WO2014173269A1 - 变频热水机及其控制方法和装置 - Google Patents

变频热水机及其控制方法和装置 Download PDF

Info

Publication number
WO2014173269A1
WO2014173269A1 PCT/CN2014/075822 CN2014075822W WO2014173269A1 WO 2014173269 A1 WO2014173269 A1 WO 2014173269A1 CN 2014075822 W CN2014075822 W CN 2014075822W WO 2014173269 A1 WO2014173269 A1 WO 2014173269A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
frequency
energy efficiency
efficiency ratio
Prior art date
Application number
PCT/CN2014/075822
Other languages
English (en)
French (fr)
Inventor
黄娟
董明珠
李绍斌
柳飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2014173269A1 publication Critical patent/WO2014173269A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • F24H15/148Assessing the current energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/231Temperature of the refrigerant in heat pump cycles at the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data

Definitions

  • TECHNICAL FIELD The present invention relates to the field of frequency conversion water heaters, and in particular to a frequency conversion water heater and a control method and apparatus therefor.
  • Existing frequency conversion hot water machines generally include various operating modes, such as: energy saving mode, fast mode, normal mode, etc., wherein the high energy efficiency operation mode of the frequency conversion hot water machine (ie, energy saving mode) refers to a frequency conversion hot water machine. Under all conditions, it operates according to the Coefficient of Performance (COP) and the frequency corresponding to the best COP (ie, the optimal frequency).
  • COP Coefficient of Performance
  • the inventor found that in the operation of the variable frequency hot water machine, the optimum COP and the optimum frequency of the frequency conversion hot water machine change with the change of the temperature of the working object and the working environment, and the energy saving in the prior art is
  • the technical scheme of controlling the frequency conversion hot water machine according to the best COP and the optimal frequency is always controlled, so that the actual running state of the frequency conversion hot water machine is not maintained at the optimal COP and the optimal frequency, resulting in energy saving of the frequency conversion hot water machine.
  • the effect is worse.
  • an effective solution has not been proposed yet.
  • the main object of the embodiments of the present invention is to provide a variable frequency hot water machine and a control method and apparatus thereof, so as to solve the problem that the energy conversion effect of the frequency conversion hot water machine in the prior art is prone to be deteriorated.
  • a control method of a frequency conversion hot water machine wherein the frequency conversion hot water machine includes a compressor and a water tank, and the control method of the frequency conversion hot water machine comprises: Step S11: Real-time detection of the water temperature in the water tank; Step S12: Calculate the actual energy efficiency ratio of the compressor when the water temperature rises to the preset temperature, and detect the evaporation temperature and the condensation temperature of the frequency conversion hot water machine to obtain the intermediate evaporation temperature and the intermediate condensation Temperature; Step S13: Find the energy efficiency ratio and frequency corresponding to the intermediate evaporation temperature and the intermediate condensation temperature, and obtain the set energy efficiency ratio and the set frequency, wherein the variable frequency water heater stores different evaporation temperatures and different condensations.
  • Step S14 determining whether the actual energy efficiency ratio is greater than the set energy efficiency ratio, wherein if it is determined that the actual energy efficiency ratio is greater than the set energy efficiency ratio, step S15 and step S16 are sequentially performed.
  • step S17 is performed; Step S15: obtaining the current operation of the compressor Line frequency, and update the specific value of the set energy efficiency ratio to the specific value of the actual energy efficiency ratio, and update the specific value of the set frequency to the specific value of the current operating frequency; Step S16: Control the compressor to continue running at the current operating frequency And returning to step S11; and step S17: controlling the compressor to operate at the set frequency, and returning to step S11.
  • the frequency conversion hot water machine further comprises a condenser
  • determining the enthalpy value hl of the compressor suction line, the enthalpy value h2 of the compressor discharge line and the enthalpy value h3 of the condenser outlet include: collecting the suction temperature Ts of the compressor, the exhaust temperature of the compressor Tp, the outlet temperature Tsc of the condenser; obtaining the evaporation pressure Pe and the condensing pressure Pc of the frequency conversion hot water machine; determining the enthalpy hi of the compressor suction line according to the suction temperature Ts and the evaporation pressure Pe; according to the exhaust temperature Tp and The condensing pressure Pc determines the enthalpy value h2 of the compressor discharge line; and determines the enthalpy value h3 of the condenser outlet according to the outlet temperature Tsc and the condensing pressure Pc, or according to the saturation pressure Pm corresponding to the outlet temperature Tsc and the outlet temperature Tsc.
  • the frequency conversion hot water machine further comprises an evaporator, and obtaining the evaporation pressure Pe and the condensing pressure Pc of the frequency conversion hot water machine comprises: collecting the evaporation pressure Pe and the condensing pressure Pc by the pressure sensor; or collecting the central temperature Tc of the condenser and the evaporator The central temperature Te; the condensation pressure Pc is determined according to the central temperature Tc of the condenser; and the evaporation pressure Pe is determined according to the central temperature Te of the evaporator.
  • calculating the actual energy efficiency ratio of the compressor comprises: obtaining the quality of the water in the water tank; and according to the formula
  • C0P1 ⁇ I1 calculates the actual energy efficiency ratio of compressor C0P1 , where c is the specific heat of water and m is the obtained 3600W
  • the control method further comprises: controlling the compressor to start the frequency start; determining whether the compressor is stably running at the starting frequency; detecting the variable frequency hot water machine if it is determined that the compressor is stably running at the starting frequency.
  • the evaporation temperature and the condensation temperature are obtained to obtain an initial evaporation temperature and an initial condensation temperature; a frequency corresponding to the initial evaporation temperature and the initial condensation temperature is found to obtain an initial frequency; and the compressor is controlled to operate at an initial frequency.
  • determining whether the compressor is stably operated at the starting frequency comprises: detecting a duration of running of the compressor at the starting frequency; and determining whether the duration reaches a preset time, wherein, in a case where it is determined that the duration reaches a preset time, Make sure the compressor is running stably at the start frequency.
  • a control device for a variable frequency hot water machine for performing any of the variable frequency water heaters provided by the above-described contents of the embodiments of the present invention is provided. Control Method.
  • a control device for a frequency conversion hot water machine includes a compressor and a water tank
  • the control device includes: a detecting unit, configured for real time detection The water temperature in the water tank; the first processing unit is configured to calculate the actual energy efficiency ratio of the compressor when the water temperature is raised by the preset temperature, and detect the evaporation temperature and the condensation temperature of the frequency conversion hot water machine to obtain the intermediate evaporation temperature and Intermediate condensation temperature; a search unit for finding an energy efficiency ratio and a frequency corresponding to the intermediate evaporation temperature and the intermediate condensation temperature, and obtaining a set energy efficiency ratio and a set frequency, wherein the variable temperature water heater stores different evaporation temperatures The energy efficiency ratio and the frequency corresponding to different condensing temperatures; the determining unit is configured to determine whether the actual energy efficiency ratio is greater than the set energy efficiency ratio; the second processing unit is configured to determine, in the determining unit, that the
  • the specific value of the ratio, and the specific value of the set frequency is updated to the specific value of the current operating frequency;
  • the first control unit is configured to control the compressor to continue running at the current operating frequency, and control the detecting unit to re-detect the water temperature in the water tank in real time.
  • a second control unit configured to control the compressor to operate at the set frequency when the determining unit determines that the actual energy efficiency ratio is less than or equal to the set energy efficiency ratio, and control the detecting unit to re-detect the water temperature in the water tank in real time.
  • the frequency conversion hot water machine further comprises a condenser
  • variable frequency water heater comprising a control device for any of the variable frequency water heaters provided by the above-described contents of the embodiments of the present invention.
  • the working condition conditions in order to obtain the original energy efficiency ratio corresponding to the detected working condition condition pre-stored by the frequency conversion hot water machine, and then compare the original energy efficiency ratio with the actual energy efficiency ratio, in the case where the actual energy efficiency ratio is greater than the original energy efficiency ratio , timely obtain the actual operating frequency of the compressor, and update the energy efficiency ratio and frequency corresponding to the operating conditions stored in the frequency conversion hot water machine Rate, realize the energy efficiency ratio and frequency corresponding to various working conditions during the operation of the frequency conversion hot water machine, so that the energy efficiency ratio during the operation of the frequency conversion hot water machine gradually approaches the actual optimal
  • the energy efficiency ratio further optimizes the actual operating state of the frequency conversion hot water machine, and solves the problem that the frequency conversion hot water machine in the prior art is prone to the deterioration of the energy saving effect, thereby achieving the effect of high efficiency and energy saving.
  • Fig. 1 is a flow chart showing a control method of a frequency conversion hot water machine according to an embodiment of the present invention
  • Fig. 2 is a schematic view showing a control apparatus of a frequency conversion hot water machine according to an embodiment of the present invention.
  • FIG. 1 is a control of a frequency conversion hot water machine according to an embodiment of the present invention.
  • a flow chart of the method, as shown in FIG. 1, the method includes the following steps S11 to S18: Step S11: detecting the water temperature in the water tank in real time, the water temperature can be detected by a temperature sensor, a temperature sensing package, etc., and the water temperature is detected.
  • the device is arranged on the water tank of the frequency conversion hot water machine; the pressure inside the water tank can also be detected by the pressure sensor, and then the water temperature in the water tank is obtained by the correspondence between the pressure and the water temperature.
  • the detection of the water temperature in the water tank is mainly carried out after the start of the compressor of the frequency conversion hot water machine.
  • the compressor is controlled to start at the starting frequency, when the compressor is stably running at the starting frequency.
  • the evaporation temperature Te and the condensation temperature Tc of the variable frequency hot water machine are detected to obtain an initial evaporation temperature TeO and an initial condensation temperature TcO, and then an initial corresponding to the initial evaporation temperature TeO and the initial condensation temperature TcO is found from the initial frequency form.
  • the frequency f0 with the initial frequency fO as the operating frequency after the compressor is started, controls the compressor to start operating at the initial frequency f0.
  • the initial frequency form is a pre-stored form in the frequency conversion hot water machine, and the energy storage ratio and frequency corresponding to different evaporation temperatures Te and different condensation temperatures Tc are stored in the form, in the present invention
  • the energy efficiency ratio and frequency stored in the initial frequency form are the frequencies corresponding to the best COP and the best COP obtained through the test, as shown in Table 1.
  • f (Te, Tc) represents a frequency corresponding to different evaporation temperatures Te and different condensation temperatures Tc
  • COP (Te, Tc) represents an energy efficiency ratio corresponding to different evaporation temperatures Te and different condensation temperatures Tc.
  • Step S12 calculating the actual energy efficiency ratio of the compressor when the water temperature is raised by the preset temperature, and detecting the evaporation temperature and the condensation temperature of the frequency conversion hot water machine to obtain the intermediate evaporation temperature and the intermediate condensation temperature.
  • the preset temperature can be set to 1 °C, BP.
  • the evaporating temperature Te and the condensing temperature Tc detected in this process are referred to as the intermediate evaporating temperature Ten and the intermediate condensing temperature Tcn with respect to the evaporating temperature TeO and the condensing temperature TcO which are determined in the step S11 to determine the initial frequency of the compressor.
  • the frequency conversion hot water machine has a controller and a plurality of sensors connected to the controller, and the plurality of sensors detect the temperature and the pressure in real time, so that the controller determines the above threshold according to the detected temperature and pressure, and then calculates the actual energy efficiency ratio.
  • variable frequency water heater comprises the following temperature sensor and pressure sensor: a first temperature sensor that collects the intake air temperature Ts of the compressor, a second temperature sensor that collects the exhaust gas temperature Tp of the compressor, and collects A third temperature sensor of the outlet temperature Tsc of the condenser, a first pressure sensor for collecting the evaporation pressure Pe of the frequency conversion hot water machine, and a second pressure sensor for collecting the condensation pressure Pc of the frequency conversion hot water machine.
  • the controller calculates the enthalpy value of the compressor suction line according to Pe and Ts, calculates the enthalpy value of the compressor exhaust line according to Pc and Tp, and calculates the enthalpy value of the condenser outlet in the frequency conversion hot water machine according to Pc and Tsc.
  • the calculation method can adopt any enthalpy calculation method in the prior art.
  • the plurality of sensors of the variable frequency hot water machine may also be temperature sensors, so that the controller determines the pressure and the enthalpy according to the detected temperature, thereby calculating the actual energy efficiency ratio.
  • variable frequency water heater comprises the following temperature sensors: a first temperature sensor that collects the intake air temperature Ts of the compressor, a second temperature sensor that collects the exhaust gas temperature Tp of the compressor, and a collection condenser A third temperature sensor of the outlet temperature Tsc, a fourth temperature sensor that collects the central temperature Tc of the condenser, and a fifth temperature sensor that collects the evaporator temperature Te.
  • the controller first calculates the evaporation pressure Pe of the system according to the evaporator temperature Te, calculates the condensation pressure Pc of the system according to the central temperature Tc of the condenser, and then calculates the enthalpy value of the compressor suction line according to Pe and Ts, and calculates according to Pc and Tp.
  • the enthalpy of the compressor exhaust line, the enthalpy value of the condenser outlet in the frequency conversion hot water machine is calculated according to Pc and Tsc, and the specific calculation method can adopt any enthalpy calculation method in the prior art.
  • Step S13 Finding the energy efficiency ratio and the frequency corresponding to the intermediate evaporation temperature and the intermediate condensation temperature, obtaining the set energy efficiency ratio and the set frequency, searching from the initial frequency form and the intermediate evaporation temperature Ten and the intermediate condensation temperature detected in step S12.
  • Ten corresponds to the energy efficiency ratio COP (Ten, Tcn) and frequency f (Ten, Tcn).
  • Step S14 determining whether the actual energy efficiency ratio is greater than a set energy efficiency ratio It is determined whether COP1 is greater than COP (Tenjcn), COP1 is the actual energy efficiency ratio COP1 calculated in step S12, and COP (Tenjcn) is the set energy efficiency ratio COP (Ten, Tcn) found in step S13.
  • COPDCOP COPDCOP
  • step S15 and S16 are sequentially executed, and if it is determined that COP COP (Tenjcn), step S17 is executed as follows.
  • Step S15 Obtain the current running frequency of the compressor, and update the specific value of the set energy efficiency ratio to the specific value of the actual energy efficiency ratio, and update the specific value of the set frequency to the specific value of the current operating frequency to the current running of the compressor.
  • any method for acquiring the actual operating frequency of the compressor in the prior art can be employed. If COPDCOP (Ten, Tcn) is judged, the current operating state of the variable frequency water heater is not maintained at the optimal COP and the optimal frequency relative to the current operating condition (Tenjcn).
  • the initial frequency form is updated with COP (Ten, Tcn) corresponding to the operating condition (Ten, Tcn) to COPl, and f (Ten, Tcn) corresponding to the operating condition (Ten/Ten) is updated to the current running of the compressor.
  • the actual operating frequency is set to optimize the energy efficiency ratio and frequency corresponding to the operating conditions.
  • Step S16 Control the compressor to continue running at the current operating frequency, and return to step S11 to perform COP (Ten, Tcn) and f (Ten, Tcn) corresponding to the working condition (Ten, Tcn) in the initial frequency form.
  • Step S17 Control the compressor to run at the set frequency, and return to step S11. If COPKCOP (Tenjcn) is determined, it indicates that the current operating state of the frequency conversion hot water machine is already in relation to the current working condition (Ten, Tcn).
  • the control method of the frequency conversion hot water machine calculates the actual energy efficiency ratio of the compressor when the water temperature rises during the operation of the compressor of the frequency conversion hot water machine, and detects the frequency conversion water heater Evaporation temperature and condensation temperature, the working condition of the compressor is obtained, to obtain the original energy efficiency ratio corresponding to the detected working condition pre-stored by the frequency conversion hot water machine, and then compare the original energy efficiency ratio with the actual energy efficiency ratio.
  • Actual energy efficiency ratio When the ratio is greater than the original energy efficiency ratio, the actual operating frequency of the compressor is obtained in time, and the energy efficiency ratio and frequency corresponding to the working conditions stored in the frequency conversion hot water machine are updated, so that the frequency conversion hot water machine is continuously updated during the operation process.
  • the control method provided by the embodiment of the invention does not need to add any hardware device on the frequency conversion hot water machine, and achieves the effect of ensuring efficient and energy-saving operation of the frequency conversion hot water machine without increasing the cost of the frequency conversion hot water machine.
  • the embodiment of the present invention further provides a control device for a frequency conversion hot water machine.
  • FIG. 2 is a schematic diagram of a frequency conversion hot water machine according to an embodiment of the present invention.
  • Schematic diagram of the control device, as shown in FIG. 2, the frequency conversion hot water machine according to the embodiment of the present invention includes: a detecting unit 10, a first processing unit 20, a searching unit 30, a determining unit 40, a second processing unit 50, and a first control unit. 60 and second control unit 70.
  • the detecting unit 10 is configured to detect the water temperature in the water tank in real time, and the detecting unit 10 may be a temperature sensor, a temperature sensing package, etc., and the device for detecting the water temperature is disposed on the water tank of the frequency conversion hot water machine; or may be a pressure sensor. It is used to detect the pressure in the water tank, and then the water temperature in the water tank is obtained by the correspondence between the pressure and the water temperature.
  • the detection unit detects the water temperature in the water tank, mainly after the start of the compressor of the frequency conversion hot water machine, and specifically performs the water temperature detection under the operating state of the frequency conversion hot water machine, which is the same as described in the above step S11. , will not repeat them here.
  • the first processing unit 20 is configured to calculate the actual energy efficiency ratio of the compressor when the water temperature is raised by the preset temperature, and detect the evaporation temperature and the condensation temperature of the frequency conversion hot water machine to obtain the intermediate evaporation temperature and the intermediate condensation temperature, preferably
  • the first processing unit 20 is composed of the following two types: First: the first processing unit includes a determining module and a computing module (hereinafter referred to as a first computing module), wherein the determining module is configured to determine compressor suction
  • the enthalpy hl of the pipeline, the enthalpy h2 of the compressor exhaust line, and the enthalpy value h3 of the condenser outlet of the variable frequency hot water machine are determined in the same manner as described in the step S13, and are not described herein again.
  • the first processing unit includes an acquisition module and a calculation module (hereinafter referred to as a second calculation module), wherein the acquisition module is configured to acquire the quality of water in the water tank.
  • the actual energy efficiency ratio of 3600W compressor is COP1, where c is the specific heat of water, the unit is kJ/kg*t, m is the mass of the obtained water, the unit is kg, ⁇ is the preset temperature, and the unit is. C, W is the frequency conversion water heater to increase the heating of the mass m by the preset temperature, in kWh.
  • the searching unit 30 is configured to find an energy efficiency ratio and a frequency corresponding to the intermediate evaporation temperature and the intermediate condensation temperature, and obtain a set energy efficiency ratio and a set frequency, wherein the initial frequency form stores different evaporation temperatures and different condensation temperatures. Corresponding energy efficiency ratio and frequency.
  • the determining unit 40 is configured to determine whether the actual energy efficiency ratio is greater than the set energy efficiency ratio, and determine whether the actual energy efficiency ratio calculated by the first processing unit is greater than the set energy efficiency ratio found by the searching unit.
  • the second processing unit 50 is configured to obtain a current operating frequency of the compressor when the determining unit determines that the actual energy efficiency ratio is greater than the original energy efficiency ratio, and update the specific value of the set energy efficiency ratio in the initial frequency form to the actual energy efficiency ratio, Update the set frequency in the initial frequency form to the current operating frequency.
  • the first control unit 60 is configured to control the compressor to continue to operate at the current operating frequency, and control the detecting unit to re-detect the water temperature in the water tank in real time.
  • the second control unit 70 is configured to control the compressor to operate at the set frequency when the determining unit determines that the actual energy efficiency ratio is less than or equal to the set energy efficiency ratio, and control the detecting unit to re-detect the water temperature in the water tank in real time.
  • the control device of the frequency conversion hot water machine provided by the embodiment of the invention calculates the actual energy efficiency ratio of the compressor when the water temperature rises during the operation of the compressor of the frequency conversion hot water machine, and detects the frequency conversion hot water machine Evaporation temperature and condensation temperature, the working condition of the compressor is obtained, to obtain the original energy efficiency ratio corresponding to the detected working condition pre-stored by the frequency conversion hot water machine, and then compare the original energy efficiency ratio with the actual energy efficiency ratio.
  • the actual energy efficiency ratio is greater than the original energy efficiency ratio
  • the actual operating frequency of the compressor is obtained in time, and the energy efficiency ratio and frequency corresponding to the working condition stored in the frequency conversion hot water machine are updated, thereby realizing the operation of the frequency conversion hot water machine.
  • the operating state is kept optimal, which solves the problem that the frequency conversion hot water machine in the prior art is prone to poor energy saving effect, thereby achieving high efficiency and energy saving effect. fruit.
  • the embodiment of the present invention further provides a frequency conversion hot water machine, which may be a frequency conversion hot water machine using the control method of the frequency conversion hot water machine provided by the above content of the embodiment of the present invention, or may include The variable frequency water heater of the control device of the frequency conversion hot water machine provided by the above content of the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种变频热水机及其控制方法和装置。其中,变频热水机的控制方法通过在变频热水机的压缩机运行过程中,在水温升高时,计算压缩机的实际能效比,并检测压缩机运行时的工况条件,以获取变频热水机预存的与检测到的工况条件相对应的原始能效比,在实际能效比大于原始能效比的情况下,及时获取压缩机的实际运行频率,并更新变频热水机中所存储的工况条件对应的能效比和频率。

Description

变频热水机及其控制方法和装置
技术领域 本发明涉及变频热水机领域, 具体而言, 涉及一种变频热水机及其控制方法和装 置。 背景技术 现有变频热水机一般都包括多种运行模式, 如: 节能模式、 快速模式、 正常模式 等, 其中变频热水机的高能效运行模式 (即, 节能模式) 是指变频热水机在任何条件 下都是按照最佳能效比(Coefficient of Performance, 简称 COP)及最佳 COP对应的频 率 (即, 最佳频率) 运行。 但是, 发明人发现, 在变频热水机运行中, 随着作用对象温度和工况环境的变化, 变频热水机整机最佳 COP和最佳频率均会发生变化, 现有技术中在节能模式下, 始终 控制变频热水机按照最佳 COP和最佳频率运行的技术方案,使得变频热水机的实际运 行状态并非维持在最佳 COP和最佳频率下, 导致变频热水机的节能效果变差。 针对现有技术中变频热水机容易出现节能效果变差的问题, 目前尚未提出有效的 解决方案。 发明内容 本发明实施例的主要目的在于提供一种变频热水机及其控制方法和装置, 以解决 现有技术中变频热水机容易出现节能效果变差的问题。 为了实现上述目的, 根据本发明实施例的一个方面, 提供了一种变频热水机的控 制方法其中, 变频热水机包括压缩机和水箱, 变频热水机的控制方法包括: 步骤 S 11 : 实时检测水箱内的水温; 步骤 S12: 在水温升高预设温度的情况下, 计算压缩机的实 际能效比, 并检测变频热水机的蒸发温度和冷凝温度, 得到中间蒸发温度和中间冷凝 温度; 步骤 S 13 : 查找与中间蒸发温度和中间冷凝温度相对应的能效比及频率, 得到 设定能效比和设定频率, 其中, 在变频热水机中存储有与不同蒸发温度和不同冷凝温 度相对应的能效比及频率; 步骤 S 14: 判断实际能效比是否大于设定能效比, 其中, 若判断出实际能效比大于设定能效比, 则依次执行步骤 S 15和步骤 S 16, 若判断出实 际能效比小于或等于设定能效比, 则执行步骤 S 17; 步骤 S15: 获取压缩机的当前运 行频率, 并将设定能效比的具体数值更新为实际能效比的具体数值, 以及将设定频率 的具体数值更新为当前运行频率的具体数值; 步骤 S16: 控制压缩机以当前运行频率 继续运行, 并返回步骤 S11 ; 以及步骤 S17: 控制压缩机以设定频率运行, 并返回步骤 Sll。 优选地, 变频热水机还包括冷凝器, 计算压缩机的实际能效比包括: 确定压缩机 吸气管路的焓值 hl, 压缩机排气管路的焓值 h2和冷凝器出口的焓值 h3; 以及按照公 式 COPl=(h2-h3)/(h2-hl)计算压缩机的实际能效比 C0P1。 优选地, 确定压缩机吸气管路的焓值 hl, 压缩机排气管路的焓值 h2和冷凝器出 口的焓值 h3包括: 采集压缩机的吸气温度 Ts、 压缩机的排气温度 Tp、 冷凝器的出口 温度 Tsc; 获取变频热水机的蒸发压力 Pe和冷凝压力 Pc; 根据吸气温度 Ts和蒸发压 力 Pe确定压缩机吸气管路的焓值 hi ; 根据排气温度 Tp和冷凝压力 Pc确定压缩机排 气管路的焓值 h2; 以及根据出口温度 Tsc和冷凝压力 Pc、 或者根据出口温度 Tsc和出 口温度 Tsc对应的饱和压力 Pm确定冷凝器出口的焓值 h3。 优选地, 变频热水机还包括蒸发器, 获取变频热水机的蒸发压力 Pe和冷凝压力 Pc包括: 通过压力传感器采集蒸发压力 Pe和冷凝压力 Pc; 或采集冷凝器的中部温度 Tc和蒸发器的中部温度 Te; 根据冷凝器的中部温度 Tc确定冷凝压力 Pc; 以及根据蒸 发器的中部温度 Te确定蒸发压力 Pe。 优选地, 计算压缩机的实际能效比包括: 获取水箱内水的质量; 以及按照公式
C0P1 = ^I1计算压缩机的实际能效比 C0P1, 其中, c为水的比热, m为获取到的 3600W
水的质量, ΔΤ为预设温度, W为变频热水机将质量 m的加热升高预设温度的耗电量。 优选地, 在步骤 S11之前, 控制方法还包括: 控制压缩机以启动频率启动; 判断 压缩机是否稳定运行于启动频率; 在判断出压缩机稳定运行于启动频率的情况下, 检 测变频热水机的蒸发温度和冷凝温度, 得到初始蒸发温度和初始冷凝温度; 查找与初 始蒸发温度和初始冷凝温度相对应的频率, 得到初始频率; 以及控制压缩机以初始频 率运行。 优选地, 判断压缩机是否稳定运行于启动频率包括: 检测压缩机以启动频率运行 的持续时间; 以及判断持续时间是否达到预设时间, 其中, 在判断出持续时间达到预 设时间的情况下, 确定压缩机稳定运行于启动频率。 为了实现上述目的, 根据本发明实施例的另一方面, 提供了一种变频热水机的控 制装置, 该控制装置用于执行本发明实施例上述内容所提供的任一种变频热水机的控 制方法。 为了实现上述目的, 根据本发明实施例的另一方面, 提供了一种变频热水机的控 制装置, 其中, 变频热水机包括压缩机和水箱, 控制装置包括: 检测单元, 用于实时 检测水箱内的水温; 第一处理单元, 用于在水温升高预设温度的情况下, 计算压缩机 的实际能效比, 并检测变频热水机的蒸发温度和冷凝温度, 得到中间蒸发温度和中间 冷凝温度; 查找单元, 用于查找与中间蒸发温度和中间冷凝温度相对应的能效比及频 率, 得到设定能效比和设定频率, 其中, 在变频热水机中存储有与不同蒸发温度和不 同冷凝温度相对应的能效比及频率; 判断单元, 用于判断实际能效比是否大于设定能 效比; 第二处理单元, 用于在判断单元判断出实际能效比大于设定能效比的情况下, 获取压缩机的当前运行频率, 并将设定能效比的具体数值更新为实际能效比的具体数 值, 以及将设定频率的具体数值更新为当前运行频率的具体数值; 第一控制单元, 用 于控制压缩机以当前运行频率继续运行,并控制检测单元重新实时检测水箱内的水温; 以及第二控制单元, 用于在判断单元判断出实际能效比小于或等于设定能效比的情况 下, 控制压缩机以设定频率运行, 并控制检测单元重新实时检测水箱内的水温。 优选地, 变频热水机还包括冷凝器, 第一处理单元包括: 确定模块, 用于确定压 缩机吸气管路的焓值 hl, 压缩机排气管路的焓值 h2和冷凝器出口的焓值 h3; 以及第 一计算模块, 用于按照公式 COPl=(h2-h3)/(h2-hl)计算压缩机的实际能效比 COPl。 优选地, 第一处理单元包括: 获取模块, 用于获取水箱内水的质量; 以及第二计 算模块, 用于按照公式 COPl = ^ 计算压缩机的实际能效比 COP1 , 其中, c为水
3600W
的比热, m为获取到的水的质量, ΔΤ为预设温度, W为变频热水机将质量 m的加热 升高预设温度的耗电量。 为了实现上述目的, 根据本发明实施例的另一方面, 提供了一种变频热水机, 该 变频热水机包括本发明实施例上述内容所提供了任一种变频热水机的控制装置。 本发明实施例通过在变频热水机的压缩机运行过程中, 在水温升高时, 计算压缩 机的实际能效比, 并检测变频热水机的蒸发温度和冷凝温度, 得到压缩机运行时的工 况条件, 以获取变频热水机预存的与检测到的工况条件相对应的原始能效比, 然后对 比原始能效比和实际能效比的大小, 在实际能效比大于原始能效比的情况下, 及时获 取压缩机的实际运行频率, 并更新变频热水机中所存储的工况条件对应的能效比和频 率, 实现在变频热水机运行过程中, 不断更新其存储的与各种工况条件相对应的能效 比和频率, 以使变频热水机运行过程中的能效比逐渐趋近实际最优的能效比, 进而使 得变频热水机的实际运行状态保持最佳, 解决了现有技术中变频热水机容易出现节能 效果变差的问题, 进而达到了高效节能的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明实施例的变频热水机的控制方法的流程图; 以及 图 2是根据本发明实施例的变频热水机的控制装置的示意图。 具体实 ϋ ^式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种变频热水机的控制方法, 以下对本发明实施例所提供的 变频热水机的控制方法进行具体介绍: 图 1是根据本发明实施例的变频热水机的控制方法的流程图, 如图 1所示, 该方 法包括如下的步骤 S11至步骤 S18: 步骤 S 11: 实时检测水箱内的水温 可以通过温度传感器、 温度感温包等器件来检测水温, 该检测水温的器件设置在 变频热水机的水箱上; 也可以通过压力传感器来检测水箱内的压力, 然后通过压力与 水温的对应关系获取到水箱内的水温。 其中, 对水箱内水温的检测, 主要是在变频热水机的压缩机启动运行后进行的检 测, 变频热水机刚刚开机时, 控制压缩机以启动频率启动, 当压缩机稳定运行于启动 频率下时, 检测变频热水机的蒸发温度 Te和冷凝温度 Tc, 得到初始蒸发温度 TeO和 初始冷凝温度 TcO, 然后从初始频率表单中查找出与初始蒸发温度 TeO和初始冷凝温 度 TcO相对应的初始频率 f0, 以该初始频率 fO作为压缩机启动后的运行频率, 控制压 缩机以该初始频率 f0开始运行。初始频率表单为变频热水机中预先存储的表单, 该表 单中存储有与不同蒸发温度 Te和不同冷凝温度 Tc对应的能效比及频率, 在本发明实 施例中, 初始频率表单中所存储的能效比和频率, 为经过试验测试所得到的最佳 COP 及最佳 COP相应的频率, 如表 1所示。 表 1
Figure imgf000007_0001
表 1中 f (Te,Tc)表示与不同蒸发温度 Te和不同冷凝温度 Tc相对应的频率, COP (Te,Tc) 表示与不同蒸发温度 Te和不同冷凝温度 Tc相对应的能效比。 压缩机是否稳定运行于启动频率下, 则通过检测压缩机以启动频率运行的持续时 间, 然后判断该持续时间是否达到预设时间来确定, 对于压缩机以启动频率运行的持 续时间达到预设时间的情况, 则确定压缩机稳定运行于启动频率。 变频热水机运行过程中的情况, 压缩机的运行频率则是然后从初始频率表单中查 找出的、 与具体的中间蒸发温度 Ten和中间冷凝温度 Ten相对应的频率值 fn。 步骤 S 12: 在水温升高预设温度的情况下, 计算压缩机的实际能效比, 并检测变 频热水机的蒸发温度和冷凝温度, 得到中间蒸发温度和中间冷凝温度 本发明实施例中, 可以将预设温度设定为 1 °C, BP , 在水箱内的水温升高 1摄氏 度的情况下,计算压缩机的实际能效比, 并检测变频热水机的蒸发温度 Te和冷凝温度 Tc, 这一过程中检测到的蒸发温度 Te和冷凝温度 Tc相对步骤 S 11中确定压缩机初始 频率的蒸发温度 TeO和冷凝温度 TcO而言,称作中间蒸发温度 Ten和中间冷凝温度 Tcn。 计算压缩机实际能效比的方法可以采用以下方式: 方式一: 首先, 确定压缩机吸气管路的焓值 hl, 压缩机排气管路的焓值 h2和变频热水机 冷凝器出口的焓值 h3 ; 然后, 按照公式 COPl=(h2-h3)/(h2-hl)计算所述压缩机的实际能效比 C0P1。 其中, 变频热水机具有控制器、 与控制器相连接的多个传感器, 多个传感器实时 检测温度和压力, 以使控制器根据检测的温度和压力确定上述焓值, 进而计算实际能 效比。 在一个优选实施方式中, 该变频热水机包括以下的温度传感器和压力传感器: 采集压缩机的吸气温度 Ts的第一温度传感器、 采集压缩机的排气温度 Tp的第二温度 传感器、 采集冷凝器的出口温度 Tsc的第三温度传感器、 采集变频热水机的蒸发压力 Pe的第一压力传感器以及采集变频热水机的冷凝压力 Pc的第二压力传感器。 控制器 根据 Pe和 Ts计算压缩机吸气管路的焓值、根据 Pc和 Tp计算压缩机排气管路的焓值、 根据 Pc和 Tsc计算变频热水机中冷凝器出口的焓值,具体的计算方法可以采用现有技 术中任意的焓值计算方法。 变频热水机所具有的多个传感器还均可以是温度传感器, 以使控制器根据检测的 温度确定压力和焓值, 进而计算实际能效比。 在一个优选实施方式中, 该变频热水机 包括以下的温度传感器: 采集压缩机的吸气温度 Ts的第一温度传感器、采集压缩机的 排气温度 Tp的第二温度传感器、采集冷凝器的出口温度 Tsc的第三温度传感器、采集 冷凝器的中部温度 Tc的第四温度传感器和采集蒸发器温度 Te的第五温度传感器。 控 制器首先根据蒸发器温度 Te计算系统的蒸发压力 Pe、根据冷凝器的中部温度 Tc计算 系统的冷凝压力 Pc, 然后根据 Pe和 Ts计算压缩机吸气管路的焓值、 根据 Pc和 Tp计 算压缩机排气管路的焓值、根据 Pc和 Tsc计算变频热水机中冷凝器出口的焓值, 具体 的计算方法可以采用现有技术中任意的焓值计算方法。 方式二: 首先, 获取水箱内水的质量; 然后, 按照公式 COPl = ^ 计算压缩机的实际能效比 COP1 , 其中, c为水的
3600W
比热, 单位为 kJ/kg*t, m为获取到的水的质量, 单位为 kg, ΔΤ为预设温度, 单位 为。 C, W为变频热水机将质量 m的加热升高预设温度的耗电量, 单位为 kWh。 步骤 S13: 查找与中间蒸发温度和中间冷凝温度相对应的能效比及频率, 得到设 定能效比和设定频率 从初始频率表单中查找与步骤 S12中检测到的中间蒸发温度 Ten和中间冷凝温度 Ten相对应的能效比 COP (Ten,Tcn) 及频率 f (Ten,Tcn)。 步骤 S14: 判断实际能效比是否大于设定能效比 判断 COP1是否大于 COP (Tenjcn), COP1为步骤 S12中所计算出的实际能效 比 COPl, COP (Tenjcn) 为步骤 S13中所查找到的设定能效比 COP (Ten,Tcn)。 其 中, 若判断出 COPDCOP (Ten,Tcn), 则依次执行以下步骤 S15和步骤 S16, 若判断 ¾ COP l^ COP (Tenjcn), 则以下执行步骤 S17。 步骤 S15: 获取压缩机的当前运行频率, 并将设定能效比的具体数值更新为实际 能效比的具体数值, 以及将设定频率的具体数值更新为当前运行频率的具体数值 对压缩机当前运行频率的具体的获取方法, 可以采用现有技术中任意的压缩机实 际运行频率的获取方法。 若判断出 COPDCOP (Ten,Tcn), 则说明相对当前的工况条件 (Tenjcn) 而言, 变频热水机当前的运行状态并非维持在最佳 COP和最佳频率下, 对于这种情况, 将初 始频率表单与工况条件 (Ten,Tcn)相对应的 COP (Ten,Tcn) 更新为 COPl, 将与工况 条件 (Ten/Ten) 相对应的 f (Ten,Tcn) 更新为压缩机当前运行的实际运行频率, 实现 将工况条件对应的能效比和频率设定为最佳。 步骤 S16: 控制压缩机以当前运行频率继续运行, 并返回步骤 S11 将初始频率表单中的与工况条件(Ten,Tcn)相对应的 COP (Ten,Tcn)和 f(Ten,Tcn) 进行一次更新后, 控制压缩机以当前运行频率继续运行, 以保证变频热水机继续维持 在当前良好的运行状态下, 然后返回步骤 Sll, BP , 再次执行上述控制方法, 以控制 变频热水机继续进行加热, 并在加热过程中对变频热水机进行控制。 步骤 S17: 控制压缩机以设定频率运行, 并返回步骤 S11 若判断出 COPKCOP (Tenjcn), 则说明相对当前的工况条件 (Ten,Tcn) 而言, 变频热水机当前的运行状态已经处于最佳 COP和最佳频率下, 对于这种情况, 无需对 初始频率表单中的与工况条件(Ten,Tcn)相对应的 COP (Ten,Tcn)禾 P f (Ten,Tcn)进 行更新, 直接控制压缩机按照初始频率表单中与相依工况条件对应的频率 (即, 步骤 S13 中所查找到的设定频率) 运行即可, 并再次执行上述控制方法, 以控制变频热水 机继续进行加热, 并在加热过程中对变频热水机进行控制。 本发明实施例所提供的变频热水机的控制方法, 通过在变频热水机的压缩机运行 过程中, 在水温升高时, 计算压缩机的实际能效比, 并检测变频热水机的蒸发温度和 冷凝温度, 得到压缩机运行时的工况条件, 以获取变频热水机预存的与检测到的工况 条件相对应的原始能效比, 然后对比原始能效比和实际能效比的大小, 在实际能效比 大于原始能效比的情况下, 及时获取压缩机的实际运行频率, 并更新变频热水机中所 存储的工况条件对应的能效比和频率, 实现在变频热水机运行过程中, 不断更新其存 储的与各种工况条件相对应的能效比和频率, 以使变频热水机运行过程中的能效比逐 渐趋近实际最优的能效比, 进而使得变频热水机的实际运行状态保持最佳, 解决了现 有技术中变频热水机容易出现节能效果变差的问题, 进而达到了高效节能的效果。 并 且, 本发明实施例所提供的控制方法, 无需在变频热水机上增加任何硬件装置, 达到 了在不升高变频热水机成本的基础上, 保证变频热水机高效节能运行的效果。 本发明实施例还提供了一种变频热水机的控制装置, 以下对本发明实施例所提供 的变频热水机的控制装置进行具体介绍: 图 2是根据本发明实施例的变频热水机的控制装置的示意图, 如图 2所示, 本发 明实施例的变频热水机包括: 检测单元 10、 第一处理单元 20、 查找单元 30、 判断单 元 40、 第二处理单元 50、 第一控制单元 60和第二控制单元 70。 其中,检测单元 10用于实时检测水箱内的水温,检测单元 10可以是温度传感器、 温度感温包等器件, 该检测水温的器件设置在变频热水机的水箱上; 也可以是压力传 感器,用于检测水箱内的压力,然后通过压力与水温的对应关系获取到水箱内的水温。 检测单元对水箱内水温的检测,主要是在变频热水机的压缩机启动运行后进行的检测, 具体在变频热水机处于什么运行状态下进行水温检测, 与上述步骤 S11中所描述的相 同, 此处不再赘述。 第一处理单元 20用于在水温升高预设温度的情况下, 计算压缩机的实际能效比, 并检测变频热水机的蒸发温度和冷凝温度, 得到中间蒸发温度和中间冷凝温度, 优选 地, 第一处理单元 20的组成方式由以下两种: 第一种:第一处理单元包括确定模块和计算模块(以下称作第一计算模块),其中, 确定模块用于确定压缩机吸气管路的焓值 hl, 压缩机排气管路的焓值 h2和变频热水 机冷凝器出口的焓值 h3, 具体确定方式与步骤 S13中所描述的相同, 此处不再赘述。 第一计算模块用于按照公式 COPl=(h2-h3)/(h2-hl)计算压缩机的实际能效比 COPl。 第二种:第一处理单元包括获取模块和计算模块(以下称作第二计算模块),其中, 获取模块用于获取水箱内水的质量。 第二计算模块用于按照公式 COPl = ^ 计算
3600W 压缩机的实际能效比 COP1 , 其中, c为水的比热, 单位为 kJ/kg*t, m为获取到的水 的质量, 单位为 kg, ΔΤ为预设温度, 单位为。 C, W为变频热水机将质量 m的加热升 高预设温度的耗电量, 单位为 kWh。 查找单元 30用于查找与中间蒸发温度和中间冷凝温度相对应的能效比及频率,得 到设定能效比和设定频率, 其中, 在初始频率表单中存储有与不同蒸发温度和不同冷 凝温度相对应的能效比及频率。 判断单元 40用于判断实际能效比是否大于设定能效比, SP,判断第一处理单元计 算出的实际能效比是否大于查找单元查找到的设定能效比。 第二处理单元 50用于在判断单元判断出实际能效比大于原始能效比的情况下,获 取压缩机的当前运行频率, 并将初始频率表单中设定能效比的具体数值更新为实际能 效比, 将初始频率表单中设定频率更新为当前运行频率。 第一控制单元 60用于控制压缩机以当前运行频率继续运行,并控制检测单元重新 实时检测水箱内的水温。 第二控制单元 70用于在判断单元判断出实际能效比小于或等于设定能效比的情 况下, 控制压缩机以设定频率运行, 并控制检测单元重新实时检测水箱内的水温。 本发明实施例所提供的变频热水机的控制装置, 通过在变频热水机的压缩机运行 过程中, 在水温升高时, 计算压缩机的实际能效比, 并检测变频热水机的蒸发温度和 冷凝温度, 得到压缩机运行时的工况条件, 以获取变频热水机预存的与检测到的工况 条件相对应的原始能效比, 然后对比原始能效比和实际能效比的大小, 在实际能效比 大于原始能效比的情况下, 及时获取压缩机的实际运行频率, 并更新变频热水机中所 存储的工况条件对应的能效比和频率, 实现在变频热水机运行过程中, 不断更新其存 储的与各种工况条件相对应的能效比和频率, 以使变频热水机运行过程中的能效比逐 渐趋近实际最优的能效比, 进而使得变频热水机的实际运行状态保持最佳, 解决了现 有技术中变频热水机容易出现节能效果变差的问题, 进而达到了高效节能的效果。 此外, 本发明实施例还提供了一种变频热水机, 该变频热水机可以是采用本发明 实施例上述内容所提供的变频热水机的控制方法的变频热水机, 也可以是包括本发明 实施例上述内容所提供的变频热水机的控制装置的变频热水机。 从以上的描述中, 可以看出, 本发明实现了控制变频热水机的实际运行状态保持 最佳, 保证变频热水机高效节能运行的效果。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 显然, 本领域的技术人员应该明白, 上述的本发明的各单元或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路单 元, 或者将它们中的多个单元或步骤制作成单个集成电路单元来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种变频热水机的控制方法, 所述变频热水机包括压缩机和水箱, 所述控制方 法包括:
步骤 S 11: 实时检测所述水箱内的水温;
步骤 S12: 在所述水温升高预设温度的情况下, 计算所述压缩机的实际能 效比, 并检测所述变频热水机的蒸发温度和冷凝温度, 得到中间蒸发温度和中 间冷凝温度;
步骤 S13: 查找与所述中间蒸发温度和所述中间冷凝温度相对应的能效比 及频率, 得到设定能效比和设定频率, 其中, 在所述变频热水机中存储有与不 同蒸发温度和不同冷凝温度相对应的能效比及频率;
步骤 S14: 判断所述实际能效比是否大于所述设定能效比, 其中, 若判断 出所述实际能效比大于所述设定能效比, 则依次执行步骤 S15和步骤 S16, 若 判断出所述实际能效比小于或等于所述设定能效比, 则执行步骤 S17;
步骤 S15: 获取所述压缩机的当前运行频率, 并将所述设定能效比的具体 数值更新为所述实际能效比的具体数值, 以及将所述设定频率的具体数值更新 为所述当前运行频率的具体数值;
步骤 S16:控制所述压缩机以所述当前运行频率继续运行,并返回步骤 S11 ; 以及
步骤 S17: 控制所述压缩机以所述设定频率运行, 并返回步骤 Sll。
2. 根据权利要求 1所述的控制方法, 其中, 所述变频热水机还包括冷凝器, 计算 所述压缩机的实际能效比包括:
确定所述压缩机吸气管路的焓值 hl, 所述压缩机排气管路的焓值 h2和所 述冷凝器出口的焓值 h3; 以及
按照公式 COPl=(h2-h3)/(h2-hl)计算所述压缩机的实际能效比 C0P1。
3. 根据权利要求 2所述的控制方法, 其中, 确定所述压缩机吸气管路的焓值 hl, 所述压缩机排气管路的焓值 h2和所述冷凝器出口的焓值 h3包括:
采集所述压缩机的吸气温度 Ts、 所述压缩机的排气温度 Tp、 所述冷凝器 的出口温度 Tsc; 获取所述变频热水机的蒸发压力 Pe和冷凝压力 PC;
根据所述吸气温度 Ts和所述蒸发压力 Pe确定所述压缩机吸气管路的焓值 hi ;
根据所述排气温度 Tp和所述冷凝压力 Pc确定所述压缩机排气管路的焓值 h2; 以及
根据所述出口温度 Tsc和所述冷凝压力 Pc、 或者根据所述出口温度 Tsc和 所述出口温度 Tsc对应的饱和压力 Pm确定所述冷凝器出口的焓值 h3。
4. 根据权利要求 3所述的变频系统的控制方法, 其中, 所述变频热水机还包括蒸 发器, 获取所述变频热水机的蒸发压力 Pe和冷凝压力 Pc包括:
通过压力传感器采集所述蒸发压力 Pe和所述冷凝压力 Pc; 或 采集所述冷凝器的中部温度 Tc和所述蒸发器的中部温度 Te; 根据所述冷凝器的中部温度 Tc确定所述冷凝压力 Pc; 以及
根据所述蒸发器的中部温度 Te确定所述蒸发压力 Pe。
5. 根据权利要求 1所述的控制方法, 其中, 计算所述压缩机的实际能效比包括: 获取所述水箱内水的质量; 以及 按照公式 C0P1 = ^ 计算所述压缩机的实际能效比 COP1 , 其中, c为
3600W
水的比热, m为获取到的水的质量, ΔΤ为所述预设温度, W为所述变频热水 机将质量 m的加热升高所述预设温度的耗电量。
6. 根据权利要求 1至 5中任一项所述的控制方法, 其中, 在步骤 S11之前, 所述 控制方法还包括:
控制所述压缩机以启动频率启动;
判断所述压缩机是否稳定运行于所述启动频率;
在判断出所述压缩机稳定运行于所述启动频率的情况下, 检测所述变频热 水机的蒸发温度和冷凝温度, 得到初始蒸发温度和初始冷凝温度;
查找与所述初始蒸发温度和所述初始冷凝温度相对应的频率, 得到初始频 率; 以及
控制所述压缩机以所述初始频率运行。
7. 根据权利要求 6所述的控制方法, 其中, 判断所述压缩机是否稳定运行于启动 频率包括:
检测所述压缩机以所述启动频率运行的持续时间; 以及
判断所述持续时间是否达到预设时间,
其中, 在判断出所述持续时间达到所述预设时间的情况下, 确定所述压缩 机稳定运行于所述启动频率。
8. 一种变频热水机的控制装置, 所述变频热水机包括压缩机和水箱, 所述控制装 置包括:
检测单元, 用于实时检测所述水箱内的水温;
第一处理单元, 用于在所述水温升高预设温度的情况下, 计算所述压缩机 的实际能效比, 并检测所述变频热水机的蒸发温度和冷凝温度, 得到中间蒸发 温度和中间冷凝温度;
查找单元, 用于查找与所述中间蒸发温度和所述中间冷凝温度相对应的能 效比及频率, 得到设定能效比和设定频率, 其中, 在所述变频热水机中存储有 与不同蒸发温度和不同冷凝温度相对应的能效比及频率;
判断单元, 用于判断所述实际能效比是否大于所述设定能效比; 第二处理单元, 用于在所述判断单元判断出所述实际能效比大于所述设定 能效比的情况下, 获取所述压缩机的当前运行频率, 并将所述设定能效比的具 体数值更新为所述实际能效比的具体数值, 以及将所述设定频率的具体数值更 新为所述当前运行频率的具体数值;
第一控制单元, 用于控制所述压缩机以所述当前运行频率继续运行, 并控 制所述检测单元重新实时检测所述水箱内的水温; 以及
第二控制单元, 用于在所述判断单元判断出所述实际能效比小于或等于所 述设定能效比的情况下, 控制所述压缩机以所述设定频率运行, 并控制所述检 测单元重新实时检测所述水箱内的水温。
9. 根据权利要求 8所述的控制装置, 其中, 所述变频热水机还包括冷凝器, 所述 第一处理单元包括: 确定模块, 用于确定所述压缩机吸气管路的焓值 hl, 所述压缩机排气管路 的焓值 h2和所述冷凝器出口的焓值 h3; 以及 第一计算模块, 用于按照公式 COPl=(h2-h3)/(h2-hl)计算所述压缩机的实 际能效比 C0P1。
10. 根据权利要求 8所述的控制装置, 其中, 所述第一处理单元包括:
获取模块, 用于获取所述水箱内水的质量; 以及 第二计算模块, 用于按照公式 C0P1 = ^ 计算所述压缩机的实际能效
3600W
比 COP1 , 其中, c为水的比热, m为获取到的水的质量, ΔΤ为所述预设温度,
W为所述变频热水机将质量 m的加热升高所述预设温度的耗电量。
11. 一种变频热水机,其中,包括权利要求 8至 10中任一项所述的变频热水机的控 制装置。
PCT/CN2014/075822 2013-04-23 2014-04-21 变频热水机及其控制方法和装置 WO2014173269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310143940.1A CN104121700B (zh) 2013-04-23 2013-04-23 变频热水机及其控制方法和装置
CN201310143940.1 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014173269A1 true WO2014173269A1 (zh) 2014-10-30

Family

ID=51767222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075822 WO2014173269A1 (zh) 2013-04-23 2014-04-21 变频热水机及其控制方法和装置

Country Status (2)

Country Link
CN (1) CN104121700B (zh)
WO (1) WO2014173269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754532A (zh) * 2022-04-26 2022-07-15 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN115247921A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种多模块组合运行的变频空气源热泵机组节能控制方式

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458480A (zh) * 2017-02-21 2018-08-28 艾欧史密斯(中国)热水器有限公司 热泵热水器及其控制方法
CN107270546A (zh) * 2017-07-04 2017-10-20 广东日出东方空气能有限公司 变频热泵热水器的控制方法
CN108106290B (zh) * 2017-12-20 2019-11-01 珠海格力电器股份有限公司 油冷机的压缩机运行频率控制方法、系统及油冷机
CN109916090B (zh) * 2018-11-29 2022-10-18 青岛经济技术开发区海尔热水器有限公司 热泵热水器控制方法及热泵热水器
CN115127268B (zh) * 2022-06-23 2023-07-04 广东芬尼克兹节能设备有限公司 一种热泵机组压缩机频率的控制方法、控制器及热泵系统
CN115127269B (zh) * 2022-06-23 2023-07-04 广东芬尼克兹节能设备有限公司 一种热泵机组的控制方法、控制器及热泵系统
WO2024012545A1 (zh) * 2022-07-13 2024-01-18 青岛海信日立空调系统有限公司 空调系统及其能效比确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW496944B (en) * 2001-10-02 2002-08-01 Taiwan Dei Temp Control Techno Method of obtaining an air conditioner with high-efficiency capability by changing the operating frequency and the input voltage of its compressor
JP2003247759A (ja) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2006317038A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯装置
JP4161968B2 (ja) * 2005-01-21 2008-10-08 株式会社デンソー ヒートポンプ給湯装置
CN101957067A (zh) * 2010-11-01 2011-01-26 江苏天舒电器有限公司 一种热泵热水机的变频控制方法
CN102261717A (zh) * 2010-05-24 2011-11-30 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CN102914028A (zh) * 2012-10-19 2013-02-06 广东美的制冷设备有限公司 节能控制方法、系统及空调器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559953B1 (en) * 2010-04-15 2016-09-28 Mitsubishi Electric Corporation Hot water supply system and method for operating the system
CN102561460A (zh) * 2010-12-15 2012-07-11 广州星辰热能科技有限公司 一种智能变频恒压供水系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW496944B (en) * 2001-10-02 2002-08-01 Taiwan Dei Temp Control Techno Method of obtaining an air conditioner with high-efficiency capability by changing the operating frequency and the input voltage of its compressor
JP2003247759A (ja) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP3855795B2 (ja) * 2002-02-25 2006-12-13 松下電器産業株式会社 ヒートポンプ給湯機
JP4161968B2 (ja) * 2005-01-21 2008-10-08 株式会社デンソー ヒートポンプ給湯装置
JP2006317038A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯装置
CN102261717A (zh) * 2010-05-24 2011-11-30 珠海格力电器股份有限公司 空调器控制方法及装置、空调器
CN101957067A (zh) * 2010-11-01 2011-01-26 江苏天舒电器有限公司 一种热泵热水机的变频控制方法
CN102914028A (zh) * 2012-10-19 2013-02-06 广东美的制冷设备有限公司 节能控制方法、系统及空调器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114754532A (zh) * 2022-04-26 2022-07-15 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN114754532B (zh) * 2022-04-26 2024-02-20 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN115247921A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种多模块组合运行的变频空气源热泵机组节能控制方式
CN115247921B (zh) * 2022-06-27 2024-01-09 浙江中广电器集团股份有限公司 一种多模块组合运行的变频空气源热泵机组节能控制方式

Also Published As

Publication number Publication date
CN104121700B (zh) 2016-12-28
CN104121700A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2014173269A1 (zh) 变频热水机及其控制方法和装置
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
WO2019210802A1 (zh) 化霜控制方法及系统
CN205718153U (zh) 一种应用超声波与超疏水材料耦合除霜的无霜冰箱
US8919009B2 (en) Method for controlling a clothes dryer and clothes dryer using such method
WO2015021853A1 (zh) 一种变频空调的控制方法、控制装置及变频空调
CN111380180A (zh) 空调杀菌控制方法、装置及计算机可读存储介质
WO2014190737A1 (zh) 多联机系统制热时的回油方法
CN110736270B (zh) 电子膨胀阀的开度控制方法及装置
CN104633942A (zh) 变频喷气增焓热泵热水器频率调节及控制方法
WO2018201852A1 (zh) 空调室外风机的控制装置及方法
CN105716352A (zh) 一种应用超声波与超疏水材料耦合除霜的无霜冰箱及其控制方法
WO2015024401A1 (zh) 热水器预约制热控制方法及系统
JP6072901B2 (ja) ヒートポンプ装置及び空気調和システム
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
CN109440418B (zh) 一种热泵洗烘控制方法、系统及装置
CN107575998A (zh) 空调及其室外机的除霜控制方法
WO2013078999A1 (zh) 温度控制方法、系统和基站设备
CN110160228A (zh) 热泵空调器的控制方法与空调器
CN109916090B (zh) 热泵热水器控制方法及热泵热水器
RU2011122678A (ru) Машина для обработки белья с системой теплового насоса
CN110017604A (zh) 一种热水器工作控制方法及装置
CN108018695A (zh) 干衣机的干衣方法及干衣机
JP2012172854A (ja) 空気調和機
CN109341006B (zh) 变频空调控制装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788878

Country of ref document: EP

Kind code of ref document: A1