WO2015021853A1 - 一种变频空调的控制方法、控制装置及变频空调 - Google Patents

一种变频空调的控制方法、控制装置及变频空调 Download PDF

Info

Publication number
WO2015021853A1
WO2015021853A1 PCT/CN2014/082947 CN2014082947W WO2015021853A1 WO 2015021853 A1 WO2015021853 A1 WO 2015021853A1 CN 2014082947 W CN2014082947 W CN 2014082947W WO 2015021853 A1 WO2015021853 A1 WO 2015021853A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
motor
frequency
compressor
Prior art date
Application number
PCT/CN2014/082947
Other languages
English (en)
French (fr)
Inventor
何振健
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2015021853A1 publication Critical patent/WO2015021853A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties

Definitions

  • the present invention relates to the field of electrical equipment control technology, and in particular, to a control method, a control device, and an inverter air conditioner for an inverter air conditioner.
  • the existing air conditioning control method is based on the set temperature of the air conditioner for cooling control.
  • the frequency of the compressor of the inverter air conditioner is increased, and the indoor environment is When the difference between the temperature and the set temperature is small, the frequency of the compressor of the inverter air conditioner is lowered.
  • the evaporator tube temperature of the inverter air conditioner may be too low.
  • the tube temperature of the evaporator is lower than the dew point temperature of the water vapor in the air, the ice vapor will condense into water, and part of the cooling capacity will be consumed during the condensation process of the water vapor (this part of the cooling amount is called the latent heat load of the air conditioner), thereby increasing The energy consumption of a large system, the lower the tube temperature of the evaporator, the greater the latent heat load of the air conditioner.
  • the inverter air conditioner is cooled for a long time, it will cause the humidity of the indoor air to drop, which makes the user feel uncomfortable.
  • the present invention provides a control method for an inverter air conditioner that can adjust the humidity of indoor air and reduce the system energy consumption of the inverter air conditioner.
  • the invention discloses a control method for an inverter air conditioner, which comprises:
  • the separate cooling operation is performed within the first time period, and then the process returns to perform the step of determining whether the current indoor environment needs to be subjected to the dehumidification process, and performing the separate cooling operation, including:
  • the compressor When the tube temperature is not higher than the dew point temperature, if the current operating frequency of the compressor is the lowest frequency, controlling the compressor to maintain the current frequency for a second period of time, returning to perform the tube temperature of the obtaining evaporator and The step of the dew point temperature of the indoor air, if the current operating frequency of the compressor is not the lowest frequency, controlling the compressor to reduce the frequency and running for a third period of time, returning to the step of performing the tube temperature of the evaporator and the dew point temperature of the indoor air ;
  • Step if the current operating frequency of the compressor is the highest frequency, controlling the compressor to increase the frequency and running for a fifth time period, and then if the number of times the compressor is controlled to increase the frequency does not exceed the first number of times, returning to perform determining the evaporator a step of the temperature of the tube temperature and the dew point temperature of the indoor air, otherwise, returning to the step of performing a determination of whether the current indoor environment needs to be subjected to the dehumidification treatment;
  • the compressor is controlled to maintain the current frequency for a fourth period of time, and the step of performing a dehumidification process for determining whether the current indoor environment needs to be performed is returned.
  • the determining whether the current indoor environment needs to perform the dehumidification process comprises:
  • the relative humidity and the set humidity of the current indoor air are determined.
  • the relative humidity is greater than the set humidity, it is determined that a dehumidification process is required, and when the relative humidity is not greater than the set humidity, it is determined that the dehumidification process is not required.
  • the outdoor unit motor of the inverter air conditioner is a DC motor.
  • the method further includes:
  • the DC motor When the difference is greater than or equal to the first temperature difference, the DC motor is controlled to maintain the current speed operation, and after continuing for the sixth time period, returning to the detection temperature for acquiring the ambient temperature sensing package of the outdoor unit and the outdoor unit condenser a step of temperature; if the difference is less than the first temperature difference, if the current speed of the DC motor is not the lowest speed, the DC motor is controlled to decrease the speed, and after continuing for the seventh time period, returning to the execution acquisition outdoor
  • the step of detecting the temperature of the temperature sensing package and the temperature of the outdoor unit condenser, if the current speed of the DC motor is the lowest speed, controlling the DC motor to maintain the current speed running, and after performing the sixth time period, returning to perform the acquisition The step of detecting the temperature of the outdoor unit environment temperature sensor package and the temperature of the outdoor unit condenser.
  • the outdoor unit motor of the inverter air conditioner is a DC motor.
  • the method when it is determined that the dehumidification operation is required, when the tube temperature is higher than the dew point temperature, the method further includes:
  • the DC motor is controlled to maintain the current speed operation, and after continuing for the eighth time period, returning to the step of determining whether the current indoor environment needs to perform the dehumidification process;
  • the DC motor When the difference is greater than the second temperature difference, if the current speed of the DC motor is the highest speed, the DC motor is controlled to maintain the current speed running, and after the eighth time period is continued, the execution returns to determine the current indoor environment.
  • the step of dehumidifying treatment if the current rotational speed of the DC motor is not the maximum rotational speed, the DC motor is controlled to increase the rotational speed, and after the ninth time period is continued, if the number of times the DC motor is controlled to increase the rotational speed does not exceed the second number, Then, the steps of obtaining the tube temperature of the evaporator and the dew point temperature of the indoor air are returned, otherwise, the step of performing the dehumidification process for determining whether the current indoor environment needs to be performed is returned.
  • the first preset condition is that a difference between an indoor ambient temperature and a set temperature is less than a third temperature difference
  • a step of determining whether the current indoor environment requires a dehumidification process is performed.
  • the present invention also discloses a control device for an inverter air conditioner, including:
  • a determining unit configured to determine whether the current indoor environment needs to perform a dehumidification process when the first preset condition is met; the first control unit is configured to perform a separate cooling operation within the first time period when it is determined that the dehumidification process is not required, And then triggering the determining unit to perform an operation of determining whether the current indoor environment needs to perform a dehumidification process; the first control unit includes a first data acquisition subunit, a first control subunit, and a second control subunit; The first data acquisition subunit is configured to acquire a tube temperature of the evaporator and a dew point temperature of the indoor air when it is determined that the dehumidification process is not required;
  • the first control subunit controls the compressor to maintain the current frequency for a second duration when the tube temperature is not higher than the dew point temperature and the current operating frequency of the compressor is the lowest frequency, and then triggers the first a data acquisition subunit performs an operation of acquiring a tube temperature of the evaporator and a dew point temperature of the indoor air, and controlling the tube temperature when the tube temperature is not higher than the dew point temperature and the current operating frequency of the compressor is not the lowest frequency
  • the compressor lowers the frequency and runs for a third time period, and then triggers the first data acquisition subunit to perform an operation of acquiring a tube temperature of the evaporator and a dew point temperature of the indoor air;
  • the second control subunit controls the compressor to maintain the current frequency for a second duration when the tube temperature is higher than the dew point temperature, and then triggers the first data acquisition subunit to execute a tube for acquiring the evaporator Operation of temperature and dew point temperature of indoor air;
  • the second control unit configured to perform a dehumidification operation when determining that dehumidification processing is required;
  • the second control unit includes a first data acquisition unit, a third control subunit, and a fourth control subunit;
  • the second data acquisition unit is configured to acquire a tube temperature of the evaporator and a dew point temperature of the indoor air when determining that dehumidification processing is required;
  • the third control subunit controls the compressor to maintain the current frequency for a fourth duration when the tube temperature is higher than the dew point temperature and the current operating frequency of the compressor is the highest frequency, and then triggers the determination.
  • the unit performs an operation of determining whether the current indoor environment needs to perform a dehumidification process, and the third control subunit controls the compressor when the pipe temperature is higher than the dew point temperature and the current operating frequency of the compressor is not the highest frequency Increasing the frequency and running the fifth time period, if the number of times the compressor is controlled to increase the frequency does not exceed the first number of times, triggering the second data capturing unit to perform an operation of determining the tube temperature of the evaporator and the dew point temperature of the indoor air Otherwise, triggering the determining unit to perform an operation of determining whether the current indoor environment needs to perform a dehumidification process;
  • the fourth control subunit is configured to control the compressor to maintain the current frequency for a fourth duration when the tube temperature is not higher than the dew point temperature, and then trigger the determining unit to perform a determination on whether the current indoor environment needs to be Perform the dehumidification treatment.
  • the determining unit includes a first determining subunit, and the first determining subunit is configured to determine whether the current indoor environment needs to perform dehumidifying processing, and the first determining subunit
  • the method includes: a moisture content determining module, configured to determine a moisture content of the current indoor air and a target moisture content;
  • a first processing module configured to determine that the dehumidification process is not required when the moisture content of the current indoor air is not greater than the target moisture content
  • a second processing module configured to determine current indoor air when the moisture content of the current indoor air is greater than 3 ⁇ 4 of the standard moisture content
  • the relative humidity and the set humidity when the relative humidity is greater than the set humidity, determine that a dehumidification process is required, and when the relative humidity is not greater than the set humidity, it is determined that the dehumidification process is not required.
  • the outdoor unit motor of the inverter air conditioner is a DC motor.
  • the first control unit further includes:
  • the third data acquisition subunit is configured to acquire a detection temperature of the outdoor environment temperature sensor package and an outdoor unit condenser temperature when the tube temperature is not higher than the dew point temperature;
  • a first determining subunit configured to determine whether a difference between a detected temperature of the outdoor environment temperature sensing package and an outdoor unit condenser temperature is less than a first temperature difference
  • a fifth control subunit configured to control the DC motor to maintain a current speed operation when the difference is greater than or equal to the first temperature difference, and trigger the third data acquisition subunit after continuing for a sixth time duration Performing an operation of acquiring the detection temperature of the outdoor unit environment temperature sensing package and the outdoor unit condenser temperature;
  • a sixth control subunit configured to: when the difference is less than the first temperature difference and the current speed of the DC motor is not the lowest speed, control the DC motor to reduce the speed, after the seventh time duration, trigger the
  • the third data acquisition subunit performs an operation of acquiring the detected temperature of the outdoor unit environment temperature sensor and the outdoor unit condenser temperature, wherein the difference is less than the first temperature difference and the current speed of the DC motor is the lowest speed
  • controlling the DC motor to maintain the current speed operation, and after continuing for the sixth time period, triggering the third data acquisition sub-unit to perform an operation of acquiring the detection temperature of the outdoor environment temperature sensor package and the outdoor machine condenser temperature.
  • the outdoor unit motor of the inverter air conditioner is a DC motor.
  • the second control unit further includes:
  • a fourth data acquisition unit configured to acquire a detection temperature of the outdoor environment temperature sense package and an outdoor unit condenser temperature when the tube temperature is higher than the dew point temperature
  • a second determining subunit configured to determine whether a difference between a detected temperature of the outdoor unit ambient temperature packet and an outdoor unit condenser temperature is less than or equal to a second temperature difference value
  • a seventh control subunit configured to: when the difference is less than or equal to the second temperature difference, control the DC motor to maintain a current speed operation, and after continuing for an eighth time period, trigger the determining unit to perform determining the current indoor Whether the environment needs to be dehumidified;
  • An eighth control subunit configured to control the DC motor to maintain the current speed operation when the difference is greater than the second temperature difference and the current speed of the DC motor is the highest speed, after the eighth time period is continued, Trimming the determining unit to perform an operation of determining whether the current indoor environment needs to perform a dehumidification process, and controlling the DC motor to increase the rotation speed when the difference is greater than the second temperature difference value and the current speed of the DC motor is not the highest speed
  • the ninth time period is continued, if the number of times the DC motor is controlled to increase the number of rotations does not exceed the second number, the second data acquisition unit is triggered to execute The operation of obtaining the tube temperature of the evaporator and the dew point temperature of the indoor air is performed, otherwise, the judgment unit is triggered to perform an operation of determining whether the current indoor environment needs to perform the dehumidification process.
  • the present invention also discloses an inverter air conditioner comprising an indoor unit and an outdoor unit, wherein the motor in the outdoor unit is a DC motor, and further includes any of the above control devices.
  • the control method of the inverter air conditioner disclosed in the present invention first determines whether the current indoor environment needs to perform a dehumidification operation; when it is determined that the dehumidification operation is not required, If the tube temperature of the evaporator is higher than the dew point temperature of the indoor air, no condensed water will be generated (that is, no dehumidification operation will be performed). At this time, the compressor is controlled to maintain the current frequency and continue to operate if the tube temperature of the evaporator is lower than the temperature. Or equal to the dew point temperature of the indoor air.
  • the frequency of the compressor is lowered, thereby increasing the temperature of the tube temperature of the evaporator and reducing the generation of condensed water (that is, reducing the dehumidification capacity of the inverter air conditioner).
  • the control compressor maintains the current frequency to continue to operate, and the inverter air conditioner performs dehumidification while cooling and cooling, if the tube of the evaporator The temperature is higher than the dew point of the indoor air, at which time the compressor is allowed to increase the frequency.
  • the control method of the inverter air conditioner disclosed by the invention can adjust the humidity of the indoor air, and reduce the dehumidification capacity of the air conditioner by reducing the operating frequency of the compressor when the dehumidification operation is not required, thereby reducing the system energy consumption.
  • FIG. 1 is a flow chart of an embodiment of a method for controlling an inverter air conditioner according to the present invention
  • FIG. 2 is a flow chart of a separate cooling operation in the control method of the inverter air conditioner of the present invention
  • FIG. 3 is a flow chart of determining whether the current indoor environment needs to be dehumidified in the control method of the inverter air conditioner of the present invention
  • Figure 5 is a flow chart showing the control of the DC motor during the dehumidification process in the control method of the inverter air conditioner of the present invention
  • Figure 6 is a flow chart showing an embodiment of a control device for an inverter air conditioner according to the present invention.
  • Figure 7 is a schematic view showing another structure of the first control unit in the control device for the inverter air conditioner of the present invention
  • Fig. 8 is a schematic view showing another structure of the second control unit in the control device for the inverter air conditioner of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention discloses a control method for an inverter air conditioner, which can adjust the humidity of the indoor air and reduce the system energy consumption of the inverter air conditioner.
  • the control method of the frequency converter disclosed by the invention comprises:
  • the separate cooling operation is performed within the first time period, and then the process returns to perform the step of determining whether the current indoor environment needs to be subjected to the dehumidification process, and performing the separate cooling operation, including:
  • the compressor When the tube temperature is not higher than the dew point temperature, if the current operating frequency of the compressor is the lowest frequency, the compressor is controlled to maintain the current frequency for a second period of time, returning to perform the tube temperature of the evaporator and the dew point temperature of the indoor air. Step, if the current operating frequency of the compressor is not the lowest frequency, controlling the compressor to lower the frequency and running for a third period of time, returning to the step of performing the tube temperature of obtaining the evaporator and the dew point temperature of the indoor air;
  • the compressor When the tube temperature is higher than the dew point temperature, the compressor is controlled to maintain the current frequency for a second period of time, and the step of obtaining the tube temperature of the evaporator and the dew point temperature of the indoor air is returned;
  • the control compressor When the tube temperature is higher than the dew point temperature, if the current operating frequency of the compressor is the highest frequency, the control compressor maintains the current frequency running E7 duration, and returns to the step of determining whether the current indoor environment needs to be dehumidified, if the compressor is currently The operating frequency is not the highest frequency, then the compressor is controlled to increase the frequency and run for the fifth time. Then, if the number of times the compressor is controlled to increase the frequency does not exceed the first number of times, then return to perform the determination of the tube temperature of the evaporator and the dew point of the indoor air.
  • the temperature step otherwise, returns to the step of determining whether the current indoor environment needs to be dehumidified; when the tube temperature is not higher than the dew point temperature, the compressor is controlled to maintain the current frequency for the fourth time, and returning to perform the determination of whether the current indoor environment is needed.
  • FIG. 1 is a flowchart of a method for controlling an inverter air conditioner according to the present invention.
  • the control method includes: Step S1: determining whether the current indoor environment needs to be dehumidified when the first preset condition is met, when determining When it is not necessary to perform the dehumidification process, step S2 is performed, and when it is determined that the dehumidification process is required, step S31 is performed.
  • Step S2 Perform a separate cooling operation within the first time period, and then return to step S1.
  • the process of performing a separate cooling operation is shown in Figure 2, including:
  • Step S21 Obtain the tube temperature of the evaporator and the dew point temperature of the indoor air.
  • the evaporator of the inverter air conditioner has a temperature sensing temperature package.
  • the inverter air conditioner is also equipped with a dry and wet bulb temperature sensor for detecting the dry and wet bulb temperature of the indoor environment.
  • the control device of the inverter air conditioner obtains the tube temperature of the evaporator from the temperature sensing package of the evaporator, obtains the kilosphere temperature and the wet bulb temperature of the indoor air from the thousand wet bulb temperature sensor, and calculates the dew point of the indoor air according to the calculation temperature.
  • Step S22 It is judged whether the tube temperature of the evaporator is higher than the dew point temperature of the indoor air, and if so, step S23 is performed, otherwise step S24 is performed.
  • Step S23 Control the compressor to maintain the current frequency for the second time period, and return to step S21.
  • the compressor is controlled to maintain the current frequency operation, and after the second period of continuous operation, the tube temperature of the evaporator and the dew point temperature of the indoor air are again obtained and judged.
  • Step S24 determining whether the current operating frequency of the compressor is the lowest frequency, and if yes, executing step S23, otherwise executing step S25.
  • Step S25 Control the compressor to lower the frequency and run for the third duration, and return to step S21.
  • the heat is released when the indoor air is in contact with the evaporator, so that the air temperature is lowered, but when the indoor air reaches the dew point temperature, the temperature still exists with the evaporator.
  • the temperature difference therefore, the condensed water is simultaneously released during the process of continuing the heat release, so that the air conditioner generates a dehumidification effect while cooling and cooling.
  • the higher the operating frequency of the compressor the lower the evaporator tube temperature, but it is not necessarily proportional to the cooling (cooling) effect. Referring to Table 1, when a 72-frequency inverter is running under the following conditions, the cooling effect of 62Hz operation is obviously better than the 74Hz cooling effect.
  • the cooling effect of the inverter air conditioner can not be directly proportional to the operating frequency of the compressor, but under the same conditions, the lower the operating frequency of the compressor, the tube temperature of the evaporator The higher the dehumidification capacity is, the weaker the dehumidification capability is. Therefore, controlling the compressor to perform the frequency reduction operation can achieve the effect of less dehumidification or even dehumidification alone.
  • inverters of inverter air conditioners have clearly defined operating ranges, such as frequency range, temperature range, pressure range, etc., which are clearly specified in the compressor specifications.
  • operating ranges such as frequency range, temperature range, pressure range, etc.
  • the operating frequency range of the compressor can be determined based on the correspondence between the temperature and pressure and the operating frequency range of the compressor.
  • the frequency range of the compressor operation can be limited according to the efficiency of the compressor operation, so that it can be operated in a relatively high efficiency range.
  • the compressor can be controlled for down-conversion operation.
  • the compressor When it is determined that the tube temperature of the evaporator is lower than or equal to the dew point temperature of the indoor air, it is judged whether the compressor can also perform the frequency reduction operation, and if the frequency reduction operation is possible, the operating frequency of the compressor is lowered, thereby increasing the evaporator Tube temperature and temperature, P low air conditioning dehumidification capacity, to achieve less dehumidification or even dehumidification alone cooling effect.
  • the frequency of P competing for the compressor may be: calculating a difference between the current frequency and the frequency increment of the compressor, and when the difference is greater than the minimum frequency allowed by the compressor, controlling the compressor to operate with the difference, when When the difference is less than or equal to the minimum frequency allowed by the compressor, the compressor is controlled to operate at a minimum frequency, i.e., the compressor is controlled to operate with the larger of the difference and the minimum frequency.
  • Step S31 Obtain the tube temperature of the evaporator and the dew point temperature of the indoor air.
  • Step S32 It is judged whether the tube temperature of the evaporator is higher than the dew point temperature of the indoor air, and if so, step S34 is performed, otherwise step S33 is performed.
  • Step S33 Control the compressor to maintain the current frequency for the fourth time period, and return to step S1.
  • the heat is released when the indoor air is in contact with the evaporator, so that the air temperature is lowered, but when the indoor air reaches the dew point temperature, the temperature still exists with the evaporator.
  • the temperature difference therefore, the condensed water is simultaneously released during the process of continuing the heat release, so that the air conditioner generates a dehumidification effect while cooling and cooling.
  • Step S34 determining whether the current operating frequency of the compressor is the highest frequency, and if yes, executing step S33, otherwise executing step S35.
  • Step S35 Control the compressor to increase the frequency and run the fifth duration, and perform step S36.
  • the tube temperature of the evaporator When the tube temperature of the evaporator is higher than the dew point temperature of the indoor air, condensed water cannot be formed during the heat exchange between the indoor air and the evaporator, and only the heat is transferred to the evaporator to cause the temperature of the air to drop. At this time, it is judged whether the compressor can perform the up-conversion operation, and if the up-conversion operation is possible, the operating frequency of the compressor is increased, thereby reducing the evaporator The temperature of the tube temperature increases the dehumidification capacity of the air conditioner.
  • increasing the frequency of the compressor may be: calculating a sum of a current frequency and a frequency increment of the compressor, and when the sum is less than a maximum frequency allowed by the compressor, controlling the compressor to operate at the sum value, when the sum is When greater than or equal to the maximum frequency allowed by the compressor, the control compressor is operated at the maximum frequency, that is, the compressor is controlled to operate at the smaller of the sum value and the maximum frequency.
  • the frequency increment is preferably set to a small value.
  • the compressor can increase the frequency at a small time.
  • the inverter air conditioner can be finally dehumidified without compression.
  • the frequency of the machine is too high, so as to avoid the compressor consuming too much energy.
  • Step S36 It is judged whether the number of times the compressor is controlled to increase the frequency exceeds the first number of times, and if so, step S1 is performed, otherwise step S31 is performed.
  • the control method of the inverter air conditioner disclosed in the present invention first determines whether the current indoor environment needs to perform a dehumidification operation when the first preset condition is met; when it is determined that the dehumidification operation is not required, if the tube temperature of the evaporator is higher than the indoor air The dew point temperature will not produce condensed water (that is, no dehumidification operation). At this time, the compressor is controlled to maintain the current frequency to continue operation.
  • the compressor allows frequency reduction, P strives for lower compressor frequency, thereby increasing the temperature of the evaporator tube temperature and reducing the generation of condensed water (that is, reducing the dehumidification capacity of the inverter air conditioner); when it is determined that dehumidification operation is required, If the tube temperature of the evaporator is lower than or equal to the dew point temperature of the indoor air, the compressor is controlled to maintain the current frequency to continue to operate, and the inverter air conditioner is dehumidified while cooling and cooling, if the tube temperature of the evaporator is higher than the dew point temperature of the indoor air.
  • dehumidification capacity increase the inverter air conditioner.
  • the control method of the inverter air conditioner disclosed by the invention can adjust the humidity of the indoor air, and reduce the dehumidification capacity of the air conditioner by reducing the operating frequency of the compressor when the dehumidification operation is not required, thereby reducing the system energy consumption.
  • judging whether the current indoor environment needs to be dehumidified can be realized by: determining the type of the received instruction, determining that the dehumidification process is not required when the received instruction is a separate cooling operation instruction, when receiving the instruction When the temperature and humidity adjustment command is made, it is determined that dehumidification treatment is required.
  • FIG. 3 shows a flow for determining whether the current indoor environment needs to be dehumidified.
  • Step S11 Determine the moisture content and the standard moisture content of the current indoor air.
  • the inverter air conditioner control device obtains the dry bulb temperature and the wet bulb temperature of the indoor air from the dry and wet bulb temperature sensor, and calculates the moisture content of the current indoor air accordingly.
  • the target moisture content may be the moisture content corresponding to the target humidity.
  • Step S12 determining whether the moisture content of the current indoor air is greater than the target moisture content, and if so, executing step S14, otherwise, performing step S13.
  • Step S13 determining that the dehumidification process is not required;
  • Step S14 Determine the relative humidity and the set humidity of the current indoor air.
  • Step S15 It is determined whether the relative humidity of the current indoor air is greater than the set humidity. If yes, step S16 is performed; otherwise, step S13 is performed.
  • Step S16 It is determined that dehumidification treatment is required.
  • the humidity of the indoor air is not necessarily greater than the set humidity (the set humidity is the target humidity input by the user through the remote controller or the control panel), therefore, further comparison
  • the relative humidity and set humidity of the current indoor air are determined to require dehumidification only when the relative humidity of the current indoor air is greater than the set humidity.
  • the method for judging whether the current indoor environment needs to be dehumidified is disclosed in FIG. 3, and the moisture content and relative humidity of the current indoor air are calculated according to the dry bulb temperature and the wet bulb temperature of the indoor air obtained by the thousand wet bulb temperature sensor, The target moisture content and the set humidity are compared to determine whether the indoor air needs to be dehumidified.
  • the sum of the moisture content and the moisture content correction parameter corresponding to the target humidity is determined as the target moisture content, and the moisture content correction parameter may be 0.5 g/kg, and may of course be set to other values.
  • the moisture content corresponding to the target humidity is determined as the target humidity, when the step S35 is executed, the compressor is controlled to increase the frequency and run for the fifth time (for example, 10 minutes), and during this operation, the current indoor may have been reached.
  • the moisture content of the air ⁇ 3 is the moisture content corresponding to the moisture content, resulting in excessive dehumidification.
  • the target moisture content is the sum of the moisture content and the moisture content correction parameter corresponding to the target humidity, the problem of excessive dehumidification can be avoided.
  • Step S2 is a flow chart of another method of separate refrigeration operation disclosed herein. The method includes the following steps: Step S21: Obtain the tube temperature of the evaporator and the dew point temperature of the indoor air.
  • Step S22 determining whether the tube temperature of the evaporator is higher than the dew point temperature of the indoor air, and if yes, performing the step
  • step S23 otherwise step S24 and step S26 are performed.
  • Step S23 Control the compressor to maintain the current frequency for the second time, and return to the execution step S2L
  • Step S24 determining whether the current operating frequency of the compressor is the lowest frequency, and if yes, executing step S23, otherwise executing step S25.
  • Step S25 Control the compressor to lower the frequency and run for the third duration, and return to step S21.
  • Step S26 Acquire the detection temperature of the outdoor unit environment temperature sensing package and the outdoor unit condenser temperature.
  • Step S27 determining whether the difference between the detected temperature of the outdoor unit ambient temperature packet and the outdoor unit condenser temperature is 'J, the first temperature difference value, and if yes, executing step S29, otherwise performing step S28.
  • Step S28 The DC motor is controlled to maintain the current speed operation, and after the sixth time period is continued, step S26 is performed.
  • Step S29 It is judged whether the current rotational speed of the DC motor is the minimum rotational speed, and if yes, step S28 is performed, otherwise step S210 is performed.
  • Step S210 Control the DC motor to reduce the rotation speed. After the seventh time period is continued, step S26 is performed.
  • the difference between the detection temperature of the outdoor unit temperature sensing package and the outdoor unit condenser temperature is less than the first temperature difference, it is considered that the heat exchange of the outdoor heat exchanger is good, and the DC motor is allowed to reduce the rotation speed at this time. If the current speed of the DC motor is not the minimum speed, the speed of the DC motor can be reduced, thereby reducing the noise of the inverter air conditioner and improving the user's hearing comfort.
  • the speed of the DC motor can be reduced: Calculate the difference between the current speed of the DC motor and the speed increment. When the difference is greater than the minimum speed allowed by the DC motor, the DC motor is controlled to run at the difference. When the minimum speed allowed by the DC motor is less than or equal to the minimum speed allowed by the DC motor, the DC motor is controlled to operate at the minimum speed, that is, the DC motor is controlled to operate with the larger of the difference and the minimum speed.
  • the control of the DC motor is a gradual process that helps to ensure the reliability and stability of the system operation. Otherwise, for example, the external fan speed is directly reduced from 800 rpm to 500 rpm, which will cause the outdoor heat exchange air volume to drop sharply, which will easily lead to a large increase in exhaust pressure and exhaust temperature, and the compressor load will increase too quickly, which may lead to compressors, etc. system error.
  • steps S26 and S27 are executed again after the sixth period of operation is maintained.
  • the purpose of the method is to detect whether the minimum speed of the DC motor is updated in the program according to the change of the working condition. Whether the DC motor is in an additional controllable state.
  • the speed of the DC motor can be further reduced without affecting the frequency of the dehumidification or even the dehumidification of the inverter air conditioner, thereby further reducing the system energy consumption and reducing the DC motor.
  • the noise is emitted to improve the hearing comfort of the household.
  • Step S32 Acquire the detection temperature of the outdoor unit environment temperature sensor package and the outdoor unit condenser temperature.
  • Step S38 determining whether the difference between the detected temperature of the outdoor unit ambient temperature sensor and the outdoor unit condenser temperature is 'J, is equal to or equal to the second temperature difference value, and if yes, executing step S39, otherwise performing step S310.
  • Step S39 Control the DC motor to maintain the current speed operation, and after continuing for the eighth time period, return to step S1.
  • Step S310 Determine whether the current rotational speed of the DC motor is the highest rotational speed. If yes, go to Step S39, otherwise go to Step S311.
  • Step S311 The DC motor is controlled to increase the rotation speed. After the ninth time period is continued, step S312 is performed.
  • Step S312 It is judged whether the number of times the DC motor is controlled to increase the rotation speed exceeds the second number. If it is exceeded, step S1 is performed; otherwise, step S31 is performed.
  • the difference between the detected temperature of the outdoor unit temperature sensing package and the outdoor unit condenser temperature is greater than the second temperature difference, it is considered that the heat exchange of the outdoor heat exchanger is poor, and the speed of the DC motor needs to be increased.
  • the difference between the temperature of the outdoor unit temperature sensing package and the outdoor unit condenser temperature is less than or equal to the second temperature difference, the DC motor still maintains the current speed running.
  • the speed of the DC motor can be increased as follows: Calculate the sum of the current speed and the speed increment of the DC motor. When the sum is less than the maximum speed allowed by the DC motor, the DC motor is controlled to run at the sum. When the maximum speed allowed by the DC motor is greater than or equal to the maximum speed allowed by the DC motor, the DC motor is controlled to operate at the maximum speed, that is, the DC motor is controlled to operate with the smaller of the difference and the maximum speed.
  • the speed increment is preferably set to a small value.
  • the DC motor can increase the speed at a small time.
  • the outdoor heat exchanger can be ensured to have better heat exchange. There is no excessive speed of the DC motor, which avoids excessive noise generated by the DC motor and consumes too much energy.
  • the first preset condition may be: the time for turning on the inverter air conditioner reaches a preset time. That is, the timing is started after the air conditioner is turned on, and when the timing value reaches the preset time, it is judged whether the current indoor environment needs to be subjected to the dehumidification treatment.
  • the first preset condition may further be: a difference between the indoor ambient temperature and the set temperature is less than a third temperature difference.
  • a difference between the indoor ambient temperature and the set temperature is less than a third temperature difference.
  • the inverter air conditioner After the cooling start-up operation, start to detect the indoor ambient temperature and the set temperature, and calculate the difference between the two.
  • the difference is greater than the third temperature difference (such as 4 ° C)
  • the inverter air conditioner according to the requirements of rapid cooling The refrigeration is performed, and the compressor is in a high-frequency operation state.
  • the difference is less than or equal to the third temperature difference, it is determined whether the current indoor environment needs to be subjected to the dehumidification process. This can ensure that the inverter air conditioner achieves a rapid cooling effect after being turned on.
  • FIG. 6 is a schematic structural diagram of a control device for an inverter air conditioner according to the present invention.
  • the control device includes a determination unit 100, a first control unit 200, and a second control unit 300. Its towel:
  • the determining unit 100 is configured to determine whether the current indoor environment needs to perform the dehumidifying process when the first preset condition is met.
  • the first control unit 200 is configured to perform a separate cooling operation for a first period of time when it is determined that the dehumidification process is not required, and then the trigger determination unit 100 performs an operation of determining whether the current indoor environment requires a dehumidification process.
  • the first control unit 200 includes a first data acquisition subunit 201, a first control subunit 202, and a second control subunit 203. among them:
  • the first data acquisition subunit 201 is configured to acquire the tube temperature of the evaporator and the dew point temperature of the indoor air when it is determined that the dehumidification process is not required.
  • the first control subunit 202 controls the compressor to maintain the current frequency for a second duration when the tube temperature is not higher than the dew point temperature and the current operating frequency of the compressor is the lowest frequency, and then triggers the first data acquisition subunit 201 to perform acquisition evaporation.
  • the second control subunit 202 controls the compressor to maintain the current frequency for a second duration when the tube temperature is higher than the dew point temperature, and then triggers the first data acquisition subunit 201 to perform the tube temperature of the evaporator and the dew point temperature of the indoor air. Operation.
  • the second control unit 300 is configured to perform a dehumidifying operation when it is determined that dehumidification processing is required.
  • the second control unit 300 includes a second data acquisition unit 301, a third control subunit 302, and a fourth control subunit 303. among them:
  • the second data acquisition unit 301 is configured to extract the tube temperature of the evaporator and the dew point temperature of the indoor air when it is determined that dehumidification processing is required.
  • the third control subunit 302 controls the compressor to maintain the current frequency for the fourth time when the tube temperature is higher than the dew point temperature and the current operating frequency of the compressor is the highest frequency, and then the trigger determination unit 100 performs a determination as to whether the current indoor environment needs to be performed.
  • the second data acquisition unit 301 is triggered to perform a process of determining the tube temperature of the evaporator and the dew point temperature of the indoor air. Otherwise, the trigger determination unit 100 performs a determination as to whether the current indoor environment needs to be dehumidified. operating.
  • the fourth control sub-unit 303 is configured to control the compressor to maintain the current frequency for a fourth duration when the tube temperature is not higher than the dew point temperature, and then the trigger determination unit 100 performs an operation of determining whether the current indoor environment needs to perform the dehumidification process.
  • the control device for the inverter air conditioner disclosed by the invention can adjust the humidity of the indoor air, and does not require the dehumidification operation In the process, by reducing the operating frequency of the compressor to reduce the dehumidification capacity of the air conditioner, P competes for lower system energy consumption.
  • judging whether the current indoor environment needs to be dehumidified can be realized by: determining the type of the received instruction, determining that the dehumidification process is not required when the received instruction is a separate cooling operation instruction, when receiving the instruction When the temperature and humidity adjustment command is made, it is determined that dehumidification treatment is required.
  • the judging unit 100 judges whether the current indoor environment needs to perform dehumidification processing, and may adopt other methods.
  • the judging unit 100 includes a first judging subunit for determining whether the current indoor environment needs to perform dehumidification processing, and the first judging subunit includes: a moisture content determining module, configured to determine the current indoor air. The moisture content and the target moisture content; the first processing module is configured to determine that the dehumidification process is not required when the moisture content of the current indoor air is not greater than the target moisture content; and the second processing module is configured to be used in the current indoor air
  • determine the relative humidity and set humidity of the current indoor air determine the relative humidity and set humidity of the current indoor air.
  • the relative humidity is greater than the set humidity, determine that dehumidification treatment is required.
  • the relative humidity is not greater than the set humidity, determine whether Dehumidification is required.
  • the target moisture content may be the moisture content corresponding to the target humidity.
  • the sum of the moisture content and the moisture content correction parameter corresponding to the target humidity may be determined as the target moisture content, and the moisture content correction parameter may be 0.5 g/kg, and may of course be set to other values.
  • the first control unit 200 may take other configurations.
  • Figure 7 is another schematic structural view of the first control unit in the present invention.
  • the first control unit includes: the first control unit 200 includes a first data acquisition subunit 201, a first control subunit 202, a second control subunit 203, a third data acquisition unit 204, a first determination subunit 205, and a fifth Control subunit 206 and sixth control subunit 207.
  • the third data acquisition subunit 204 is configured to obtain the detection temperature of the outdoor environment temperature sensor package and the outdoor unit condenser temperature when the tube temperature is not higher than the dew point temperature.
  • the first judging subunit 205 is configured to determine whether the difference between the detected temperature of the outdoor unit ambient temperature pack and the outdoor unit condenser temperature is less than the first temperature difference.
  • the fifth control sub-unit 206 is configured to control the DC motor to maintain the current speed when the difference between the detected temperature of the outdoor unit temperature sensing package and the outdoor unit condenser temperature is greater than or equal to the first temperature difference, and continues for the sixth time. After the duration, the triggering third data acquisition sub-unit 204 performs an operation of acquiring the detected temperature of the outdoor unit ambient temperature pack and the outdoor unit condenser temperature.
  • the sixth control subunit 207 is configured to control the DC motor to decrease when the difference between the detected temperature of the outdoor unit environment temperature sensing package and the outdoor unit condenser temperature is less than the first temperature difference, and the current speed of the DC motor is not the lowest speed.
  • the third data acquisition sub-unit 204 is triggered to perform the detection temperature of acquiring the temperature sensing package of the outdoor unit environment.
  • the control The DC motor maintains the current speed operation, and after the sixth time period is continued, the third data acquisition sub-unit 204 is triggered to perform an operation of acquiring the detected temperature of the outdoor unit ambient temperature pack and the outdoor unit condenser temperature.
  • FIG. 8 is another schematic structural diagram of a second control unit in the present invention.
  • the second control unit includes: a second data capture unit 301, a third control subunit 302, a fourth control subunit 303, a fourth data acquisition unit 304, a second determination subunit 305, a seventh control subunit 306, and an eighth Control subunit 307.
  • the fourth data acquisition unit 304 is configured to obtain the detection temperature of the outdoor environment temperature sensor package and the outdoor unit condenser temperature when the tube temperature is higher than the dew point temperature.
  • the second judging subunit 305 is configured to determine whether a difference between the detected temperature of the outdoor unit ambient temperature pack and the outdoor unit condenser temperature is less than or equal to the second temperature difference.
  • the seventh control sub-unit 306 is configured to control the DC motor to maintain the current speed when the difference between the detected temperature of the outdoor unit temperature sensing package and the outdoor unit condenser temperature is less than or equal to the second temperature difference, in the eighth After the duration, the trigger determination unit 100 performs an operation of determining whether the current indoor environment needs to perform the dehumidification process.
  • the eighth control subunit 307 is configured to control the DC motor to maintain the difference between the detected temperature of the outdoor unit environment temperature sensing package and the outdoor unit condenser temperature is greater than the second temperature difference value, and the current speed of the DC motor is the highest speed.
  • the trigger determination unit 100 performs an operation of determining whether the current indoor environment needs to perform the dehumidification process; and the difference between the detected temperature of the outdoor temperature sensing package and the outdoor unit condenser temperature When the value is greater than the second temperature difference, and the current speed of the DC motor is not the maximum speed, the DC motor is controlled to increase the speed.
  • the second data is triggered.
  • the acquisition unit 301 performs an operation of acquiring the tube temperature of the evaporator and the dew point temperature of the indoor air. Otherwise, the trigger determination unit 100 performs an operation of determining whether the current indoor environment needs to perform the dehumidification process.
  • the invention also discloses an inverter air conditioner, which comprises an indoor unit and an outdoor unit, wherein the motor in the outdoor unit is a direct current motor, and the inverter air conditioner disclosed in the invention further comprises any of the above-mentioned control devices disclosed in the invention.
  • the inverter air conditioner disclosed by the invention can adjust the humidity of the indoor air, and reduces the dehumidification capability by reducing the operating frequency of the compressor when the dehumidification operation is not required, thereby reducing the system energy consumption.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Abstract

一种变频空调的控制方法,包括:当确定不需要进行除湿操作时,若蒸发器的管温温度高于室内空气的露点温度,则控制压缩机维持当前频率,若蒸发器的管温温度不高于室内空气的露点温度,则在压缩机允许降频的前提下降低压缩机的频率;当确定需要进行除湿操作时,通过比较蒸发器的管温温度和室内空气的露点温度,来控制压缩机的运行频率,使得变频空调在制冷降温的同时进行除湿。还公开了变频空调的控制装置以及变频空调。

Description

一种变频空调的控制方法、 控制装置及变频空调
相关申请 本专利申请要求 2013年 8月 14日申请的, 申请号为 201310354840.3 , 名称为 "一种变频 空调的控制方法、控制装置及变频空调 ',的中国专利申请的优先权,在此将其全文引入作为 参考。
技术领域 本发明属于电器设备控制技术领域, 尤其涉及一种变频空调的控制方法、 控制装置及 变频空调。
背景技术 现在越来越多的变频空调出现在人们的生活中。现有的空调控制方法, 是依据空调的 设定温度进行制冷控制的, 当室内的环境温度与设定温度之间的差值较大时, 提高变频空 调的压缩机的频率, 当室内的环境温度与设定温度之间的差值较小时, 降低变频空调的压 缩机的频率。
但是, 依据现有的控制方法, 会出现变频空调的蒸发器管温过低的情况。 当蒸发器的 管温低于空气中水蒸气的露点温度时, 氷蒸气将冷凝成水, 水蒸气冷凝过程中会消耗掉部 分冷量 (这部分冷量称为空调的潜热负荷), 从而增大系统的能耗, 蒸发器的管温温度越 低, 空调的潜热负荷越大。 另外, 当变频空调长时间制冷运行后, 会导致室内的空气湿度 下降, 使得用户产生不适感。
因此, 如何实现室内空气湿度的调节并降低系统能耗, 是本领域技术人员亟待解决的 问题。 发明内容
有鉴于此, 本发明的日的在于提供一种变频空调的控制方法, 可以调节室内空气的湿 度, 并降低变频空调的系统能耗。
为实现上述目的, 本发明提供如下技术方案: 本发明公开了一种变频空调的控制方法, 包括:
在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理;
当确定不需要进行除湿处理时, 在第一时长内执行单独制冷操作, 之后返回执行判断 当前室内环境是否需要进行除湿处理的步骤, 执行单独制冷操作 , 包括:
获取蒸发器的管温温度和室内空气的露点温度;
在所述管温温度不高于所述露点温度时, 若压缩机当前的运行频率是最低频率, 则控 制所述压缩机维持当前频率运行第二时长, 返回执行获取蒸发器的管温温度和室内空气的 露点温度的步骤, 若压缩机当前的运行频率不是最低频率, 则控制所述压缩机降低频率并 运行第三时长, 返回执行获取蒸发器的管温温度和室内空气的露点温度的步骤;
在所述管温温度高于所述露点温度时, 控制所述压缩机维持当前频率运行第二时长, 返回执行获取蒸发器的管温温度和室内空气的露点温度的步骤;
当确定需要进行除湿操作时, 执行以下步骤:
获取蒸发器的管温温度和室内空气的露点温度;
在所述管温温度高于所述露点温度时, 若压缩机当前的运行频率是最高频率, 控制所 述压缩机維持当前频率运行第四时长, 返回执行判断当前室内环境是否需要进行除湿处理 的步骤, 若压缩机当前的运行频率不是最高频率, 则控制所述压缩机提高频率并运行第五 时长, 之后若控制压缩机提高频率的次数未超过第一次数, 则返回执行确定蒸发器的管温 温度和室内空气的露点温度的步骤, 否则, 返回执行判断当前室内环境是否需要进行除湿 处理的步骤;
在所述管温温度不高于所述露点温度时, 控制所述压縮机维持当前频率运行第四时长, 返回执行判断当前室内环境是否需要进行除湿处理的步驟。
在其中一个实施例中, 在上述控制方法中, 所述判断当前室内环境是否需要进行除湿 处理, 包括:
确定当前室内空气的含湿量和目标含湿量;
在当前室内空气的含湿量不大于目标含湿量时, 确定不需要进行除湿处理; 在当前室内空气的含湿量大于目标含湿量时, 确定当前室内空气的相对湿度和设定湿 度, 在所述相对湿度大于所述设定湿度时, 确定需要进行除湿处理, 在所述相对湿度不大 于所述设定湿度时, 确定不需要进行除湿处理。
在其中一个实施例中, 变频空调的室外机电机为直流电机, 在上述控制方法中, 执行 单独制冷操作的过程中,在所述管温温度不高于所述露点温度时 , 还包括:
获取室外机环境感温包的检测温度和室外机冷凝器温度; 判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否小于第一温 差值;
在所述差值大于或等于所述第一温差值时, 控制所述直流电机维持当前转速运行, 在 持续第六时长后, 返回执行获取室外机环境感温包的检测温度和室外机冷凝器温度的步驟; 在所述差值小于所述第一温差值时, 若所述直流电机当前的转速不是最低转速, 则控 制所述直流电机降低转速, 在持续第七时长后, 返回执行获取室外机环境感温包的检测温 度和室外机冷凝器温度的步骤, 若所述直流电机当前的转速是最低转速, 则控制所述直流 电机维持当前转速运行, 在持续第六时长后, 返回执行获取室外机环境感温包的检测温度 和室外机冷凝器温度的步骤。
在其中一个实施例中, 变频空调的室外机电机为直流电机, 在上述控制方法中, 当确 定需要进行除湿操作时, 在所述管温温度高于所述露点温度时, 还包括:
获取室外机环境感温包的检测温度和室外机冷凝器温度;
判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否小于或等于 第二温差值;
在所述差值小于或等于所述第二温差值时, 控制所述直流电机维持当前转速运转, 在 持续第八时长后, 返回执行判断当前室内环境是否需要进行除湿处理的步骤;
在所述差值大于所述第二温差值时, 若所述直流电机当前的转速是最高转速, 则控制 所述直流电机维持当前转速运行, 在持续第八时长后, 返回执行判断当前室内环境是否需 要进行除湿处理的步骤, 若所述直流电机当前的转速不是最高转速, 则控制所述直流电机 提高转速, 在持续第九时长后, 若控制直流电机提高转速的次数未超过第二次数, 则返回 执行获取蒸发器的管温温度和室内空气的露点温度的步驟, 否则, 返回执行判断当前室内 环境是否需要进行除湿处理的步骤。
在其中一个实施例中, 在上述控制方法中, 所述第一预设条件为室内环境温度和设定 温度之间的差值小于第三温度差;
当室内环境温度和设定温度之间的差值小于第三温度差时, 执行判断当前室内环境是 否需要进行除湿处理的步骤。
另一方面, 本发明还公开了一种变频空调的控制装置, 包括:
判断单元, 用于在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理; 第一控制单元,用于在确定不需要进行除湿处理时,在第一时长内执行单独制冷操作, 之后触发所述判断单元执行判断当前室内环境是否需要进行除湿处理的操作; 所述第一控 制单元包括第一数据获取子单元、 第一控制子单元和第二控制子单元; 所述第一数据获取子单元用于在确定不需要进行除湿处理时, 获取蒸发器的管温温度 和室内空气的露点温度;
所述第一控制子单元在所述管温温度不高于所述露点温度且压缩机当前的运行频率 是最低频率时, 控制所述压缩机维持当前频率运行第二时长, 之后触发所述第一数据获取 子单元执行获取蒸发器的管温温度和室内空气的露点温度的操作, 在所述管温温度不高于 所述露点温度且压缩机当前的运行频率不是最低频率时, 控制所述压缩机降低频率并运行 第三时长, 之后触发所述第一数据获取子单元执行获取蒸发器的管温温度和室内空气的露 点温度的操作;
所述第二控制子单元在所述管温温度高于所述露点温度时, 控制所述压缩机维持当前 频率运行第二时长, 之后触发所述第一数据获取子单元执行获取蒸发器的管温温度和室内 空气的露点温度的操作;
第二控制单元, 用于在确定需要进行除湿处理时, 进行除湿操作; 所述第二控制单元 包括第一数据获取单元、 第三控制子单元和第四控制子单元;
所述第二数据获取单元用于在确定需要进行除湿处理时, 获取蒸发器的管温温度和室 内空气的露点温度;
所述第三控制子单元在所述管温温度高于所述露点温度且压縮机当前的运行频率是 最高频率时, 控制所述压缩机维持当前频率运行第四时长, 之后触发所述判断单元执行判 断当前室内环境是否需要进行除湿处理的操作 , 所述第三控制子单元在所述管温温度高于 所述露点温度且压缩机当前的运行频率不是最高频率时, 控制所述压缩机提高频率并运行 第五时长, 若控制压縮机提高频率的次数未超过第一次数, 则触发所述第二数据荻取单元 执行确定蒸发器的管温温度和室内空气的露点温度的操作, 否则, 触发所述判断单元执行 判断当前室内环境是否需要进行除湿处理的操作;
所述第四控制子单元用于在所述管温温度不高于所述露点温度时, 控制所述压缩机维 持当前频率运行第四时长, 之后触发所述判断单元执行判断当前室内环境是否需要进行除 湿处理的操作。
在其中一个实施例中, 在上述控制装置中, 所述判断单元包括第一判断子单元, 所述 第一判断子单元用于判断当前室内环境是否需要进行除湿处理, 所述第一判断子单元包括: 含湿量确定模块, 用于确定当前室内空气的含湿量和目标含湿量;
第一处理模块, 用于在当前室内空气的含湿量不大于目标含湿量时, 确定不需要进行 除湿处理;
第二处理模块, 用于在当前室内空气的含湿量大于 ¾标含湿量时, 确定当前室内空气 的相对湿度和设定湿度, 在所述相对湿度大于所述设定湿度时, 确定需要进行除湿处理, 在所述相对湿度不大于所述设定湿度时, 确定不需要进行除湿处理。
在其中一个实施例中, 变频空调的室外机电机为直流电机, 在上述控制装置中, 所述 第一控制单元还包括:
所述第三数据获取子单元, 用于在所述管温温度不高于所述露点温度时, 获取室外机 环境感温包的检测温度和室外机冷凝器温度;
第一判断子单元, 用于判断室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值是否小于第一温差值;
第五控制子单元, 用于在所述差值大于或等于所述第一温差值时, 控制所述直流电机 维持当前转速运行, 在持续第六时长后, 触发所述第三数据获取子单元执行获取室外机环 境感温包的检测温度和室外机冷凝器温度的操作;
第六控制子单元 , 用于在所述差值小于所述第一温差值且所述直流电机当前的转速不 是最低转速时, 控制所述直流电机降低转速, 在持续第七时长后, 触发所述第三数据获取 子单元执行获取室外机环境感温包的检测温度和室外机冷凝器温度的操作, 在所述差值小 于所述第一温差值且所述直流电机当前的转速是最低转速时, 控制所述直流电机维持当前 转速运行, 在持续第六时长后, 触发所述第三数据获取子单元执行获取室外机环境感温包 的检测温度和室外机冷凝器温度的操作。
在其中一个实施例中, 变频空调的室外机电机为直流电机, 在上述控制装置中, 所述 第二控制单元还包括:
第四数据获取单元, 用于在所述管温温度高于所述露点温度时, 获取室外机环境感温 包的检测温度和室外机冷凝器温度;
第二判断子单元, 用于判断所述室外机环境感温包的检测温度与室外机冷凝器温度之 间的差值是否小于或等于第二温差值;
第七控制子单元, 用于在所述差值小于或等于所述第二温差值时, 控制所述直流电机 维持当前转速运转, 在持续第八时长后, 触发所述判断单元执行判断当前室内环境是否需 要进行除湿处理的操作;
第八控制子单元 , 用于在所述差值大于所述第二温差值且所述直流电机当前的转速是 最高转速时, 控制所述直流电机维持当前转速运行, 在持续第八时长后, 触发所述判断单 元执行判断当前室内环境是否需要进行除湿处理的操作 , 在所述差值大于所述第二温差值 且所述直流电机当前的转速不是最高转速时, 控制所述直流电机提高转速, 在持续第九时 长后, 若控制直流电机提高转速的次数未超过第二次数, 则触发所述第二数据获取单元执 行获取蒸发器的管温温度和室内空气的露点温度的操作 , 否则, 触发所述判断单元执行判 断当前室内环境是否需要进行除湿处理的操作。
另一方面, 本发明还公开了一种变频空调, 包括室内机和室外机, 所述室外机中的电 机为直流电机, 还包括上述任一种控制装置。
由此可见, 本发明的有益效果为: 本发明公开的变频空调的控制方法, 在满足第一预 设条件时,首先判断当前室内环境是否需要进行除湿操作; 当确定不需要进行除湿操作时, 若蒸发器的管温温度高于室内空气的露点温度, 则不会产生冷凝水(也就是不进行除湿操 作), 此时控制压缩机维持当前频率继续运行, 若蒸发器的管温温度低于或等于室内空气 的露点温度, 此时在压缩机允许降频的前提下, 降低压缩机的频率, 从而提高蒸发器的管 温温度, 减少冷凝水的产生 (也就是降低变频空调的除湿能力); 当确定需要进行除湿操 作时, 若蒸发器的管温温度低于或等于室内空气的露点温度, 控制压缩机维持当前频率继 续运行, 变频空调在制冷降温的同时进行除湿, 若蒸发器的管温温度高于室内空气的露点 温度,此时在压缩机允许升频的前提下,提高压缩机的频率,从而降低蒸发器的管温温度, 提高变频空调的除湿能力。本发明公开的变频空调的控制方法,可以调节室内空气的湿度, 并且在不需要除湿操作时, 通过降低压缩机的运行频率来降低空调的除湿能力, 降低了系 统能耗。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这 些附图获得其他的附图。
图 1为本发明的一种变频空调的控制方法的一个实施例的流程图;
图 2为本发明的变频空调的控制方法中, 一种单独制冷操作的流程图;
图 3为本发明的变频空调的控制方法中, 一种判断当前室内环境是否需要进行除湿处 理的流程图;
图 4为本发明的变频空调的控制方法中, 另一种单独制冷操作的流程图;
图 5为本发明的变频空调的控制方法中, 进行除湿处理过程中对直流电机进行控制的 流程图;
图 6为本发明的一种变频空调的控制装置的一个实施例的流程图;
图 7为本发明的变频空调的控制装置中, 第一控制单元的另一种结构示意图; 图 8为本发明的变频空调的控制装置中, 第二控制单元的另一种结构示意图。 具体实施方式 本发明公开了一种变频空调的控制方法, 可以调节室内空气的湿度, 并降低变频空调 的系统能耗。
本发明公开的变频器的控制方法包括:
在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理;
当确定不需要进行除湿处理时, 在第一时长内执行单独制冷操作, 之后返回执行判断 当前室内环境是否需要进行除湿处理的步骤, 执行单独制冷操作 , 包括:
获取蒸发器的管温温度和室内空气的露点温度;
在管温温度不高于露点温度时, 若压缩机当前的运行频率是最低频率, 则控制压缩机 维持当前频率运行第二时长, 返回执行获取蒸发器的管温温度和室内空气的露点温度的步 驟, 若压缩机当前的运行频率不是最低频率, 则控制压缩机降低频率并运行第三时长, 返 回执行获取蒸发器的管温温度和室内空气的露点温度的步骤;
在管温温度高于露点温度时, 控制压缩机维持当前频率运行第二时长, 返回执行获取 蒸发器的管温温度和室内空气的露点温度的步骤;
当确定需要进行除湿操作时, 执行以下步骤:
获取蒸发器的管温温度和室内空气的露点温度;
在管温温度高于露点温度时, 若压缩机当前的运行频率是最高频率, 控制压缩机维持 当前频率运行第 E7时长, 返回执行判断当前室内环境是否需要进行除湿处理的步骤, 若压 缩机当前的运行频率不是最高频率, 则控制压缩机提高频率并运行第五时长, 之后若控制 压缩机提高频率的次数未超过第一次数, 则返回执行确定蒸发器的管温温度和室内空气的 露点温度的步骤, 否则, 返回执行判断当前室内环境是否需要进行除湿处理的步骤; 在管温温度不高于露点温度时, 控制压缩机维持当前频率运行第四时长, 返回执行判 断当前室内环境是否需要进行除湿处理的步骤。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例中的 附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本 发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 1 ,图 1为本发明公开的一种变频空调的控制方法的流程图。该控制方法包括: 步骤 S1 : 在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理, 当确定 不需要进行除湿处理时, 执行步骤 S2, 当确定需要进行除湿处理时, 执行步骤 S31。 步骤 S2: 在第一时长内执行单独制冷操作, 之后返回执行步骤 Sl。 执行单独制冷操 作的过程如图 2所示, 包括:
步骤 S21 : 获取蒸发器的管温温度和室内空气的露点温度。
变频空调的蒸发器具有温度感温包, 另外, 变频空调还配置有用于检测室内环境干、 湿球温度的干湿球温度传感器。 实施中, 变频空调的控制装置从蒸发器的温度感温包获取 蒸发器的管温温度, 从千湿球温度传感器获取室内空气的千球温度和湿球温度, 并据此计 算室内空气的露点温度。
步骤 S22: 判断蒸发器的管温温度是否高于室内空气的露点温度, 若是, 则执行步骤 S23 , 否则执行步骤 S24。
步骤 S23 : 控制压縮机维持当前频率运行第二时长, 返回执行步骤 S21。
当蒸发器的管温温度高于室内空气的露点温度时, 室内空气与蒸发器发生热交换过程 中无法形成冷凝水, 而仅是将热量传递给蒸发器致使空气温度下降。 此时, 控制压缩机维 持当前频率运行, 在持续运行第二时长后, 再次获取蒸发器的管温温度和室内空气的露点 温度并进行判断。
步骤 S24: 判断压缩机当前的运行频率是否为最低频率, 若是, 则执行步骤 S23 , 否 则执行步骤 S25。
步骤 S25: 控制压缩机降低频率并运行第三时长, 返回执行步骤 S21。
当蒸发器的管温温度低于或等于室内空气的露点温度时, 室内空气与蒸发器接触换热 时释放热量, 使得空气温度降低, 但当室内空气达到露点温度时, 与蒸发器温度仍存在温 差, 因此在继续放热过程中同时析释出冷凝水,使得空调在制冷降温的同时产生除湿效果。 一般情况下压缩机的运行频率越高,蒸发器管温温度越低,但却不一定与制冷(降温) 效果呈正比关系。 参见表 1 , 某 72变频根机在以下工况运行时, 62Hz运行的降温效果明 显优于 74Hz降温效果。
表 1
Figure imgf000009_0001
因此, 变频空调的制冷降温效果并不能直接的与压縮机运行频率的高低呈正比关系, 但在其他给定条件不变的情况下, 压缩机的运行频率越低, 蒸发器的管温温度越高, 其除 湿能力越弱, 因此控制压缩机执行降频操作可以实现少除湿甚至不除湿单独制冷的效果。
另外, 变频空调的压缩机均有明确规定的运行范围, 如频率范围、 温度范围、 压力范 围等, 这些在压缩机规格书中均有明确规定。 当压缩机在不同温度相同频率下运行时, 压 缩机的压力是不一样的。 因此, 对应不同的温度及压力, 压缩机的运行频率范围也是不同 的。
实施中, 根据温度、 压力与压缩机的运行频率范围之间的对应关系就可以确定压缩机 的运行频率范围。 另外, 也可以根据压缩机运行的效率去限定压缩机运行的频率范围, 使 其在效率比较高的范围内去运转。 当压缩机当前的运行频率不是压缩机频率范围内的最低 频率时, 可以控制压缩机进行降频操作。
当确定蒸发器的管温温度低于或等于室内空气的露点温度时, 判断压缩机是否还可以 进行降频操作, 若可以进行降频操作, 则降低压缩机的运行频率, 从而提高蒸发器的管温 温度, P 低空调的除湿能力, 实现少除湿甚至不除湿单独制冷的效果。
实施中, P争低压缩机的频率可以为: 计算压缩机当前频率和频率增量的差值, 当该差 值大于压缩机允许的最小频率时, 控制压缩机以该差值运行, 当该差值小于或等于压縮机 允许的最小频率时, 控制压缩机以最小频率运行, 也就是控制压缩机以该差值和最小频率 中较大的一个运行。
步骤 S31 : 获取蒸发器的管温温度和室内空气的露点温度。
步骤 S32: 判断蒸发器的管温温度是否高于室内空气的露点温度, 若是, 则执行步骤 S34, 否则执行步骤 S33。
步骤 S33 : 控制压缩机维持当前频率运行第四时长, 返回执行步骤 Sl。
当蒸发器的管温温度低于或等于室内空气的露点温度时, 室内空气与蒸发器接触换热 时释放热量, 使得空气温度降低, 但当室内空气达到露点温度时, 与蒸发器温度仍存在温 差 , 因此在继续放热过程中同时析释出冷凝水,使得空调在制冷降温的同时产生除湿效果。
步骤 S34: 判断压缩机当前的运行频率是否为最高频率, 若是, 则执行步骤 S33 , 否 则执行步骤 S35。
步骤 S35: 控制压缩机提高频率并运行第五时长, 执行步骤 S36。
当蒸发器的管温温度高于室内空气的露点温度时, 室内空气与蒸发器发生热交换过程 中无法形成冷凝水, 而仅是将热量传递给蒸发器致使空气温度下降。 此时, 判断压缩机是 否可以进行升频操作, 若可以进行升频操作, 则提高压缩机的运行频率, 从而降低蒸发器 的管温温度, 提高空调的除湿能力。
实施中, 提高压缩机的频率可以为: 计算压缩机当前频率和频率增量的和值, 当该和 值小于压缩机允许的最大频率时, 控制压缩机以该和值运行, 当该和值大于或等于压缩机 允许的最大频率时, 控制压缩机以最大频率运行, 也就是控制压缩机以该和值和最大频率 中较小的一个运行。
该频率增量优选设置为较小的数值, 此时压缩机每次可提高的频率较小, 通过执行多 次提高压缩机频率的操作, 最终可以保证变频空调进行除湿处理, 而不会出现压缩机的频 率过高的情况, 从而避免压缩机消耗过多的能源。
步骤 S36:判断控制压缩机提高频率的次数是否超过第一次数,若是,则执行步骤 Sl, 否则执行步骤 S31。
本发明公开的变频空调的控制方法, 在满足第一预设条件时, 首先判断当前室内环境 是否需要进行除湿操作; 当确定不需要进行除湿操作时, 若蒸发器的管温温度高于室内空 气的露点温度, 则不会产生冷凝水(也就是不进行除湿操作), 此时控制压缩机维持当前 频率继续运行, 若蒸发器的管温温度低于或等于水蒸气的露点温度, 此时在压缩机允许降 频的前提下, P争低压缩机的频率, 从而提高蒸发器的管温温度, 减少冷凝水的产生 (也就 是降低变频空调的除湿能力); 当确定需要进行除湿操作时, 若蒸发器的管温温度低于或 等于室内空气的露点温度, 控制压缩机维持当前频率继续运行, 变频空调在制冷降温的同 时进行除湿, 若蒸发器的管温温度高于室内空气的露点温度, 此时在压缩机允许升频的前 提下, 提高压缩机的频率, 从而降低蒸发器的管温温度, 提高变频空调的除湿能力。 本发 明公开的变频空调的控制方法, 可以调节室内空气的湿度, 并且在不需要除湿操作时, 通 过降低压缩机的运行频率来降低空调的除湿能力, 降低了系统能耗。
实施中, 判断当前室内环境是否需要进行除湿处理, 可以通过以下方式实现: 判断接 收到的指令类型, 当接收到的指令为单独制冷操作指令时, 确定不需要进行除湿处理, 当 接收到的指令为温湿度调节指令时, 确定需要进行除湿处理。
当然, 判断当前室内环境是否需要进行除湿处理, 还可以采用其他方式, 图 3示出了 一种判断当前室内环境是否需要进行除湿处理的流程。 包括:
步骤 S11 : 确定当前室内空气的含湿量和 标含湿量。
变频空调的控制装置从干湿球温度传感器获取室内空气的干球温度和湿球温度, 并据 此计算当前室内空气的含湿量。 目标含湿量可以是目标湿度对应的含湿量。
步骤 S12: 判断当前室内空气的含湿量是否大于目标含湿量,若是,则执行步骤 S14, 否则, 执行步骤 S 13。 步骤 S13 : 确定不需要进行除湿处理;
步骤 S14: 确定当前室内空气的相对湿度和设定湿度。
步骤 S15: 判断当前室内空气的相对湿度是否大于设定湿度,若是,则执行步骤 S16, 否则, 执行步驟 S 13。
步骤 S16: 确定需要进行除湿处理。
在当前室内空气的含湿量小于或等于 标含湿量时, 确定不需要进行除湿处理。 但是 在当前室内空气的含湿量大于目标含湿量时, 室内空气的湿度并不一定也大于设定湿度 (设定湿度是用户通过遥控器或控制面板输入的目标湿度), 因此, 进一步比较当前室内 空气的相对湿度和设定湿度, 只有在当前室内空气的相对湿度大于设定湿度时, 才确定需 要进行除湿处理。
图 3公开的判断当前室内环境是否需要进行除湿处理的方法, 根据千湿球温度传感器 获取到的室内空气的干球温度和湿球温度, 计算当前室内空气的含湿量和相对湿度, 通过 与目标含湿量和设定湿度的比对, 确定室内空气是否需要进行除湿处理。
作为优选方案, 将目标湿度对应的含湿量与含湿量修正参数之和确定为目标含湿量, 含湿量修正参数可以为 0.5g/kg, 当然也可以设置为其他数值。假如将目标湿度对应的含湿 量确定为 Θ标湿度, 在执行步骤 S35 时, 要控制压缩机提高频率并运行第五时长(如 10 分钟), 可能在此运行过程中, 已经达到了当前室内空气的含湿量≤ 3标含湿量所对应的含 湿量, 从而导致除湿过度。 当目标含湿量为目标湿度对应的含湿量与含湿量修正参数之和 时, 可以避免出现除湿过度的问题。
当变频空调中的室外机电机为直流电机时, 步驟 S2 中执行单独制冷操作还可以采用 其他方式。 参见图 4, 图 4为本发明公开的另一种单独制冷操作的方法的流程图。 包括: 步骤 S21 : 获取蒸发器的管温温度和室内空气的露点温度。
步骤 S22: 判断蒸发器的管温温度是否高于室内空气的露点温度, 若是, 则执行步骤
S23 , 否则执行步骤 S24和步骤 S26。
步骤 S23 : 控制压缩机维持当前频率运行第二时长, 返回执行步骤 S2L
步骤 S24: 判断压缩机当前的运行频率是否为最低频率, 若是, 则执行步骤 S23 , 否 则执行步骤 S25。
步骤 S25: 控制压缩机降低频率并运行第三时长, 返回执行步骤 S21。
步骤 S26: 获取室外机环境感温包的检测温度和室外机冷凝器温度。
步骤 S27: 判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否 'J、 于第一温差值, 若是, 则执行步骤 S29, 否则执行步骤 S28。 步骤 S28: 控制直流电机维持当前转速运行, 在持续第六时长后, 执行步驟 S26。 步骤 S29: 判断直流电机当前的转速是否为最低转速, 若是, 则执行步骤 S28 , 否则 执行步骤 S210。
步骤 S210: 控制所述直流电机降低转速, 在持续第七时长后, 执行步骤 S26。
T f.^表示室外机环境感温包的检测温度 T 与室外机冷凝器温度 T 之间的 差值, 即 T =T Τ A1为设定的第一温差值(推荐在 l-5 'C范围)。 当 Τ 较小时, 说明室外冷凝换热效果较好, 而其间接的影响着室内蒸发器的制冷效果: 在其 他条件一样的情况下, 当 Τ . 小时, 室内蒸发器的制冷效果要好于当 较大时的 制冷效果。 如某机型在相同频率 (70Hz ) . 相同风量 ( 1100m3/h )、 相同名义制冷工况 ( 27°C/19°C , 35 °C/24°C ) 下, 外风机分别以 800rpm和 750rpm运行, 其出风温度分别为
12.3。C和 12.8°C , 对应的室外管温温度分别为 39.6°C和 41 °C。
当室外机环境感温包的检测温度与室外机冷凝器温度之间的差值小于第一温差值时, 认为室外换热器的换热较好, 此时仍允许直流电机降低转速。 若直流电机当前的转速不是 最低转速, 可以降低直流电机的转速, 从而降低变频空调的噪音, 提高用户在听觉上的舒 适性。
实施中, 降低直流电机的转速可以为: 计算直流电机当前转速和转速增量的差值, 当 该差值大于直流电机允许的最小转速时, 控制直流电机以该差值运行, 当该和值小于或等 于直流电机允许的最小转速时, 控制直流电机以最小转速运行, 也就是控制直流电机以该 差值和最小转速中较大的一个运行。
对直流电机的控制是一个渐进的过程,有利于保证系统运行的可靠性和稳定性。否则, 例如外风机转速直接从 800rpm直接降低至 500rpm, 这会使得室外换热风量骤降, 容易导 致排气压力、排气温度出现大幅度上升,压缩机负荷增大过快容易导致压缩机等系统故障。
在直流电机当前的转速为最低转速时,维持运行第六时长后再次执行步驟 S26和 S27, 其目的在于: 检测是否随着工况的变化, 直流电机的最低转速在程序上进行了更新, 判断 直流电机是否处于附加可控状态。
基于图 4公开的另一种执行单独制冷操作的方法, 在不影响变频空调少除湿甚至不除 湿单独制冷的前提下, 可以进一步降低直流电机的转速, 从而进一步降低系统能耗, 并降 低直流电机发出的噪音, 提高户在听觉上的舒适性。
另外, 当变频空调中室外机电机是直流电机时, 在图 1所示的控制方法中, 在执行步 骤 S32确定蒸发器的管温温度高于室内空气的露点温度时, 除了执行现有的步骤 S34及后 续步骤之外, 还可以包括以下步骤(如图 5所示): 步骤 S37: 获取室外机环境感温包的检测温度和室外机冷凝器温度。
步骤 S38: 判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否 'J、 于或等于第二温差值, 若是, 则执行步骤 S39 , 否则执行步骤 S310。
步骤 S39: 控制直流电机维持当前转速运转, 在持续第八时长后, 返回执行步骤 S l。 步骤 S310: 判断直流电机当前的转速是否为最高转速, 若是, 则执行步骤 S39, 否则 执行步骤 S311。
步骤 S311 : 控制直流电机提高转速, 在持续第九时长后, 执行步骤 S312。
步骤 S312: 判断控制直流电机提高转速的次数是否超过第二次数, 若超过, 则执行步 骤 S 1 , 否则执行步骤 S31。
当室外机环境感温包的检测温度与室外机冷凝器温度之间的差值大于第二温差值时, 认为室外换热器的换热较差, 此时需要提高直流电机的转速。 当室外机环境感温包的检测 温度与室外机冷凝器温度之间的差值小于或等于第二温度差值时, 直流电机仍保持当前转 速运行。
实施中, 提高直流电机的转速可以为: 计算直流电机当前转速和转速增量的和值, 当 该和值小于直流电机允许的最大转速时, 控制直流电机以该和值运行, 当该和值大于或等 于直流电机允许的最大转速时, 控制直流电机以最大转速运行, 也就是控制直流电机以该 差值和最大转速中较小的一个运行。
该转速增量优选设置为较小的数值, 此时直流电机每次可提高的转速较小, 通过执行 多次提高直流电机转速的操作, 最终可以保证室外换热器具有较好的换热, 而不会出现直 流电机的转速过高的情况, 从而避免直流电机产生过多的噪音, 消耗过多的能源。
在本发明上述公开的控制方法中, 第一预设条件可以为: 开启变频空调的时间达到预 设时间。 也就是, 在开启空调后开始计时, 当计时值达到预设时间时, 判断当前室内环境 是否需要进行除湿处理。
另外, 该第一预设条件还可以为: 室内环境温度和设定温度之间的差值小于第三温度 差。 在制冷开机运行后, 开始检测室内环境温度和设定温度, 并计算两者之间的差值, 当 该差值大于第三温度差 (如 4°C ) 时, 变频空调按照快速制冷的要求进行制冷, 此时压缩 机处于高频运行状态, 当该差值小于或等于第三温度差, 则判断当前室内环境是否需要进 行除湿处理。 这样可以保证变频空调在开机之后达到快速降温的效果。
本发明上述公开了变频空调的控制方法,相应的,本发明还公开变频空调的控制装置, 以实现该控制方法。 参见图 6, 图 6为本发明公开的一种变频空调的控制装置的结构示意 图。 该控制装置包括判断单元 100、 第一控制单元 200和第二控制单元 300。 其巾:
判断单元 100用于在满足第一预设条件时,判断当前室内环境是否需要进行除湿处理。 第一控制单元 200用于在确定不需要进行除湿处理时, 在第一时长内执行单独制冷操 作, 之后触发判断单元 100执行判断当前室内环境是否需要进行除湿处理的操作。 第一控 制单元 200包括第一数据获取子单元 201、 第一控制子单元 202和第二控制子单元 203。 其中:
第一数据获取子单元 201用于在确定不需要进行除湿处理时, 获取蒸发器的管温温度 和室内空气的露点温度。
第一控制子单元 202在管温温度不高于露点温度且压缩机当前的运行频率是最低频率 时, 控制压缩机维持当前频率运行第二时长, 之后触发第一数据获取子单元 201执行获取 蒸发器的管温温度和室内空气的露点温度的操作; 第一控制子单元 202在管温温度不高于 露点温度且压缩机当前的运行频率不是最低频率时, 控制压缩机降低频率并运行第三时长, 之后触发第一数据获取子单元 201执行获取蒸发器的管温温度和室内空气的露点温度的操 作。
第二控制子单元 202在管温温度高于露点温度时, 控制压缩机维持当前频率运行第二 时长, 之后触发第一数据获取子单元 201执行获取蒸发器的管温温度和室内空气的露点温 度的操作。
第二控制单元 300用于在确定需要进行除湿处理时,进行除湿操作。第二控制单元 300 包括第二数据获取单元 301、 第三控制子单元 302和第四控制子单元 303。 其中:
第二数据获取单元 301用于在确定需要进行除湿处理时, 荻取蒸发器的管温温度和室 内空气的露点温度。
第三控制子单元 302在管温温度高于露点温度且压缩机当前的运行频率是最高频率时, 控制压缩机维持当前频率运行第四时长, 之后触发判断单元 100执行判断当前室内环境是 否需要进行除湿处理的操作; 第三控制子单元 302在管温温度高于露点温度且压缩机当前 的运行频率不是最高频率时, 控制压缩机提高频率并运行第五时长, 若控制压缩机提高频 率的次数未超过第一次数, 则触发第二数据获取单元 301执行确定蒸发器的管温温度和室 内空气的露点温度的搮作, 否则, 触发判断单元 100执行判断当前室内环境是否需要进行 除湿处理的操作。
第四控制子单元 303用于在管温温度不高于露点温度时, 控制压缩机维持当前频率运 行第四时长,之后触发判断单元 100执行判断当前室内环境是否需要进行除湿处理的操作。
本发明公开的变频空调的控制装置, 可以调节室内空气的湿度, 并且在不需要除湿操 作时, 通过降低压缩机的运行频率来降低空调的除湿能力, P争低了系统能耗。
实施中, 判断当前室内环境是否需要进行除湿处理, 可以通过以下方式实现: 判断接 收到的指令类型, 当接收到的指令为单独制冷操作指令时, 确定不需要进行除湿处理, 当 接收到的指令为温湿度调节指令时, 确定需要进行除湿处理。
当然,判断单元 100判断当前室内环境是否需要进行除湿处理,还可以采用其他方式。 例如: 判断单元 100包括第一判断子单元, 该第一判断子单元用于判断当前室内环境 是否需要进行除湿处理, 第一判断子单元包括: 含湿量确定模块, 用于确定当前室内空气 的含湿量和目标含湿量; 第一处理模块, 用于在当前室内空气的含湿量不大于目标含湿量 时, 确定不需要进行除湿处理; 第二处理模块, 用于在当前室内空气的含湿量大于目标含 湿量时, 确定当前室内空气的相对湿度和设定湿度, 在相对湿度大于设定湿度时, 确定需 要进行除湿处理, 在相对湿度不大于设定湿度时, 确定不需要进行除湿处理。
需要说明的是, 目标含湿量可以为目标湿度对应的含湿量。 实施中, 还可以将目标湿 度对应的含湿量与含湿量修正参数之和确定为目标含湿量,含湿量修正参数可以为 0.5g/kg, 当然也可以设置为其他数值。
实施中,除图 1所示的结构之外,第一控制单元 200还可以采用其他结构。参见图 7, 图 7为本发明中第一控制单元的另一种结构示意图。第一控制单元包括:第一控制单元 200 包括第一数据获取子单元 201、 第一控制子单元 202、 第二控制子单元 203、 第三数据获取 单元 204、 第一判断子单元 205、 第五控制子单元 206和第六控制子单元 207。
其中, 第一数据获取子单元 201、 第一控制子单元 202和第二控制子单元 203的功能 请参见前文描述, 这里不再赘述。
第三数据获取子单元 204用于在管温温度不高于露点温度时, 获取室外机环境感温包 的检测温度和室外机冷凝器温度。
第一判断子单元 205用于判断室外机环境感温包的检测温度与室外机冷凝器温度之间 的差值是否小于第一温差值。
第五控制子单元 206用于在室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值大于或等于第一温差值时, 控制直流电机维持当前转速运行, 在持续第六时长后, 触 发第三数据获取子单元 204执行获取室外机环境感温包的检测温度和室外机冷凝器温度的 操作。
第六控制子单元 207用于在室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值小于第一温差值, 且直流电机当前的转速不是最低转速时, 控制直流电机降低转速, 在持续第七时长后, 触发第三数据获取子单元 204执行获取室外机环境感温包的检测温度 和室外机冷凝器温度的操作; 用于在室外机环境感温包的检测温度与室外机冷凝器温度之 间的差值小于第一温差值, 且直流电机当前的转速是最低转速时, 控制直流电机维持当前 转速运行, 在持续第六时长后, 触发第三数据获取子单元 204执行获取室外机环境感温包 的检测温度和室外机冷凝器温度的操作。
实施中,除图 1中所示结构之外,第二控制单元 300还可以采用其他结构。参见图 8 , 图 8为本发明中第二控制单元的另一种结构示意图。 第二控制单元包括: 第二数据袭取单 元 301、 第三控制子单元 302、 第四控制子单元 303、 第四数据获取单元 304、 第二判断子 单元 305、 第七控制子单元 306和第八控制子单元 307。
其中, 第二数据获取单元 301、 第三控制子单元 302和第四控制子单元 303的功能请 参见前文描述, 这里不再赘述。
第四数据获取单元 304用于在管温温度高于露点温度时, 获取室外机环境感温包的检 测温度和室外机冷凝器温度。
第二判断子单元 305用于判断室外机环境感温包的检测温度与室外机冷凝器温度之间 的差值是否小于或等于第二温差值。
第七控制子单元 306用于在室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值小于或等于第二温差值时, 控制直流电机维持当前转速运转, 在持续第八时长后, 触 发判断单元 100执行判断当前室内环境是否需要进行除湿处理的操作。
第八控制子单元 307用于在室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值大于第二温差值, 且直流电机当前的转速是最高转速时, 控制直流电机维持当前转速 运行, 在持续第八时长后, 触发判断单元 100执行判断当前室内环境是否需要进行除湿处 理的操作; 用于在室外机环境感温包的检测温度与室外机冷凝器温度之间的差值大于第二 温差值, 且直流电机当前的转速不是最高转速时, 控制直流电机提高转速, 在持续第九时 长后, 若控制直流电机提高转速的次数未超过第二次数, 则触发第二数据获取单元 301执 行获取蒸发器的管温温度和室内空气的露点温度的操作 , 否则, 触发判断单元 100执行判 断当前室内环境是否需要进行除湿处理的操作。
本发明还公开了一种变频空调, 包括室内机和室外机, 其中室外机中的电机为直流电 机, 并且本发明公开的变频空调还包括本发明上述公开的任意一种控制装置。 本发明公开 的变频空调可以调节室内空气的湿度, 并且在不需要除湿操作时, 通过降低压缩机的运行 频率来降低除湿能力, 从而降低系统能耗。
最后, 还需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将一 个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些实体或操作之 间存在任何这种实际的关系或者顺序。 而且, 术语"包括"、 "包含,,或者其任何其他变体意 在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括 那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、 方法、 物品 或者设备所固有的要素。 在没有更多限制的情况下, 由语句 "包括一个 ... ... "限定的要素, 并不排除在包括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述, 每个实施例重点说明的都是与其他实施 例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言, 由于其与实施例公开的方法相对应, 所以描述的比较简单, 相关之处参见方法部分说明即 可。
专业人员还可以进一步意识到, 结合本文中所公开的实施例描述的各示例的单元及算 法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软 件的可互换性, 在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。 这些功 能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技 术人员可以对每个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认 为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、 处理器执行的 软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 (RAM )、 内存、 只读 存储器 (ROM )、 电可编程 ROM、 电可擦除可编程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明, 使本领域专业技术人员能够实现或使用本发明。 对这 些实施例的多种修改对本领域的专业技术人员来说将是显而易见的, 本文中所定义的一般 原理可以在不脱离本发明的精神或范围的情况下, 在其它实施例中实现。 因此, 本发明将 不会被限制于本文所示的这些实施例, 而是要符合与本文所公开的原理和新颖特点相一致 的最宽的范围。

Claims

权利要求
1、 一种变频空调的控制方法, 其特征在于, 包括:
在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理;
当确定不需要进行除湿处理时, 在第一时长内执行单独制冷操作, 之后逸回执行判断 当前室内环境是否需要进行除湿处理的步骤, 执行单独制冷操作, 包括:
获取蒸发器的管温温度和室内空气的露点温度;
在所述管温温度不高于所述露点温度时, 若压缩机当前的运行频率是最低频率, 则控 制所述压缩机维持当前频率运行第二时长, 返回执行荻取蒸发器的管温温度和室内空气的 露点温度的步骤, 若压缩机当前的运行频率不是最低频率, 则控制所述压缩机降低频率并 运行第三时长, 返回执行获取蒸发器的管温温度和室内空气的露点温度的步骤;
在所述管温温度高于所述露点温度时, 控制所述压缩机維持当前频率运行第二时长, 返回执行获取蒸发器的管温温度和室内空气的露点温度的步骤;
当确定需要进行除湿操作时, 执行以下步骤:
获取蒸发器的管温温度和室内空气的露点温度;
在所述管温温度高于所述露点温度时, 若压缩机当前的运行频率是最高频率, 控制所 述压缩机维持当前频率运行第四时长, 返回执行判断当前室内环境是否需要进行除湿处理 的步骤, 若压缩机当前的运行频率不是最高频率, 则控制所述压缩机提高频率并运行第五 时长, 之后若控制压缩机提高频率的次数未超过第一次数, 则返回执行确定蒸发器的管温 温度和室内空气的露点温度的步骤, 否则, 返回执行判断当前室内环境是否需要进行除湿 处理的步骤;
在所述管温温度不高于所述露点温度时, 控制所述压缩机维持当前频率运行第四时长, 返回执行判断当前室内环境是否需要进行除湿处理的步骤。
2、 根据权利要求 1 所述的控制方法, 其特征在于, 所述判断当前室内环境是否需要 进行除湿处理, 包括:
确定当前室内空气的含湿量和目标含湿量;
在当前室内空气的含湿量不大于目标含湿量时, 确定不需要进行除湿处理; 在当前室内空气的含湿量大于目标含湿量时, 确定当前室内空气的相对湿度和设定湿 度, 在所述相对湿度大于所述设定湿度时, 确定需要进行除湿处理, 在所述相对湿度不大 于所述设定湿度时, 确定不需要进行除湿处理。
3、 根据权利要求 1或 2所述的控制方法, 所述变频空调的室外机电机为直流电机, 其特征在于, 执行单独制冷操作的过程中, 在所述管温温度不高于所述露点温度时, 还包 括:
获取室外机环境感温包的检测温度和室外机冷凝器温度;
判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否小于第一温 差值;
在所述差值大于或等于所述第一温差值时, 控制所述直流电机维持当前转速运行, 在 持续第六时长后, 返回执行获取室外机环境感温包的检测温度和室外机冷凝器温度的步驟; 在所述差值小于所述第一温差值时, 若所述直流电机当前的转速不是最低转速, 则控 制所述直流电机降低转速, 在持续第七时长后, 返回执行获取室外机环境感温包的检测温 度和室外机冷凝器温度的步骤, 若所述直流电机当前的转速是最低转速, 则控制所述直流 电机维持当前转速运行, 在持续第六时长后, 返回执行获取室外机环境感温包的检测温度 和室外机冷凝器温度的步骤。
4、 根据权利要求 1或 2所述的控制方法, 所述变频空调的室外机电机为直流电机, 其特征在于,当确定需要进行除湿操作时,在所述管温温度高于所述露点温度时,还包括: 获取室外机环境感温包的检测温度和室外机冷凝器温度;
判断室外机环境感温包的检测温度与室外机冷凝器温度之间的差值是否小于或等于 第二温差值;
在所述差值小于或等于所述第二温差值时, 控制所述直流电机维持当前转速运转, 在 持续第八时长后, 返回执行判断当前室内环境是否需要进行除湿处理的步骤;
在所述差值大子所述第二温差值时, 若所述直流电机当前的转速是最高转速, 则控制 所述直流电机维持当前转速运行, 在持续第八时长后, 返回执行判断当前室内环境是否需 要进行除湿处理的步骤, 若所述直流电机当前的转速不是最高转速, 则控制所述直流电机 提高转速, 在持续第九时长后, 若控制直流电机提高转速的次数未超过第二次数, 则返回 执行获取蒸发器的管温温度和室内空气的露点温度的步驟, 否则, 返回执行判断当前室内 环境是否需要进行除湿处理的步骤。
5、 根据权利要求 1 所述的控制方法, 其特征在于, 所述第一预设条件为室内环境温 度和设定温度之间的差值小于第三温度差;
当室内环境温度和设定温度之间的差值小于第三温度差时, 执行判断当前室内环境是 否需要进行除湿处理的步骤。
6、 一种变频空调的控制装置, 其特征在于, 包括:
判断单元, 用于在满足第一预设条件时, 判断当前室内环境是否需要进行除湿处理; 第一控制单元,用于在确定不需要进行除湿处理时,在第一时长内执行单独制冷操作, 之后触发所述判断单元执行判断当前室内环境是否需要进行除湿处理的操作; 所述第一控 制单元包括第一数据获取子单元、 第一控制子单元和第二控制子单元;
所述第一数据获取子单元用于在确定不需要进行除湿处理时, 获取蒸发器的管温温度 和室内空气的露点温度;
所述第一控制子单元在所述管温温度不高于所述露点温度且压缩机当前的运行频率 是最低频率时, 控制所述压缩机维持当前频率运行第二时长, 之后触发所述第一数据获取 子单元执行获取蒸发器的管温温度和室内空气的露点温度的操作, 在所述管温温度不高于 所述露点温度且压缩机当前的运行频率不是最低频率时, 控制所述压缩机降低频率并运行 第三时长, 之后触发所述第一数据获取子单元执行获取蒸发器的管温温度和室内空气的露 点温度的操作;
所述第二控制子单元在所述管温温度高于所述露点温度时 , 控制所述压缩机维持当前 频率运行第二时长, 之后触发所述第一数据获取子单元执行获取蒸发器的管温温度和室内 空气的露点温度的操作; 以及
第二控制单元, 用于在确定需要进行除湿处理时, 进行除湿操作; 所述第二控制单元 包括第二数据获取单元、 第三控制子单元和第四控制子单元;
所述第二数据获取单元用于在确定需要进行除湿处理时, 获取蒸发器的管温温度和室 内空气的露点温度;
所述第三控制子单元在所述管温温度高于所述露点温度且压缩机当前的运行频率是 最高频率时, 控制所述压縮机维持当前频率运行第四时长, 之后触发所述判断单元执行判 断当前室内环境是否需要进行除湿处理的操作, 所述第三控制子单元在所述管温温度高于 所述露点温度且压缩机当前的运行频率不是最高频率时, 控制所述压缩机提高频率并运行 第五时长, 若控制压缩机提高频率的次数未超过第一次数, 则触发所述第二数据荻取单元 执行确定蒸发器的管温温度和室内空气的露点温度的操作, 否则, 触发所述判断单元执行 判断当前室内环境是否需要进行除湿处理的操作;
所述第四控制子单元用于在所述管温温度不高于所述露点温度时, 控制所述压缩机维 持当前频率运行第四时长, 之后触发所述判断单元执行判断当前室内环境是否需要进行除 湿处理的操作。
7、 根据权利要求 6 所述的控制装置, 其特征在于, 所述判断单元包括第一判断子单 元, 所述第一判断子单元用于判断当前室内环境是否需要进行除湿处理, 所述第一判断子 单元包括: 含湿量确定模块, 用于确定当前室内空气的含湿量和目标含湿量; 第一处理模块, 用于在当前室内空气的含湿量不大于目标含湿量时, 确定不需要进行 除湿处理; 以及
第二处理模块, 用于在当前室内空气的含湿量大于 ¾标含湿量时, 确定当前室内空气 的相对湿度和设定湿度, 在所述相对湿度大于所述设定湿度时, 确定需要进行除湿处理, 在所述相对湿度不大于所述设定湿度时, 确定不需要进行除湿处理。
8、 根据权利要求 6或 7所述的控制装置, 所述变频空调的室外机电机为直流电机, 其特征在于, 所述第一控制单元还包括:
所述第三数据获取子单元, 用于在所述管温温度不高于所述露点温度时, 获取室外机 环境感温包的检测温度和室外机冷凝器温度;
第一判断子单元, 用于判断室外机环境感温包的检测温度与室外机冷凝器温度之间的 差值是否小于第一温差值;
第五控制子单元, 用于在所述差值大于或等于所述第一温差值时, 控制所述直流电机 维持当前转速运行, 在持续第六时长后, 触发所述第三数据获取子单元执行获取室外机环 境感温包的检测温度和室外机冷凝器温度的操作; 以及
第六控制子单元 , 用于在所述差值小于所述第一温差值且所述直流电机当前的转速不 是最低转速时, 控制所述直流电机降低转速, 在持续第七时长后, 触发所述第三数据获取 子单元执行获取室外机环境感温包的检测温度和室外机冷凝器温度的操作, 在所述差值小 于所述第一温差值且所述直流电机当前的转速是最低转速时, 控制所述直流电机维持当前 转速运行, 在持续第六时长后, 触发所述第三数据获取子单元执行荻取室外机环境感温包 的检测温度和室外机冷凝器温度的操作。
9、 根据权利要求 6或 7所述的控制装置, 所述变频空调的室外机电机为直流电机, 其特征在于, 所述第二控制单元还包括:
第四数据获取单元, 用于在所述管温温度高于所述露点温度时, 获取室外机环境感温 包的检测温度和室外机冷凝器温度;
第二判断子单元, 用于判断所述室外机环境感温包的检测温度与室外机冷凝器温度之 间的差值是否小于或等于第二温差值;
第七控制子单元, 用于在所述差值小于或等于所述第二温差值时, 控制所述直流电机 维持当前转速运转, 在持续第八时长后, 触发所述判断单元执行判断当前室内环境是否需 要进行除湿处理的操作; 以及
第八控制子单元, 用于在所述差值大于所述第二温差值且所述直流电机当前的转速是 最高转速时, 控制所述直流电机维持当前转速运行, 在持续第八时长后, 触发所述判断单 元执行判断当前室内环境是否需要进行除湿处理的操作 , 在所述差值大于所述第二温差值 且所述直流电机当前的转速不是最高转速时, 控制所述直流电机提高转速, 在持续第九时 长后, 若控制直流电机提高转速的次数未超过第二次数, 则触发所述第二数据获取单元执 行获取蒸发器的管温温度和室内空气的露点温度的操作 , 否则, 触发所述判断单元执行判 断当前室内环境是否需要进行除湿处理的操作。
10、 一种变频空调, 包括室内机和室外机, 所述室外机中的电机为直流电机, 其特征 在于, 还包括如权利要求 6至 9中任一项所述的控制装置。
PCT/CN2014/082947 2013-08-14 2014-07-24 一种变频空调的控制方法、控制装置及变频空调 WO2015021853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310354840.3A CN104374037B (zh) 2013-08-14 2013-08-14 一种变频空调的控制方法、控制装置及变频空调
CN201310354840.3 2013-08-14

Publications (1)

Publication Number Publication Date
WO2015021853A1 true WO2015021853A1 (zh) 2015-02-19

Family

ID=52468022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082947 WO2015021853A1 (zh) 2013-08-14 2014-07-24 一种变频空调的控制方法、控制装置及变频空调

Country Status (2)

Country Link
CN (1) CN104374037B (zh)
WO (1) WO2015021853A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107642875A (zh) * 2017-11-10 2018-01-30 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107676942A (zh) * 2017-11-10 2018-02-09 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107883546A (zh) * 2017-11-10 2018-04-06 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107883547A (zh) * 2017-11-10 2018-04-06 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN110929408A (zh) * 2019-12-02 2020-03-27 芜湖倡蓝新能源科技有限责任公司 一种变频空调的压缩机频率计算
CN114543263A (zh) * 2022-01-29 2022-05-27 北京小米移动软件有限公司 一种盘管温度控制方法、盘管温度控制装置及存储介质

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764145B (zh) * 2015-03-23 2017-11-10 美的集团股份有限公司 空调器的恒温除湿控制方法和控制系统
CN104748318B (zh) * 2015-04-09 2017-11-14 广东美的制冷设备有限公司 空调器恒温除湿控制方法及装置、空调器
CN104879836B (zh) * 2015-04-24 2017-08-25 广东美的制冷设备有限公司 变频除湿机的控制方法、装置以及除湿机
CN104930656B (zh) * 2015-06-12 2019-02-19 广东美的制冷设备有限公司 空调器湿温双控方法、装置及空调器室内机
CN106288138B (zh) * 2015-06-12 2019-08-27 广东美的制冷设备有限公司 空调器温湿双控方法、装置及空调器室内机
CN104949270B (zh) * 2015-06-12 2017-10-27 广东美的制冷设备有限公司 空调器的制冷控制方法、装置及空调器
CN104964400B (zh) * 2015-07-21 2018-01-02 芜湖美智空调设备有限公司 空调器及其控制方法
CN106123474B (zh) * 2016-06-23 2019-01-08 珠海格力电器股份有限公司 控制冷藏柜的柜内湿度的方法及装置
CN105987485A (zh) * 2016-07-05 2016-10-05 美的集团武汉制冷设备有限公司 空调器及其控制方法、系统
CN106196876B (zh) * 2016-07-18 2018-11-30 珠海格力电器股份有限公司 一种柜内湿度的控制方法、控制装置及柜
CN107575994B (zh) * 2017-09-04 2019-12-31 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调
CN107869830B (zh) * 2017-11-13 2020-02-28 珠海格力电器股份有限公司 空调器控制方法及装置
CN107869826B (zh) * 2017-11-29 2019-08-30 广东美的制冷设备有限公司 空调器及其控制方法和装置
US11168908B2 (en) 2017-11-29 2021-11-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and control method and apparatus therefor
CN108266365B (zh) * 2018-01-03 2019-12-06 广东美的暖通设备有限公司 压缩机、压缩机的保护方法及压缩机的保护装置
JP2019163920A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 空気調和装置及び空調制御方法
US11035585B2 (en) 2018-05-31 2021-06-15 Carrier Corporation Dehumidification control at part load
CN109323421B (zh) * 2018-09-30 2021-04-20 广东美的制冷设备有限公司 空调器及其控制方法、装置
CN111271847B (zh) * 2019-07-17 2021-07-13 宁波奥克斯电气股份有限公司 一种提升低温制热量的空调器控制方法
CN110398036B (zh) * 2019-07-25 2021-04-27 上海朗绿建筑科技股份有限公司 一种空调制冷控制方法及系统
CN110567088B (zh) * 2019-09-09 2021-02-23 海信(山东)空调有限公司 一种空调器的除湿方法及空调器
CN110567086B (zh) * 2019-09-09 2021-05-14 海信(山东)空调有限公司 一种空调器的除湿方法及空调器
CN110686460A (zh) * 2019-09-16 2020-01-14 珠海格力电器股份有限公司 冷库机组及其控制方法、设备和存储介质
CN111102679B (zh) * 2019-10-24 2021-04-20 珠海格力电器股份有限公司 一种设备控制方法、装置、服务器和可读存储介质
CN111121234A (zh) * 2019-12-24 2020-05-08 漳州科华技术有限责任公司 一种空调压缩机的控制方法及控制装置
CN111397093B (zh) * 2020-03-30 2021-12-21 广东美的制冷设备有限公司 空调器的防冷凝方法、装置、空调器和电子设备
CN111706974B (zh) * 2020-06-05 2021-12-17 美的集团武汉暖通设备有限公司 空调器的控制方法、空调器及存储介质
CN112240631A (zh) * 2020-10-12 2021-01-19 青岛海尔空调器有限总公司 用于空调除湿控制的方法、装置及空调
CN112984726A (zh) * 2021-02-08 2021-06-18 青岛海尔空调器有限总公司 用于空调的控制方法、装置及空调
CN114017902B (zh) * 2021-10-27 2022-11-11 珠海格力电器股份有限公司 一种设备的控制方法、装置、设备及存储介质
CN113970137B (zh) * 2021-11-29 2022-12-13 海信(广东)空调有限公司 一种除湿机和除湿机的运行控制方法
CN114775239A (zh) * 2022-03-25 2022-07-22 鹤山市嘉基尚电器实业有限公司 热泵式滚筒干衣机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155302A (ja) * 2005-12-09 2007-06-21 Hitachi Appliances Inc 空気調和機の制御方法
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
JP2008175490A (ja) * 2007-01-19 2008-07-31 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2010007961A (ja) * 2008-06-26 2010-01-14 Orion Mach Co Ltd 温湿度調整装置
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN102062448A (zh) * 2011-01-29 2011-05-18 广东美的电器股份有限公司 空调器及其控制方法
CN103032933A (zh) * 2011-09-30 2013-04-10 珠海格力电器股份有限公司 变频空调器的相对湿度控制方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2534512Y (zh) * 2002-04-15 2003-02-05 潘启川 具低露点温度控制装置的恒温恒湿空调机
CN101737897B (zh) * 2008-11-10 2012-08-08 黄逸林 空间环境温湿度控制方法及其使用的控制装置
CN102809202B (zh) * 2011-05-31 2015-04-08 珠海格力电器股份有限公司 空调器及其制冷控制方法和装置
KR20130058909A (ko) * 2011-11-28 2013-06-05 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN102425841B (zh) * 2011-12-02 2013-12-25 深圳市森控科技有限公司 一种基于变频压缩机的机房空调控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155302A (ja) * 2005-12-09 2007-06-21 Hitachi Appliances Inc 空気調和機の制御方法
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
JP2008175490A (ja) * 2007-01-19 2008-07-31 Mitsubishi Heavy Ind Ltd 空気調和装置
JP2010007961A (ja) * 2008-06-26 2010-01-14 Orion Mach Co Ltd 温湿度調整装置
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN102062448A (zh) * 2011-01-29 2011-05-18 广东美的电器股份有限公司 空调器及其控制方法
CN103032933A (zh) * 2011-09-30 2013-04-10 珠海格力电器股份有限公司 变频空调器的相对湿度控制方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107642875A (zh) * 2017-11-10 2018-01-30 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107676942A (zh) * 2017-11-10 2018-02-09 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107883546A (zh) * 2017-11-10 2018-04-06 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN107883547A (zh) * 2017-11-10 2018-04-06 广东美的制冷设备有限公司 控制方法、控制系统、计算机可读存储介质和移动空调
CN110929408A (zh) * 2019-12-02 2020-03-27 芜湖倡蓝新能源科技有限责任公司 一种变频空调的压缩机频率计算
CN110929408B (zh) * 2019-12-02 2023-02-17 芜湖倡蓝新能源科技有限责任公司 一种变频空调的压缩机频率计算
CN114543263A (zh) * 2022-01-29 2022-05-27 北京小米移动软件有限公司 一种盘管温度控制方法、盘管温度控制装置及存储介质

Also Published As

Publication number Publication date
CN104374037A (zh) 2015-02-25
CN104374037B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2015021853A1 (zh) 一种变频空调的控制方法、控制装置及变频空调
WO2019196490A1 (zh) 一种空调的启动控制方法、装置、存储介质及空调
WO2019011094A1 (zh) 空调强力制冷控制方法
EP2414749B1 (en) Systems and methods involving heating and cooling system control
CN109028491B (zh) 一种变频空调压缩机软启动方法、系统及空调器
CN111023512A (zh) 一种空调温湿度控制方法、装置及空调器
WO2019011095A1 (zh) 空调运行控制方法
JP2020034183A (ja) 空気調和機
CN109612014B (zh) 空调机组控制方法、装置、系统及空调机组
JP2010276276A (ja) 空気調和装置
JP2004218879A (ja) 空気調和機及びその制御方法
JP5871747B2 (ja) 空気調和機
JP2010159934A (ja) 空気調和装置
CN113432236B (zh) 控制空调器的方法、空调器和计算机可读存储介质
CN112484258B (zh) 一种空调器控制方法、装置、电子设备及存储介质
CN107490051B (zh) 移动式空调器及其节能控制方法和装置
WO2024001534A1 (zh) 空调系统的室外机控制方法、装置、室外机和空调系统
JP6656400B2 (ja) 空気調和装置の室内機及び空気調和装置
CN113883765B (zh) 回油控制方法、装置、设备、空调系统及存储介质
JP2004003721A (ja) 空気調和機の運転制御方法
JP2008138960A (ja) 空気調和機
CN114294768A (zh) 空调自动消除异味的运行控制方法、装置及空调器
CN113074446A (zh) 空调控制方法及装置、空调器以及计算机可读存储介质
CN113432273B (zh) 空调系统控温方法、装置、空调系统及存储介质
WO2024001320A1 (zh) 空调器及其除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835937

Country of ref document: EP

Kind code of ref document: A1