WO2019210802A1 - 化霜控制方法及系统 - Google Patents

化霜控制方法及系统 Download PDF

Info

Publication number
WO2019210802A1
WO2019210802A1 PCT/CN2019/084277 CN2019084277W WO2019210802A1 WO 2019210802 A1 WO2019210802 A1 WO 2019210802A1 CN 2019084277 W CN2019084277 W CN 2019084277W WO 2019210802 A1 WO2019210802 A1 WO 2019210802A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
temperature
frequency
interval
defrosting frequency
Prior art date
Application number
PCT/CN2019/084277
Other languages
English (en)
French (fr)
Inventor
余彬
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2019210802A1 publication Critical patent/WO2019210802A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms

Definitions

  • the present application relates to the field of heat pump technology, and in particular, to a defrosting control method, a defrosting control system, a computer device, and a computer readable storage medium.
  • the compressor operating frequency is fixed, that is, the compressor output capacity is relatively stable, but considering the frosting thickness of the outdoor heat exchanger under different conditions. It is not the same, that is to say, the heat required for the defrosting is different. Therefore, if the defrosting frequency remains the same, the defrosting capacity may be small, the defrosting may be insufficient, and the defrosting ability may occur. Large output, resulting in wasted energy, and even lead to pressure changes too fast, affecting system reliability.
  • the present application is intended to address at least one of the technical problems existing in the related art or related art.
  • a first aspect of the present application is to propose a defrosting control method.
  • a second aspect of the present application is to propose a defrosting control system.
  • a third aspect of the present application is to provide a computer device.
  • a fourth aspect of the present application is to provide a computer readable storage medium.
  • a defrosting control method for a heat pump water heater system wherein the heat pump water heater system includes a compressor and a water tank, and the defrosting control method specifically includes: In the defrosting command, the defrosting frequency is searched according to the outdoor ambient temperature and water temperature; the defrosting mode is operated to control the compressor to start at the defrosting frequency.
  • the defrosting control method provided by the present application can determine the defrosting frequency in combination with the outdoor ambient temperature and the water temperature in response to the defrosting command, and control the compression to operate the defrosting mode according to the determined defrosting frequency. Due to the different outdoor ambient temperature and different water temperature, the frost thickness of the outdoor heat exchanger is different, that is, the heat required for the frosting is different, and the low pressure side of the system will be The hot water in the water tank exchanges heat and absorbs heat to evaporate, so that the heat release capacity of the condensation side is greatly improved. In this defrosting process, the defrosting ability is not only related to the operating frequency of the compressor, but also related to the water temperature of the hot water.
  • the compressor can only operate the defrost mode according to the fixed operating frequency during defrosting, it is easy to appear less frost in the high water temperature region, but instead output a large defrosting ability, resulting in energy waste, and also due to defrosting
  • the sensor cannot detect the temperature change in time, so that the pressure of the heat exchanger rises rapidly during a certain period of time, which is likely to cause instability of the heat pump water heater system.
  • the defrosting frequency of the compressor is changed, effectively avoiding the problem of using a fixed frequency for defrosting, and combining the outdoor ambient temperature and the water temperature to predict the frosting situation, and comprehensively forming the frosting situation.
  • Determine the most suitable defrosting frequency of the compressor thus ensuring the effect of defrosting, reducing energy waste, ensuring a balance between defrosting effect, time and system reliability, and improving product quality.
  • the operation of searching for the defrosting frequency according to the outdoor ambient temperature and the water temperature comprises: searching for a corresponding temperature interval according to the outdoor ambient temperature; acquiring a defrosting frequency curve corresponding to the temperature interval, and traversing the defrosting frequency curve
  • the coordinates correspond to the water temperature, and the ordinate corresponds to the defrosting frequency; the defrosting frequency is found according to the defrosting frequency curve and the water temperature.
  • the corresponding temperature interval is searched according to the outdoor environment temperature, and the corresponding defrosting frequency curve is obtained according to different temperature intervals, wherein the defrosting frequency curve is the water temperature as the abscissa and the defrosting frequency as the ordinate. Relationship lines. Since the difficulty of frosting of the outdoor unit varies under different outdoor environmental temperatures, and the thickness of the frost at the same outdoor temperature varies with the water temperature, different defrosting frequency curves are set in different temperature ranges. First, determine the defrosting frequency curve, and then use the horizontal and vertical coordinates of the selected defrosting frequency curve to determine the corresponding defrosting frequency, and then control the compressor to run the defrosting mode according to the determined defrosting frequency, which is convenient to find.
  • the number of temperature intervals is at least two, and all temperature intervals have no intersection; all temperature intervals are divided into an easy frosting interval and an easy frosting interval, and the highest temperature corresponding to the easy frosting interval is low.
  • the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy-to-frozen interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-frozen interval.
  • the temperature interval is established, and the temperature interval is used to characterize the difficulty of frosting. There is no intersection in all temperature intervals, so that the detected temperature range of the outdoor ambient temperature is clear, and the control process is ensured to be reliable. By comparing the outdoor ambient temperature, the corresponding frosting area can be directly determined. Since the water vapor in the air is exposed to the evaporator in the outdoor unit in a low temperature environment, the heat is taken away, and the phase change is easy to occur on the surface of the evaporator. Frosting, the demand for defrosting is correspondingly larger.
  • the temperature interval By dividing the temperature interval into an easy frosting interval and a non-frosting interval, and the maximum temperature corresponding to the easy frosting interval is lower than the lowest temperature corresponding to the non-frosting interval, The division of the temperature interval is reasonable, and the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy frosting interval is larger than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-failing interval, that is, in the easy frosting interval
  • the defrosting frequency of the compressor is higher than the defrosting frequency of the non-frosting zone, which makes the defrosting frequency consistent with the defrosting demand.
  • any two points a (Ta, Fa) and b (Tb, Fb) are taken, and if Ta > Tb, Fa ⁇ Fb.
  • the relationship between the water temperature and the defrosting frequency at the same outdoor ambient temperature is specifically defined.
  • the lower water temperature indicates that the heating efficiency of the system is low, reflecting the relatively thick frosting and high demand for defrosting.
  • the amount of heat that can be absorbed by the evaporation side of the room during defrosting is small, and the heat release capacity of the condensation side is insufficient.
  • the ability is also relatively weak; on the contrary, when the water temperature is high, the demand for defrosting is low, and the defrosting ability is relatively strong.
  • the compressor when the water temperature is low, the compressor is controlled to operate according to a certain frequency, so as to ensure the water temperature rises steadily, avoiding the defrosting frequency of the compressor being too high when the water temperature is too low, and the water temperature steeply increasing the system stability. Sexual conditions help control the compressor for defrosting.
  • the defrosting frequency of the compressor decreases with the increase of the water temperature.
  • the defrosting frequency is increased, and the capacity output during defrosting is increased, which is fast and accurate.
  • a defrosting control system for a heat pump water heater system
  • the heat pump water heater system comprises: a compressor and a water tank
  • the defrosting control system comprises: a search unit for In response to the defrosting command, the defrosting frequency is searched according to the outdoor ambient temperature and the water temperature; the control unit is configured to operate the defrosting mode, and the compressor is controlled to start at the defrosting frequency.
  • the searching unit may determine the defrosting frequency in combination with the outdoor ambient temperature and the water temperature in response to the defrosting command, and control the compression by the control unit to operate the defrosting mode according to the determined defrosting frequency. Due to the different outdoor ambient temperature and different water temperature, the frost thickness of the outdoor heat exchanger is different, that is, the heat required for the frosting is different, and the low pressure side of the system will be The hot water in the water tank exchanges heat and absorbs heat to evaporate, so that the heat release capacity of the condensation side is greatly improved. In this defrosting process, the defrosting ability is not only related to the operating frequency of the compressor, but also related to the water temperature of the hot water.
  • defrosting control system in the above technical solution provided by the present application may further have the following additional technical features:
  • the searching unit is configured to: in response to the defrosting instruction, search for a corresponding temperature interval according to the outdoor environment temperature; acquire a defrosting frequency curve corresponding to the temperature interval, and correspond to an abscissa of the defrosting frequency curve The water temperature and the ordinate correspond to the defrosting frequency; the defrosting frequency is found according to the defrosting frequency curve and the water temperature.
  • the searching unit searches for a corresponding temperature interval according to the outdoor environment temperature, and then obtains a corresponding defrost frequency curve according to different temperature intervals, wherein the defrost frequency curve is based on the water temperature as the abscissa and the defrost frequency as the vertical The relationship of coordinates. Since the difficulty of frosting of the outdoor unit varies under different outdoor environmental temperatures, and the thickness of the frost at the same outdoor temperature varies with the water temperature, different defrosting frequency curves are set in different temperature ranges.
  • the number of temperature intervals is at least two, and all temperature intervals have no intersection; all temperature intervals are divided into an easy frosting interval and an easy frosting interval, and the highest temperature corresponding to the easy frosting interval is low.
  • the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy-to-frozen interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-frozen interval.
  • the temperature interval is established, and the temperature interval is used to characterize the difficulty of frosting. There is no intersection in all temperature intervals, so that the detected temperature range of the outdoor ambient temperature is clear, and the control process is ensured to be reliable. By comparing the outdoor ambient temperature, the corresponding frosting area can be directly determined. Since the water vapor in the air is exposed to the evaporator in the outdoor unit in a low temperature environment, the heat is taken away, and the phase change is easy to occur on the surface of the evaporator. Frosting, the demand for defrosting is correspondingly larger. By dividing the temperature interval into an easy frosting interval and an easy frosting interval, and the maximum temperature corresponding to the easy frosting interval is lower than the lowest temperature corresponding to the non-frosting interval.
  • the temperature interval can be divided reasonably, and the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy frosting interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-failing interval, that is, easy to frost
  • the defrosting frequency of the compressor in the interval is higher than the defrosting frequency of the non-frosting zone, which makes the defrosting frequency consistent with the defrosting demand.
  • any two points a (Ta, Fa) and b (Tb, Fb) are taken, and if Ta > Tb, Fa ⁇ Fb.
  • the relationship between the water temperature and the defrosting frequency at the same outdoor ambient temperature is specifically defined.
  • the lower water temperature indicates that the heating efficiency of the system is low, reflecting the relatively thick frosting and high demand for defrosting.
  • the amount of heat that can be absorbed by the evaporation side of the room during defrosting is small, and the heat release capacity of the condensation side is insufficient.
  • the ability is also relatively weak; on the contrary, when the water temperature is high, the demand for defrosting is low, and the defrosting ability is relatively strong.
  • the compressor when the water temperature is low, the compressor is controlled to operate according to a certain frequency, so as to ensure the water temperature rises steadily, avoiding the defrosting frequency of the compressor being too high when the water temperature is too low, and the water temperature steeply increasing the system stability. Sexual conditions help control the compressor for defrosting.
  • the defrosting frequency of the compressor decreases with the increase of the water temperature.
  • the defrosting frequency is increased, and the capacity output during defrosting is increased, which is fast and accurate.
  • a computer apparatus comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing any one of the above technical solutions when executing the computer program The steps of the method described.
  • the computer device provided by the present application when executing the computer program stored in the memory, can implement the steps of the method described in any of the above technical solutions, and thus has all the beneficial technical effects of the above defrosting control method, and is no longer Narration.
  • a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of the method of any of the above aspects.
  • the computer readable storage medium provided by the present application when the computer program stored thereon is executed by the processor, can implement the steps of the method described in any of the above technical solutions, and thus has all the beneficial technical effects of the above defrosting control method. No longer.
  • FIG. 1 shows a schematic flow chart of a defrosting control method according to an embodiment of the present application
  • FIG. 2 shows a schematic flow chart of a defrosting control method according to another embodiment of the present application
  • Figure 3 shows a schematic block diagram of a defrosting control system in accordance with one embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a computer device according to an embodiment of the application.
  • Figure 5 shows a schematic diagram of finding a corresponding temperature interval based on the outdoor ambient temperature
  • Figure 6 shows a schematic diagram of the defrosting frequency curve.
  • the embodiment of the first aspect of the present application provides a defrosting control method for a heat pump water heater system, in particular, a variable frequency heat pump circulating heating water heater system having a defrosting function, including a water circuit circulation Heating, fluorine circulation heating and secondary circulation heating.
  • FIG. 1 shows a schematic flow chart of a defrosting control method according to an embodiment of the present application.
  • the defrosting control method of one embodiment of the present application includes:
  • the defrosting control method provided in the embodiment of the present application can determine the defrosting frequency in combination with the outdoor ambient temperature and the water temperature in response to the defrosting command, and control the compression to operate the defrosting mode according to the determined defrosting frequency. Due to the different outdoor ambient temperature and different water temperature, the frost thickness of the outdoor heat exchanger is different, that is, the heat required for the frosting is different, and the low pressure side of the system will be The hot water in the water tank exchanges heat and absorbs heat to evaporate, so that the heat release capacity of the condensation side is greatly improved. In this defrosting process, the defrosting ability is not only related to the operating frequency of the compressor, but also related to the water temperature of the hot water.
  • the compressor can only operate the defrost mode according to the fixed operating frequency during defrosting, it is easy to appear less frost in the high water temperature region, but instead output a large defrosting ability, resulting in energy waste, and also due to defrosting
  • the sensor cannot detect the temperature change in time, so that the pressure of the heat exchanger rises rapidly during a certain period of time, which is likely to cause instability of the heat pump water heater system.
  • the defrosting frequency of the compressor is changed, effectively avoiding the problem of using a fixed frequency for defrosting, and combining the outdoor ambient temperature and the water temperature to predict the frosting situation, and comprehensively forming the frosting situation.
  • Determine the most suitable defrosting frequency of the compressor thus ensuring the effect of defrosting, reducing energy waste, ensuring a balance between defrosting effect, time and system reliability, and improving product quality.
  • the water temperature may be the water temperature of the water tank or the water temperature in the water circuit.
  • the heat pump water heater system can directly obtain the outdoor ambient temperature and the water temperature of the water tank through the sensor, thereby determining whether the defrosting condition is satisfied, and generating a defrosting command when the defrosting condition is satisfied, and then responding to Defrost command, find the defrost frequency according to the outdoor ambient temperature and water temperature; run the defrost mode to control the compressor to start at the defrost frequency.
  • the heat pump water heater system automatically determines whether a defrosting operation is required, and defrosting in time.
  • the heat pump water heater system can receive a defrosting command input by a user via an operation panel, a remote controller, or an application program, and respond to the outdoor environment temperature and the water temperature of the water tank after receiving the defrosting command. Further, the compressor is controlled to operate the defrosting mode according to the defrosting frequency to perform defrosting.
  • FIG. 2 shows a schematic flow chart of a defrosting control method according to another embodiment of the present application.
  • the defrosting control method of another embodiment of the present application includes:
  • the abscissa of the defrosting frequency curve corresponds to the water temperature, and the ordinate corresponds to the defrosting frequency.
  • the corresponding temperature interval is searched according to the outdoor ambient temperature, and then the corresponding defrost frequency curve is obtained according to different temperature intervals, wherein the defrost frequency curve is the water temperature as the abscissa and the defrost frequency as the ordinate. Relationship lines. Since the difficulty of frosting of the outdoor unit varies under different outdoor environmental temperatures, and the thickness of the frost at the same outdoor temperature varies with the water temperature, different defrosting frequency curves are set in different temperature ranges. First, determine the defrosting frequency curve, and then use the horizontal and vertical coordinates of the selected defrosting frequency curve to determine the corresponding defrosting frequency, and then control the compressor to run the defrosting mode according to the determined defrosting frequency, which is convenient to find.
  • the number of temperature intervals is at least two, and all temperature intervals have no intersection; all temperature intervals are divided into an easy frosting interval and a non-frosting interval, and a maximum temperature corresponding to the easy frosting interval. Below the lowest temperature corresponding to the non-frosting interval, the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy-to-frozen interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-exposure interval.
  • the temperature interval is established, and the temperature interval is used to characterize the difficulty of frosting. There is no intersection in all temperature intervals, so that the detected temperature range of the outdoor ambient temperature is clear, and the control process is ensured to be reliable. By comparing the outdoor ambient temperature, the corresponding frosting area can be directly determined. Since the water vapor in the air is exposed to the evaporator in the outdoor unit in a low temperature environment, the heat is taken away, and the phase change is easy to occur on the surface of the evaporator. Frosting, the demand for defrosting is correspondingly larger.
  • the temperature interval By dividing the temperature interval into an easy frosting interval and a non-frosting interval, and the maximum temperature corresponding to the easy frosting interval is lower than the lowest temperature corresponding to the non-frosting interval, The division of the temperature interval is reasonable, and the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy frosting interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-failing interval, that is, in the easy frosting interval
  • the defrosting frequency of the compressor is higher than the defrosting frequency of the non-frosting zone, which makes the defrosting frequency consistent with the defrosting demand.
  • any two points a(Ta, Fa) and b(Tb, Fb) are taken, and if Ta>Tb, Fa ⁇ Fb.
  • the relationship between the water temperature and the defrosting frequency at the same outdoor ambient temperature is specifically defined.
  • the lower water temperature indicates that the heating efficiency of the system is low, reflecting the relatively thick frosting and high demand for defrosting.
  • the amount of heat that can be absorbed by the evaporation side of the room during defrosting is small, and the heat release capacity of the condensation side is insufficient.
  • the ability is also relatively weak; on the contrary, when the water temperature is high, the demand for defrosting is low, and the defrosting ability is relatively strong.
  • the compressor when the water temperature is low, the compressor is controlled to operate according to a certain frequency, so as to ensure the water temperature rises steadily, avoiding the defrosting frequency of the compressor being too high when the water temperature is too low, and the water temperature steeply increasing the system stability. Sexual conditions help control the compressor for defrosting.
  • the defrosting frequency of the compressor decreases with the increase of the water temperature.
  • the defrosting frequency is increased, and the capacity output during defrosting is increased, which is fast and accurate.
  • An embodiment of the second aspect of the present application provides a defrosting control system for a heat pump water heater system, in particular, a variable temperature heat pump circulating heating water heater system having a defrosting function, including a water circuit circulation Heating, fluorine circulation heating and secondary circulation heating.
  • FIG. 3 shows a schematic block diagram of a defrosting control system 300 in accordance with one embodiment of the present application.
  • the defrosting control system 300 of one embodiment of the present application includes:
  • the searching unit 302 is configured to search for a defrosting frequency according to the outdoor environment temperature and the water temperature in response to the defrosting instruction;
  • the control unit 304 is configured to operate the defrost mode, and control the compressor to start at a defrost frequency.
  • the searching unit 302 can determine the defrosting frequency in combination with the outdoor ambient temperature and the water temperature in response to the defrosting command, and the control unit 304 controls the compression to operate the defrosting mode according to the determined defrosting frequency.
  • the frost thickness of the outdoor heat exchanger is different, that is, the heat required for the frosting is different, and the low pressure side of the system will be
  • the hot water in the water tank exchanges heat and absorbs heat to evaporate, so that the heat release capacity of the condensation side is greatly improved.
  • the defrosting ability is not only related to the operating frequency of the compressor, but also related to the water temperature of the hot water.
  • the compressor can only operate the defrost mode according to the fixed operating frequency during defrosting, it is easy to appear less frost in the high water temperature region, but instead output a large defrosting ability, resulting in energy waste, and also due to defrosting
  • the sensor cannot detect the temperature change in time, so that the pressure of the heat exchanger rises rapidly during a certain period of time, which is likely to cause instability of the heat pump water heater system.
  • the defrosting frequency of the compressor in the defrosting control system of the present application is changed, effectively avoiding the problem of using the fixed frequency for defrosting, and combining the outdoor environmental temperature and the water temperature to predict the frosting situation, and comprehensively forming the frosting situation.
  • the water temperature may be the water temperature of the water tank or the water temperature in the water path.
  • the heat pump water heater system can directly obtain the outdoor ambient temperature and the water temperature of the water tank through the sensor, thereby determining whether the defrosting condition is satisfied, and generating a defrosting command when the defrosting condition is satisfied, and then responding to Defrost command, find the defrost frequency according to the outdoor ambient temperature and water temperature; run the defrost mode to control the compressor to start at the defrost frequency.
  • the heat pump water heater system automatically determines whether a defrosting operation is required, and defrosting in time.
  • the heat pump water heater system can receive a defrosting command input by a user via an operation panel, a remote controller, or an application program, and respond to the outdoor environment temperature and the water temperature of the water tank after receiving the defrosting command. Further, the compressor is controlled to operate the defrosting mode according to the defrosting frequency to perform defrosting.
  • the searching unit is configured to: in response to the defrosting instruction, find a corresponding temperature interval according to the outdoor environment temperature; acquire a defrosting frequency curve corresponding to the temperature interval, and perform a defrosting frequency curve
  • the abscissa corresponds to the water temperature
  • the ordinate corresponds to the defrost frequency
  • the defrost frequency is found according to the defrost frequency curve and the water temperature.
  • the searching unit searches for a corresponding temperature interval according to the outdoor ambient temperature, and then obtains a corresponding defrost frequency curve according to different temperature intervals, wherein the defrost frequency curve is based on the water temperature as the abscissa and the defrost frequency as the vertical The relationship of coordinates. Since the difficulty of frosting of the outdoor unit varies under different outdoor environmental temperatures, and the thickness of the frost at the same outdoor temperature varies with the water temperature, different defrosting frequency curves are set in different temperature ranges. First, determine the defrosting frequency curve, and then use the horizontal and vertical coordinates of the defrosting frequency curve to determine the corresponding defrosting frequency, and then control the compressor to run the defrosting mode according to the determined defrosting frequency, which is convenient to find.
  • the number of temperature intervals is at least two, and all temperature intervals have no intersection; all temperature intervals are divided into an easy frosting interval and a non-frosting interval, and a maximum temperature corresponding to the easy frosting interval. Below the lowest temperature corresponding to the non-frosting interval, the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy-to-frozen interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-exposure interval.
  • the temperature interval is established, and the temperature interval is used to characterize the difficulty of frosting. There is no intersection between all temperature zones, so that the temperature range to which the detected outdoor ambient temperature belongs is clear, and the control process is ensured to be reliable. By comparing the outdoor ambient temperature, the corresponding frosting area can be directly determined. Since the water vapor in the air is exposed to the evaporator in the outdoor unit in a low temperature environment, the heat is taken away, and the phase change is easy to occur on the surface of the evaporator. Frosting, the demand for defrosting is correspondingly larger. By dividing the temperature interval into an easy frosting interval and an easy frosting interval, and the maximum temperature corresponding to the easy frosting interval is lower than the lowest temperature corresponding to the non-frosting interval.
  • the temperature interval can be divided reasonably, and the minimum defrosting frequency in all the defrosting frequency curves corresponding to the easy frosting interval is greater than the highest defrosting frequency in all the defrosting frequency curves corresponding to the non-failing interval, that is, easy to frost
  • the defrosting frequency of the compressor in the interval is higher than the defrosting frequency of the non-frosting zone, which makes the defrosting frequency consistent with the defrosting demand.
  • any two points a(Ta, Fa) and b(Tb, Fb) are taken, and if Ta>Tb, Fa ⁇ Fb.
  • the relationship between the water temperature and the defrosting frequency at the same outdoor ambient temperature is specifically defined.
  • the lower water temperature indicates that the heating efficiency of the system is low, reflecting the relatively thick frosting and high demand for defrosting.
  • the amount of heat that can be absorbed by the evaporation side of the room during defrosting is small, and the heat release capacity of the condensation side is insufficient.
  • the ability is also relatively weak; on the contrary, when the water temperature is high, the demand for defrosting is low, and the defrosting ability is relatively strong.
  • the computer device 400 includes a memory 402, a processor 404, and a computer program stored on the memory 402 and executable on the processor 404.
  • the processor 404 when executing a computer program, implements the steps of the method as described in any of the above embodiments.
  • the computer device 400 when the processor 404 executes the computer program stored on the memory 402, can implement the steps of the method described in any of the above embodiments, and thus has all the beneficial technical effects of the above defrosting control method. This will not be repeated here.
  • An embodiment of the fourth aspect of the present application provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method as described in any of the above embodiments.
  • the computer readable storage medium provided by the present application when the computer program stored thereon is executed by the processor, can implement the steps of the method described in any of the above embodiments, and thus has all the beneficial technical effects of the defrosting control method described above. No longer.
  • the present application responds to the defrosting command, searches for the corresponding temperature interval according to the outdoor environment temperature, acquires the defrosting frequency curve corresponding to the temperature interval, and searches according to the defrosting frequency curve and the water temperature.
  • the defrosting frequency ensures the effect of defrosting, reduces energy waste, and improves system reliability.
  • the temperature is usually around 0 ° C or even 0 ° C, and studies have shown that -3 ° C to 3 ° C is the most easy to frost temperature range, so the highest frequency of defrost in this temperature range When the temperature is further reduced, the degree of frosting is reduced due to the decrease of air humidity, and the defrosting frequency is also reduced accordingly.
  • the temperature is usually above 3 °C, and the defrosting frequency is the lowest. For example, as shown in FIG.
  • the outdoor ambient temperature is divided into three sections, wherein the first temperature interval corresponds to a temperature range above T 1 and the second temperature interval corresponds to a temperature range between T 0 and T 1
  • the third temperature interval corresponds to a temperature range below T 0 , wherein T 0 is -3 ° C, T 1 is 3 ° C, the first temperature interval is not easy to frost zone, and the second and third temperature intervals are easy frosting temperature Interval.
  • Fig. 6 shows a defrosting frequency curve of an embodiment of the present application.
  • the abscissa of the defrosting frequency curve corresponds to the water temperature T water
  • the ordinate corresponds to the defrosting frequency F.
  • F 1 >F 4 >F 2 >F 5 >F 3 >F 6 the line between F 1 and F 4 constitutes a second curve; the line between F 2 and F 5 constitutes a third curve; The line between F 3 and F 6 constitutes a first curve, and the first curve, the second curve, and the third curve respectively correspond to the first temperature interval, the second temperature interval, and the third temperature interval.
  • the number of temperature intervals is not limited to the above three, and can be divided according to the actual situation of the system; at the same time, the water temperature and the defrosting frequency in the defrosting frequency curve are determined after experimental testing for different systems.
  • the defrosting frequency curve can first determine the water temperature and the defrosting frequency corresponding to the straight sections of the two ends as shown in Fig. 6, and then connect the middle part into a straight line, or first determine the optimal defrosting frequency point corresponding to the plurality of water temperatures, and then The fit forms a defrosting frequency curve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种化霜控制方法、一种化霜控制系统(300)、一种计算机设备(400)及一种计算机可读存储介质。其中化霜控制方法包括:响应于化霜指令,根据室外环境温度和水温查找化霜频率;运行化霜模式,控制压缩机以化霜频率启动,进而确保了化霜的效果,减少能源的浪费,提升了系统的可靠性。

Description

化霜控制方法及系统
相关申请的交叉引用
本申请基于申请号为201810416633.9,申请日为2018年05月03申请的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及热泵技术领域,具体而言,涉及一种化霜控制方法、一种化霜控制系统、一种计算机设备及一种计算机可读存储介质。
背景技术
现有的热泵热水机系统在化霜时,其压缩机运行频率是固定的,也就是说压缩机输出能力是比较稳定的,但是考虑到在不同条件下,室外换热器的结霜厚度是不一样的,也就是说溶霜所需的热量是不一样的,因此如果化霜频率保持不变的话,可能出现化霜能力输出小、化霜不充分的情况,也可能出现化霜能力输出大、造成能量浪费的情况,甚至导致压力变化过快,影响系统可靠性。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提出一种化霜控制方法。
本申请的第二个方面在于,提出一种化霜控制系统。
本申请的第三个方面在于,提出一种计算机设备。
本申请的第四个方面在于,提出一种计算机可读存储介质。
有鉴于此,根据本申请的第一个方面,提供了一种化霜控制方法,用于热泵热水机系统,其中热泵热水机系统包括压缩机和水箱,化霜控制方法具体包括:响应于化霜指令,根据室外环境温度和水温查找化霜频率;运行化霜模式,控制压缩机以化霜频率启动。
本申请提供的化霜控制方法,可响应于化霜指令,结合室外环境温度以及水温确定化霜频率,并控制压缩按照确定的化霜频率运行化霜模式。由于在不同的室外环境温度和不同的水温下,室外换热器的结霜厚度是不一样的,也就是说溶霜所需的热量是不一样的,同时在化霜时系统低压侧会与水箱热水进行换热,吸收热量蒸发,使得 冷凝侧的放热能力大大提升,在这个化霜过程中,化霜能力不仅仅与压缩机运行频率有关系,也与热水的水温有关系。因此,如果压缩机在化霜时只能按照固定运行频率运行化霜模式,极易出现在高水温区域结霜少,反而输出较大的化霜能力的情况,造成能量浪费,此外由于化霜时高水温区域的换热器的管温上升过快,传感器无法及时检测出温度变化,致使在某一时间段内换热器的压力快速升高,极易造成热泵热水机系统不稳定,本申请的化霜控制方法中压缩机的化霜频率是变化的,有效避免了使用固定频率进行化霜产生的问题,并且结合室外环境温度和水温来预判结霜情况,并综合结霜情况确定压缩机最适合的化霜频率,进而确保了化霜的效果,减少能源的浪费,确保化霜效果、时间和系统可靠性的平衡,提升产品质量。
另外,根据本申请提供的上述技术方案中的化霜控制方法,还可以具有如下附加技术特征:
在上述技术方案中,优选地,根据室外环境温度和水温查找化霜频率的操作包括:根据室外环境温度查找其对应的温度区间;获取温度区间对应的化霜频率曲线,化霜频率曲线的横坐标对应水温,纵坐标对应化霜频率;根据化霜频率曲线和水温查找化霜频率。
在该技术方案中,根据室外环境温度查找对应的温度区间,进而根据不同的温度区间获取对应的化霜频率曲线,其中化霜频率曲线是以水温为横坐标,以化霜频率作为纵坐标的关系曲线。由于在不同的室外环境温度下室外机结霜的难易程度各有不同,而同一室外环境温度下结霜的厚度又随水温有所变化,通过在不同温度区间设定不同的化霜频率曲线,先确定化霜频率曲线,再利用选定的化霜频率曲线的横纵坐标来确定对应的化霜频率,进而控制压缩机按照确定的化霜频率运行化霜模式,查找方便。
在上述任一技术方案中,优选地,温度区间的数量为至少两个,所有温度区间无交集;所有温度区间划分为易结霜区间和不易结霜区间,易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率。
在该技术方案中,建立温度区间,利用温度区间将结霜难易程度表征出来,所有温度区间无交集,可令检测到的室外环境温度所属的温度区间明确,保证控制过程可靠。通过对室外环境温度的比较,能够直接确定对应的结霜区域,由于低温环境下空气中的水蒸气与室外机中的蒸发器接触后其热量被带走,容易发生相变而在蒸发器表面结霜,其化霜需求也相应更大,通过将温度区间划分为易结霜区间和不易结霜区间,且易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,可令温度区间的划分合理,同时限定易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对 应的所有化霜频率曲线中的最高化霜频率,即易结霜区间内压缩机的化霜频率整体高于不易结霜区间的化霜频率,可令化霜频率与化霜需求相符。
在上述任一技术方案中,优选地,对于确定的化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
在该技术方案中,具体限定了相同的室外环境温度下水温与化霜频率的关系。水温较低时表明系统的制热效率低,反映了结霜相对较厚,化霜需求高,且如前所述,化霜时室内蒸发侧可吸收的热量少,冷凝侧放热能力不足,化霜能力也相对较弱;反之,水温较高时化霜需求低,化霜能力相对较强。具体到化霜频率曲线,在水温较低的情况下,控制压缩机按照一定频率运行,从而保证水温平稳上升,避免出现水温过低时压缩机的化霜频率过高、水温陡增影响系统稳定性的情况,有助于控制压缩机进行化霜。当水温处于某一范围内时,压缩机的化霜频率随着水温的升高降低,在水温低、结霜比较厚的时候,提高化霜频率,加大化霜时的能力输出,快速准确干净地完成化霜,缩短化霜时间,加快热水加热时间;在水温高、结霜比较薄的时候,降低化霜运行频率,减小化霜时的能力输出,在保证化霜干净的前提下,防止因化霜能力太足,室外换热器温度及系统高压上升过快,管路传感器敏感度不高,反应不及时,造成的对系统的冲击,从而提升了可靠性。在水温到达某一温度后,控制压缩机工作的化霜频率保持不变,不再继续降低,以满足基本的化霜需求,确保化霜完全。通过限定化霜频率曲线的性质,有助于综合结霜情况选择最佳的化霜频率,快速、准确地化霜,从而实现了化霜效果、时间和系统可靠性的平衡,提升了产品质量。
根据本申请的第二个方面,提供了一种化霜控制系统,用于热泵热水机系统,其中热泵热水机系统包括:压缩机和水箱,化霜控制系统包括:查找单元,用于响应于化霜指令,根据室外环境温度和水温查找化霜频率;控制单元,用于运行化霜模式,控制压缩机以化霜频率启动。
本申请提供的化霜控制系统,查找单元可响应于化霜指令,结合室外环境温度以及水温确定化霜频率,并由控制单元控制压缩按照确定的化霜频率运行化霜模式。由于在不同的室外环境温度和不同的水温下,室外换热器的结霜厚度是不一样的,也就是说溶霜所需的热量是不一样的,同时在化霜时系统低压侧会与水箱热水进行换热,吸收热量蒸发,使得冷凝侧的放热能力大大提升,在这个化霜过程中,化霜能力不仅仅与压缩机运行频率有关系,也与热水的水温有关系。因此,如果压缩机在化霜时只能按照固定运行频率运行化霜模式,极易出现在高水温区域结霜少,反而输出较大的化霜能力的情况,造成能量浪费,此外由于化霜时高水温区域的换热器的管温上升过快,传感器无法及时检测出温度变化,致使在某一时间段内换热器的压力快速升高,极易 造成热泵热水机系统不稳定,本申请的化霜控制系统中压缩机的化霜频率是变化的,有效避免了使用固定频率进行化霜产生的问题,并且结合室外环境温度和水温来预判结霜情况,并综合结霜情况确定压缩机最适合的化霜频率,进而确保了化霜的效果,减少能源的浪费,确保化霜效果、时间和系统可靠性的平衡,提升产品质量。
另外,根据本申请提供的上述技术方案中的化霜控制系统,还可以具有如下附加技术特征:
在上述技术方案中,优选地,查找单元具体用于:响应于化霜指令,根据室外环境温度查找其对应的温度区间;获取温度区间对应的化霜频率曲线,化霜频率曲线的横坐标对应水温,纵坐标对应化霜频率;根据化霜频率曲线和水温查找化霜频率。
在该技术方案中,查找单元根据室外环境温度查找对应的温度区间,进而根据不同的温度区间获取对应的化霜频率曲线,其中化霜频率曲线是以水温为横坐标,以化霜频率作为纵坐标的关系曲线。由于在不同的室外环境温度下室外机结霜的难易程度各有不同,而同一室外环境温度下结霜的厚度又随水温有所变化,通过在不同温度区间设定不同的化霜频率曲线,先确定化霜频率曲线,再利用选定的化霜频率曲线的横纵坐标来确定对应的化霜频率,进而控制压缩机按照确定的化霜频率运行化霜模式,查找方便。
在上述任一技术方案中,优选地,温度区间的数量为至少两个,所有温度区间无交集;所有温度区间划分为易结霜区间和不易结霜区间,易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率。
在该技术方案中,建立温度区间,利用温度区间将结霜难易程度表征出来,所有温度区间无交集,可令检测到的室外环境温度所属的温度区间明确,保证控制过程可靠。通过对室外环境温度的比较,能够直接确定对应的结霜区域,由于低温环境下空气中的水蒸气与室外机中的蒸发器接触后其热量被带走,容易发生相变而在蒸发器表面结霜,其化霜需求也相应更大,通过,通过将温度区间划分为易结霜区间和不易结霜区间,且易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,可令温度区间的划分合理,同时限定易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率,即易结霜区间内压缩机的化霜频率整体高于不易结霜区间的化霜频率,可令化霜频率与化霜需求相符。
在上述任一技术方案中,优选地,对于确定的化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
在该技术方案中,具体限定了相同的室外环境温度下水温与化霜频率的关系。水温较低时表明系统的制热效率低,反映了结霜相对较厚,化霜需求高,且如前所述,化 霜时室内蒸发侧可吸收的热量少,冷凝侧放热能力不足,化霜能力也相对较弱;反之,水温较高时化霜需求低,化霜能力相对较强。具体到化霜频率曲线,在水温较低的情况下,控制压缩机按照一定频率运行,从而保证水温平稳上升,避免出现水温过低时压缩机的化霜频率过高、水温陡增影响系统稳定性的情况,有助于控制压缩机进行化霜。当水温处于某一范围内时,压缩机的化霜频率随着水温的升高降低,在水温低、结霜比较厚的时候,提高化霜频率,加大化霜时的能力输出,快速准确干净地完成化霜,缩短化霜时间,加快热水加热时间;在水温高、结霜比较薄的时候,降低化霜运行频率,减小化霜时的能力输出,在保证化霜干净的前提下,防止因化霜能力太足,室外换热器温度及系统高压上升过快,管路传感器敏感度不高,反应不及时,造成的对系统的冲击,从而提升了可靠性。在水温到达某一温度后,控制压缩机工作的化霜频率保持不变,不再继续降低,以满足基本的化霜需求,确保化霜完全。通过限定化霜频率曲线的性质,有助于综合结霜情况选择最佳的化霜频率,快速、准确地化霜,从而实现了化霜效果、时间和系统可靠性的平衡,提升了产品质量。
根据本申请的第三个方面,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上述任一技术方案所述的方法的步骤。
本申请提供的计算机设备,处理器在执行存储器上存储的计算机程序时,可实现上述任一技术方案所述的方法的步骤,因而具有上述化霜控制方法的全部有益技术效果,在此不再赘述。
根据本申请的第四个方面,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一技术方案所述的方法的步骤。
本申请提供的计算机可读存储介质,其上存储的计算机程序被处理器执行时可实现上述任一技术方案所述的方法的步骤,因而具有上述化霜控制方法的全部有益技术效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请一个实施例的化霜控制方法的示意流程图;
图2示出了根据本申请另一个实施例的化霜控制方法的示意流程图;
图3示出了根据本申请一个实施例的化霜控制系统的示意框图;
图4出了根据申请一个实施例的计算机设备的结构示意图;
图5示出了根据室外环境温度查找其对应的温度区间的示意图;
图6示出了化霜频率曲线示意图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
本申请的第一方面的实施例提供了一种化霜控制方法,用于热泵热水机系统,具体而言,是有化霜功能的变频热泵循环式加热的热水机系统,包括水路循环加热、氟路循环加热及二次循环加热。
图1示出了根据本申请一个实施例的化霜控制方法的示意流程图。
如图1所示,本申请的一个实施例的化霜控制方法包括:
S102,响应于化霜指令,根据室外环境温度和水温查找化霜频率;
S104,运行化霜模式,控制压缩机以化霜频率启动。
本申请实施例中提供的化霜控制方法,可响应于化霜指令,结合室外环境温度以及水温确定化霜频率,并控制压缩按照确定的化霜频率运行化霜模式。由于在不同的室外环境温度和不同的水温下,室外换热器的结霜厚度是不一样的,也就是说溶霜所需的热量是不一样的,同时在化霜时系统低压侧会与水箱热水进行换热,吸收热量蒸发,使得冷凝侧的放热能力大大提升,在这个化霜过程中,化霜能力不仅仅与压缩机运行频率有关系,也与热水的水温有关系。因此,如果压缩机在化霜时只能按照固定运行频率运行化霜模式,极易出现在高水温区域结霜少,反而输出较大的化霜能力的情况,造成能量浪费,此外由于化霜时高水温区域的换热器的管温上升过快,传感器无法及时检测出温度变化,致使在某一时间段内换热器的压力快速升高,极易造成热泵热水机系统不稳定,本申请的化霜控制方法中压缩机的化霜频率是变化的,有效避免了使用固定频率进行化霜产生的问题,并且结合室外环境温度和水温来预判结霜情况,并综合结霜情况确定压缩机最适合的化霜频率,进而确保了化霜的效果,减少能源的浪费,确保化霜效果、时间和系统可靠性的平衡,提升产品质量。可选地,水温可为水 箱的水温,也可为水路中的水温。
在本申请的一个实施例中,热泵热水机系统可以通过传感器直接实时获取室外环境温度以及水箱水温,进而判断是否满足化霜条件,在满足化霜条件时,生成化霜指令,进而响应于化霜指令,根据室外环境温度和水温查找化霜频率;运行化霜模式,控制压缩机以化霜频率启动。
在该实施例中,热泵热水机系统自动判断是否需要进行化霜操作,以及时化霜。
在本申请的一个实施例中,热泵热水机系统可以接收用户经由操作面板、遥控器或应用程序输入的化霜指令,在接收到化霜指令后进行响应,检测室外环境温度以及水箱水温,进而控制压缩机按照化霜频率运行化霜模式,进行化霜。
图2示出了根据本申请另一个实施例的化霜控制方法的示意流程图。
如图2所示,本申请的另一个实施例的化霜控制方法包括:
S202,响应于化霜指令,根据室外环境温度查找其对应的温度区间;
S204,获取温度区间对应的化霜频率曲线;
S206,根据化霜频率曲线和水温查找化霜频率;
S208,运行化霜模式,控制压缩机以化霜频率启动。
其中,化霜频率曲线的横坐标对应水温,纵坐标对应化霜频率。
在该实施例中,根据室外环境温度查找对应的温度区间,进而根据不同的温度区间获取对应的化霜频率曲线,其中化霜频率曲线是以水温为横坐标,以化霜频率作为纵坐标的关系曲线。由于在不同的室外环境温度下室外机结霜的难易程度各有不同,而同一室外环境温度下结霜的厚度又随水温有所变化,通过在不同温度区间设定不同的化霜频率曲线,先确定化霜频率曲线,再利用选定的化霜频率曲线的横纵坐标来确定对应的化霜频率,进而控制压缩机按照确定的化霜频率运行化霜模式,查找方便。
在本申请的一个实施例中,优选地,温度区间的数量为至少两个,所有温度区间无交集;所有温度区间划分为易结霜区间和不易结霜区间,易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率。
在该实施例中,建立温度区间,利用温度区间将结霜难易程度表征出来,所有温度区间无交集,可令检测到的室外环境温度所属的温度区间明确,保证控制过程可靠。通过对室外环境温度的比较,能够直接确定对应的结霜区域,由于低温环境下空气中的水蒸气与室外机中的蒸发器接触后其热量被带走,容易发生相变而在蒸发器表面结霜,其化霜需求也相应更大,通过将温度区间划分为易结霜区间和不易结霜区间,且易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,可令温度区间的划分合理, 同时限定易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率,即易结霜区间内压缩机的化霜频率整体高于不易结霜区间的化霜频率,可令化霜频率与化霜需求相符。
在本申请的一个实施例中,优选地,对于确定的化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
在该实施例中,具体限定了相同的室外环境温度下水温与化霜频率的关系。水温较低时表明系统的制热效率低,反映了结霜相对较厚,化霜需求高,且如前所述,化霜时室内蒸发侧可吸收的热量少,冷凝侧放热能力不足,化霜能力也相对较弱;反之,水温较高时化霜需求低,化霜能力相对较强。具体到化霜频率曲线,在水温较低的情况下,控制压缩机按照一定频率运行,从而保证水温平稳上升,避免出现水温过低时压缩机的化霜频率过高、水温陡增影响系统稳定性的情况,有助于控制压缩机进行化霜。当水温处于某一范围内时,压缩机的化霜频率随着水温的升高降低,在水温低、结霜比较厚的时候,提高化霜频率,加大化霜时的能力输出,快速准确干净地完成化霜,缩短化霜时间,加快热水加热时间;在水温高、结霜比较薄的时候,降低化霜运行频率,减小化霜时的能力输出,在保证化霜干净的前提下,防止因化霜能力太足,室外换热器温度及系统高压上升过快,管路传感器敏感度不高,反应不及时,造成的对系统的冲击,从而提升了可靠性。在水温到达某一温度后,控制压缩机工作的化霜频率保持不变,不再继续降低,以满足基本的化霜需求,确保化霜完全。通过限定化霜频率曲线的性质,有助于综合结霜情况选择最佳的化霜频率,快速、准确地化霜,做到化霜效果、时间和系统可靠性的平衡,提升了产品质量。
本申请的第二方面的实施例提供了一种化霜控制系统,用于热泵热水机系统,具体而言,是有化霜功能的变频热泵循环式加热的热水机系统,包括水路循环加热、氟路循环加热及二次循环加热。
图3示出了根据本申请一个实施例的化霜控制系统300的示意框图。
如图3所示,本申请的一个实施例的化霜控制系统300包括:
查找单元302,用于响应于化霜指令,根据室外环境温度和水温查找化霜频率;
控制单元304,用于运行化霜模式,控制压缩机以化霜频率启动。
本申请实施例中提出的化霜控制系统,查找单元302可响应于化霜指令,结合室外环境温度以及水温确定化霜频率,并由控制单元304控制压缩按照确定的化霜频率运行化霜模式。由于在不同的室外环境温度和不同的水温下,室外换热器的结霜厚度是不一样的,也就是说溶霜所需的热量是不一样的,同时在化霜时系统低压侧会与水箱热水进行换热,吸收热量蒸发,使得冷凝侧的放热能力大大提升,在这个化霜过程 中,化霜能力不仅仅与压缩机运行频率有关系,也与热水的水温有关系。因此,如果压缩机在化霜时只能按照固定运行频率运行化霜模式,极易出现在高水温区域结霜少,反而输出较大的化霜能力的情况,造成能量浪费,此外由于化霜时高水温区域的换热器的管温上升过快,传感器无法及时检测出温度变化,致使在某一时间段内换热器的压力快速升高,极易造成热泵热水机系统不稳定,本申请的化霜控制系统中压缩机的化霜频率是变化的,有效避免了使用固定频率进行化霜产生的问题,并且结合室外环境温度和水温来预判结霜情况,并综合结霜情况确定压缩机最适合的化霜频率,进而确保了化霜的效果,减少能源的浪费,确保化霜效果、时间和系统可靠性的平衡,提升产品质量。可选地,水温可为水箱的水温,也可为水路中的水温。
在本申请的一个实施例中,热泵热水机系统可以通过传感器直接实时获取室外环境温度以及水箱水温,进而判断是否满足化霜条件,在满足化霜条件时,生成化霜指令,进而响应于化霜指令,根据室外环境温度和水温查找化霜频率;运行化霜模式,控制压缩机以化霜频率启动。
在该实施例中,热泵热水机系统自动判断是否需要进行化霜操作,以及时化霜。
在本申请的一个实施例中,热泵热水机系统可以接收用户经由操作面板、遥控器或应用程序输入的化霜指令,在接收到化霜指令后进行响应,检测室外环境温度以及水箱水温,进而控制压缩机按照化霜频率运行化霜模式,进行化霜。
在本申请的一个实施例中,优选地,查找单元具体用于:响应于化霜指令,根据室外环境温度查找其对应的温度区间;获取温度区间对应的化霜频率曲线,化霜频率曲线的横坐标对应水温,纵坐标对应化霜频率;根据化霜频率曲线和水温查找化霜频率。
在该实施例中,查找单元根据室外环境温度查找对应的温度区间,进而根据不同的温度区间获取对应的化霜频率曲线,其中化霜频率曲线是以水温为横坐标,以化霜频率作为纵坐标的关系曲线。由于在不同的室外环境温度下室外机结霜的难易程度各有不同,而同一室外环境温度下结霜的厚度又随水温有所变化,通过在不同温度区间设定不同的化霜频率曲线,先确定化霜频率曲线,再利用化霜频率曲线的横纵坐标来确定对应的化霜频率,进而控制压缩机按照确定的化霜频率运行化霜模式,查找方便。
在本申请的一个实施例中,优选地,温度区间的数量为至少两个,所有温度区间无交集;所有温度区间划分为易结霜区间和不易结霜区间,易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率。
在该实施例中,建立温度区间,利用温度区间将结霜难易程度表征出来,所有温度区 间无交集,可令检测到的室外环境温度所属的温度区间明确,保证控制过程可靠。通过对室外环境温度的比较,能够直接确定对应的结霜区域,由于低温环境下空气中的水蒸气与室外机中的蒸发器接触后其热量被带走,容易发生相变而在蒸发器表面结霜,其化霜需求也相应更大,通过,通过将温度区间划分为易结霜区间和不易结霜区间,且易结霜区间对应的最高温度低于不易结霜区间对应的最低温度,可令温度区间的划分合理,同时限定易结霜区间对应的所有化霜频率曲线中的最低化霜频率大于不易结霜区间对应的所有化霜频率曲线中的最高化霜频率,即易结霜区间内压缩机的化霜频率整体高于不易结霜区间的化霜频率,可令化霜频率与化霜需求相符。
在本申请的一个实施例中,优选地,对于确定的化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
在该实施例中,具体限定了相同的室外环境温度下水温与化霜频率的关系。水温较低时表明系统的制热效率低,反映了结霜相对较厚,化霜需求高,且如前所述,化霜时室内蒸发侧可吸收的热量少,冷凝侧放热能力不足,化霜能力也相对较弱;反之,水温较高时化霜需求低,化霜能力相对较强。具体到化霜频率曲线,在水温较低的情况下,控制压缩机按照一定频率运行,从而保证水温平稳上升,避免出现水温过低时压缩机的化霜频率过高、水温陡增影响系统稳定性的情况,有助于控制压缩机进行化霜。当水温处于某一范围内时,压缩机的化霜频率随着水温的升高降低,在水温低、结霜比较厚的时候,提高化霜频率,加大化霜时的能力输出,快速准确干净地完成化霜,缩短化霜时间,加快热水加热时间;在水温高、结霜比较薄的时候,降低化霜运行频率,减小化霜时的能力输出,在保证化霜干净的前提下,防止因化霜能力太足,室外换热器温度及系统高压上升过快,管路传感器敏感度不高,反应不及时,造成的对系统的冲击,从而提升了可靠性。在水温到达某一温度后,控制压缩机工作的化霜频率保持不变,不再继续降低,以满足基本的化霜需求,确保化霜完全。通过限定化霜频率曲线的性质,有助于综合结霜情况选择最佳的化霜频率,快速、准确地化霜,从而实现了化霜效果、时间和系统可靠性的平衡,提升了产品质量。
本申请的第三方面的实施例提供了一种计算机设备,如图4所示,计算机设备400包括存储器402、处理器404及存储在存储器402上并可在处理器404上运行的计算机程序,处理器404执行计算机程序时实现如上述任一实施例所述的方法的步骤。
本申请提供的计算机设备400,处理器404在执行存储器402上存储的计算机程序时,可实现上述任一实施例所述的方法的步骤,因而具有上述化霜控制方法的全部有益技术效果,在此不再赘述。
本申请的第四方面的实施例提供了一种计算机可读存储介质,其上存储有计算机 程序,计算机程序被处理器执行时实现如上述任一实施例所述的方法的步骤。
本申请提供的计算机可读存储介质,其上存储的计算机程序被处理器执行时可实现上述任一实施例所述的方法的步骤,因而具有上述化霜控制方法的全部有益技术效果,在此不再赘述。
以上结合附图详细说明了本申请的技术方案,本申请响应化霜指令,根据室外环境温度查找其对应的温度区间,获取温度区间对应的化霜频率曲线,根据化霜频率曲线和水温查找化霜频率,运行化霜模式,控制压缩机以化霜频率启动,从而有效避免了使用固定频率进行化霜产生的问题,并且结合室外环境温度和水温来确定化霜频率,能够确定压缩机最适合的化霜频率,进而确保了化霜的效果,减少能源的浪费,提升了系统的可靠性。
具体地,对于易结霜区间,其温度通常在0℃左右甚至0℃以下,且研究表明,-3℃至3℃是最易结霜的温度区间,因此在该温度区间内化霜频率最高,当温度进一步降低时,由于空气湿度的降低,结霜难易程度反而降低,化霜频率也相应降低;对于不易结霜区间,其温度通常在3℃以上,化霜频率最低。例如,如图5所示将室外环境温度划分为三个区间,其中,第一温度区间对应温度在T 1以上的温度区间,第二温度区间对应温度在T 0至T 1之间的温度区间,第三温度区间对应温度在T 0以下的温度区间,其中T 0为-3℃,T 1为3℃,第一温度区间为不易结霜区间,第二、三温度区间为易结霜温度区间。图6示出了本申请的一个实施例的化霜频率曲线,化霜频率曲线的横坐标对应水温T ,纵坐标对应化霜频率F。其中,F 1>F 4>F 2>F 5>F 3>F 6,F 1与F 4之间的连线组成第二曲线;F 2与F 5之间的连线组成第三曲线;F 3与F 6之间的连线组成第一曲线,第一曲线、第二曲线、第三曲线分别与第一温度区间、第二温度区间、第三温度区间相对应。需说明的是,温度区间的数量并不限于上述的三个,可根据系统实际情况进行划分;同时,化霜频率曲线中的水温和化霜频率都是针对不同系统进行实验检测后确定的,化霜频率曲线可如图6所示先确定两端的平直段对应的水温和化霜频率,再将中间部分连接成直线,也可先确定多个水温对应的最佳化霜频率点,再拟合形成化霜频率曲线。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种化霜控制方法,用于热泵热水机系统,其特征在于,所述热泵热水机系统包括压缩机和水箱,所述化霜控制方法包括:
    响应于化霜指令,根据室外环境温度和水温查找化霜频率;
    运行化霜模式,控制所述压缩机以所述化霜频率启动。
  2. 根据权利要求1所述的化霜控制方法,其特征在于,所述根据室外环境温度和水温查找化霜频率的操作包括:
    根据所述室外环境温度查找其对应的温度区间;
    获取所述温度区间对应的化霜频率曲线,所述化霜频率曲线的横坐标对应所述水温,纵坐标对应所述化霜频率;
    根据所述化霜频率曲线和所述水温查找所述化霜频率。
  3. 根据权利要求2所述的化霜控制方法,其特征在于,
    所述温度区间的数量为至少两个,所有所述温度区间无交集;
    所有所述温度区间划分为易结霜区间和不易结霜区间,所述易结霜区间对应的最高温度低于所述不易结霜区间对应的最低温度,所述易结霜区间对应的所有所述化霜频率曲线中的最低化霜频率大于所述不易结霜区间对应的所有所述化霜频率曲线中的最高化霜频率。
  4. 根据权利要求2所述的化霜控制方法,其特征在于,
    对于确定的所述化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
  5. 一种化霜控制系统,用于热泵热水机系统,其特征在于,所述热泵热水机系统包括压缩机和水箱,所述化霜控制系统包括:
    查找单元,用于响应于化霜指令,根据室外环境温度和水温查找化霜频率;
    控制单元,用于运行化霜模式,控制所述压缩机以所述化霜频率启动。
  6. 根据权利要求5所述的化霜控制系统,其特征在于,所述查找单元具体用于:
    响应于化霜指令,根据所述室外环境温度查找其对应的温度区间;
    获取所述温度区间对应的化霜频率曲线,所述化霜频率曲线的横坐标对应所述水温,纵坐标对应所述化霜频率;
    根据所述化霜频率曲线和所述水温查找所述化霜频率。
  7. 根据权利要求6所述的化霜控制系统,其特征在于,
    所述温度区间的数量为至少两个,所有所述温度区间无交集;
    所有所述温度区间划分为易结霜区间和不易结霜区间,所述易结霜区间对应的最高温度低于所述不易结霜区间对应的最低温度,所述易结霜区间对应的所有所述化霜频率曲线中的最低化霜频率大于所述不易结霜区间对应的所有所述化霜频率曲线中的最高化霜频率。
  8. 根据权利要求6所述的化霜控制系统,其特征在于,
    对于确定的所述化霜频率曲线,取其上任意两点a(Ta,Fa)和b(Tb,Fb),若Ta>Tb,则Fa≤Fb。
  9. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至4中任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至4中任一项所述方法的步骤。
PCT/CN2019/084277 2018-05-03 2019-04-25 化霜控制方法及系统 WO2019210802A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810416633.9 2018-05-03
CN201810416633.9A CN108826772B (zh) 2018-05-03 2018-05-03 化霜控制方法及系统

Publications (1)

Publication Number Publication Date
WO2019210802A1 true WO2019210802A1 (zh) 2019-11-07

Family

ID=64148128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084277 WO2019210802A1 (zh) 2018-05-03 2019-04-25 化霜控制方法及系统

Country Status (2)

Country Link
CN (1) CN108826772B (zh)
WO (1) WO2019210802A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826772B (zh) * 2018-05-03 2020-11-17 广东美的暖通设备有限公司 化霜控制方法及系统
CN110332716B (zh) * 2019-07-16 2021-01-15 珠海格力电器股份有限公司 热泵热水器除霜控制方法、装置及热泵热水器
JP7445287B2 (ja) * 2019-12-26 2024-03-07 アクア株式会社 冷蔵庫
CN114811957B (zh) * 2021-01-29 2024-02-09 青岛海尔新能源电器有限公司 一种热水器的控制方法及控制装置
CN113237257B (zh) * 2021-04-11 2022-07-19 浙江中广电器集团股份有限公司 一种除霜频率控制方法、处理器、变频水机
CN114963291B (zh) * 2021-06-29 2023-11-17 青岛海尔新能源电器有限公司 采暖机控制方法、装置、设备及存储介质
CN114413454B (zh) * 2021-12-09 2023-04-14 珠海格力电器股份有限公司 基于模糊算法的空调制热抑霜控制方法、系统及空调器
CN114383266B (zh) * 2021-12-17 2023-06-16 珠海格力电器股份有限公司 一种除霜频率控制方法及空调系统
CN116336711A (zh) * 2023-03-15 2023-06-27 珠海格力电器股份有限公司 空气源热泵的除霜控制方法、装置及空气源热泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187516A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
JP2011257098A (ja) * 2010-06-11 2011-12-22 Fujitsu General Ltd ヒートポンプサイクル装置
CN102853502A (zh) * 2012-09-29 2013-01-02 广东美的制冷设备有限公司 一种热泵空调机组的化霜控制方法
CN107202420A (zh) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 热泵热水器
CN107461874A (zh) * 2017-07-03 2017-12-12 青岛海尔空调电子有限公司 空调器融霜控制方法及空调器
CN108826772A (zh) * 2018-05-03 2018-11-16 广东美的暖通设备有限公司 化霜控制方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987235B (zh) * 2005-12-22 2010-09-22 乐金电子(天津)电器有限公司 制冷暖兼用空调器的除霜运行控制方法
CN101832644B (zh) * 2010-05-31 2011-12-14 宁波海诚电器有限公司 空气能热水器的除霜方法
CN105737389B (zh) * 2014-12-10 2019-06-18 青岛经济技术开发区海尔热水器有限公司 一种结合风机速度与压力控制的高效化霜方法及装置
JP6346122B2 (ja) * 2015-04-23 2018-06-20 株式会社コロナ 温水暖房システム
CN105318618B (zh) * 2015-09-23 2017-12-08 广东美的暖通设备有限公司 风冷热泵冷热水机及其化霜控制方法
CN105674496B (zh) * 2016-02-02 2019-07-23 青岛海尔空调器有限总公司 一种空调除霜方法
CN107461960B (zh) * 2017-07-27 2019-11-26 广东美的制冷设备有限公司 热泵机组及其节能控制方法和控制装置
CN107576105B (zh) * 2017-08-07 2019-09-03 珠海格力电器股份有限公司 一种化霜控制方法、装置、存储介质及空调
CN107883522A (zh) * 2017-11-10 2018-04-06 广东志高暖通设备股份有限公司 一种变频热泵空调中室外风机的控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187516A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
JP2011257098A (ja) * 2010-06-11 2011-12-22 Fujitsu General Ltd ヒートポンプサイクル装置
CN102853502A (zh) * 2012-09-29 2013-01-02 广东美的制冷设备有限公司 一种热泵空调机组的化霜控制方法
CN107202420A (zh) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 热泵热水器
CN107461874A (zh) * 2017-07-03 2017-12-12 青岛海尔空调电子有限公司 空调器融霜控制方法及空调器
CN108826772A (zh) * 2018-05-03 2018-11-16 广东美的暖通设备有限公司 化霜控制方法及系统

Also Published As

Publication number Publication date
CN108826772B (zh) 2020-11-17
CN108826772A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019210802A1 (zh) 化霜控制方法及系统
WO2019196490A1 (zh) 一种空调的启动控制方法、装置、存储介质及空调
CN108679781B (zh) 一种空调除霜控制方法、装置、存储介质及空调
WO2020056956A1 (zh) 热泵机组的化霜控制方法、装置、存储介质及热泵机组
CN108895719B (zh) 一种热泵机组及其供暖控制方法
CN107917504B (zh) 空调及其除霜控制方法
WO2017206679A1 (zh) 空调器及其模式切换控制方法
US10429086B2 (en) Heat-pump equipment
CN108592299B (zh) 化霜控制方法及系统
CN107461874B (zh) 空调器融霜控制方法及空调器
KR102292677B1 (ko) 항온항습 챔버의 제어방법
CN108224856B (zh) 电子膨胀阀初始开度的控制方法及控制装置
WO2020107721A1 (zh) 热泵热水器控制方法及热泵热水器
WO2014173269A1 (zh) 变频热水机及其控制方法和装置
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
US20190316820A1 (en) Detection apparatus and method for refrigerant leakage of air source heat pump system
WO2020143133A1 (zh) 空调器除霜控制方法
JP2017044446A (ja) ヒートポンプ装置およびこれを備えた給湯装置
WO2022252582A1 (zh) 除霜控制方法、装置、设备及存储介质
WO2024000962A1 (zh) 空调器的控制方法、控制器、空调器及存储介质
CN110925954A (zh) 一种化霜模式启动与否的判定方法、处理器、空调器和热泵热水器
JP2006317038A (ja) ヒートポンプ式給湯装置
CN109612028A (zh) 一种空调室外机判断除霜的在线监测及控制系统的方法
CN115978833A (zh) 一种热泵机组的控制方法、装置、热泵机组和存储介质
WO2018120950A1 (zh) 空气源热泵采暖机及其控制方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19796717

Country of ref document: EP

Kind code of ref document: A1