WO2023093479A1 - 空调器及空调器的控制方法 - Google Patents

空调器及空调器的控制方法 Download PDF

Info

Publication number
WO2023093479A1
WO2023093479A1 PCT/CN2022/129271 CN2022129271W WO2023093479A1 WO 2023093479 A1 WO2023093479 A1 WO 2023093479A1 CN 2022129271 W CN2022129271 W CN 2022129271W WO 2023093479 A1 WO2023093479 A1 WO 2023093479A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
detected
threshold
compressor
Prior art date
Application number
PCT/CN2022/129271
Other languages
English (en)
French (fr)
Inventor
王新民
彭琪
吴民安
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Priority to CN202280064045.8A priority Critical patent/CN118043604A/zh
Publication of WO2023093479A1 publication Critical patent/WO2023093479A1/zh
Priority to US18/607,147 priority patent/US20240219055A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present disclosure relates to the technical field of air conditioners, in particular to an air conditioner and a control method for the air conditioner.
  • each temperature sensor can detect the temperature of its corresponding area, for example, the outdoor environment temperature sensor can detect the temperature of the outdoor environment.
  • the temperature detected by each temperature sensor can monitor the operating state of the air conditioner. Therefore, whether the temperature sensor operates normally plays an important role in the air conditioner.
  • an air conditioner in one aspect, includes a compressor, an ambient temperature sensor, a temperature sensor to be detected and a controller.
  • the ambient temperature sensor is configured to detect the ambient temperature of the compressor in the standby state before the running state;
  • the temperature sensor to be detected is configured to detect the first current temperature of the corresponding area of the compressor in the running state.
  • the temperature sensor to be detected has an allowable measurement interval, the allowable measurement interval includes a first threshold and a second threshold, and the first threshold is smaller than the second threshold.
  • the controller is coupled to the ambient temperature sensor, the temperature sensor to be detected, and the compressor, and is configured to: obtain a first temperature, the first temperature is obtained according to the ambient temperature; obtain a second temperature, the second temperature is obtained according to the first current temperature obtained.
  • a method for controlling an air conditioner includes a compressor, an ambient temperature sensor, a temperature sensor to be detected and a controller.
  • the ambient temperature sensor is used to detect the ambient temperature of the compressor in the standby state before the running state;
  • the temperature sensor to be detected is used to detect the first current temperature of the corresponding area of the compressor in the running state.
  • the temperature sensor to be detected has an allowable measurement interval, the allowable measurement interval includes a first threshold and a second threshold, and the first threshold is smaller than the second threshold.
  • the control method of the air conditioner includes: obtaining a first temperature, where the first temperature is obtained according to the ambient temperature. A second temperature is acquired, and the second temperature is obtained according to the first current temperature.
  • Fig. 1 is a structural diagram of an air conditioner according to some embodiments of the present disclosure
  • Fig. 2 is a schematic diagram of an air conditioner according to some embodiments of the present disclosure
  • Fig. 3 is a schematic diagram of another air conditioner according to some embodiments of the present disclosure.
  • Fig. 4 is a flow chart of an air conditioner control method according to some embodiments of the present disclosure.
  • Fig. 5 is a flowchart of another control method of an air conditioner according to some embodiments of the present disclosure.
  • Fig. 6 is a flowchart of another control method of an air conditioner according to some embodiments of the present disclosure.
  • Fig. 7 is a flowchart of another control method of an air conditioner according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of some embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • the term “coupled” is used to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • the temperature sensor set on the air conditioner especially set at The resistance error of the temperature sensor in the outdoor unit of the air conditioner will be relatively large, resulting in a relatively large measurement error of the temperature sensor.
  • the resistance error of the temperature sensor increases, and the measurement accuracy of the temperature sensor decreases. In this case, there may be a large error between the temperature detected by the temperature sensor and the actual temperature.
  • the method for judging whether the temperature sensor is faulty can be determined by directly judging whether the detected temperature of the temperature sensor is within the allowable measurement range of the temperature sensor. If the temperature detected by the temperature sensor is not within the allowable measurement range, it is determined that the temperature sensor is faulty.
  • the reliability of this fault judgment method is poor, and it is easy to cause misjudgment.
  • the outdoor ambient temperature is lower than -30°C
  • some temperature sensors can still work normally, but because the lower outdoor ambient temperature may affect the measurement accuracy of the temperature sensor, resulting in a larger measurement error of the temperature sensor, As a result, the detected temperature exceeds its allowable measurement range.
  • the temperature sensor does not actually fail, but the detection result exceeds the allowable measurement range because the outdoor ambient temperature affects its measurement accuracy. If the temperature sensor is determined to be faulty according to the method in the related art, A misjudgment has just occurred, and a misjudgment of the temperature sensor failure will affect the operation of the air conditioner and reduce user experience.
  • some embodiments of the present disclosure provide an air conditioner.
  • the air conditioner first judges the measurement error of the temperature sensor. After the measurement error meets the relevant conditions, that is, the measurement error does not affect the measurement of the temperature sensor. , and further determine whether the temperature sensor is faulty by judging whether the measurement result of the temperature sensor is within its allowable measurement range, thereby reducing the probability of misjudgment of the temperature sensor fault.
  • FIG. 1 is a structural diagram of an air conditioner provided by some embodiments of the present disclosure.
  • an air conditioner 1 includes a controller 10 , a plurality of temperature sensors 20 and a compressor 30 .
  • the air conditioner 1 includes an indoor unit 100 and an outdoor unit 200, wherein the compressor 30 may be disposed in the outdoor unit 200, and is configured to work in a running state or a standby state.
  • the compressor 30 switches between the running state and the standby state to realize heating or cooling of the air conditioner 1 .
  • controller 10 can be a central processing unit (central processing unit, CPU), a general-purpose processor, a network processor (network processor, NP), a digital signal processor (digital signal processing, DSP), a microprocessor, microcontroller, programmable logic device (programmable logic device, PLD), or any combination thereof.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • microprocessor microcontroller
  • programmable logic device programmable logic device, PLD
  • PLD programmable logic device
  • the controller 10 may include a first controller 11 and a second controller 12, wherein the first controller 11 may be set in the indoor unit 100, and the second controller 12 may be set In the outdoor unit 200 , the first controller 11 is coupled to the second controller 12 , and information can be exchanged between the first controller 11 and the second controller 12 .
  • the indoor unit 100 also includes a first heat exchanger 101
  • the outdoor unit 200 also includes a second heat exchanger 201
  • the first heat exchanger 101 is coupled to the first controller 11
  • the second heat exchanger 201 is coupled with the second controller 12 .
  • each temperature sensor of the plurality of temperature sensors 20 may be provided in the indoor unit 100 or the outdoor unit 200 .
  • the plurality of temperature sensors 20 may include a temperature sensor 21 to be detected and an ambient temperature sensor 22 . That is to say, the temperature sensor 21 to be detected may be any one of the multiple temperature sensors 20 .
  • the temperature sensor 21 to be detected and the ambient temperature sensor 22 may also be the same temperature sensor.
  • the temperature sensor 21 to be detected may be an ambient temperature sensor 22 , a heat exchanger temperature sensor 23 or a compressor discharge temperature sensor 24 .
  • the ambient temperature sensor 22 may include a first ambient temperature sensor 221 and a second ambient temperature sensor 222
  • the heat exchanger temperature sensor 23 includes a first heat exchanger temperature sensor 231 and a second heat exchanger temperature sensor 232 .
  • a first ambient temperature sensor also referred to as an indoor ambient temperature sensor
  • a first heat exchanger temperature sensor 231 may be disposed in the indoor unit 100 and coupled to the first controller 11 respectively.
  • the second ambient temperature sensor 222 , the second heat exchanger temperature sensor 232 and the compressor discharge temperature sensor 24 may be disposed in the outdoor unit 200 and coupled to the second controller 12 respectively.
  • the temperature-to-be-detected sensor 21 is configured to detect the ambient temperature of the compressor 30 in a standby state prior to an operating state. Wherein, the temperature sensor 21 to be detected has an allowable measurement interval, the allowable measurement interval includes a first threshold and a second threshold, and the first threshold is smaller than the second threshold.
  • the temperature sensor 21 to be detected can be a first ambient temperature sensor 221, a first heat exchanger temperature sensor 231, a second ambient temperature sensor 222, a second heat exchanger temperature sensor 232 and Any one of the compressor discharge temperature sensors 24.
  • the temperature sensor 21 to be detected determines its corresponding area according to its installation position, and the corresponding area may be different depending on the installation position of the temperature sensor 21 to be detected.
  • the temperature sensor 21 to be detected when the temperature sensor 21 to be detected is installed in the indoor unit 100 , its corresponding area is some areas in the indoor unit 100 .
  • the area corresponding to the first ambient temperature sensor 221 is the area where the indoor unit 100 is located (also referred to as the indoor environment), and the first ambient temperature sensor 221 is used to detect the temperature of the indoor environment;
  • the first heat exchanger temperature sensor 231 is set On the indoor heat exchanger 101, the corresponding area is the coil area of the indoor heat exchanger 101, and the first heat exchanger temperature sensor 231 is used to detect the coil temperature of the indoor heat exchanger 101 (also called the inner coil temperature).
  • the temperature sensor 21 to be detected when the temperature sensor 21 to be detected is installed in the outdoor unit 200 , its corresponding area is some areas in the outdoor unit 100 .
  • the area corresponding to the second ambient temperature sensor 222 is the area where the outdoor unit 200 is located (also referred to as the outdoor environment), and the second ambient temperature sensor 222 is used to detect the temperature of the outdoor environment;
  • the second heat exchanger temperature sensor 232 is set On the outdoor heat exchanger 201, its corresponding area is the coil area of the outdoor heat exchanger 201, and the second heat exchanger temperature sensor 232 is used to detect the coil temperature of the outdoor heat exchanger 201 (also called the outer coil temperature );
  • the compressor discharge temperature sensor 24 is arranged on the discharge pipe of the compressor 30, and its corresponding area is the discharge port of the compressor 30, and the compressor discharge temperature sensor 24 is used to detect the discharge temperature of the compressor 30.
  • the allowable measurement interval of the temperature sensor 21 to be detected can be the temperature range that the temperature sensor 21 to be detected can measure, and the allowable measurement interval is related to the physical characteristics of the temperature sensor 21 to be detected, for example, the allowable measurement interval can be determined by the temperature sensor to be detected The resistance in the temperature sensor 21 determines.
  • the allowable measurement interval of the temperature sensor 21 to be detected can be composed of a first threshold and a second threshold, wherein the first threshold can be the minimum temperature that can be measured by the temperature sensor 21 to be detected, and the second threshold can be the minimum temperature to be detected.
  • the maximum temperature that can be measured by the temperature sensor 21 , the first threshold is smaller than the second threshold.
  • the allowable measurement range of the temperature sensor 21 to be detected is -40°C to 110°C
  • it indicates that the temperature that the temperature sensor 21 to be detected can detect is a temperature greater than or equal to -40°C and less than or equal to 110°C, wherein , -40°C is the first threshold value of its allowable measurement interval, and 110°C is its second threshold value of its allowable measurement interval.
  • the ambient temperature sensor 22 is configured to detect the ambient temperature of the compressor 30 in a standby state prior to an operating state. For example, when the ambient temperature sensor 22 is the first ambient temperature sensor 221, it detects the temperature of the indoor environment; when the ambient temperature sensor 22 is the second ambient temperature sensor 222, it detects the temperature of the outdoor environment.
  • the ambient temperature is related to the working state of the compressor 30 . Since the compressor 30 may generate heat during operation, the heat is transferred to the environment through thermal sensing or thermal radiation, thereby affecting the ambient temperature, for example, increasing the ambient temperature. In this case, the ambient temperature detected by the ambient temperature sensor 22 may not be the actual ambient temperature. And when the compressor 30 is in the standby state, since the compressor 30 has stopped running, it will not affect the ambient temperature, and the ambient temperature detected by the ambient temperature sensor 22 is closer to the actual ambient temperature.
  • the standby state before the current operating state of the compressor 30 may be the latest standby state before the current operating state of the compressor 30 . Since the time from the end moment of the latest standby state before the current running state to the current moment of the running state is relatively short, it can be considered that the ambient temperature remains stable in this process. Therefore, according to the detection of the ambient temperature sensor 22 during the latest standby state The ambient temperature is closer to the ambient temperature in the current operating state.
  • the controller 10 is configured to: acquire a first temperature; acquire a second temperature; when the compressor 30 is in an operating state, respond to the first temperature being greater than or equal to a preset reference temperature, and respond to the second temperature being less than the first threshold or greater than the second threshold, determine that the temperature sensor 21 to be detected is faulty; or, in response to the first temperature being greater than or equal to the preset reference temperature, and in response to the second temperature being greater than or equal to the first threshold and less than or equal to the second threshold , it is determined that the temperature sensor 21 to be detected is normal.
  • the first temperature is obtained according to the ambient temperature
  • the second temperature is obtained according to the first current temperature.
  • the ambient temperature sensor 22 sends the detected ambient temperature to the controller 10
  • the temperature sensor 21 to be detected also sends the first current temperature detected to the controller 10
  • the controller 10 obtains the ambient temperature temperature, the first temperature is obtained, and after the first current temperature is obtained, the second temperature is obtained.
  • the ambient temperature will affect the measurement accuracy of the temperature sensor 21 to be detected.
  • the preset reference temperature may be the lower limit of the ambient temperature (such as the outdoor ambient temperature) to ensure that the measurement error of the temperature sensor 21 to be detected will not affect its measurement result. That is to say, when the ambient temperature is higher than or equal to the preset reference temperature, the measurement accuracy of the temperature sensor 21 to be detected is higher, and the measurement error is smaller, and the measurement error will not affect its detection result; when the ambient temperature is lower than the preset At the reference temperature, the measurement accuracy of the temperature sensor 21 to be detected is low, and the measurement error is relatively large, which may affect the detection result. Therefore, some embodiments of the present disclosure obtain the error of the measurement result of the temperature sensor 21 to be detected by comparing the ambient temperature with the preset reference temperature.
  • the preset reference temperature may be related to the resistance of the temperature sensor 21 to be detected.
  • the resistance value of the temperature sensor 21 to be detected will also change.
  • the resistance value deviation of the temperature sensor 21 to be detected will change with the change of the ambient temperature.
  • the resistance value deviation of the temperature sensor 21 to be detected will increase as the ambient temperature decreases, and as the resistance value deviation of the temperature sensor 21 to be detected increases, the measurement error of the temperature sensor 21 to be detected will also increase, thereby affecting the temperature sensor to be detected.
  • the detection result of the temperature sensor 21 is a temperature sensor 21 to be detected.
  • the resistance deviation of the temperature sensor 21 to be detected increases rapidly, thereby causing the measurement error of the temperature sensor 21 to be detected to increase; when the ambient temperature is higher than -30°C
  • the resistance deviation of the temperature sensor 21 to be detected increases slowly. At this time, the resistance deviation of the temperature sensor 21 to be detected is already small, so that the measurement error can be ignored. Therefore, -25° C. can be used as the preset reference temperature of the temperature sensor 21 to be detected.
  • the preset reference temperature of each temperature sensor 21 to be detected may be the same or different. Some embodiments of the present disclosure are described by taking the same preset reference temperature of each temperature sensor 21 to be detected as an example.
  • the preset reference temperature of each temperature sensor 21 to be detected may be -25°C.
  • the air conditioner 1 may further include a memory 40 .
  • the allowable measurement range and the preset reference temperature corresponding to the temperature sensor 21 to be detected can be stored in the memory 40 ; or can also be stored in the controller 10 .
  • the memory 40 may include a first memory 41 and a second memory 42 . Wherein, the first memory 41 is coupled to the first controller 11 , and the second memory 42 is coupled to the second controller 12 .
  • the compressor 30 is coupled to the second controller 12 .
  • the second controller 12 can obtain the current working state of the compressor 30 .
  • the controller 10 (such as the second controller 12 ) determines that the compressor 30 is in the running state, the controller 10 will determine the measurement error of the temperature sensor 21 to be detected according to the relationship between the first temperature and the preset reference temperature.
  • the controller 10 After the controller 10 obtains the first temperature, it compares the first temperature with the preset reference temperature stored in the memory 40 . Since the first temperature is obtained according to the ambient temperature when the compressor 30 is in a standby state, the measurement error of the temperature sensor 21 to be detected can be obtained more accurately by comparing the first temperature with the preset reference temperature.
  • the first temperature may be the outdoor ambient temperature detected by the ambient temperature sensor 22 (such as the second ambient temperature sensor 222) at the moment when the compressor 30 is in the standby state; Therefore, during the standby process, the ambient temperature (i.e. the first temperature) is generally relatively stable and has little change. Therefore, the first temperature can also be a plurality of ambient temperature sensors 22 detected by the compressor 30 during the standby process. Any temperature in the ambient temperature is not limited here.
  • the second controller 12 determines that the first temperature detected by the second ambient temperature sensor 222 is greater than or equal to the preset reference temperature, it indicates that the current outdoor ambient temperature has little impact on the measurement accuracy of the temperature sensor 21 to be detected and will not affect The measurement result of the temperature sensor 21 is to be detected. Therefore, the first current temperature (i.e. the second temperature) detected by the temperature sensor 21 to be detected in the running state is not affected by the measurement error and is a relatively accurate ambient temperature. At this time, the second temperature and the temperature sensor to be detected 21, it will be more accurate to determine whether the temperature sensor 21 to be detected is faulty or not.
  • acquiring the second temperature by the controller 10 includes: acquiring the second temperature by the first controller 11 or the second controller 12 .
  • the second temperature can be obtained by the first controller 11; if the temperature sensor 21 to be detected is arranged in the outdoor unit 200, the second temperature can be obtained by the second controller 12. temperature.
  • the first current temperature is the current temperature of the outdoor environment; when the temperature sensor 21 to be detected is the second heat exchanger temperature sensor 232, the first current temperature is The current temperature is the current temperature of the outdoor coil; or, when the temperature sensor 21 to be detected is the compressor discharge temperature sensor 24 , the first current temperature is the current discharge temperature of the compressor 30 .
  • the controller 10 After the controller 10 acquires the second temperature, it determines the relationship between the second temperature and the allowable measurement range of the temperature sensor 21 to be detected. When the second temperature is not within the allowable measurement interval of the temperature sensor 21 to be detected, that is, when the second temperature is less than the first threshold, or greater than the second threshold, it indicates that the temperature currently measured by the temperature sensor 21 to be detected exceeds its allowable temperature. measurement interval, it can be determined that the temperature sensor 21 to be detected is faulty.
  • the second temperature When the second temperature is within the allowable measurement interval of the temperature sensor 21 to be detected, that is, when the second temperature is less than or equal to the first threshold and less than or equal to the second threshold, it indicates the temperature currently measured by the temperature sensor 21 to be detected If the allowable measurement range is not exceeded, it can be determined that the temperature sensor 21 to be detected is in a normal operating state.
  • the air conditioner 1 determines the measurement error of the temperature sensor 21 to be detected by comparing the ambient temperature when the compressor 30 is in the standby state before the current operating state with the preset reference temperature. Under the condition that the measurement error of the temperature sensor to be detected 21 will not affect its detection result, the relationship between the first current temperature detected by the temperature sensor to be detected 21 and its allowable measurement interval is determined, and then the fault condition of the temperature sensor to be detected 21 is judged. . Therefore, compared with the situation in the related art where the temperature detected by the temperature sensor 21 to be detected is directly within the allowable measurement range to determine whether the temperature sensor 21 to be detected is faulty, the judgment result of the air conditioner 1 provided by some embodiments of the present disclosure is more accurate.
  • the controller 10 is further configured to: obtain the running time of the compressor 30, wherein the running time is the time from the end moment of the standby state before the running state of the compressor 30 to the current moment of the running state;
  • the temperature to be detected is determined in response to the first temperature being less than the preset reference temperature, in response to the running time being greater than or equal to the preset time, and in response to the second temperature being less than the first threshold or greater than the second threshold Sensor 21 is faulty.
  • the compressor 30 When the compressor 30 is in the running state, if the first temperature acquired by the controller 10 is less than the preset reference temperature, it indicates that the ambient temperature may affect the measurement accuracy of the temperature sensor 21 to be detected, causing the detection result of the temperature sensor 21 to be detected to exist. At this time, if the current temperature detected by the temperature sensor 21 to be detected is not within its allowable measurement range to determine that the temperature sensor to be detected 21 is faulty, it may cause a misjudgment, thereby affecting the operation of the air conditioner 1 . Therefore, in some examples, when the first temperature is lower than the preset reference temperature, the controller 10 may determine that the temperature sensor 21 to be detected is normal.
  • the compressor 30 since the compressor 30 will continue to generate heat after entering the current running state from the standby state, the heat will be transferred to the temperature sensor 21 to be detected.
  • the running time of the compressor 30 increases, the temperature of the temperature sensor 21 to be detected is greatly increased, and the measurement accuracy of the temperature sensor 21 to be detected will also be improved.
  • the measurement accuracy of the temperature sensor 21 to be detected can ensure that its measurement error will not affect the measurement result.
  • the accuracy of failure determination of the temperature sensor 21 to be detected can be further improved.
  • the preset time may be the running time of the compressor 30 when the measurement error of the temperature sensor 21 to be detected will not affect its measurement result.
  • the preset time may be different for different temperature sensors 21 to be detected. For example, when the temperature sensor 21 to be detected is the compressor discharge temperature sensor 24, its preset time may be 10 minutes.
  • the measurement error of the temperature sensor 21 to be detected may affect the detection result. Determine the failure of the temperature sensor 21 to be detected; or, the controller 10 may determine that the temperature sensor 21 to be detected is normal; or, the controller 10 may judge the temperature sensor 21 to be detected when the running time of the compressor 30 reaches a preset time. The failure situation can further reduce the failure misjudgment rate of the temperature sensor 21 to be detected.
  • the temperature sensor to be detected is further configured to: detect the second current temperature of the corresponding area when the compressor 30 is in a standby state.
  • the controller 10 is further configured to: acquire a third temperature, and when the compressor 30 is in a standby state, determine that the temperature sensor 21 to be detected is faulty in response to the third temperature being less than the first threshold or greater than the second threshold.
  • the third temperature is obtained according to the second current temperature.
  • the temperature sensor 21 to be detected is an ambient temperature sensor (such as the second ambient temperature sensor 222) or a heat exchanger temperature sensor (such as the second heat exchanger temperature sensor 232), when the compressor 30 ends the running state, And when entering the standby state, the temperature sensor 21 to be detected is all heated during the last running state of the compressor 30, and as the temperature of the temperature sensor 21 to be detected increases, its measurement accuracy will also improve, so in the compressor When 30 is in the standby state, the measurement error of the temperature sensor 21 to be detected is small and will not affect its measurement results. Therefore, the second current temperature detected by the temperature sensor 21 to be detected in the standby state will also be relatively accurate.
  • the controller 10 can determine whether the temperature sensor 21 to be detected is faulty based on the relationship between the third temperature and the allowable measurement range of the temperature sensor 21 to be detected.
  • the third temperature is not within the allowable measurement range of the temperature sensor to be detected 21, it is determined that the temperature sensor to be detected 21 is faulty; when the third temperature is within the allowable measurement range of the temperature sensor to be detected 21, it is determined that the temperature sensor to be detected 21 is normal.
  • the controller 10 is further configured to: when the compressor 30 is in the standby state, respond to the first temperature being greater than or equal to the preset reference temperature, and respond to the third temperature being less than the first threshold or greater than the second The threshold value is used to determine that the temperature sensor 21 to be detected is faulty.
  • the temperature sensor 21 to be detected is the compressor discharge temperature sensor 24 , since the discharge temperature sensor 24 is at a lower ambient temperature, the measurement error is relatively large. In this case, it is possible to first judge whether the ambient temperature when the compressor 30 is in the standby state will affect the measurement accuracy of the temperature sensor 21 to be detected, and then judge whether the second current temperature detected by the temperature sensor 21 to be detected is within its allowable measurement range To determine the failure of the temperature sensor 21 to be detected, the misjudgment rate of the temperature sensor 21 to be detected can be further reduced.
  • the first temperature is greater than or equal to the preset reference temperature, it indicates that the current measurement error of the temperature sensor 21 to be detected will not affect the measurement result of the temperature sensor 21 to be detected.
  • the temperature sensor 21 is allowed to measure within the interval to determine whether the temperature sensor 21 to be detected is faulty.
  • the controller 10 cannot judge the failure of the temperature sensor 21 if the third temperature is not within the allowable measurement range of the temperature sensor to be detected 21 . In some examples, in this case, the controller 10 may determine that the temperature sensor 21 to be detected is in a normal state.
  • the controller 10 is further configured to: perform analog-to-digital conversion on the ambient temperature to obtain the first temperature; perform analog-to-digital conversion on the first current temperature to obtain the second temperature; perform analog-to-digital conversion on the second current temperature Transform to get the third temperature.
  • the controller 10 can respectively obtain the ambient temperature, the first current temperature and the second current temperature.
  • the temperature is subjected to analog-to-digital conversion to obtain the first temperature, the second temperature, and the third temperature
  • the first temperature is used to compare with the preset reference temperature
  • the second temperature and the third temperature are used to compare with the allowable measurement interval of the temperature sensor 21 to be detected.
  • both the preset reference temperature and the first threshold and the second threshold of the allowable measurement range of the temperature to be detected sensor 21 may be temperatures after analog-to-digital conversion. Using the temperature after analog-to-digital conversion to perform the above comparison operation can improve the efficiency of the fault determination process.
  • the air conditioner can be the air conditioner 1 in any of the above embodiments, and the air conditioner 1 includes a compressor 30 , a temperature sensor 21 to be detected, an ambient temperature sensor 22 and a controller 10 .
  • Fig. 4 is a flow chart of an air conditioner control method provided by some embodiments of the present disclosure. As shown in FIG. 4 , the control method of the air conditioner includes steps 411 to 414 .
  • Step 411 acquire the first temperature.
  • the first temperature is obtained according to the ambient temperature of the compressor 30 in the standby state before the running state detected by the ambient temperature sensor 22 .
  • Step 412 acquiring the second temperature.
  • the second temperature is obtained according to the first current temperature of the corresponding area when the compressor 30 is in the running state detected by the temperature sensor 21 to be detected.
  • the temperature sensor 21 to be detected can send the detected first current temperature to the second controller 12, and the second controller 12 performs analog-to-digital conversion on the current temperature After that, the second temperature is obtained.
  • Step 413 when the compressor 30 is running, in response to the first temperature being greater than or equal to the preset reference temperature, and in response to the second temperature being less than the first threshold or greater than the second threshold, determine that the temperature sensor 21 to be detected is faulty.
  • the temperature sensor 21 to be detected has an allowable measurement interval
  • the first threshold and the second threshold are respectively two endpoints of the allowable measurement interval
  • the first threshold is smaller than the second threshold
  • the second temperature can be compared with the allowable measurement range of the temperature sensor 21 to be detected. If the second temperature is less than the first threshold or greater than the second threshold, it is determined that the temperature sensor 21 to be detected is faulty.
  • Step 414 when the compressor 30 is in the running state, determine the temperature to be detected in response to the first temperature being greater than or equal to the preset reference temperature, and in response to the second temperature being greater than or equal to the first threshold and less than or equal to the second threshold Sensor 21 is normal.
  • Fig. 5 is another control method of an air conditioner provided by an embodiment of the present disclosure, wherein, referring to Fig. 1, the air conditioner may be the air conditioner 1 in any of the above embodiments, and the air conditioner 1 includes a compressor 30, a temperature sensor 21 , ambient temperature sensor 22 and controller 10 . As shown in FIG. 5 , the control method of the air conditioner includes steps 511 to 520 .
  • Step 511 acquire the working status of the compressor 30 .
  • Step 512 determine whether the compressor 30 is in a running state.
  • step 513 If the compressor 30 is in the operating state, execute step 513 , and if the compressor 30 is not in the operating state (ie, standby state), execute step 519 .
  • Step 513 acquiring the first temperature.
  • Step 513 is similar to step 411 in the above embodiment, and will not be repeated here.
  • Step 514 determine whether the first temperature is greater than or equal to a preset reference temperature.
  • step 517 If the first temperature is lower than the preset reference temperature, execute step 517; if the first temperature is greater than or equal to the preset reference temperature, execute step 515.
  • Step 515 acquiring the second temperature.
  • Step 515 is similar to step 412 in the foregoing embodiment, and details are not repeated here.
  • Step 516 determine whether the second temperature is less than the first threshold or greater than the second threshold.
  • step 518 If the second temperature is less than the first threshold or greater than the second threshold, perform step 518; if the second temperature is greater than or equal to the first threshold and less than or equal to the second threshold, perform step 517.
  • Step 517 determine that the temperature sensor 21 to be detected is normal.
  • Step 518 determining that the temperature sensor 21 to be detected is faulty.
  • Step 519 acquiring a third temperature.
  • the third temperature is obtained according to the second current temperature detected by the temperature sensor 21 to be detected when the compressor 30 is in the standby state, and step 520 is continued.
  • Step 520 determine whether the third temperature is less than the first threshold or greater than the second threshold.
  • step 518 If the third temperature is less than the first threshold or greater than the second threshold, perform step 518; if the third temperature is greater than or equal to the first threshold and less than or equal to the second threshold; perform step 517.
  • the temperature sensor 21 to be detected may be an ambient temperature sensor 22 , a heat exchanger temperature sensor 23 or a compressor discharge temperature sensor 24 .
  • the ambient temperature sensor 22 includes a first ambient temperature sensor 221 and a second ambient temperature sensor 222
  • the heat exchanger temperature sensor 23 includes a first heat exchanger temperature sensor 231 and a second heat exchanger temperature sensor 232 .
  • Fig. 6 is another control method of an air conditioner provided by an embodiment of the present disclosure, wherein, referring to Fig. 1 , the air conditioner may be the air conditioner 1 in any of the above embodiments, and the air conditioner 1 includes a compressor 30, a temperature sensor 21 , ambient temperature sensor 22 and controller 10 . As shown in FIG. 6 , the control method of the air conditioner includes steps 611 to 621 .
  • Step 611 acquire the working status of the compressor 30 .
  • Step 612 determine whether the compressor 30 is in the running state.
  • step 613 If the compressor 30 is in the running state, execute step 613 ; if the compressor 30 is not in the running state (ie, standby state), execute step 620 .
  • Step 613 acquire the first temperature.
  • Step 613 is similar to step 411 in the above embodiment, and will not be repeated here.
  • Step 614 determine whether the first temperature is greater than or equal to a preset reference temperature.
  • step 615 If the first temperature is lower than the preset reference temperature, execute step 615; if the first temperature is greater than or equal to the preset reference temperature, execute step 616.
  • Step 615 determine whether the running time of the compressor 30 is greater than or equal to a preset time.
  • the operation time is the time from the end of the standby state before the operation state to the current time of the operation state of the compressor 30 .
  • step 616 If the running time of the compressor 30 is greater than or equal to the preset time, execute step 616 ; if the running time of the compressor 30 is less than the preset time, execute step 618 .
  • Step 616 acquire the second temperature.
  • Step 616 is similar to step 412 in the foregoing embodiment, and details are not repeated here.
  • Step 617 determine whether the second temperature is less than the first threshold or greater than the second threshold.
  • step 619 If the second temperature is less than the first threshold or greater than the second threshold, perform step 619; if the second temperature is greater than or equal to the first threshold and less than or equal to the second threshold; perform step 618.
  • Step 618 determine that the temperature sensor 21 to be detected is normal.
  • Step 619 determining that the temperature sensor 21 to be detected is faulty.
  • Step 620 acquiring a third temperature.
  • Step 621 determine whether the third temperature is less than the first threshold or greater than the second threshold.
  • step 619 If the third temperature is less than the first threshold or greater than the second threshold, execute step 619; if the second temperature is greater than or equal to the first threshold and less than or equal to the second threshold; execute step 618.
  • Fig. 7 is another control method of an air conditioner provided by an embodiment of the present disclosure, wherein, referring to Fig. 1, the air conditioner may be the air conditioner 1 in any of the above embodiments, and the air conditioner 1 includes a compressor 30, a temperature sensor 21 , ambient temperature sensor 22 and controller 10 . As shown in FIG. 7 , the control method of the air conditioner includes steps 711 to 720 .
  • Step 711 acquire the working state of the compressor 30.
  • Step 712 determine whether the compressor 30 is running.
  • step 713 If the compressor 30 is in the running state, execute step 713, and if the compressor 30 is in the standby state, also execute step 713.
  • Step 713 acquire the first temperature.
  • the first temperature is the ambient temperature in the standby state before the compressor 30 is in the running state; when the compressor 30 is in the standby state, the first temperature is the current ambient temperature.
  • Step 714 determine whether the first temperature is greater than or equal to a preset reference temperature.
  • step 717 If the first temperature is less than the preset reference temperature, execute step 717; if the first temperature is greater than or equal to the preset reference temperature, when the compressor 30 is in the running state, execute step 715, and when the compressor 30 is in the standby state, execute step 717. 719.
  • Step 715 acquire the second temperature.
  • Step 716 determine whether the second temperature is less than the first threshold or greater than the second threshold.
  • step 718 If the second temperature is less than the first threshold or greater than the second threshold, perform step 718; if the second temperature is greater than or equal to the first threshold and less than or equal to the second threshold; perform step 717.
  • Step 717 determine that the temperature sensor 21 to be detected is normal.
  • Step 718 determining that the temperature sensor 21 to be detected is faulty.
  • Step 719 acquire the third temperature.
  • Step 720 determine whether the third temperature is less than the first threshold or greater than the second threshold.
  • step 718 If the third temperature is less than the first threshold or greater than the second threshold, perform step 718; if the third temperature is greater than or equal to the first threshold and less than or equal to the second threshold; perform step 717.
  • the temperature sensor 21 to be detected may be a compressor discharge temperature sensor 24 .
  • control method of the above-mentioned air conditioner has the same beneficial effect as the air conditioner described in some of the above embodiments, and will not be repeated here.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), on which computer program instructions are stored, and when the computer program instructions are executed by the air conditioner, the air conditioner performs The air conditioner control method as described in any one of the above embodiments.
  • a computer-readable storage medium for example, a non-transitory computer-readable storage medium
  • the above-mentioned computer-readable storage medium may include, but is not limited to: a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (for example, a CD (Compact Disk, a compact disk), a DVD (Digital Versatile Disk, Digital Versatile Disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • Various computer-readable storage media described in this disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product includes computer program instructions stored on a non-transitory computer readable storage medium. Wherein, the computer program instruction, when executed by the air conditioner, causes the air conditioner to execute the control method of the air conditioner as described in the above-mentioned embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program is stored on a non-transitory computer readable storage medium.
  • the air conditioner is made to execute the control method of the air conditioner as described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器,包括压缩机、环境温度传感器。待检测温度传感器和控制器。环境温度传感器被配置为检测压缩机在运行状态之前的待机状态时的环境温度;待检测温度传感器被配置为检测压缩机处于运行状态时对应区域的第一当前温度,待检测温度传感器具有允许测量区间,允许测量区间包括第一阈值和第二阈值。控制器被配置为:获取第一温度,第一温度是根据环境温度得到的;获取第二温度,第二温度是根据第一当前温度得到的;在压缩机处于运行状态时,响应于第一温度大于或等于所述预设基准温度,并响应于第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器故障。

Description

空调器及空调器的控制方法
本申请要求于2021年11月25日提交的、申请号为202111417244.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调器技术领域,尤其涉及一种空调器及空调器的控制方法。
背景技术
通常,空调器上具有多个温度传感器,各温度传感器可以分别对其所对应区域的温度进行检测,例如,室外环境温度传感器可以对室外环境的温度进行检测。各温度传感器所检测到的温度可以对空调器的运行状态起到监控的作用,因此,温度传感器是否正常运行对于空调器具有重要的作用。
发明内容
一方面,提供一种空调器。该空调器包括压缩机、环境温度传感器、待检测温度传感器和控制器。其中,环境温度传感器被配置为检测压缩机在运行状态之前的待机状态时的环境温度;待检测温度传感器被配置为检测压缩机在该运行状态时对应区域的第一当前温度。待检测温度传感器具有允许测量区间,允许测量区间包括第一阈值和第二阈值,且第一阈值小于第二阈值。控制器与环境温度传感器、待检测温度传感器以及压缩机均耦接,且被配置为:获取第一温度,第一温度是根据环境温度得到的;获取第二温度,第二温度根据第一当前温度得到的。在压缩机处于运行状态时,响应于第一温度大于或等于预设基准温度,并响应于第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器故障;或者,响应于第一温度大于或等于预设基准温度,并响应于第二温度大于或等于第一阈值,且小于或等于第二阈值,确定待检测温度传感器正常。
另一方面,提供一种空调器的控制方法。该空调器包括压缩机、环境温度传感器、待检测温度传感器和控制器。其中,环境温度传感器用于检测压缩机在运行状态之前的待机状态时的环境温度;待检测温度传感器用于检测压缩机在该运行状态时对应区域的第一当前温度。待检测温度传感器具有允许测量区间,允许测量区间包括第一阈值和第二阈值,且第一阈值小于第二阈值。空调器的控制方法包括:获取第一温度,第一温度是根据环境温度得到的。获取第二温度,第二温度是根据第一当前温度得到的。在压缩机处于所述运行状态时,响应于第一温度大于或等于预设基准温度,并响应于第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器故障;或者,响应于第一温度大于或等于预设基准温度,并响应于第二温度大于或等于第一阈值,且小于或等于第二阈值,确定待检测温度传感器正常。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显然,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开一些实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开一些实施例的一种空调器的结构图;
图2为根据本公开一些实施例的一种空调器的示意图;
图3为根据本公开一些实施例的另一种空调器的示意图;
图4为根据本公开一些实施例的一种空调器的控制方法的流程图;
图5为根据本公开一些实施例的另一种空调器的控制方法的流程图;
图6为根据本公开一些实施例的又一种空调器的控制方法的流程图;
图7为根据本公开一些实施例的又一种空调器的控制方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开一些实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应作为广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以是通过中间媒介间接连接。术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用 于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
当空调器所处环境(如室外环境)的温度较低时,例如,当室外环境温度低于零下30℃(也称为-30℃)时,空调器上设置的温度传感器,尤其是设置在空调器的室外机中的温度传感器的电阻误差会较大,从而导致温度传感器测量误差较大。在一些示例中,随着环境温度的降低,温度传感器的电阻误差增大,温度传感器的测量精度降低,在这种情况下,温度传感器检测的温度与实际温度之间可能具有较大的误差。
由于温度传感器的检测结果可以对空调器的运行状态起到监控作用,因此温度传感器是否正常运行对于空调器的正常运行具有重要的作用。在相关技术中,判断温度传感器是否故障的方法可以通过直接判断温度传感器的检测温度是否在该温度传感器的允许测量区间内来确定。若温度传感器的检测温度不在允许测量区间,则判定该温度传感器故障。
但是,这种故障判断方法的可靠性较差,很容易导致误判。例如,当室外环境温度低于-30℃时,某些温度传感器仍然可以正常工作,但是,由于较低的室外环境温度可能会影响该温度传感器的测量精度,导致该温度传感器测量误差变大,因而使其检测出的温度超出其允许测量区间。这种情况下,该温度传感器实际上并未发生故障,只是由于室外环境温度影响了其测量精度而导致检测结果超出了允许测量区间,如果按照相关技术中的方法,判定该温度传感器为故障,就发生了误判的情况,而对温度传感器故障情况的误判会影响空调器的运行,降低用户体验。
为此,本公开一些实施例提供一种空调器,该空调器首先对温度传感器的测量误差情况进行判断,可以在其测量误差满足相关条件后,即测量误差不会影响该温度传感器的测量时,再进一步通过判断该温度传感器的测量结果是否处于其允许测量区间来确定该温度传感器是否故障,从而可以降低对温度传感器的故障误判概率。
图1为本公开一些实施例提供的一种空调器的结构图。如图1所示,空调器1包括控制器10、多个温度传感器20和压缩机30。
示例性地,空调器1包括室内机100和室外机200,其中,压缩机30可以设置在室外机200中,且被配置为:工作在运行状态或待机状态。压缩机30在运行状态和待机状态之间进行切换,以实现空调器1的制热或制冷。
需要说明的是,控制器10可以为中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。控制器10还可以是其它具有处理功能的装置,例如电路、器件或软件模块,本公开对此不做限制。
在一些示例中,如图1所示,控制器10可以包括第一控制器11和第二控制器12,其中,第一控制器11可以设置在室内机100中,第二控制器12可以设置在室外机200中,第一控制器11与第二控制器12耦接,第一控制器11与第二控制器12之间可以进行信息互传。
如图1所示,室内机100还包括第一换热器101,室外机200还包括第二换热器201,第一换热器101与第一控制器11耦接,第二换热器201与第二控制器12耦接。
在一些实施例中,多个温度传感器20中的每个温度传感器可以设置在室内机100或者室外机200中。如图1所示,多个温度传感器20可以包括待检测温度传感器21和环境温度传感器22。也就是说,待检测温度传感器21可以为多个温度传感器20中的任一温度传感器。在一些示例中,待检测温度传感器21和环境温度传感器22也可以为同一个温度传感器。本公开一些实施例以待检测温度传感器21和环境温度传感器22设置在室外机200中(如图1)为例进行说明。
在一些实施例中,如图2所示,待检测温度传感器21可以为环境温度传感器22、换热器温度传感器23或压缩机排气温度传感器24。其中,环境温度传感器22可以包括第一环境温度传感221和第二环境温度传感器222,换热器温度传感器23包括第一换热器温度传感器231和第二换热器温度传感器232。
在一些示例中,第一环境温度传感器(也称为室内环境温度传感器)221和第一换热器温度传感器231可以设置在室内机100中,分别与第一控制器11耦接。第二环境温度传感器222、第二换热器温度传感器232和压缩机排气温度传感器24可以设置在室外机200中,分别与第二控制器12耦接。
待检测温度传感器21被配置为检测压缩机30在运行状态之前的待机状态时的环境温度。其中,待检测温度传感器21具有允许测量区间,允许测量区间包括第一阈值和第二阈值,且第一阈值小于第二阈值。
在一些示例中,如图2所示,待检测温度传感器21可以为第一环境温度传感器221、第一换热器温度传感器231、第二环境温度传感器222、第二换热器温度传感器232和压缩机排气温度传感器24中任一温度传感器。待检测温度传感器21根据其设置位置确定其对应的区域,待检测温度传感器21设置位置不同,所对应区域可能不同。
在一些示例中,当待检测温度传感器21的安装位置在室内机100时,其对应区域为室内机100中一些区域。例如,第一环境温度传感器221所对应的区域为室内机100所处区域(也称为室内环境),第一环境温度传感器221用于检测室内环境的温度;第一换热器温度传感器231设置在室内换热器101上,其所对应区域为室内换热器101的盘管区域,第一换热器温度传感器231用于检测室内换热器101的盘管温度(也称为内盘管温度)。
在另一些示例中,待检测温度传感器21的安装位置在室外机200时,其对应区域为室外机100中一些区域。例如,第二环境温度传感器222所对应的区域为室外机200所处区域(也称为室外环境),第二环境温度传感器222用于检测室外环境的温度;第二换热器温度传感器232设置在室外换热器201上,其对应区域为室外换热器201的盘管区域,第二换热器温度传感器232用于检测室外换热器201的盘管温度(也称为外盘管温度);压缩机排气温度传感器24设置在压缩机30的排气管上,其对应区域为压缩机30的排气口,压缩机排气温度传感器24用于检测压缩机30的排气温度。
示例性地,待检测温度传感器21的允许测量区间可以为待检测温度传感器21能够测量到的温度范围,允许测量区间与待检测温度传感器21的物理特性相关,例如,允许测量区间可以由待检测温度传感器21中的电阻决定。
在一些示例中,待检测温度传感器21的允许测量区间可以由第一阈值和第二阈值组成,其中,第一阈值可以待检测温度传感器21能够测量到的最小温度,第二阈值可以为待检测温度传感器21能够测量到的最大温度,第一阈值小于第二阈值。例如,当 待检测温度传感器21的允许测量区间为-40℃至110℃时,表明待检测温度传感器21能够检测到的温度为大于或等于-40℃,且小于或等于110℃的温度,其中,-40℃为其允许测量区间的第一阈值,110℃为其允许测量区间的第二阈值。
环境温度传感器22被配置为检测压缩机30在运行状态之前的待机状态时的环境温度。例如,当环境温度传感器22为第一环境温度传感器221时,其检测到的为室内环境的温度,当环境温度传感器22为第二环境温度传感器222时,其检测到的为室外环境的温度。
环境温度与压缩机30的工作状态相关。由于压缩机30在运行过程中可以产生热量,这些热量通过热传感或者热辐射的方式传递到环境中,从而对环境温度产生影响,例如,可以使得环境温度升高。在这种情况下,环境温度传感器22检测的环境温度可能不是实际的环境温度。而当压缩机30处于待机状态,由于压缩机30已停止运行,因而不会对环境温度造成影响,环境温度传感器22所检测的环境温度与实际的环境温度更加接近。
在一些示例中,压缩机30当前运行状态之前的待机状态可以为压缩机30当前运行状态之前最近的一个待机状态。由于当前运行状态之前最近的待机状态的结束时刻到运行状态的当前时刻的时间较短,因而可以认为该过程中,环境温度保持稳定,因而,根据最近的待机状态时的环境温度传感器22的检测的环境温度更加接近当前运行状态时的环境温度。
控制器10被配置为:获取第一温度;获取第二温度;在压缩机30处于运行状态时,响应于第一温度大于或等于预设基准温度,并响应于第二温度小于所述第一阈值或大于第二阈值,确定待检测温度传感器21故障;或者,响应于第一温度大于或等于预设基准温度,并响应于第二温度大于或等于第一阈值,且小于或等于第二阈值,确定待检测温度传感器21正常。其中,第一温度是根据环境温度得到的;第二温度是根据第一当前温度得到的。
在一些示例中,环境温度传感器22将其检测到的环境温度发送给控制器10,待检测温度传感器21将其检测到的第一当前温度也发送给控制器10,控制器10获取到该环境温度,得到第一温度,并获取第一当前温度后,得到第二温度。
由上述实施例可知,环境温度会影响待检测温度传感器21的测量精度。示例性地,预设基准温度可以是保证待检测温度传感器21的测量产生的误差不会影响其测量结果的环境温度(例如室外环境温度)的下限。也就是说,当环境温度高于或等于预设基准温度时,待检测温度传感器21的测量精度较高,测量误差较小,该测量误差不会影响其检测结果;当环境温度低于预设基准温度时,待检测温度传感器21的测量精度较低,测量误差较大,该测量误差可能会影响到其检测结果。因此,本公开一些实施例通过环境温度与预设基准温度的比较,得到待检测温度传感器21的测量结果的误差情况。
示例性地,预设基准温度可以与待检测温度传感器21的电阻相关。当环境温度发生变化时,待检测温度传感器21的电阻值也会发生改变,在一些示例中,待检测温度传感器21阻值偏差会随着环境温度的变化而变化,例如,待检测温度传感器21的阻值偏差会随着环境温度的降低而增大,而随着待检测温度传感器21的阻值偏差的增大,待检测温度传感器21的测量误差也会随之增大,从而影响待检测温度传感器21的检测结果。
例如,当环境温度低于-30℃时,待检测温度传感器21的阻值偏差增大的较快,从而导致待检测温度传感器21的测量误差随之增大;当环境温度高于-30℃时,如当环境温度达到-25℃时,待检测温度传感器21的阻值偏差增大较慢,此时,待检测温度传感器21的阻值偏差已经较小,使其测量误差可以被忽略。因此,-25℃可以作为待检测温度传感器21的预设基准温度。
需要说明的是,每个待检测温度传感器21的预设基准温度可以相同,也可以不同。本公开一些实施例以每个待检测温度传感器21的预设基准温度相同为例进行说明。例如,每个待检测温度传感器21的预设基准温度可以均为-25℃。
在一些实施例中,如图3所示,空调器1还可以包括存储器40。待检测温度传感器21对应的允许测量区间和预设基准温度可以存储在存储器40中;或者,也可以存储在控制器10中。例如,存储器40可以包括第一存储器41和第二存储器42。其中,第一存储器41与第一控制器11耦接,第二存储器42与第二控制器12耦接。
如图1所示,压缩机30与第二控制器12耦接。第二控制器12可以获取压缩机30的当前工作状态。当控制器10(如第二控制器12)确定压缩机30处于运行状态时,控制器10会根据第一温度与预设基准温度的关系,确定待检测温度传感器21的测量误差情况。
控制器10获取到第一温度后,将第一温度与存储器40中存储的预设基准温度进行比较。由于第一温度是根据压缩机30待机状态时的环境温度得到的,因而采用第一温度与预设基准温度进行比较,可以更加准确的获取到待检测温度传感器21的测量误差情况。
示例性地,第一温度可以为环境温度传感器22(如第二环境温度传感器222)在压缩机30在待机状态结束时刻检测到的室外环境温度;或者,由于压缩机30处于待机状态的时间较短,因而在待机过程中,环境温度(即第一温度)一般比较稳定,变化较小,因此,第一温度也可以为压缩机30处于该待机过程中,环境温度传感器22检测到的多个环境温度中的任一温度,在此不作限定。
例如,当第二控制器12确定第二环境温度传感器222检测的第一温度大于或等于预设基准温度时,表明当前室外环境温度对待检测温度传感器21的测量精度影响较小,不会影响到待检测温度传感器21的测量结果。因此,待检测温度传感器21在运行状态时检测的第一当前温度(即第二温度)是没有受到测量误差影响,且较为准确的环境温度,此时,再通过第二温度与待检测温度传感器21的允许测量范围的关系,确定待检测温度传感器21故障与否会更为准确。
在压缩机30处于运行状态时,控制器10获取第二温度包括:第一控制器11或第二控制器12获取第二温度。其中,若待检测温度传感器21设置在室内机100中,可以由第一控制器11获取第二温度;若待检测温度传感器21设置在室外机200中,可以由第二控制器12获取第二温度。
在一些示例中,当待检测温度传感器21为第二环境温度传感器222时,第一当前温度为室外环境的当前温度;当待检测温度传感器21为第二换热器温度传感器232时,第一当前温度为室外盘管的当前温度;或者,当待检测温度传感器21为压缩机排气温度传感器24时,第一当前温度为压缩机30排气的当前温度。
控制器10获取到第二温度后,判定第二温度与待检测温度传感器21的允许测量区 间的关系。当第二温度不在待检测温度传感器21的允许测量区间内,也就是当第二温度小于第一阈值,或者大于第二阈值时,表明待检测温度传感器21的当前测量到的温度超过了其允许测量区间,则可以确定待检测温度传感器21故障。
当第二温度在待检测温度传感器21的允许测量区间内,也就是当第二温度小于或等于第一阈值,且小于或等于第二阈值时,表明待检测温度传感器21的当前测量到的温度没有超出其允许测量区间,则可以确定待检测温度传感器21处于正常运行的状态。
本公开一些实施例提供的空调器1通过对压缩机30处于当前运行状态之前的待机状态时的环境温度与预设基准温度的大小比较,确定出待检测温度传感器21的测量误差情况。在保证待检测温度传感器21的测量误差不会影响其检测结果的情况下,再确定待检测温度传感器21检测的第一当前温度与其允许测量区间的关系,进而判断待检测温度传感器21的故障情况。因此,相比于相关技术中直接通过待检测温度传感器21检测的温度是否在允许测量区间内来判断待检测温度传感器21是否故障的情况,本公开一些实施例提供的空调器1的判断结果更加精确,进一步降低了待检测温度传感器21的故障误判概率。同时,由于减少了待检测温度传感器21的故障误判的发生,也可以提高空调器1的使用安全性和舒适性。
在一些实施例中,控制器10还被配置为:获取压缩机30的运行时间,其中,运行时间为压缩机30从运行状态之前的待机状态的结束时刻至运行状态的当前时刻的时间;在压缩机30处于运行状态时,响应于第一温度小于预设基准温度、响应于运行时间大于或等于预设时间,以及响应于第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器21故障。
在压缩机30处于运行状态时,若控制器10获取到的第一温度小于预设基准温度,表明环境温度可能会影响待检测温度传感器21的测量精度,造成待检测温度传感器21的检测结果存在较大的误差,此时,如果通过待检测温度传感器21检测的当前温度不在其允许测量区间来判定待检测温度传感器21故障可能会造成误判,从而影响空调器1的运行。因此,在一些示例中,当第一温度小于预设基准温度时,控制器10可以判定待检测温度传感器21为正常。
在另一些示例中,由于压缩机30自待机状态结束进入当前运行状态后,会持续产生热量,这些热量会传递给待检测温度传感器21。随着压缩机30的运行时间的增大,待检测温度传感器21的温度得到较大的提升,待检测温度传感器21的测量精度也会提高。当运行时间达到预设时间时,待检测温度传感器21的测量精度可以保证其测量误差不会影响测量结果,此时,再通过判断第二温度与待检测温度传感器21的允许测量区间的关系,可以进一步提高待检测温度传感器21故障判定的准确率。
示例性地,预设时间可以为保证待检测温度传感器21的测量误差不会影响其测量结果时压缩机30的运行时间。在一些示例中,待检测温度传感器21不同,其预设时间可以不同。例如,当待检测温度传感器21为压缩机排气温度传感器24时,其预设时间可以为10分钟。
当压缩机30的运行时间没有达到预设时间时,待检测温度传感器21的测量误差可能会影响其检测结果,此时,控制器10不能通过第二温度不在待检测温度传感器21允许测量区间来判定待检测温度传感器21故障;或者,控制器10可以判定待检测温度传感器21为正常;或者,控制器10可以在压缩机30的运行时间达到预设时间时,再判断待检测温 度传感器21的故障情况,从而可以进一步减小待检测温度传感器21的故障误判率。
在一些实施例中,待检测温度传感器还被配置为:检测压缩机处30处于待机状态时对应区域的第二当前温度。控制器10还被配置为:获取第三温度,在压缩机30处于待机状态时,响应于第三温度小于第一阈值或大于第二阈值,确定待检测温度传感器21故障。或者,响应于第三温度大于或等于第一阈值,且小于或等于第二阈值,确定待检测温度传感器21正常。其中,第三温度是根据第二当前温度得到的。
在一些示例中,若待检测温度传感器21为环境温度传感器(如第二环境温度传感器222)或换热器温度传感器(如第二换热器温度传感器232),当压缩机30结束运行状态,并进入到待机状态时,待检测温度传感器21在压缩机30的上一个运行状态期间都被加热,而随着待检测温度传感器21温度的升高,其测量精度也会提高,因而在压缩机30处于待机状态时,待检测温度传感器21的测量误差较小,不会影响其测量结果,因此,待检测温度传感器21在待机状态时所检测的第二当前温度也会较为准确的。
因此,在压缩机30处于待机状态时,控制器10可以通第三温度与待检测温度传感器21的允许测量区间的关系判定待检测温度传感器21是否故障。当第三温度不在待检测温度传感器21的允许测量区间时,判定待检测温度传感器21故障;当第三温度在待检测温度传感器21的允许测量区间时,判定待检测温度传感器21正常。
在一些实施例中,控制器10还被配置为:在压缩机30处于待机状态时,响应于第一温度大于或等于预设基准温度,并响应于第三温度小于第一阈值或大于第二阈值,确定待检测温度传感器21故障。
示例性地,当待检测温度传感器21为压缩机排气温度传感器24时,由于排气温度传感器24在较低的环境温度下,测量误差较大。这种情况下,可以先通过判断压缩机30处于待机状态时的环境温度是否会影响待检测温度传感器21的测量精度,再判断待检测温度传感器21检测的第二当前温度是否在其允许测量区间来判定待检测温度传感器21的故障情况,可以进一步减小待检测温度传感器21的故障误判率。
若第一温度大于或等于预设基准温度,表明待检测温度传感器21当前的测量误差不会影响待检测温度传感器21的测量结果,此时,控制器10可以通过判断第三温度是否在待检测温度传感器21允许测量区间内,来确定待检测温度传感器21是否故障。
若第一温度小于预设基准温度,待检测温度传感器21的测量误差可能较大,因此,控制器10不能通过第三温度不在待检测温度传感器21的允许测量区间判定其故障。在一些示例中,这种情况下,控制器10可以判定待检测温度传感器21处于正常状态。
在一些实施例中,控制器10还被配置为:对环境温度进行模数变换,得到第一温度;对第一当前温度进行模数变换,得到第二温度;对第二当前温度进行模数变换,得到第三温度。
在一些示例中,空调器1在运行过程中,控制器10(如第一控制器11和/或第二控制器12)可以分别对其获取到的环境温度、第一当前温度和第二当前温度进行模数转换,得到第一温度、第二温度和第三温度,并且采用第一温度与预设基准温度进行比较,采用第二温度和第三温度分别与待检测温度传感器21允许测量区间的第一阈值和第二阈值进行比较。在一些示例中,预设基准温度和待检测温度传感器21允许测量区间的第一阈值和第二阈值均可以是通过模数转换后的温度。采用模数转换后的温度进行上述比较运算,可以提高故障判定过程的效率。
本公开的一些实施例提供一种空调器的控制方法。其中,参照图1,该空调器可以为上述任一实施例中的空调器1,空调器1包括压缩机30、待检测温度传感器21、环境温度传感器22和控制器10。图4为本公开的一些实施例提供的一种空调器的控制方法的流程图。如图4所示,该空调器的控制方法包括步骤411至步骤414。
步骤411,获取第一温度。
其中,第一温度是根据环境温度传感器22检测的压缩机30在运行状态之前的待机状态的环境温度得到的。
步骤412,获取第二温度。
其中,第二温度是根据待检测温度传感器21检测的压缩机30在运行状态时对应区域的第一当前温度得到的。例如,以待检测温度传感器21设置在室外机200为例,待检测温度传感器21可以将检测的第一当前温度发送给第二控制器12,由第二控制器12对当前温度进行模数转换后,得到第二温度。
步骤413,在压缩机30处于运行状态时,响应于第一温度大于或等于预设基准温度,并响应于第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器21故障。
其中,待检测温度传感器21具有允许测量区间,第一阈值和第二阈值分别为该允许测量区间的两个端点,且第一阈值小于第二阈值。
当第一温度大于或等于预设基准温度,表明待检测温度传感器21的测量误差不会影响其检测结果,因而可以继续将第二温度与待检测温度传感器21的允许测量范围进行比较,若第二温度小于第一阈值或大于第二阈值,确定待检测温度传感器21故障。
步骤414,在压缩机30处于运行状态时,响应于第一温度大于或等于预设基准温度,并响应于第二温度大于或等于第一阈值,且小于或等于第二阈值,确定待检测温度传感器21正常。
图5为本公开实施例提供的另一种空调器的控制方法,其中,参照图1,该空调器可以为上述任一实施例中的空调器1,空调器1包括压缩机30、待检测温度传感器21、环境温度传感器22和控制器10。如图5所示,空调器的控制方法包括步骤511至步骤520。
步骤511,获取压缩机30的工作状态。
步骤512,确定压缩机30是否处于运行状态。
若压缩机30处于运行状态,执行步骤513,若压缩机30不处于运行状态(即待机状态),执行步骤519。
步骤513,获取第一温度。
步骤513与上述实施例中的步骤411类似,此处不再赘述。
步骤514,确定第一温度是否大于或等于预设基准温度。
若第一温度小于预设基准温度,执行步骤517;若第一温度大于或等于预设基准温度,执行步骤515。
步骤515,获取第二温度。
步骤515与上述实施例中的步骤412类似,此处不再赘述。
步骤516,确定第二温度是否小于第一阈值或大于第二阈值。
若第二温度小于第一阈值或大于第二阈值,执行步骤518;若第二温度大于或等于第一阈值,且小于或等于第二阈值,执行步骤517。
步骤517,确定待检测温度传感器21正常。
步骤518,确定待检测温度传感器21故障。
步骤519,获取第三温度。
其中,第三温度是根据待检测温度传感器21在压缩机30处于待机状态时检测的第二当前温度得到的,继续执行步骤520。
步骤520,确定第三温度是否小于第一阈值或大于第二阈值。
若第三温度小于第一阈值或大于第二阈值,执行步骤518;若第三温度大于或等于第一阈值,且小于或等于第二阈值;执行步骤517。
在一些实施例中,待检测温度传感器21可以为环境温度传感器22、换热器温度传感器23或压缩机排气温度传感器24。其中,环境温度传感器22包括第一环境温度传感器221和第二环境温度传感器222,换热器温度传感器23包括第一换热器温度传感器231和第二换热器温度传感器232。
图6为本公开实施例提供的又一种空调器的控制方法,其中,参照图1,该空调器可以为上述任一实施例中的空调器1,空调器1包括压缩机30、待检测温度传感器21、环境温度传感器22和控制器10。如图6所示,空调器的控制方法包括步骤611至步骤621。
步骤611,获取压缩机30的工作状态。
步骤612,确定压缩机30是否处于运行状态。
若压缩机30处于运行状态,执行步骤613,若压缩机30不处于运行状态(即待机状态),执行步骤620。
步骤613,获取第一温度。
步骤613与上述实施例中的步骤411类似,此处不再赘述。
步骤614,确定第一温度是否大于或等于预设基准温度。
若第一温度小于预设基准温度,执行步骤615;若第一温度大于或等于预设基准温度,执行步骤616。
步骤615,确定压缩机30的运行时间是否大于或等于预设时间。
其中,运行时间为压缩机30从运行状态之前的待机状态的结束时刻至运行状态的当前时刻的时间。
若压缩机30的运行时间大于或等于预设时间,执行步骤616,若压缩机30的运行时间小于预设时间,执行步骤618。
步骤616,获取第二温度。
步骤616与上述实施例中的步骤412类似,此处不再赘述。
步骤617,确定第二温度是否小于第一阈值,或大于第二阈值。
若第二温度小于第一阈值或大于第二阈值,执行步骤619;若第二温度大于或等于第一阈值,且小于或等于第二阈值;执行步骤618。
步骤618,确定待检测温度传感器21正常。
步骤619,确定待检测温度传感器21故障。
步骤620,获取第三温度。
步骤621,确定第三温度是否小于第一阈值或大于第二阈值。
若第三温度小于第一阈值或大于第二阈值,执行步619;若第二温度大于或等于第一阈值,且小于或等于第二阈值;执行步骤618。
图7为本公开实施例提供的又一种空调器的控制方法,其中,参照图1,该空调器可 以为上述任一实施例中的空调器1,空调器1包括压缩机30、待检测温度传感器21、环境温度传感器22和控制器10。如图7所示,空调器的控制方法包括步骤711至步骤720。
步骤711,获取压缩机30的工作状态。
步骤712,确定压缩机30是否处于运行状态。
若压缩机30处于运行状态,执行步骤713,若压缩机30处于待机状态,也执行步骤713。
步骤713,获取第一温度。
当压缩机30处于运行状态时,第一温度为压缩机30运行状态之前的待机状态的环境温度;当压缩机30处于待机状态时,第一温度为当前的环境温度。
步骤714,确定第一温度是否大于或等于预设基准温度。
若第一温度小于预设基准温度,执行步骤717;若第一温度大于或等于预设基准温度,当压缩机30处于运行状态时,执行步骤715,当压缩机30处于待机状态时,执行步骤719。
步骤715,获取第二温度。
步骤716,确定第二温度是否小于第一阈值或大于第二阈值。
若第二温度小于第一阈值或大于第二阈值,执行步骤718;若第二温度大于或等于第一阈值,且小于或等于第二阈值;执行步骤717。
步骤717,确定待检测温度传感器21正常。
步骤718,确定待检测温度传感器21故障。
步骤719,获取第三温度。
步骤720,确定第三温度是否小于第一阈值,或大于第二阈值。
若第三温度小于第一阈值或大于第二阈值,执行步骤718;若第三温度大于或等于第一阈值,且小于或等于第二阈值;执行步骤717。
在一些实施例中,待检测温度传感器21可以为压缩机排气温度传感器24。
上述空调器的控制方法和上述一些实施例所述的空调器的有益效果相同,此处不再赘述。
需要说明的是,本公开一些实施例的附图中以特定顺序描述的各个步骤,并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。可以对附图中的各步骤进行附加,也可以省略某些步骤,或者将多个步骤合并为一个步骤执行,或者将一个步骤分解为多个步骤执行等。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),其上存储有计算机程序指令,该计算机程序指令被空调器执行时,使得空调器执行如上述实施例中任一实施例所述的空调器的控制方法。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。
本公开的一些实施例还提供了一种计算机程序产品。该计算机程序产品包括计算机程序指令,该计算机程序指令存储在非暂态计算机可读存储介质上。其中,该计算机程序指令在被空调器执行时,使得空调器执行如上述实施例所述的空调器的控制方法。
本公开的一些实施例还提供了一种计算机程序。该计算机程序存储在非暂态计算机可读存储介质上。当该计算机程序在被空调器执行时,使得空调器执行如上述实施例所述的空调器的控制方法。
上述计算机可读存储介质、计算机程序产品及计算机程序的有益效果和上述一些实施例所述的空调器的控制方法的有益效果相同,此处不再赘述。
本领域技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受附权利要求的限制。

Claims (13)

  1. 一种空调器,包括:
    压缩机;
    环境温度传感器,被配置为检测所述压缩机在运行状态之前的待机状态时的环境温度;
    待检测温度传感器,被配置为检测所述压缩机在所述运行状态时对应区域的第一当前温度;其中,所述待检测温度传感器具有允许测量区间,所述允许测量区间包括第一阈值和第二阈值,且所述第一阈值小于所述第二阈值;
    控制器,与所述环境温度传感器、所述待检测温度传感器和所述压缩机均耦接,且被配置为:
    获取第一温度,所述第一温度是根据所述环境温度得到的;
    获取第二温度,所述第二温度是根据所述第一当前温度得到的;
    在所述压缩机处于所述运行状态时,响应于所述第一温度大于或等于预设基准温度,并响应于所述第二温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障;或者
    响应于所述第一温度大于或等于所述预设基准温度,并响应于所述第二温度大于或等于第一阈值,且小于或等于第二阈值,确定所述待检测温度传感器正常。
  2. 根据权利要求1所述的空调器,其中,所述控制器,还被配置为:
    获取所述压缩机的运行时间,所述运行时间为所述压缩机从所述运行状态之前的待机状态的结束时刻至所述运行状态的当前时刻的时间;
    在所述压缩机处于所述运行状态时,响应于所述第一温度小于所述预设基准温度、响应于所述运行时间大于或等于预设时间,以及响应于所述第二温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障。
  3. 根据权利要求1所述的空调器,其中,所述待检测温度传感器,还被配置为:检测所述压缩机在所述待机状态时对应区域的第二当前温度;
    所述控制器,还被配置为:
    获取第三温度,所述第三温度是根据所述第二当前温度得到的;
    在所述压缩机处于所述待机状态时,响应于所述第三温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障;或者
    响应于所述第三温度大于或等于第一阈值,且小于或等于第二阈值,确定所述待检测温度传感器正常。
  4. 根据权利要求3所述的空调器,其中,所述控制器,还被配置为:
    在所述压缩机处于所述待机状态时,响应于所述第一温度大于或等于所述预设基准温度,并响应于所述第三温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障。
  5. 根据权利要求4所述的空调器,其中,所述控制器,还被配置为:
    对所述环境温度进行模数变换,得到所述第一温度;对所述第一当前温度进行模数变换,得到所述第二温度;对所述第二当前温度进行模数变换,得到所述第三温度。
  6. 根据权利要求1-3中任一项所述的空调器,其中,所述待检测温度传感器为环境温度传感器、换热器温度传感器或压缩机排气温度传感器。
  7. 根据权利要求4所述的空调器,其中,所述待检测温度传感器为压缩机排气温度 传感器。
  8. 一种空调器的控制方法,所述空调器包括压缩机、环境温度传感器、待检测温度传感器和控制器,其中,所述环境温度传感器用于检测所述压缩机在运行状态之前的待机状态时的环境温度;所述待检测温度传感器用于检测所述压缩机在所述运行状态时对应区域的第一当前温度,所述待检测温度传感器具有允许测量区间,所述允许测量区间包括第一阈值和第二阈值,且所述第一阈值小于所述第二阈值;所述方法包括:
    获取第一温度,所述第一温度根据所述环境温度得到的;
    获取第二温度,所述第二温度是根据所述第一当前温度得到的;
    在所述压缩机处于所述运行状态时,响应于所述第一温度大于或等于所述预设基准温度,并响应于所述第二温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障;或者
    响应于所述第一温度大于或等于所述预设基准温度,并响应于所述第二温度大于或等于第一阈值,且小于或等于第二阈值,确定所述待检测温度传感器正常。
  9. 根据权利要求8所述的方法,还包括:
    获取所述压缩机的运行时间,其中,所述运行时间为所述压缩机从所述运行状态之前的待机状态的结束时刻至所述运行状态的当前时刻的时间;
    在所述压缩机处于所述运行状态时,响应于所述第一温度小于所述预设基准温度,响应于所述运行时间大于或等于预设时间,以及响应于所述第二温度是否小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障。
  10. 根据权利要求8所述的方法,还包括:
    获取第三温度,所述第三温度是根据所述待检测温度传感器在所述压缩机处于所述待机状态时,检测对应区域的第二当前温度得到的;
    在所述压缩机处于所述待机状态,响应于所述第三温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障;或者
    在所述压缩机处于所述待机状态,响应于所述第三温度大于或等于第一阈值,且小于或等于第二阈值,确定所述待检测温度传感器正常。
  11. 根据权利要求10所述的方法,还包括:
    在所述压缩机处于所述待机状态时,响应于所述第一温度大于或等于所述预设基准温度,并响应于所述第三温度小于所述第一阈值或大于所述第二阈值,确定所述待检测温度传感器故障。
  12. 根据权利要求11所述的方法,还包括:
    对所述环境温度进行模数变换,得到所述第一温度;
    对所述第一当前温度进行模数变换,得到所述第二温度;
    对所述第二当前温度进行模数变换,得到所述第三温度。
  13. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被空调器执行时,使得所述空调器实现如权利要求8-12中任一项所述的空调器的控制方法。
PCT/CN2022/129271 2021-11-25 2022-11-02 空调器及空调器的控制方法 WO2023093479A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280064045.8A CN118043604A (zh) 2021-11-25 2022-11-02 空调器及空调器的控制方法
US18/607,147 US20240219055A1 (en) 2021-11-25 2024-03-15 Air conditioner and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111417244.6A CN113983644B (zh) 2021-11-25 2021-11-25 空调器及其温度传感器的故障判断方法
CN202111417244.6 2021-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/607,147 Continuation US20240219055A1 (en) 2021-11-25 2024-03-15 Air conditioner and control method thereof

Publications (1)

Publication Number Publication Date
WO2023093479A1 true WO2023093479A1 (zh) 2023-06-01

Family

ID=79731972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129271 WO2023093479A1 (zh) 2021-11-25 2022-11-02 空调器及空调器的控制方法

Country Status (3)

Country Link
US (1) US20240219055A1 (zh)
CN (2) CN113983644B (zh)
WO (1) WO2023093479A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983644B (zh) * 2021-11-25 2023-09-15 海信(广东)空调有限公司 空调器及其温度传感器的故障判断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028950A (ko) * 1999-09-28 2001-04-06 구자홍 공기조화기의 온도센서 이상상태 판단방법
CN107560068A (zh) * 2017-08-18 2018-01-09 广东美的暖通设备有限公司 故障检测方法、故障检测系统及空调器
CN109140688A (zh) * 2018-08-31 2019-01-04 广东美的制冷设备有限公司 空调器的控制方法、空调器和存储介质
CN113983644A (zh) * 2021-11-25 2022-01-28 海信(广东)空调有限公司 空调器及其温度传感器的故障判断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327120A (ja) * 1996-06-05 1997-12-16 Nec Corp ダイオード故障検出回路
CN105864956A (zh) * 2016-03-28 2016-08-17 广东美的暖通设备有限公司 风侧换热器中温度传感器漂移检测方法、处理器及空调
CN107166638B (zh) * 2017-05-09 2020-04-17 广东美的暖通设备有限公司 温度传感器的故障检测方法、检测装置和多联式空调系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028950A (ko) * 1999-09-28 2001-04-06 구자홍 공기조화기의 온도센서 이상상태 판단방법
CN107560068A (zh) * 2017-08-18 2018-01-09 广东美的暖通设备有限公司 故障检测方法、故障检测系统及空调器
CN109140688A (zh) * 2018-08-31 2019-01-04 广东美的制冷设备有限公司 空调器的控制方法、空调器和存储介质
CN113983644A (zh) * 2021-11-25 2022-01-28 海信(广东)空调有限公司 空调器及其温度传感器的故障判断方法

Also Published As

Publication number Publication date
CN113983644B (zh) 2023-09-15
CN118043604A (zh) 2024-05-14
CN113983644A (zh) 2022-01-28
US20240219055A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
WO2018228135A1 (zh) 防止变频空调器的压缩机过热的控制方法及控制系统
WO2023093479A1 (zh) 空调器及空调器的控制方法
WO2020114018A1 (zh) 空调器及其控制方法
CN111197836A (zh) 一种空调器传感器脱落智能检测方法及空调器
CN112393377A (zh) 故障判断方法及空调器
US11639803B2 (en) System and method for identifying causes of HVAC system faults
US11193685B2 (en) System and method for distinguishing HVAC system faults
US11788753B2 (en) HVAC system fault prognostics and diagnostics
WO2019158047A1 (zh) 用于空调器的室内机防冻结控制方法
WO2023116463A1 (zh) 用于空调器的控制方法及装置、空调器、存储介质
JP3763735B2 (ja) 空気調和機およびその故障判定方法
WO2020220451A1 (zh) 空调的制冷剂泄漏检测方法、系统及空调
US10746427B2 (en) Air conditioner blowing temperature estimation apparatus and computer-readable recording medium
CN114151920B (zh) 空调系统堵塞的检测方法、装置及空调器
CN110940045B (zh) 一种空调冷媒泄露的检测方法及空调器
US11454409B2 (en) Failure detection method for air conditioning system
CN111059696B (zh) 一种功率模块温度检测控制方法、计算机可读存储介质及空调
WO2018054178A1 (zh) 空调系统的室内机的节流阀体的检测方法
CN110617604B (zh) 空调防冷风的控制方法、装置、设备、空调和存储介质
KR20120124509A (ko) 아이에스지 공조조건 판단방법
CN108981076B (zh) 一种机组控制方法、系统及空调器
CN113251572B (zh) 一种排气传感器故障检测方法、装置、空调器及存储介质
CN111023405A (zh) 一种室外排气温度传感器失效检测方法、可读存储介质及空调器
WO2019158086A1 (zh) 用于空调器的自清洁控制方法
CN113074436A (zh) 室内温度传感器失效的控制方法、装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897562

Country of ref document: EP

Kind code of ref document: A1