一轮优化开度运行阶段中的开度作为所述最优开度。
相应的,第三控制模块83具体用于:将所述油量调节部件调至所述第二开度持续运行,或者,控制所述油量调节部件循环执行上一轮优化开度运行阶段。
上述回油控制装置可执行本公开实施例所提供的回油控制方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本公开实施例提供的回油控制方法。
本公开的又一些实施例提供一种空调,包括:上述实施例所述的回油控制装置。
本公开的又一些实施例提供一种计算机设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述实施例所述方法的步骤。
本公开的还一些实施例提供一种非易失性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述实施例所述方法的步骤。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (19)

  1. 一种回油控制方法,包括:
    在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持所述第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;
    将所述油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;
    根据空调的换热能力确定最优开度,并控制所述油量调节部件按照所述最优开度持续运行。
  2. 根据权利要求1所述的方法,其中,在将回油管路上的油量调节部件调至第一开度之前,还包括:
    获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
    根据第一预存信息确定与当前的预设参数对应的第一开度及第一时间,其中,当所述油量调节部件的开度为所述第一开度时,压缩机排油量小于压缩机回油量。
  3. 根据权利要求1或2所述的方法,其中,在将所述油量调节部件降低至第二开度之前,还包括:
    获取当前的预设参数,其中,所述预设参数包括:压缩机运行频率、吸气温度、吸气压力、排气温度和排气压力;
    根据当前的预设参数计算得到当前的压缩机排油量;
    根据当前的压缩机排油量、当前的压缩机运行频率和当前的润滑油温度,计算得到所述第二开度,其中,当所述油量调节部件的开度为所述第二开度时,压缩机排油量等于压缩机回油量,所述第二开度小于所述第一开度。
  4. 根据权利要求1至3任一所述的方法,其中,根据空调的换热能力确定最优开度,包括:
    根据所述空调的换热能力,判断是否执行本轮优化开度运行阶段;
    若不执行,则根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定所述最优开度;
    若执行,则控制所述油量调节部件处于本轮的优化开度持续运行第二时间,以使压缩机内部油位减少至最小安全油位,完成能力最优运行状态;然后将所述油量调节部件调至所述第一开度且持续运行所述第一时间,以完成可靠最优运行状态;之后, 继续根据所述空调的换热能力,判断是否执行下一轮优化开度运行阶段;
    其中,当所述油量调节部件的开度为优化开度时,压缩机排油量大于压缩机回油量,所述优化开度小于所述第二开度。
  5. 根据权利要求4所述的方法,其中,根据所述空调的换热能力,判断是否执行本轮优化开度运行阶段,包括:
    确定所述本轮的优化开度及其对应的所述第二时间;
    预估所述油量调节部件处于所述本轮的优化开度持续运行所述第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值;
    比较所述本轮的第一换热能力参数值与第一阈值,其中,所述第一阈值是所述油量调节部件处于所述第一开度持续所述第一时间所对应的累计换热能力值;
    若所述本轮的第一换热能力参数值小于所述第一阈值,则不执行本轮优化开度运行阶段;
    若所述本轮的第一换热能力参数值大于或等于所述第一阈值,则根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段。
  6. 根据权利要求5所述的方法,其中,确定所述本轮的优化开度,包括:
    若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述第二开度确定所述本轮的优化开度,其中,所述本轮的优化开度小于所述第二开度;
    若在当前的压缩机运行频率下执行过优化开度运行阶段,则在上一轮的优化开度的基础上减小预设开度,得到所述本轮的优化开度。
  7. 根据权利要求5或6所述的方法,其中,确定所述本轮的优化开度对应的所述第二时间,包括:
    根据第二预存信息确定与当前的压缩机排油量及所述本轮的优化开度对应的第二时间。
  8. 根据权利要求5至7任一所述的方法,其中,预估所述油量调节部件处于所述本轮的优化开度持续运行所述第二时间所对应的累计换热能力值,记为本轮的第一换热能力参数值,包括:
    将所述油量调节部件调至所述本轮的优化开度;
    获取所述油量调节部件处于所述本轮的优化开度时的换热能力;
    计算所述换热能力与所述第二时间的积分和,得到所述本轮的第一换热能力参数 值。
  9. 根据权利要求5至8任一所述的方法,其中,根据第二换热能力参数值以及在当前的压缩机运行频率下是否执行过优化开度运行阶段,判断是否执行本轮优化开度运行阶段,包括:
    预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值;
    若在当前的压缩机运行频率下未执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,其中,所述第二阈值是所述油量调节部件处于所述第二开度时的换热能力;
    若在当前的压缩机运行频率下执行过优化开度运行阶段,则根据所述本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段。
  10. 根据权利要求9所述的方法,其中,预估本轮优化开度运行阶段的平均换热能力值,作为本轮的第二换热能力参数值,包括:
    计算所述本轮的第一换热能力参数值与所述第一阈值的和,记为第一值;
    计算所述第一时间与所述第二时间的和,记为第二值;
    计算所述第一值与所述第二值的比值,得到所述本轮的第二换热能力参数值。
  11. 根据权利要求9或10所述的方法,其中,根据所述本轮的第二换热能力参数值与第二阈值,判断是否执行本轮优化开度运行阶段,包括:
    比较所述本轮的第二换热能力参数值与所述第二阈值;
    若所述本轮的第二换热能力参数值小于所述第二阈值,则不执行本轮优化开度运行阶段;
    若所述本轮的第二换热能力参数值大于或等于所述第二阈值,则执行本轮优化开度运行阶段。
  12. 根据权利要求9至11任一所述的方法,其中,根据所述本轮的第二换热能力参数值与上一轮的第二换热能力参数值,判断是否执行本轮优化开度运行阶段,包括:
    比较所述本轮的第二换热能力参数值与所述上一轮的第二换热能力参数值;
    若所述本轮的第二换热能力参数值小于所述上一轮的第二换热能力参数值,则不执行本轮优化开度运行阶段;
    若所述本轮的第二换热能力参数值大于或等于所述上一轮的第二换热能力参数值,则执行本轮优化开度运行阶段。
  13. 根据权利要求1至12任一所述的方法,其中,所述控制所述油量调节部件按照所述最优开度持续运行包括:
    在所述最优开度等于第二开度的情况下,将所述油量调节部件调至所述第二开度持续运行;
    在所述最优开度小于第二开度的情况下,控制所述油量调节部件按照所述最优开度持续运行第二时间,以使压缩机内部油位减少至最小安全油位,然后将所述油量调节部件调至所述第一开度且持续运行所述第一时间。
  14. 根据权利要求4至12任一所述的方法,其中,根据在当前的压缩机运行频率下是否执行过优化开度运行阶段来确定所述最优开度,包括:
    若在当前的压缩机运行频率下未执行过优化开度运行阶段,则确定所述第二开度作为所述最优开度;
    若在当前的压缩机运行频率下执行过优化开度运行阶段,则确定上一轮优化开度运行阶段中的开度作为所述最优开度;
    相应的,控制所述油量调节部件按照所述最优开度持续运行,包括:将所述油量调节部件调至所述第二开度持续运行,或者,控制所述油量调节部件循环执行上一轮优化开度运行阶段。
  15. 一种回油控制装置,包括:
    第一控制模块,用于在当前的压缩机运行频率下,将回油管路上的油量调节部件调至第一开度,且维持所述第一开度运行第一时间,以使压缩机内部油位达到最大安全油位;
    第二控制模块,用于将所述油量调节部件降低至第二开度,以使压缩机排油量等于压缩机回油量;
    第三控制模块,用于根据空调的换热能力确定最优开度,并控制所述油量调节部件按照所述最优开度持续运行。
  16. 一种空调,包括:权利要求15所述的回油控制装置。
  17. 一种计算机设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至14中任一项所述方法的步骤。
  18. 一种非易失性计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至14中任一项所述方法的步骤。
  19. 一种计算机程序,包括:
    指令,所述指令当由处理器执行时使所述处理器执行根据权利要求1-14中任一项所述的回油控制方法。
PCT/CN2023/088752 2022-07-07 2023-04-17 一种回油控制方法、装置及空调 WO2024007676A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210795118.2A CN115200264B (zh) 2022-07-07 2022-07-07 一种回油控制方法、装置及空调
CN202210795118.2 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024007676A1 true WO2024007676A1 (zh) 2024-01-11

Family

ID=83579633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088752 WO2024007676A1 (zh) 2022-07-07 2023-04-17 一种回油控制方法、装置及空调

Country Status (2)

Country Link
CN (1) CN115200264B (zh)
WO (1) WO2024007676A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200264B (zh) * 2022-07-07 2023-10-10 珠海格力电器股份有限公司 一种回油控制方法、装置及空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282524A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置
CN109612160A (zh) * 2018-12-11 2019-04-12 宁波奥克斯电气股份有限公司 一种回油控制方法、装置及空调器
CN111426040A (zh) * 2020-04-03 2020-07-17 广东美的暖通设备有限公司 空调设备、空调设备的运行控制方法和可读存储介质
CN113639478A (zh) * 2021-08-23 2021-11-12 宁波奥克斯电气股份有限公司 一种多联机的油平衡控制方法和多联机
CN115200264A (zh) * 2022-07-07 2022-10-18 珠海格力电器股份有限公司 一种回油控制方法、装置及空调

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02150667A (ja) * 1988-11-30 1990-06-08 Hitachi Ltd 冷凍装置
CN108375256B (zh) * 2018-01-16 2019-08-20 珠海格力电器股份有限公司 空调自动回油控制方法及装置
CN108759174B (zh) * 2018-06-13 2020-01-07 广东美的暖通设备有限公司 多联机系统及多联机系统的回油控制方法、装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282524A (zh) * 2018-09-11 2019-01-29 青岛海信日立空调系统有限公司 一种压缩机回油的控制方法及装置
CN109612160A (zh) * 2018-12-11 2019-04-12 宁波奥克斯电气股份有限公司 一种回油控制方法、装置及空调器
CN111426040A (zh) * 2020-04-03 2020-07-17 广东美的暖通设备有限公司 空调设备、空调设备的运行控制方法和可读存储介质
CN113639478A (zh) * 2021-08-23 2021-11-12 宁波奥克斯电气股份有限公司 一种多联机的油平衡控制方法和多联机
CN115200264A (zh) * 2022-07-07 2022-10-18 珠海格力电器股份有限公司 一种回油控制方法、装置及空调

Also Published As

Publication number Publication date
CN115200264B (zh) 2023-10-10
CN115200264A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN111637611B (zh) 一种冷水机组控制方法、装置、存储介质及冷水机组
WO2020000928A1 (zh) 变频空调器及其控制方法、控制装置
WO2024007676A1 (zh) 一种回油控制方法、装置及空调
CN110686390B (zh) 一种变频器防止主板凝露的控制方法、系统及空调
CN107642879B (zh) 一种空调系统的控制方法、装置及空调器
CN113639478B (zh) 一种多联机的油平衡控制方法和多联机
CN113432348B (zh) 一种冷媒循环量调节装置、方法及空调系统
CN107894045B (zh) 空调系统的节流控制方法、装置与空调器
CN110595123A (zh) 一种空气源变频热泵系统中的电子膨胀阀的控制方法
JPH05322335A (ja) 自動冷却停止シーケンス
CN112146260A (zh) 用于空调防凝露的方法、装置和空调
WO2023184931A1 (zh) 多联机空调系统控制方法及多联机空调系统
WO2021208523A1 (zh) 制冷模式下空调系统的压缩机回油控制方法
CN113503620A (zh) 空调系统控制方法、装置、存储介质及空调系统
WO2024082771A1 (zh) 多联机回油控制方法、装置、电子设备及多联机系统
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
CN108692425B (zh) 空调器除霜控制方法
CN113959111B (zh) 热泵系统及用于控制热泵系统的方法、装置
CN113932376B (zh) 温度调节机组控制方法、装置及温度调节机组设备
CN114427699A (zh) 多联机系统及其回油控制方法
CN114206071A (zh) 基于双曲线冷却塔的数据中心冷却系统
CN107940691B (zh) 一种空调系统的控制方法、装置及空调器
CN117450623B (zh) 压缩机频率控制方法及空调机组
CN117387253B (zh) 一种机组回油控制方法、装置及冷水机组
CN111271819B (zh) 一种多联机系统可靠性的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834457

Country of ref document: EP

Kind code of ref document: A1