WO2024012144A1 - 多联机系统的控制方法、装置、多联机系统和存储介质 - Google Patents

多联机系统的控制方法、装置、多联机系统和存储介质 Download PDF

Info

Publication number
WO2024012144A1
WO2024012144A1 PCT/CN2023/100478 CN2023100478W WO2024012144A1 WO 2024012144 A1 WO2024012144 A1 WO 2024012144A1 CN 2023100478 W CN2023100478 W CN 2023100478W WO 2024012144 A1 WO2024012144 A1 WO 2024012144A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle valve
control
temperature
preset
opening
Prior art date
Application number
PCT/CN2023/100478
Other languages
English (en)
French (fr)
Inventor
梁科琳
陈磊
许永锋
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024012144A1 publication Critical patent/WO2024012144A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to a control method, device, multi-connection system and storage medium of a multi-connection system.
  • This application aims to at least partially solve one of the technical problems existing in the prior art. To this end, this application proposes a control method, device, multi-line system and storage medium for a multi-line system, which can quickly establish the exhaust superheat and help improve the operational reliability of the multi-line system.
  • some embodiments of the present application provide a control method for a multi-connection system.
  • the multi-connection system includes at least one outdoor unit and at least one indoor unit.
  • the outdoor unit is connected to the indoor unit.
  • the outdoor unit is connected to the indoor unit.
  • the machine includes a first throttle valve, the indoor unit includes a second throttle valve, and the control method includes:
  • the target control signal includes a refrigeration start signal and a refrigeration oil return end signal
  • the target evaporation temperature, the first throttle valve and the second throttle valve are controlled in a coordinated manner according to the exhaust gas superheat degree.
  • the control method of the multi-online system has at least the following beneficial effects: when receiving the target control signal, the multi-online system is controlled by PI.
  • the preset target evaporation temperature is Control the target to meet the normal cooling demand.
  • the exhaust superheat can reflect the operation of the multi-split system under the current state.
  • the target evaporation temperature and the first throttle valve Linkage control with the second throttle valve can enable the multi-split system to maintain an appropriate exhaust superheat after the refrigeration is started or after the refrigeration oil return is completed, achieving the goal of quickly establishing the exhaust superheat, which is beneficial to improve Operational reliability of multi-line systems.
  • the linkage control of the target evaporation temperature, the first throttle valve and the second throttle valve according to the exhaust gas superheat includes:
  • the first preset condition includes at least one of the following:
  • the duration for which the exhaust superheat degree is less than the first preset temperature is greater than the second preset time period
  • the duration for which the exhaust superheat degree is less than the second preset temperature is greater than the third preset time period
  • the second preset temperature is smaller than the first preset temperature.
  • the target evaporation temperature is lowered. Since the multi-line system uses the target evaporation during the PI control process Temperature is the control target, and the operating frequency of the compressor can be adaptively increased to quickly increase the exhaust superheat. In addition, by synchronously reducing the opening of the first throttle valve and the second throttle valve, the condensation temperature can be changed. When condensation As the temperature rises, the exhaust temperature will also rise accordingly, so that the exhaust superheat can rise rapidly, which can shorten the liquid return time of the compressor and help solve the problem of reduced oil concentration.
  • reducing the target evaporation temperature and reducing the openings of the first throttle valve and the second throttle valve include:
  • the target evaporation temperature is reduced from the first set value to the second set value, the opening of the first throttle valve is reduced from the first opening to the second opening, and the third opening is reduced.
  • the opening degree of the two throttle valves is reduced from the third opening degree to the fourth opening degree, so that the multi-connection system operates in the first state.
  • the exhaust superheat meets the first preset condition, it means that the exhaust superheat is insufficient at this time, and the exhaust superheat needs to be increased to ensure the operational reliability of the compressor, and the target evaporation temperature is reduced from the first set value. to the second set value, that is, lowering the target evaporation temperature, thereby increasing the operating frequency of the compressor, reducing the opening of the first throttle valve from the first opening to the second opening, and reducing the second throttle valve to the second set value.
  • the opening of the valve is reduced from the third opening to the fourth opening, that is, the opening of the first throttle valve and the second throttle valve is reduced, thereby quickly increasing the exhaust superheat and ensuring the operation of the multi-line system. reliability. It can be understood that when the multi-split system operates at the second setting value, the second opening of the first throttle valve and the fourth opening of the second throttle valve, it means that the multi-spring system is operating in the first state.
  • control method of the above-mentioned multi-online system also includes:
  • the system exits the first state and re-enters the PI control.
  • the multi-connection system When the multi-connection system is running in the first state, it is judged every fourth preset time whether the exhaust superheat is greater than the first preset temperature. If the exhaust superheat is greater than the first preset time for a duration greater than the second preset time , indicating that the current exhaust superheat has met the demand, then exit the first state and re-enter PI control, that is, the normal control of the multi-online system is restored. control logic to ensure normal working status.
  • the exhaust gas superheat continues to be reduced.
  • the target evaporation temperature is determined and the openings of the first throttle valve and the second throttle valve are reduced.
  • the exhaust superheat is still not there. If the requirements are met, continue to reduce the target evaporation temperature and continue to reduce the openings of the first throttle valve and the second throttle valve, so that the set value of the target evaporation temperature becomes smaller, and the first throttle valve and the second throttle valve The opening of the flow valve becomes smaller, so that the exhaust superheat can be quickly increased.
  • continuing to lower the target evaporation temperature and reducing the openings of the first throttle valve and the second throttle valve includes:
  • the target evaporation temperature is reduced from the second set value to the third set value, The target evaporation temperature is further lowered while simultaneously reducing the opening degree of the first throttle valve from the second opening degree to the fifth opening degree and the opening degree of the second throttle valve from the fourth opening degree to the sixth opening degree. , that is, further reducing the openings of the first throttle valve and the second throttle valve, thereby quickly increasing the exhaust superheat. It can be understood that when the multi-connection system operates at the third setting value, the fifth opening degree of the first throttle valve and the sixth opening degree of the second throttle valve, it means that the multi-connection system is operating in the second state.
  • control method of the above-mentioned multi-online system also includes:
  • the second preset condition includes at least one of the following:
  • the multi-connection system continues to operate in the second state for a sixth preset time period and the exhaust superheat degree is greater than the first preset temperature for a duration longer than a second preset time period;
  • the duration for which the exhaust gas superheat degree is greater than the third preset temperature is greater than the second preset duration
  • the third preset temperature is greater than the first preset temperature.
  • the exhaust superheat is detected every fourth preset time.
  • the second preset condition it means that the current exhaust superheat has met the demand, and then the system exits.
  • re-enter PI control that is, restore the normal control logic of the multi-online system to ensure normal working status.
  • the outdoor unit also includes a compressor, an outdoor heat exchanger, a subcooling heat exchange device, a subcooling regulating valve and a solenoid valve.
  • the high-pressure side of the compressor passes through the outdoor unit in sequence.
  • the heat exchanger, the first throttle valve, and the subcooling heat exchange device are connected to the indoor unit, and the subcooling regulating valve is connected to the subcooling heat exchange device and the solenoid valve in sequence.
  • the control method also includes:
  • the opening of the subcooling regulating valve is increased and the solenoid valve is opened.
  • the first throttle valve and the second throttle valve since the exhaust temperature will continue to rise, by continuously detecting the exhaust temperature, when the exhaust temperature is greater than the fourth
  • the preset temperature indicates that the current exhaust temperature has risen to a protection limit value. If it is higher than the protection limit value, it will affect the reliability of the compressor operation. Then increase the opening of the subcooling regulating valve and open the solenoid valve, so that the Part of the refrigerant can flow back to the low-pressure side of the compressor through the bypass circuit, which can quickly reduce the exhaust temperature and ensure the reliability of the multi-split system operation.
  • control method of the multi-connection system after increasing the opening of the subcooling regulating valve and opening the solenoid valve, the control method further includes:
  • the exhaust temperature can gradually decrease.
  • the opening of the subcooling regulating valve is reduced.
  • the original opening that is, restoring the original opening, by restoring the original refrigeration control logic, the normal refrigeration effect can be guaranteed.
  • some embodiments of the present application provide an operation control device, including at least one control processor and a memory for communicative connection with the at least one control processor; the memory stores information that can be used by the at least one control processor. Instructions executed by the control processor, the instructions are executed by the at least one control processor, so that the at least one control processor can execute the control method as described in the above embodiment of the first aspect.
  • the operation control device provided according to some embodiments of the present application has at least the following beneficial effects: when receiving the target control signal, the multi-online system is controlled by PI, and the preset target evaporation temperature is used as the control target during the PI control process. To meet normal refrigeration needs, by obtaining the exhaust superheat of the outdoor unit, the exhaust superheat can reflect the operation of the multi-split system under the current state.
  • the target evaporation temperature, the first throttle valve and the second Linkage control of the throttle valve can enable the multi-split system to maintain an appropriate exhaust superheat after the refrigeration is started or after the refrigeration oil return is completed, achieving the goal of quickly establishing the exhaust superheat, which is conducive to improving the multi-split system operational reliability.
  • some embodiments of the present application provide a multi-connection system, including the operation control device described in the above embodiment of the second aspect.
  • the multi-online system provided according to some embodiments of the present application at least has the following beneficial effects: when receiving the target control signal, the multi-online system is controlled by PI, and the preset target evaporation temperature is used as the control target during the PI control process. To meet normal refrigeration needs, by obtaining the exhaust superheat of the outdoor unit, the exhaust superheat can reflect the operation of the multi-split system under the current state.
  • the target evaporation temperature, the first throttle valve and the second Linkage control of the throttle valve can enable the multi-split system to maintain an appropriate exhaust superheat after the refrigeration is started or after the refrigeration oil return is completed, achieving the goal of quickly establishing the exhaust superheat, which is conducive to improving the multi-split system operational reliability.
  • some embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions.
  • the computer-executable instructions are used to cause a computer to execute the above embodiments of the first aspect. The control method described.
  • the computer-readable storage medium provided according to some embodiments of the present application has at least the following beneficial effects: when receiving a target control signal, the multi-online system is controlled by PI, and the preset target evaporation temperature is used as the control during the PI control process.
  • the target is to meet the normal refrigeration demand.
  • the exhaust superheat can reflect the operation of the multi-split system under the current state.
  • the target evaporation temperature, first throttle valve and The linkage control of the second throttle valve can enable the multi-split system to maintain an appropriate exhaust superheat after the refrigeration is started or after the refrigeration oil return is completed, achieving the goal of quickly establishing the exhaust superheat, which is conducive to improving many Operational reliability of online systems.
  • Figure 1 is a schematic structural diagram of a multi-connection system provided by some embodiments of the present application.
  • Figure 2 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application
  • Figure 3 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 4 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 5 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 6 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 7 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 8 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 9 is a flow chart of a control method for a multi-online system provided by some embodiments of the present application.
  • Figure 10 is a flow chart of a control method for a multi-connection system provided by some embodiments of the present application.
  • Figure 11 is an overall flow chart of a control method for a multi-connection system provided by some embodiments of the present application.
  • Figure 12 is a schematic structural diagram of an operation control device provided by some embodiments of the present application.
  • connection/connection should be understood in a broad sense.
  • it can be a fixed connection or a movable connection, a detachable connection or a non-detachable connection, or an integral connection; it can be Mechanical connection can also be electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium.
  • control method, device, multi-connection system and storage medium of the multi-connection system provided by some embodiments of the present application can quickly establish the exhaust superheat, which is beneficial to improving the operational reliability of the multi-connection system.
  • the multi-connection system in some embodiments of the present application includes at least one outdoor unit 100 and at least one indoor unit 200.
  • the outdoor unit 100 is connected to the indoor unit 200.
  • Figure 1 shows that it includes an A schematic structural diagram of a multi-connection system of an outdoor unit 100 and an indoor unit 200, but is not limited to this.
  • the outdoor unit 100 includes a compressor 110, an oil separator 120, a four-way valve 130, an outdoor heat exchanger 140, a first Throttle valve EEVA1 and subcooling heat exchange device 150 and vapor-liquid separator 160.
  • the indoor unit 200 includes an indoor heat exchanger and a second throttle valve.
  • the refrigerant discharged from the high-pressure side of the compressor 110 flows through After the oil separator 120 and the four-way valve 130, it undergoes liquefaction and heat release through the outdoor heat exchanger 140, and then is throttled by the first throttle valve EEVA1.
  • the refrigerant flow passes through the cold heat exchange device 150 for heat dissipation and then flows indoors through the liquid side pipe.
  • the machine 200 is throttled by the second throttle valve and absorbs heat and evaporates through the indoor heat exchanger to achieve the cooling effect.
  • the refrigerant after absorbing heat and evaporating through the indoor heat exchanger returns to the low pressure of the compressor 110 through the steam side pipe. side, and so on.
  • multi-online system shown in Figure 1 does not limit the embodiments of the present application, and may include more or less components than shown, or combine certain components, or use different component layout.
  • the first embodiment of the present application provides a control method for the multi-connection system, including but not limited to steps S110 to step S140:
  • Step S110 Receive a target control signal, where the target control signal includes a refrigeration start signal and a refrigeration oil return end signal;
  • the exhaust superheat of the compressor is low in the early stage of startup and after the oil return is completed, especially when only the minimum load internal unit is turned on, startup or oil return
  • the exhaust superheat cannot be quickly established after the end, that is, the exhaust superheat is low, causing the compressor return air to be filled with liquid for a long time, which cannot meet the reliability operation requirements of the compressor.
  • the target control signal includes the refrigeration start signal or the end of refrigeration oil return. signal, fully considering the possibility of insufficient exhaust superheat.
  • the refrigeration start signal can be triggered by the user.
  • the user instructs the multi-split system to start refrigeration through the remote control.
  • the refrigeration oil return end signal can be triggered when the multi-split system reaches the preset operating conditions, for example, the multi-spring system is turned on for a period of time. Then the oil return process will be started, and the oil return The process will end after continuing for a period of time, and then the refrigeration oil return end signal will be output.
  • Step S120 Perform PI control on the multi-connection system with the preset target evaporation temperature as the control target;
  • the multi-online system When receiving the target control signal, the multi-online system enters proportional and integral (Proportion Integra l, PI) control, that is, it enters the preset logical control process.
  • PI Proportion Integra l
  • the multi-online system is controlled by the target evaporation temperature.
  • the target is continuously running.
  • the actual evaporation temperature of the indoor unit can reach the target evaporation temperature. For example, the frequency increase or decrease of the compressor is adjusted according to the target evaporation temperature to ensure normal cooling effect.
  • the set value of the target evaporation temperature is set according to actual needs.
  • the initial set value can be set relatively small.
  • the temperature is 6°C, which allows the compressor to keep increasing the frequency and quickly establish the exhaust superheat.
  • Step S130 Obtain the exhaust superheat of the outdoor unit
  • the exhaust superheat of the outdoor unit can be calculated based on the exhaust temperature and exhaust pressure of the compressor.
  • the exhaust superheat is the difference between the exhaust temperature of the compressor and the saturation temperature corresponding to the exhaust pressure.
  • the exhaust of the compressor The temperature is the temperature of the high-temperature and high-pressure gaseous refrigerant discharged from the exhaust port of the compressor.
  • the exhaust temperature is measured by a temperature sensor installed near the exhaust port of the compressor.
  • the exhaust pressure of the compressor is the temperature of the gaseous refrigerant discharged from the exhaust port of the compressor.
  • This pressure value can be determined by the high-pressure sensor in the refrigerant pipeline between the exhaust port of the compressor and the four-way valve. After the exhaust temperature and exhaust pressure are detected, the saturation temperature corresponding to the current exhaust pressure can be found according to the preset saturation temperature comparison table, thereby calculating the exhaust superheat.
  • the multi-online system is equipped with multiple parallel outdoor units, the exhaust superheat of all outdoor units is obtained, and the minimum exhaust superheat is selected as the control basis to ensure the reliable operation of the multi-online system.
  • Step S140 Perform linkage control on the target evaporation temperature, the first throttle valve and the second throttle valve according to the exhaust gas superheat degree.
  • the target evaporation temperature, the first throttle valve of the outdoor unit and the second throttle valve of the indoor unit are jointly controlled so that the exhaust superheat can reach the target requirement.
  • the target evaporation temperature setting can be appropriately adjusted according to the current exhaust superheat. setting value, and adjust the opening of the first throttle valve and the second throttle valve.
  • the control method of the multi-connection system when receiving the target control signal, performs PI control on the multi-connection system.
  • the preset target evaporation temperature is used as the control target to meet the normal refrigeration requirements.
  • the exhaust superheat can reflect the operation of the multi-online system under the current state.
  • the target evaporation temperature, the first throttle valve and the second throttle valve are adjusted.
  • Linkage control can enable the multi-line system to maintain an appropriate exhaust superheat after the refrigeration is started or after the refrigeration oil return is completed, achieving the goal of quickly establishing the exhaust superheat, which is conducive to improving the operational reliability of the multi-line system.
  • the multi-split system can adaptively adjust the operating frequency of the compressor, thereby effectively increasing the exhaust superheat of the outdoor unit. At the same time, it will not affect the normal refrigeration demand.
  • the frequency of changes in the exhaust superheat can be increased, thereby quickly reaching the target superheat.
  • step S140 the target evaporation temperature, the first throttle valve and the second throttle valve are controlled in a coordinated manner according to the exhaust superheat degree, including but not limited to step S210 :
  • Step S210 When the exhaust superheat meets the first preset condition, reduce the target evaporation temperature and reduce the openings of the first throttle valve and the second throttle valve;
  • the first preset condition includes at least one of the following:
  • the duration for which the exhaust superheat degree is less than the first preset temperature is greater than the second preset time period
  • the duration for which the exhaust superheat degree is less than the second preset temperature is greater than the third preset time period
  • the second preset temperature is lower than the first preset temperature.
  • the target evaporation temperature is lowered. Since the multi-line system uses the target evaporation during the PI control process Temperature is the control target, and the operating frequency of the compressor can be adaptively increased to quickly increase the exhaust superheat. In addition, by synchronously reducing the opening of the first throttle valve and the second throttle valve, the condensation temperature can be changed. When condensation As the temperature rises, the exhaust temperature will also rise accordingly, so that the exhaust superheat can rise rapidly, which can shorten the liquid return time of the compressor and help solve the problem of reduced oil concentration.
  • the multi-line system when it receives the refrigeration start signal or the refrigeration oil return end signal, it performs PI control on the multi-line system and starts timing. If within the first preset time of entering PI control, the exhaust superheat degree If the duration less than the first preset temperature is greater than the second preset time, the target evaporation temperature will be lowered and the openings of the first throttle valve and the second throttle valve will be reduced to ensure that the Quickly increase the exhaust superheat. In addition, during the cooling process, if the exhaust superheat is lower than the second preset temperature for longer than the third preset time, it means that the current exhaust superheat is very low, and the target is directly reduced. The evaporation temperature and reducing the opening of the first throttle valve and the second throttle valve ensure the operational reliability of the multi-line system during the entire PI control process.
  • the existing technology has deficiencies in the control measures taken when the exhaust superheat is too low, such as reducing the outdoor fan speed to increase the condensing temperature.
  • This measure will affect the user's comfort, or using intermittent shutdown protection. , this will cause the indoor temperature to fluctuate greatly, affecting the user's use experience, or fix the frequency of the compressor and limit the capacity of the internal unit.
  • the fixed frequency will consume high energy, and limiting the capacity will reduce the user's satisfaction, which is different from the existing Technical control measures, in some embodiments of the present application, when the multi-line system is in the PI control process, the target evaporation temperature is used as the control target, and the operating frequency of the compressor can be adaptively adjusted according to the target evaporation temperature, that is, there is a frequency increase process.
  • the compressor When the exhaust superheat is low in the early stage of startup or after the oil return is completed, if the target evaporation temperature is lowered, the compressor will increase the frequency. Under the high frequency state, the appropriate exhaust superheat can be quickly established. At the same time, A certain cooling capacity is guaranteed to meet the user's comfort requirements. In addition, if the actual evaporation temperature of the indoor unit reaches the target evaporation temperature, the operating frequency of the compressor remains at the current state or is appropriately reduced to avoid excessive cooling of the compressor and increased energy consumption.
  • the operating frequency of the compressor in some embodiments of the present application changes dynamically according to the target evaporation temperature, and the control process is more reasonable, which can effectively solve the problem of insufficient exhaust superheat after starting up or after the oil return is completed, and at the same time ensure Good user experience.
  • some embodiments of the present application reduce the first throttle valve and the second throttle valve simultaneously.
  • the opening of the throttle valve can increase the condensing temperature, allowing the liquid refrigerant in the outdoor heat exchanger to be recovered as quickly as possible, reducing the return air from the compressor with liquid.
  • the exhaust temperature will rise.
  • the opening of the valve and the second throttle valve can accelerate the rising rate of exhaust superheat and achieve the goal of quickly establishing exhaust superheat.
  • step S210 the target evaporation temperature is reduced and the openings of the first throttle valve and the second throttle valve are reduced, including but not limited to step S310:
  • Step S310 Reduce the target evaporation temperature from the first set value to the second set value, reduce the opening degree of the first throttle valve from the first opening degree to the second opening degree, and adjust the second throttle valve opening.
  • the opening degree of the valve is reduced from the third opening degree to the fourth opening degree, so that the multi-connection system operates in the first state.
  • the second set value is smaller than the first set value
  • the second opening degree is smaller than the first opening degree
  • the fourth opening degree is smaller than the third opening degree
  • the exhaust superheat meets the first preset condition, it means that the exhaust superheat is insufficient at this time, and the exhaust superheat needs to be increased to ensure the operational reliability of the compressor, and the target evaporation temperature is reduced from the first set value. to the second set value, that is, lowering the target evaporation temperature, thereby increasing the operating frequency of the compressor, reducing the opening of the first throttle valve from the first opening to the second opening, and reducing the second throttle valve to the second set value.
  • the opening of the valve is reduced from the third opening to the fourth opening, that is, the opening of the first throttle valve and the second throttle valve is reduced, thereby quickly increasing the exhaust superheat and ensuring the operation of the multi-line system. reliability. It can be understood that when the multi-connection system operates at the second setting value, the second opening of the first throttle valve and the fourth opening of the second throttle valve, it means that the multi-connection system is operating in the first state.
  • the first set value is the initial value of the target evaporation temperature when the multi-online system has just entered PI control. After receiving the target control signal, the multi-online system is subject to PI control with the first set value as the control target.
  • the degree is the current opening degree of the first throttle valve
  • the third opening degree is the current opening degree of the second throttle valve
  • the second opening degree can be within the preset opening range of the first throttle valve in normal operation.
  • the fourth opening degree may be the minimum opening degree within the preset opening range of the second throttle valve in normal operation.
  • control method of the multi-connection system also includes but is not limited to step S410 and step S420:
  • Step S410 When the multi-connection system is running in the first state, determine whether the exhaust superheat is greater than the first preset temperature every fourth preset time period;
  • Step S420 When the exhaust superheat degree is greater than the first preset temperature for longer than the second preset time period, exit the first state and re-enter PI control.
  • the multi-connection system When the multi-connection system is running in the first state, it is judged every fourth preset time whether the exhaust superheat is greater than the first preset temperature. If the exhaust superheat is greater than the first preset time for a duration greater than the second preset time , indicating that the current exhaust superheat has met the demand, then exit the first state and re-enter PI control, that is, the normal control logic of the multi-online system is restored to ensure normal working status.
  • the exhaust The gas superheat rises rapidly.
  • the target evaporation temperature will adapt changes to ensure normal cooling needs.
  • Step S510 When the exhaust superheat degree is less than the second preset temperature, continue to reduce the target evaporation temperature and reduce the opening degrees of the first throttle valve and the second throttle valve.
  • the exhaust superheat is still not there. If the requirements are met, continue to reduce the target evaporation temperature and continue to reduce the openings of the first throttle valve and the second throttle valve, so that the set value of the target evaporation temperature becomes smaller, and the first throttle valve and the second throttle valve The opening of the flow valve becomes smaller, so that the exhaust superheat can be quickly increased.
  • step S510 the target evaporation temperature is continued to be reduced and the openings of the first throttle valve and the second throttle valve are reduced, including but not limited to step S610:
  • Step S610 Reduce the target evaporation temperature from the second set value to the third set value, reduce the opening degree of the first throttle valve from the second opening degree to the fifth opening degree, and adjust the second throttle valve opening.
  • the opening degree of the valve is reduced from the fourth opening degree to the sixth opening degree, so that the multi-connection system operates in the second state.
  • the third set value is smaller than the second set value
  • the fifth opening degree is smaller than the second opening degree
  • the sixth opening degree is smaller than the fourth opening degree
  • the target evaporation temperature is reduced from the second set value to the third set value, The target evaporation temperature is further lowered while simultaneously reducing the opening degree of the first throttle valve from the second opening degree to the fifth opening degree and the opening degree of the second throttle valve from the fourth opening degree to the sixth opening degree. , that is, further reducing the openings of the first throttle valve and the second throttle valve, thereby quickly increasing the exhaust superheat. It can be understood that when the multi-connection system operates at the third setting value, the fifth opening degree of the first throttle valve and the sixth opening degree of the second throttle valve, it means that the multi-connection system is operating in the second state.
  • step S710 the above control method of the multi-connection system also includes but is not limited to step S710:
  • Step S710 When the multi-connection system is running in the second state, when the second preset condition is met, exit the second state and re-enter PI control;
  • the second preset condition includes at least one of the following:
  • the multi-connection system continues to operate in the second state for a sixth preset time period and the exhaust superheat degree is greater than the first preset temperature for a duration longer than the second preset time period;
  • the duration for which the exhaust superheat degree is greater than the third preset temperature is greater than the second preset time period
  • the third preset temperature is greater than the first preset temperature.
  • the exhaust superheat is detected every fourth preset time.
  • the second preset condition is met, it means that the current exhaust superheat has met the demand, and then the system exits.
  • the second state, again Entering PI control means restoring the normal control logic of the multi-online system to ensure normal working status.
  • the multi-connection system continues to operate in the second state for the sixth preset time, which can ensure that the exhaust superheat is stably maintained within an appropriate range.
  • the second state will be exited, or, when the multi-online system is in the second state, when the exhaust superheat is greater than the third If the duration of the preset temperature is greater than the second preset time, it means that the exhaust superheat has reached a higher range, and the second state can be directly exited, thereby returning to the automatic control process of the multi-online system in time.
  • the outdoor unit 100 also includes a subcooling regulating valve EEVC and a solenoid valve SV5.
  • the high-pressure side of the compressor 110 passes through the outdoor heat exchanger 140, the first throttle valve EEVA1, and the subcooling heat exchange device 150 in sequence.
  • the subcooling regulating valve EEVC is connected to the low-pressure side of the compressor 110 through the subcooling heat exchange device 150 and the solenoid valve SV5.
  • the solenoid valve SV5 can conduct the refrigerant flow through the cooling regulating valve EEVC. , subcooling heat exchange device 150, bypass circuit of the low-pressure side of compressor 110.
  • the refrigerant discharged from the high-pressure side of compressor 110 enters the subcooling heat exchange device 150 for heat dissipation, it flows out through the outlet of the subcooling heat exchange device 150.
  • Part of The refrigerant flows to the indoor unit 200, and part of the refrigerant flow passes through the cold regulating valve EEVC, then re-enters the subcooling heat exchange device 150, then flows through the solenoid valve SV5, and finally flows back to the low-pressure side of the compressor 110, by opening the solenoid valve of the bypass circuit SV5 and adjusting the opening of the subcooling regulating valve EEVC can divert the refrigerant flowing into the indoor unit 200, which is beneficial to maintaining the reliability of the operation of the compressor 110.
  • control method of the multi-connection system also includes but is not limited to step S810 and step S820:
  • Step S810 Obtain the exhaust temperature of the outdoor unit
  • Step S820 When the exhaust temperature is greater than the fourth preset temperature, increase the opening of the subcooling regulating valve and open the solenoid valve.
  • the first throttle valve and the second throttle valve since the exhaust temperature will continue to rise, by continuously detecting the exhaust temperature, when the exhaust temperature is greater than the fourth
  • the preset temperature indicates that the current exhaust temperature has risen to a protection limit value. If it is higher than the protection limit value, it will affect the reliability of the compressor operation. Then increase the opening of the subcooling regulating valve and open the solenoid valve, so that the Part of the refrigerant can flow back to the low-pressure side of the compressor through the bypass circuit, which can quickly reduce the exhaust temperature and ensure the reliability of the multi-split system operation.
  • the opening of the subcooling regulating valve can be gradually increased, for example, the first opening change value is increased each time, so as to ensure the stability of the regulating process.
  • control method after increasing the opening of the subcooling regulating valve and turning on the solenoid valve, the control method also includes but is not limited to step S910:
  • Step S910 When the exhaust gas temperature drops to the fifth preset temperature, reduce the opening of the subcooling regulating valve to the original opening.
  • the exhaust temperature can gradually decrease.
  • the opening of the subcooling regulating valve is reduced.
  • the original opening that is, restoring the original opening, by restoring the original refrigeration control logic, the normal refrigeration effect can be guaranteed.
  • the opening of the subcooling regulating valve can be gradually reduced, for example, the second opening change value is reduced each time until it is reduced to the original opening, thereby ensuring that the regulation process stability.
  • control methods of the multi-connection system in some embodiments of the present application are as follows:
  • DSH is determined every 2 minutes.
  • DSH > 15°C for 1 minute exit the control of state A and re-enter PI control; among them, 2min is the fourth preset time and 15°C is the first.
  • Preset temperature, 1min is the second preset time;
  • DSH is determined every 2 minutes; when DSH > 15°C for 1 minute and continues to run in state B for more than 20 minutes, exit the control of state B, or when DSH > 25°C for 1 minute, exit state B control, re-enter PI control; among them, 2min is the fourth preset time, 15°C is the first preset temperature, 1min is the second preset time, 20min is the sixth preset time, and 25°C is the third preset temperature;
  • the control method of the multi-online system when receiving the refrigeration start signal or the refrigeration oil return end signal, performs PI control on the multi-online system, with the target evaporation temperature as the control target, to meet the normal refrigeration demand, by obtaining The exhaust superheat of the outdoor unit.
  • the target evaporation temperature is initially reduced and the openings of the first throttle valve and the second throttle valve are reduced, so that the multi-split system operates in the third In the first state, if the multi-line system continues to operate in the first state for the fifth preset time and the exhaust superheat is still low, the target evaporation temperature will be further reduced and the openings of the first throttle valve and the second throttle valve will be reduced.
  • the multi-line system can operate in the second state, which can quickly increase the exhaust superheat, shorten the compressor liquid return time, and at the same time solve the problem of reduced oil concentration.
  • the first state and the third state During the two-state control process, if the exhaust temperature is too high, the opening of the subcooling regulating valve is increased and the solenoid valve is opened, so that the exhaust temperature can gradually decrease to the normal temperature range to ensure the operational reliability of the multi-line system.
  • the second embodiment of the present application provides an operation control device 1200, including at least one control processor 1210 and a memory 1220 for communicative connection with the at least one control processor 1210; the control processor 1210 and The memory 1220 may be connected through a bus or other means.
  • An example of being connected through a bus is shown in Figure 12.
  • the memory 1220 stores instructions that can be executed by at least one control processor 1210.
  • the instructions are executed by at least one control processor 1210, so that at least A control processor 1210 is capable of executing the control method of the multi-connection system of the first embodiment as above, for example, executing the above-described method steps S110 to S140 in FIG. 2, method step S210 in FIG. 3, and the method in FIG. 4.
  • Step S310 method steps S410 and S420 in Figure 5, method step S510 in Figure 6, method step S610 in Figure 7, method step S710 in Figure 8, method steps S810 and S820 in Figure 9, method steps S810 and S820 in Figure 10
  • the method step S910 and the method step of FIG. 11 When the target control signal is received, PI control is performed on the multi-connection system. During the PI control process, the preset target evaporation temperature is used as the control target to meet the normal cooling demand. By obtaining the exhaust superheat of the outdoor unit, the exhaust gas is The heat can reflect the current operation of the multi-split system.
  • the target evaporation temperature, the first throttle valve and the second throttle valve are jointly controlled according to the exhaust superheat, so that the multi-split system can be started after the refrigeration is started or during the After the refrigeration oil return is completed, the appropriate exhaust superheat can be maintained to achieve the goal of quickly establishing the exhaust superheat, which is beneficial to improving the operational reliability of the multi-line system.
  • a third embodiment of the present application provides a multi-connection system, including the operation control device of the above second embodiment.
  • PI control is performed on the multi-connection system.
  • the preset target evaporation temperature is used as the control target to meet the normal cooling demand.
  • the exhaust gas is The heat can reflect the current operation of the multi-split system.
  • the target evaporation temperature, the first throttle valve and the second throttle valve are jointly controlled according to the exhaust superheat, so that the multi-split system can be started after the refrigeration is started or during the After the refrigeration oil return is completed, the appropriate exhaust superheat can be maintained to achieve the goal of quickly establishing the exhaust superheat, which is beneficial to improving the operational reliability of the multi-line system.
  • a fourth embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions can be used to cause a computer to execute the multi-online system of the first embodiment.
  • the control method for example, executes the above-described method steps S110 to S140 in Figure 2, method step S210 in Figure 3, method step S310 in Figure 4, method steps S410 and S420 in Figure 5, and the method in Figure 6 Step S510, method step S610 in Fig. 7, method step S710 in Fig. 8, method steps S810 and S820 in Fig. 9, method step S910 in Fig. 10 and method step in Fig. 11.
  • PI control is performed on the multi-connection system.
  • the preset target evaporation temperature is used as the control target to meet the normal cooling demand.
  • the exhaust gas is The heat can reflect the current operation of the multi-split system.
  • the target evaporation temperature, the first throttle valve and the second throttle valve are jointly controlled according to the exhaust superheat, so that the multi-split system can be started after the refrigeration is started or during the After the refrigeration oil return is completed, the appropriate exhaust superheat can be maintained to achieve the goal of quickly establishing the exhaust superheat, which is beneficial to improving the operational reliability of the multi-line system.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk, DVD or other optical disk storage, magnetic cassettes, magnetic tape, disk storage or other magnetic storage devices, or may be used Any other medium that stores the desired information and can be accessed by a computer. Additionally, it is known to those of ordinary skill in the art that communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机系统的控制方法、装置、多联机系统和存储介质,其中所述控制方法包括:接收目标控制信号,其中,所述目标控制信号包括制冷开机信号和制冷回油结束信号(S110);对所述多联机系统进行以预设的目标蒸发温度为控制目标的PI控制(S120);获取所述室外机的排气过热度(S130);根据所述排气过热度对所述目标蒸发温度、所述第一节流阀和所述第二节流阀进行联动控制(S140)。

Description

多联机系统的控制方法、装置、多联机系统和存储介质
相关申请的交叉引用
本申请要求于2022年07月13日提交的申请号为202210819175.X、名称为“多联机系统的控制方法、装置、多联机系统和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,尤其涉及一种多联机系统的控制方法、装置、多联机系统和存储介质。
背景技术
随着空调技术的不断发展,多联机系统已经广泛应用于人们的日常生活中,由于多联机系统结构的可扩展性,现有的多联机系统在制冷时,若开启最小负荷内机,容易出现启动或回油后长时间不能建立排气过热度的情况,过热度不足会使得压缩机回气长时间带液,大量的液态冷媒进入压缩腔中,压缩机很容易因为回液稀释油浓度,压缩腔油膜厚度不足而加剧磨损而失效,不满足压缩机可靠性运行要求,降低多联机系统运行的可靠性。
发明内容
本申请旨在至少部分解决现有技术中存在的技术问题之一。为此,本申请提出一种多联机系统的控制方法、装置、多联机系统和存储介质,可以快速建立排气过热度,有利于提升多联机系统的运行可靠性。
第一方面,本申请的一些实施例提供一种多联机系统的控制方法,所述多联机系统包括至少一个室外机和至少一个室内机,所述室外机和所述室内机连接,所述室外机包括第一节流阀,所述室内机包括第二节流阀,所述控制方法包括:
接收目标控制信号,其中,所述目标控制信号包括制冷开机信号和制冷回油结束信号;
对所述多联机系统进行以预设的目标蒸发温度为控制目标的PI控制;
获取所述室外机的排气过热度;
根据所述排气过热度对所述目标蒸发温度、所述第一节流阀和所述第二节流阀进行联动控制。
根据本申请的一些实施例提供的多联机系统的控制方法,至少具有如下有益效果:当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
在上述多联机系统的控制方法中,所述根据所述排气过热度对所述目标蒸发温度、所述第一节流阀和所述第二节流阀进行联动控制,包括:
当所述排气过热度满足第一预设条件,降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度;
其中,所述第一预设条件包括以下至少之一:
在所述多联机系统进入所述PI控制第一预设时长内,所述排气过热度小于第一预设温度的持续时间大于第二预设时长;
所述排气过热度小于第二预设温度的持续时间大于第三预设时长;
其中,所述第二预设温度小于所述第一预设温度。
当排气过热度满足第一预设条件,表示当前的排气过热度较低,不能满足压缩机的可靠性运行要求,则降低目标蒸发温度,由于多联机系统在PI控制过程中以目标蒸发温度为控制目标,能够适应性提高压缩机的运行频率,以快速提高排气过热度,另外通过同步减小第一节流阀和第二节流阀的开度,能够改变冷凝温度,当冷凝温度上升,相应地,排气温度也会上升,从而使得排气过热度能够快速上升,能够缩短压缩机回液时间,有利于解决油浓度降低的问题。
在上述多联机系统的控制方法中,所述降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度,包括:
将所述目标蒸发温度从第一设定值减小至第二设定值,将所述第一节流阀的开度从第一开度减小至第二开度,以及将所述第二节流阀的开度从第三开度减小至第四开度,以使所述多联机系统运行于第一状态。
当排气过热度满足第一预设条件,表示此时的排气过热度不足,需要提高排气过热度,以保证压缩机的运行可靠性,将目标蒸发温度从第一设定值减小至第二设定值,即降低目标蒸发温度,从而能够提高压缩机的运行频率,并将第一节流阀的开度从第一开度减小至第二开度以及将第二节流阀的开度从第三开度减小至第四开度,即减小第一节流阀和第二节流阀的开度,从而能够快速提高排气过热度,保证多联机系统运行的可靠性。可以理解的是,当多联机系统以第二设定值、第一节流阀的第二开度和第二节流阀的第四开度运行,即表示多联机系统运行于第一状态。
在上述多联机系统的控制方法中,还包括:
在所述多联机系统运行于所述第一状态的情况下,每隔第四预设时长判断所述排气过热度是否大于第一预设温度;
当所述排气过热度大于所述第一预设温度的持续时间大于第二预设时长,退出所述第一状态,重新进入所述PI控制。
当多联机系统运行于第一状态,每隔第四预设时长判断排气过热度是否大于第一预设温度,如果排气过热度大于第一预设时间的持续时间大于第二预设时长,表示当前的排气过热度已经满足需求,则退出第一状态,重新进入PI控制,即恢复多联机系统的正常控 制逻辑,保证正常的工作状态。
在上述多联机系统的控制方法中,在所述多联机系统以所述第一状态持续运行第五预设时长之后,当所述排气过热度小于所述第二预设温度,继续降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度。
需要说明的是,在多联机系统以第一状态持续运行第五预设时长之后,若检测到排气过热度小于第二预设温度,表示在初步采取控制措施之后,排气过热度依然没达到要求,则继续降低目标蒸发温度以及继续减小第一节流阀和第二节流阀的开度,使得目标蒸发温度的设定值变得更小,第一节流阀和第二节流阀的开度变得更小,从而令排气过热度能够快速得到提升。
在上述多联机系统的控制方法中,所述继续降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度,包括:
将所述目标蒸发温度从所述第二设定值减小至第三设定值,将所述第一节流阀的开度从所述第二开度减小至第五开度,以及将所述第二节流阀的开度从所述第四开度减小至第六开度,以使所述多联机系统运行于第二状态。
在多联机系统以第一状态持续运行第五预设时长之后,若排气过热度仍然小于第二预设温度,则将目标蒸发温度从第二设定值减小至第三设定值,进一步降低目标蒸发温度,同时将第一节流阀的开度从第二开度减小至第五开度以及将第二节流阀的开度从第四开度减小至第六开度,即进一步减小第一节流阀和第二节流阀的开度,从而能够快速提高排气过热度。可以理解的是,当多联机系统以第三设定值、第一节流阀的第五开度和第二节流阀的第六开度运行,即表示多联机系统运行于第二状态。
在上述多联机系统的控制方法中,还包括:
在所述多联机系统运行于所述第二状态的情况下,当满足第二预设条件,退出所述第二状态,重新进入所述PI控制;
其中,所述第二预设条件包括以下至少之一:
所述多联机系统以所述第二状态持续运行第六预设时长且所述排气过热度大于所述第一预设温度的持续时间大于第二预设时长;
所述排气过热度大于第三预设温度的持续时间大于第二预设时长;
其中,所述第三预设温度大于所述第一预设温度。
需要说明的是,当多联机系统运行于第二状态,每隔第四预设时长检测一次排气过热度,当满足第二预设条件,表示当前的排气过热度已经满足需求,则退出第二状态,重新进入PI控制,即恢复多联机系统的正常控制逻辑,保证正常的工作状态。
在上述多联机系统的控制方法中,所述室外机还包括压缩机、室外换热器、过冷换热装置、过冷调节阀和电磁阀,所述压缩机的高压侧依次通过所述室外换热器、所述第一节流阀、所述过冷换热装置连接至所述室内机,所述过冷调节阀依次通过所述过冷换热装置、所述电磁阀连接至所述压缩机的低压侧,所述控制方法还包括:
获取所述室外机的排气温度;
当所述排气温度大于第四预设温度,增大所述过冷调节阀的开度以及开启所述电磁阀。
需要说明的是,在对目标蒸发温度、第一节流阀和第二节流阀的联动控制过程中,由于排气温度会不断上升,通过不断检测排气温度,当排气温度大于第四预设温度,表示当前的排气温度已经上升到一个保护限定值,若高于保护限定值会影响压缩机运行的可靠性,则增大过冷调节阀的开度以及开启电磁阀,使得大部分的冷媒能够通过旁通回路流回压缩机的低压侧,能够起到快速降低排气温度的作用,保证多联机系统运行的可靠性。
在上述多联机系统的控制方法中,在增大所述过冷调节阀的开度以及开启所述电磁阀之后,所述控制方法还包括:
当所述排气温度降低至第五预设温度,将所述过冷调节阀的开度减小至原始开度。
需要说明的是,在增大过冷调节阀的开度以及开启电磁阀之后,排气温度能够逐渐降低,当排气温度降低至第五预设温度,则将过冷调节阀的开度减小至原始开度,即恢复原来的开度,通过恢复原本的制冷控制逻辑,能够保证正常的制冷效果。
第二方面,本申请的一些实施例提供一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如上第一方面实施例所述的控制方法。
根据本申请的一些实施例提供的运行控制装置,至少具有如下有益效果:当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
第三方面,本申请的一些实施例提供一种多联机系统,包括有如上第二方面实施例所述的运行控制装置。
根据本申请的一些实施例提供的多联机系统,至少具有如下有益效果:当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
第四方面,本申请的一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如上第一方面实施例所述的控制方法。
根据本申请的一些实施例提供的计算机可读存储介质,至少具有如下有益效果:当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书以及附图中所特别指出的结构来实现和获得。
附图说明
下面结合附图和实施例对本申请进一步地说明;
图1是本申请的一些实施例提供的多联机系统的结构示意图。
图2是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图3是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图4是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图5是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图6是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图7是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图8是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图9是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图10是本申请的一些实施例提供的多联机系统的控制方法的流程图;
图11是本申请的一些实施例提供的多联机系统的控制方法的整体流程图;以及
图12是本申请的一些实施例提供的运行控制装置的结构示意图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
应了解,在对本申请的一些实施例的描述中,如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。“至少一个”是指一个或者多个,“多个”是指两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数,“若干”的含义是一个或者多个,除非另有明确具体的限定。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,可以理解的是,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复 数。
此外,除非另有明确的规定和限定,术语“连接/相连”应做广义理解,例如,可以是固定连接或活动连接,也可以是可拆卸连接或不可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连。需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于流程图中的顺序执行所示出或描述的步骤。
需要说明的是,下面所描述的各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本申请的一些实施例提供的多联机系统的控制方法、装置、多联机系统和存储介质,可以快速建立排气过热度,有利于提升多联机系统的运行可靠性。
下面结合附图,对本申请的一些实施例作进一步阐述。
如图1所示,本申请的一些实施例的多联机系统包括至少一个室外机100和至少一个室内机200,室外机100与室内机200连接,为了便于介绍,图1示出的是包括一个室外机100和一个室内机200的多联机系统的结构示意图,但不限于此,具体地,室外机100包括压缩机110、油分离器120、四通阀130、室外换热器140、第一节流阀EEVA1和过冷换热装置150、汽液分离器160,室内机200包括室内换热器和第二节流阀,多联机系统在制冷时,压缩机110高压侧排出的冷媒流经油分离器120、四通阀130后经室外换热器140进行液化放热,然后经第一节流阀EEVA1进行节流,冷媒流经过冷换热装置150进行散热后经液侧管流向室内机200,经第二节流阀进行节流,通过室内换热器进行吸热蒸发,以实现制冷效果,经室内换热器吸热蒸发后的冷媒经汽侧管回到压缩机110的低压侧,如此不断循环。
本领域技术人员可以理解的是,图1中示出的多联机系统并不构成对本申请的实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2所示,基于上述图1的多联机系统,本申请的第一方面的实施例提供一种多联机系统的控制方法,包括但不限于步骤S110至步骤S140:
步骤S110:接收目标控制信号,其中,目标控制信号包括制冷开机信号和制冷回油结束信号;
需要说明的是,当多联机系统在低温制冷工况下,启动前期以及回油结束后,压缩机的排气过热度较低,尤其在只开最小负荷内机的情况下,启动或回油结束后不能快速建立排气过热度,即排气过热度较低,使得压缩机回气长时间带液,不能满足压缩机的可靠性运行要求,目标控制信号包括制冷开机信号或者制冷回油结束信号,充分考虑到可能出现排气过热度不足的场景,本申请的一些实施例通过接收目标控制信号,进而触发相应的控制策略,便于更精准地解决排气过热度不足的问题。可以理解的是,制冷开机信号可以由用户触发,例如用户通过遥控器指示多联机系统制冷开机,制冷回油结束信号的触发可以是多联机系统达到预设运行条件,例如多联机系统开机一段时间后会启动回油过程,回油 过程持续一段时间则结束,进而输出制冷回油结束信号。
步骤S120:对多联机系统进行以预设的目标蒸发温度为控制目标的PI控制;
当接收到目标控制信号,多联机系统进入比例和积分(Proport iona l I ntegra l,PI)控制,即进入预设的逻辑控制过程,在PI控制过程中,多联机系统以目标蒸发温度为控制目标不断运行,通过协调控制相关的运行参数,使得室内机的实际蒸发温度能够达到目标蒸发温度,例如根据目标蒸发温度调节压缩机的升频或降频,保证正常的制冷效果。
需要说明的是,目标蒸发温度的设定值根据实际需求进行设置,为了避免在开机后或回油结束后出现过热度不足的情况,初始的设定值可以设置得相对较小,例如可以设为6℃,使得压缩机能够保持升频,便于快速建立排气过热度。
步骤S130:获取室外机的排气过热度;
室外机的排气过热度可以根据压缩机的排气温度和排气压力计算得到,排气过热度为压缩机的排气温度和排气压力对应的饱和温度的差值,压缩机的排气温度为从压缩机的排气口排出的高温高压的气态冷媒的温度,该排气温度由设置在压缩机的排气口附近的温度传感器测量得到,压缩机的排气压力为从压缩机的排气口排出的气态冷媒在进入室外换热器之前在冷媒管路中产生的压力值,该压力值可以由设置在压缩机的排气口与四通阀之间的冷媒管路的高压传感器测量得到,当检测到排气温度和排气压力后,可以根据预设的饱和温度对照表查找得到与当前的排气压力对应的饱和温度,从而计算得到排气过热度。
需要说明的是,若多联机系统设置有多个并联的外机,则获取所有室外机的排气过热度,并选取最小的排气过热度作为控制依据,便于保证多联机系统的可靠运行。
步骤S140:根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制。
在有制冷需求的情况下,通过获取室外机的排气过热度,能够判断当前的排气过热度是否过低,进而判断当前状态下多联机系统能否可靠运行,根据排气过热度对目标蒸发温度、室外机的第一节流阀和室内机的第二节流阀进行联动控制,使得排气过热度能够达到目标要求,例如可以根据当前的排气过热度适当调节目标蒸发温度的设定值,以及调节第一节流阀和第二节流阀的开度。
上述第一方面实施例提供的多联机系统的控制方法,当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
需要说明的是,若室外机的排气过热度较低,通过调节目标蒸发温度的设定值,多联机系统能够适应性调节压缩机的运行频率,从而有效提高室外机的排气过热度,同时不会影响正常的制冷需求,通过同步调节第一节流阀和第二节流阀的开度,能够增大排气过热度的变化频率,从而快速达到目标过热度。
如图3所示,在上述多联机系统的控制方法中,步骤S140中根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,包括但不限于步骤S210:
步骤S210:当排气过热度满足第一预设条件,降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度;
其中,第一预设条件包括以下至少之一:
在多联机系统进入PI控制第一预设时长内,排气过热度小于第一预设温度的持续时间大于第二预设时长;
排气过热度小于第二预设温度的持续时间大于第三预设时长;
其中,第二预设温度小于第一预设温度。
当排气过热度满足第一预设条件,表示当前的排气过热度较低,不能满足压缩机的可靠性运行要求,则降低目标蒸发温度,由于多联机系统在PI控制过程中以目标蒸发温度为控制目标,能够适应性提高压缩机的运行频率,以快速提高排气过热度,另外通过同步减小第一节流阀和第二节流阀的开度,能够改变冷凝温度,当冷凝温度上升,相应地,排气温度也会上升,从而使得排气过热度能够快速上升,能够缩短压缩机回液时间,有利于解决油浓度降低的问题。
需要说明的是,当多联机系统接收到制冷开机信号或者制冷回油结束信号后,对多联机系统进行PI控制,并开始计时,若在进入PI控制第一预设时长内,排气过热度小于第一预设温度的持续时间大于第二预设时长,则降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,保证在开机启动前期及回油结束后能够快速提高排气过热度,另外,在制冷的过程中,若排气过热度小于第二预设温度的持续时间大于第三预设时长,表示当前的排气过热度很低,则直接降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,保证在整个PI控制过程中多联机系统的运行可靠性。
现有技术在针对排气过热度过低的情况所采取的控制措施存在不足,例如降低室外风机转速以提高冷凝温度,这种措施会影响用户的使用舒适性,或者采用间断性停机保护的方式,这样会使得室内温度波动较大,影响用户的使用体验感,或者固定压缩机的频率和限制内机容量,固定频率能耗高,且限制容量会降低用户的使用满意度,区别于现有技术的控制措施,本申请的一些实施例的当多联机系统处于PI控制过程中,以目标蒸发温度作为控制目标,压缩机的运行频率可以根据目标蒸发温度进行适应性调节,即存在升频过程和降频过程,在开机启动前期或回油结束后排气过热度较低的情况下,若降低目标蒸发温度,压缩机会升频,高频状态下能够快速建立合适的排气过热度,同时保证一定的制冷量,满足用户的舒适性要求,另外,若室内机的实际蒸发温度达到目标蒸发温度,压缩机的运行频率保持当前状态或者适当降频,避免压缩机过度制冷增加能耗。
可以理解的是,本申请的一些实施例的压缩机的运行频率根据目标蒸发温度动态变化,控制过程更加合理,能够有效解决开机后或回油结束后排气过热度不足的问题,同时能够保证用户良好的使用体验感。此外,本申请的一些实施例通过同步减小第一节流阀和第二 节流阀的开度,可以增加冷凝温度,使得室外换热器的液态冷媒能够尽快回收,减少压缩机回气带液的情况,相应地,排气温度会上升,通过协调控制第一节流阀和第二节流阀的开度,能够加快排气过热度的上升速率,实现快速建立排气过热度的目标。
如图4所示,在上述多联机系统的控制方法中,步骤S210中降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,包括但不限于步骤S310:
步骤S310:将目标蒸发温度从第一设定值减小至第二设定值,将第一节流阀的开度从第一开度减小至第二开度,以及将第二节流阀的开度从第三开度减小至第四开度,以使多联机系统运行于第一状态。
需要说明的是,第二设定值小于第一设定值,第二开度小于第一开度,第四开度小于第三开度。
当排气过热度满足第一预设条件,表示此时的排气过热度不足,需要提高排气过热度,以保证压缩机的运行可靠性,将目标蒸发温度从第一设定值减小至第二设定值,即降低目标蒸发温度,从而能够提高压缩机的运行频率,并将第一节流阀的开度从第一开度减小至第二开度以及将第二节流阀的开度从第三开度减小至第四开度,即减小第一节流阀和第二节流阀的开度,从而能够快速提高排气过热度,保证多联机系统运行的可靠性。可以理解的是,当多联机系统以第二设定值、第一节流阀的第二开度和第二节流阀的第四开度运行,即表示多联机系统运行于第一状态。
第一设定值为多联机系统刚进入PI控制的目标蒸发温度的初始值,当接收到目标控制信号后,对多联机系统进行以第一设定值为控制目标的PI控制,第一开度为第一节流阀的当前开度,第三开度为第二节流阀的当前开度,第二开度可以为第一节流阀处于正常运行状态下的预设开度范围内的最小开度,第四开度可以为第二节流阀处于正常运行状态下的预设开度范围内的最小开度。
如图5所示,在上述多联机系统的控制方法中,还包括但不限于步骤S410和步骤S420:
步骤S410:在多联机系统运行于第一状态的情况下,每隔第四预设时长判断排气过热度是否大于第一预设温度;
步骤S420:当排气过热度大于第一预设温度的持续时间大于第二预设时长,退出第一状态,重新进入PI控制。
当多联机系统运行于第一状态,每隔第四预设时长判断排气过热度是否大于第一预设温度,如果排气过热度大于第一预设时间的持续时间大于第二预设时长,表示当前的排气过热度已经满足需求,则退出第一状态,重新进入PI控制,即恢复多联机系统的正常控制逻辑,保证正常的工作状态。
需要说明的是,当多联机系统运行于第一状态,即以第二设定值、第一节流阀的第二开度和第二节流阀的第四开度保持运行,能够使得排气过热度快速上升,当排气过热度满足需求,则可以退出第一状态,重新根据第一设定值进行正常的控制过程,需要说明的是,多联机系统在PI控制过程中,若运行参数或环境参数出现变化,目标蒸发温度会适应性 变化,以保证正常的制冷需求。
在上述多联机系统的控制方法中,在多联机系统退出第一状态的情况下,当排气过热度满足第一预设条件,则重新进入第一状态。
如图6所示,在上述多联机系统的控制方法中,在多联机系统以第一状态持续运行第五预设时长之后,还包括以下步骤:
步骤S510:当排气过热度小于第二预设温度,继续降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度。
需要说明的是,在多联机系统以第一状态持续运行第五预设时长之后,若检测到排气过热度小于第二预设温度,表示在初步采取控制措施之后,排气过热度依然没达到要求,则继续降低目标蒸发温度以及继续减小第一节流阀和第二节流阀的开度,使得目标蒸发温度的设定值变得更小,第一节流阀和第二节流阀的开度变得更小,从而令排气过热度能够快速得到提升。
如图7所示,在上述多联机系统的控制方法中,步骤S510中继续降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,包括但不限于步骤S610:
步骤S610:将目标蒸发温度从第二设定值减小至第三设定值,将第一节流阀的开度从第二开度减小至第五开度,以及将第二节流阀的开度从第四开度减小至第六开度,以使多联机系统运行于第二状态。
需要说明的是,第三设定值小于第二设定值,第五开度小于第二开度,第六开度小于第四开度。
在多联机系统以第一状态持续运行第五预设时长之后,若排气过热度仍然小于第二预设温度,则将目标蒸发温度从第二设定值减小至第三设定值,进一步降低目标蒸发温度,同时将第一节流阀的开度从第二开度减小至第五开度以及将第二节流阀的开度从第四开度减小至第六开度,即进一步减小第一节流阀和第二节流阀的开度,从而能够快速提高排气过热度。可以理解的是,当多联机系统以第三设定值、第一节流阀的第五开度和第二节流阀的第六开度运行,即表示多联机系统运行于第二状态。
如图8所示,在上述多联机系统的控制方法中,还包括但不限于步骤S710:
步骤S710:在多联机系统运行于第二状态的情况下,当满足第二预设条件,退出第二状态,重新进入PI控制;
其中,第二预设条件包括以下至少之一:
多联机系统以第二状态持续运行第六预设时长且排气过热度大于第一预设温度的持续时间大于第二预设时长;
排气过热度大于第三预设温度的持续时间大于第二预设时长;
其中,第三预设温度大于第一预设温度。
需要说明的是,当多联机系统运行于第二状态,每隔第四预设时长检测一次排气过热度,当满足第二预设条件,表示当前的排气过热度已经满足需求,则退出第二状态,重新 进入PI控制,即恢复多联机系统的正常控制逻辑,保证正常的工作状态。
可以理解的是,多联机系统以第二状态持续运行第六预设时长,能够保证排气过热度稳定维持在合适的范围内,当排气过热度大于第一预设温度的持续时间大于第二预设时长且多联机系统以第二状态运行的持续时间大于第六预设时长,则退出第二状态,或者,在多联机系统处于第二状态的时候,当排气过热度大于第三预设温度的持续时间大于第二预设时长,表示排气过热度已经达到一个较高的范围,则可以直接退出第二状态,从而及时恢复到多联机系统的自控过程中。
基于图1的多联机系统,室外机100还包括过冷调节阀EEVC和电磁阀SV5,压缩机110的高压侧依次通过室外换热器140、第一节流阀EEVA1、过冷换热装置150连接至室内机200,过冷调节阀EEVC依次通过过冷换热装置150、电磁阀SV5连接至压缩机110的低压侧,可以理解的是,电磁阀SV5能够导通冷媒流经过冷调节阀EEVC、过冷换热装置150、压缩机110低压侧的旁通回路,从压缩机110高压侧排出的冷媒进入过冷换热装置150进行散热后,通过过冷换热装置150的出口流出,一部分冷媒流向室内机200,一部分冷媒流经过冷调节阀EEVC,再重新进入过冷换热装置150,然后流经电磁阀SV5,最后流回压缩机110的低压侧,通过开启旁通回路的电磁阀SV5以及调节过冷调节阀EEVC的开度能够实现对流入室内机200的冷媒进行分流,有利于维持压缩机110运行的可靠性。
如图9所示,在上述多联机系统的控制方法中,还包括但不限于步骤S810和步骤S820:
步骤S810:获取室外机的排气温度;
步骤S820:当排气温度大于第四预设温度,增大过冷调节阀的开度以及开启电磁阀。
需要说明的是,在对目标蒸发温度、第一节流阀和第二节流阀的联动控制过程中,由于排气温度会不断上升,通过不断检测排气温度,当排气温度大于第四预设温度,表示当前的排气温度已经上升到一个保护限定值,若高于保护限定值会影响压缩机运行的可靠性,则增大过冷调节阀的开度以及开启电磁阀,使得大部分的冷媒能够通过旁通回路流回压缩机的低压侧,能够起到快速降低排气温度的作用,保证多联机系统运行的可靠性。
具体地,在调节过冷调节阀的过程中,可以逐步增大过冷调节阀的开度,例如每次增加第一开度变化值,从而保证调节过程的稳定性。
如图10所示,在上述多联机系统的控制方法中,在增大过冷调节阀的开度以及开启电磁阀之后,控制方法还包括但不限于步骤S910:
步骤S910:当排气温度降低至第五预设温度,将过冷调节阀的开度减小至原始开度。
需要说明的是,在增大过冷调节阀的开度以及开启电磁阀之后,排气温度能够逐渐降低,当排气温度降低至第五预设温度,则将过冷调节阀的开度减小至原始开度,即恢复原来的开度,通过恢复原本的制冷控制逻辑,能够保证正常的制冷效果。
具体地,在恢复过冷调节阀开度的过程中,可以逐步减小过冷调节阀的开度,例如每次减小第二开度变化值,直到减小至原始开度,从而保证调节过程的稳定性。
为了更清楚阐述本申请的一些实施例的多联机系统的控制方法,以下将用一个整体实 施例作进一步介绍。
如图11所示,本申请的一些实施例的多联机系统的控制方法具体如下:
1、接收到制冷开机信号或制冷回油结束信号;
2、进入PI控制,以目标蒸发温度Tes=6℃作为控制目标;其中,6℃为第一设定值;
3、获取室外机的排气过热度DSH;
4、在进入PI控制15min内,当DSH<15℃持续1min,或者,当DSH<10℃持续10min,则进入A状态,执行步骤5;其中,A状态为第一状态,15min为第一预设时长,15℃为第一预设温度,1min为第二预设时长,10℃为第二预设温度,10min为第三预设时长;
5、进入A状态的控制:①Tes=0℃;②EEVA1由第一开度减小至第二开度;③EEVA2由第三开度减小至第四开度;其中,EEVA1为第一节流阀,EEVA2为第二节流阀;
6、在A状态运行的过程中,每2min判定一次DSH,当DSH>15℃持续1min,退出A状态的控制,重新进入PI控制;其中,2min为第四预设时长,15℃为第一预设温度,1min为第二预设时长;
7、以A状态运行10min后,当DSH<10℃,进入B状态,执行步骤8;其中,本实施例中10min为第五预设时长,10℃为第二预设温度;
8、进入B状态的控制:①Tes=-5℃;②EEVA1由第二开度减小至第五开度;③EEVA2由第四开度减小至第六开度;其中,B状态为第二状态,-5℃为第三设定值,EEVA1为3000P的节流阀,第五开度可以由第二开度-100P得到,EEVA2为480P的节流阀,第六开度可以由第四开度-16P得到;
9、在B状态运行的过程中,每2min判定一次DSH;当DSH>15℃持续1min且以B状态持续运行20min以上,退出B状态的控制,或者当DSH>25℃持续1min,退出B状态的控制,重新进入PI控制;其中,2min为第四预设时长,15℃为第一预设温度,1min为第二预设时长,20min为第六预设时长,25℃为第三预设温度;
10、在状态A和状态B的过程中,若排气温度快速上升超过100℃,控制EEVC以+8P/S的速率增大开度,同时打开SV5;其中,100℃为第四预设温度,EEVC为过冷调节阀,SV5为电磁阀,8P为第一开度变化值;
11、当排气温度降低至90℃,则控制EEVC以-4P/S的速率减小开度;其中,90℃为第五预设温度,4P为第二开度变化值。
本实施例提供的多联机系统的控制方法,当接收到制冷开机信号或制冷回油结束信号,则对多联机系统进行PI控制,以目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,当排气过热度满足第一预设条件,初步降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,使得多联机系统运行于第一状态,若多联机系统以第一状态持续运行第五预设时长之后,排气过热度依然较低,则进一步降低目标蒸发温度以及减小第一节流阀和第二节流阀的开度,使得多联机系统运行于第二状态,能够快速提高排气过热度,缩短压缩机回液时间,同时可以解决油浓度降低的问题,在第一状态和第 二状态的控制过程中,若排气温度过高,则增大过冷调节阀的开度以及开启电磁阀,使得排气温度能够逐渐降低至正常温度区间,保证多联机系统的运行可靠性。
如图12所示,本申请的第二方面实施例提供一种运行控制装置1200,包括至少一个控制处理器1210和用于与至少一个控制处理器1210通信连接的存储器1220;控制处理器1210和存储器1220可以通过总线或者其他方式连接,图12中示出通过总线连接的例子,存储器1220存储有可被至少一个控制处理器1210执行的指令,指令被至少一个控制处理器1210执行,以使至少一个控制处理器1210能够执行如上第一方面实施例的多联机系统的控制方法,例如,执行以上描述的图2中的方法步骤S110至S140、图3中的方法步骤S210、图4中的方法步骤S310、图5中的方法步骤S410和S420、图6中的方法步骤S510、图7中的方法步骤S610、图8中的方法步骤S710、图9中的方法步骤S810和S820、图10中的方法步骤S910以及图11的方法步骤。当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
本申请的第三方面实施例提供一种多联机系统,包括有如上第二方面实施例的运行控制装置。当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
本申请的第四方面实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令可以用于使计算机执行如上第一方面实施例的多联机系统的控制方法,例如,执行以上描述的图2中的方法步骤S110至S140、图3中的方法步骤S210、图4中的方法步骤S310、图5中的方法步骤S410和S420、图6中的方法步骤S510、图7中的方法步骤S610、图8中的方法步骤S710、图9中的方法步骤S810和S820、图10中的方法步骤S910以及图11的方法步骤。当接收到目标控制信号,则对多联机系统进行PI控制,PI控制过程中以预设的目标蒸发温度为控制目标,满足正常的制冷需求,通过获取室外机的排气过热度,排气过热度可以反映当前状态下多联机系统的运行情况,根据排气过热度对目标蒸发温度、第一节流阀和第二节流阀进行联动控制,可以使得多联机系统在制冷开机启动后或者在制冷回油结束后能够保持有适当的排气过热度,实现快速建立排气过热度的目标,有利于提升多联机系统的运行可靠性。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被 实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质或非暂时性介质和通信介质或暂时性介质。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘DVD或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本申请的实施例作了详细说明,但是本申请不限于上述实施例,在技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (12)

  1. 一种多联机系统的控制方法,其中,所述多联机系统包括至少一个室外机和至少一个室内机,所述室外机和所述室内机连接,所述室外机包括第一节流阀,所述室内机包括第二节流阀,所述控制方法包括:
    接收目标控制信号,其中,所述目标控制信号包括制冷开机信号和制冷回油结束信号;
    对所述多联机系统进行以预设的目标蒸发温度为控制目标的PI控制;
    获取所述室外机的排气过热度;以及
    根据所述排气过热度对所述目标蒸发温度、所述第一节流阀和所述第二节流阀进行联动控制。
  2. 根据权利要求1所述的控制方法,其中,所述根据所述排气过热度对所述目标蒸发温度、所述第一节流阀和所述第二节流阀进行联动控制,包括:
    当所述排气过热度满足第一预设条件,降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度;
    其中,所述第一预设条件包括以下至少之一:
    在所述多联机系统进入所述PI控制第一预设时长内,所述排气过热度小于第一预设温度的持续时间大于第二预设时长;
    所述排气过热度小于第二预设温度的持续时间大于第三预设时长;
    其中,所述第二预设温度小于所述第一预设温度。
  3. 根据权利要求2所述的控制方法,其中,所述降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度,包括:
    将所述目标蒸发温度从第一设定值减小至第二设定值,将所述第一节流阀的开度从第一开度减小至第二开度,以及将所述第二节流阀的开度从第三开度减小至第四开度,以使所述多联机系统运行于第一状态。
  4. 根据权利要求3所述的控制方法,还包括:
    在所述多联机系统运行于所述第一状态的情况下,每隔第四预设时长判断所述排气过热度是否大于第一预设温度;
    当所述排气过热度大于所述第一预设温度的持续时间大于第二预设时长,退出所述第一状态,重新进入所述PI控制。
  5. 根据权利要求3所述的控制方法,其中,在所述多联机系统以所述第一状态持续运行第五预设时长之后,当所述排气过热度小于所述第二预设温度,继续降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度。
  6. 根据权利要5所述的控制方法,其中,所述继续降低所述目标蒸发温度以及减小所述第一节流阀和所述第二节流阀的开度,包括:
    将所述目标蒸发温度从所述第二设定值减小至第三设定值,将所述第一节流阀的开度 从所述第二开度减小至第五开度,以及将所述第二节流阀的开度从所述第四开度减小至第六开度,以使所述多联机系统运行于第二状态。
  7. 根据权利要6所述的控制方法,还包括:
    在所述多联机系统运行于所述第二状态的情况下,当满足第二预设条件,退出所述第二状态,重新进入所述PI控制;
    其中,所述第二预设条件包括以下至少之一:
    所述多联机系统以所述第二状态持续运行第六预设时长且所述排气过热度大于所述第一预设温度的持续时间大于第二预设时长;
    所述排气过热度大于第三预设温度的持续时间大于第二预设时长;
    其中,所述第三预设温度大于所述第一预设温度。
  8. 根据权利要求2或5所述的控制方法,其中,所述室外机还包括压缩机、室外换热器、过冷换热装置、过冷调节阀和电磁阀,所述压缩机的高压侧依次通过所述室外换热器、所述第一节流阀、所述过冷换热装置连接至所述室内机,所述过冷调节阀依次通过所述过冷换热装置、所述电磁阀连接至所述压缩机的低压侧,所述控制方法还包括:
    获取所述室外机的排气温度;以及
    当所述排气温度大于第四预设温度,增大所述过冷调节阀的开度以及开启所述电磁阀。
  9. 根据权利要求8所述的控制方法,在增大所述过冷调节阀的开度以及开启所述电磁阀之后,还包括:
    当所述排气温度降低至第五预设温度,将所述过冷调节阀的开度减小至原始开度。
  10. 一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如权利要求1至9任一项所述的控制方法。
  11. 一种多联机系统,包括有如权利要求10所述的运行控制装置。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于使计算机执行如权利要求1至9任一项所述的控制方法。
PCT/CN2023/100478 2022-07-13 2023-06-15 多联机系统的控制方法、装置、多联机系统和存储介质 WO2024012144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210819175.X 2022-07-13
CN202210819175.XA CN114992826B (zh) 2022-07-13 2022-07-13 多联机系统的控制方法、装置、多联机系统和存储介质

Publications (1)

Publication Number Publication Date
WO2024012144A1 true WO2024012144A1 (zh) 2024-01-18

Family

ID=83020742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100478 WO2024012144A1 (zh) 2022-07-13 2023-06-15 多联机系统的控制方法、装置、多联机系统和存储介质

Country Status (2)

Country Link
CN (1) CN114992826B (zh)
WO (1) WO2024012144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992826B (zh) * 2022-07-13 2024-08-13 广东美的制冷设备有限公司 多联机系统的控制方法、装置、多联机系统和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928266A (zh) * 2016-05-23 2016-09-07 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN105972860A (zh) * 2016-04-29 2016-09-28 广东美的暖通设备有限公司 多联机系统及其过冷回路的阀体控制方法
CN106152633A (zh) * 2016-06-28 2016-11-23 广东美的暖通设备有限公司 多联机系统及其控制方法
CN113865063A (zh) * 2021-08-31 2021-12-31 宁波奥克斯电气股份有限公司 多联机系统控制方法、控制装置、多联机系统和存储介质
CN114608140A (zh) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 一种空调器的控制方法及装置、空调器、计算机存储介质
CN114992826A (zh) * 2022-07-13 2022-09-02 广东美的制冷设备有限公司 多联机系统的控制方法、装置、多联机系统和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730318B2 (ja) * 2007-02-02 2011-07-20 ダイキン工業株式会社 冷凍装置
CN106352445B (zh) * 2016-08-19 2019-12-03 广东美的暖通设备有限公司 多联机系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105972860A (zh) * 2016-04-29 2016-09-28 广东美的暖通设备有限公司 多联机系统及其过冷回路的阀体控制方法
CN105928266A (zh) * 2016-05-23 2016-09-07 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106152633A (zh) * 2016-06-28 2016-11-23 广东美的暖通设备有限公司 多联机系统及其控制方法
CN114608140A (zh) * 2020-12-08 2022-06-10 广东美的暖通设备有限公司 一种空调器的控制方法及装置、空调器、计算机存储介质
CN113865063A (zh) * 2021-08-31 2021-12-31 宁波奥克斯电气股份有限公司 多联机系统控制方法、控制装置、多联机系统和存储介质
CN114992826A (zh) * 2022-07-13 2022-09-02 广东美的制冷设备有限公司 多联机系统的控制方法、装置、多联机系统和存储介质

Also Published As

Publication number Publication date
CN114992826A (zh) 2022-09-02
CN114992826B (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
CN109282545B (zh) 低温型直流变频热泵系统的补气增焓控制方法
JP5414482B2 (ja) 空気調和機
WO2020056956A1 (zh) 热泵机组的化霜控制方法、装置、存储介质及热泵机组
CN110425112B (zh) 防压缩机液击的空调及防压缩机液击的控制方法
CN111895630B (zh) 一种空调运行控制方法、空调及存储介质
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
CN113418275A (zh) 多联机中内机电子膨胀阀的控制方法
CN109708284B (zh) 一种除霜后气液分离器液位控制方法、装置及空调器
WO2024193646A1 (zh) 热泵系统的控制方法、控制装置、空调器及存储介质
CN110440489B (zh) 一种可调节压差的化霜控制方法、装置及采暖机组
WO2023160065A1 (zh) 一种多联机系统控制方法
US20230132393A9 (en) Air source heat pump system and defrosting control method thereof
CN110671799B (zh) 一种空调系统及制冷剂流量控制方法
CN112629053A (zh) 一种冷水机组和补气控制方法
CN204787045U (zh) 制冷空调冷媒流量实时控制装置
CN112178965A (zh) 一种冷水机组及其补气调节方法
JP2009030840A (ja) 冷凍装置
CN114963632B (zh) 电子膨胀阀的控制方法、装置、设备及存储介质
CN115371308A (zh) 一种防回液空调系统及控制方法
CN114322220A (zh) 一种空气调节装置及其控制方法
CN217979374U (zh) 一种电子膨胀阀喷气增焓控制系统
CN110986224B (zh) 一种空调器及其控制方法、存储介质
CN113819574B (zh) 一种空调器的控制方法、控制装置和空调器
CN117450623B (zh) 压缩机频率控制方法及空调机组
CN216347143U (zh) 一种机房空调及其控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838638

Country of ref document: EP

Kind code of ref document: A1