WO2013078999A1 - 温度控制方法、系统和基站设备 - Google Patents

温度控制方法、系统和基站设备 Download PDF

Info

Publication number
WO2013078999A1
WO2013078999A1 PCT/CN2012/085457 CN2012085457W WO2013078999A1 WO 2013078999 A1 WO2013078999 A1 WO 2013078999A1 CN 2012085457 W CN2012085457 W CN 2012085457W WO 2013078999 A1 WO2013078999 A1 WO 2013078999A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
module
base station
station device
modules
Prior art date
Application number
PCT/CN2012/085457
Other languages
English (en)
French (fr)
Inventor
段晓明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013078999A1 publication Critical patent/WO2013078999A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/207Thermal management, e.g. cabinet temperature control

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a temperature control method, system, and base station device. Background technique
  • the energy consumption of the site usually accounts for about 45% of the energy consumption of the wireless access network, and most of the energy consumption is the power consumed by the air conditioning refrigeration. Therefore, improving the working temperature of the site's equipment room has become the main measure for energy conservation and emission reduction that operators are eagerly seeking.
  • Vodafone has proposed to increase the operating temperature of the equipment room from 25 degrees to 28 degrees in recent years, in order to reduce the electricity cost of the equipment room and reduce the management expenditure of the enterprise (Operational terror Expens e; hereinafter referred to as 0PEX).
  • the operating temperature of the equipment room is further improved by separately solving the temperature control problem of the battery.
  • the temperature control of the battery is refused by using a constant temperature battery, and the air temperature is controlled by the air conditioner for the main equipment and other equipment.
  • This sub-tank temperature control scheme avoids the restriction of the battery to the working temperature of the lifting machine room, so that the room heating technology can be widely promoted and applied.
  • the temperature rise temperature of the equipment room in the prior art is basically determined by artificial calculation, and the temperature rise temperature directly affects the reliability and energy saving effect of the equipment operation. Therefore, the temperature control scheme in the prior art cannot be The operating temperature of the equipment room is accurately controlled, so that the reliability of the equipment operation cannot be guaranteed.
  • the embodiments of the present invention provide a temperature control method, system, and base station device, which can accurately control the working temperature of the equipment room and ensure the reliability of the equipment operation.
  • Embodiments of the present invention provide a temperature control method, including:
  • Embodiments of the present invention provide a temperature control system including a collector, a temperature control module, and a memory, wherein:
  • the collector is configured to collect an operating temperature of at least one module in the master device
  • the temperature control module includes:
  • a generating unit configured to generate a temperature threshold corresponding to the arbitrary one of the modules according to the failure rate data corresponding to the pre-stored one of the at least one module
  • control unit configured to perform, according to a temperature threshold corresponding to the at least one module generated by the generating unit, and an operating temperature of the at least one module of the collector, to perform an operating temperature of the master device control.
  • Embodiments of the present invention provide a base station apparatus, including the above temperature control system.
  • An embodiment of the present invention provides another base station device, including at least one base station device working module and at least one temperature detector, where
  • the at least one temperature detector is respectively connected to at least one of the base station device working modules, and is configured to monitor an operating temperature of the at least one base station device working module, respectively;
  • the base station device is connected to a temperature control system, and the temperature control system is configured to collect an operating temperature of at least one base station device working module, and according to the pre-stored one of the at least one base station device working module.
  • the failure rate data corresponding to the working module generates a temperature threshold corresponding to the working module of any one of the base station devices, and according to the temperature threshold corresponding to the working module of the at least one base station device, and the working module of the at least one base station device Temperature, controlling the operating temperature of the base station device.
  • the embodiment of the present invention provides another base station device, including at least one base station device working mode. a block, at least one temperature detector, and a collector, wherein
  • the at least one temperature detector is respectively connected to at least one of the base station device working modules, and is configured to monitor an operating temperature of the at least one base station device working module, respectively;
  • the collector is connected to the at least one temperature detector, and is configured to collect an operating temperature of at least one base station device working module of the base station device;
  • the base station device is connected to a temperature control system, and the temperature control system is configured to generate any one of the base station device working modules according to the pre-stored failure rate data corresponding to any one of the at least one base station device working module And corresponding to the temperature threshold, and controlling the operating temperature of the base station device according to the temperature threshold corresponding to the working module of the at least one base station device and the operating temperature of the working module of the at least one base station device.
  • the temperature control method, system, and base station device provided by the embodiment of the present invention generate a temperature threshold corresponding to any module according to the operating temperature corresponding to at least one module in the master device according to the failure rate data corresponding to any one of the at least one module.
  • the operating temperature of the main device is controlled according to the temperature threshold and the operating temperature corresponding to the at least one module; the temperature threshold set in this embodiment is obtained according to the failure rate data of each module, which is not artificially estimated, and is realized. Accurate control of the operating temperature of the equipment room, while also ensuring the reliability of the equipment work.
  • Embodiment 1 is a flow chart of Embodiment 1 of a temperature control method according to the present invention.
  • FIG. 2 is a schematic diagram of a temperature-loss rate curve corresponding to the same module under different environmental conditions in the first embodiment of the temperature control method of the present invention
  • FIG. 3 is a schematic diagram of a temperature-loss rate curve corresponding to different modules in the first embodiment of the temperature control method of the present invention
  • FIG. 4 is a flowchart of Embodiment 2 of a temperature control method according to the present invention
  • 5 is a structural block diagram of a temperature control system according to Embodiment 2 of the temperature control method of the present invention
  • FIG. 6 is a structural diagram of Embodiment 1 of the temperature control system of the present invention
  • FIG. 7 is a structural diagram of Embodiment 2 of the temperature control system of the present invention.
  • Embodiment 8 is a structural diagram of Embodiment 1 of a base station device according to the present invention.
  • Embodiment 9 is a structural diagram of Embodiment 2 of a base station device according to the present invention.
  • FIG. 10 is a structural diagram of Embodiment 3 of a base station device according to the present invention. detailed description
  • FIG. 1 is a flowchart of a first embodiment of a temperature control method according to the present invention. As shown in FIG. 1, the embodiment provides a temperature control method, which may specifically include the following steps:
  • Step 1 01 Collect the operating temperature of at least one module in the master device.
  • temperature control is performed on the main device in the equipment room, and the main device is composed of multiple modules.
  • the operating temperatures of at least one module in the main device are monitored in real time, and the operating temperature of at least one module is periodically collected.
  • the operating temperature set here is the measured value of the temperature of at least one module at work.
  • Step 1 02 Generate a temperature threshold corresponding to any one of the modules according to the failure rate data corresponding to any one of the at least one module.
  • the failure rate data corresponding to at least one module of the master device is pre-stored, and the failure rate data may be provided by the manufacturer of the master device, where the failure rate data may be specifically The temperature-loss rate curve, wherein any one of the modules may include at least one temperature-loss rate curve, which may be obtained by performing multiple experimental measurements on various modules in the host device under various environments.
  • 2 is a schematic diagram of a temperature-loss rate curve corresponding to the same module under different environmental conditions in the first embodiment of the temperature control method of the present invention, as shown in FIG.
  • C. / ⁇ , H 2 > H in Figure 2 Under these two environmental conditions, the temperature-loss rate curves of the modules are different, and the temperature thresholds generated under the same failure rate conditions are also different.
  • the temperature threshold corresponding to any one module is generated according to the failure rate data corresponding to any one of the pre-stored modules, and any one of the master devices is generated according to the failure rate data corresponding to any one module.
  • the temperature threshold corresponding to any one of the modules that is, the temperature threshold corresponding to each module in the master device generated in this embodiment is different.
  • 3 is a schematic diagram of a temperature-loss rate curve corresponding to different modules in the first embodiment of the temperature control method of the present invention. As shown in FIG.
  • the temperature-loss rate curves corresponding to module 1, module 2, and module 3 are respectively The obtained temperature thresholds of the respective modules are different, respectively 7; T 2 , 7;
  • the failure rate data in this embodiment can be obtained from the temperature-loss rate curve corresponding to the module, that is, the corresponding failure rate of the module at different temperatures.
  • the present embodiment can generate a temperature threshold corresponding to a module according to a temperature-loss rate curve of a module in different environments. Specifically, a corresponding temperature threshold can be obtained according to a curve. The smallest temperature threshold can be selected as the temperature threshold corresponding to the module.
  • the temperature threshold set in this step is obtained based on the failure rate data of each module. It is not artificially estimated, and the accuracy is relatively high, and it is compatible with the conditions of each module, and can be guaranteed in the master device. The reliability of each module work.
  • Step 1 03 Control an operating temperature of the main device according to a temperature threshold corresponding to the at least one module and an operating temperature of the at least one module.
  • the operating temperature of the main device is controlled according to the temperature threshold corresponding to each of the at least one module. Specifically, the operating temperature of any one of the at least one module is compared with the corresponding temperature threshold, and the cooling device installed in the equipment room is controlled to be turned on or off according to the comparison result, so as to control the working temperature of the main device.
  • the overall control system is based on the comparison result of any one of the at least one module. Cold equipment to ensure the reliability of the work of each module in the main equipment.
  • the present embodiment provides a temperature control method for generating a temperature threshold corresponding to any one module according to the operating temperature of at least one module in the master device according to the failure rate data corresponding to any one of the at least one module, according to at least
  • the temperature threshold and the operating temperature of a module are used to control the operating temperature of the main device; the temperature threshold set in this embodiment is obtained according to the failure rate data of each module, which is not artificially estimated, and realizes the machine room.
  • the accurate control of the working temperature also ensures the reliability of the work of the equipment.
  • FIG. 4 is a flowchart of Embodiment 2 of the temperature control method of the present invention. As shown in FIG. 4, the embodiment provides a temperature control method, and the embodiment may be the embodiment of the first embodiment shown in FIG. This embodiment may specifically include the following steps:
  • Step 401 The temperature detector separately monitors the operating temperature of each module in the main device.
  • FIG. 5 is a structural block diagram of a temperature control system according to Embodiment 2 of the temperature control method of the present invention. As shown in FIG. 5, the temperature control method of this embodiment may be specifically implemented by using the temperature control system of FIG. 5, the temperature control system. It may include multiple temperature detectors, collectors, temperature control modules, refrigeration equipment, and memory.
  • the output ends of the temperature detectors 1, 2 ⁇ n are connected to the input end of the collector, and the temperature of each module monitored is output to the collector; the output of the collector, the temperature threshold intelligent control The output end of the device is connected to the input end of the temperature control module, and the output end of the temperature control module is connected to the input end of the refrigeration device to send a temperature control signal to the refrigeration device; the temperature control module is also connected to the memory to obtain the pre-stored temperature from the memory. - Failure rate curve.
  • the master device in this embodiment may be specifically a base station device, and the base station device may be composed of multiple modules, such as an intermediate radio frequency (IRF) module and a power amplifier (Power Amp lif ier; : PA ) module, baseband processing (Ba Seband Proce ss ing; hereinafter referred to as BP) module, control module, transmission module, power module and interface module, etc., temperature detectors in the temperature control system and some or all of the above modules Connected to monitor the operating temperature of each module to obtain the real-time operating temperature of at least one module in the main device.
  • IRF intermediate radio frequency
  • PA power amplifier
  • BP baseband processing
  • control module Transmission module
  • power module and interface module etc.
  • temperature detectors in the temperature control system Connected to monitor the operating temperature of each module to obtain the real-time operating temperature of at least one module in the main device.
  • the temperature control system shown in FIG. 5 may be independent of the main device or integrated in the main device; when the temperature control system is integrated with the main device, one of the temperature control systems may be Several modules are integrated in the master device, while other modules in the temperature control system exist as devices independent of the master device. For example, temperature probes in temperature control systems can be used. The detectors 1, 2 to n are integrated on the respective modules in the main device, and the other modules in the remaining temperature control systems exist as devices independent of the main device, and the collectors and temperature detectors 1, 2 to n can also be used. Both are integrated in the main device and so on.
  • Step 402 The collector collects the operating temperature of the at least one module monitored by the temperature detector, and reports the collected operating temperature to the temperature control module.
  • the collector periodically collects data of the operating temperature of at least one module monitored by each temperature detector, and reports the operating temperature of the at least one module collected to the temperature control module, so that the temperature control module performs the subsequent steps. Temperature control of the main equipment.
  • Step 403 The temperature control module generates a temperature threshold corresponding to any one of the modules according to the failure rate data corresponding to any one of the modules prestored in the memory.
  • the memory connected to the temperature control module prestores the failure rate data corresponding to at least one module of the master device, and the failure rate data is usually provided by the manufacturer of each module in the master device. It is obtained by each manufacturer to measure each module before leaving the factory to guide the user to correctly use each module product for the temperature control module to read for specific temperature control.
  • the failure rate data corresponding to any one of the pre-stored at least one module is obtained from the memory, where the failure rate data may be specifically temperature-loss efficiency. curve.
  • the temperature-loss rate curve corresponding to any module pre-stored in this embodiment may be multiple.
  • step 012 and step 403 in this embodiment is not unique.
  • step 021 and step 403 may be performed simultaneously, or may be performed first.
  • step 403 step 4 02 is performed.
  • the temperature control module may first obtain the failure rate values corresponding to the at least one temperature-loss rate curve corresponding to any one of the pre-stored modules.
  • the temperature value, the minimum value of the at least one obtained temperature value is taken as the temperature threshold of the arbitrary one of the modules. Since any temperature-loss rate curve corresponding to any module stored in the memory may be multiple, for any module, the temperature control module obtains all temperature-loss rate curves corresponding to the module, and obtains the inflection points of the curves.
  • the failure rate values correspond to the temperature values, respectively, and the minimum value is selected from these temperature values as the temperature threshold of the module.
  • the temperature control module may be based on at least one to ensure that the reliability of the main device does not decrease after the temperature rise of the equipment room, and the hysteresis characteristic of the cooling device cooling temperature.
  • the temperature threshold corresponding to any module in the module set the upper limit of the temperature threshold and the lower limit of the temperature threshold of any module, that is, set an interval temperature (T2, T1) according to the determined temperature threshold, where Tl, ⁇ 2 Corresponding to the upper limit of the temperature threshold and the lower limit of the temperature threshold respectively.
  • T1 temperature threshold* (l+m%) can be taken
  • T2 temperature threshold* (lm%), where m is a positive integer greater than 0, and usually m does not exceed 5.
  • the temperature control method provided in this embodiment may further include the following steps:
  • the temperature threshold intelligent controller determines the set value according to the measured value of the operating temperature of any module and the temperature-loss rate curve.
  • the upper limit of the temperature threshold and the lower limit of the temperature threshold of any one of the modules are corrected.
  • the temperature threshold intelligent controller in order to overcome the influence of temperature fluctuation caused by long-term operation of the module in the main device and temperature measurement error, the temperature threshold intelligent controller can be pre-stored according to the measured value of the operating temperature of any module.
  • the temperature-loss rate characteristic and the reliability requirements of the module compensate and correct the temperature threshold of any module generated by the temperature control module to eliminate the influence of temperature threshold drift, which can fully guarantee the temperature rise of the equipment room.
  • the reliability of the rear main equipment is the following steps: The temperature threshold intelligent controller determines the set value according to the measured value of the operating temperature of any module and the temperature-loss rate curve. The upper limit of the temperature threshold and the lower limit of the temperature threshold of any one of the modules are corrected.
  • Step 404 The temperature control module determines whether the operating temperature of the at least one module in the master device is greater than the corresponding upper limit of the temperature threshold. If yes, step 405 is performed; otherwise, the process returns to step 402.
  • the temperature thresholds of the modules are different. Therefore, after the temperature control module obtains the upper limit of the temperature threshold and the lower limit of the temperature threshold corresponding to at least one module in the master device, Determining whether the operating temperature of the at least one module of the collector is greater than the corresponding upper limit of the temperature threshold, determining whether the operating temperature of the at least one module in the master device is greater than the corresponding upper limit of the temperature threshold, if at least one module Any If the operating temperature of a module is greater than the upper limit of the temperature threshold corresponding to the module, step 405 is performed; if the operating temperatures of all the modules are not greater than the corresponding upper limit of the temperature threshold, then return to step 4 02 to continue collecting the modules. Operating temperature, and temperature judgment.
  • Step 4 05 the temperature control module sends a temperature control command to the refrigeration device to turn on the refrigeration device.
  • the temperature control module determines that the operating temperature of any one of the at least one module of the master device is greater than the upper limit of the temperature threshold of the module, the temperature control module sends a temperature control command to the cooling device to turn on the cooling device, that is, as long as there is a module If the working temperature exceeds the upper limit of the temperature threshold, the temperature control module sends a temperature control command to the refrigeration device, that is, the opening command, and the cooling device is turned on to cool the equipment room to ensure the reliability of the main device.
  • Step 406 The temperature control module determines whether the working temperature of each module in the master device is less than the corresponding lower limit of the temperature threshold. If yes, execute step 4 07; otherwise, return to step 4 02.
  • the temperature control module starts the cooling device to cool down the temperature of the equipment room, it is determined whether the working temperature of each module collected by the collector is less than the corresponding lower limit of the temperature threshold, if the operating temperature of each module is less than the corresponding If the operating temperature of only one or several modules is less than the corresponding lower limit of the temperature threshold, then return to step 402, continue to collect the operating temperature of each module, and perform temperature determination.
  • Step 4 07 The temperature control module sends a temperature control command to the cooling device to shut down the cooling device.
  • the temperature control module determines that the operating temperatures of all the modules in the main device are less than the respective lower limit of the temperature threshold, the temperature control module sends a temperature control command to the cooling device to turn off the cooling device, that is, the operating temperatures of all the modules are lower than the respective The lower limit of the temperature threshold, the temperature control module sends a temperature control command to the refrigeration device, that is, the shutdown command, and the temperature of the equipment room is turned off by turning off the refrigeration device to ensure the reliability of the main device.
  • the embodiment provides a temperature control method for generating a temperature threshold corresponding to any module according to the failure rate data of any one of the at least one module by collecting the operating temperature of at least one module in the master device, according to at least one
  • the temperature threshold and the operating temperature of the module are used to control the operating temperature of the main device; the temperature threshold set in this embodiment is obtained according to the failure rate data of each module, which is not artificially estimated, and realizes the work on the equipment room. Accurate control of temperature also ensures the reliability of equipment operation.
  • This embodiment provides the operator with the best solution for the temperature control of the equipment room, which can greatly reduce the customer 0PEX and avoid the risk of equipment reliability caused by warming.
  • the foregoing method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 6 is a structural diagram of Embodiment 1 of the temperature control system of the present invention.
  • the temperature control system provided in this embodiment may specifically include a collector 601 and a temperature control module 602.
  • the collector 6 01 is used to collect the operating temperature of at least one module in the master device.
  • the temperature control module 620 can include a generating unit 6 1 2 and a control unit 622.
  • the generating unit 612 is configured to generate a temperature threshold corresponding to the arbitrary one of the modules according to the failure rate data corresponding to the pre-stored one of the at least one module.
  • the control unit 622 is configured to perform, according to the temperature threshold corresponding to the at least one module generated by the generating unit 61 and the operating temperature of the at least one module collected by the collector 601, the operating temperature of the master device control.
  • FIG. 7 is a structural diagram of Embodiment 2 of the temperature control system of the present invention.
  • the present embodiment provides a temperature control system, which can specifically perform the steps in the second embodiment of the foregoing method, and details are not described herein again.
  • An example of the temperature control system provided in this embodiment may be an embodiment of the temperature control module in the temperature control system shown in FIG. 5 above, and the remaining modules in FIG. 5 (such as a temperature detector, a collector, a memory, and a temperature extension)
  • the value intelligent controller and the refrigeration device can be identical to the embodiment, and the temperature control system in this embodiment can exist as one device independent of the master device.
  • the temperature control system provided in this embodiment is based on the above-mentioned FIG. 6.
  • the temperature control system further includes a memory 603, a temperature detector 604 and a cooling device 506, wherein the memory 603 is configured to pre-store the at least one module.
  • the corresponding failure rate data, the generating unit 61 2 is specifically configured to generate a temperature threshold corresponding to any one of the modules according to the failure rate data corresponding to any one of the at least one module prestored by the memory 603.
  • a temperature detector is used 604 to monitor the operating temperature of the at least one module, and the collector 601 is specifically configured to collect the operating temperature of the at least one module monitored by the temperature detector 604.
  • the generating unit 61 2 may specifically include an obtaining subunit 61 2 1 and a setting subunit 61 22 .
  • the obtaining sub-unit 61 2 1 is configured to obtain a temperature value corresponding to the failure rate value at the inflection point of the at least one temperature-loss rate curve corresponding to the any one of the modules prestored by the memory 603, and the obtained Taking the minimum of at least one of the temperature values as the temperature threshold of any one of the modules.
  • the setting subunit 61 22 is configured to set an upper limit of the temperature threshold and a lower limit of the temperature threshold of the arbitrary one module according to the temperature threshold of the arbitrary one of the modules acquired by the obtaining subunit 6 1 2 1 .
  • the control unit 622 in this embodiment may specifically include a first control subunit 6221 and a second control subunit 6222.
  • the first control sub-unit 622 1 is configured to start cooling when the operating temperature of any one of the at least one module of the main device is greater than the upper limit of the temperature threshold corresponding to the module set by the setting sub-unit 6 1 22 Device 605.
  • the second control subunit 6222 is configured to turn off the refrigerating device 605 when the operating temperatures of all the modules in the main device are respectively smaller than the lower limit of the temperature threshold corresponding to each module set by the setting subunit 6122.
  • the temperature control system provided in this embodiment may further include a temperature threshold intelligent controller 606, and the temperature threshold intelligent controller 06 is configured to use the measured value of the operating temperature of any one of the modules. And each temperature-loss rate curve, the upper limit of the temperature threshold and the lower limit of the temperature threshold of any one of the modules set by the setting subunit 61 22 are corrected.
  • the present embodiment provides a temperature control system, which generates a temperature threshold corresponding to any one module according to the operating temperature corresponding to at least one module of the at least one module, according to the operating temperature of at least one module of the at least one module, according to at least
  • the temperature threshold and the operating temperature of a module are used to control the operating temperature of the main device; the temperature threshold set in this embodiment is obtained according to the failure rate data of each module, which is not artificially estimated, and realizes the operation of the machine room. Accurate control of the operating temperature also ensures the reliability of the work of the equipment.
  • This embodiment provides the operator with the best solution for temperature control of the equipment room, which can greatly reduce the customer's 0PEX and avoid the risk of equipment reliability caused by warming.
  • the present embodiment further provides a base station device.
  • the base station device in this embodiment may include the temperature control system shown in FIG. 6 or FIG. 7, that is, each module in the temperature control system may be integrated in the base station device.
  • FIG. 8 is a structural diagram of Embodiment 1 of a base station device according to the present invention.
  • the base station device includes a base station device working module 1 and a temperature control system 2, wherein the temperature control system 2 may specifically include the foregoing FIG. 6 or FIG.
  • Each of the modules of the temperature control system that is, all or part of the modules of the temperature control system integrated in the base station device in this embodiment, the base station device provided in this embodiment may refer to the method embodiment shown in FIG. 1 or FIG. 4 above. Come true Now, we will not repeat them here.
  • the present embodiment further provides another base station device, as shown in FIG. 9 is a structural diagram of Embodiment 2 of the base station device according to the present invention.
  • the base station device in this embodiment at least one temperature detector in the temperature control system is integrated. 604.
  • the base station device provided in this embodiment may be implemented by referring to the method embodiment shown in FIG. 1 or FIG. 4, and details are not described herein again.
  • the base station device in this embodiment may specifically include at least one base station device working module 1 and at least one temperature detector 604, that is, only the temperature detector 604 may be integrated into the base station device, and the remaining modules in the temperature control system 2 may serve as A device that is independent of the base station device.
  • the temperature control system 2 is shown in broken lines in the figure, indicating that the structure included in the temperature control system 2 may be an internal structure that does not belong to the base station apparatus shown in the figure.
  • the at least one temperature detector 604 is respectively connected to at least one of the base station device working modules 1 for monitoring the operating temperature of the at least one base station device working module 1.
  • the base station device is connected to the temperature control system 2, and the temperature control system 2 is configured to collect the operating temperature of the at least one base station device working module 1 of the base station device, according to any one of the pre-stored at least one base station device working module 1
  • the failure rate data corresponding to the working module 1 generates a temperature threshold corresponding to the working module 1 of the at least one base station device, and according to the temperature threshold corresponding to the working module 1 of the at least one base station device, and the at least one base station device works.
  • the operating temperature of the module 1 controls the operating temperature of the base station device.
  • the temperature control system is configured to generate, according to the pre-stored failure rate data corresponding to any one of the at least one module, a temperature threshold corresponding to the generated one of the modules:
  • the control system is configured to obtain a temperature value corresponding to the failure rate value at the inflection point of the at least one temperature-loss rate curve corresponding to the pre-stored one of the modules, and use the minimum value of the acquired at least one temperature value as the any one of the modules
  • the temperature threshold is set; and according to the temperature threshold of any one of the modules, the upper temperature threshold and the lower temperature threshold of any one of the modules are set.
  • the temperature control system is configured to control an operating temperature of the base station device according to a temperature threshold corresponding to the at least one module and an operating temperature of the at least one module.
  • the temperature control system is configured to start a cooling device when an operating temperature of any one of the at least one module in the base station device is greater than an upper limit of a temperature threshold corresponding to the module; and an operating temperature of all modules in the base station device Minute When not lower than the lower limit of the temperature threshold corresponding to each module, the cooling device is turned off.
  • the present embodiment further provides another base station device, as shown in FIG. 10 is a structural diagram of Embodiment 3 of the base station device according to the present invention.
  • the base station device in this embodiment at least one temperature detection in the temperature control system is integrated.
  • the 604 and the collector 601, the base station device provided in this embodiment may be implemented by referring to the method embodiment shown in FIG. 1 or FIG. 4, and details are not described herein again.
  • the base station device in this embodiment may specifically include at least one base station device working module 1, at least one temperature detector 604, and a collector 601, that is, the temperature detector 604 and the collector 601 may be integrated in the base station device, and the temperature control
  • the remaining modules in system 2 can act as one device independent of the base station device.
  • the temperature control system 2 is shown in broken lines in the figure, indicating that the structure included in the temperature control system 2 may be an internal structure that does not belong to the base station apparatus shown in the figure.
  • the at least one temperature detector 604 is connected to at least one of the base station device working modules 1 for monitoring the operating temperature of the at least one base station device working module 1, respectively.
  • the collector 601 is coupled to the at least one temperature detector 604 for collecting the operating temperature of the at least one base station device working module 1 of the base station device.
  • the base station device is connected to the temperature control system 2, and the temperature control system 2 is configured to generate any one of the pre-stored failure rate data corresponding to any one of the at least one base station device working module 1
  • the temperature threshold corresponding to the working module 1 of the base station device, and the operating temperature of the base station device according to the temperature threshold corresponding to the working module 1 of the at least one base station device and the operating temperature of the working module 1 of the at least one base station device Take control.
  • the temperature control system is configured to generate, according to the pre-stored failure rate data corresponding to any one of the at least one module, a temperature threshold corresponding to the generated one of the modules:
  • the control system is configured to obtain a temperature value corresponding to the failure rate value at the inflection point of the at least one temperature-loss rate curve corresponding to the pre-stored one of the modules, and use the minimum value of the acquired at least one temperature value as the any one of the modules
  • the temperature threshold is set; and according to the temperature threshold of any one of the modules, the upper temperature threshold and the lower temperature threshold of any one of the modules are set.
  • the temperature control system is configured to control an operating temperature of the base station device according to a temperature threshold corresponding to the at least one module and an operating temperature of the at least one module.
  • a temperature control system is configured to: when an operating temperature of any one of the at least one modules in the base station device is greater than a corresponding one of the modules When the upper limit of the temperature is reached, the cooling device is started; when the operating temperatures of all the modules in the base station device are respectively lower than the lower limit of the temperature threshold corresponding to each module, the cooling device is turned off.
  • the memory in the foregoing embodiment may be integrated in the base station device, or the temperature threshold intelligent controller may be integrated in the base station device, or the memory may be integrated in the base station device, that is, the above temperature.
  • the combination of one or several modules in the detector, the collector, the temperature control module, the temperature threshold intelligent controller, the memory and the cooling device can be integrated in the base station device, which can be determined according to the actual situation, and is no longer here. - Narration.
  • Mode 1 a temperature control method, comprising: collecting operating temperature of at least one module in a master device; according to the pre-stored at least one a failure rate data corresponding to any one of the modules, generating a temperature threshold corresponding to the one of the modules; and the master device according to a temperature threshold corresponding to the at least one module and an operating temperature of the at least one module The working temperature is controlled.
  • the mode 2 according to the method of the first aspect, according to the failure rate data corresponding to any one of the pre-stored modules, generating a temperature threshold corresponding to the any one of the modules includes: acquiring any one of the pre-stored ones a temperature value corresponding to the failure rate value at the inflection point of the at least one temperature-loss rate curve corresponding to the module, and a minimum value of the obtained at least one temperature value as a temperature threshold of the any one of the modules; according to any one of the modules The temperature threshold, set the upper limit of the temperature threshold and the lower limit of the temperature threshold of any one of the modules.
  • controlling the operating temperature of the main device according to the temperature threshold corresponding to the at least one module and the operating temperature of the at least one module comprises: When the operating temperature of one of the modules is greater than the upper limit of the temperature threshold corresponding to the module, the cooling device is started; when the operating temperatures of all the modules in the main device are respectively lower than the lower limit of the temperature threshold corresponding to each module, the cooling device is turned off.
  • the method of claim 2 further comprising: determining, according to the measured value of the operating temperature of any one of the modules and the temperature-loss rate curve, an upper limit of the temperature threshold and a temperature threshold of the set one of the modules The lower limit is corrected.
  • thermoloss rate curve corresponding to any one of the modules is related to humidity and air pressure in an environment in which any one of the modules is located.
  • Method 6 a temperature control system, comprising a collector and a temperature control module, wherein The collector is configured to collect the operating temperature of the at least one module in the master device; the temperature control module includes: a generating unit, configured to respectively generate any one of the pre-stored failure rate data corresponding to any one of the at least one module a temperature threshold corresponding to the module; a control unit, configured to: a temperature threshold corresponding to the at least one module generated according to the generating unit, and an operating temperature of the at least one module of the collector set, The operating temperature of the master device is controlled.
  • a generating unit configured to respectively generate any one of the pre-stored failure rate data corresponding to any one of the at least one module a temperature threshold corresponding to the module
  • a control unit configured to: a temperature threshold corresponding to the at least one module generated according to the generating unit, and an operating temperature of the at least one module of the collector set, The operating temperature of the master device is controlled.
  • the temperature control system further includes a memory, a temperature detector, and a cooling device, wherein the memory is configured to pre-store the failure rate data corresponding to the at least one module, and the generating unit Specifically, the method is configured to generate a temperature threshold corresponding to any one of the modules according to the failure rate data corresponding to any one of the at least one module that is pre-stored by the memory; and the temperature detector is configured to monitor an operating temperature of the at least one module, The collector is specifically configured to collect the operating temperature of the at least one module monitored by the temperature detector; the generating unit includes: an acquiring subunit, configured to acquire the any one of the modules prestored by the memory a temperature value corresponding to the failure rate value at the inflection point of the at least one temperature-loss rate curve, respectively, the minimum value of the at least one temperature value obtained as the temperature threshold of the any one of the modules; the setting subunit, for Obtaining a temperature threshold of the arbitrary one module acquired by the subunit, setting a setting Temperatur
  • control unit comprises: a first control subunit, configured to: when an operating temperature of any one of the at least one module in the main device is greater than the set The cooling device is activated when the upper limit of the temperature threshold corresponding to the module is set by the unit; the second control subunit is configured to: when the operating temperatures of all the modules in the main device are respectively smaller than the settings of the setting subunit When the module corresponds to the lower limit of the temperature threshold, the cooling device is turned off.

Abstract

温度控制方法、系统和基站设备。方法包括:采集主设备中至少一个模块的工作温度(101);根据任意一个模块对应的失效率数据,生成该模块对应的温度阈值(102);根据该模块对应的温度阈值以及该模块的工作温度,对主设备中的工作温度进行控制(103)。系统包括采集器(601)和温控模块(602),温控模块(602)包括生成单元(612)和控制单元(622)。机房的温度得到准确控制。

Description

温度控制方法、 系统和基站设备 本申请要求于 2011 年 11 月 28 日提交中国专利局、 申请号为 201110384814.6、 发明名称为 "温度控制方法、 系统和基站设备" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种温度控制方法、 系统和基站 设备。 背景技术
在无线接入网络中, 站点能耗通常占无线接入网络能耗的 45%左右, 其中绝大部分能耗为空调制冷所消耗的电能。 因此, 提高站点机房的工作 温度成为运营商迫切寻求的节能减排的主要措施。 例如, 沃达丰 ( Voda fone ) 近年就提出将机房的工作温度从 25度提升至 28度的建议, 以减少机房用电费用, 降低企业的管理支出 ( Opera t ing Expens e ; 以下 简称: 0PEX ) 。
由于机房温度升高会对蓄电池寿命产生影响, 这将限制机房的最大升 温温度。 因此, 在现有技术中, 通过单独解决蓄电池的温控问题, 来使得 机房的工作温度得到进一步提高。 目前, 釆用恒温电池拒对蓄电池进行温 控, 对主设备以及其他设备釆用空调进行温控。 这种分舱温控方案避免了 蓄电池对提升机房工作温度的制约, 使得机房升温技术可以得到普遍推广 应用。
然而, 现有技术中的机房的升温温度基本上是人为推算确定的, 而该 升温温度的高低会直接影响设备运行的可靠性和节能的效果, 因此, 现有 技术中的温度控制方案无法对机房的工作温度进行准确控制,从而无法保 证设备工作的可靠性。 发明内容 本发明实施例提供一种温度控制方法、 系统和基站设备, 实现对机房 的工作温度的准确控制, 保证设备工作的可靠性。
本发明实施例提供了一种温度控制方法, 包括:
釆集主设备中至少一个模块的工作温度;
根据预存的所述至少一个模块中任意一个模块对应的失效率数据, 生 成所述任意一个模块对应的温度阔值;
根据所述至少一个模块对应的温度阔值以及所述至少一个模块的工 作温度, 对所述主设备的工作温度进行控制。
本发明实施例提供了一种温度控制系统, 包括釆集器、 温控模块和存 储器, 其中:
所述釆集器用于釆集主设备中至少一个模块的工作温度;
所述温控模块包括:
生成单元, 用于根据预存的所述至少一个中任意一个模块对应的失效 率数据, 分别生成所述任意一个模块对应的温度阔值;
控制单元, 用于根据所述生成单元生成的所述至少一个模块对应的温 度阔值, 以及所述釆集器釆集的所述至少一个模块的工作温度, 对所述主 设备的工作温度进行控制。
本发明实施例提供了一种基站设备, 包括上述温度控制系统。
本发明实施例提供了另一种基站设备, 包括至少一个基站设备工作模 块以及至少一个温度探测器, 其中,
所述至少一个温度探测器, 分别与至少一个所述基站设备工作模块相 连, 分别用于监测所述至少一个基站设备工作模块的工作温度;
所述基站设备与温度控制系统相连, 所述温度控制系统用于釆集所述 基站设备中至少一个基站设备工作模块的工作温度, 根据预存的所述至少 一个基站设备工作模块中任意一个基站设备工作模块对应的失效率数据, 生成所述任意一个基站设备工作模块对应的温度阔值, 并根据所述至少一 个基站设备工作模块对应的温度阔值, 以及所述至少一个基站设备工作模 块的工作温度, 对所述基站设备的工作温度进行控制。
本发明实施例提供了又一种基站设备, 包括至少一个基站设备工作模 块、 至少一个温度探测器以及釆集器, 其中,
所述至少一个温度探测器, 分别与至少一个所述基站设备工作模块相 连, 分别用于监测所述至少一个基站设备工作模块的工作温度;
所述釆集器, 与所述至少一个温度探测器相连, 用于釆集所述基站设 备中至少一个基站设备工作模块的工作温度;
所述基站设备与温度控制系统相连, 所述温度控制系统用于根据预存 的所述至少一个基站设备工作模块中任意一个基站设备工作模块对应的 失效率数据, 生成所述任意一个基站设备工作模块对应的温度阔值, 并根 据所述至少一个基站设备工作模块对应的温度阔值, 以及所述至少一个基 站设备工作模块的工作温度, 对所述基站设备的工作温度进行控制。
本发明实施例提供的温度控制方法、 系统和基站设备, 通过釆集主设 备中至少一个模块的工作温度, 根据至少一个模块中任意一个模块对应的 失效率数据生成任意一个模块对应的温度阔值, 根据至少一个模块对应的 温度阔值和工作温度来控制主设备的工作温度; 本实施例设定的温度阔值 是根据各模块自身的失效率数据而得到的, 并非人为估算的, 实现了对机 房的工作温度的准确控制, 同时也保证了设备工作的可靠性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明温度控制方法实施例一的流程图;
图 2为本发明温度控制方法实施例一中不同环境条件下同一模块对应 的温度-失效率曲线的示意图;
图 3为本发明温度控制方法实施例一中不同模块对应的温度-失效率 曲线的示意图;
图 4为本发明温度控制方法实施例二的流程图; 图 5为本发明温度控制方法实施例二中温度控制系统的结构框图; 图 6为本发明温度控制系统实施例一的结构图;
图 7为本发明温度控制系统实施例二的结构图;
图 8为本发明基站设备实施例一的结构图;
图 9为本发明基站设备实施例二的结构图;
图 1 0为本发明基站设备实施例三的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明温度控制方法实施例一的流程图, 如图 1所示, 本实施 例提供了一种温度控制方法, 可以具体包括如下步骤:
步骤 1 01 , 釆集主设备中至少一个模块的工作温度。
本实施例为对机房中的主设备进行温度控制, 主设备由多个模块组 成, 本实施例对主设备中至少一个模块的工作温度分别进行实时监测, 并 定期釆集至少一个模块的工作温度, 此处釆集的工作温度为至少一个模块 在工作时温度的实测值。
步骤 1 02 , 根据预存的所述至少一个模块中任意一个模块对应的失效 率数据, 生成所述任意一个模块对应的温度阔值。
在本实施例中, 对于各主设备来说, 预先存储有主设备中至少一个模 块对应的失效率数据, 该失效率数据可以由主设备的生产厂家提供, 此处 的失效率数据可以具体为温度-失效率曲线, 其中任意一个模块可以包括 至少一条温度-失效率曲线, 这些温度-失效率曲线可以通过对主设备中的 各模块在各种环境下进行多次实验测量得到。 图 2为本发明温度控制方法 实施例一中不同环境条件下同一模块对应的温度-失效率曲线的示意图, 如图 2所示为同一模块在不同环境条件 W, )、( 下的温度-失效率曲 线, 其中, Ρ、 尸2分别代表不同的环境压强, ^、 〃2分别代表不同的环境 湿度, 当然还可以考虑其他环境参数来生成温度-失效率曲线, 此处仅以 压强和湿度为例进行说明。 从图 2中可以看出, 不同环境条件下模块的失 效率 /随温度 Τ的变化曲线, 失效率 /的单位为 m-1 , 即时间单位 "分钟" 的倒数, 此处的失效率通常可以定义为模块在单位时间内的故障数, 即 / =dn/dt , 其中, n代表故障数量, t代表时间, 失效率 /的值越小, 表示 模块的可靠性越高; 温度 T的单位为。 C。 图 2中的/ ^ , H2 > H 在这 两个环境条件下, 模块的温度-失效率曲线是不同的, 在相同失效率的条 件下生成的温度阔值也是不同的。 本步骤为根据预存的至少一个模块中任 意一个模块对应的失效率数据生成任意一个模块对应的温度阔值, 对于主 设备中的任意一个模块来说, 根据任意一个模块对应的失效率数据来生成 该任意一个模块对应的温度阔值, 即本实施例中生成的主设备中各模块所 对应的温度阔值是各不相同的。 图 3为本发明温度控制方法实施例一中不 同模块对应的温度-失效率曲线的示意图, 如图 3所示, 分别为模块 1、 模 块 2和模块 3对应的温度-失效率曲线, 由此得到的各模块对应的温度阔 值各不相同, 分别为 7;、 T2、 7;。 本实施例中的失效率数据可以从模块对 应的温度 -失效率曲线来获取得到, 即模块在不同温度下对应的失效率的 大小。 再结合上述图 2 , 本实施例可以根据一个模块在不同环境下对应的 温度-失效率曲线, 来生成该模块对应的温度阔值, 具体地, 根据一条曲 线可以获取一个对应的温度阔值, 可以从中选择最小的温度阔值作为该模 块对应的温度阔值。 本步骤中设定的温度阔值是根据各模块自身的失效率 数据而得到的, 并非人为估算的, 相对来说准确性很高, 且与各模块自身 的情况相适应, 能够保证主设备中各模块工作的可靠性。
步骤 1 03 , 根据所述至少一个模块对应的温度阔值以及所述至少一个 模块的工作温度, 对所述主设备的工作温度进行控制。
在釆集到各模块的工作温度后, 根据至少一个模块各自对应的温度阔 值, 对主设备的工作温度进行控制。 具体为将至少一个模块中的任意一个 模块的工作温度与其对应的温度阔值进行比较, 根据比较结果来控制机房 中设置的制冷设备的开启或关闭, 从而实现对主设备的工作温度进行控 制。 本实施例根据至少一个模块中任意一个模块的比较结果来综合控制制 冷设备, 以保证主设备中各模块工作的可靠性。
本实施例提供了一种温度控制方法, 通过釆集主设备中至少一个模块 的工作温度, 根据至少一个模块中任意一个模块对应的失效率数据, 生成 任意一个模块对应的温度阔值, 根据至少一个模块对应的温度阔值和的工 作温度来控制主设备的工作温度; 本实施例设定的温度阔值是根据各模块 自身的失效率数据而得到的, 并非人为估算的, 实现了对机房的工作温度 的准确控制, 同时也保证了设备工作的可靠性。
图 4为本发明温度控制方法实施例二的流程图, 如图 4所示, 本实施 例提供了一种温度控制方法, 本实施例可以是前述图 1所示的实施例一的 具体化, 本实施例可以具体包括如下步骤:
步骤 401 , 温度探测器分别监测主设备中各模块的工作温度。
图 5为本发明温度控制方法实施例二中温度控制系统的结构框图, 如 图 5所示, 本实施例的温度控制方法可以具体釆用图 5中的温度控制系统 来实现, 该温度控制系统可以包括多个温度探测器、 釆集器、 温控模块、 制冷设备以及存储器等。 其中, 温度探测器 1、 2〜n的输出端均连接到釆 集器的输入端上, 将监测的各模块的温度输出到釆集器上; 釆集器的输出 端、 温度阔值智能控制器的输出端均与温控模块的输入端相连, 温控模块 的输出端连接到制冷设备的输入端, 向制冷设备发送温度控制信号; 温控 模块还与存储器相连, 从存储器获取预存的温度-失效率曲线。 本实施例 中的主设备可以具体为基站设备, 该基站设备可以由多个模块组成, 如中 射频 ( Intermed i a te Rad i o Frequency; 以下简称: IRF )模块、功放 ( Power Amp l i f ier ; 以下简称: PA )模块、 基带处理 ( Ba seband Proce s s ing; 以 下简称: BP )模块、 控制模块、 传输模块、 电源模块和接口模块等, 温度 控制系统中的温度探测器分别与上述各模块部分或者全部相连, 分别对各 模块的工作温度进行监测, 以获取到主设备中至少一个模块的实时工作温 度。
在本实施例中, 图 5中所示的温度控制系统可以独立于主设备, 也可 以集成在主设备中; 当温度控制系统与主设备集成时, 还可以将温度控制 系统中的某一个或几个模块集成在主设备中, 而温度控制系统中的其他模 块作为与主设备独立的设备存在, 例如, 可以将温度控制系统中的温度探 测器 1、 2〜n集成在主设备中的各个模块上, 而其余温度控制系统中的其 他模块作为与主设备独立的设备存在, 还可以将釆集器与温度探测器 1、 2〜n均集成在主设备中等等。
步骤 402 , 釆集器釆集温度探测器监测的至少一个模块的工作温度, 并将釆集到的工作温度上报给温控模块。
釆集器定期釆集各温度探测器监测到的至少一个模块的工作温度的 数据, 并将釆集到的至少一个模块的工作温度上报给温控模块, 以备温控 模块在后续步骤中进行主设备的温度控制。
步骤 403 , 温控模块根据存储器中预存的至少一个模块中任意一个模 块对应的失效率数据, 生成所述任意一个模块对应的温度阔值。
在本实施例中的温度控制系统中, 与温控模块相连的存储器中预存 有主设备中至少一个模块对应的失效率数据, 这些失效率数据通常由主设 备中各模块的生产厂家提供的, 其为各生产厂家在出厂前对各模块进行实 测得到的, 以指导用户正确地使用各模块产品, 供温控模块来读取, 以进 行具体的温度控制。 在本实施例中, 温控模块进行主设备的温度控制时, 先从存储器中获取预存的至少一个模块中任意一个模块对应的失效率数 据, 此处的失效率数据可以具体为温度-失效率曲线。 本实施例中预存的 任意一个模块对应的温度 -失效率曲线可以为多条, 继续参见上述图 2 , 这 些曲线除了与温度有关外, 还考虑了不同湿度和气压条件下的失效率, 即 包括不同湿度和气压等条件下的不同温度-失效率曲线, 从而可以适应不 同国家或地域的不同站点应用环境。
需要指出的是, 本实施例中的步骤 4 02和步骤 403之间的时序关系并 非唯一, 除了如图 4所示的关系之外, 步骤 4 02和步骤 4 03还可以同时执 行, 或者先执行步骤 403 , 再执行步骤 4 02。
根据本实施例的一个实施场景, 温控模块在确定至少一个模块对应的 温度阔值时, 可以先获取预存的任意一个模块对应的至少一条温度 -失效 率曲线拐点处的失效率值分别对应的温度值, 将获取的至少一个温度值中 的最小值作为所述任意一个模块的温度阔值。 由于存储器中存储的任意一 个模块对应的温度 -失效率曲线可能为多条, 则对于任意一个模块来说, 温控模块获取该模块对应的所有温度-失效率曲线, 获取这些曲线拐点处 的失效率值分别对应的温度值, 并从这些温度值中选择最小值作为该模块 的温度阔值。 继续参见上述图 2 , 温度模块在确定一个模块对应的温度阔 值时, 先获取预存的该模块对应的两条温度-失效率曲线, 根据这两条曲 线分别获取其拐点处的失效率值分别对应的温度值为?^和?^ , 然后从 thl 和 中选择最小值作为该模块的温度阔值, 即选择 thl作为该模块的温度 阔值。 根据本实施例的一个实施场景, 在获取到至少一个模块对应的温度 阔值后, 为了确保机房升温后主设备的可靠性不下降, 以及制冷设备降温 的滞后特点, 温控模块可以根据至少一个模块中任意一个模块对应的温度 阔值, 设定任意一个模块的温度阔值上限和温度阔值下限, 即根据确定的 温度阔值设定一个区间温度(T2 , T1 ) , 其中, Tl、 Τ2分别对应于模块的 温度阔值上限和温度阔值下限。 具体可以取 Tl=温度阔值 * ( l+m% ) , 取 T2=温度阔值 * ( l-m% ) , 其中, m为大于 0的正整数, 通常 m的取值不超 过 5。
根据本实施例的一个实施场景, 本实施例提供的温度控制方法还可以 包括如下步骤: 温度阔值智能控制器根据任意一个模块的工作温度的实测 值和温度-失效率曲线, 对设定的所述任意一个模块的温度阔值上限和温 度阔值下限进行修正处理。 在实际应用中, 为克服主设备中模块长期工作 的老化和温度测量误差而产生的温度阔值漂移的影响, 温度阔值智能控制 器可以根据任意一个模块的工作温度的实测值、 存储器中预存的温度-失 效率曲线的变化特性和该模块的可靠性要求, 对温控模块生成的任意一个 模块的温度阔值进行补偿修正, 以消除温度阔值漂移所产生的影响, 可以 充分保证机房升温后主设备的可靠性。
步骤 404 , 温控模块判断主设备中是否存在至少一个模块的工作温度 大于各自对应的温度阔值上限, 如果是, 则执行步骤 405 , 否则返回执行 步骤 402。
由于各模块对应的温度-失效率曲线存在差异, 造成各模块的温度阔 值各不相同, 因此温控模块在获取到主设备中至少一个模块对应的温度阔 值上限和温度阔值下限后, 分别判断釆集器釆集到的至少一个模块的工作 温度是否大于各自对应的温度阔值上限, 判断主设备中是否存在至少一个 模块的工作温度大于各自对应的温度阔值上限, 如果至少一个模块中任意 一个模块的工作温度大于该模块对应的温度阔值上限, 则执行步骤 405 ; 如果所有模块的工作温度均不大于各自对应的温度阔值上限, 则返回执行 步骤 4 02 , 继续釆集各模块的工作温度, 并进行温度判决。
步骤 4 05 , 温控模块向制冷设备发送温度控制指令, 以开启制冷设备。 当温控模块判断出主设备中至少一个模块中任意一个模块的工作温 度大于该模块的温度阔值上限时, 温控模块向制冷设备发送温度控制指 令,以开启制冷设备,即只要有一个模块的工作温度超过其温度阔值上限, 则温控模块便向制冷设备发送温度控制指令, 即开启指令, 通过开启制冷 设备来对机房进行降温, 保证主设备的可靠性。
步骤 406 , 温控模块判断主设备中的各模块的工作温度是否均小于各 自对应的温度阔值下限,如果是,则执行步骤 4 07 ,否则返回执行步骤 4 02。
温控模块启动制冷设备对机房温度进行降温处理的过程中, 分别判断 釆集器釆集到的各模块的工作温度是否小于各自对应的温度阔值下限, 如 果各模块的工作温度均小于各自对应的温度阔值下限, 则执行步骤 407 ; 如果只有一个或几个模块的工作温度小于各自对应的温度阔值下限, 则返 回执行步骤 402 , 继续釆集各模块的工作温度, 并进行温度判决。
步骤 4 07 , 温控模块向制冷设备发送温度控制指令, 以关闭制冷设备。 当温控模块判断出主设备中所有模块的工作温度均小于各自的温度 阔值下限时, 温控模块向制冷设备发送温度控制指令, 以关闭制冷设备, 即所有模块的工作温度均低于各自的温度阔值下限, 则温控模块便向制冷 设备发送温度控制指令, 即关闭指令, 通过关闭制冷设备来对机房进行升 温, 保证主设备的可靠性。
本实施例提供了一种温度控制方法, 通过釆集主设备中至少一个模块 的工作温度, 根据至少一个模块中任意一个模块对应的失效率数据生成任 意一个模块对应的温度阔值, 根据至少一个模块对应的温度阔值和工作温 度来控制主设备的工作温度; 本实施例设定的温度阔值是根据各模块自身 的失效率数据而得到的, 并非人为估算的, 实现了对机房的工作温度的准 确控制, 同时也保证了设备工作的可靠性。 本实施例为运营商提供最佳的 机房温度控制的解决方案, 既可以大幅减少客户 0PEX,又能避免升温带来 的设备可靠性的风险。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM , 磁碟或者光盘等各种可以存储程序代 码的介质。
图 6为本发明温度控制系统实施例一的结构图, 如图 6所示, 本实施 例提供了一种温度控制系统, 可以具体执行上述方法实施例一中的各个步 骤, 此处不再赘述。 本实施例提供的温度控制系统, 可以具体包括釆集器 601和温控模块 602。 其中, 釆集器 6 01用于釆集主设备中至少一个模块 的工作温度。 温控模块 6 02可以包括生成单元 6 1 2和控制单元 622。 其中, 生成单元 6 1 2用于根据预存的所述至少一个中任意一个模块对应的失效率 数据, 生成所述任意一个模块对应的温度阔值。 控制单元 622用于根据生 成单元 6 1 2生成的所述至少一个模块对应的温度阔值, 以及釆集器 601釆 集的所述至少一个模块的工作温度, 对所述主设备的工作温度进行控制。
图 7为本发明温度控制系统实施例二的结构图, 如图 7所示, 本实施 例提供了一种温度控制系统, 可以具体执行上述方法实施例二中的各个步 骤, 此处不再赘述。 本实施例提供的温度控制系统的实例可以为对上述图 5所示的温度控制系统中温控模块的具体化, 图 5中的其余模块 (如温度 探测器、 釆集器、 存储器、 温度阔值智能控制器和制冷设备)可与本实施 例中是一致的, 本实施例中的温度控制系统可以作为与主设备独立的一个 设备存在。 本实施例提供的温度控制系统在上述图 6所示的基础之上, 温 度控制系统还包括存储器 603、 温度探测器 6 04和制冷设备 6 05 , 其中, 存储器 603用于预存所述至少一个模块对应的失效率数据, 生成单元 61 2 具体用于根据存储器 6 03预存的所述至少一个模块中任意一个模块对应的 失效率数据, 生成任意一个模块对应的温度阔值。 温度探测器用于 604监 测所述至少一个模块的工作温度, 釆集器 601 具体用于釆集温度探测器 604监测的所述至少一个模块的工作温度。
生成单元 61 2可以具体包括获取子单元 61 2 1和设定子单元 61 22。 其 中, 获取子单元 61 2 1用于获取存储器 603预存的所述任意一个模块对应 的至少一条温度-失效率曲线拐点处的失效率值分别对应的温度值, 将获 取的至少一个温度值中的最小值作为所述任意一个模块的温度阔值。 设定 子单元 61 22用于根据获取子单元 6 1 2 1获取的所述任意一个模块的温度阔 值, 设定所述任意一个模块的温度阔值上限和温度阔值下限。
根据本实施例的一个实施场景, 本实施例中控制单元 622可以具体包 括第一控制子单元 6221和第二控制子单元 6222。 其中, 第一控制子单元 622 1 用于当主设备中的至少一个模块中的任意一个模块的工作温度大于 设定子单元 6 1 22设定的所述模块对应的温度阔值上限时, 启动制冷设备 605。 第二控制子单元 6222用于当主设备中的所有模块的工作温度分别小 于设定子单元 61 22设定的各模块对应的温度阔值下限时, 关闭所述制冷 设备 6 05。
根据本实施例的一个实施场景, 本实施例提供的温度控制系统还可以 包括温度阔值智能控制器 606 , 温度阔值智能控制器 6 06用于根据所述任 意一个模块的工作温度的实测值和各温度-失效率曲线, 对设定子单元 61 22 设定的所述任意一个模块的温度阔值上限和温度阔值下限进行修正 处理。
本实施例提供了一种温度控制系统, 通过釆集主设备中至少一个模块 的工作温度, 根据至少一个模块中任意一个模块对应的失效率数据分别生 成任意一个模块对应的温度阔值, 根据至少一个模块对应的温度阔值和工 作温度来控制主设备的工作温度; 本实施例设定的温度阔值是根据各模块 自身的失效率数据而得到的, 并非人为估算的, 实现了对机房的工作温度 的准确控制, 同时也保证了设备工作的可靠性。 本实施例为运营商提供最 佳的机房温度控制的解决方案, 既可以大幅减少客户 0PEX,又能避免升温 带来的设备可靠性的风险。
本实施例还提供了一种基站设备, 本实施例中的基站设备可以包括上 述图 6或图 7中所示的温度控制系统, 即上述温度控制系统中的各模块可 以全部集成在基站设备中。 如图 8所示为本发明基站设备实施例一的结构 图, 本基站设备包括基站设备工作模块 1和温度控制系统 2 , 其中, 温度 控制系统 2可以具体包括上述图 6或图 7中所示的温度控制系统的各模块, 即本实施例中的基站设备中集成了的温度控制系统的全部或者部分模块, 本实施例提供的基站设备可以参考上述图 1或图 4所示的方法实施例来实 现, 此处不再赘述。
本实施例还提供了另一种基站设备, 如图 9所示为本发明基站设备实 施例二的结构图, 本实施例中的基站设备中集成了上述温度控制系统中的 至少一个温度探测器 604 , 本实施例提供的基站设备可以参考上述图 1或 图 4所示的方法实施例来实现, 此处不再赘述。 本实施例中的基站设备可 以具体包括至少一个基站设备工作模块 1以及至少一个温度探测器 604 , 即可以只将温度探测器 604集成在基站设备中, 温度控制系统 2中的其余 模块可以作为与基站设备独立的一个设备。 图中以虚线形式表示温度控制 系统 2 , 表明该温度控制系统 2所包含的结构可以是不属于该图中所示的 基站设备的内部结构。 其中, 至少一个温度探测器 604分别与至少一个所 述基站设备工作模块 1相连, 分别用于监测所述至少一个基站设备工作模 块 1的工作温度。 基站设备与温度控制系统 2相连, 温度控制系统 2用于 釆集所述基站设备中至少一个基站设备工作模块 1的工作温度, 根据预存 的所述至少一个基站设备工作模块 1中任意一个基站设备工作模块 1对应 的失效率数据, 生成所述任意一个基站设备工作模块 1对应的温度阔值, 并根据所述至少一个基站设备工作模块 1对应的温度阔值, 以及所述至少 一个基站设备工作模块 1的工作温度, 对所述基站设备的工作温度进行控 制。
根据本实施例的一个实施场景, 上述涉及的温度控制系统用于根据预 存的所述至少一个模块中任意一个模块对应的失效率数据, 生成所述任意 一个模块对应的温度阔值具体为: 温度控制系统用于获取预存的所述任意 一个模块对应的至少一条温度-失效率曲线拐点处的失效率值分别对应的 温度值, 将获取的至少一个温度值中的最小值作为所述任意一个模块的温 度阔值; 并根据所述任意一个模块的温度阔值, 设定所述任意一个模块的 温度阈值上限和温度阈值下限。
根据本实施例的一个实施场景, 上述涉及的温度控制系统用于根据所 述至少一个模块对应的温度阔值以及所述至少一个模块的工作温度, 对所 述基站设备的工作温度进行控制具体为: 温度控制系统用于当基站设备中 的所述至少一个模块中的任意一个模块的工作温度大于所述模块对应的 温度阔值上限时, 启动制冷设备; 当基站设备中的所有模块的工作温度分 别小于各模块对应的温度阔值下限时, 关闭所述制冷设备。
本实施例还提供了又一种基站设备, 如图 1 0 所示为本发明基站设备 实施例三的结构图, 本实施例中的基站设备中集成了上述温度控制系统中 的至少一个温度探测器 604和釆集器 601 , 本实施例提供的基站设备可以 参考上述图 1或图 4所示的方法实施例来实现, 此处不再赘述。 本实施例 中的基站设备可以具体包括至少一个基站设备工作模块 1、 至少一个温度 探测器 604 以及釆集器 601 , 即可以将温度探测器 604和釆集器 601集成 在基站设备中, 温度控制系统 2中的其余模块可以作为与基站设备独立的 一个设备。 图中以虚线形式表示温度控制系统 2 , 表明该温度控制系统 2 所包含的结构可以是不属于该图中所示的基站设备的内部结构。 其中, 所 述至少一个温度探测器 604 , 分别与至少一个所述基站设备工作模块 1相 连, 分别用于监测所述至少一个基站设备工作模块 1的工作温度。 所述釆 集器 601与所述至少一个温度探测器 604相连, 用于釆集所述基站设备中 至少一个基站设备工作模块 1的工作温度。 所述基站设备与温度控制系统 2相连, 所述温度控制系统 2用于根据预存的所述至少一个基站设备工作 模块 1中任意一个基站设备工作模块 1对应的失效率数据, 生成所述任意 一个基站设备工作模块 1对应的温度阔值, 并根据所述至少一个基站设备 工作模块 1对应的温度阔值, 以及所述至少一个基站设备工作模块 1的工 作温度, 对所述基站设备的工作温度进行控制。
根据本实施例的一个实施场景, 上述涉及的温度控制系统用于根据预 存的所述至少一个模块中任意一个模块对应的失效率数据, 生成所述任意 一个模块对应的温度阔值具体为: 温度控制系统用于获取预存的所述任意 一个模块对应的至少一条温度-失效率曲线拐点处的失效率值分别对应的 温度值, 将获取的至少一个温度值中的最小值作为所述任意一个模块的温 度阔值; 并根据所述任意一个模块的温度阔值, 设定所述任意一个模块的 温度阈值上限和温度阈值下限。
根据本实施例的一个实施场景, 上述涉及的温度控制系统用于根据所 述至少一个模块对应的温度阔值以及所述至少一个模块的工作温度, 对所 述基站设备的工作温度进行控制具体为: 温度控制系统用于当基站设备中 的所述至少一个模块中的任意一个模块的工作温度大于所述模块对应的 温度阔值上限时, 启动制冷设备; 当基站设备中的所有模块的工作温度分 别小于各模块对应的温度阔值下限时, 关闭所述制冷设备。
当然, 本领域技术人员可以理解, 还可以将上述实施例中的存储器集 成在基站设备中, 或者将温度阔值智能控制器集成在基站设备中, 或者将 存储器集成在基站设备中, 即上述温度探测器、 釆集器、 温控模块、 温度 阔值智能控制器、 存储器和制冷设备中的一个或几个模块的组合可以集成 在基站设备中, 具体可以根据实际情况来定, 此处不再——赘述。 参考本 发明前述全部或者部分实施例的实现, 本发明还提出了如下实施方式: 方式 1、 一种温度控制方法, 包括: 釆集主设备中至少一个模块的工 作温度; 根据预存的所述至少一个模块中任意一个模块对应的失效率数 据, 生成所述任意一个模块对应的温度阔值; 根据所述至少一个模块对应 的温度阔值以及所述至少一个模块的工作温度, 对所述主设备的工作温度 进行控制。
方式 2、 根据方式 1所述的方法所述根据预存的所述至少一个模块中 任意一个模块对应的失效率数据, 生成所述任意一个模块对应的温度阔值 包括: 获取预存的所述任意一个模块对应的至少一条温度-失效率曲线拐 点处的失效率值分别对应的温度值, 将获取的至少一个温度值中的最小值 作为所述任意一个模块的温度阔值; 根据所述任意一个模块的温度阔值, 设定所述任意一个模块的温度阔值上限和温度阔值下限。
方式 3、 根据方式 1或 2所述的方法, 所述根据所述至少一个模块对 应的温度阔值以及所述至少一个模块的工作温度, 对所述主设备的工作温 度进行控制包括: 当主设备中的一个模块的工作温度大于所述模块对应的 温度阔值上限时, 启动制冷设备; 当主设备中的所有模块的工作温度分别 小于各模块对应的温度阔值下限时, 关闭所述制冷设备。
方式 4、 根据方式 2所述的方法, 还包括: 根据所述任意一个模块的 工作温度的实测值和温度-失效率曲线, 对设定的所述任意一个模块的温 度阔值上限和温度阈值下限进行修正处理。
方式 5、 根据方式 1-4中任一所述的方法, 所述任意一个模块对应的 温度-失效率曲线与所述任意一个模块所处的环境中的湿度和气压相关。
方式 6、 一种温度控制系统, 包括釆集器和温控模块, 其中, 所述釆 集器用于釆集主设备中至少一个模块的工作温度; 所述温控模块包括: 生 成单元, 用于根据预存的所述至少一个中任意一个模块对应的失效率数 据, 分别生成所述任意一个模块对应的温度阔值; 控制单元, 用于根据所 述生成单元生成的所述至少一个模块对应的温度阔值, 以及所述釆集器釆 集的所述至少一个模块的工作温度, 对所述主设备的工作温度进行控制。
方式 7、 根据方式 6所述的系统, 所述温度控制系统还包括存储器、 温度探测器和制冷设备, 其中, 所述存储器用于预存所述至少一个模块对 应的失效率数据, 所述生成单元具体用于根据所述存储器预存的所述至少 一个模块中任意一个模块对应的失效率数据, 生成任意一个模块对应的温 度阔值; 所述温度探测器用于监测所述至少一个模块的工作温度, 所述釆 集器具体用于釆集所述温度探测器监测的所述至少一个模块的工作温度; 所述生成单元包括: 获取子单元, 用于获取所述存储器预存的所述任意一 个模块对应的至少一条温度-失效率曲线拐点处的失效率值分别对应的温 度值, 将获取的至少一个温度值中的最小值作为所述任意一个模块的温度 阔值; 设定子单元, 用于根据所述获取子单元获取的所述任意一个模块的 温度阔值, 设定所述任意一个模块的温度阔值上限和温度阔值下限。
方式 8、 根据方式 6或 7所述的系统, 所述控制单元包括: 第一控制 子单元, 用于当主设备中的所述至少一个模块中的任意一个模块的工作温 度大于所述设定子单元设定的所述模块对应的温度阔值上限时, 启动所述 制冷设备; 第二控制子单元, 用于当主设备中的所有模块的工作温度分别 小于所述设定子单元设定的各模块对应的温度阔值下限时, 关闭所述制冷 设备。
方式 9、 根据方式 7所述的系统, 还包括: 温度阔值智能控制器, 用 于根据所述任意一个模块的工作温度的实测值和温度-失效率曲线, 对所 述设定子单元设定的所述任意一个模块的温度阔值上限和温度阔值下限 进行爹正处理。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要求 书
1、 一种温度控制方法, 其特征在于, 包括:
釆集主设备中至少一个模块的工作温度;
根据预存的所述至少一个模块中任意一个模块对应的失效率数据, 生 成所述任意一个模块对应的温度阔值;
根据所述至少一个模块对应的温度阔值以及所述至少一个模块的工 作温度, 对所述主设备的工作温度进行控制。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述根据预存的所述 至少一个模块中任意一个模块对应的失效率数据, 生成所述任意一个模块 对应的温度阈值的过程, 包括:
获取预存的所述任意一个模块对应的至少一条温度-失效率曲线拐点 处的失效率值分别对应的温度值, 将获取的至少一个温度值中的最小值作 为所述任意一个模块的温度阔值;
根据所述任意一个模块的温度阔值, 设定所述任意一个模块的温度阔 值上限和温度阈值下限。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述至 少一个模块对应的温度阈值以及所述至少一个模块的工作温度, 对所述主 设备的工作温度进行控制的过程, 包括:
当主设备中的所述至少一个模块中的任意一个模块的工作温度大于 所述模块对应的温度阔值上限时, 启动制冷设备;
当主设备中的所述至少一个模块中的所有模块的工作温度分别小于 各模块对应的温度阔值下限时, 关闭所述制冷设备。
4、 根据权利要求 2所述的方法, 其特征在于, 还包括:
根据所述任意一个模块的工作温度的实测值和温度-失效率曲线, 对 设定的所述任意一个模块的温度阔值上限和温度阔值下限进行修正。
5、 根据权利要求 1 -4 中任一项所述的方法, 其特征在于, 所述任意 一个模块对应的温度-失效率曲线与所述任意一个模块所处的环境中的湿 度和 /或气压相关。
6、 一种温度控制系统, 其特征在于, 包括釆集器和温控模块, 其中: 所述釆集器用于釆集主设备中至少一个模块的工作温度; 所述温控模块包括:
生成单元, 用于根据预存的所述至少一个中任意一个模块对应的失效 率数据, 分别生成所述任意一个模块对应的温度阔值;
控制单元, 用于根据所述生成单元生成的所述至少一个模块对应的温 度阔值, 以及所述釆集器釆集的所述至少一个模块的工作温度, 对所述主 设备的工作温度进行控制。
7、 根据权利要求 6 所述的系统, 其特征在于, 所述温度控制系统还 包括存储器、 温度探测器和制冷设备, 其中:
所述存储器用于预存所述至少一个模块对应的失效率数据, 所述生成 单元具体用于根据所述存储器预存的所述至少一个模块中任意一个模块 对应的失效率数据, 生成任意一个模块对应的温度阔值;
所述温度探测器用于监测所述至少一个模块的工作温度, 所述釆集器 具体用于釆集所述温度探测器监测的所述至少一个模块的工作温度; 所述生成单元包括:
获取子单元, 用于获取所述存储器预存的所述任意一个模块对应的至 少一条温度-失效率曲线拐点处的失效率值分别对应的温度值, 将获取的 至少一个温度值中的最小值作为所述任意一个模块的温度阔值;
设定子单元, 用于根据所述获取子单元获取的所述任意一个模块的温 度阔值, 设定所述任意一个模块的温度阔值上限和温度阔值下限。
8、 根据权利要求 6或 7所述的系统, 其特征在于, 所述控制单元包 括:
第一控制子单元, 用于当主设备中的所述至少一个模块中的任意一个 模块的工作温度大于所述设定子单元设定的所述模块对应的温度阔值上 限时, 启动所述制冷设备;
第二控制子单元, 用于当主设备中的所述至少一个模块中的所有模块 的工作温度分别小于所述设定子单元设定的各模块对应的温度阔值下限 时, 关闭所述制冷设备。
9、 根据权利要求 7所述的系统, 其特征在于, 还包括:
温度阔值智能控制器, 用于根据所述任意一个模块的工作温度的实测 值和温度-失效率曲线, 对所述设定子单元设定的所述任意一个模块的温 度阔值上限和温度阈值下限进行修正。
1 0、 一种基站设备, 其特征在于, 包括权利要求 6-9中任一项所述的 温度控制系统。
1 1、 一种基站设备, 其特征在于, 包括至少一个基站设备工作模块以 及至少一个温度探测器, 其中,
所述至少一个温度探测器, 分别与至少一个所述基站设备工作模块相 连, 分别用于监测所述至少一个基站设备工作模块的工作温度;
所述基站设备与温度控制系统相连, 所述温度控制系统用于釆集所述 基站设备中至少一个基站设备工作模块的工作温度, 根据预存的所述至少 一个基站设备工作模块中任意一个基站设备工作模块对应的失效率数据, 生成所述任意一个基站设备工作模块对应的温度阔值, 并根据所述至少一 个基站设备工作模块对应的温度阔值, 以及所述至少一个基站设备工作模 块的工作温度, 对所述基站设备的工作温度进行控制。
12、 根据权利要求 1 1 所述的基站设备, 其特征在于, 所述温度控制 系统用于根据预存的所述至少一个基站设备工作模块中任意一个基站设 备工作模块对应的失效率数据, 生成所述任意一个基站设备工作模块对应 的温度阔值的执行, 包括:
所述温度控制系统获取预存的所述任意一个基站设备工作模块对应 的至少一条温度-失效率曲线拐点处的失效率值分别对应的温度值, 将获 取的所述至少一个温度值中的最小值作为所述任意一个基站设备工作模 块的温度阔值; 并根据所述任意一个基站设备工作模块的温度阔值, 设定 所述任意一个基站设备工作模块的温度阔值上限和温度阔值下限。
1 3、 根据权利要求 1 1或 1 2所述的基站设备, 其特征在于, 所述温度 控制系统根据所述至少一个基站设备工作模块对应的温度阔值, 以及所述 至少一个基站设备工作模块的工作温度, 对所述基站设备的工作温度进行 控制的执行, 包括:
所述温度控制系统用于当所述至少一个基站设备工作模块中的任意 一个基站设备工作模块的工作温度大于所述基站设备工作模块对应的温 度阔值上限时, 启动制冷设备; 当所述至少一个基站设备工作模块中的所 有模块的工作温度分别小于各基站设备工作模块对应的温度阔值下限时, 关闭所述制冷设备。
14、 一种基站设备, 其特征在于, 包括至少一个基站设备工作模块、 至少一个温度探测器以及釆集器, 其中,
所述至少一个温度探测器, 分别与至少一个所述基站设备工作模块相 连, 分别用于监测所述至少一个基站设备工作模块的工作温度;
所述釆集器, 与所述至少一个温度探测器相连, 用于釆集所述基站设 备中至少一个基站设备工作模块的工作温度;
所述基站设备与温度控制系统相连, 所述温度控制系统用于根据预存 的所述至少一个基站设备工作模块中任意一个基站设备工作模块对应的 失效率数据, 生成所述任意一个基站设备工作模块对应的温度阔值, 并根 据所述至少一个基站设备工作模块对应的温度阔值, 以及所述至少一个基 站设备工作模块的工作温度, 对所述基站设备的工作温度进行控制。
15、 根据权利要求 14 所述的基站设备, 其特征在于, 所述温度控制 系统根据预存的所述至少一个基站设备工作模块中任意一个基站设备工 作模块对应的失效率数据, 生成所述任意一个基站设备工作模块对应的温 度阔值的执行, 包括:
所述温度控制系统获取预存的所述任意一个基站设备工作模块对应 的至少一条温度-失效率曲线拐点处的失效率值分别对应的温度值, 将获 取的至少一个温度值中的最小值作为所述任意一个基站设备工作模块的 温度阔值; 并根据所述任意一个基站设备工作模块的温度阔值, 设定所述 任意一个基站设备工作模块的温度阔值上限和温度阔值下限。
16、 根据权利要求 14或 1 5所述的基站设备, 其特征在于, 所述温度 控制系统根据所述至少一个基站设备工作模块对应的温度阔值, 以及所述 至少一个基站设备工作模块的工作温度, 对所述基站设备的工作温度进行 控制的执行, 包括:
所述温度控制系统用于当所述至少一个基站设备工作模块中的任意 一个基站设备工作模块的工作温度大于所述基站设备工作模块对应的温 度阔值上限时, 启动制冷设备; 当所述至少一个基站设备工作模块中的所 有基站设备工作模块的工作温度分别小于各基站设备工作模块对应的温 度阔值下限时, 关闭所述制冷设备。
PCT/CN2012/085457 2011-11-28 2012-11-28 温度控制方法、系统和基站设备 WO2013078999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110384814.6 2011-11-28
CN201110384814.6A CN102520743B (zh) 2011-11-28 2011-11-28 温度控制方法、系统和基站设备

Publications (1)

Publication Number Publication Date
WO2013078999A1 true WO2013078999A1 (zh) 2013-06-06

Family

ID=46291695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085457 WO2013078999A1 (zh) 2011-11-28 2012-11-28 温度控制方法、系统和基站设备

Country Status (2)

Country Link
CN (1) CN102520743B (zh)
WO (1) WO2013078999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840423A (zh) * 2017-01-24 2017-06-13 深圳企管加企业服务有限公司 一种基于物联网的多点测温仪上报方法及系统
WO2018137100A1 (zh) * 2017-01-24 2018-08-02 深圳企管加企业服务有限公司 一种基于物联网的多点测温仪上报方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520743B (zh) * 2011-11-28 2014-05-07 华为技术有限公司 温度控制方法、系统和基站设备
CN103529871B (zh) * 2012-07-06 2015-09-09 致茂电子(苏州)有限公司 温度控制器与温控平台
CN103678732B (zh) * 2012-09-04 2016-10-26 上海勘测设计研究院 基于单曲线拐点法判别水利工程改善水环境适宜规模的方法
CN105871758A (zh) * 2016-05-31 2016-08-17 深圳市双赢伟业科技股份有限公司 交换机的温度控制方法及系统
WO2018201277A1 (zh) * 2017-05-02 2018-11-08 深圳市大疆创新科技有限公司 一种基站的温度调控系统及基站的温度调控方法
CN107957949B (zh) * 2017-12-08 2020-08-11 中广核工程有限公司 一种核电厂反应堆保护系统的测试方法及系统
SE543008C2 (sv) * 2018-11-22 2020-09-22 Stockholm Exergi Ab Förfarande och system för balansering av massflöde under produktionsstörning eller -brist i ett fjärrvärmenät
CN113669248B (zh) * 2021-08-24 2022-12-06 广东鑫钻节能科技股份有限公司 空压站内温控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048233A (ko) * 2006-11-28 2008-06-02 엘지노텔 주식회사 기지국 온도검출 및 제어방법 및 장치
CN102122181A (zh) * 2011-03-23 2011-07-13 上海华为技术有限公司 一种控制温度的方法、网络管理系统和通信系统
CN102169354A (zh) * 2011-02-17 2011-08-31 浪潮(北京)电子信息产业有限公司 一种冷却系统的控制方法和装置
CN102184292A (zh) * 2011-03-30 2011-09-14 北京航空航天大学 服从指数分布的电子产品可靠性预计模型修正方法
CN102520743A (zh) * 2011-11-28 2012-06-27 华为技术有限公司 温度控制方法、系统和基站设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336168B2 (en) * 2005-06-06 2008-02-26 Lawrence Kates System and method for variable threshold sensor
CN101482757A (zh) * 2008-01-07 2009-07-15 联想(北京)有限公司 一种温度控制的方法、系统及硬件装置
JP5170395B2 (ja) * 2008-02-21 2013-03-27 日本電気株式会社 ウエハ及びその温度試験方法
CN101763126A (zh) * 2008-12-25 2010-06-30 北京航峰科伟装备技术有限公司 一种lcd液晶显示器宽温控制装置
US8412411B2 (en) * 2009-12-14 2013-04-02 Robert Bosch Gmbh Electronic control module heat limiting systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080048233A (ko) * 2006-11-28 2008-06-02 엘지노텔 주식회사 기지국 온도검출 및 제어방법 및 장치
CN102169354A (zh) * 2011-02-17 2011-08-31 浪潮(北京)电子信息产业有限公司 一种冷却系统的控制方法和装置
CN102122181A (zh) * 2011-03-23 2011-07-13 上海华为技术有限公司 一种控制温度的方法、网络管理系统和通信系统
CN102184292A (zh) * 2011-03-30 2011-09-14 北京航空航天大学 服从指数分布的电子产品可靠性预计模型修正方法
CN102520743A (zh) * 2011-11-28 2012-06-27 华为技术有限公司 温度控制方法、系统和基站设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106840423A (zh) * 2017-01-24 2017-06-13 深圳企管加企业服务有限公司 一种基于物联网的多点测温仪上报方法及系统
WO2018137100A1 (zh) * 2017-01-24 2018-08-02 深圳企管加企业服务有限公司 一种基于物联网的多点测温仪上报方法及系统

Also Published As

Publication number Publication date
CN102520743B (zh) 2014-05-07
CN102520743A (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2013078999A1 (zh) 温度控制方法、系统和基站设备
WO2018228135A1 (zh) 防止变频空调器的压缩机过热的控制方法及控制系统
US10042340B2 (en) Systems and methods for extending the battery life of a wireless sensor in a building control system
EP3470749B1 (en) Method and apparatus for controlling electric heating of air conditioner compressor
CN104101051A (zh) 一种空调器及其冷媒循环异常检测控制方法和装置
WO2018058732A1 (zh) 冷媒泄露保护控制方法、控制器及空调
US20210356156A1 (en) A method for detecting operating power of air conditioner compressor, and air conditioner
CN105222361A (zh) 一种热泵热水器控制方法、装置和热泵热水器
CN104977461A (zh) 空调用电量的计算方法和电子设备
CN106288241A (zh) 一种空调室内机的风机控制方法及基站空调
CN104566817B (zh) 空调器温度应力的监控方法和系统
CN105674561A (zh) 热泵热水器及其控制方法
CN102506529A (zh) 一种单级制冷剂系统的控制方法及其优化器
CN103743068A (zh) 一种基于能效优化的中央空调冷却塔风机控制方法及系统
US10437219B2 (en) Method of managing energy consumption
WO2018084849A1 (en) A dc variable speed compressor control method and control system
CN111044806A (zh) 设备故障定位方法、装置和服务器
JP2020086910A (ja) 空調システム管理装置、データ提供システム、データ提供方法、及び、プログラム
CN112631242A (zh) 一种家居电器设备的功率滥测分析方法及装置
WO2023138325A1 (zh) 用于循环冷却系统的冷却介质温度调控方法、系统及设备
JP2014126351A (ja) 給湯制御システム
CN109782822A (zh) 一种应用于低温敏感设备的温度控制方法
JP2020167567A (ja) 制御システム、及び、制御方法
WO2021227807A1 (zh) 一种调节空调温度的方法和调温装置
KR20190119201A (ko) 에너지 사용을 모니터링하는 장치 및 클라우드 서버

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854265

Country of ref document: EP

Kind code of ref document: A1