WO2018228135A1 - 防止变频空调器的压缩机过热的控制方法及控制系统 - Google Patents

防止变频空调器的压缩机过热的控制方法及控制系统 Download PDF

Info

Publication number
WO2018228135A1
WO2018228135A1 PCT/CN2018/087627 CN2018087627W WO2018228135A1 WO 2018228135 A1 WO2018228135 A1 WO 2018228135A1 CN 2018087627 W CN2018087627 W CN 2018087627W WO 2018228135 A1 WO2018228135 A1 WO 2018228135A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
exhaust
exhaust gas
interval
Prior art date
Application number
PCT/CN2018/087627
Other languages
English (en)
French (fr)
Inventor
肖克强
冷冰
李伟
周宝娟
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2018228135A1 publication Critical patent/WO2018228135A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to air conditioning technology, and more particularly to a control method and control system for preventing overheating of a compressor of an inverter air conditioner.
  • the compressor is a driven fluid machine that promotes low pressure gas to high pressure gas and is the heart of the refrigeration system.
  • the advantages and disadvantages of the compressor directly affect the advantages and disadvantages of the air conditioner. Compressor damage can only be replaced, and the cost of replacing a compressor is high. From the research data of household air conditioners, the original compressor accounts for about 20% of the cost of the air conditioner. It is not only difficult for the user to replace the compressor with the original compressor, but the replacement cost is also very high. Therefore, the protection of air conditioner compressors is very important.
  • compressor damage is that the compressor is overheated.
  • the compressor is overheated and damaged. It is mainly caused by the following reasons: 1 the engine is short of oil; 2 the ring temperature, exhaust gas and other sensor failures cause the air conditioner to malfunction. There is protection failure; 3 compressor exhaust port, throttling device blockage; 4 lack of refrigerant press air operation.
  • the consequences of overheating of the compressor include demagnetization, card cylinders, melting of the coil insulation grease in the body, and deterioration of the press oil.
  • the operating temperature of the compressor is usually determined by the exhaust gas temperature of the compressor, and the operating frequency is adjusted to lower the temperature of the compressor body.
  • the disadvantage of this method is that when there is a serious shortage of gas in the system, there is no circulation of the refrigerant, and the exhaust temperature is not high, and the purpose of protection is not achieved. At this time, the compressor is running at a low speed, and the body of the device is short of oil, and the heat generated by the friction causes the central temperature to continuously rise.
  • Another object of the first aspect of the present invention is to ensure that the compressor can operate stably under rated maximum cooling capacity and rated maximum heating capacity.
  • Still another object of the first aspect of the present invention is to improve the accuracy of exhaust gas temperature detection and avoid errors.
  • a control method for preventing overheating of a compressor of an inverter air conditioner comprising:
  • the minimum end point value setting corresponding to the temperature interval in which the compressor is abnormally stopped is greater than the temperature interval corresponding to the abnormal stop of the compressor under any other operating conditions.
  • controlling the compressor to perform according to a temperature interval in which a temperature difference between the exhaust gas temperature of the compressor is located and a temperature difference between a temperature of the compressor body and an exhaust gas temperature of the compressor specifically include:
  • values of T 1 , T 2 , T 3 , T 4 , and T 5 are respectively greater than The values of T 1 , T 2 , T 3 , T 4 , and T 5 under any other operating conditions.
  • control method further includes:
  • the step of controlling the compressor to perform an abnormal stop operation specifically includes:
  • the exhaust gas temperature of the compressor is detected multiple times according to a predetermined time period, if the compressor is measured each time If the exhaust gas temperature exceeds T 5 , the compressor is controlled to perform an abnormal stop operation; or
  • the compressor body After the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor exceeds t 5 and continues for the second predetermined period of time, the compressor body is detected multiple times according to a predetermined time period. The temperature and the exhaust temperature of the compressor, and calculate the temperature difference between the two, if each calculated temperature difference exceeds t 5 , then the compressor is controlled to perform an abnormal stop operation.
  • control method before the step of acquiring the temperature of the compressor body and the exhaust temperature of the compressor, the control method further includes:
  • the present invention also provides a control system for preventing overheating of a compressor of an inverter air conditioner, comprising:
  • a temperature acquisition module configured to acquire a temperature of the compressor body and an exhaust temperature of the compressor
  • a comparison module configured to compare an exhaust gas temperature of the compressor with a preset temperature interval in the comparison module, and to compare a temperature difference between a temperature of the compressor body and the exhaust gas temperature Comparing the preset temperature difference intervals in the module to determine a temperature interval in which the exhaust gas temperature of the compressor is located, and determining a temperature difference interval between the temperature of the compressor body and the exhaust gas temperature; as well as
  • control module configured to control the compressor according to a temperature interval in which a temperature range of an exhaust gas temperature of the compressor is located, and a temperature difference between a temperature of the compressor body and an exhaust gas temperature of the compressor Perform the corresponding inverter operation or abnormal stop operation.
  • the predetermined maximum cooling capacity condition and the rated maximum heating capacity condition of the compressor operating at the highest frequency in the comparison module are corresponding to the temperature interval of the abnormal stop of the compressor.
  • the minimum endpoint value is greater than the minimum endpoint value of the temperature interval corresponding to the abnormal stop of the compressor under any other operating condition.
  • control module is configured to have a temperature difference between a temperature range of (0, T 1 ) of the compressor, or a temperature difference between a temperature of the compressor body and an exhaust temperature of the compressor.
  • the compressor is controlled to rapidly increase frequency at the first speed V 1 , the temperature of the exhaust gas of the compressor is at a temperature range of (T 1 , T 2 ] or Controlling that the compressor is slowly up-converted at a second speed V 2 when the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor is in a temperature difference interval of (t 1 , t 2 ),
  • the temperature difference between the exhaust gas temperature of the compressor at (T 2 , T 3 ) or the temperature of the compressor body and the exhaust gas temperature of the compressor is in the temperature difference interval of (t 2 , t 3 ] Controlling the frequency of the compressor to remain constant, the temperature of the exhaust gas of the compressor being in a temperature range of (T 3 , T 4 ] or the
  • the control method of the present invention controls the compressor to perform correspondingly according to the temperature interval in which the exhaust temperature of the compressor is located and the temperature difference interval in which the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor is located.
  • Variable frequency operation or abnormal stop operation can more accurately determine the actual operating state of the compressor, accurately control the compressor to perform the corresponding frequency conversion or stop operation, and avoid the single parameter of the exhaust gas temperature alone.
  • the present invention separately takes out the minimum end point value of the temperature interval corresponding to the abnormal stop of the compressor under the rated maximum cooling capacity condition and the rated maximum heating capacity condition, so as to be independent of other working conditions, and is specially designed
  • the minimum end point value corresponding to the temperature interval corresponding to the abnormal stop of the compressor under any other working condition that is, the present invention improves the exhaust gas temperature that causes the compressor to stop abnormally operating under the rated maximum cooling capacity condition and the rated maximum heating capacity condition.
  • the threshold value thereby relaxing the range of exhaust gas temperature protection, ensuring that the operating frequency of the compressor does not fluctuate during the rated maximum cooling capacity condition and the rated maximum heating capacity condition, thereby ensuring the compressor discharge temperature, the air conditioner
  • the cooling capacity and overall power do not fluctuate, ensuring stable operation of the air conditioner.
  • the present invention detects the compressor exhaust temperature multiple times or detects the temperature of the compressor body and the exhaust temperature of the compressor a plurality of times according to a predetermined time period, and calculates a temperature difference between the two if and only if each
  • the compressor is controlled to perform an abnormal stop operation, ensuring the accuracy of the exhaust gas temperature detection and avoiding The compressor stops running when it should not stop due to detection errors or other abnormal factors.
  • FIG. 1 is a schematic flow chart of a control method for preventing overheating of a compressor of an inverter air conditioner according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a control method for preventing overheating of a compressor of an inverter air conditioner according to another embodiment of the present invention
  • FIG. 3 is a schematic structural block diagram of a control system for preventing overheating of a compressor of an inverter air conditioner according to an embodiment of the present invention.
  • Embodiments of the present invention first provide a control method for preventing overheating of a compressor of an inverter air conditioner.
  • 1 is a schematic flow chart of a control method for preventing overheating of a compressor of an inverter air conditioner according to an embodiment of the present invention. The control includes the following steps:
  • Step S102 acquiring a temperature of the compressor body and an exhaust temperature of the compressor
  • Step S104 the compressor is controlled to perform a corresponding frequency conversion operation or an abnormal stop operation according to a temperature interval in which the exhaust gas temperature of the compressor is located, and a temperature difference interval in which the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor is located.
  • the temperature of the compressor body is preferably the temperature in the middle of the compressor to bring it closer to the actual temperature of the compressor body.
  • the control method of the present invention controls the compression according to the temperature interval in which the exhaust gas temperature of the compressor is located, and the temperature difference interval in which the temperature difference between the temperature of the compressor body and the exhaust gas temperature of the compressor is located.
  • the machine performs the corresponding frequency conversion operation or abnormal stop operation, which can more accurately judge the actual running state of the compressor, thereby more accurately controlling the compressor to perform the corresponding frequency conversion or stop operation, avoiding the single parameter control using the exhaust gas temperature alone.
  • the minimum end point value corresponding to the temperature interval in which the compressor is abnormally stopped is set to The minimum endpoint value is greater than the temperature interval corresponding to the abnormal stop of the compressor under any other operating conditions.
  • a variety of different working conditions are usually included, for example, in addition to the rated maximum cooling capacity and the rated maximum heating capacity, other common working conditions are also rated cooling capacity, rated intermediate Cooling capacity, rated heating capacity, rated intermediate heating capacity, fixed-frequency low-temperature heating, cooling external ring temperature limiting frequency, heating external ring temperature limiting frequency, maximum operating cooling, maximum operating heating, etc.
  • the invention separately takes out the minimum end point value of the temperature interval corresponding to the abnormal stop of the compressor under the rated maximum cooling capacity condition and the rated maximum heating capacity condition, so that it is independent of other working conditions, and is specially designed to be larger than other tasks.
  • the minimum end point value of the temperature interval corresponding to the abnormal stop of the compressor under one operating condition that is, the threshold value of the exhaust gas temperature for causing the abnormal stop operation of the compressor under the rated maximum cooling capacity condition and the rated maximum heating capacity condition,
  • the compressor performs the corresponding frequency conversion according to the temperature interval in which the exhaust gas temperature of the compressor is located, and the temperature difference interval between the temperature of the compressor body and the exhaust temperature of the compressor.
  • the steps of the operation or the abnormal stop operation specifically include:
  • the temperature interval and the temperature difference interval corresponding to the abnormal stop of the compressor are respectively (T 5 , ⁇ ), which is the temperature
  • the minimum endpoint value of the interval is T 5. That is, when the exhaust temperature of the compressor exceeds T 5 , the compressor can be caused to stop abnormally.
  • each variable frequency operation of the compressor (such as fast up-conversion, slow up-conversion, fast down-conversion or slow down-conversion) or abnormal stop operation corresponds to two judgment conditions, one is the exhaust temperature of the compressor. The other is the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor, and when any one of the conditions is satisfied first, the corresponding frequency conversion operation or abnormal stop operation is performed.
  • T 1 , T 2 , T 3 , T 4 , T 5 , t 1 , t 2 , t 3 , t 4 , t 5 , V 1 , V 2 , V 3 and V 4 are all preset in the system. The value is fixed. Wherein V 1 may be equal to V 3 and V 2 may be equal to V 4 . Specifically, in one embodiment, both V 1 and V 3 may be 0.1 Hz per second, and V 2 and V 4 may each be 1 Hz per second.
  • the inverter air conditioner is at a rated maximum cooling capacity and a rated maximum heating capacity at which the compressor operates at the highest frequency, T 1 , T 2 , T 3 , T 4 , T 5
  • the values are respectively greater than the values of T 1 , T 2 , T 3 , T 4 , T 5 under any other operating conditions. That is to say, in the rated maximum cooling capacity condition and the rated maximum heating capacity, the end point values of each temperature range are improved compared with other working conditions, thereby ensuring that the compressor is in the process of up-conversion and frequency-reduction.
  • the stability further ensures that the compressor can operate stably throughout the process.
  • the values of T 1 , T 2 , T 3 , T 4 , and T 5 are 98° C. and 105, respectively, under the rated maximum cooling capacity condition and the rated maximum heating capacity condition. °C, 108 °C, 112 °C, 117 °C.
  • the values of T 1 , T 2 , T 3 , T 4 , and T 5 were 88 ° C, 91 ° C, 95 ° C, 100 ° C, and 105 ° C, respectively. That is to say, under other operating conditions, when the exhaust temperature of the compressor rises above 105 ° C, the compressor will be controlled to stop abnormally.
  • the compressor Under the rated maximum cooling capacity condition and the rated maximum heating capacity, when the exhaust temperature of the compressor rises above 117 °C, the compressor will stop abnormally controlled. Thereby, the compressor can be allowed to maintain stable operation at the highest frequency for a certain period of time without stopping.
  • the values of t 1 , t 2 , t 3 , t 4 , and t 5 are 30° C., 40° C., 50° C., 60° C., and 70° C., respectively, under any operating conditions. .
  • the control method of the present invention further includes: when the abnormal stop of the compressor exceeds the first preset duration or the exhaust temperature of the compressor is less than T 1 or the temperature difference between the exhaust temperature of the compressor when the compressor body is less than t 1, the control operation of the compressor restarts. That is, when the abnormal stop of the compressor exceeds the first preset duration, the exhaust temperature of the compressor is less than T 1 and the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor is less than t 1 When either of the conditions is met, the compressor can be resumed without damage.
  • the first preset duration is a preset length of time in the system, and the value may be, for example, 3 minutes.
  • the step of controlling the compressor to perform the abnormal stop operation specifically includes:
  • the exhaust temperature of the compressor exceeds T 5 and continues for a second predetermined period of time
  • the exhaust temperature of the compressor is detected multiple times according to a predetermined time period, and the exhaust temperature of the compressor exceeds T every time. 5 , then control the compressor to perform an abnormal stop operation; or
  • the temperature of the compressor body and the exhaust temperature of the compressor are detected multiple times according to a predetermined time period. Temperature, and calculate the temperature difference between the two, if each calculated temperature difference exceeds t 5 , then control the compressor to perform an abnormal stop operation.
  • the present invention detects the compressor exhaust temperature multiple times or detects the temperature of the compressor body and the exhaust temperature of the compressor multiple times according to a predetermined time period, and calculates between the two.
  • the temperature difference if and only if each measured exhaust gas temperature exceeds the set temperature value or each calculated temperature difference exceeds the set temperature difference, the compressor is controlled to perform an abnormal stop operation, ensuring the row
  • the accuracy of the gas temperature detection avoids the compressor from stopping when it should not stop due to detection errors or other abnormal factors.
  • the second preset duration and the predetermined time period are both preset time lengths in the system, and the second preset duration may be, for example, 20 seconds, and the predetermined time period may be, for example, 10 minutes.
  • the control method of the present invention can detect the temperature of the compressor body and the exhaust temperature of the compressor every 10 minutes for a total of three times, if the measured exhaust gas temperature exceeds T 5 or each calculation If the obtained temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor exceeds t 5 , the compressor is controlled to perform an abnormal stop operation. When the compressor stops abnormally, sounds, light characters or other appropriate prompts or warnings can be sent to deliver the fault to the room or other suitable location.
  • the step of acquiring the temperature of the compressor body and the exhaust temperature of the compressor specifically includes: detecting a temperature of the compressor body and an exhaust temperature of the compressor n times according to a preset time period, and The average value of the n test results is taken as the obtained temperature of the compressor body and the exhaust temperature of the compressor.
  • each operation of detecting the temperature of the compressor body and the exhaust temperature of the compressor includes: continuously sampling the temperature of the compressor body and the exhaust temperature of the compressor for m times, and performing sampling results according to the size. Sorting, taking the average of the two intermediate sampling results after sorting as the temperature of the compressor body and the exhaust gas temperature measured by the current detection, wherein n is an integer greater than or equal to 10, and m is an even number greater than or equal to 2.
  • the present invention obtains the temperature of the compressor body and the exhaust temperature of the compressor by detecting the averaging multiple times, and each sampling passes multiple samplings, and takes the middle two values sorted by size.
  • the average value is used as the result of this test to improve the accuracy of temperature detection.
  • the preset time period, and m and n are preset parameters in the system.
  • m and n may be 8 and 100, respectively, and the predetermined time period may be, for example, 5 milliseconds. That is, the temperature acquisition module can detect the temperature of the compressor body and the exhaust temperature of the compressor every 5 milliseconds, and detect 100 times in total, taking the average value of 100 test results as the obtained temperature and compression of the compressor body. The exhaust temperature of the machine. In each process of detection, the temperature acquisition module adopts a method of continuously sampling the temperature of the compressor body and the exhaust gas temperature for 8 times, and then sorts the 8 sampling results according to the size, and finally takes the middle of the sorting. The average of the two values is taken as the temperature of the compressor body and the exhaust temperature measured this time.
  • the control method of the present invention before the step of obtaining the temperature of the compressor body and the exhaust temperature of the compressor, the control method of the present invention further comprises: determining a temperature for acquiring the compressor body and the row of the compressor Whether the temperature of the gas temperature acquisition module is abnormal, if yes, an indication that the temperature acquisition module is faulty; if not, the control temperature acquisition module starts to acquire the temperature of the compressor body and the exhaust temperature of the compressor.
  • control method of the present invention further includes: step S101, determining whether the operation of the temperature acquisition module for acquiring the temperature of the compressor body and the exhaust gas temperature of the compressor is abnormal. . If yes, go to step S103: give an indication that the temperature acquisition module has failed; if not, go to step S102: to obtain the temperature of the compressor body and the exhaust temperature of the compressor.
  • the temperature acquisition module may be a temperature sensor, and may determine whether it is faulty by detecting whether its resistance value exceeds a preset threshold. In general, if there is a fault in the temperature acquisition module, it must be alarmed ten minutes after the compressor is turned on.
  • Embodiments of the present invention also provide a control system that prevents overheating of a compressor of an inverter air conditioner.
  • 3 is a schematic structural block diagram of a control system for preventing overheating of a compressor of an inverter air conditioner according to an embodiment of the present invention.
  • the control system includes a temperature acquisition module 20, a comparison module 30, and a control module 40.
  • the temperature acquisition module 20 is configured to acquire the temperature of the compressor body and the exhaust temperature of the compressor.
  • the comparison module 30 is configured to compare the exhaust gas temperature of the compressor with a preset temperature interval in the comparison module, and compare the temperature difference between the temperature of the compressor body and the exhaust gas temperature with a preset temperature difference interval in the comparison module.
  • the temperature interval in which the exhaust temperature of the compressor is located is determined, and the temperature difference interval between the temperature of the compressor body and the exhaust gas temperature is determined.
  • the control module 40 is configured to control the compressor to perform a corresponding frequency conversion operation or an abnormal stop according to a temperature interval in which the exhaust temperature of the compressor is located, and a temperature difference interval in which the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor is located. operating.
  • the minimum end point of the temperature interval corresponding to the abnormal stop of the compressor at the rated maximum cooling capacity condition and the rated maximum heating capacity condition of the compressor operating at the highest frequency preset in the comparison module 30 is greater than the minimum endpoint value corresponding to the temperature interval in which the compressor is abnormally stopped under any other operating condition. That is, the temperature threshold for causing the compressor to stop abnormally under the rated maximum cooling capacity condition and the rated maximum heating capacity condition preset in the comparison module 30 is greater than the temperature that causes the compressor to stop abnormally under any other working condition. Threshold.
  • the range of the exhaust gas temperature protection is relaxed, and it is ensured that the operating frequency of the compressor does not fluctuate under the above two working conditions, thereby ensuring that the compressor exhaust temperature, the cooling capacity of the air conditioner, and the overall power are not fluctuated, thereby ensuring The air conditioner is running stably.
  • the control module 40 is configured to have a temperature difference between the temperature of the compressor at the exhaust gas temperature of (0, T 1 ) or the temperature of the compressor body and the exhaust temperature of the compressor.
  • the temperature difference interval of (0, t 1 ) controls the compressor to rapidly increase the frequency at the first speed V 1 , the temperature range of the compressor at the exhaust temperature of (T 1 , T 2 ) or the temperature of the compressor body and the compressor
  • the compressor is controlled to increase at a slow speed at the second speed V 2
  • the exhaust gas temperature at the compressor is at (T 2 , T 3 ]
  • the temperature interval between the temperature range or the temperature of the compressor body and the exhaust temperature of the compressor is in the temperature difference range of (t 2 , t 3 )
  • the frequency of the control compressor remains unchanged, and the exhaust temperature of the compressor is at The temperature interval of (T 3 , T 4 ) or the temperature difference between the temperature of the compressor body
  • the values of T 1 , T 2 , T 3 , T 4 , and T 5 preset in the comparison module 30 under the rated maximum cooling capacity condition and the rated maximum heating capacity condition are respectively greater than The values of T 1 , T 2 , T 3 , T 4 , and T 5 preset under any other operating conditions. That is to say, in the rated maximum cooling capacity condition and the rated maximum heating capacity, the end point values of each temperature range are improved compared with other working conditions, thereby ensuring that the compressor is in the process of up-conversion and frequency-reduction. The stability further ensures the stable operation of the compressor.
  • control module 40 is further configured to exceed the first predetermined length of time when the compressor is abnormally stopped or the exhaust temperature of the compressor is less than T 1 or the temperature of the compressor body and the exhaust of the compressor When the temperature difference between the temperatures is less than t 1 , the compressor is restarted.
  • control module 40 is further configured to control the temperature acquisition module 20 to detect the compressor multiple times according to a predetermined time period after the exhaust gas temperature of the compressor exceeds T 5 for a second predetermined duration. Exhaust temperature, and control the compressor to stop abnormally every time the measured exhaust temperature of the compressor exceeds T 5 to avoid the compressor stop running when it should not stop due to detection error or other abnormal factors .
  • control module 40 is further configured to control the temperature acquisition module 20 for a predetermined period of time after the temperature difference between the temperature of the compressor body and the exhaust temperature of the compressor exceeds t 5 for a second predetermined period of time. The temperature of the compressor body and the exhaust temperature of the compressor are detected at a time, and the temperature difference between the two is calculated. If the calculated temperature difference exceeds t 5 , the compressor is controlled to perform an abnormal stop operation to avoid The compressor stops running when it should not stop due to detection errors or other abnormal factors.
  • control module 40 is further configured to control the temperature acquisition module 20 to detect the temperature of the compressor body and the compressor for a predetermined period of time when acquiring the temperature of the compressor body and the exhaust temperature of the compressor.
  • the exhaust gas temperature is n times, and the average value of the n detection results is taken as the obtained temperature of the compressor body and the exhaust gas temperature of the compressor.
  • control module 40 is further configured to control the temperature acquisition module 20 to continuously temperature and exhaust temperature of the compressor body each time detecting the temperature of the compressor body and the exhaust temperature of the compressor.
  • the sampling is performed m times, and the sampling results are sorted according to the size, and the average value of the middle two sampling results after sorting is taken as the temperature and exhaust temperature of the compressor body measured by the current detection.

Abstract

一种防止变频空调器的压缩机过热的控制方法,该控制方法包括:步骤S102,获取压缩机本体的温度和压缩机的排气温度;以及步骤S104,根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间控制压缩机执行相应的变频操作或异常停止操作。该方法能够更加准确地判断出压缩机的实际运行状态、精确地控制压缩机执行相应的变频或停止操作,避免单独采用排气温度这个单一的参数控制压缩机可能带来的弊端,从而能够更加有效地防止变频空调器的压缩机过热。还公开了一种防止变频空调器的压缩机过热的控制系统。

Description

防止变频空调器的压缩机过热的控制方法及控制系统 技术领域
本发明涉及空气调节技术,特别是涉及一种防止变频空调器的压缩机过热的控制方法及控制系统。
背景技术
压缩机是将低压气体提升为高压气体的一种从动的流体机械,是制冷系统的心脏。压缩机的优劣直接影响了空调器的优劣。压缩机损坏只能更换,而更换一个压缩机的成本很高。从家用空调调研数据来看,原装压缩机大约占空调外机成本的20%,用户自己更换压缩机不仅很难匹配到原型号压缩机,更换费用也是很高的。因此对空调压缩机的保护就非常重要。
造成压缩机损坏的主要原因之一是压缩机过热,通常压缩机过热损坏主要由以下原因造成:①压机缺油;②环温、排回气等传感器故障,导致空调器不正常运行,原有保护失效;③压机排气口、节流装置堵塞;④缺少冷媒压机空运转等。压缩机过热导致的后果有退磁、卡缸、融化本体内的线圈绝缘脂、压机油变质。
现有技术中,通常通过压缩机的排气温度判定其运行情况,调整其运行频率,从而降低压缩机本体的温度。此方法弊端在于当系统内严重缺气时,没有冷媒的循环,排气温并不高,也就达不到保护的目的。而此时压缩机在空运转,器本体缺油,摩擦产生的热量使其中部温度持续升高。另外,也可通过改善线圈质量、改善线圈绝缘脂的质量或改善油的质量来防止压缩机过热,但都需要开发新的材质,成本较高,周期较长,且结果难以预期。
发明内容
本发明第一方面的一个目的旨在克服现有技术中的至少一个缺陷,提供一种能够有效防止变频空调器的压缩机过热的控制方法。
本发明第一方面的另一个目的是确保压缩机在额定最大制冷量和额定最大制热量工况下能够稳定地运行。
本发明第一方面的又一个目的是提高排气温度检测的准确性,避免出错。
本发明第二方面的目的是提供一种防止变频空调器的压缩机过热的控制系统。
根据本发明的第一方面,本发明提供一种防止变频空调器的压缩机过热的控制方法,包括:
获取所述压缩机本体的温度和所述压缩机的排气温度;以及
根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作。
可选地,在所述变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况时,对应于所述压缩机异常停止的所述温度区间的最小端点值设置成大于在其他任一工况下对应于所述压缩机异常停止的所述温度区间的最小端点值。
可选地,根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作的步骤具体包括:
当所述压缩机的排气温度处于(0,T 1]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时,控制所述压缩机以第一速度V 1快速升频;
当所述压缩机的排气温度处于(T 1,T 2]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 1,t 2]的温差区间时,控制所述压缩机以第二速度V 2慢速升频;
当所述压缩机的排气温度处于(T 2,T 3]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时,控制所述压缩机的频率保持不变;
当所述压缩机的排气温度处于(T 3,T 4]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时,控制所述压缩机以第二速度V 3慢速降频;
当所述压缩机的排气温度处于(T 4,T 5]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时,控制所述压缩机以第二速度V 4快速降频;以及
当所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时, 控制所述压缩机执行异常停止操作;
其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3
可选地,在所述变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况下,T 1、T 2、T 3、T 4、T 5的值分别大于在其他任一工况下T 1、T 2、T 3、T 4、T 5的值。
可选地,在所述压缩机执行异常停止操作后,所述控制方法还包括:
当所述压缩机异常停止的时长超过第一预设时长或所述压缩机的排气温度小于T 1或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值小于t 1时,控制所述压缩机重新启动运行。
可选地,当所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时,控制所述压缩机执行异常停止操作的步骤具体包括:
当所述压缩机的排气温度超过T 5、并持续第二预设时长后,按照预定的时间周期多次检测所述压缩机的排气温度,若每次测得的所述压缩机的排气温度均超过T 5,则控制所述压缩机执行异常停止操作;或者
当所述压缩机本体的温度与所述压缩机的排气温度之间的温差值超过t 5、并持续所述第二预设时长后,按照预定的时间周期多次检测所述压缩机本体的温度和所述压缩机的排气温度,并计算二者之间的温差值,若每次计算得出的温差值均超过t 5,则控制所述压缩机执行异常停止操作。
可选地,在获取所述压缩机本体的温度和所述压缩机的排气温度的步骤之前,所述控制方法还包括:
判断用于获取所述压缩机本体的温度和所述压缩机的排气温度的温度获取模块的运行是否存在异常,若是,则给出所述温度获取模块出现故障的指示;若否,则控制所述温度获取模块开始获取所述压缩机本体的温度和所述压缩机的排气温度。
根据本发明的第二方面,本发明还提供一种防止变频空调器的压缩机过热的控制系统,包括:
温度获取模块,用于获取所述压缩机本体的温度和所述压缩机的排气温度;
比较模块,用于将所述压缩机的排气温度与所述比较模块内预设的温度区间相比较、将所述压缩机本体的温度与所述排气温度之间的温差值与所述比较模块内预设的温差区间相比较,以确定所述压缩机的排气温度所在的温 度区间、确定所述压缩机本体的温度与所述排气温度之间的温差值所在的温差区间;以及
控制模块,用于根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作。
可选地,所述比较模块内预设的在所述压缩机以最高频率运行的额定最大制冷量工况和额定最大制热量工况下对应于所述压缩机异常停止的所述温度区间的最小端点值大于在其他任一工况下对应于压缩机异常停止的所述温度区间的最小端点值。
可选地,所述控制模块配置成在所述压缩机的排气温度处于(0,T 1]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时控制所述压缩机以第一速度V 1快速升频、在所述压缩机的排气温度处于(T 1,T 2]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 1,t 2]的温差区间时控制所述压缩机以第二速度V 2慢速升频、在所述压缩机的排气温度处于(T 2,T 3]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时控制所述压缩机的频率保持不变、在所述压缩机的排气温度处于(T 3,T 4]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时控制所述压缩机以第二速度V 3慢速降频、在所述压缩机的排气温度处于(T 4,T 5]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时控制所述压缩机以第二速度V 4快速降频、在所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时控制所述压缩机执行异常停止操作;
其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3
本发明的控制方法根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间这两个参数共同控制压缩机执行相应的变频操作或异常停止操作,能够更加准确地判断出压缩机的实际运行状态、精确地控制压缩机执行相应的变频或停止操作,避免单独采用排气温度这个单一的参数控制压缩机可能带来的一些列弊端,从而能够更加有效地防止变频空调器的压缩机过热。
进一步地,本发明将额定最大制冷量工况和额定最大制热量工况下的对应于压缩机异常停止的温度区间的最小端点值单独拿出来,使其独立于其他工况,并特别设计成大于其他任一工况下对应于压缩机异常停止的温度区间的最小端点值,即本发明提高了额定最大制冷量工况和额定最大制热量工况下促使压缩机异常停止运行的排气温度的阈值,由此,放宽了排气温度保护的范围,能够确保额定最大制冷量工况和额定最大制热量工况时压缩机的运行频率不波动,从而确保压缩机排气温度、空调器的制冷能力和整体功率等不波动,保证了空调器稳定运行。
进一步地,本发明按照预定的时间周期多次检测压缩机排气温度或多次检测压缩机本体的温度和压缩机的排气温度,并计算二者之间的温差值,当且仅当每次测得的排气温度均超过设定温度值时或每次计算得出的温差值均超过设定温差值时才控制压缩机执行异常停止操作,确保了排气温度检测的准确性,避免了因检测误差或其他非正常因素导致压缩机在不该停止的时候停止运行。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的防止变频空调器的压缩机过热的控制方法的示意性流程图;
图2是根据本发明另一个实施例的防止变频空调器的压缩机过热的控制方法的示意性流程图;
图3是根据本发明一个实施例的防止变频空调器的压缩机过热的控制系统的示意性结构框图。
具体实施方式
本发明实施例首先提供一种防止变频空调器的压缩机过热的控制方法。图1是根据本发明一个实施例的防止变频空调器的压缩机过热的控制方法的示意性流程图。该控制包括如下步骤:
步骤S102,获取压缩机本体的温度和压缩机的排气温度;以及
步骤S104,根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间控制压缩机执行相应的变频操作或异常停止操作。其中压缩机本体的温度优选为压缩机中部的温度,以使其更加接近压缩机本体的实际温度。
也就是说,本发明的控制方法根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间这两个参数共同控制压缩机执行相应的变频操作或异常停止操作,能够更加准确地判断出压缩机的实际运行状态,从而更加精确地控制压缩机执行相应的变频或停止操作,避免单独采用排气温度这个单一的参数控制压缩机可能带来的一些列弊端,从而能够更加有效地防止变频空调器的压缩机过热。
在本发明的一些实施例中,在变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况时,对应于压缩机异常停止的温度区间的最小端点值设置成大于在其他任一工况下对应于压缩机异常停止的温度区间的最小端点值。具体地,在变频空调器的实际运行过程中,通常包括多种不同的工况,例如,除了额定最大制冷量和额定最大制热量之外,其他常见的工况还有额定制冷量、额定中间制冷量、额定制热量、额定中间制热量、定频低温制热量、制冷外环温限频、制热外环温限频、最大运行制冷、最大运行制热等。
本发明将额定最大制冷量工况和额定最大制热量工况下的对应于压缩机异常停止的温度区间的最小端点值单独拿出来,使其独立于其他工况,并特别设计成大于其他任一工况下对应于压缩机异常停止的温度区间的最小端点值,即本发明提高了额定最大制冷量工况和额定最大制热量工况下促使压缩机异常停止运行的排气温度的阈值,由此,放宽了排气温度保护的范围,能够确保额定最大制冷量工况和额定最大制热量工况时压缩机的运行频率不波动,从而确保压缩机排气温度、空调器的制冷能力和整体功率等不波动,保证了空调器稳定运行。
在本发明的一些实施例中,根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间控制压缩机执行相应的变频操作或异常停止操作的步骤具体包括:
当压缩机的排气温度处于(0,T 1]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时,控制压缩机以 第一速度V 1快速升频;当压缩机的排气温度处于(T 1,T 2]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 1,t 2]的温差区间时,控制压缩机以第二速度V 2慢速升频;当压缩机的排气温度处于(T 2,T 3]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时,控制压缩机的频率保持不变;当压缩机的排气温度处于(T 3,T 4]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时,控制压缩机以第二速度V 3慢速降频;当压缩机的排气温度处于(T 4,T 5]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时,控制压缩机以第二速度V 4快速降频;以及当压缩机的排气温度处于(T 5,∞)的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时,控制压缩机执行异常停止操作;其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3。上述对应于压缩机异常停止的温度区间和温差区间分别为(T 5,∞),该温度区间的最小端点值即为T 5。也就是说,当压缩机的排气温度超过T 5时,能够促使压缩机异常停止运行。
也就是说,压缩机的每个变频操作(例如快速升频、慢速升频、快速降频或慢速降频)或异常停止操作都对应两个判断条件,一个是压缩机的排气温度,另一个是压缩机本体的温度与压缩机的排气温度之间的温差值,当其中任一个条件先满足时就执行相应的变频操作或异常停止操作。
进一步地,T 1、T 2、T 3、T 4、T 5、t 1、t 2、t 3、t 4、t 5、V 1、V 2、V 3和V 4均为系统内预先设定的值。其中,V 1可以等于V 3,V 2可以等于V 4。具体地,在一个实施例中,V 1和V 3可以均为0.1赫兹每秒,V 2和V 4可以均为1赫兹每秒。
在本发明的一些实施例中,在变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况下,T 1、T 2、T 3、T 4、T 5的值分别大于在其他任一工况下T 1、T 2、T 3、T 4、T 5的值。也就是说,在额定最大制冷量工况和额定最大制热量工况下,各个温度区间的端点值相较于其他工况都有所提高,从而确保了压缩机在升频和降频过程中的稳定性,进一步保证了压缩机在整个过程中均能够稳定运行。
具体地,在本发明的一个实施例中,在额定最大制冷量工况和额定最大制热量工况下,T 1、T 2、T 3、T 4、T 5的值分别为98℃、105℃、108℃、112℃、117℃。在其他工况下,T 1、T 2、T 3、T 4、T 5的值分别为88℃、91℃、95℃、 100℃、105℃。也就是说,在其他工况下,当压缩机的排气温度升高至超过105℃后,压缩机就会受控地异常停止。在额定最大制冷量工况和额定最大制热量工况下,当压缩机的排气温度升高至超过117℃后,压缩机才会受控地异常停止。由此,可允许压缩机以最高频率保持稳定运行一定的时间而不停机。
进一步地,在本发明的一个实施例中,在任一工况下,t 1、t 2、t 3、t 4、t 5的值分别为30℃、40℃、50℃、60℃、70℃。
在本发明的一些实施例中,在压缩机执行异常停止操作后,本发明的控制方法还包括:当压缩机异常停止的时长超过第一预设时长或压缩机的排气温度小于T 1或压缩机本体的温度与压缩机的排气温度之间的温差值小于t 1时,控制压缩机重新启动运行。也就是说,当压缩机异常停止的时长超过第一预设时长、压缩机的排气温度小于T 1和压缩机本体的温度与压缩机的排气温度之间的温差值小于t 1这三个条件中的任一个满足时,压缩机就可以重新恢复运行而不会损坏。第一预设时长为系统中预设的时间长度,其取值例如可以为3分钟。
在本发明的一些实施例中,当压缩机的排气温度处于(T 5,∞)的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时,控制压缩机执行异常停止操作的步骤具体包括:
当压缩机的排气温度超过T 5、并持续第二预设时长后,按照预定的时间周期多次检测压缩机的排气温度,若每次测得的压缩机的排气温度均超过T 5,则控制压缩机执行异常停止操作;或者
当压缩机本体的温度与压缩机的排气温度之间的温差值超过t 5、并持续第二预设时长后,按照预定的时间周期多次检测压缩机本体的温度和压缩机的排气温度,并计算二者之间的温差值,若每次计算得出的温差值均超过t 5,则控制压缩机执行异常停止操作。
也就是说,在达到一定的条件时,本发明按照预定的时间周期多次检测压缩机排气温度或多次检测压缩机本体的温度和压缩机的排气温度,并计算二者之间的温差值,当且仅当每次测得的排气温度均超过设定温度值时或每次计算得出的温差值均超过设定温差值时才控制压缩机执行异常停止操作,确保了排气温度检测的准确性,避免了因检测误差或其他非正常因素导致压缩机在不该停止的时候停止运行。
进一步地,第二预设时长和上述预定的时间周期均为系统中预设的时间 长度,第二预设时长的取值例如可以为20秒,上述预定的时间周期例如可以为10分钟。具体地,本发明的控制方法可以每隔10分钟检测一次压缩机本体的温度和压缩机的排气温度,总共检测3次,若每次测得的排气温度均超过T 5或每次计算得出的压缩机本体的温度与压缩机的排气温度之间的温差值均超过t 5,则控制压缩机执行异常停止操作。当压缩机异常停止后,可发出声音、光字符或其他合适的提示或警示,将故障传送至室内或其他合适的地方。
在本发明的一些实施例中,获取压缩机本体的温度和压缩机的排气温度的步骤具体包括:按照预设的时间周期检测压缩机本体的温度和压缩机的排气温度n次,并取n次检测结果的平均值作为所获取到的压缩机本体的温度和压缩机的排气温度。
进一步地,每次检测压缩机本体的温度和压缩机的排气温度的操作均包括:对压缩机本体的温度和压缩机的排气温度进行连续m次的采样,并按照大小对采样结果进行排序,取排序后的中间两个采样结果的平均值作为本次检测所测得的压缩机本体的温度和排气温度,其中,n为大于等于10的整数,m为大于等于2的偶数。
也就是说,本发明通过多次检测取平均值的方法获取压缩机本体的温度和压缩机的排气温度,并且每次检测均通过多次采样,并取按照大小排序后的中间两个值的平均值作为本次检测结果,提高了温度检测的准确性。
具体地,上述预设的时间周期、以及m和n均为系统内预设的参数。在一个实施例中,m和n可分别为8和100,上述预设的时间周期例如可以为5毫秒。即温度获取模块可以每间隔5毫秒的时间检测一次压缩机本体的温度和压缩机的排气温度,一共检测100次,取100次检测结果的平均值作为获取到的压缩机本体的温度和压缩机的排气温度。在每次检测的过程中,温度获取模块均采用对压缩机本体的温度和排气温度进行连续采样8次的检测方式,然后再按照大小对8次采样结果进行排序,最后取排序后的中间两个值的平均值作为本次测得的压缩机本体的温度和排气温度。
图2是根据本发明另一个实施例的防止变频空调器的压缩机过热的控制方法的示意性流程图。在本发明的另一些实施例中,在获取压缩机本体的温度和压缩机的排气温度的步骤之前,本发明的控制方法还包括:判断用于获取压缩机本体的温度和压缩机的排气温度的温度获取模块的运行是否存在异常,若是,则给出温度获取模块出现故障的指示;若否,则控制温度获取 模块开始获取压缩机本体的温度和压缩机的排气温度。也就是说,在本发明的另一些实施例中,本发明的控制方法还包括:步骤S101,判断用于获取压缩机本体的温度和压缩机的排气温度的温度获取模块的运行是否存在异常。若是,则转步骤S103:给出温度获取模块出现故障的指示;若否,则转步骤S102:获取压缩机本体的温度和压缩机的排气温度。
进一步地,温度获取模块可以为温度传感器,可以通过检测其电阻值是否超过预设的阈值来判定其是否出现故障。一般来讲,若温度获取模块存在故障,则必须在压缩机开启后的十分钟后报警。
本发明实施例还提供一种防止变频空调器的压缩机过热的控制系统。图3是根据本发明一个实施例的防止变频空调器的压缩机过热的控制系统的示意性结构框图。该控制系统包括温度获取模块20、比较模块30和控制模块40。温度获取模块20用于获取压缩机本体的温度和压缩机的排气温度。比较模块30用于将压缩机的排气温度与比较模块内预设的温度区间相比较、将压缩机本体的温度与排气温度之间的温差值与比较模块内预设的温差区间相比较,以确定压缩机的排气温度所在的温度区间、确定压缩机本体的温度与排气温度之间的温差值所在的温差区间。控制模块40用于根据压缩机的排气温度所在的温度区间、以及压缩机本体的温度与压缩机的排气温度之间的温差值所在的温差区间控制压缩机执行相应的变频操作或异常停止操作。
在本发明的一些实施例中,比较模块30内预设的在压缩机以最高频率运行的额定最大制冷量工况和额定最大制热量工况下对应于压缩机异常停止的温度区间的最小端点值大于在其他任一工况下对应于压缩机异常停止的温度区间的最小端点值。也即是,比较模块30内预设的在额定最大制冷量工况和额定最大制热量工况下,促使压缩机异常停止的温度阈值大于在其他任一工况下促使压缩机异常停止的温度阈值。由此,放宽了排气温度保护的范围,能够确保在上述两种工况下压缩机的运行频率不波动,从而确保压缩机排气温度、空调器的制冷能力和整体功率等不波动,保证了空调器稳定运行。
在本发明的一些实施例中,控制模块40配置成在压缩机的排气温度处于(0,T 1]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时控制压缩机以第一速度V 1快速升频、在压缩机的排气温度处于(T 1,T 2]的温度区间或压缩机本体的温度与压缩机的 排气温度之间的温差值处于(t 1,t 2]的温差区间时控制压缩机以第二速度V 2慢速升频、在压缩机的排气温度处于(T 2,T 3]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时控制压缩机的频率保持不变、在压缩机的排气温度处于(T 3,T 4]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时控制压缩机以第二速度V 3慢速降频、在压缩机的排气温度处于(T 4,T 5]的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时控制压缩机以第二速度V 4快速降频、在压缩机的排气温度处于(T 5,∞)的温度区间或压缩机本体的温度与压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时控制压缩机执行异常停止操作;其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3。上述对应于压缩机异常停止的温度区间即为(T 5,∞),该温度区间的最小端点值即为T 5。也就是说,当压缩机的排气温度超过T 5时,能够促使压缩机异常停止运行。
在本发明的一些实施例中,比较模块30内预设的在额定最大制冷量工况和额定最大制热量工况下的T 1、T 2、T 3、T 4、T 5的值分别大于其内预设的在其他任一工况下T 1、T 2、T 3、T 4、T 5的值。也就是说,在额定最大制冷量工况和额定最大制热量工况下,各个温度区间的端点值相较于其他工况都有所提高,从而确保了压缩机在升频和降频过程中的稳定性,进一步保证了压缩机的稳定运行。
在本发明的一些实施例中,控制模块40还配置成当压缩机异常停止的时长超过第一预设时长或压缩机的排气温度小于T 1或压缩机本体的温度与压缩机的排气温度之间的温差值小于t 1时,控制压缩机重新启动运行。
在本发明的一些实施例中,控制模块40还配置成当压缩机的排气温度超过T 5、并持续第二预设时长后,控制温度获取模块20按照预定的时间周期多次检测压缩机的排气温度,并在每次测得的压缩机的排气温度均超过T 5时控制压缩机异常停止,以避免因检测误差或其他非正常因素导致压缩机在不该停止的时候停止运行。或者,控制模块40还配置成当压缩机本体的温度与压缩机的排气温度之间的温差值超过t 5、并持续第二预设时长后,控制温度获取模块20按照预定的时间周期多次检测压缩机本体的温度和压缩机的排气温度,并计算二者之间的温差值,若每次计算得出的温差值均超过t 5,则控制压缩机执行异常停止操作,以避免因检测误差或其他非正常因素导致压缩机在不该停止的时候停止运行。
在本发明的一些实施例中,控制模块40还配置成在获取压缩机本体的温度和压缩机的排气温度时控制温度获取模块20按照预设的时间周期检测压缩机本体的温度和压缩机的排气温度n次,并取n次检测结果的平均值作为所获取到的压缩机本体的温度和压缩机的排气温度。
在本发明的一些实施例中,控制模块40还配置成在每次检测压缩机本体的温度和压缩机的排气温度时均控制温度获取模块20对压缩机本体的温度和排气温度进行连续m次的采样,并按照大小对采样结果进行排序,取排序后的中间两个采样结果的平均值作为本次检测所测得的压缩机本体的温度和排气温度。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种防止变频空调器的压缩机过热的控制方法,包括:
    获取所述压缩机本体的温度和所述压缩机的排气温度;以及
    根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作。
  2. 根据权利要求1所述的控制方法,其中
    在所述变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况时,对应于所述压缩机异常停止的所述温度区间的最小端点值设置成大于在其他任一工况下对应于所述压缩机异常停止的所述温度区间的最小端点值。
  3. 根据权利要求1所述的控制方法,其中
    根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作的步骤具体包括:
    当所述压缩机的排气温度处于(0,T 1]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时,控制所述压缩机以第一速度V 1快速升频;
    当所述压缩机的排气温度处于(T 1,T 2]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 1,t 2]的温差区间时,控制所述压缩机以第二速度V 2慢速升频;
    当所述压缩机的排气温度处于(T 2,T 3]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时,控制所述压缩机的频率保持不变;
    当所述压缩机的排气温度处于(T 3,T 4]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时,控制所述压缩机以第二速度V 3慢速降频;
    当所述压缩机的排气温度处于(T 4,T 5]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时, 控制所述压缩机以第二速度V 4快速降频;以及
    当所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时,控制所述压缩机执行异常停止操作;
    其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3
  4. 根据权利要求3所述的控制方法,其中
    在所述变频空调器处于其压缩机以最高频率运行的额定最大制冷量和额定最大制热量工况下,T 1、T 2、T 3、T 4、T 5的值分别大于在其他任一工况下T 1、T 2、T 3、T 4、T 5的值。
  5. 根据权利要求3所述的控制方法,其中
    在所述压缩机执行异常停止操作后,所述控制方法还包括:
    当所述压缩机异常停止的时长超过第一预设时长或所述压缩机的排气温度小于T 1或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值小于t 1时,控制所述压缩机重新启动运行。
  6. 根据权利要求3所述的控制方法,其中
    当所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时,控制所述压缩机执行异常停止操作的步骤具体包括:
    当所述压缩机的排气温度超过T 5、并持续第二预设时长后,按照预定的时间周期多次检测所述压缩机的排气温度,若每次测得的所述压缩机的排气温度均超过T 5,则控制所述压缩机执行异常停止操作;或者
    当所述压缩机本体的温度与所述压缩机的排气温度之间的温差值超过t 5、并持续所述第二预设时长后,按照预定的时间周期多次检测所述压缩机本体的温度和所述压缩机的排气温度,并计算二者之间的温差值,若每次计算得出的温差值均超过t 5,则控制所述压缩机执行异常停止操作。
  7. 根据权利要求1所述的控制方法,其中
    在获取所述压缩机本体的温度和所述压缩机的排气温度的步骤之前,所述控制方法还包括:
    判断用于获取所述压缩机本体的温度和所述压缩机的排气温度的温度获取模块的运行是否存在异常,若是,则给出所述温度获取模块出现故障的指示;若否,则控制所述温度获取模块开始获取所述压缩机本体的温度和所述压缩机的排气温度。
  8. 一种防止变频空调器的压缩机过热的控制系统,包括:
    温度获取模块,用于获取所述压缩机本体的温度和所述压缩机的排气温度;
    比较模块,用于将所述压缩机的排气温度与所述比较模块内预设的温度区间相比较、将所述压缩机本体的温度与所述排气温度之间的温差值与所述比较模块内预设的温差区间相比较,以确定所述压缩机的排气温度所在的温度区间、确定所述压缩机本体的温度与所述排气温度之间的温差值所在的温差区间;以及
    控制模块,用于根据所述压缩机的排气温度所在的温度区间、以及所述压缩机本体的温度与所述压缩机的排气温度之间的温差值所在的温差区间控制所述压缩机执行相应的变频操作或异常停止操作。
  9. 根据权利要求8所述的控制系统,其中
    所述比较模块内预设的在所述压缩机以最高频率运行的额定最大制冷量工况和额定最大制热量工况下对应于所述压缩机异常停止的所述温度区间的最小端点值大于在其他任一工况下对应于压缩机异常停止的所述温度区间的最小端点值。
  10. 根据权利要求8所述的控制系统,其中
    所述控制模块配置成在所述压缩机的排气温度处于(0,T 1]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(0,t 1]的温差区间时控制所述压缩机以第一速度V 1快速升频、在所述压缩机的排气温度处于(T 1,T 2]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 1,t 2]的温差区间时控制所述压缩机以第二速度V 2慢速升频、在所述压缩机的排气温度处于(T 2,T 3]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 2,t 3]的温差区间时控制所述压缩机的频率保持不变、在所述压缩机的排气温度处 于(T 3,T 4]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 3,t 4]的温差区间时控制所述压缩机以第二速度V 3慢速降频、在所述压缩机的排气温度处于(T 4,T 5]的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 4,t 5]的温差区间时控制所述压缩机以第二速度V 4快速降频、在所述压缩机的排气温度处于(T 5,∞)的温度区间或所述压缩机本体的温度与所述压缩机的排气温度之间的温差值处于(t 5,∞)的温差区间时控制所述压缩机执行异常停止操作;
    其中,T 5>T 4>T 3>T 2>T 1,t 5>t 4>t 3>t 2>t 1,V 1>V 2,V 4>V 3
PCT/CN2018/087627 2017-06-14 2018-05-21 防止变频空调器的压缩机过热的控制方法及控制系统 WO2018228135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710448991.3A CN107255340B (zh) 2017-06-14 2017-06-14 防止变频空调器的压缩机过热的控制方法及控制系统
CN201710448991.3 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018228135A1 true WO2018228135A1 (zh) 2018-12-20

Family

ID=60024077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087627 WO2018228135A1 (zh) 2017-06-14 2018-05-21 防止变频空调器的压缩机过热的控制方法及控制系统

Country Status (2)

Country Link
CN (1) CN107255340B (zh)
WO (1) WO2018228135A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255340B (zh) * 2017-06-14 2020-02-04 青岛海尔空调器有限总公司 防止变频空调器的压缩机过热的控制方法及控制系统
CN108361929A (zh) * 2018-02-11 2018-08-03 广东美的制冷设备有限公司 控制方法及控制装置、存储介质及移动空调器
CN108592167A (zh) * 2018-04-04 2018-09-28 深圳市深蓝新能源电气有限公司 变频热泵驱动器温度控制电路
CN109099636B (zh) * 2018-07-23 2021-04-20 海尔智家股份有限公司 冰箱及其压缩机频率控制方法
CN109282546B (zh) * 2018-09-27 2020-06-09 珠海格力电器股份有限公司 一种热泵烘干机检测方法及检测系统
CN111219859B (zh) * 2018-11-23 2021-07-06 奥克斯空调股份有限公司 一种空调运行频率保护方法及空调器
CN109945430B (zh) * 2019-03-13 2020-08-07 珠海格力电器股份有限公司 座吊机运行防护方法、装置、系统及座吊机
CN110030707B (zh) * 2019-04-04 2021-03-19 广东美的暖通设备有限公司 空调系统调节方法、空调器和计算机可读存储介质
CN111023420B (zh) * 2019-12-27 2021-08-20 宁波奥克斯电气股份有限公司 一种压缩机快速启动控制方法、装置、空调器及存储介质
CN111397140A (zh) * 2020-04-14 2020-07-10 宁波奥克斯电气股份有限公司 一种空调控制方法、装置及空调器
CN112197408B (zh) * 2020-10-13 2022-04-01 广东美的制冷设备有限公司 压缩机绕组的加热控制方法、空调控制方法、系统和设备
CN112984706A (zh) * 2021-03-23 2021-06-18 深圳市亿凌捷科技有限公司 一种用于5gbbu智能柜的单元式机架空调控制系统及控制方法
CN113654224A (zh) * 2021-07-26 2021-11-16 青岛海尔空调器有限总公司 空调压缩机的频率控制方法、装置及空调器
CN113639453B (zh) * 2021-08-13 2023-02-17 青岛海尔空调器有限总公司 控制空调压缩机频率稳定的方法、装置、电子设备
CN113983580B (zh) * 2021-11-02 2022-11-11 珠海格力电器股份有限公司 一种厨房空调及其控制方法和控制装置、处理器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032772A (ja) * 1999-07-19 2001-02-06 Daikin Ind Ltd 圧縮機及び冷凍装置
CN102261719A (zh) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制热模式启动控制方法
CN102606481A (zh) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 旋转式压缩机的防过热装置
CN104848600A (zh) * 2015-06-08 2015-08-19 山东新华医疗器械股份有限公司 一种冻干机制冷压缩机保护系统
CN105091424A (zh) * 2015-09-10 2015-11-25 Tcl空调器(中山)有限公司 空调器、空调器冷媒调节方法及装置
CN105783306A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器的控制方法
CN106766421A (zh) * 2016-11-30 2017-05-31 广东美的制冷设备有限公司 一种用于空调系统的电子膨胀阀的控制方法
CN107255340A (zh) * 2017-06-14 2017-10-17 青岛海尔空调器有限总公司 防止变频空调器的压缩机过热的控制方法及控制系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167372B2 (ja) * 1991-10-11 2001-05-21 東芝キヤリア株式会社 空気調和機
KR960001662A (ko) * 1994-06-28 1996-01-25 김광호 공기조화기의 제어장치 및 그 방법
KR100237930B1 (ko) * 1997-11-17 2000-01-15 오상수 인버터 에어컨의 압축기 제어 방법
KR100565997B1 (ko) * 2003-10-08 2006-03-30 위니아만도 주식회사 멀티 에어컨의 압축기 토출온도 제어방법
JP5398571B2 (ja) * 2010-02-15 2014-01-29 三菱重工業株式会社 空気調和装置
CN202132231U (zh) * 2011-06-13 2012-02-01 广州日立压缩机有限公司 带内置式过流过热保护器的直流变频涡旋压缩机
CN106839260A (zh) * 2016-12-12 2017-06-13 广东芬尼克兹节能设备有限公司 一种排气保护控制方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032772A (ja) * 1999-07-19 2001-02-06 Daikin Ind Ltd 圧縮機及び冷凍装置
CN102606481A (zh) * 2011-01-25 2012-07-25 广东美芝制冷设备有限公司 旋转式压缩机的防过热装置
CN102261719A (zh) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 螺杆式压缩多联中央空调制热模式启动控制方法
CN104848600A (zh) * 2015-06-08 2015-08-19 山东新华医疗器械股份有限公司 一种冻干机制冷压缩机保护系统
CN105091424A (zh) * 2015-09-10 2015-11-25 Tcl空调器(中山)有限公司 空调器、空调器冷媒调节方法及装置
CN105783306A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器的控制方法
CN106766421A (zh) * 2016-11-30 2017-05-31 广东美的制冷设备有限公司 一种用于空调系统的电子膨胀阀的控制方法
CN107255340A (zh) * 2017-06-14 2017-10-17 青岛海尔空调器有限总公司 防止变频空调器的压缩机过热的控制方法及控制系统

Also Published As

Publication number Publication date
CN107255340A (zh) 2017-10-17
CN107255340B (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
WO2018228135A1 (zh) 防止变频空调器的压缩机过热的控制方法及控制系统
CN108317668B (zh) 用于空调器的室内机防冻结控制方法和空调器
CN107356444B (zh) 用于变频空调器的测试方法及测试系统
CN105371437B (zh) 一种空调控制方法
CN105650801B (zh) 控制空调进入除霜模式的方法、装置及空调器
WO2016107253A1 (zh) 一种检测冷媒泄漏的方法及空调
CN111197836A (zh) 一种空调器传感器脱落智能检测方法及空调器
CN107869456B (zh) 运行控制方法、运行控制装置和压缩机
WO2013078999A1 (zh) 温度控制方法、系统和基站设备
WO2015058592A1 (zh) 除湿机的冷媒控制方法及装置
CN105508201A (zh) 空调压缩机中电加热带的控制方法、控制器及控制系统
CN106403429B (zh) 空调系统的防液击控制方法和控制装置及空调系统
WO2019158047A1 (zh) 用于空调器的室内机防冻结控制方法
CN112393377A (zh) 故障判断方法及空调器
CN105674561A (zh) 热泵热水器及其控制方法
JP2019533792A (ja) 冷却システムの制御および保護デバイス
CN108662730B (zh) 制冷设备的防护系统和用于压缩机安全运行的保护方法
CN114183883A (zh) 四通阀的检测方法及空调
CN106766449B (zh) 一种空调制热高温高压时的压缩机保护方法
CN105864953A (zh) 空调节流部件的堵塞检测方法、装置及空调
US10746427B2 (en) Air conditioner blowing temperature estimation apparatus and computer-readable recording medium
CN110940047B (zh) 一种冷媒泄漏的检测方法及空调器
WO2023093479A1 (zh) 空调器及空调器的控制方法
JP2007318872A (ja) 制御装置
US11454409B2 (en) Failure detection method for air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818947

Country of ref document: EP

Kind code of ref document: A1