WO2020143133A1 - 空调器除霜控制方法 - Google Patents
空调器除霜控制方法 Download PDFInfo
- Publication number
- WO2020143133A1 WO2020143133A1 PCT/CN2019/084350 CN2019084350W WO2020143133A1 WO 2020143133 A1 WO2020143133 A1 WO 2020143133A1 CN 2019084350 W CN2019084350 W CN 2019084350W WO 2020143133 A1 WO2020143133 A1 WO 2020143133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioner
- time
- temperature
- control method
- real
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/42—Defrosting; Preventing freezing of outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
Definitions
- the invention belongs to the technical field of air conditioners, and particularly relates to a defrosting control method for air conditioners.
- the air conditioner is a device that can adjust the indoor ambient temperature, and its working principle is that the indoor ambient temperature is reduced or increased by the refrigerant switching between high-pressure/low-pressure/gaseous/liquid state between the circulation pipes.
- the heat exchanger of the air conditioner exchanges heat with the air.
- Condensation will form on the coils and fins.
- frost will form.
- the frost will become thicker and thicker, and even cause blockage between the fins, resulting in the reduction of the air volume driven by the air side fan through the coils and fins, and the air cannot better exchange heat with the fins and coils It affects the heat exchange effect of the heat exchanger, resulting in a decrease in the temperature of the refrigerant in the coil of the heat exchanger.
- the thicker the frost the faster the temperature of the refrigerant in the coil. This increases the energy consumption of the system and reduces the amount of cold/heat produced. Therefore, the timing and conditions of defrosting have a very important influence on defrosting.
- the defrosting control method includes the following steps: After running the first preset time, according to the operating state of the air conditioner, selectively detect the real-time temperature T 1 of the outer coil or the inner coil; during the second preset time before detecting the real-time temperature T 1 , according to The operating state of the air conditioner, selectively acquiring the maximum temperature T 0 of the outer coil or the inner coil; comparing the maximum temperature T 0 and the real-time temperature T 1 ; judging whether to use the air conditioner according to the comparison result Enter the defrost mode; wherein, the second preset time is less than the first preset time.
- the step of "determining whether to put the air conditioner into the defrosting mode according to the comparison result" includes: starting from the time when ⁇ T ⁇ the set value, at a subsequent continuous time Calculate ⁇ T within t; if ⁇ T is always greater than or equal to the set value, then put the air conditioner into the defrost mode.
- the set value is any value between 1-3; and/or, the time t is any time between 25-35 seconds.
- the set value is 2 and/or the time t is 30 seconds.
- the real-time temperature of the outer coil or the inner coil is selectively detected according to the operating state of the air conditioner
- the steps of T 1 include: if the air conditioner is in the heating operation state, then detect the real-time temperature T 1 of the outer coil, and if the air conditioner is in the cooling operation state, then detect the real-time temperature T 1 of the inner coil;
- the first preset time is any time between 9-11 minutes.
- the first preset time is 10 minutes.
- the second preset time is any time between 2-4 minutes.
- the second preset time is 3 minutes.
- the air conditioner defrosting control method of the present invention first, before detecting the real-time temperature of the outer coil, it will wait for the air conditioner to continuously run for the first preset time, because the outer coil will run with the air conditioner heating time
- the frost layer is gradually generated, and when the air conditioner has just started heating operation or the defrosting is completed and the heating operation is continued or the heating time is relatively short, there is basically no frost or little frost, and the outer coil temperature will be It decreases first and then rises. Therefore, the present invention does not need to detect the temperature of the outer coil in real time from the beginning, but starts to detect the temperature of the outer coil in real time after detecting that the air conditioner continuously runs for the first preset time, which can avoid the air conditioner Unnecessary energy consumption.
- comparison of the real-time temperature T 1 of the present invention with the maximum temperature T 0, T 0 is the maximum temperature obtained in the first few minutes of the 1 outer coil detects the temperature real-time temperature T, and the maximum temperature T 0 followed by
- the present invention further determines the frost condition of the air conditioner by judging the attenuation of the outer coil in a continuous time t, for example, ⁇ T is always less than 2 in 30 consecutive seconds, thereby more accurately determining the timing of defrosting.
- the defrosting control method of the air conditioner of the present invention makes the defrosting judgment of the air conditioner more accurate and the judgment accuracy is higher.
- FIG. 2 is a partial schematic flowchart of the defrosting control method of the air conditioner of the present invention.
- FIG. 1 is a main flowchart of the defrosting control method of the air conditioner of the present invention.
- the defrosting control method of the air conditioner of the present invention includes: S110.
- the air conditioner After the air conditioner continuously operates for a first preset time, according to the operating state of the air conditioner, selectively detect the outer coil or the inner coil Real-time temperature T 1 ; S120, during the second preset time before detecting the real-time temperature T 1 , according to the operating state of the air conditioner, selectively obtain the maximum temperature T 0 of the outer coil or the inner coil; S130, compare the highest Temperature T 0 and real-time temperature T 1 ; S140, judging whether to put the air conditioner into the defrosting mode according to the comparison result.
- the second preset time is less than the first preset time.
- the defrosting control method of the present invention may perform step S110 and then step S120, or may execute step S120 and then step S110, which does not affect the specific implementation of the present invention.
- the outer coil is prone to frost, and when producing low-temperature cold air at low temperature in summer (such as preparing cold air to a cold store), the inner coil is prone to frost.
- step S110 if the air conditioner is in the heating operation state, the real-time temperature T 1 of the outer coil is detected, and if the air conditioner is in the cooling operation state, the real-time temperature T 1 of the inner coil is detected; similarly, in the step In S120, if the air conditioner is in the heating operation state, the maximum temperature T 0 of the outer coil is obtained, and if the air conditioner is in the cooling operation state, the maximum temperature T 0 of the inner coil is obtained.
- the air conditioner is in the heating operation state as an example.
- step S110 after the air conditioner continues to operate for a first preset time, it first detects the real-time temperature T 1 of the outdoor coil.
- the first preset time may be 10 minutes, or any other time between 9-11 minutes.
- Those skilled in the art can also set other reasonable times according to the actual configuration of the outdoor heat exchanger of the air conditioner, the experimental data, and the degree of frost formation.
- step S120 during the second preset time before detecting the real-time temperature T 1 of the outdoor coil, the maximum temperature T 0 of the outdoor coil is detected.
- the second preset time may be 3 minutes or any other time between 2-4 minutes.
- Those skilled in the art can also set other reasonable times according to the actual configuration of the outdoor heat exchanger of the air conditioner and experimental data. For example, if the real-time temperature T 1 of the outer coil starts to be detected after the air conditioner continues to operate for 10 minutes, then after the air conditioner continues to operate until the 7th minute, calculate the 3 minutes from the 7th minute to the 10th minute.
- the maximum temperature T 0 of the inner and outer coils are examples of the maximum temperature T 0 of the inner and outer coils.
- ⁇ T is the attenuation of the real-time temperature T 1 of the outer coil relative to the maximum temperature T 0. It is easily understood by those skilled in the art that as frost on the outer coil increases, the ambient air The heat transfer capacity between the outer coils will be significantly reduced. As the heat transfer capacity between the outer coils and the external environment decreases, the temperature of the outer coils will be attenuated. Therefore, by detecting the temperature attenuation of the outer coils, it can be accurately Judge the frost level of the outer coil, so as to choose the defrosting timing more accurately.
- step S240 when judging whether to put the air conditioner into the defrosting mode according to the comparison result, referring to FIG. 2, step S240 may be executed first, and firstly judge whether ⁇ T is greater than or equal to the set value.
- the set value may be any other value between 2 or 1-3, and those skilled in the art may also set other reasonable values according to the actual configuration of the outdoor heat exchanger, experimental data, and frost degree. If ⁇ T is greater than the set value, step S250 can be performed to calculate the difference ⁇ T within a continuous time t, and step S260, within the continuous time t, it is determined whether the difference ⁇ T is greater than or equal to the set value.
- steps S130 and S140 are re-executed to determine whether to put the air conditioner into the defrost mode, that is, return to step S230.
- the time t may be 30 seconds, or any other time between 25-35 seconds.
- the present invention determines whether to put the air conditioner into the defrosting mode by judging the attenuation of the outer coil within a continuous time t.
- the air conditioner defrosting control method of the present invention first, before detecting the real-time temperature of the outer coil, it will wait for the air conditioner to continuously run for the first preset time, because the outer coil will run with the air conditioner heating time
- the frost layer is gradually generated, and when the air conditioner has just started heating operation or the defrosting is completed and the heating operation is continued or the heating time is relatively short, there is basically no frost or little frost, and the outer coil temperature will be It decreases first and then rises.
- the present invention does not need to detect the temperature of the outer coil in real time from the beginning, but starts to detect the temperature of the outer coil in real time after detecting that the air conditioner continuously runs for the first preset time, which can avoid the air conditioner Unnecessary energy consumption.
- comparison of the real-time temperature T 1 of the present invention with the maximum temperature T 0, T 0 is the maximum temperature obtained in the first few minutes of the 1 outer coil detects the temperature real-time temperature T, and the maximum temperature T 0 followed by
- the present invention further determines the frost condition of the air conditioner by judging the attenuation of the outer coil in a continuous time t, for example, ⁇ T is always less than 2 in 30 consecutive seconds, thereby more accurately determining the timing of defrosting.
- the defrosting control method of the air conditioner of the present invention makes the defrosting judgment of the air conditioner more accurate and the judgment accuracy is higher.
- the above embodiment is described taking the heating operation of the air conditioner as an example.
- the cooling operation of the air conditioner it is only necessary to change the real-time temperature and maximum temperature of the outer coil detected in the above embodiment to the real-time temperature of the inner coil It can be as high as the maximum temperature, and can also achieve the purpose of accurately determining the defrosting timing of the air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
- Defrosting Systems (AREA)
Abstract
一种除霜控制方法,包括:在空调器连续运行第一预设时间之后,根据空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T 1;在检测实时温度T 1之前的第二预设时间内,根据空调器的运行状态,选择性地获取外盘管或内盘管的最高温度T 0;比较最高温度T 0和实时温度T 1;根据比较结果判断是否使空调器进入除霜模式;其中,第二预设时间小于第一预设时间。
Description
本发明属于空调技术领域,具体涉及一种空调器除霜控制方法。
空调器作为一种能够调节室内环境温度的设备,其工作原理为:通过制冷剂在循环管路之间通过高压/低压/气态/液态的状态转换来使室内环境温度降低或者升高。
在冬季低温制热或者夏季制取低温冷气的情况下,随着空调器的运行,空调器的换热器与空气换热,当低温冷媒使盘管、翅片温度达到空气的露点温度时,会在盘管、翅片上结露,当盘管、翅片温度更低时,将会结霜。随着时间的推移,霜会越结越厚,甚至导致翅片间堵塞,致使空气侧风机带动的空气通过盘管、翅片的风量减少,空气不能更好的与翅片、盘管换热,影响换热器的换热效果,导致换热器盘管内冷媒温度的下降,结霜越厚,盘管内冷媒温度下降越快,加大了系统的能源消耗,产出的冷/热量减少。所以除霜进入时机、条件的判定,对除霜有很重要的影响。
发明内容
为了解决现有技术中的上述问题,即为了更准确地判断空调器进入除霜的时机,本发明提出了一种空调器除霜控制方法,该除霜控制方法包括下列步骤:在空调器连续运行第一预设时间之后,根据所述空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T
1;在检测实时温度T
1之前的第二预设时间内,根据所述空调器的运行状态,选择性地获取所述外盘管或所述内盘管的最高温度T
0;比较最高温度T
0和实时温度T
1;根据比较结果判断是否使所述空调器进入除霜模式;其中,所述第二预设时间小于所述第一预设时间。
在上述空调器除霜控制方法的优选实施例中,“比较最高温度T
0和实时温度T
1”的步骤包括:计算T
0与T
1的差值△T,△T=T
0-T
1。
在上述空调器除霜控制方法的优选实施例中,“根据比较结果判断是否使所述空调器进入除霜模式”的步骤包括:从△T≥设定值的时刻开始,在 之后的连续时间t内计算△T;如果△T始终大于等于所述设定值,则使所述空调器进入除霜模式。
在上述空调器除霜控制方法的优选实施例中,所述设定值为1-3之间的任意值;并且/或者,时间t为25-35秒之间的任意时间。
在上述空调器除霜控制方法的优选实施例中,所述设定值为2,并且/或者时间t为30秒。
在上述空调器除霜控制方法的优选实施例中,“在空调器连续运行第一预设时间之后,根据所述空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T
1”的步骤包括:如果所述空调器处于制热运行状态,则检测外盘管的实时温度T
1,如果所述空调器处于制冷运行状态,则检测内盘管的实时温度T
1;“在检测实时温度T
1之前的第二预设时间内,根据所述空调器的运行状态,选择性地获取所述外盘管或所述内盘管的最高温度T
0”的步骤包括:如果所述空调器处于制热运行状态,则获取外盘管的最高温度T
0,如果所述空调器处于制冷运行状态,则获取内盘管的最高温度T
0。
在上述空调器除霜控制方法的优选实施例中,所述第一预设时间为9-11分钟之间的任意时间。
在上述空调器除霜控制方法的优选实施例中,所述第一预设时间为10分钟。
在上述空调器除霜控制方法的优选实施例中,所述第二预设时间为2-4分钟之间的任意时间。
在上述空调器除霜控制方法的优选实施例中,所述第二预设时间为3分钟。
在本发明的空调器除霜控制方法中,首先,在检测外盘管的实时温度之前,会等空调器连续运行第一预设时间,由于外盘管会随着空调器制热运行的时间逐渐产生霜层,而在空调器刚开始制热运行或者除霜结束转制热运行或者连续运行制热的时间比较短的情形下,基本不会结霜或者结霜很少,外盘管温度会先下降后上升,因此本发明不需要一开始就实时检测外盘管的温度,而是在检测到空调器连续运行第一预设时间之后再开始实时检测外盘管的温度,可以避免空调器不必要的能量消耗。其次,本发明的比较的实时温度T
1与最高温度T
0,该最高温度T
0是在检测外盘管实时温度T
1时的前几分钟内获取的温度,用该最高温度T
0与之后检测到的外盘管的实时温度T
1比 较,得到的△T能够更准确地反映外盘管温度的衰减情况。最后,本发明通过判断外盘管在连续时间t内的衰减情况,例如在连续30秒内△T始终小于2,进一步判断空调器的结霜情况,从而更精确地判断除霜时机。换言之,利用本发明的空调器除霜控制方法使得空调器的除霜判断更准确,判定精度更高。
图1是本发明的空调器除霜控制方法的主要流程图;
图2是本发明的空调器除霜控制方法的部分示意流程图。
为使本发明的实施例、技术方案和优点更加明显,下面将结合附图对本发明的技术方案进行清楚、完整的描述,显然,所述的实施例是本发明的一部分实施例,而不是全部实施例。本领域技术人员应当理解的是,这些实施例仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
本发明旨在使空调器在合适的除霜时机进入除霜模式。参照图1,图1是本发明的空调器除霜控制方法的主要流程图。如图1所示,本发明的空调器除霜控制方法包括:S110、在空调器连续运行第一预设时间之后,根据空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T
1;S120、在检测实时温度T
1之前的第二预设时间内,根据空调器的运行状态,选择性地获取外盘管或内盘管的最高温度T
0;S130、比较最高温度T
0和实时温度T
1;S140、根据比较结果判断是否使所述空调器进入除霜模式。其中,第二预设时间小于第一预设时间。
需要说明的是,本发明的除霜控制方法可以先执行步骤S110再执行步骤S120,也可以先执行步骤S120再执行步骤S110,这些都不影响本发明的具体实施。另外,本领域技术人员容易理解的是,通常在冬季制热时,外盘管容易结霜,在夏季低温制取低温冷气时(如向冷库制备冷气),内盘管容易结霜。因此,在步骤S110中,如果空调器处于制热运行状态,则检测外盘管的实时温度T
1,如果空调器处于制冷运行状态,则检测内盘管的实时温度T
1;同样,在步骤S120中,如果空调器处于制热运行状态,则获取外盘管的最高温度T
0,如果空调器处于制冷运行状态,则获取内盘管的最高温度T
0。
下面以空调器处于制热运行状态为例进行说明。
在步骤S110中,空调器连续运行第一预设时间之后,先检测室外盘管的实时温度T
1。作为示例,第一预设时间可以为10分钟,或者9-11分钟之间的任意其它时间。本领域技术人员还可以根据空调器室外换热器的实际配置及实验数据、结霜程度设置其它合理的时间。
在步骤S120中,在检测室外盘管的实时温度T
1之前的第二预设时间内,检测室外盘管的最高温度T
0。作为示例,该第二预设时间可以为3分钟或者2-4分钟之间的任意其它时间。本领域技术人员还可以根据空调器室外换热器的实际配置及实验数据设置其它合理的时间。举例而言,假如在空调器连续运行10分钟后开始检测外盘管的实时温度T
1,那么在空调器连续运行到第7分钟开始,计算从第7分钟到第10分钟这期间的3分钟内外盘管的最高温度T
0。
在步骤S130中,比较最高温度T
0和实时温度T
1时,参见图2,具体地,可执行步骤S230,计算最高温度T
0和实时温度T
1的差值△T,△T=T
0-T
1。具体地,△T为外盘管的实时温度T
1相对于最高温度T
0的衰减情况,本领域技术人员容易理解的是,随着外盘管上的结霜越来越多,外界环境空气与外盘管之间的换热能力会明显降低,随着外盘管与外界环境之间的换热能力降低,外盘管的温度会衰减,因此通过检测外盘管温度的衰减情况可以准确地判断外盘管的结霜水平,从而更准确地选择除霜时机。
在步骤S140中,根据比较结果判断是否使空调器进入除霜模式时,参见图2,可首先执行步骤S240,首先判断△T是否大于等于设定值。作为示例,设定值可以为2或者1-3之间的任意其它值,本领域技术人员还可以根据室外换热器的实际配置及实验数据、结霜程度设置其它合理的值。若△T大于设定值,可执行步骤S250,连续时间t内计算差值△T,和步骤S260,在该连续时间t内,判断差值△T是否大于等于设定值。也即是,以设定值2为例,当△T≥2时,从△T≥2的时刻开始,在之后的连续时间t内计算△T,如果△T始终大于等于2,则使空调器进入除霜模式(步骤S270)。否则,即在之后的连续时间t内计算△T时出现△T<2的时刻,则重新执行步骤S130和S140以判断是否使空调器进入除霜模式,也即是返回步骤S230。作为示例,时间t可以为30秒,或者25-35秒之间的任意其它时间。本领域技术人员还可以根据室外换热器实际配置及实验数据、结霜程度设置其它合 理的时间。
综上所述,本发明通过判断外盘管在连续时间t内的衰减情况判断是否使空调器进入除霜模式。在本发明的空调器除霜控制方法中,首先,在检测外盘管的实时温度之前,会等空调器连续运行第一预设时间,由于外盘管会随着空调器制热运行的时间逐渐产生霜层,而在空调器刚开始制热运行或者除霜结束转制热运行或者连续运行制热的时间比较短的情形下,基本不会结霜或者结霜很少,外盘管温度会先下降后上升,因此本发明不需要一开始就实时检测外盘管的温度,而是在检测到空调器连续运行第一预设时间之后再开始实时检测外盘管的温度,可以避免空调器不必要的能量消耗。其次,本发明的比较的实时温度T
1与最高温度T
0,该最高温度T
0是在检测外盘管实时温度T
1时的前几分钟内获取的温度,用该最高温度T
0与之后检测到的外盘管的实时温度T
1比较,得到的△T能够更准确地反映外盘管温度的衰减情况。最后,本发明通过判断外盘管在连续时间t内的衰减情况,例如在连续30秒内△T始终小于2,进一步判断空调器的结霜情况,从而更精确地判断除霜时机。换言之,利用本发明的空调器除霜控制方法使得空调器的除霜判断更准确,判定精度更高。
上述实施例是以空调器制热运行为例进行说明的,对于空调器制冷运行的情形,只需要将上述实施例中检测外盘管的实时温度和最高温度改成检测内盘管的实时温度和最高温度即可,同样可以实现精确判断空调器除霜时机的目的。
至此,已经结合附图所示的优选实施例描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施例。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
Claims (10)
- 一种空调器除霜控制方法,其中,该除霜控制方法包括下列步骤:在空调器连续运行第一预设时间之后,根据所述空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T 1;在检测实时温度T 1之前的第二预设时间内,根据所述空调器的运行状态,选择性地获取所述外盘管或所述内盘管的最高温度T 0;比较最高温度T 0和实时温度T 1;根据比较结果判断是否使所述空调器进入除霜模式;其中,所述第二预设时间小于所述第一预设时间。
- 根据权利要求1所述的空调器除霜控制方法,其中,“比较最高温度T 0和实时温度T 1”的步骤包括:计算所述最高温度T 0与所述实时温度T 1的差值△T,△T=T 0-T 1。
- 根据权利要求2所述的空调器除霜控制方法,其中,“根据比较结果判断是否使所述空调器进入除霜模式”的步骤包括:从所述差值△T大于等于设定值的时刻开始,在之后的连续时间t内计算所述差值△T;如果所述差值△T始终大于等于所述设定值,则使所述空调器进入所述除霜模式。
- 根据权利要求3所述的空调器除霜控制方法,其中,所述设定值为1-3之间的任意值;并且/或者,时间t为25-35秒之间的任意时间。
- 根据权利要求4所述的空调器除霜控制方法,其中,所述设定值为2,并且/或者所述时间t为30秒。
- 根据权利要求1所述的空调器除霜控制方法,其中,“在空调器连续运行第一预设时间之后,根据所述空调器的运行状态,选择性地检测外盘管或内盘管的实时温度T 1”的步骤包括:如果所述空调器处于制热运行状态,则检测外盘管的所述实时温度T 1,如果所述空调器处于制冷运行状态,则检测内盘管的所述实时温度T 1;“在检测实时温度T 1之前的第二预设时间内,根据所述空调器的运行状态,选择性地获取所述外盘管或所述内盘管的最高温度T 0”的步骤包括:如果所述空调器处于制热运行状态,则获取外盘管的所述最高温度T 0,如果所述空调器处于制冷运行状态,则获取内盘管的所述最高温度T 0。
- 根据权利要求1至6中任一项所述的空调器除霜控制方法,其中,所述第一预设时间为9-11分钟之间的任意时间。
- 根据权利要求7所述的空调器除霜控制方法,其中,所述第一预设时间为10分钟。
- 根据权利要求1至6中任一项所述的空调器除霜控制方法,其中,所述第二预设时间为2-4分钟之间的任意时间。
- 根据权利要求9所述的空调器除霜控制方法,其中,所述第二预设时间为3分钟。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910013065.2 | 2019-01-07 | ||
CN201910013065.2A CN111412581B (zh) | 2019-01-07 | 2019-01-07 | 空调器除霜控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020143133A1 true WO2020143133A1 (zh) | 2020-07-16 |
Family
ID=71488848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/084350 WO2020143133A1 (zh) | 2019-01-07 | 2019-04-25 | 空调器除霜控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111412581B (zh) |
WO (1) | WO2020143133A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113840512A (zh) * | 2021-08-06 | 2021-12-24 | 锐捷网络股份有限公司 | 一种温度调节方法、装置、电子设备及存储介质 |
CN114543263A (zh) * | 2022-01-29 | 2022-05-27 | 北京小米移动软件有限公司 | 一种盘管温度控制方法、盘管温度控制装置及存储介质 |
CN115342481A (zh) * | 2022-08-16 | 2022-11-15 | 宁波奥克斯电气股份有限公司 | 一种空调器的控制方法、控制装置和空调器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1508499A (zh) * | 2002-12-16 | 2004-06-30 | 珠海格力电器股份有限公司 | 热泵型空调器的除霜控制方法 |
CN106152381A (zh) * | 2015-03-31 | 2016-11-23 | Tcl空调器(中山)有限公司 | 空调器及空调器的除霜控制方法 |
CN106679117A (zh) * | 2017-01-24 | 2017-05-17 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法及装置 |
CN107084499A (zh) * | 2017-05-17 | 2017-08-22 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
CN107300240A (zh) * | 2017-05-17 | 2017-10-27 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
CN107388499A (zh) * | 2017-07-31 | 2017-11-24 | 苏州大成有方数据科技有限公司 | 一种家用空调除霜控制方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5797273A (en) * | 1997-02-14 | 1998-08-25 | Carrier Corporation | Control of defrost in heat pump |
JP4306057B2 (ja) * | 1999-11-29 | 2009-07-29 | 株式会社デンソー | 車両用空調装置 |
US6860431B2 (en) * | 2003-07-10 | 2005-03-01 | Tumkur S. Jayadev | Strategic-response control system for regulating air conditioners for economic operation |
SE0700910L (sv) * | 2007-04-13 | 2008-10-14 | Aga Ab | Förfarande för att mäta temperaturen i en ugn |
CN101551183B (zh) * | 2008-04-03 | 2010-11-03 | 珠海格力电器股份有限公司 | 空调器的化霜控制方法 |
CN101660808B (zh) * | 2008-08-29 | 2012-01-04 | Tcl集团股份有限公司 | 空调器的除霜控制方法 |
DE102012205200B4 (de) * | 2011-04-04 | 2020-06-18 | Denso Corporation | Kältemittelkreislaufvorrichtung |
CN102679645B (zh) * | 2012-04-24 | 2016-09-28 | 美的集团股份有限公司 | 热泵的除霜方法 |
US10018400B2 (en) * | 2013-08-13 | 2018-07-10 | Lennox Industries Inc. | Defrost operation management in heat pumps |
CN104964404B (zh) * | 2015-05-26 | 2017-10-27 | 美的集团武汉制冷设备有限公司 | 空调器冷媒泄漏检测的方法和装置 |
CN106801976A (zh) * | 2017-01-06 | 2017-06-06 | 海信(广东)空调有限公司 | 一种空调除霜方法 |
CN107120796B (zh) * | 2017-05-17 | 2020-09-25 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
CN108204657B (zh) * | 2017-12-29 | 2020-07-28 | 广东美的制冷设备有限公司 | 运行控制方法、装置、空调器和计算机可读存储介质 |
CN108954674A (zh) * | 2018-05-24 | 2018-12-07 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
-
2019
- 2019-01-07 CN CN201910013065.2A patent/CN111412581B/zh active Active
- 2019-04-25 WO PCT/CN2019/084350 patent/WO2020143133A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1508499A (zh) * | 2002-12-16 | 2004-06-30 | 珠海格力电器股份有限公司 | 热泵型空调器的除霜控制方法 |
CN106152381A (zh) * | 2015-03-31 | 2016-11-23 | Tcl空调器(中山)有限公司 | 空调器及空调器的除霜控制方法 |
CN106679117A (zh) * | 2017-01-24 | 2017-05-17 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法及装置 |
CN107084499A (zh) * | 2017-05-17 | 2017-08-22 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
CN107300240A (zh) * | 2017-05-17 | 2017-10-27 | 青岛海尔空调器有限总公司 | 空调器除霜控制方法 |
CN107388499A (zh) * | 2017-07-31 | 2017-11-24 | 苏州大成有方数据科技有限公司 | 一种家用空调除霜控制方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113840512A (zh) * | 2021-08-06 | 2021-12-24 | 锐捷网络股份有限公司 | 一种温度调节方法、装置、电子设备及存储介质 |
CN113840512B (zh) * | 2021-08-06 | 2023-10-20 | 锐捷网络股份有限公司 | 一种温度调节方法、装置、电子设备及存储介质 |
CN114543263A (zh) * | 2022-01-29 | 2022-05-27 | 北京小米移动软件有限公司 | 一种盘管温度控制方法、盘管温度控制装置及存储介质 |
CN115342481A (zh) * | 2022-08-16 | 2022-11-15 | 宁波奥克斯电气股份有限公司 | 一种空调器的控制方法、控制装置和空调器 |
Also Published As
Publication number | Publication date |
---|---|
CN111412581A (zh) | 2020-07-14 |
CN111412581B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107131611B (zh) | 空调器除霜控制方法 | |
WO2020056956A1 (zh) | 热泵机组的化霜控制方法、装置、存储介质及热泵机组 | |
CN111981640B (zh) | 一种除霜控制方法、装置、空调器及存储介质 | |
WO2020143133A1 (zh) | 空调器除霜控制方法 | |
CN109869954B (zh) | 空气源热泵热水器及其除霜方法 | |
CN109282430B (zh) | 一种检测控制空调除霜的方法 | |
CN108895719B (zh) | 一种热泵机组及其供暖控制方法 | |
CN106016628B (zh) | 空调器化霜控制的方法及装置 | |
CN111141007A (zh) | 一种调节空调结霜的控制方法、控制系统及空调 | |
WO2019210802A1 (zh) | 化霜控制方法及系统 | |
WO2021218513A1 (zh) | 多联机空调机组的除霜控制方法 | |
US6334321B1 (en) | Method and system for defrost control on reversible heat pumps | |
CN111076460B (zh) | 除霜控制方法及冷藏柜 | |
WO2019158048A1 (zh) | 空调器除霜控制方法 | |
CN107120796B (zh) | 空调器除霜控制方法 | |
WO2020019849A1 (zh) | 空调器及其室外机除霜控制方法 | |
CN111895577B (zh) | 一种四通阀换向控制方法、控制装置、存储介质及空调器 | |
CN112963941A (zh) | 空调器、其控制方法和化霜控制装置 | |
CN111207486A (zh) | 一种空调智能化霜控制方法、计算机可读存储介质及空调 | |
CN108692426B (zh) | 空调器除霜控制方法 | |
WO2018233457A1 (zh) | 空调及其室外机除霜方法 | |
CN112032941A (zh) | 空调器的控制方法 | |
WO2023071148A1 (zh) | 空调器除霜控制方法、控制装置及空调器 | |
CN107687728B (zh) | 一种判断结露点的空气能热泵化霜的控制方法 | |
CN107289576B (zh) | 空调器除霜控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909527 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19909527 Country of ref document: EP Kind code of ref document: A1 |