WO2020056956A1 - 热泵机组的化霜控制方法、装置、存储介质及热泵机组 - Google Patents

热泵机组的化霜控制方法、装置、存储介质及热泵机组 Download PDF

Info

Publication number
WO2020056956A1
WO2020056956A1 PCT/CN2018/121979 CN2018121979W WO2020056956A1 WO 2020056956 A1 WO2020056956 A1 WO 2020056956A1 CN 2018121979 W CN2018121979 W CN 2018121979W WO 2020056956 A1 WO2020056956 A1 WO 2020056956A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
defrost
heat pump
equal
pump unit
Prior art date
Application number
PCT/CN2018/121979
Other languages
English (en)
French (fr)
Inventor
卓明胜
孟红武
谷月明
袁占彪
胡乾龙
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020056956A1 publication Critical patent/WO2020056956A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the invention belongs to the technical field of heat pump units, and in particular relates to a defrosting control method, device, storage medium and heat pump unit of a heat pump unit, and in particular relates to a multi-parameter judgment method for defrosting of a heat pump water unit and a method corresponding to the method.
  • the heat pump water heater When the heat pump water heater is used for heating in winter, because it needs to absorb heat from a low temperature environment, the low evaporation temperature is generally low, which will cause the moisture in the outdoor air to adhere to the surface of the outdoor heat exchanger when it is cold and frost, which increases the outdoor temperature.
  • the thermal resistance of the heat exchanger causes the heating capacity of the unit to deteriorate, which affects the energy efficiency of the heating capacity of the unit.
  • the entry conditions of defrosting have a large impact on the energy efficiency of the unit's heating capacity. Unreasonable defrosting conditions will cause the unit to enter defrosting during the winter without frost, or the defrosting time will be too long, resulting in increased unit energy consumption and severely affecting users Use comfort.
  • An object of the present invention is to provide a defrosting control method, a device, a storage medium, and a heat pump unit for a heat pump unit in order to solve the above-mentioned defects, so as to solve the unreasonable entering of the defrosting unit when defrosting an outdoor unit fin in the prior art.
  • Conditions lead to the problem of poor defrosting reliability and achieve the effect of improving defrosting reliability.
  • the invention provides a defrosting control method for a heat pump unit, comprising: obtaining an outdoor environment temperature and an operating state of the heat pump unit; determining whether the outdoor environment temperature is greater than or equal to a lower limit of a first set temperature range; if the If the outdoor environment temperature is less than the lower limit of the first set temperature range, it is determined whether the heat pump unit meets the set defrost conditions according to the outdoor environment temperature and the operating state, so that the heat pump unit meets the In the case of defrosting conditions, the heat pump unit is controlled to enter a set defrosting process.
  • determining whether the heat pump unit meets a set defrost condition according to the outdoor ambient temperature and the operating state includes: if the outdoor ambient temperature is greater than or equal to a lower limit of the first set temperature range , Then enter a set first defrosting judgment process according to the operating state; or, if the outdoor ambient temperature is less than the lower limit of the first set temperature range and greater than or equal to the lower limit of the second set temperature range , Then enter a set second defrost judgment process according to the operating state; the upper limit of the second set temperature range is equal to the lower limit of the first set temperature range; or, if the outdoor ambient temperature is less than When the lower limit of the second set temperature range is described, a set third defrost determination process is entered according to the operating state.
  • the operating state includes at least one of an operating time, a defrost temperature on a low pressure side of the compressor, a temperature change rate of a defrost temperature on a low pressure side of the compressor, a fan current, and an inlet water temperature;
  • the running state enters a set first defrosting judgment process, including: determining whether the running time of the heat pump unit is greater than or equal to the first set time; if the running time is greater than or equal to the first set time , It is determined whether the defrost temperature difference between the outdoor environment temperature of the heat pump unit and the defrost temperature is greater than or equal to the first set temperature difference; if the defrost temperature difference is greater than or equal to the first set temperature, determine the Whether the temperature change rate of the defrosting temperature of the heat pump unit is greater than or equal to the first set change rate; if the temperature change rate is greater than or equal to the first set change rate, determine whether the fan current of the heat pump unit is greater than or equal to A first set current; if
  • controlling the heat pump unit to enter a set defrost process includes: if the heat pump unit meets the defrost conditions, After the compressor frequency of the heat pump unit is adjusted to a set initialization frequency, the four-way valve of the heat pump unit is controlled to switch, and at the same time, the opening degree of the electronic expansion valve of the heat pump unit is set to the set number of defrost steps.
  • To control the heat pump unit to perform a defrost operation to enter a set defrost program in the case that the heat pump unit enters the defrost program, increase the frequency of the compressor to a set frequency, and control the heat pump unit Finned heat exchanger reverse defrosting.
  • the method further includes: obtaining defrosting parameters of the heat pump unit under the defrosting process; determining whether the defrosting parameters reach a set exit defrosting condition; and if the defrosting parameters reach the exit Defrost conditions, after adjusting the compressor frequency to the initialization frequency, controlling the four-way valve to reverse direction and continuously running for a set period of time, controlling the heat pump unit to operate according to a set target operating parameter to control The heat pump unit exits the defrost routine.
  • the defrosting parameters include: the defrosting temperature of the compressor detected within a continuously set time period, the defrosting time of the heat pump unit, the fan current, the temperature change rate of the defrosting temperature of the compressor, and the defrosting process At least one of the inlet water temperature of the heat pump unit and the high-pressure side temperature of the compressor; wherein determining whether the defrost parameters have reached the set exit defrost conditions includes determining whether the defrost temperature is greater than or equal to A set first defrosting temperature; if the defrosting temperature is greater than or equal to the first defrosting temperature, determining that the defrosting temperature reaches the defrosting condition; or determining the defrosting temperature Whether the time is greater than or equal to the set defrost time; if the defrost time is greater than or equal to the defrost time, determine that the defrost time reaches the defrost condition; or, determine the fan Whether the current is less than or equal to the set defrost current;
  • another aspect of the present invention provides a defrosting control device for a heat pump unit, comprising: an obtaining unit for obtaining an outdoor environment temperature and an operating state of the heat pump unit; a control unit for determining the Whether the outdoor ambient temperature is greater than or equal to the lower limit of the first set temperature range; the control unit is further configured to: if the outdoor ambient temperature is less than the lower limit of the first set temperature range, according to the outdoor ambient temperature and The operating state determines whether the heat pump unit meets a set defrost condition, so as to control the heat pump unit to enter a set defrost process if the heat pump unit meets the defrost condition.
  • control unit determines whether the heat pump unit meets a set defrost condition according to the outdoor environment temperature and the operating state, including: if the outdoor environment temperature is greater than or equal to the first setting The lower limit of the temperature range enters a set first defrosting judgment process according to the operating state; or, if the outdoor ambient temperature is less than the lower limit of the first set temperature range and greater than or equal to the second setting The lower limit of the temperature range enters a set second defrosting judgment process according to the operating state; the upper limit of the second set temperature range is equal to the lower limit of the first set temperature range; or, if the outdoor If the ambient temperature is less than the lower limit of the second set temperature range, a set third defrost determination process is entered according to the operating state.
  • the operating state includes at least one of operating time, defrost temperature on the low-pressure side of the compressor, temperature change rate of the defrost temperature on the low-pressure side of the compressor, fan current, and water inlet temperature;
  • the control unit enters a set first defrost judgment process according to the operating state, including: determining whether an operating time of the heat pump unit is greater than or equal to a first set time; if the operating time is greater than or equal to the first defrost; A set time determines whether the defrost temperature difference between the outdoor ambient temperature and the defrost temperature of the heat pump unit is greater than or equal to the first set temperature difference; if the defrost temperature difference is greater than or equal to the first set temperature, Determining whether the temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to the first set change rate; if the temperature change rate is greater than or equal to the first set change rate, determining the fan current of the heat pump unit Whether it is greater than or equal to the first
  • control unit controls the heat pump unit to enter a set defrost process when the heat pump unit meets the defrost conditions, and includes: when the heat pump unit meets the defrost conditions; Next, after the compressor frequency of the heat pump unit is adjusted to a set initial frequency, the four-way valve of the heat pump unit is controlled to switch, and at the same time, the opening degree of the electronic expansion valve of the heat pump unit is set to a set value.
  • the number of frost steps is to control the heat pump unit to perform a defrost operation to enter a set defrost program; in the case that the heat pump unit enters the defrost program, increase the frequency of the compressor to a set frequency, and control The finned heat exchanger of the heat pump unit reverses the defrosting.
  • control unit is further configured to obtain a defrost parameter of the heat pump unit under the defrost process; and the control unit is further configured to determine whether the defrost parameter has reached a set value The defrost condition; the control unit is further configured to control the four-way valve to change after the compressor frequency is adjusted to the initialization frequency if the defrost parameter reaches the defrost condition. Control the heat pump unit to run according to the set target operation parameter after running for a set period of time continuously to control the heat pump unit to exit the defrost program.
  • the defrosting parameters include: the defrosting temperature of the compressor detected within a continuously set time period, the defrosting time of the heat pump unit, the fan current, the temperature change rate of the defrosting temperature of the compressor, and the defrosting process At least one of the inlet water temperature of the heat pump unit and the high-pressure side temperature of the compressor; wherein the control unit determines whether the defrost parameters have reached the set exit defrost conditions, including determining the defrost temperature Whether it is greater than or equal to the first exiting defrosting temperature; if the defrosting temperature is greater than or equal to the first exiting defrosting temperature, determining that the defrosting temperature reaches the exiting defrosting condition; or, determining Whether the defrost time is greater than or equal to the set defrost time; if the defrost time is greater than or equal to the defrost time, it is determined that the defrost time reaches the defrost condition; or, Determine whether the fan current is less than
  • another aspect of the present invention provides a heat pump unit, which includes the defrost control device of the heat pump unit described above.
  • another aspect of the present invention provides a storage medium, including: the storage medium stores a plurality of instructions; the plurality of instructions are used by a processor to load and execute the heat pump unit described above Defrost control method.
  • a heat pump unit which includes: a processor for executing multiple instructions; a memory for storing multiple instructions; wherein the multiple instructions are used by The memory is stored, and the processor loads and executes the defrosting control method of the heat pump unit described above.
  • the solution of the invention detects the outdoor ambient temperature, low pressure temperature (or sensor temperature) of the unit, the running time of the unit, and the change of the unit fan current, comprehensively determines the frost formation of the unit fins, and timely controls the unit to perform defrost and improve Defrost reliability of the unit.
  • the outdoor temperature of the unit the low-pressure temperature (or sensor temperature), the operating time of the unit, and the change of the fan current of the unit are detected by the unit to improve the heating heating efficiency and user comfort of the unit in winter.
  • the current condition of the fan is incorporated into the determination of the defrost conditions of the unit, and the frost formation of the fins of the unit is accurately determined, and the defrost reliability of the unit is improved in time.
  • the current variation of the fan is included in the determination of the defrost conditions of the unit, and the frost formation of the unit fins is accurately judged to ensure the unit's winter heating effect and unit energy efficiency, and reduce the unit's winter energy consumption.
  • the current variation of the fan is included in the determination of the defrost conditions of the unit, the frost formation of the unit fins is accurately judged, and the defrost of the unit is controlled in time, thereby improving the heating efficiency and heating comfort of the unit in winter.
  • the scheme of the present invention comprehensively judges the frost formation of the fins of the unit according to the outdoor ambient temperature, low pressure temperature, unit operating time, and unit fan current changes, so as to control the unit in time when it is determined that defrosting is needed
  • Defrosting which solves the problem of poor defrosting reliability caused by unreasonable entering of defrosting conditions when defrosting outdoor unit fins in the prior art, thereby overcoming poor defrosting reliability, high unit energy consumption and users in the prior art
  • the disadvantages of poor experience are to achieve the beneficial effects of good defrost reliability, low unit energy consumption, and good user experience.
  • FIG. 1 is a schematic flowchart of an embodiment of a defrosting control method for a heat pump unit according to the present invention
  • FIG. 2 is a schematic flowchart of an embodiment of a first defrost judgment process that is set according to the running state in the method of the present invention
  • FIG. 3 is a schematic flowchart of an embodiment of a method for determining a second defrost according to the running state in the method according to the present invention
  • FIG. 4 is a schematic flowchart of an embodiment of a third defrost judgment process that is set according to the running state in the method of the present invention
  • FIG. 5 is a schematic flowchart of an embodiment of controlling the heat pump unit to enter a set defrost process when the heat pump unit meets the defrost conditions in the method of the present invention
  • FIG. 6 is a schematic flowchart of an embodiment of defrosting when the defrosting parameters in the defrosting process of the method of the present invention reach the defrosting conditions;
  • FIG. 7 is a schematic flowchart of an embodiment of judging whether a condition for exiting the defrost is reached according to the defrost temperature in the method of the present invention
  • FIG. 8 is a schematic flowchart of an embodiment of judging whether the defrosting condition is reached according to the defrost time in the method of the present invention.
  • FIG. 9 is a schematic flowchart of an embodiment of judging whether the condition for exiting the defrost is reached according to the fan current in the method of the present invention.
  • FIG. 10 is a schematic flowchart of an embodiment of determining whether an defrosting condition is reached according to a temperature change rate in the method of the present invention.
  • FIG. 11 is a schematic flowchart of an embodiment of determining whether an defrosting condition is reached according to an inlet water temperature in the method of the present invention.
  • FIG. 12 is a schematic flowchart of an embodiment of judging whether an exiting defrost condition is reached according to the high-pressure side temperature in the method of the present invention
  • FIG. 13 is a schematic structural diagram of an embodiment of a defrost control device of a heat pump unit according to the present invention.
  • FIG. 14 is a schematic structural diagram of an embodiment of a heat pump unit (such as an air conditioning system) according to the present invention, wherein (a) is an air conditioning system provided with two low-voltage switches, and (b) is an air conditioning system provided with a pressure sensor;
  • a heat pump unit such as an air conditioning system
  • FIG. 15 is a logic diagram of a control system of a heat pump unit according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a defrost sequence of a heat pump unit according to an embodiment of the present invention.
  • 102-acquisition unit 104-control unit; 1-compressor; 2-exhaust temperature package; 3-high pressure switch; 4-high pressure sensor; 5-four-way valve; 6-fin heat exchanger; 7-environment Temperature-sensing package; 8-Defrost temperature-sensing package; 9-Electronic expansion valve; 10-Water-side heat exchanger; 11-Outlet temperature-sensing package; 12-Inlet temperature-sensing package; 13-Water pump; 14-Gas-liquid separation (I.e. steam); 15-heating low-voltage switch; 16-cooling low-voltage switch; 17-low-voltage sensor.
  • 1-compressor 2-exhaust temperature package
  • 3-high pressure switch 4-high pressure sensor
  • 5-four-way valve 6-fin heat exchanger
  • 7-environment Temperature-sensing package 8-Defrost temperature-sensing package
  • 9-Electronic expansion valve 9-Electronic expansion valve
  • 10-Water-side heat exchanger 11-Outlet temperature-sens
  • a defrosting control method for a heat pump unit is provided, as shown in FIG. 1, which is a schematic flowchart of an embodiment of the method of the present invention.
  • the defrosting control method of the heat pump unit may include steps S110 to S130.
  • step S110 an outdoor ambient temperature of the heat pump unit and an operating state of the heat pump unit are obtained.
  • step S120 it is determined whether the outdoor ambient temperature is greater than or equal to a lower limit (eg, 5 ° C) of the first set temperature range.
  • a lower limit eg, 5 ° C
  • step S130 if the outdoor environment temperature is less than the lower limit of the first set temperature range, it is determined whether the heat pump unit meets a set defrost condition (such as Specifically, it can be determined whether the heat pump unit meets the set defrost conditions according to the position of the outdoor environment temperature in the first set temperature range and the second set temperature range and the operating state), so as to When the heat pump unit meets the defrosting conditions, the heat pump unit is controlled to enter a set defrosting process.
  • a set defrost condition such as Specifically, it can be determined whether the heat pump unit meets the set defrost conditions according to the position of the outdoor environment temperature in the first set temperature range and the second set temperature range and the operating state
  • the unit For example: running time after the unit when the detected temperature of the environment II ⁇ IV range (e.g., 5 °C> T outdoor), the unit detects the last defrosting operation time t is completed, continuous operation time t is determined and set operating time predetermined time T is compared, when the unit detects continuous heating operation time t ⁇ 3h run time, the unit has been met is determined defrost unit run time, and this time the detection unit T defrost, defrost when detecting ⁇ T -6 °C, determine the fins of the unit meet the defrost conditions, and detect the unit fan current I fan . When the fan current I is detected, the fan ⁇ I is set to 1 , and the unit's inlet water temperature is detected.
  • the fan current I When the fan current I is detected, the fan ⁇ I is set to 1 , and the unit's inlet water temperature is detected.
  • the inlet water temperature T When the inlet water temperature T, the inlet water temperature is ⁇ At 8 ° C, it is judged that the water temperature meets the defrost conditions. At the same time, the time conditions, temperature conditions, fan current conditions, and water temperature conditions combined with the previous conditions are determined. The four conditions comprehensively determine that the unit meets the defrost conditions, and the unit enters the defrost.
  • the heat pump unit does not enter the defrost.
  • the outdoor environment temperature of the heat pump unit is less than the lower limit of the first set temperature range, whether the heat pump unit meets the set defrost conditions is determined according to the outdoor environment temperature and the operating state of the heat pump unit, so that the heat pump unit When the defrosting conditions are met, the defrosting is performed in a timely manner, on the one hand, the timeliness and reliability of the defrosting are ensured, and on the other hand, the defrost-free defrosting or the defrosting time is too long.
  • the operating state may include: operating time (ie, the operating time of the continuous operation of the heat pump unit after the last defrost is completed), the defrost temperature on the low pressure side of the compressor, the temperature change rate of the defrost temperature on the low pressure side of the compressor, At least one of fan current and inlet water temperature.
  • the unit detects the outdoor ambient temperature, low pressure temperature (or sensor temperature) of the unit, the unit's operating time, and the change of the unit fan current, comprehensively determines the frost formation of the unit's fins, and timely controls the unit to perform defrosting.
  • Frost, no frost, no heat improve the unit's winter heating and heating energy efficiency and user comfort.
  • the frost formation of the unit's fins can be accurately determined, and the defrost of the unit can be controlled in time to ensure the winter heating effect and unit energy efficiency of the unit and reduce the unit's winter energy consumption.
  • whether the heat pump unit meets the set defrost conditions is determined according to the outdoor ambient temperature and the operating state in step S130, and may include any of the following: situation.
  • the first case to determine whether the heat pump unit meets the defrost conditions If the outdoor ambient temperature is greater than or equal to the lower limit of the first set temperature range, the first defrost determination process is entered according to the operating state. .
  • the unit performs the first defrost judgment process (such as defrost judgment 1) according to the operating status.
  • a schematic flowchart of an embodiment of the first defrost judgment process that is set according to the operating state in the method of the present invention shown in FIG. 2 may be combined to further explain the first entered setting according to the operating state.
  • the specific process of the defrost judgment process may include steps S210 to S250.
  • Step S210 Determine whether the running time of the heat pump unit is greater than or equal to a first set time (for example, 30 min).
  • Step S220 if the operating time is greater than or equal to the first set time, determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to the first set temperature difference (such as 4 ° C). ).
  • Step S230 if the defrost temperature difference is greater than or equal to the first set temperature, determine whether the temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to the first set change rate (such as a).
  • step S240 if the temperature change rate is greater than or equal to the first set change rate, it is determined whether the fan current of the heat pump unit is greater than or equal to the first set current (for example, I is set to 2 ).
  • Step S250 if the fan current is greater than or equal to the first set current, determine whether the water inlet temperature of the heat pump unit is greater than or equal to the first set temperature (such as 9 ° C), and When the temperature is greater than or equal to the first set temperature, it is determined that the heat pump unit meets the defrost condition.
  • the first set temperature such as 9 ° C
  • Defrost judgment 1 Detect unit size running time t running time .
  • the current I fan when the I fan is detected ⁇ I set 2 , it meets the defrosting conditions of the fan, and the unit's T inlet water temperature is detected.
  • the unit When the unit is detected to meet the T inlet water temperature ⁇ 9 ° C, it is judged that the unit meets the defrosting. Conditions, the unit performs defrosting action.
  • the defrosting temperature difference between the outdoor environment temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • the second case is to determine whether the heat pump unit meets the defrost conditions: if the outdoor ambient temperature is less than the lower limit of the first set temperature range (that is, the upper limit of the second set temperature range, such as -5 ° C), and greater than Or equal to the lower limit of the second set temperature range (for example, -10 ° C), the second defrosting determination process is set according to the operating state.
  • An upper limit of the second set temperature range is equal to a lower limit of the first set temperature range.
  • the unit when -5 °C > T outdoor ⁇ -10 °C, the unit performs the second defrost judgment process (such as defrost judgment 2) according to the operating status.
  • the second defrost judgment process such as defrost judgment 2
  • a schematic flow chart of an embodiment of the second defrost judging process according to the running state in the method of the present invention shown in FIG. 3 may be combined to further explain entering the set second defrost according to the running state.
  • the specific process of the defrost judgment process may include: step S310 to step S350.
  • Step S310 Determine whether the running time of the heat pump unit is greater than or equal to a second set time (for example, 45 min).
  • Step S320 if the operating time is greater than or equal to the second set time, determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to a second set temperature difference (such as 5 ° C) ).
  • a second set temperature difference such as 5 ° C
  • Step S330 if the defrost temperature difference is greater than or equal to the second set temperature, determine whether a temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to a second set change rate (eg, b).
  • a second set change rate eg, b
  • step S340 if the temperature change rate is greater than or equal to the second set change rate, it is determined whether the fan current of the heat pump unit is greater than or equal to a second set current (for example, I is set to 3 ).
  • Step S350 if the fan current is greater than or equal to the second set current, determine whether the temperature of the inlet water of the heat pump unit is greater than or equal to a second set temperature (such as 8 ° C), When the temperature is greater than or equal to the second set temperature, it is determined that the heat pump unit meets the defrost condition.
  • a second set temperature such as 8 ° C
  • ⁇ T defrosting ⁇ 5 the size of V defrosting is judged.
  • V defrosting ⁇ b the unit meets the defrosting conditions and the fan current of the unit is detected at the same time.
  • I fan when I fan is detected ⁇ I set to 3 , it meets the defrosting conditions of the fan and at the same time detects the unit T inlet water temperature . When it is detected that the unit meets the T inlet water temperature ⁇ 8 °C, it is judged that the unit meets the defrosting conditions. , The unit performs defrosting action.
  • the defrosting temperature difference between the outdoor ambient temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • the third case is to determine whether the heat pump unit meets the defrosting conditions: if the outdoor ambient temperature is less than the lower limit of the second set temperature range (such as -10 ° C), it enters the set third according to the operating state. Defrost judgment process.
  • the unit enters the set third defrost judgment process (such as defrost judgment 3) according to the operating state.
  • a schematic flow chart of an embodiment of the third defrost judging process according to the running state in the method of the present invention shown in FIG. 4 may be combined to further explain entering the set third defrost according to the running state.
  • the specific process of the defrost judgment process may include steps S410 to S450.
  • Step S410 Determine whether the running time of the heat pump unit is greater than or equal to a third set time (for example, 55 min).
  • Step S420 if the operating time is greater than or equal to the third set time, determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to a third set temperature difference (e.g., 6 ° C) ).
  • a third set temperature difference e.g. 6 ° C
  • Step S430 if the defrost temperature difference is greater than or equal to the third set temperature, determine whether the temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to a third set change rate (such as c).
  • step S440 if the temperature change rate is greater than or equal to the third set change rate, it is determined whether the fan current of the heat pump unit is greater than or equal to a third set current (for example, I is set to 4 ).
  • Step S450 if the fan current is greater than or equal to the third set current, determine whether the water inlet temperature of the heat pump unit is greater than or equal to a third set temperature (such as 7 ° C), so that When the temperature is greater than or equal to the third set temperature, it is determined that the heat pump unit meets the defrost condition.
  • a third set temperature such as 7 ° C
  • Defrost judgment 3 Detect the unit size running time t running time .
  • ⁇ T defrosting ⁇ 6 the size of V defrosting is judged.
  • V defrosting ⁇ c the unit meets the defrosting conditions and the fan current of the unit is detected.
  • I fan is detected ⁇ I set to 4 , it meets the defrosting conditions of the fan, and the unit's T inlet water temperature is detected.
  • T inlet water temperature ⁇ 7 ° C it is judged that the unit meets the defrosting conditions.
  • the unit performs defrosting action.
  • the defrosting temperature difference between the outdoor environment temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • a schematic flowchart of an embodiment of controlling the heat pump unit to enter a set defrosting process when the heat pump unit meets the defrost conditions in the method of the present invention shown in FIG. 5 may be combined.
  • the process may include: step S510 and step S520.
  • Step S510 when the heat pump unit meets the defrost condition, after adjusting the compressor frequency of the heat pump unit to a set initial frequency, control the four-way valve of the heat pump unit to switch, and The opening degree of the electronic expansion valve of the heat pump unit is opened to a set number of defrost steps, so as to control the heat pump unit to perform a defrost operation and enter a set defrost program.
  • preparation before defrosting when the unit detects that the defrosting conditions are met, the unit starts to operate, first adjust the compressor operating frequency, adjust the unit compressor frequency to the unit's initialization frequency, and the four-way valve starts after the adjustment is completed
  • the electronic expansion valve is opened to the number of defrost steps, and the unit enters the defrost operation.
  • step S520 when the heat pump unit enters the defrosting program, increase the frequency of the compressor to a set frequency, and control the finned heat exchanger of the heat pump unit to reverse defrosting.
  • defrost phase after the unit enters the defrost program, it starts to increase the compressor operating frequency, reverses the defrost for the finned model, and detects all parameters of the unit in real time, including T high pressure , T defrost , V defrost , and I fan And other parameters.
  • the four-way valve is controlled to switch and the electronic expansion valve is opened to the set number of defrost steps.
  • increase the compressor frequency to the set frequency and control the reverse defrost of the finned heat exchanger to improve the efficiency and effect of defrost.
  • the method may further include: exiting the defrosting process when the defrosting parameter in the defrosting process reaches the exiting defrosting condition.
  • the following is a schematic flowchart of an embodiment of defrosting when the defrosting parameters in the defrosting process of the method of the present invention shown in FIG. 6 reach the defrosting exit condition, to further explain that the defrosting parameters in the defrosting process reach the defrosting process.
  • the specific process of exiting the defrosting process under frost conditions may include steps S610 to S630.
  • step S610 when the heat pump unit meets the defrost conditions, the heat pump unit is controlled to enter a set defrost process, and after the fin heat exchanger of the heat pump unit is controlled to reverse defrost, it obtains Defrost parameters of the heat pump unit under the defrost process (specifically, obtaining the defrost parameters of the heat pump unit under the defrost program).
  • the end of defrosting When the unit detects that any parameter of the unit meets the defrost launch conditions, the unit performs a defrost exit action, adjusts the compressor operating frequency to the unit's initialization frequency, and then the four-way valve performs the commutation. Control and adjust unit operating parameters according to normal control targets.
  • the defrosting parameters may include: the defrosting temperature of the compressor (that is, the temperature of the low-pressure side of the compressor) detected during the continuously set duration, the defrosting time of the heat pump unit, the fan current, and the defrosting temperature of the compressor At least one of the temperature change rate, the inlet water temperature of the heat pump unit during the defrosting process, and the high-pressure side temperature of the compressor.
  • outdoor ambient temperature T outdoor defrosting temperature (low pressure sensor temperature) T defrosting , defrosting temperature change rate V defrosting , unit heating continuous running time t running time , fan current I fan , unit inlet water temperature T inlet water temperature, the defrost defrost duration time t.
  • defrosting temperature low pressure sensor temperature
  • V defrosting defrosting temperature change rate
  • unit heating continuous running time t running time fan current I fan
  • unit inlet water temperature T inlet water temperature the defrost defrost duration time t.
  • step S620 it is determined whether the defrost parameters have reached a set de-frost condition.
  • determining in step S620 whether the defrost parameters meet the set conditions for exiting the defrost may include at least one of the following situations of exiting the defrost.
  • the first kind of defrosting situation the process of judging whether the defrosting conditions are reached according to the defrosting temperature.
  • the following is a schematic flowchart of an embodiment of judging whether to exit the defrost condition according to the defrost temperature in the method of the present invention shown in FIG. 7 to further explain the specific process of judging whether the defrost condition is reached according to the defrost temperature, which may include the following steps: S710 and step S720.
  • step S710 it is determined whether the defrosting temperature is greater than or equal to a set first exiting defrosting temperature (for example, 18 ° C).
  • a set first exiting defrosting temperature for example, 18 ° C.
  • step S720 if the defrost temperature is greater than or equal to the first defrost temperature, it is determined that the defrost temperature reaches the defrost condition.
  • T defrosting ⁇ 18 ° C is detected for 10 consecutive seconds.
  • the judgment is accurate and reliable.
  • the second kind of defrosting situation the process of judging whether the defrosting conditions are reached according to the defrosting time.
  • the following is a flow chart of an embodiment for determining whether the defrosting condition is reached based on the defrost time in the method of the present invention shown in FIG. S810 and step S820.
  • step S810 it is determined whether the defrost time is greater than or equal to a set defrost time (for example, 8 min).
  • step S820 if the defrost time is greater than or equal to the exit defrost time, it is determined that the defrost time reaches the exit defrost condition.
  • the judgment accuracy is good and the reliability is high.
  • the third type of defrost exit the process of judging whether the condition of exiting the defrost is reached according to the fan current.
  • Step S910 The specific process of judging whether the condition for exiting the defrost is reached according to the fan current may include: Step S910 and Step S920.
  • step S910 it is determined whether the fan current is less than or equal to the set defrost current (for example, I is set to 1 ).
  • step S920 if the fan current is less than or equal to the exit defrost current, it is determined that the fan current reaches the exit defrost condition.
  • the unit fan current I fan ⁇ I is set to 1 .
  • the judgment is accurate and reliable.
  • the fourth type of defrosting condition the process of judging whether the condition of defrosting condition is reached is determined based on the temperature change rate.
  • the following is a schematic flowchart of an embodiment for determining whether the condition for exiting the defrost is reached according to the temperature change rate in the method of the present invention shown in FIG. 10, and further describes the specific process of determining whether the condition for exiting the defrost is reached according to the temperature change rate, which may include the following steps: S1010 and step S1020.
  • step S1010 it is determined whether the temperature change rate is greater than or equal to a set exit defrost change rate (for example, 2 ° C / s).
  • a set exit defrost change rate for example, 2 ° C / s.
  • step S1020 if the temperature change rate is greater than or equal to the exit defrost change rate, it is determined that the temperature change rate reaches the exit defrost condition.
  • V defrost ⁇ 2 ° C / s.
  • the judgment is accurate and reliable.
  • the following is a schematic flowchart of an embodiment of determining whether the condition for exiting the defrost according to the temperature of the water in the method of the present invention shown in FIG. 11 is further explained.
  • the specific process of determining whether the condition for exiting the defrost is reached according to the temperature of the water may include: steps S1110 and step S1120.
  • step S1110 it is determined that the temperature of the incoming water is lower than or equal to a set second defrost temperature (eg, 3 ° C).
  • a set second defrost temperature eg, 3 ° C.
  • step S1120 if the temperature of the water inflow is less than or equal to the temperature of the second defrost exit, it is determined that the temperature of the water inflow reaches the defrost exit condition.
  • the judgment is accurate and reliable.
  • the sixth kind of defrosting situation the process of judging whether the defrosting conditions are reached or not according to the high-pressure side temperature.
  • the following is a flow chart of an embodiment for judging whether the condition for exiting the defrost according to the high-pressure side temperature in the method of the present invention shown in FIG. 12 is further explained.
  • the specific process of judging whether the condition for exiting the defrost is reached according to the high-pressure side temperature may include: S1210 and step S1220.
  • step S1210 it is determined whether the high-pressure side temperature is greater than or equal to a set third defrost temperature (for example, 61 ° C).
  • a set third defrost temperature for example, 61 ° C.
  • step S1220 if the high-pressure side temperature is greater than or equal to the third exiting defrosting temperature, it is determined that the high-pressure side temperature reaches the exiting defrosting condition.
  • the judgment accuracy is good and the reliability is high.
  • Step S630 if the defrosting parameter reaches the exiting defrosting condition, after the frequency of the compressor is adjusted to the initialization frequency, the four-way valve is controlled to switch and continuously operate for a set duration to control the The heat pump unit runs according to the set target operating parameters to control the heat pump unit to exit the defrost program.
  • the four-way valve is controlled to switch and continue to run. After a period of time, the heat pump unit is controlled to operate according to the target operating parameters, so that the heat pump unit can withdraw from the defrost program, so that the defrost can be exited in time to meet the normal operation of the heat pump unit, improve the user experience, and save energy consumption.
  • the unit's outdoor environment temperature, low-pressure temperature (or sensor temperature), unit operation time, and unit fan current changes are detected by the unit to comprehensively determine the frost formation of the unit's fins , Timely control the unit to perform defrosting, and improve the defrosting reliability of the unit.
  • a defrosting control device for a heat pump unit corresponding to a defrosting control method of the heat pump unit is also provided.
  • FIG. 13 for a schematic structural diagram of an embodiment of the device of the present invention.
  • the defrost control device of the heat pump unit may include: an obtaining unit 102 and a control unit 104.
  • the obtaining unit 102 may be configured to obtain an outdoor ambient temperature of the heat pump unit and an operating state of the heat pump unit. For the specific function and processing of the obtaining unit 102, refer to step S110.
  • control unit 104 may be configured to determine whether the outdoor ambient temperature is greater than or equal to a lower limit (for example, 5 ° C) of the first set temperature range.
  • a lower limit for example, 5 ° C
  • control unit 104 may be further configured to determine the outdoor environment temperature according to the outdoor environment temperature and the operating state if the outdoor environment temperature is less than a lower limit of the first set temperature range. Whether the heat pump unit meets the set defrosting conditions (for example, it can be determined according to the position of the outdoor environment temperature in the first set temperature range and the second set temperature range and the operating state. Satisfy the set defrost conditions) to control the heat pump unit to enter a set defrost process if the heat pump unit meets the defrost conditions.
  • the unit For example: running time after the unit when the detected temperature of the environment II ⁇ IV range (e.g., 5 °C> T outdoor), the unit detects the last defrosting operation time t is completed, continuous operation time t is determined and set operating time predetermined time T is compared, when the unit detects continuous heating operation time t ⁇ 3h run time, the unit has been met is determined defrost unit run time, and this time the detection unit T defrost, defrost when detecting ⁇ T -6 °C, determine the fins of the unit meet the defrost conditions, and detect the unit fan current I fan . When the fan current I is detected, the fan ⁇ I is set to 1 , and the unit's inlet water temperature is detected.
  • the fan current I When the fan current I is detected, the fan ⁇ I is set to 1 , and the unit's inlet water temperature is detected.
  • the inlet water temperature T When the inlet water temperature T, the inlet water temperature is ⁇ At 8 ° C, it is judged that the water temperature meets the defrost conditions. At the same time, the time conditions, temperature conditions, fan current conditions, and water temperature conditions combined with the previous conditions are determined. The four conditions comprehensively determine that the unit meets the defrost conditions, and the unit enters the defrost.
  • step S130 For specific functions and processes of the control unit 104, refer to step S130.
  • the outdoor environment temperature of the heat pump unit is less than the lower limit of the first set temperature range, whether the heat pump unit meets the set defrost conditions is determined according to the outdoor environment temperature and the operating state of the heat pump unit, so that the heat pump unit When the defrosting conditions are met, the defrosting is performed in a timely manner, on the one hand, the timeliness and reliability of the defrosting are ensured, and on the other hand, the defrost-free defrosting or the defrosting time is too long.
  • the operating state may include: operating time (ie, the operating time of the continuous operation of the heat pump unit after the last defrost is completed), the defrost temperature on the low pressure side of the compressor, the temperature change rate of the defrost temperature on the low pressure side of the compressor, At least one of fan current and inlet water temperature.
  • the unit detects the outdoor ambient temperature, low pressure temperature (or sensor temperature) of the unit, the unit's operating time, and the change of the unit fan current, comprehensively determines the frost formation of the unit's fins, and timely controls the unit to perform defrosting.
  • Frost, no frost, no heat improve the unit's winter heating and heating energy efficiency and user comfort.
  • the frost formation of the unit's fins can be accurately determined, and the defrost of the unit can be controlled in time to ensure the winter heating effect and unit energy efficiency of the unit and reduce the unit's winter energy consumption.
  • control unit 104 determines whether the heat pump unit meets the set defrost conditions according to the outdoor ambient temperature and the operating state, and may include any of the following situations for determining the defrost conditions.
  • the control unit 104 may also be specifically configured to enter a setting according to the operating state if the outdoor ambient temperature is greater than or equal to a lower limit of the first set temperature range The first defrost judgment process.
  • the unit performs the first defrost judgment process (such as defrost judgment 1) according to the operating status.
  • control unit 104 enters a set first defrost judgment process according to the operating state, which may include:
  • the control unit 104 may also be specifically configured to determine whether the running time of the heat pump unit is greater than or equal to a first set time (for example, 30 min). For specific functions and processes of the control unit 104, refer to step S210.
  • the control unit 104 may be specifically configured to determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to the first time if the operating time is greater than or equal to the first set time.
  • a set temperature difference (such as 4 ° C). For specific functions and processes of the control unit 104, refer to step S220.
  • the control unit 104 may also be specifically configured to determine whether the temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to the first set change rate if the defrost temperature difference is greater than or equal to the first set temperature. (Such as a). For specific functions and processes of the control unit 104, refer to step S230.
  • the control unit 104 may also be specifically configured to determine whether the fan current of the heat pump unit is greater than or equal to a first set current (such as I, if the temperature change rate is greater than or equal to the first set change rate). Let 2 ). For specific functions and processes of the control unit 104, refer to step S240.
  • the control unit 104 may also be specifically configured to determine whether the inlet temperature of the heat pump unit is greater than or equal to a first set temperature (for example, 9 ° C) if the fan current is greater than or equal to the first set current. ) To determine that the heat pump unit meets the defrost condition in a case where the inlet water temperature is greater than or equal to the first set temperature. For specific functions and processes of the control unit 104, refer to step S250.
  • Defrost judgment 1 Detect unit size running time t running time .
  • the current I fan when the I fan is detected ⁇ I set 2 , it meets the defrosting conditions of the fan, and the unit's T inlet water temperature is detected.
  • the unit When the unit is detected to meet the T inlet water temperature ⁇ 9 ° C, it is judged that the unit meets the defrosting. Conditions, the unit performs defrosting action.
  • the defrosting temperature difference between the outdoor environment temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • the control unit 104 may also be specifically used if the outdoor ambient temperature is less than the lower limit of the first set temperature range (that is, the upper limit of the second set temperature range, such as -5 ° C) and is greater than or equal to the lower limit of the second set temperature range (such as -10 ° C), then enters a set second defrost judgment process according to the operating state.
  • An upper limit of the second set temperature range is equal to a lower limit of the first set temperature range.
  • the unit when -5 °C > T outdoor ⁇ -10 °C, the unit performs the second defrost judgment process (such as defrost judgment 2) according to the operating status.
  • the second defrost judgment process such as defrost judgment 2
  • control unit 104 enters a set second defrost judgment process according to the running state, which may include:
  • the control unit 104 may be specifically configured to determine whether the running time of the heat pump unit is greater than or equal to a second set time (for example, 45 min). For specific functions and processes of the control unit 104, refer to step S310.
  • the control unit 104 may also be specifically configured to determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to the first time if the operating time is greater than or equal to the second set time. Second, set the temperature difference (such as 5 °C). For specific functions and processes of the control unit 104, refer to step S320.
  • the control unit 104 may also be specifically configured to determine whether the temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to the second set change rate if the defrost temperature difference is greater than or equal to the second set temperature. (Such as b). For specific functions and processes of the control unit 104, refer to step S330.
  • the control unit 104 may also be specifically configured to determine whether the fan current of the heat pump unit is greater than or equal to a second set current (such as I, if the temperature change rate is greater than or equal to the second set change rate). Let 3 ). For specific functions and processes of the control unit 104, refer to step S340.
  • the control unit 104 may also be specifically configured to determine whether the inlet water temperature of the heat pump unit is greater than or equal to a second set temperature (for example, 8 ° C) if the fan current is greater than or equal to the second set current. ) To determine that the heat pump unit meets the defrost condition in a case where the inlet water temperature is greater than or equal to the second set temperature. For specific functions and processes of the control unit 104, refer to step S350.
  • ⁇ T defrosting ⁇ 5 the size of V defrosting is judged.
  • V defrosting ⁇ b the unit meets the defrosting conditions and the fan current of the unit is detected at the same time.
  • I fan when I fan is detected ⁇ I set to 3 , it meets the defrosting conditions of the fan and at the same time detects the unit T inlet water temperature . When it is detected that the unit meets the T inlet water temperature ⁇ 8 °C, it is judged that the unit meets the defrosting conditions. , The unit performs defrosting action.
  • the defrosting temperature difference between the outdoor ambient temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • the third case of determining the defrosting condition The control unit 104 may also be specifically configured to, if the outdoor ambient temperature is less than the lower limit of the second set temperature range (for example, -10 ° C), according to the operation The state enters the set third defrost judgment process.
  • the lower limit of the second set temperature range for example, -10 ° C
  • the unit enters the set third defrost judgment process (such as defrost judgment 3) according to the operating state.
  • control unit 104 enters a set third defrost judgment process according to the operating state, which may include:
  • the control unit 104 may be specifically configured to determine whether the running time of the heat pump unit is greater than or equal to a third set time (for example, 55 min). For specific functions and processes of the control unit 104, refer to step S410.
  • the control unit 104 may also be specifically configured to determine whether the defrost temperature difference between the outdoor environment temperature and the defrost temperature of the heat pump unit is greater than or equal to the first time if the operating time is greater than or equal to the third set time. Three set temperature difference (such as 6 °C). For specific functions and processes of the control unit 104, refer to step S420.
  • the control unit 104 may also be specifically configured to determine whether a temperature change rate of the defrost temperature of the heat pump unit is greater than or equal to a third set change rate if the defrost temperature difference is greater than or equal to the third set temperature. (Such as c). For specific functions and processes of the control unit 104, refer to step S430.
  • the control unit 104 may also be specifically configured to determine whether the fan current of the heat pump unit is greater than or equal to a third set current (such as I, if the temperature change rate is greater than or equal to the third set change rate). Let 4 ). For specific functions and processes of the control unit 104, refer to step S440.
  • the control unit 104 may also be specifically configured to determine whether the temperature of the inlet water of the heat pump unit is greater than or equal to a third set temperature (such as 7 ° C.) if the fan current is greater than or equal to the third set current. ) To determine that the heat pump unit satisfies the defrost condition in a case where the inlet water temperature is greater than or equal to the third set temperature. For specific functions and processes of the control unit 104, refer to step S450.
  • Defrost judgment 3 Detect the unit size running time t running time .
  • ⁇ T defrosting ⁇ 6 the size of V defrosting is judged.
  • V defrosting ⁇ c the unit meets the defrosting conditions and the fan current of the unit is detected.
  • I fan is detected ⁇ I set to 4 , it meets the defrosting conditions of the fan, and the unit's T inlet water temperature is detected.
  • T inlet water temperature ⁇ 7 ° C it is judged that the unit meets the defrost conditions.
  • the unit performs defrosting action.
  • the defrosting temperature difference between the outdoor environment temperature and the defrosting temperature, the temperature change rate of the defrosting temperature of the heat pump unit, the fan current, and the The water temperature and other factors accurately determine whether the heat pump unit meets the defrosting conditions, and the judgment is accurate and reliable.
  • control unit 104 controls the heat pump unit to enter a set defrost process when the heat pump unit meets the defrost conditions, which may include:
  • the control unit 104 may also be specifically configured to control the heat pump unit's compressor frequency after the compressor frequency of the heat pump unit is adjusted to a set initialization frequency if the heat pump unit meets the defrost conditions.
  • the four-way valve is reversed, and the opening degree of the electronic expansion valve of the heat pump unit is opened to a set number of defrost steps, so as to control the heat pump unit to perform a defrost operation and enter a set defrost program.
  • step S510 For specific functions and processes of the control unit 104, refer to step S510.
  • preparation before defrosting when the unit detects that the defrosting conditions are met, the unit starts to operate, first adjust the compressor operating frequency, adjust the unit compressor frequency to the unit's initialization frequency, and the four-way valve starts after the adjustment is completed
  • the electronic expansion valve is opened to the number of defrost steps, and the unit enters the defrost operation.
  • the control unit 104 may be specifically configured to increase the frequency of the compressor to a set frequency and control the fin heat exchanger of the heat pump unit when the heat pump unit enters the defrosting program. Reverse defrosting. For specific functions and processes of the control unit 104, refer to step S520.
  • defrost phase after the unit enters the defrost program, it starts to increase the compressor operating frequency, reverses the defrost for the finned model, and detects all parameters of the unit in real time, including T high pressure , T defrost , V defrost , and I fan And other parameters.
  • the four-way valve is controlled to switch and the electronic expansion valve is opened to the set number of defrost steps.
  • increase the compressor frequency to the set frequency and control the reverse defrost of the finned heat exchanger to improve the efficiency and effect of defrost.
  • the method may further include a process of withdrawing the defrosting when the defrosting parameter in the defrosting process reaches the condition for defrosting, as follows:
  • the control unit 104 may be further configured to control the heat pump unit to enter a set defrost process when the heat pump unit meets the defrost conditions, and to control the finned heat exchange of the heat pump unit After the defrost is reversed, the defrost parameters of the heat pump unit under the defrost process are obtained (specifically, the defrost parameters of the heat pump unit under the defrost program are obtained).
  • the control unit 104 For specific functions and processes of the control unit 104, refer to step S610.
  • the end of defrosting When the unit detects that any parameter of the unit meets the defrost launch conditions, the unit performs a defrost exit action, adjusts the compressor operating frequency to the unit's initialization frequency, and then the four-way valve performs the commutation. Control and adjust unit operating parameters according to normal control targets.
  • the defrosting parameters may include: the defrosting temperature of the compressor (that is, the temperature of the low-pressure side of the compressor) detected during the continuously set duration, the defrosting time of the heat pump unit, the fan current, and the defrosting temperature of the compressor At least one of the temperature change rate, the inlet water temperature of the heat pump unit during the defrosting process, and the high-pressure side temperature of the compressor.
  • outdoor ambient temperature T outdoor defrosting temperature (low pressure sensor temperature) T defrosting , defrosting temperature change rate V defrosting , unit heating continuous running time t running time , fan current I fan , unit inlet water temperature T inlet water temperature, the defrost defrost duration time t.
  • defrosting temperature low pressure sensor temperature
  • V defrosting defrosting temperature change rate
  • unit heating continuous running time t running time fan current I fan
  • unit inlet water temperature T inlet water temperature the defrost defrost duration time t.
  • the control unit 104 may be further configured to determine whether the defrost parameters have reached a set exit defrost condition. For specific functions and processes of the control unit 104, refer to step S620.
  • control unit 104 determines whether the defrost parameters reach a set condition for exiting the defrost, which may include at least one of the following conditions for exiting the defrost:
  • the first kind of defrosting situation the process of judging whether the defrosting conditions are reached according to the defrosting temperature, as follows:
  • the control unit 104 may also be specifically configured to determine whether the defrosting temperature is greater than or equal to a set first exiting defrosting temperature (eg, 18 ° C.). For specific functions and processes of the control unit 104, refer to step S710.
  • a set first exiting defrosting temperature eg, 18 ° C.
  • the control unit 104 may be specifically configured to determine that the defrost temperature reaches the defrost exit condition if the defrost temperature is greater than or equal to the first exit defrost temperature. For specific functions and processes of the control unit 104, refer to step S720.
  • T defrosting ⁇ 18 ° C is detected for 10 consecutive seconds.
  • the judgment is accurate and reliable.
  • the second kind of defrosting situation the process of determining whether the defrosting conditions have been reached according to the defrosting time, as follows:
  • the control unit 104 may be specifically configured to determine whether the defrost time is greater than or equal to a set defrost time (for example, 8 min). For specific functions and processes of the control unit 104, refer to step S810.
  • the control unit 104 may also be specifically configured to determine that the defrost time reaches the defrost condition if the defrost time is greater than or equal to the defrost time. For specific functions and processes of the control unit 104, refer to step S820.
  • the judgment accuracy is good and the reliability is high.
  • the third type of defrost exit the process of judging whether the condition of exiting the defrost is reached according to the fan current, as follows:
  • the control unit 104 may also be specifically configured to determine whether the fan current is less than or equal to a set defrost current (for example, I is set to 1 ). For specific functions and processes of the control unit 104, refer to step S910.
  • the control unit 104 may also be specifically configured to determine that the fan current reaches the exiting defrosting condition if the fan current is less than or equal to the exiting defrosting current. For specific functions and processes of the control unit 104, refer to step S920.
  • the unit fan current I fan ⁇ I is set to 1 .
  • the judgment is accurate and reliable.
  • the fourth defrost situation the process of judging whether the defrost conditions are reached according to the temperature change rate is as follows:
  • the control unit 104 may also be specifically configured to determine whether the temperature change rate is greater than or equal to a set exit defrost change rate (eg, 2 ° C / s). For specific functions and processes of the control unit 104, refer to step S1010.
  • a set exit defrost change rate eg, 2 ° C / s
  • the control unit 104 may also be specifically configured to determine that the temperature change rate reaches the withdrawal defrosting condition if the temperature change rate is greater than or equal to the withdrawal defrosting change rate. For specific functions and processes of the control unit 104, refer to step S1020.
  • V defrost ⁇ 2 ° C / s.
  • the judgment is accurate and reliable.
  • the control unit 104 may also be specifically configured to determine that the temperature of the incoming water is less than or equal to a set second exit defrost temperature (for example, 3 ° C). For specific functions and processes of the control unit 104, refer to step S1110.
  • the control unit 104 may also be specifically configured to determine that the temperature of the inlet water reaches the condition of exiting the defrosting if the temperature of the inlet water is less than or equal to the second temperature of the defrosting. For specific functions and processes of the control unit 104, refer to step S1120.
  • the judgment is accurate and reliable.
  • the sixth kind of defrosting situation the process of judging whether the defrosting conditions are reached based on the high-pressure side temperature is as follows:
  • the control unit 104 may also be specifically configured to determine whether the high-pressure-side temperature is greater than or equal to a set third defrost temperature (eg, 61 ° C.). For specific functions and processes of the control unit 104, refer to step S1210.
  • a set third defrost temperature eg, 61 ° C.
  • the control unit 104 may also be specifically configured to determine that if the high-pressure side temperature is greater than or equal to the third exiting defrosting temperature, the high-pressure side temperature reaches the exiting defrosting condition. For specific functions and processes of the control unit 104, refer to step S1220.
  • the judgment accuracy is good and the reliability is high.
  • the control unit 104 may be further configured to control the four-way valve to switch and continuously operate after adjusting the compressor frequency to the initialization frequency if the defrost parameters reach the exiting defrost conditions. After the set time period, the heat pump unit is controlled to operate according to the set target operation parameter, so as to control the heat pump unit to exit the defrost program.
  • the control unit 104 For specific functions and processes of the control unit 104, refer to step S630.
  • the four-way valve is controlled to switch and continue to run. After a period of time, the heat pump unit is controlled to operate according to the target operating parameters, so that the heat pump unit can withdraw from the defrost program, so that the defrost can be exited in time to meet the normal operation of the heat pump unit, improve the user experience, and save energy consumption.
  • the outdoor temperature of the unit can be detected by the unit to improve the unit's winter heating energy efficiency and user use Comfort.
  • a heat pump unit corresponding to a defrost control device of the heat pump unit is also provided.
  • the heat pump unit may include the defrost control device of the heat pump unit described above.
  • the scheme of the present invention comprehensively judges the frost formation of the fins of the unit by detecting the outdoor ambient temperature of the unit, the low pressure temperature (or sensor temperature), the operating time of the unit, and the change of the unit fan current. Control the unit to perform defrosting in time to truly achieve defrosting, without frost, and improve the unit's winter heating and heating energy efficiency and user comfort.
  • the frost formation of the unit's fins can be accurately determined, and the defrost of the unit can be controlled in time to ensure the winter heating effect and unit energy efficiency of the unit and reduce the unit's winter energy consumption.
  • the main key components of the two air-conditioning systems shown in (a) and (b) in Figure 14 are the same.
  • the air-conditioning system shown in (a) uses two low-voltage switches on the low-pressure side of the compressor.
  • the air-conditioning system shown in the figure uses a pressure sensor instead of two pressure switches on the low-pressure side of the compressor.
  • the functions are the same. They both detect the system low pressure and protect the unit from running at too low a pressure.
  • the air-conditioning system shown in (a) of FIG. 14 may include: a compressor 1, an exhaust temperature package 2, a high-pressure switch 3, a high-pressure sensor 4, a four-way valve 5, a fin heat exchanger 6, and an ambient temperature Package 7, defrost temperature sensing package 8, electronic expansion valve 9, water-side heat exchanger 10, outlet temperature sensing package 11, inlet temperature sensing package 12, water pump 13, gas-liquid separator 14, heating low-pressure switch 15 and Refrigeration low-voltage switch 16.
  • a low-pressure sensor 17 is used instead of the heating low-pressure switch 15 and the refrigeration low-pressure switch 16 in the air-conditioning system shown in FIG. 14 (a).
  • the compressor can be used to compress a low-temperature and low-pressure refrigerant into a high-temperature and high-pressure gaseous refrigerant.
  • High-pressure switch can be used to prevent the system pressure from being too high and shut down the system when the pressure exceeds a certain value to protect the unit's operational reliability.
  • the high pressure sensor can be used to detect the high pressure of the system, and the system for cooling and heating is controlled within a reasonable range.
  • Four-way valve can be used to switch the refrigerant flow path for cooling and heating.
  • Finned heat exchangers can be used to condense high-temperature and high-pressure gaseous refrigerants into medium-temperature and high-pressure liquid refrigerants.
  • Electronic expansion valve can be used to throttling and reducing liquid refrigerant at medium temperature and high pressure to gas-liquid two-phase refrigerant at low temperature and low pressure.
  • the water-side heat exchanger can be used to evaporate the refrigerant into a gaseous state in the heat exchanger, while absorbing heat, and changing the water in the heat exchanger from high-temperature water to cold water.
  • the water pump can be used to circulate the water in the water system and continuously produce cold water or hot water for indoor heat exchange.
  • the gas-liquid separator can be used for gas-liquid separation of the refrigerant, so that the refrigerant entering the compressor is in a gaseous state, preventing the compressor from being damaged due to the compression of the liquid refrigerant.
  • Low-pressure switch or low-pressure sensor can be used to prevent the system from being damaged by the low pressure of the system. When the protection value is exceeded, it will act in time to protect the unit from stopping.
  • the defrosting control method proposed by the present invention mainly includes the following parameters: outdoor ambient temperature T outdoor , defrosting temperature (low pressure sensor temperature) T defrosting , defrosting temperature change rate V defrost , unit heating continuous running time t running time , fan current I fan , unit inlet water temperature T inlet water temperature , defrost duration t defrost time .
  • the determination of the defrost entry conditions can be referred to the following description.
  • the unit's continuous heating operation time t running time , outdoor ambient temperature T outdoor , defrosting temperature (or low-pressure sensor temperature) T defrosting , fan current I fan , unit water temperature T water temperature are detected in real time.
  • the purpose of detecting the water temperature is to prevent the unit's pipeline from icing during the defrosting process.
  • the unit's defrosting is a refrigeration operation. At this time, the unit's inlet water temperature is high and the outlet water temperature is low. When it is detected that the effluent temperature of the unit is lower than a certain value, the unit automatically exits the defrosting to prevent the unit from freezing.
  • the inlet water is 7 ° C
  • the outlet water is 4 ° C.
  • the water temperature of the entire system gradually decreases, and the outlet water temperature gradually decreases.
  • the outlet water temperature is detected to be lower than 2 ° C, we The program judges that the defrosting action can no longer be performed. In order to protect the unit, the defrosting must be stopped to prevent the unit from freezing.
  • Priority operating outdoor unit detects the outdoor temperature T is determined to enter defrosting the outdoor unit according to the outdoor temperature T ambient conditions.
  • the unit performs the first defrost judgment process (such as defrost judgment 1) according to the operating status.
  • the unit performs the second defrost judgment process (such as defrost judgment 2) according to the operating status.
  • the unit enters the set third defrost judgment process (such as defrost judgment 3) according to the operating status.
  • the continuous operation time t is determined and the operation time setting time T is compared, when detecting unit continuous heating operation time t ⁇ 3h run time, the unit has been met is determined defrost unit run time, and this time the detection unit T defrost, defrost when detecting T ⁇ -6 °C, the fin unit is determined to meet the defrost Conditions, the unit fan current I fan is detected at the same time, when the fan current I fan ⁇ I is set to 1 , the water inlet temperature of the unit is detected, when the water inlet temperature T water inlet temperature ⁇ 8 °C, it is judged that the water temperature meets the defrost conditions, At the same time, the time condition, temperature condition, fan current condition, and water temperature condition are detected and combined. The four conditions comprehensively determine that the unit meets the defrost conditions, and the unit enters the defrost.
  • the unit fan current I fan ⁇ I is set to 1 .
  • the defrosting process may refer to the following description.
  • the unit When the unit detects that the defrosting conditions are met, the unit starts to operate, first adjust the compressor operating frequency, adjust the unit compressor frequency to the unit's initialization frequency, after the adjustment is complete, the four-way valve starts to commutate, and at the same time electronic expansion
  • the valve opens to the number of defrost steps, and the unit enters the defrost operation.
  • the unit After entering the defrosting program, the unit started to increase the compressor operating frequency, reverse defrosting for finned models, and detect all parameters of the unit in real time, including T high pressure , T defrosting , V defrosting , I fan and other parameters.
  • the unit When the unit detects that any parameter of the unit meets the defrost launch conditions, the unit performs the defrost exit action, adjusts the compressor operating frequency to the unit's initialization frequency, and then the four-way valve performs the commutation. After 1 minute of continuous operation, the unit controls according to the normal control target Adjust unit operating parameters.
  • defrosting can be controlled by detecting the low-pressure temperature of the evaporator, or defrosting can be performed by periodic time.
  • the two schemes are compared with our proposal, which contrasts the advantages of our scheme.
  • These two schemes have certain limitations, which causes the unit to enter the defrost without frost. At this time, the fins are not A lot of frost is formed. At this time, entering the defrost wastes energy, reduces the system water temperature, and affects the energy efficiency of the unit.
  • the technical solution of the present invention is adopted to determine the defrosting condition of the fins of the unit by incorporating the change in the current of the fan into the defrosting condition of the unit, and to control the defrosting of the unit in time to improve the reliability of the defrosting of the unit. .
  • a storage medium corresponding to a defrost control method of a heat pump unit is also provided.
  • the storage medium may include: a plurality of instructions are stored in the storage medium; and the plurality of instructions are used by a processor to load and execute the defrost control method of the heat pump unit described above.
  • the technical solution of the present invention is adopted to determine the defrosting condition of the fins of the unit by incorporating the change of the current of the fan into the defrosting condition of the unit to ensure the winter heating effect and the energy efficiency of the unit, and reduce the Energy consumption in winter.
  • a heat pump unit corresponding to a defrosting control method of the heat pump unit is also provided.
  • the heat pump unit may include: a processor for executing a plurality of instructions; a memory for storing a plurality of instructions; wherein the plurality of instructions are used for storing by the memory and loaded and loaded by the processor; The defrosting control method of the heat pump unit described above is performed.
  • the technical solution of the present invention is adopted to determine the defrosting condition of the fins of the unit by incorporating the change in the current of the fan into the defrosting condition of the unit, and to control the defrosting of the unit in time to improve the heating heating efficiency in the winter And user comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种热泵机组的化霜控制方法、装置、存储介质及热泵机组,该方法包括:获取所述热泵机组的室外环境温度和运行状态;确定所述室外环境温度是否大于或等于第一设定温度范围的下限;若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。可以解决对室外机翅片进行化霜时不合理的进入化霜条件导致化霜可靠性差的问题,达到提升化霜可靠性的效果。

Description

热泵机组的化霜控制方法、装置、存储介质及热泵机组
本申请要求于2018年9月21日提交中国专利局、申请号为201811108112.3、发明名称为“热泵机组的化霜控制方法、装置、存储介质及热泵机组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于热泵机组技术领域,具体涉及一种热泵机组的化霜控制方法、装置、存储介质及热泵机组,尤其涉及一种多参数判断的热泵水机机组化霜控制方法、与该方法对应的装置、具有该装置的热泵机组、存储有该方法对应的指令的计算机可读存储介质、以及能够执行该方法对应的指令的热泵机组。
背景技术
热泵热水机在冬季进行制热时,因为需要从低温环境中吸收热量,低蒸发温度普遍较低,这样就会导致室外空气中的水分遇冷成霜附着在室外换热器表面,增加室外换热器的热阻,导致机组制热能力变差,影响机组制热能力能效,此时需要及时将室外机翅片上的霜化掉。但是化霜的进入条件对机组的制热能力能效影响较大,不合理的化霜条件导致机组在冬季无霜也会进入化霜或者化霜时间过长,造成机组能耗提高并且严重影响用户使用舒适性。
发明内容
本发明的目的在于,针对上述缺陷,提供一种热泵机组的化霜控制方法、装置、存储介质及热泵机组,以解决现有技术中对室外机翅片进行化霜时不合理的进入化霜条件导致化霜可靠性差的问题,达到提升化霜可靠性的效果。
本发明提供一种热泵机组的化霜控制方法,包括:获取所述热泵机组的室外环境温度和运行状态;确定所述室外环境温度是否大于或等于第一设定温度范围的下限;若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
可选地,根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,包括:若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程;或者,若所述室外环境温度小于所述第一设定温度范围的下限、且大于或等于第二设定温度范围的下限,则根据所述运行状态进入设定的第二化霜判断过程;所述第二设定温度范围的上限等于所述第一设定温度范围的下限;或者,若所述室外环境温度小于所述第二设定温度范围的下限,则根据所述运行状态进入设定的第三化霜判断过程。
可选地,所述运行状态,包括:运行时间、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一;其中,根据所述运行状态进入设定的第一化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第一设定时间;若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差;若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变化率;若所述温度变化率大于或等于所述第一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流;若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度,以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件;或者,根据所述运行状态进入设定的第二化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第二设定时间;若所述运行时间大于或等于所述第二设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差;若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率;若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流;若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度,以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件;或者,根据所述运行状态进入设定的第三化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第三设定时间;若所 述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差;若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率;若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流;若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度,以在所述进水温度大于或等于所述第三设定温度的情况下确定所述热泵机组满足所述化霜条件。
可选地,在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程,包括:在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序;在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。
可选地,还包括:获取所述热泵机组在所述化霜过程下的化霜参数;确定所述化霜参数是否达到设定的退出化霜条件;若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机组退出所述化霜程序。
可选地,所述化霜参数,包括:连续设定时长内检测到的压缩机的化霜温度、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一;其中,确定所述化霜参数是否达到设定的退出化霜条件,包括:确定所述化霜温度是否大于或等于设定的第一退出化霜温度;若所述化霜温度大于或等于所述第一退出化霜温度,则确定所述化霜温度达到所述退出化霜条件;或者,确定所述化霜时间是否大于或等于设定的退出化霜时间;若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件;或者,确定所述风机电流是否小于或等于设定的退出化霜电流;若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件;或者,确定所述温 度变化率是否大于或等于设定的退出化霜变化率;若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件;或者,确定所述进水温度小于或等于设定的第二退出化霜温度;若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件;或者,确定所述高压侧温度是否大于或等于设定的第三退出化霜温度;若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。
与上述方法相匹配,本发明另一方面提供一种热泵机组的化霜控制装置,包括:获取单元,用于获取所述热泵机组的室外环境温度和运行状态;控制单元,用于确定所述室外环境温度是否大于或等于第一设定温度范围的下限;所述控制单元,还用于若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
可选地,所述控制单元根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,包括:若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程;或者,若所述室外环境温度小于所述第一设定温度范围的下限、且大于或等于第二设定温度范围的下限,则根据所述运行状态进入设定的第二化霜判断过程;所述第二设定温度范围的上限等于所述第一设定温度范围的下限;或者,若所述室外环境温度小于所述第二设定温度范围的下限,则根据所述运行状态进入设定的第三化霜判断过程。
可选地,所述运行状态,包括:运行时间、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一;其中,所述控制单元根据所述运行状态进入设定的第一化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第一设定时间;若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差;若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变 化率;若所述温度变化率大于或等于所述第一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流;若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度,以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件;或者,所述控制单元根据所述运行状态进入设定的第二化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第二设定时间;若所述运行时间大于或等于所述第二设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差;若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率;若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流;若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度,以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件;或者,所述控制单元根据所述运行状态进入设定的第三化霜判断过程,包括:确定所述热泵机组的运行时间是否大于或等于第三设定时间;若所述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差;若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率;若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流;若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度,以在所述进水温度大于或等于所述第三设定温度的情况下确定所述热泵机组满足所述化霜条件。
可选地,所述控制单元在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程,包括:在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序;在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。
可选地,还包括:所述控制单元,还用于获取所述热泵机组在所述化霜过程下的化霜参数;所述控制单元,还用于确定所述化霜参数是否达到设定的退出化霜条件;所述控制单元,还用于若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机组退出所述化霜程序。
可选地,所述化霜参数,包括:连续设定时长内检测到的压缩机的化霜温度、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一;其中,所述控制单元确定所述化霜参数是否达到设定的退出化霜条件,包括:确定所述化霜温度是否大于或等于设定的第一退出化霜温度;若所述化霜温度大于或等于所述第一退出化霜温度,则确定所述化霜温度达到所述退出化霜条件;或者,确定所述化霜时间是否大于或等于设定的退出化霜时间;若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件;或者,确定所述风机电流是否小于或等于设定的退出化霜电流;若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件;或者,确定所述温度变化率是否大于或等于设定的退出化霜变化率;若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件;或者,确定所述进水温度小于或等于设定的第二退出化霜温度;若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件;或者,确定所述高压侧温度是否大于或等于设定的第三退出化霜温度;若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。
与上述装置相匹配,本发明再一方面提供一种热泵机组,包括:以上所述的热泵机组的化霜控制装置。
与上述方法相匹配,本发明再一方面提供一种存储介质,包括:所述存储介质中存储有多条指令;所述多条指令,用于由处理器加载并执行以上所述的热泵机组的化霜控制方法。
与上述方法相匹配,本发明再一方面提供一种热泵机组,包括:处理器,用于执行多条指令;存储器,用于存储多条指令;其中,所述多条指令,用于由所述存储器存储,并由所述处理器加载并执行以上所述的热泵机组的化霜控制方法。
本发明的方案,通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间,以及机组风机电流变化情况,综合判断机组翅片的结霜情况,及时控制机组进行化霜,提升机组的化霜可靠性。
进一步,本发明的方案,通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间、以及机组风机电流变化情况,提高机组冬季采暖制热能效和用户使用舒适度。
进一步,本发明的方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,提升机组的化霜可靠性。
进一步,本发明的方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,保证机组冬季制热效果和机组能效,降低机组的冬季使用能耗。
进一步,本发明的方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,提高机组冬季采暖制热能效和用户使用舒适度。
由此,本发明的方案,通过根据机组室外环境温度、低压温度、机组运行时间、以及机组风机电流变化情况,综合判断机组翅片的结霜情况,以在确定需要化霜时及时控制机组进行化霜,解决现有技术中对室外机翅片进行化霜时不合理的进入化霜条件导致化霜可靠性差的问题,从而,克服现有技术中化霜可靠性差、机组能耗高和用户体验差的缺陷,实现化霜可靠性好、机组能耗低和用户体验好的有益效果。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的热泵机组的化霜控制方法的一实施例的流程示意图;
图2为本发明的方法中根据所述运行状态进入设定的第一化霜判断过程的一实施例的流程示意图;
图3为本发明的方法中根据所述运行状态进入设定的第二化霜判断过程的一实施例的流程示意图;
图4为本发明的方法中根据所述运行状态进入设定的第三化霜判断过程的一实施例的流程示意图;
图5为本发明的方法中在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程的一实施例的流程示意图;
图6为本发明的方法中在化霜过程中的化霜参数达到退出化霜条件时退出化霜的一实施例的流程示意图;
图7为本发明的方法中根据化霜温度判断是否达到退出化霜条件的一实施例的流程示意图;
图8为本发明的方法中根据化霜时间判断是否达到退出化霜条件的一实施例的流程示意图;
图9为本发明的方法中根据风机电流判断是否达到退出化霜条件的一实施例的流程示意图;
图10为本发明的方法中根据温度变化率判断是否达到退出化霜条件的一实施例的流程示意图;
图11为本发明的方法中根据进水温度判断是否达到退出化霜条件的一实施例的流程示意图;
图12为本发明的方法中根据高压侧温度判断是否达到退出化霜条件的一实施例的流程示意图;
图13为本发明的热泵机组的化霜控制装置的一实施例的结构示意图;
图14为本发明的热泵机组(如空调系统)的一实施例的结构示意图,其中,(a)为设置有两个低压开关的空调系统,(b)为设置有一个压力传感器的空调系统;
图15为本发明的热泵机组的一实施例的控制系统逻辑示意图;
图16为本发明的热泵机组的一实施例的化霜时序示意图。
结合附图,本发明实施例中附图标记如下:
102-获取单元;104-控制单元;1-压缩机;2-排气感温包;3-高压开关;4-高压传感器;5-四通阀;6-翅片换热器;7-环境感温包;8-化霜感温包;9-电子膨胀阀;10-水侧换热器;11-出水感温包;12-进水感温包;13-水泵;14-气液分离器(即汽分);15-制热低压开关;16-制冷低压开关;17-低压传感器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的实施例,提供了一种热泵机组的化霜控制方法,如图1所示本发明的方法的一实施例的流程示意图。该热泵机组的化霜控制方法可以包括:步骤S110至步骤S130。
在步骤S110处,获取所述热泵机组的室外环境温度和所述热泵机组的运行状态。
例如:优先检测机组运行室外环境温度T 室外,根据室外环境温度T 室外判断机组的进入化霜的条件。
在步骤S120处,确定所述室外环境温度是否大于或等于第一设定温度范围的下限(如5℃)。
在步骤S130处,若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件(如具体可以是根据所述室外环境温度在第一设定温度范围和第二设定温度范围中所处位置和所述运行状态确定所述热泵机组是否满足设定的化霜条件),以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
例如:当检测到机组所处环境温度在Ⅱ~Ⅳ范围(如5℃>T 室外)内时,检测机组上次化霜完毕后的运行时间t 运行时间,判断连续运行时间t 运行时间与设定T 进行比较,当检测到机组连续制热运行时间t 运行时间≥3h时,判断机组已经满 足机组化霜运行时间,并检测此时机组的T 化霜,当检测到T 化霜≤-6℃,判断机组翅片满足化霜条件,同时检测机组风机电流大小I 风机,当检测到风机电流I 风机≥I 设1,检测机组的进水温度,当进水温度T 进水温度≥8℃时,判断水温满足化霜条件,同时检测结合之前的时间条件、温度条件、风机电流条件、水温条件,4个条件综合判断机组满足化霜条件,机组进入化霜。
具体使用过程中,若所述室外环境温度大于或等于所述第一设定温度范围的下限,则所述热泵机组不进入化霜。
例如:当T 室外≥5℃时,机组不进入化霜。
由此,通过在热泵机组的室外环境温度小于第一设定温度范围的下限的情况下,根据室外环境温度和热泵机组的运行状态确定热泵机组是否满足设定的化霜条件,以在热泵机组满足该化霜条件时及时进行化霜,一方面保证了化霜的及时性和可靠性,另一方面避免了无霜化霜或化霜时间过长。
其中,所述运行状态,可以包括:运行时间(即热泵机组上次化霜完毕后连续运行的运行时间)、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一。
例如:通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间,以及机组风机电流变化情况,综合判断机组翅片的结霜情况,及时控制机组进行化霜,真正做到有霜化霜,无霜不化,提高机组冬季采暖制热能效和用户使用舒适度。这样,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,保证机组冬季制热效果和机组能效,降低机组的冬季使用能耗。
例如:通过检测机组的室外环境温度、低压温度(或低压传感器温度)、机组运行时间、风机电流变化情况多因素进行判断机组在冬季采暖时翅片结霜情况,及时对机组进行化霜,保证机组制热能力及能效,提高用户冬季采暖使用舒适性。
由此,通过基于多种形式的运行状态并结合室外环境温度判断热泵机组是否满足化霜条件,有利于提升判断的精准性和可靠性。
在一个可选例子中,步骤S130中根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,可以包括以下任一种判断热泵机组是否满足化霜条件的情形。
第一种判断热泵机组是否满足化霜条件的情形:若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程。
例如:当5℃>T 室外≥-5℃时,机组根据运行状态进行设定的第一化霜判断过程(如化霜判断1)。
可选地,可以结合图2所示本发明的方法中根据所述运行状态进入设定的第一化霜判断过程的一实施例流程示意图,进一步说明根据所述运行状态进入设定的第一化霜判断过程的具体过程,可以包括:步骤S210至步骤S250。
步骤S210,确定所述热泵机组的运行时间是否大于或等于第一设定时间(如30min)。
步骤S220,若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差(如4℃)。
步骤S230,若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变化率(如a)。
步骤S240,若所述温度变化率大于或等于所述第一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流(如I 设2)。
步骤S250,若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度(如9℃),以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件。
例如:化霜判断1:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥30min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T化霜=T -T 化霜,当检测到△T 化霜≥4时,判断V 化霜的大小,当检测V 化霜≥a时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设2时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥9℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第一设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准 性好、可靠性高。
第二种判断热泵机组是否满足化霜条件的情形:若所述室外环境温度小于所述第一设定温度范围的下限(即第二设定温度范围的上限,如-5℃)、且大于或等于第二设定温度范围的下限(如-10℃),则根据所述运行状态进入设定的第二化霜判断过程。所述第二设定温度范围的上限等于所述第一设定温度范围的下限。
例如:当-5℃>T 室外≥-10℃时,机组根据运行状态进行设定的第二化霜判断过程(如化霜判断2)。
可选地,可以结合图3所示本发明的方法中根据所述运行状态进入设定的第二化霜判断过程的一实施例流程示意图,进一步说明根据所述运行状态进入设定的第二化霜判断过程的具体过程,可以包括:步骤S310至步骤S350。
步骤S310,确定所述热泵机组的运行时间是否大于或等于第二设定时间(如45min)。
步骤S320,若所述运行时间大于或等于所述第二设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差(如5℃)。
步骤S330,若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率(如b)。
步骤S340,若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流(如I 设3)。
步骤S350,若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度(如8℃),以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件。
例如:化霜判断2:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥45min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥5时,判断V 化霜的大小,当检测V 化霜≥b时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设3时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥8℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第二设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准性好、可靠性高。
第三种判断热泵机组是否满足化霜条件的情形:若所述室外环境温度小于所述第二设定温度范围的下限(如-10℃),则根据所述运行状态进入设定的第三化霜判断过程。
例如:当-10℃≥T 室外时,机组根据运行状态进入设定的第三化霜判断过程(如化霜判断3)。
由此,通过在不同室外环境温度情况下根据运行状态进行化霜判断,有利于提升对结霜情况判断的精准性和可靠性,进而提升化霜的精准性和可靠性。
可选地,可以结合图4所示本发明的方法中根据所述运行状态进入设定的第三化霜判断过程的一实施例流程示意图,进一步说明根据所述运行状态进入设定的第三化霜判断过程的具体过程,可以包括:步骤S410至步骤S450。
步骤S410,确定所述热泵机组的运行时间是否大于或等于第三设定时间(如55min)。
步骤S420,若所述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差(如6℃)。
步骤S430,若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率(如c)。
步骤S440,若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流(如I 设4)。
步骤S450,若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度(如7℃),以在所述进水温度大于或等于所述第三设定温度的情况下确定所述热泵机组满足所述化霜条件。
例如:化霜判断3:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥55min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥6时,判断V 化霜的大小,当检测V 化霜≥c时,机组满足 进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设4时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥7℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第三设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准性好、可靠性高。
在一个可选例子中,可以结合图5所示本发明的方法中在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程的一实施例流程示意图,进一步说明步骤S130中在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程的具体过程,可以包括:步骤S510和步骤S520。
步骤S510,在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序。
例如:化霜前准备:当机组检测到满足化霜条件时,机组开始进行动作,先对压缩机运行频率进行调节,将机组压缩机频率调整至机组的初始化频率,调整完成后四通阀开始进行换向,同时电子膨胀阀开至化霜步数,机组进入化霜运行。
步骤S520,在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。
例如:化霜阶段:机组进入化霜程序后,开始提高压缩机运行频率,对翅片机型逆向化霜,实时检测机组的各个参数,包括T 高压、T 化霜、V 化霜、I 风机等参数。
由此,通过在热泵机组满足化霜条件的情况先,在初始阶段将压缩机频率调至初始化频率后,控制四通阀换向并将电子膨胀阀开至设定的化霜步数,从而控制热泵机组进行化霜程序之后,再提高压缩机频率至设定频率,并控制翅片式换热器逆向化霜,可以提高化霜的效率和效果。
在一个可选实施方式中,还可以包括:在化霜过程中的化霜参数达到退出 化霜条件时退出化霜的过程。
下面结合图6所示本发明的方法中在化霜过程中的化霜参数达到退出化霜条件时退出化霜的一实施例流程示意图,进一步说明在化霜过程中的化霜参数达到退出化霜条件时退出化霜的具体过程,可以包括:步骤S610至步骤S630。
步骤S610,在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程中,在控制所述热泵机组的翅片式换热器逆向化霜之后,获取所述热泵机组在所述化霜过程下的化霜参数(具体是获取所述热泵机组在所述化霜程序下的化霜参数)。
例如:化霜结束:当机组检测到机组任意参数满足化霜推出条件后,机组进行化霜退出动作,调节压缩机运行频率至机组初始化频率,然后四通阀进行换向,连续运行1min后机组按正常控制目标进行控制调节机组运行参数。
其中,所述化霜参数,可以包括:连续设定时长内检测到的压缩机的化霜温度(即压缩机的低压侧温度)、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一。
例如:室外环境温度T 室外、化霜温度(低压传感器温度)T 化霜、化霜温度变化率V 化霜,机组制热连续运行时间t 运行时间、风机电流I 风机、机组进水温度T 进水温度,化霜持续时间t 化霜时间
由此,通过基于多种形式的化霜参数判断热泵机组的化霜过程是否达到设定的退出化霜条件,有利于提升判断的精准性和可靠性。
步骤S620,确定所述化霜参数是否达到设定的退出化霜条件。
在一个可选例子中,步骤S620中确定所述化霜参数是否达到设定的退出化霜条件,可以包括以下至少一种退出化霜的情形。
第一种退出化霜情形:根据化霜温度判断是否达到退出化霜条件的过程。
下面结合图7所示本发明的方法中根据化霜温度判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据化霜温度判断是否达到退出化霜条件的具体过程,可以包括:步骤S710和步骤S720。
步骤S710,确定所述化霜温度是否大于或等于设定的第一退出化霜温度(如18℃)。
步骤S720,若所述化霜温度大于或等于所述第一退出化霜温度,则确定 所述化霜温度达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:连续10s检测到T 化霜≥18℃。
由此,通过在化霜温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第二种退出化霜情形:根据化霜时间判断是否达到退出化霜条件的过程。
下面结合图8所示本发明的方法中根据化霜时间判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据化霜时间判断是否达到退出化霜条件的具体过程,可以包括:步骤S810和步骤S820。
步骤S810,确定所述化霜时间是否大于或等于设定的退出化霜时间(如8min)。
步骤S820,若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:t 化霜时间≥8min。
由此,通过在化霜时间达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第三种退出化霜情形:根据风机电流判断是否达到退出化霜条件的过程。
下面结合图9所示本发明的方法中根据风机电流判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据风机电流判断是否达到退出化霜条件的具体过程,可以包括:步骤S910和步骤S920。
步骤S910,确定所述风机电流是否小于或等于设定的退出化霜电流(如I 设1)。
步骤S920,若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:机组风机电流I 风机≤I 设1
由此,通过在风机电流达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第四种退出化霜情形:根据温度变化率判断是否达到退出化霜条件的过 程。
下面结合图10所示本发明的方法中根据温度变化率判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据温度变化率判断是否达到退出化霜条件的具体过程,可以包括:步骤S1010和步骤S1020。
步骤S1010,确定所述温度变化率是否大于或等于设定的退出化霜变化率(如2℃/s)。
步骤S1020,若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:V 化霜≥2℃/s。
由此,通过在温度变化率达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第五种退出化霜情形:根据进水温度判断是否达到退出化霜条件的过程。
下面结合图11所示本发明的方法中根据进水温度判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据进水温度判断是否达到退出化霜条件的具体过程,可以包括:步骤S1110和步骤S1120。
步骤S1110,确定所述进水温度小于或等于设定的第二退出化霜温度(如3℃)。
步骤S1120,若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:化霜过程机组进水T 进水≤3℃。
由此,通过在热泵机组的进水温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第六种退出化霜情形:根据高压侧温度判断是否达到退出化霜条件的过程。
下面结合图12所示本发明的方法中根据高压侧温度判断是否达到退出化霜条件的一实施例流程示意图,进一步说明根据高压侧温度判断是否达到退出化霜条件的具体过程,可以包括:步骤S1210和步骤S1220。
步骤S1210,确定所述高压侧温度是否大于或等于设定的第三退出化霜温 度(如61℃)。
步骤S1220,若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:T 高压≥61℃。
由此,通过在压缩机的高压侧温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
步骤S630,若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机组退出所述化霜程序。
由此,通过在化霜过程中检测化霜参数,并在化霜参数达到设定的退出化霜条件的情况下将压缩机频率调至初始化频率后控制四通阀换向并连续运行设定时长后再控制热泵机组按目标运行参数运行,实现热泵机组退出化霜程序,从而及时退出化霜,满足热泵机组的正常运行,提升用户体验,也节约了能耗。
经大量的试验验证,采用本实施例的技术方案,通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间,以及机组风机电流变化情况,综合判断机组翅片的结霜情况,及时控制机组进行化霜,提升机组的化霜可靠性。
根据本发明的实施例,还提供了对应于热泵机组的化霜控制方法的一种热泵机组的化霜控制装置。参见图13所示本发明的装置的一实施例的结构示意图。该热泵机组的化霜控制装置可以包括:获取单元102和控制单元104。
在一个可选例子中,获取单元102,可以用于获取所述热泵机组的室外环境温度和所述热泵机组的运行状态。该获取单元102的具体功能及处理参见步骤S110。
例如:优先检测机组运行室外环境温度T 室外,根据室外环境温度T 室外判断机组的进入化霜的条件。
在一个可选例子中,控制单元104,可以用于确定所述室外环境温度是否 大于或等于第一设定温度范围的下限(如5℃)。该控制单元104的具体功能及处理参见步骤S120。
在一个可选例子中,所述控制单元104,还可以用于若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件(如具体可以是根据所述室外环境温度在第一设定温度范围和第二设定温度范围中所处位置和所述运行状态确定所述热泵机组是否满足设定的化霜条件),以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
例如:当检测到机组所处环境温度在Ⅱ~Ⅳ范围(如5℃>T 室外)内时,检测机组上次化霜完毕后的运行时间t 运行时间,判断连续运行时间t 运行时间与设定T 进行比较,当检测到机组连续制热运行时间t 运行时间≥3h时,判断机组已经满足机组化霜运行时间,并检测此时机组的T 化霜,当检测到T 化霜≤-6℃,判断机组翅片满足化霜条件,同时检测机组风机电流大小I 风机,当检测到风机电流I 风机≥I 设1,检测机组的进水温度,当进水温度T 进水温度≥8℃时,判断水温满足化霜条件,同时检测结合之前的时间条件、温度条件、风机电流条件、水温条件,4个条件综合判断机组满足化霜条件,机组进入化霜。
具体使用过程中,若所述室外环境温度大于或等于所述第一设定温度范围的下限,则所述热泵机组不进入化霜。该控制单元104的具体功能及处理还参见步骤S130。
例如:当T 室外≥5℃时,机组不进入化霜。
由此,通过在热泵机组的室外环境温度小于第一设定温度范围的下限的情况下,根据室外环境温度和热泵机组的运行状态确定热泵机组是否满足设定的化霜条件,以在热泵机组满足该化霜条件时及时进行化霜,一方面保证了化霜的及时性和可靠性,另一方面避免了无霜化霜或化霜时间过长。
其中,所述运行状态,可以包括:运行时间(即热泵机组上次化霜完毕后连续运行的运行时间)、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一。
例如:通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间,以及机组风机电流变化情况,综合判断机组翅片的结霜情况,及时控制机组进行化霜,真正做到有霜化霜,无霜不化,提高机组冬季采暖制热 能效和用户使用舒适度。这样,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,保证机组冬季制热效果和机组能效,降低机组的冬季使用能耗。
例如:通过检测机组的室外环境温度、低压温度(或低压传感器温度)、机组运行时间、风机电流变化情况多因素进行判断机组在冬季采暖时翅片结霜情况,及时对机组进行化霜,保证机组制热能力及能效,提高用户冬季采暖使用舒适性。
由此,通过基于多种形式的运行状态并结合室外环境温度判断热泵机组是否满足化霜条件,有利于提升判断的精准性和可靠性。
可选地,所述控制单元104根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,可以包括以下任一种确定化霜条件的情形。
第一种确定化霜条件的情形:所述控制单元104,具体还可以用于若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程。
例如:当5℃>T 室外≥-5℃时,机组根据运行状态进行设定的第一化霜判断过程(如化霜判断1)。
更可选地,所述控制单元104根据所述运行状态进入设定的第一化霜判断过程,可以包括:
所述控制单元104,具体还可以用于确定所述热泵机组的运行时间是否大于或等于第一设定时间(如30min)。该控制单元104的具体功能及处理还参见步骤S210。
所述控制单元104,具体还可以用于若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差(如4℃)。该控制单元104的具体功能及处理还参见步骤S220。
所述控制单元104,具体还可以用于若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变化率(如a)。该控制单元104的具体功能及处理还参见步骤S230。
所述控制单元104,具体还可以用于若所述温度变化率大于或等于所述第 一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流(如I 设2)。该控制单元104的具体功能及处理还参见步骤S240。
所述控制单元104,具体还可以用于若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度(如9℃),以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件。该控制单元104的具体功能及处理还参见步骤S250。
例如:化霜判断1:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥30min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T化霜=T -T 化霜,当检测到△T 化霜≥4时,判断V 化霜的大小,当检测V 化霜≥a时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设2时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥9℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第一设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准性好、可靠性高。
第二种确定化霜条件的情形:所述控制单元104,具体还可以用于若所述室外环境温度小于所述第一设定温度范围的下限(即第二设定温度范围的上限,如-5℃)、且大于或等于第二设定温度范围的下限(如-10℃),则根据所述运行状态进入设定的第二化霜判断过程。所述第二设定温度范围的上限等于所述第一设定温度范围的下限。
例如:当-5℃>T 室外≥-10℃时,机组根据运行状态进行设定的第二化霜判断过程(如化霜判断2)。
更可选地,所述控制单元104根据所述运行状态进入设定的第二化霜判断过程,可以包括:
所述控制单元104,具体还可以用于确定所述热泵机组的运行时间是否大于或等于第二设定时间(如45min)。该控制单元104的具体功能及处理还参见步骤S310。
所述控制单元104,具体还可以用于若所述运行时间大于或等于所述第二 设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差(如5℃)。该控制单元104的具体功能及处理还参见步骤S320。
所述控制单元104,具体还可以用于若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率(如b)。该控制单元104的具体功能及处理还参见步骤S330。
所述控制单元104,具体还可以用于若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流(如I 设3)。该控制单元104的具体功能及处理还参见步骤S340。
所述控制单元104,具体还可以用于若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度(如8℃),以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件。该控制单元104的具体功能及处理还参见步骤S350。
例如:化霜判断2:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥45min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥5时,判断V 化霜的大小,当检测V 化霜≥b时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设3时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥8℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第二设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准性好、可靠性高。
第三种确定化霜条件的情形:所述控制单元104,具体还可以用于若所述室外环境温度小于所述第二设定温度范围的下限(如-10℃),则根据所述运行状态进入设定的第三化霜判断过程。
例如:当-10℃≥T 室外时,机组根据运行状态进入设定的第三化霜判断过程(如化霜判断3)。
由此,通过在不同室外环境温度情况下根据运行状态进行化霜判断,有利 于提升对结霜情况判断的精准性和可靠性,进而提升化霜的精准性和可靠性。
更可选地,所述控制单元104根据所述运行状态进入设定的第三化霜判断过程,可以包括:
所述控制单元104,具体还可以用于确定所述热泵机组的运行时间是否大于或等于第三设定时间(如55min)。该控制单元104的具体功能及处理还参见步骤S410。
所述控制单元104,具体还可以用于若所述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差(如6℃)。该控制单元104的具体功能及处理还参见步骤S420。
所述控制单元104,具体还可以用于若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率(如c)。该控制单元104的具体功能及处理还参见步骤S430。
所述控制单元104,具体还可以用于若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流(如I 设4)。该控制单元104的具体功能及处理还参见步骤S440。
所述控制单元104,具体还可以用于若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度(如7℃),以在所述进水温度大于或等于所述第三设定温度的情况下确定所述热泵机组满足所述化霜条件。该控制单元104的具体功能及处理还参见步骤S450。
例如:化霜判断3:检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥55min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥6时,判断V 化霜的大小,当检测V 化霜≥c时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设4时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥7℃时,判断机组满足化霜条件,机组进行化霜动作。
由此,通过在热泵机组的运行时间大于或等于第三设定时间的情况下,逐步依据室外环境温度与化霜温度的化霜温差、热泵机组化霜温度的温度变化率、风机电流、进水温度等精准判断热泵机组是否满足化霜条件,判断的精准 性好、可靠性高。
可选地,所述控制单元104在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程,可以包括:
所述控制单元104,具体还可以用于在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序。该控制单元104的具体功能及处理还参见步骤S510。
例如:化霜前准备:当机组检测到满足化霜条件时,机组开始进行动作,先对压缩机运行频率进行调节,将机组压缩机频率调整至机组的初始化频率,调整完成后四通阀开始进行换向,同时电子膨胀阀开至化霜步数,机组进入化霜运行。
所述控制单元104,具体还可以用于在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。该控制单元104的具体功能及处理还参见步骤S520。
例如:化霜阶段:机组进入化霜程序后,开始提高压缩机运行频率,对翅片机型逆向化霜,实时检测机组的各个参数,包括T 高压、T 化霜、V 化霜、I 风机等参数。
由此,通过在热泵机组满足化霜条件的情况先,在初始阶段将压缩机频率调至初始化频率后,控制四通阀换向并将电子膨胀阀开至设定的化霜步数,从而控制热泵机组进行化霜程序之后,再提高压缩机频率至设定频率,并控制翅片式换热器逆向化霜,可以提高化霜的效率和效果。
在一个可选实施方式中,还可以包括:在化霜过程中的化霜参数达到退出化霜条件时退出化霜的过程,具体如下:
所述控制单元104,还可以用于在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程中,在控制所述热泵机组的翅片式换热器逆向化霜之后,获取所述热泵机组在所述化霜过程下的化霜参数(具体是获取所述热泵机组在所述化霜程序下的化霜参数)。该控制单元104的具体功能及处理还参见步骤S610。
例如:化霜结束:当机组检测到机组任意参数满足化霜推出条件后,机组 进行化霜退出动作,调节压缩机运行频率至机组初始化频率,然后四通阀进行换向,连续运行1min后机组按正常控制目标进行控制调节机组运行参数。
其中,所述化霜参数,可以包括:连续设定时长内检测到的压缩机的化霜温度(即压缩机的低压侧温度)、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一。
例如:室外环境温度T 室外、化霜温度(低压传感器温度)T 化霜、化霜温度变化率V 化霜,机组制热连续运行时间t 运行时间、风机电流I 风机、机组进水温度T 进水温度,化霜持续时间t 化霜时间
由此,通过基于多种形式的化霜参数判断热泵机组的化霜过程是否达到设定的退出化霜条件,有利于提升判断的精准性和可靠性。
所述控制单元104,还可以用于确定所述化霜参数是否达到设定的退出化霜条件。该控制单元104的具体功能及处理还参见步骤S620。
可选地,所述控制单元104确定所述化霜参数是否达到设定的退出化霜条件,可以包括以下至少一种退出化霜的情形:
第一种退出化霜情形:根据化霜温度判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述化霜温度是否大于或等于设定的第一退出化霜温度(如18℃)。该控制单元104的具体功能及处理还参见步骤S710。
所述控制单元104,具体还可以用于若所述化霜温度大于或等于所述第一退出化霜温度,则确定所述化霜温度达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S720。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:连续10s检测到T 化霜≥18℃。
由此,通过在化霜温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第二种退出化霜情形:根据化霜时间判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述化霜时间是否大于或等于设 定的退出化霜时间(如8min)。该控制单元104的具体功能及处理还参见步骤S810。
所述控制单元104,具体还可以用于若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S820。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:t 化霜时间≥8min。
由此,通过在化霜时间达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第三种退出化霜情形:根据风机电流判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述风机电流是否小于或等于设定的退出化霜电流(如I 设1)。该控制单元104的具体功能及处理还参见步骤S910。
所述控制单元104,具体还可以用于若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S920。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:机组风机电流I 风机≤I 设1
由此,通过在风机电流达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第四种退出化霜情形:根据温度变化率判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述温度变化率是否大于或等于设定的退出化霜变化率(如2℃/s)。该控制单元104的具体功能及处理还参见步骤S1010。
所述控制单元104,具体还可以用于若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S1020。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化 霜:V 化霜≥2℃/s。
由此,通过在温度变化率达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第五种退出化霜情形:根据进水温度判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述进水温度小于或等于设定的第二退出化霜温度(如3℃)。该控制单元104的具体功能及处理还参见步骤S1110。
所述控制单元104,具体还可以用于若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S1120。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:化霜过程机组进水T 进水≤3℃。
由此,通过在热泵机组的进水温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
第六种退出化霜情形:根据高压侧温度判断是否达到退出化霜条件的过程,具体如下:
所述控制单元104,具体还可以用于确定所述高压侧温度是否大于或等于设定的第三退出化霜温度(如61℃)。该控制单元104的具体功能及处理还参见步骤S1210。
所述控制单元104,具体还可以用于若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。该控制单元104的具体功能及处理还参见步骤S1220。
例如:当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:T 高压≥61℃。
由此,通过在压缩机的高压侧温度达到设定条件的情况下确定化霜参数达到退出化霜条件,判断的精准性好、可靠性高。
所述控制单元104,还可以用于若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机 组退出所述化霜程序。该控制单元104的具体功能及处理还参见步骤S630。
由此,通过在化霜过程中检测化霜参数,并在化霜参数达到设定的退出化霜条件的情况下将压缩机频率调至初始化频率后控制四通阀换向并连续运行设定时长后再控制热泵机组按目标运行参数运行,实现热泵机组退出化霜程序,从而及时退出化霜,满足热泵机组的正常运行,提升用户体验,也节约了能耗。
由于本实施例的装置所实现的处理及功能基本相应于前述图1至图12所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间、以及机组风机电流变化情况,提高机组冬季采暖制热能效和用户使用舒适度。
根据本发明的实施例,还提供了对应于热泵机组的化霜控制装置的一种热泵机组。该热泵机组可以包括:以上所述的热泵机组的化霜控制装置。
在一个可选实施方式中,本发明的方案,通过机组检测机组室外环境温度、低压温度(或传感器温度)、机组运行时间,以及机组风机电流变化情况,综合判断机组翅片的结霜情况,及时控制机组进行化霜,真正做到有霜化霜,无霜不化,提高机组冬季采暖制热能效和用户使用舒适度。
这样,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,保证机组冬季制热效果和机组能效,降低机组的冬季使用能耗。
例如:通过检测机组的室外环境温度、低压温度(或低压传感器温度)、机组运行时间、风机电流变化情况多因素进行判断机组在冬季采暖时翅片结霜情况,及时对机组进行化霜,保证机组制热能力及能效,提高用户冬季采暖使用舒适性。
在一个可选具体实施方式中,可以结合图14至图16所示的例子,对本发明的方案的具体实现过程进行示例性说明。
图14中(a)和(b)所示的这两个空调系统的主要关键元器件一致,其中(a)所示的空调系统在压缩机的低压侧使用两个低压开关,(b)所示的空 调系统在压缩机的低压侧使用一个压力传感器替代两个压力开关,功能一样,都是检测系统低压,保护机组在过低的压力下运行。
例如:图14中(a)所示空调系统,可以包括:压缩机1、排气感温包2、高压开关3、高压传感器4、四通阀5、翅片换热器6、环境感温包7、化霜感温包8、电子膨胀阀9、水侧换热器10、出水感温包11、进水感温包12、水泵13、气液分离器14、制热低压开关15和制冷低压开关16。而图14中(b)所示空调系统中,用低压传感器17替代图14中(a)所示空调系统中制热低压开关15和制冷低压开关16。
在图14中,压缩机,可以用于将低温低压的冷媒压缩成为高温高压气态冷媒。高压开关,可以用于防止系统压力过高,压力超过一定值关闭系统,保护机组运行可靠性。高压传感器,可以用于检测系统高压压力,用于制冷制热的系统控制在合理范围内。四通阀,可以用于进行冷媒流路切换,进行制冷制热。翅片换热器,可以用于将高温高压的气态冷媒冷凝成中温高压的液态冷媒。电子膨胀阀,可以用于将中温高压的液态冷媒节流降压成低温低压的气液两相冷媒。水侧换热器,可以用于冷媒在换热器内蒸发成气态,同时吸热,将换热器内的水由高温水变成冷水。水泵,可以用于将水系统内的水循环起来,不断的制取冷水或者热水供给到室内进行换热。气液分离器,可以用于将冷媒进行气液分离,使进入压缩机内的冷媒为气态,防止出现液态冷媒压缩导致压缩机损坏。低压开关或低压传感器,可以用于防止系统低压过低损坏压缩机,超过保护值时及时动作保护停止机组运行。
在一个可选具体例子中,本发明提出的一种化霜控制方法,涉及到的参数主要可以包括:室外环境温度T 室外、化霜温度(低压传感器温度)T 化霜、化霜温度变化率V 化霜,机组制热连续运行时间t 运行时间、风机电流I 风机、机组进水温度T 进水温度,化霜持续时间t 化霜时间
例如:在机组温度传感器中有一个可以检测机组的化霜温度的传感器,可以周期性地检测机组的化霜温度,并对化霜温度进行记录,控制程序将检测到的化霜温度进行一定周期的化霜温差计算,得出化霜温度的变化率。例如,每1min检测一次化霜温度,则1min内检测2次,暨开头一次温度为5℃,末尾一次为2℃,则化霜温度变化率为(5-2)/1=3℃/min。
可选地,化霜进入条件的判断可以参见如下说明。
当机组开机运行状态下,实时检测机组持续制热运行时间t 运行时间、室外环境温度T 室外、化霜温度(或低压传感器温度)T 化霜、风机电流I 风机、机组出水温度T 出水温度
例如:检测出水温度的目的是防止机组在化霜的过程中出水温度过低导致机组管路出现结冰情况,机组化霜属于制冷运行,此时机组进水温度高,出水温度低,当机组检测到机组出水温度低于某一值时,机组自动退出化霜,防止机组出现结冰情况。
例如:机组进入化霜时,进水为7℃,出水为4℃,随着化霜的进行,整个系统水温逐渐降低,出水温度也逐渐降低,当检测到出水温度低于2℃时,我们程序判断不能再进行化霜动作了,为了保护机组必须停止化霜,防止出现冻坏机组的情况发生。
优先检测机组运行室外环境温度T 室外,根据室外环境温度T 室外判断机组的进入化霜的条件。
i.当T 室外≥5℃时,机组不进入化霜。
ii.当5℃>T 室外≥-5℃时,机组根据运行状态进行设定的第一化霜判断过程(如化霜判断1)。
iii.当-5℃>T 室外≥-10℃时,机组根据运行状态进行设定的第二化霜判断过程(如化霜判断2)。
iv.当-10℃≥T 室外时,机组根据运行状态进入设定的第三化霜判断过程(如化霜判断3)。
当检测到机组所处环境温度在Ⅱ~Ⅳ范围内时,检测机组上次化霜完毕后的运行时间t 运行时间,判断连续运行时间t 运行时间与设定T 时间进行比较,当检测到机组连续制热运行时间t 运行时间≥3h时,判断机组已经满足机组化霜运行时间,并检测此时机组的T 化霜,当检测到T 化霜≤-6℃,判断机组翅片满足化霜条件,同时检测机组风机电流大小I 风机,当检测到风机电流I 风机≥I 设1,检测机组的进水温度,当进水温度T 进水温度≥8℃时,判断水温满足化霜条件,同时检测结合之前的时间条件、温度条件、风机电流条件、水温条件,4个条件综合判断机组满足化霜条件,机组进入化霜。
化霜判断1:
检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥30min时,实时检测机 组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T化霜=T 室外-T 化霜,当检测到△T 化霜≥4时,判断V 化霜的大小,当检测V 化霜≥a时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设2时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥9℃时,判断机组满足化霜条件,机组进行化霜动作。
化霜判断2:
检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥45min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥5时,判断V 化霜的大小,当检测V 化霜≥b时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设3时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥8℃时,判断机组满足化霜条件,机组进行化霜动作。
化霜判断3:
检测机组尺寸运行时间t 运行时间,当检测到t 运行时间≥55min时,实时检测机组T 化霜及变化率V 化霜,并判断化霜温差△T 化霜,△T 化霜=T 室外-T 化霜,当检测到△T 化霜≥6时,判断V 化霜的大小,当检测V 化霜≥c时,机组满足进入化霜条件,同时检测机组风机电流大小I 风机,当检测到I 风机≥I 设4时,满足风机进入化霜条件,同时检测机组T 进水温度,当检测到机组满足T 进水温度≥7℃时,判断机组满足化霜条件,机组进行化霜动作。
可选地,化霜退出条件的判断可以参见如下说明。
当机组进行化霜过程中,实时检测如下参数,判断机组是否退出化霜:
1)连续10s检测到T 化霜≥18℃。
2)t 化霜时间≥8min。
3)机组风机电流I 风机≤I 设1
4)V 化霜≥2℃/s。
5)化霜过程机组进水T 进水≤3℃。
6)T 高压≥61℃。
可选地,化霜过程可以参见如下说明。
①、化霜前准备:
当机组检测到满足化霜条件时,机组开始进行动作,先对压缩机运行频率 进行调节,将机组压缩机频率调整至机组的初始化频率,调整完成后四通阀开始进行换向,同时电子膨胀阀开至化霜步数,机组进入化霜运行。
②、化霜阶段:
机组进入化霜程序后,开始提高压缩机运行频率,对翅片机型逆向化霜,实时检测机组的各个参数,包括T 高压、T 化霜、V 化霜、I 风机等参数。
③、化霜结束:
当机组检测到机组任意参数满足化霜推出条件后,机组进行化霜退出动作,调节压缩机运行频率至机组初始化频率,然后四通阀进行换向,连续运行1min后机组按正常控制目标进行控制调节机组运行参数。
在一个可替代具体例子中,可以通过检测蒸发器低压温度来控制化霜,也可以通过周期性时间进行化霜。
例如:这两个方案与我们的提案进行对比,反衬出我们方案的优势,这两个方案存在一定的局限性,导致机组在无霜的情况下也会进入化霜,此时翅片并没有结很多的霜,此时进入化霜浪费能源,降低系统水温,影响机组能效。
由于本实施例的热泵机组所实现的处理及功能基本相应于前述图13所示的装置的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,提升机组的化霜可靠性。
根据本发明的实施例,还提供了对应于热泵机组的化霜控制方法的一种存储介质。该存储介质,可以包括:所述存储介质中存储有多条指令;所述多条指令,用于由处理器加载并执行以上所述的热泵机组的化霜控制方法。
由于本实施例的存储介质所实现的处理及功能基本相应于前述图1至图12所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,保证机组冬季制热效果和机组能效,降低机组的冬季使用能耗。
根据本发明的实施例,还提供了对应于热泵机组的化霜控制方法的一种热泵机组。该热泵机组,可以包括:处理器,用于执行多条指令;存储器,用于存储多条指令;其中,所述多条指令,用于由所述存储器存储,并由所述处理器加载并执行以上所述的热泵机组的化霜控制方法。
由于本实施例的热泵机组所实现的处理及功能基本相应于前述图1至图12所示的方法的实施例、原理和实例,故本实施例的描述中未详尽之处,可以参见前述实施例中的相关说明,在此不做赘述。
经大量的试验验证,采用本发明的技术方案,通过将风机的电流变化情况纳入机组化霜条件判断,准确判断机组翅片的结霜情况,及时控制机组化霜,提高机组冬季采暖制热能效和用户使用舒适度。
综上,本领域技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (15)

  1. 一种热泵机组的化霜控制方法,其特征在于,包括:
    获取所述热泵机组的室外环境温度和运行状态;
    确定所述室外环境温度是否大于或等于第一设定温度范围的下限;
    若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
  2. 根据权利要求1所述的方法,其特征在于,根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,包括:
    若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程;
    或者,
    若所述室外环境温度小于所述第一设定温度范围的下限、且大于或等于第二设定温度范围的下限,则根据所述运行状态进入设定的第二化霜判断过程;所述第二设定温度范围的上限等于所述第一设定温度范围的下限;
    或者,
    若所述室外环境温度小于所述第二设定温度范围的下限,则根据所述运行状态进入设定的第三化霜判断过程。
  3. 根据权利要求2所述的方法,其特征在于,所述运行状态,包括:运行时间、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一;
    其中,
    根据所述运行状态进入设定的第一化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第一设定时间;
    若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差;
    若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变化率;
    若所述温度变化率大于或等于所述第一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流;
    若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度,以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件;
    或者,
    根据所述运行状态进入设定的第二化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第二设定时间;
    若所述运行时间大于或等于所述第二设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差;
    若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率;
    若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流;
    若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度,以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件;
    或者,
    根据所述运行状态进入设定的第三化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第三设定时间;
    若所述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差;
    若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率;
    若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流;
    若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度,以在所述进水温度大于或等于所述第三 设定温度的情况下确定所述热泵机组满足所述化霜条件。
  4. 根据权利要求1-3之一所述的方法,其特征在于,在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程,包括:
    在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序;
    在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。
  5. 根据权利要求1-4之一所述的方法,其特征在于,还包括:
    获取所述热泵机组在所述化霜过程下的化霜参数;
    确定所述化霜参数是否达到设定的退出化霜条件;
    若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机组退出所述化霜程序。
  6. 根据权利要求5所述的方法,其特征在于,所述化霜参数,包括:连续设定时长内检测到的压缩机的化霜温度、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一;
    其中,
    确定所述化霜参数是否达到设定的退出化霜条件,包括:
    确定所述化霜温度是否大于或等于设定的第一退出化霜温度;
    若所述化霜温度大于或等于所述第一退出化霜温度,则确定所述化霜温度达到所述退出化霜条件;
    或者,
    确定所述化霜时间是否大于或等于设定的退出化霜时间;
    若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件;
    或者,
    确定所述风机电流是否小于或等于设定的退出化霜电流;
    若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件;
    或者,
    确定所述温度变化率是否大于或等于设定的退出化霜变化率;
    若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件;
    或者,
    确定所述进水温度小于或等于设定的第二退出化霜温度;
    若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件;
    或者,
    确定所述高压侧温度是否大于或等于设定的第三退出化霜温度;
    若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。
  7. 一种热泵机组的化霜控制装置,其特征在于,包括:
    获取单元,用于获取所述热泵机组的室外环境温度和运行状态;
    控制单元,用于确定所述室外环境温度是否大于或等于第一设定温度范围的下限;
    所述控制单元,还用于若所述室外环境温度小于所述第一设定温度范围的下限,则根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,以在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程。
  8. 根据权利要求7所述的装置,其特征在于,所述控制单元根据所述室外环境温度和所述运行状态确定所述热泵机组是否满足设定的化霜条件,包括:
    若所述室外环境温度大于或等于所述第一设定温度范围的下限,则根据所述运行状态进入设定的第一化霜判断过程;
    或者,
    若所述室外环境温度小于所述第一设定温度范围的下限、且大于或等于第二设定温度范围的下限,则根据所述运行状态进入设定的第二化霜判断过程;所述第二设定温度范围的上限等于所述第一设定温度范围的下限;
    或者,
    若所述室外环境温度小于所述第二设定温度范围的下限,则根据所述运行状态进入设定的第三化霜判断过程。
  9. 根据权利要求8所述的装置,其特征在于,所述运行状态,包括:运行时间、压缩机低压侧的化霜温度、压缩机低压侧化霜温度的温度变化率、风机电流和进水温度中的至少之一;
    其中,
    所述控制单元根据所述运行状态进入设定的第一化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第一设定时间;
    若所述运行时间大于或等于所述第一设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第一设定温差;
    若所述化霜温差大于或等于所述第一设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第一设定变化率;
    若所述温度变化率大于或等于所述第一设定变化率,则确定所述热泵机组的风机电流是否大于或等于第一设定电流;
    若所述风机电流大于或等于所述第一设定电流,则确定所述热泵机组的进水温度是否大于或等于第一设定温度,以在所述进水温度大于或等于所述第一设定温度的情况下确定所述热泵机组满足所述化霜条件;
    或者,
    所述控制单元根据所述运行状态进入设定的第二化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第二设定时间;
    若所述运行时间大于或等于所述第二设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第二设定温差;
    若所述化霜温差大于或等于所述第二设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第二设定变化率;
    若所述温度变化率大于或等于所述第二设定变化率,则确定所述热泵机组的风机电流是否大于或等于第二设定电流;
    若所述风机电流大于或等于所述第二设定电流,则确定所述热泵机组的进水温度是否大于或等于第二设定温度,以在所述进水温度大于或等于所述第二设定温度的情况下确定所述热泵机组满足所述化霜条件;
    或者,
    所述控制单元根据所述运行状态进入设定的第三化霜判断过程,包括:
    确定所述热泵机组的运行时间是否大于或等于第三设定时间;
    若所述运行时间大于或等于所述第三设定时间,则确定所述热泵机组的室外环境温度与化霜温度的化霜温差是否大于或等于第三设定温差;
    若所述化霜温差大于或等于所述第三设定温度,则确定所述热泵机组化霜温度的温度变化率是否大于等于第三设定变化率;
    若所述温度变化率大于或等于所述第三设定变化率,则确定所述热泵机组的风机电流是否大于或等于第三设定电流;
    若所述风机电流大于或等于所述第三设定电流,则确定所述热泵机组的进水温度是否大于或等于第三设定温度,以在所述进水温度大于或等于所述第三设定温度的情况下确定所述热泵机组满足所述化霜条件。
  10. 根据权利要求7-9之一所述的装置,其特征在于,所述控制单元在所述热泵机组满足所述化霜条件的情况下控制所述热泵机组进入设定的化霜过程,包括:
    在所述热泵机组满足所述化霜条件的情况下,将所述热泵机组的压缩机频率调至设定的初始化频率后,控制所述热泵机组的四通阀换向,同时将所述热泵机组的电子膨胀阀开度开至设定的化霜步数,以控制所述热泵机组进行化霜运行进入设定的化霜程序;
    在所述热泵机组进入所述化霜程序的情况下,提高所述压缩机频率至设定频率,并控制所述热泵机组的翅片式换热器逆向化霜。
  11. 根据权利要求7-10之一所述的装置,其特征在于,还包括:
    所述控制单元,还用于获取所述热泵机组在所述化霜过程下的化霜参数;
    所述控制单元,还用于确定所述化霜参数是否达到设定的退出化霜条件;
    所述控制单元,还用于若所述化霜参数达到所述退出化霜条件,则将所述压缩机频率调至所述初始化频率后,控制所述四通阀换向并连续运行设定时长后控制所述热泵机组按设定的目标运行参数运行,以控制所述热泵机组退出所述化霜程序。
  12. 根据权利要求11所述的装置,其特征在于,所述化霜参数,包括:连续设定时长内检测到的压缩机的化霜温度、热泵机组的化霜时间、风机电流、压缩机化霜温度的温度变化率、化霜过程中热泵机组的进水温度、压缩机的高压侧温度中的至少之一;
    其中,
    所述控制单元确定所述化霜参数是否达到设定的退出化霜条件,包括:
    确定所述化霜温度是否大于或等于设定的第一退出化霜温度;
    若所述化霜温度大于或等于所述第一退出化霜温度,则确定所述化霜温度达到所述退出化霜条件;
    或者,
    确定所述化霜时间是否大于或等于设定的退出化霜时间;
    若所述化霜时间大于或等于所述退出化霜时间,则确定所述化霜时间达到所述退出化霜条件;
    或者,
    确定所述风机电流是否小于或等于设定的退出化霜电流;
    若所述风机电流小于或等于所述退出化霜电流,则确定所述风机电流达到所述退出化霜条件;
    或者,
    确定所述温度变化率是否大于或等于设定的退出化霜变化率;
    若所述温度变化率大于或等于所述退出化霜变化率,则确定所述温度变化率达到所述退出化霜条件;
    或者,
    确定所述进水温度小于或等于设定的第二退出化霜温度;
    若所述进水温度小于或等于所述第二退出化霜温度,则确定所述进水温度达到所述退出化霜条件;
    或者,
    确定所述高压侧温度是否大于或等于设定的第三退出化霜温度;
    若所述高压侧温度大于或等于所述第三退出化霜温度,则确定所述高压侧温度达到所述退出化霜条件。
  13. 一种热泵机组,其特征在于,包括:如权利要求1-6任一所述的热泵机组的化霜控制装置。
  14. 一种存储介质,其特征在于,所述存储介质中存储有多条指令;所述多条指令,用于由处理器加载并执行如权利要求7-12任一所述的热泵机组的化霜控制方法。
  15. 一种热泵机组,其特征在于,包括:
    处理器,用于执行多条指令;
    存储器,用于存储多条指令;
    其中,所述多条指令,用于由所述存储器存储,并由所述处理器加载并执行如权利要求7-12任一所述的热泵机组的化霜控制方法。
PCT/CN2018/121979 2018-09-21 2018-12-19 热泵机组的化霜控制方法、装置、存储介质及热泵机组 WO2020056956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811108112.3 2018-09-21
CN201811108112.3A CN109386966A (zh) 2018-09-21 2018-09-21 热泵机组的化霜控制方法、装置、存储介质及热泵机组

Publications (1)

Publication Number Publication Date
WO2020056956A1 true WO2020056956A1 (zh) 2020-03-26

Family

ID=65417604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121979 WO2020056956A1 (zh) 2018-09-21 2018-12-19 热泵机组的化霜控制方法、装置、存储介质及热泵机组

Country Status (2)

Country Link
CN (1) CN109386966A (zh)
WO (1) WO2020056956A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087838A (zh) * 2021-01-18 2022-09-20 广东芬尼克兹节能设备有限公司 热泵除霜控制方法、装置、设备及存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111895591B (zh) * 2019-05-06 2021-12-21 重庆海尔空调器有限公司 一种空调除霜的控制方法、装置及空调
CN111895601A (zh) * 2019-05-06 2020-11-06 青岛海尔空调器有限总公司 一种空调除霜的控制方法、装置及空调
CN111895598B (zh) * 2019-05-06 2022-04-19 青岛海尔空调器有限总公司 一种空调除霜的控制方法、装置及空调
CN110094832A (zh) * 2019-05-16 2019-08-06 滁州星联电子有限公司 一种变频空调的工作除霜方法
CN110332716B (zh) * 2019-07-16 2021-01-15 珠海格力电器股份有限公司 热泵热水器除霜控制方法、装置及热泵热水器
CN110398097A (zh) * 2019-08-21 2019-11-01 珠海格力电器股份有限公司 热泵机组化霜方法、装置、存储介质、计算机设备及机组
CN110715402A (zh) * 2019-09-04 2020-01-21 宁波奥克斯电气股份有限公司 一种空调退出化霜的控制方法及存储介质、控制器和空调
CN110567125B (zh) * 2019-09-23 2021-09-17 宁波奥克斯电气股份有限公司 结霜时风机自适应的控制方法、装置、空调器及存储介质
CN110850717B (zh) * 2019-11-19 2022-05-20 浙江工业大学 利用风机电流的神经网络热泵除霜控制装置及控制方法
CN111854058A (zh) * 2020-05-29 2020-10-30 青岛海尔空调电子有限公司 空调机组及其除霜控制方法
CN112097367A (zh) * 2020-09-03 2020-12-18 南京天加环境科技有限公司 一种空调除霜控制方法
CN112611139B (zh) * 2020-12-21 2022-08-16 广东纽恩泰新能源科技发展有限公司 一种热泵烘干机的除霜与调节压力的方法
CN114413534B (zh) * 2022-01-11 2023-05-02 珠海格力电器股份有限公司 除霜控制方法、装置、设备、计算机设备及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567150A (zh) * 2014-12-01 2015-04-29 广东长菱空调冷气机制造有限公司 一种热泵热水器除霜控制方法及使用该方法的热泵热水器
CN105928199A (zh) * 2016-04-26 2016-09-07 广东美的暖通设备有限公司 热泵热水机及其化霜控制方法和装置
CN106196480A (zh) * 2016-07-28 2016-12-07 珠海格力电器股份有限公司 除霜控制方法和装置
CN106403148A (zh) * 2016-08-30 2017-02-15 珠海格力电器股份有限公司 一种热泵系统开启除霜模式的控制方法及系统
JP2017075767A (ja) * 2015-10-16 2017-04-20 ダイキン工業株式会社 ヒートポンプ式加熱装置
CN107401810A (zh) * 2017-07-24 2017-11-28 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器的控制装置及空调器
CN108088085A (zh) * 2016-11-23 2018-05-29 陈宏伟 一种空气源热泵热水器控制系统
CN108507120A (zh) * 2018-02-14 2018-09-07 青岛海尔空调器有限总公司 空调器除霜控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3593592B2 (ja) * 1999-09-30 2004-11-24 株式会社日立製作所 空気調和機
KR100522879B1 (ko) * 2003-03-28 2005-10-25 위니아만도 주식회사 냉난방 겸용 에어컨의 제상 운전 제어방법
CN101749906A (zh) * 2008-12-22 2010-06-23 同方人工环境有限公司 一种适用于风冷热泵机组的除霜控制方法
CN105091435B (zh) * 2014-05-13 2018-09-18 珠海格力电器股份有限公司 化霜控制方法
CN106152643B (zh) * 2015-04-17 2018-09-11 陈则韶 空气源热泵热水器除霜方法
CN108266898B (zh) * 2016-12-30 2020-12-22 青岛海尔新能源电器有限公司 一种空气能热水器化霜控制方法和系统
CN106705377A (zh) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 除霜控制方法、除霜控制系统和热泵型空调
CN107461874B (zh) * 2017-07-03 2020-10-20 青岛海尔空调电子有限公司 空调器融霜控制方法及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567150A (zh) * 2014-12-01 2015-04-29 广东长菱空调冷气机制造有限公司 一种热泵热水器除霜控制方法及使用该方法的热泵热水器
JP2017075767A (ja) * 2015-10-16 2017-04-20 ダイキン工業株式会社 ヒートポンプ式加熱装置
CN105928199A (zh) * 2016-04-26 2016-09-07 广东美的暖通设备有限公司 热泵热水机及其化霜控制方法和装置
CN106196480A (zh) * 2016-07-28 2016-12-07 珠海格力电器股份有限公司 除霜控制方法和装置
CN106403148A (zh) * 2016-08-30 2017-02-15 珠海格力电器股份有限公司 一种热泵系统开启除霜模式的控制方法及系统
CN108088085A (zh) * 2016-11-23 2018-05-29 陈宏伟 一种空气源热泵热水器控制系统
CN107401810A (zh) * 2017-07-24 2017-11-28 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器的控制装置及空调器
CN108507120A (zh) * 2018-02-14 2018-09-07 青岛海尔空调器有限总公司 空调器除霜控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115087838A (zh) * 2021-01-18 2022-09-20 广东芬尼克兹节能设备有限公司 热泵除霜控制方法、装置、设备及存储介质
EP4071417A4 (en) * 2021-01-18 2022-10-12 Guangdong Phnix Eco-Energy Solution Ltd. HEAT PUMP DEFROST CONTROL METHOD AND DEVICE, DEVICE AND STORAGE MEDIUM

Also Published As

Publication number Publication date
CN109386966A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2020056956A1 (zh) 热泵机组的化霜控制方法、装置、存储介质及热泵机组
CN109539622A (zh) 一种空气源热泵机组及其化霜控制方法
WO2020052123A1 (zh) 一种基于带预冷器的跨临界co2热泵系统及其水路两通阀控制方法
CN109869954B (zh) 空气源热泵热水器及其除霜方法
CN108895719B (zh) 一种热泵机组及其供暖控制方法
CN111207485B (zh) 一种防冻结控制方法、装置、存储介质及水多联系统
CN104634009A (zh) 空调循环装置的控制方法
CN109253524B (zh) 一种热泵系统的控制方法、热泵系统及空调
CN113959062B (zh) 空调器除霜控制方法、控制装置及空调器
CN110986276A (zh) 一种水多联系统防冻控制方法、计算机可读存储介质及空调
CN110686390B (zh) 一种变频器防止主板凝露的控制方法、系统及空调
CN107120796B (zh) 空调器除霜控制方法
CN209399601U (zh) 一种空气源热泵机组
CN112032941A (zh) 空调器的控制方法
US20230013910A1 (en) Multi-split system with partitioned control and selfidentification control method thereof
CN115095955A (zh) 空调器和空调器除霜控制方法
CN114857749B (zh) 空调器和控制空调器除霜的方法
WO2020143133A1 (zh) 空调器除霜控制方法
CN110440478B (zh) 一种具有延缓结霜功能的空调系统及其控制方法
CN110440489A (zh) 一种可调节压差的化霜控制方法、装置及采暖机组
CN110953715B (zh) 一种热泵热水机组动态除垢控制方法
CN110762915B (zh) 一种基于电子膨胀阀开度的制冷系统智能除霜的方法
CN114413416A (zh) 一种多联机空调除霜控制方法、存储介质及多联机空调
CN114427694A (zh) 一种空气源热泵机组除霜控制方法及空气源热泵
CN113776142A (zh) 一种热泵型空调器制冷循环系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934448

Country of ref document: EP

Kind code of ref document: A1