WO2024082209A1 - 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法 - Google Patents

一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法 Download PDF

Info

Publication number
WO2024082209A1
WO2024082209A1 PCT/CN2022/126384 CN2022126384W WO2024082209A1 WO 2024082209 A1 WO2024082209 A1 WO 2024082209A1 CN 2022126384 W CN2022126384 W CN 2022126384W WO 2024082209 A1 WO2024082209 A1 WO 2024082209A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
aqueous polyurethane
pickering
present
synthetic leather
Prior art date
Application number
PCT/CN2022/126384
Other languages
English (en)
French (fr)
Inventor
王春华
林炜
魏涛
盛一峰
吴尖辉
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to PCT/CN2022/126384 priority Critical patent/WO2024082209A1/zh
Publication of WO2024082209A1 publication Critical patent/WO2024082209A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes

Definitions

  • the invention belongs to the technical field of waterborne synthetic leather manufacturing, and in particular relates to a new method for preparing a WPU synthetic leather foaming layer based on a Pickering foam template method.
  • Synthetic leather is a composite product that simulates the structure and performance of natural leather. It is usually produced with polyurethane resin as the coating raw material, with impregnated non-woven fabrics and microfiber base fabrics as the base layer. The surface is very similar to leather, which is closer to natural leather than ordinary artificial leather. It can be widely used in the production of shoes, boots, bags and balls, etc.
  • Synthetic leather is woven from collagen fibers, which is porous and has good hygienic properties.
  • Synthetic leather is a polymer resin processing material, so it needs to be regulated through production process technology to form a pore structure to make it breathable.
  • VOCs volatile organic compounds
  • DMF N,N-dimethylformamide
  • Waterborne polyurethane (WPU) synthetic leather which has developed rapidly in response to environmental protection requirements, uses water as a solvent and does not release toxic gases during production and processes. Therefore, it has become an ideal substitute for traditional solvent-based polyurethane in the synthetic leather industry and has attracted more and more attention.
  • waterborne polyurethane cannot obtain a foaming layer with a high elastic microporous structure by means of traditional wet processes.
  • Waterborne polyurethane synthetic leather produced by dry processes has a flat structure, poor moisture permeability and insufficient elasticity, and cannot achieve the fullness and touch of genuine leather, and cannot meet people's living needs. Waterborne polyurethane foaming technology has always been one of the key technologies restricting the development of the WPU synthetic leather industry and has attracted much attention in recent years.
  • the foaming agent used in the common chemical foaming method generally requires a relatively high temperature.
  • the process of generating bubbles requires a large amount of heat.
  • the decomposition rate is difficult to control and is prone to agglomeration, which affects the pore size.
  • the decomposition reaction will produce toxic gases and some solid waste, posing a great safety hazard.
  • Chinese patent CN107354761A discloses a mechanical foaming technology, but the bubble stability is poor during the drying process, the pore size is difficult to control due to the aggregation and collapse of bubbles, the bubbles are small and messy, and the feel is not adjustable enough, which limits the application of the product.
  • the purpose of the present invention is to provide a new method for preparing a WPU synthetic leather foaming layer based on a Pickering foam template method.
  • the waterborne polyurethane synthetic leather foaming layer obtained by the method provided by the present invention has a stable structure, uniform pores, good hand feel, good mechanical properties, and good hygienic properties.
  • the present invention provides the following technical solutions:
  • the present invention provides a new method for preparing a WPU synthetic leather foam layer based on a Pickering foam template method, comprising the following steps:
  • the aqueous polyurethane mixed slurry and the hydrophobic solid particles are mixed and emulsified and dispersed to obtain a Pickering water-based foam slurry, wherein the Pickering water-based foam slurry contains polyurethane latex particles and hydrophobic solid particles;
  • the Pickering water-based foam slurry is dried to obtain the waterborne polyurethane synthetic leather foaming layer.
  • the solid content of the aqueous polyurethane emulsion is 20-40%; the residual content of organic solvent in the aqueous polyurethane emulsion is less than 2%.
  • the elastic modulus of the aqueous polyurethane emulsion is 20 to 45 MPa, and the particle size of the aqueous polyurethane emulsion is 50 to 300 nm.
  • the mass ratio of the aqueous polyurethane emulsion to the aqueous crosslinking agent is 100:(1-1.5).
  • the aqueous crosslinking agent includes one or more of polycarbodiimide, polyaziridine and epoxy resin.
  • the particle size of the hydrophobic solid particles is 10 nm to 5 ⁇ m, and the surface contact angle of the hydrophobic inorganic solid particles is 100 to 150°.
  • the hydrophobic solid particles include one or more of hydrophobic SiO2 particles, hydrophobic clay particles and styrene particles.
  • the mass ratio of the hydrophobic solid particles to the aqueous polyurethane emulsion is (0.05-0.2):1.
  • the rotation speed of the emulsification dispersion is 8000-15000 rpm, and the time of the emulsification dispersion is 0.5-2 h.
  • the drying temperature is 70-120°C.
  • the preparation method of the aqueous polyurethane emulsion comprises the following steps:
  • the diisocyanate, polymer diol and acetone are mixed to undergo a prepolymerization reaction to obtain a prepolymer solution;
  • the number average molecular weight of the polymer diol is 2000-10000, and the molar ratio of the diisocyanate to the polymer diol is (2-5):1;
  • the prepolymer solution, the chain extender and the catalyst are mixed to undergo a catalytic reaction to obtain the polyurethane solution;
  • the molar ratio of the chain extender to the polymer diol is (2-5):1.
  • the chain extender comprises 2,2-dimethylol propionic acid and 1,4-butanediol, and the mass of the 2,2-dimethylol propionic acid accounts for 4 to 6 wt % of the total mass of the diisocyanate and the polymer diol.
  • the temperature of the prepolymerization reaction is 60-90° C.
  • the insulation time of the prepolymerization reaction is 1 hour.
  • the temperature of the catalytic reaction is 70-90° C.
  • the insulation time of the catalytic reaction is 3-6 hours
  • the catalytic reaction is carried out under stirring, and the stirring speed is 100-2000 rpm.
  • the neutralization temperature is 40-50° C.
  • the neutralization insulation time is 0.5-2 h
  • the neutralization is carried out under stirring at a stirring speed of 1000-2000 rpm.
  • the emulsification includes sequentially performing high-speed emulsification and low-speed emulsification, the rotation speed of the high-speed emulsification is 8000-10000 rpm, and the time of the high-speed emulsification is 10-30 min; the rotation speed of the low-speed emulsification is 1000-3000 rpm, and the time of the low-speed emulsification is 1-2 h.
  • the invention provides a novel method for preparing a WPU synthetic leather foaming layer based on a Pickering foam template method, comprising the following steps: mixing an aqueous polyurethane emulsion and an aqueous crosslinking agent to obtain an aqueous polyurethane mixed slurry; mixing the aqueous polyurethane mixed slurry and hydrophobic solid particles, and then emulsifying and dispersing to obtain a Pickering water-based foam slurry, wherein the Pickering water-based foam slurry contains polyurethane latex particles and hydrophobic solid particles; and drying the Pickering water-based foam slurry to obtain the aqueous polyurethane synthetic leather foaming layer.
  • the preparation method provided by the invention emulsifies three raw materials including an aqueous polyurethane emulsion, an aqueous crosslinking agent and hydrophobic solid particles, and adopts a Pickering water-based foam template method to prepare an aqueous polyurethane synthetic leather foaming layer, wherein water in the aqueous polyurethane emulsion is used as a continuous phase and air is used as a dispersive phase during emulsification, and the crosslinked polyurethane latex particles and hydrophobic solid particles in the aqueous polyurethane emulsion are used as a foam stabilizer to self-assemble at a water-air interface to obtain a Pickering water-based foam, and the aqueous polyurethane synthetic leather foaming layer is obtained after drying.
  • polyurethane latex particles and hydrophobic solid particles are adsorbed and dried together at a water-air interface to form a double-layer solid particle film with a Janus structure, so the obtained Pickering foam has strong stability during the drying process, effectively solving the problem of difficult pore size control caused by bubble aggregation and collapse during the drying process of the existing physical and mechanical foaming method; moreover, after drying, the hydrophobic solid particles in the water-based polyurethane foaming layer provided by the preparation method provided by the present invention are used as a filling and reinforcing agent, which can improve the mechanical properties of the foaming layer; therefore, the water-based polyurethane synthetic leather foaming layer prepared by the present invention has high stability, uniform pores, good hand feel, good mechanical properties, and good hygienic properties.
  • the preparation method provided by the present invention does not use any organic solvent in the preparation process, and does not produce any toxic gas in the foaming process, which is a clean and environmentally friendly production method.
  • the preparation method provided by the present invention is simple to operate and easy to realize industrial production.
  • the present invention provides a new method for preparing a WPU synthetic leather foam layer based on a Pickering foam template method, comprising the following steps:
  • the aqueous polyurethane mixed slurry and the hydrophobic solid particles are mixed and emulsified and dispersed to obtain a Pickering water-based foam slurry, wherein the Pickering water-based foam slurry contains polyurethane latex particles and hydrophobic solid particles;
  • the Pickering water-based foam slurry is dried to obtain the waterborne polyurethane synthetic leather foaming layer.
  • the present invention mixes water-based polyurethane emulsion and water-based crosslinking agent to obtain water-based polyurethane mixed slurry.
  • the solid content of the aqueous polyurethane emulsion is preferably 20-40%, and specifically preferably 20%, 30% or 40%.
  • the residual content of organic solvent in the aqueous polyurethane emulsion is preferably less than 2%.
  • the elastic modulus of the aqueous polyurethane emulsion is preferably 20 to 45 MPa, more preferably 25 to 40 MPa.
  • the particle size of the aqueous polyurethane emulsion is preferably 50 to 300 nm, more preferably 55 to 285 nm.
  • the polyurethane in the aqueous polyurethane emulsion is obtained by polymerization of soft segment monomers (polymer diols) and hard segment monomers (diisocyanates), and the soft segment content of the polyurethane in the aqueous polyurethane emulsion is preferably 50-65wt%.
  • the preparation method of the aqueous polyurethane emulsion preferably comprises the following steps:
  • the diisocyanate, polymer diol and acetone are mixed to undergo a prepolymerization reaction to obtain a prepolymer solution;
  • the number average molecular weight of the polymer diol is 2000-10000, and the molar ratio of the diisocyanate to the polymer diol is (2-5):1;
  • the prepolymer solution, the chain extender and the catalyst are mixed to undergo a catalytic reaction to obtain the polyurethane solution;
  • the invention mixes diisocyanate, polymer diol and acetone to generate a prepolymerization reaction to obtain a prepolymer solution; the molecular weight of the polymer diol is 2000-10000, and the molar ratio of the diisocyanate to the polymer diol is (2-5):1.
  • the diisocyanate is preferably isophorone diisocyanate (IPDI) and/or hexamethylene diisocyanate (HDI), more preferably isophorone diisocyanate (IPDI).
  • the polymer diol is preferably one or more of a polyether polyol having a number average molecular weight of 2000 to 10000, a polyester polyol having a number average molecular weight of 2000 to 10000, a terminal hydroxyl polysiloxane having a number average molecular weight of 2000 to 10000, and a terminal hydroxyl polylactic acid having a number average molecular weight of 2000 to 10000, more preferably a terminal hydroxyl polysiloxane having a number average molecular weight of 2000 or a polytetramethylene glycol ether having a number average molecular weight of 2000.
  • the molar ratio of the diisocyanate to the polymer diol is preferably (2-5):1, more preferably (2.5-4.5):1.
  • the present invention has no special requirement on the amount of acetone used, as long as it can carry out the prepolymerization reaction.
  • the prepolymerization reaction is preferably carried out in a protective gas atmosphere, and the protective gas atmosphere is preferably a nitrogen atmosphere.
  • the temperature of the prepolymerization reaction is preferably 60 to 90°C, more preferably 70°C.
  • the holding time of the prepolymerization reaction is preferably 1 hour.
  • the prepolymerization reaction is preferably carried out under stirring conditions, and the stirring is preferably mechanical stirring.
  • the present invention has no special requirements for the specific implementation process of the mechanical stirring.
  • the present invention mixes the prepolymer solution, a chain extender and a catalyst to carry out a catalytic reaction to obtain the polyurethane solution.
  • the chain extender preferably includes 2,2-dimethylolpropionic acid and 1,4-butanediol.
  • the molar ratio of the chain extender to the polymer diol is preferably (2-5):1, and more preferably (2.1-4.8):1.
  • the mass percentage of the 2,2-dimethylol propionic acid to the total mass of the diisocyanate, the polymer diol and the chain extender is preferably 4-6wt%, more preferably 4.2-5.9wt%.
  • the catalyst is preferably dibutyltin dilaurate.
  • the mass ratio of the catalyst to the prepolymer is preferably (0.0001-0.0005):1.
  • the temperature of the catalytic reaction is preferably 70-90°C, more preferably 80°C.
  • the insulation time of the catalytic reaction is preferably 3 to 6 hours, more preferably 3.5 to 5.5 hours.
  • the catalytic reaction is carried out under stirring conditions, and the stirring speed is preferably 100 to 2000 rpm, and more preferably 150 to 1850 rpm.
  • the present invention mixes the polyurethane solution with a neutralizer and neutralizes the solution until the pH value of the polyurethane solution is 3 to 10 to obtain a neutralized polyurethane solution.
  • the neutralizing agent is preferably triethylamine.
  • the neutralization temperature is preferably 40-50°C, more preferably 40°C.
  • the neutralization insulation time is preferably 0.5 to 2 hours, more preferably 1 to 1.5 hours.
  • the neutralization is preferably carried out under stirring conditions, and the stirring speed is preferably 1000 to 2000 rpm, and more preferably 1500 to 1850 rpm.
  • the present invention removes acetone from the neutralized polyurethane solution, dilutes it with water, and then emulsifies it to obtain the aqueous polyurethane emulsion.
  • the specific implementation method of removing acetone is preferably rotary evaporation, and the present invention has no special requirements for the specific implementation process of the rotary evaporation.
  • the product system of the acetone removal is preferably concentrated to obtain a concentrated product.
  • the solid content of the concentrated product is preferably 70-80%.
  • the present invention has no special requirements for the specific implementation process of the concentration.
  • the present invention preferably emulsifies the concentrated product and water.
  • the water is preferably high-purity deionized water.
  • the volume ratio of the concentrated product to water is preferably (0.2-0.4):1.
  • the emulsification preferably includes high-speed emulsification and low-speed emulsification in sequence
  • the rotation speed of the high-speed emulsification is preferably 8000-10000 rpm, more preferably 8000 rpm
  • the time of the high-speed emulsification is preferably 10-30 min, more preferably 30 min
  • the rotation speed of the low-speed emulsification is preferably 1000-3000 rpm, more preferably 3000 rpm
  • the time of the low-speed emulsification is preferably 1-2 h, more preferably 1 h.
  • the emulsification obtains an emulsion
  • the present invention preferably concentrates the emulsion to obtain the aqueous polyurethane emulsion.
  • the specific implementation of the concentration is preferably rotary evaporation.
  • the aqueous crosslinking agent includes one or more of polycarbodiimide, polyaziridine and epoxy resin, and more preferably includes polycarbodiimide, polyaziridine or epoxy resin.
  • the mass ratio of the aqueous polyurethane emulsion to the aqueous crosslinking agent is preferably 100:(1-1.5), and specifically preferably 100:1 or 100:1.5.
  • the present invention has no special requirements on the specific implementation process of mixing the aqueous polyurethane emulsion and the aqueous crosslinking agent.
  • the present invention mixes the aqueous polyurethane mixed slurry and hydrophobic solid particles and then emulsifies and disperses them to obtain Pickering water-based foam slurry, wherein the Pickering water-based foam slurry contains polyurethane latex particles and hydrophobic solid particles.
  • the hydrophobic solid particles preferably include one or more of hydrophobic SiO2 particles, hydrophobic clay particles and styrene particles, and more preferably include hydrophobic SiO2 particles, hydrophobic clay particles or styrene particles.
  • the particle size of the hydrophobic solid particles is preferably 10 nm to 5 ⁇ m, and specifically preferably 50 nm, 25 nm or 1 ⁇ m.
  • the surface contact angle of the hydrophobic inorganic solid particles is preferably 100-150°, and specifically preferably 100° or 120°.
  • the mass ratio of the hydrophobic solid particles to the aqueous polyurethane emulsion is preferably (0.05-0.2):1, more preferably (0.1-0.2):1, and specifically preferably 0.1:1, 0.15:1 or 0.2:1.
  • the emulsification dispersion is preferably carried out in a high-speed emulsifier.
  • the rotation speed of the emulsification dispersion is preferably 8000 to 15000 rpm, more preferably 10000 rpm.
  • the emulsification dispersion time is preferably 0.5 to 2 hours, more preferably 1 hour.
  • the emulsification dispersion is preferably carried out in an open reaction container.
  • the volume of the aqueous polyurethane mixed slurry is less than 1/2 of the volume of the open reaction container.
  • the present invention has no special requirements on the specific implementation process of mixing the aqueous polyurethane mixed slurry and the hydrophobic solid particles.
  • the present invention dries the Pickering water-based foam slurry to obtain the waterborne polyurethane synthetic leather foaming layer.
  • the drying temperature is preferably 70 to 120°C, more preferably 70 to 90°C.
  • the present invention has no special requirements on the drying time, and the dried material can be dried to a constant weight.
  • the present invention adopts the Pickering water-based foam template method to prepare the water-based polyurethane synthetic leather foaming layer, with water as the continuous phase and air as the dispersed phase.
  • the preparation process does not use any organic solvent, and no toxic gas is generated during the foaming process.
  • the method belongs to a clean and environmentally friendly production method.
  • the preparation method provided in the present invention is prepared by mixing a solid particle stabilizer and an aqueous polyurethane slurry, emulsifying at high speed, and then drying to form pores; the method is simple to operate and easy to realize industrial production.
  • the principle of the Pickering water-based foam template method used in the present invention is to obtain Pickering water-based foam by utilizing the self-assembly behavior of hydrophilic polyurethane latex particles and hydrophobic solid particles at the interface, and use the Pickering water-based foam as a template to prepare the synthetic leather polyurethane foam layer. Since the two are adsorbed at the interface to form a double-layer solid particle film with a Janus structure, the obtained Pickering foam has strong stability, effectively solving the problem of difficult pore size control caused by the aggregation and collapse of bubbles during the drying process of the existing physical and mechanical foaming method, so that the obtained synthetic leather foam layer has good hygienic properties.
  • the Pickering water-based foam stabilizer acts as a stabilizer in the water system in the early stage, and can be used as a filling and reinforcing agent in the polyurethane foam layer after drying in the later stage, thereby improving the mechanical properties of the foam layer.
  • the neutralized polyurethane solution is rotary evaporated to remove acetone and concentrated to a solid content of 70-80%. Then, high-purity deionized water was added to the concentrated product, and the product was emulsified with high-speed stirring at 8000 rpm for 0.5 h, and emulsified with low-speed stirring at 3000 rpm for 1 h. The product was concentrated by rotary evaporation to obtain a soft water-based polyurethane for synthetic leather with a solid content of 20%.
  • the neutralized polyurethane solution is rotary evaporated to remove acetone and concentrated to a solid content of 70-80%. Then, high-purity deionized water was added to the concentrated product, and the product was emulsified with high-speed stirring at 8000 rpm for 0.5 h, and emulsified with low-speed stirring at 3000 rpm for 1 h. The product was concentrated by rotary evaporation to obtain a soft water-based polyurethane for synthetic leather with a solid content of 30%.
  • the neutralized polyurethane solution is rotary evaporated to remove acetone and concentrated to a solid content of 70-80%. Then, high-purity deionized water was added to the concentrated product, and the product was emulsified with high-speed stirring at 8000 rpm for 0.5 h, and emulsified with low-speed stirring at 3000 rpm for 1 h. The product was concentrated by rotary evaporation to obtain a soft water-based polyurethane for synthetic leather with a solid content of 30%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

属于水性合成革制造技术领域,具体提供一种基于Pickering泡沫模板法制备 WPU 合成革发泡层的新方法。提供的方法:将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料;将水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到Pickering水基泡沫浆料;将Pickering水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。提供的制备方法由于聚氨酯乳胶粒子和疏水性固体颗粒二者共同在水-气界面吸附干燥后形成了具有Janus结构的双层固体粒子膜,因此得到的Pickering泡沫在干燥过程中具有很强的稳定性,泡孔均匀,手感好,且力学性能好,具有良好的卫生性能。

Description

一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法 技术领域
本发明属于水性合成革制造技术领域,具体涉及一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法。
背景技术
随着经济的发展和人们生活水平的提高,对皮革制品的需求越来越大;但是天然皮革由于原料来源有限,不能满足人们日益增长的需求。此外,皮革的生产过程会对环境产生严重的污染。为了解决这些问题,科学家们开始研究开发天然皮革的替代材料,相继开发出了人造革和合成革。合成革是模拟天然皮革组织结构和使用性能,通常以聚氨酯树脂为涂层原料生产的复合产品,以经浸渍的无纺布、超细纤维基布为基层,表面与皮革十分相似,比普通人造革更接近天然革,可以广泛用于制作鞋、靴、箱包和球类等。
合成革与天然皮革区别之一是,天然皮革是由皮胶原纤维编织而成,自身具有多孔性,卫生性能好。而合成革是高分子树脂加工成型材料,因此需要通过生产工艺技术上的调控形成孔隙结构使其具有一定的透气性。
目前,我国大部分的聚氨酯合成革企业采用的是溶剂型生产系统。其在制造过程需用大量的挥发性有机化合物(VOCs),特别是N,N-二甲基甲酰胺(DMF)的使用。这也是导致合成革行业存在“三高”顽疾(高污染、高耗能、高危险)的本质原因。一方面,无论是湿法工艺、干法工艺或后整理工艺,都会产生大量溶剂难以回收。而在DMF在回收的过程中,DMF还会分解释出二甲胺等毒性很强的气体,从而对环境造成严重的污染。另一方面,在传统溶剂型聚氨酯合成革(PU)制造工艺中H 2O-DMF凝固浴中,水并不能完全的置换溶剂型PU中的DMF,这会导致合成革中残留的DMF超标,从而造成产品安全问题。DMF的残留不仅会损害消费者的身体健康,也使得产品在出口中收到技术及贸易壁垒的限制。特别是随着合成革的日趋发展,DMF的污染问题也逐渐引发关注,因而急需寻 求新的低能耗、环境友好型的聚氨酯合成革制造技术。
应环保要求而迅速发展起来的水性聚氨酯(WPU)合成革是以水作为溶剂,在生产和过程中均无毒气释放,因而成为合成革行业传统溶剂型聚氨酯的理想替代品,越来越受到人们的关注。但是水性聚氨酯不能借助于传统的湿法工艺得到高弹微孔结构的发泡层。干法工艺制得水性聚氨酯合成革结构扁平,透湿性能差和弹性不足,达不到真皮的丰满度与触感,无法满足人们的生活需求。水性聚氨酯发泡技术一直是制约WPU合成革行业发展的关键技术之一,近年来备受关注。
在现有的水性聚氨酯发泡技术中,常见的化学发泡法使用的发泡剂一般需要比较高的温度,产生气泡的过程需要大量的热量,分解速度较难控制,容易聚团,从而影响孔径,且分解反应会产生有毒气体和一些固体废弃物,存在很大的安全隐患。
在此基础上,中国专利CN107354761A公开了一种机械发泡技术,但是其在干燥过程中气泡稳定性差,常因气泡的聚集和坍塌而造成的孔径难调控,泡孔小而杂乱,手感可调性不足,导致产品的应用受限。
发明内容
本发明的目的在于提供一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法,本发明提供的方法得到的水性聚氨酯合成革发泡层结构稳定,泡孔均匀,手感好,且力学性能好,具有良好的卫生性能。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法,包括以下步骤:
将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料;
将所述水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到皮克林(Pickering)水基泡沫浆料,所述Pickering水基泡沫浆料中含有聚氨酯乳胶粒子和疏水性固体颗粒;
将所述Pickering水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。
优选的,所述水性聚氨酯乳液的固含量为20~40%;所述水性聚氨酯乳液中有机溶剂残留含量<2%。
优选的,所述水性聚氨酯乳液的弹性模量为20~45Mpa,所述水性聚氨酯乳液的粒径为50~300nm。
优选的,所述水性聚氨酯乳液和水性交联剂的质量比为100:(1~1.5)。
优选的,所述水性交联剂包括聚碳化二亚胺、聚氮丙啶和环氧树脂中的一种或多种。
优选的,所述疏水性固体颗粒的粒径为10nm~5μm,所述疏水性无机固体颗粒的表面接触角为100~150°。
优选的,所述疏水性固体颗粒包括疏水SiO 2颗粒、疏水粘土颗粒和苯乙烯颗粒中的一种或多种。
优选的,所述疏水固体颗粒和所述水性聚氨酯乳液的质量比为(0.05~0.2):1。
优选的,所述乳化分散的转速为8000~15000rpm,所述乳化分散的时间为0.5~2h。
优选的,所述干燥的温度为70~120℃。
优选的,所述水性聚氨酯乳液的制备方法包括以下步骤:
将二异氰酸酯、聚合物二元醇和丙酮混合发生预聚反应,得到预聚体溶液;所述聚合物二元醇的数均分子量为2000~10000,所述二异氰酸酯和所述聚合物二元醇的摩尔比为(2~5):1;
将所述预聚体溶液、扩链剂和催化剂混合发生催化反应,得到所述聚氨酯溶液;
将所述聚氨酯溶液和中和剂混合,中和至所述聚氨酯溶液的pH值为3~10,得到中和聚氨酯溶液;
将所述中和聚氨酯溶液去除丙酮后加水稀释后乳化,得到所述水性聚氨酯乳液。
优选的,所述扩链剂与所述聚合物二元醇的摩尔比为(2~5):1。
优选的,所述扩链剂包括2,2-二羟甲基丙酸和1,4-丁二醇,所述2,2-二羟甲基丙酸的质量占所述二异氰酸酯和所述聚合物二元醇总质量的百分比为4~6wt%。
优选的,所述预聚反应的温度为60~90℃,所述预聚反应的保温时间为1h。
优选的,所述催化反应的温度为70~90℃,所述催化反应的保温时间为3~6h,所述催化反应在搅拌的条件下进行,所述搅拌的转速为100~2000rpm。
优选的,所述中和的温度为40~50℃,所述中和的保温时间为0.5~2h,所述中和在搅拌的条件下进行,所述搅拌的转速为1000~2000rpm。
优选的,所述乳化包括依次进行高速乳化和低速乳化,所述高速乳化的转速为8000~10000rpm,所述高速乳化的时间为10~30min;所述低速乳化的转速为1000~3000rpm,所述低速乳化的时间为1~2h。
本发明提供了一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法,包括以下步骤:将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料;将所述水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到Pickering水基泡沫浆料,所述Pickering水基泡沫浆料中含有聚氨酯乳胶粒子和疏水性固体颗粒;将所述Pickering水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。本发明提供的制备方法将包括水性聚氨酯乳液、水性交联剂和疏水性固体颗粒的三种原料乳化,采Pickering水基泡沫模板法制备水性聚氨合成革发泡层,乳化时以水性聚氨酯乳液中的水为连续相,以空气为分散性,利用水性聚氨酯乳液中交联后的聚氨酯乳胶粒子和疏水性固体颗粒作为泡沫稳定剂在水-气界面的自组装得到Pickering水基泡沫,干燥后得到所述水性聚氨酯合成革发泡层。本发明提供的制备方法由于聚氨酯乳胶粒子和疏水性固体颗粒二者共同在水-气界面吸附干燥后形成了具有Janus结构的双层固体粒子膜,因此得到的Pickering泡沫在干燥过程中具有很强的稳定性,有效解决了现有物理机械发泡法在干燥过程中因气泡的聚集和坍塌而造成的孔径难调控问题,而且,本发明提供的制备方法干燥后疏水性固体颗粒在水性聚氨酯发泡层中作为填充增强剂,能够提高发泡层力学性能;因而本发明制得的水性聚氨酯合成革发泡层具有稳定性高、泡孔均匀,手感好,且力学性能好,具有良好的卫生性能。
同时,本发明提供的制备方法,制备过程不使用任何有机溶剂,且发泡过程中不会产生任何有毒气体,属于清洁环保型生产方法。且本发明提供的制备方法操作简单,易实现工业化生产。
具体实施方式
本发明提供了一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法,包括以下步骤:
将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料;
将所述水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到Pickering水基泡沫浆料,所述Pickering水基泡沫浆料中含有聚氨酯乳胶粒子和疏水性固体颗粒;
将所述Pickering水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。
在本发明中,若无特殊说明,所有制备原料/组分均为本领域技术人员熟知的市售产品。
本发明将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料。
在本发明中,所述水性聚氨酯乳液的固含量优选为20~40%,具体优选为20%、30%或40%。
在本发明中,所述水性聚氨酯乳液中有机溶剂残留含量优选<2%。
在本发明中,所述水性聚氨酯乳液的弹性模量优选为20~45Mpa,更优选为25~40MPa。
在本发明中,所述水性聚氨酯乳液的粒径优选为50~300nm,更优选为55~285nm。
在本发明中,所述水性聚氨酯乳液中的聚氨酯由软段单体(聚合物二元醇)和硬段单体(二异氰酸酯)聚合得到,所述水性聚氨酯乳液中的聚氨酯的软段含量优选为50~65wt%。
在本发明中,所述水性聚氨酯乳液的制备方法优选包括以下步骤:
将二异氰酸酯、聚合物二元醇和丙酮混合发生预聚反应,得到预聚体溶液;所述聚合物二元醇的数均分子量为2000~10000,所述二异氰酸酯和所述聚合物二元醇的摩尔比为(2~5):1;
将所述预聚体溶液、扩链剂和催化剂混合发生催化反应,得到所述聚氨酯溶液;
将所述聚氨酯溶液和中和剂混合,中和至所述聚氨酯溶液的pH值为 3~10,得到中和聚氨酯溶液;
将所述中和聚氨酯溶液去除丙酮后加水稀释后乳化,得到所述水性聚氨酯乳液。
本发明将二异氰酸酯、聚合物二元醇和丙酮混合发生预聚反应,得到预聚体溶液;所述聚合物二元醇的分子量为2000~10000,所述二异氰酸酯和所述聚合物二元醇的摩尔比为(2~5):1。
在本发明中,所述二异氰酸酯优选为异佛尔酮二异氰酸酯(IPDI)和/或六亚甲基二异氰酸酯(HDI),更优选为异佛尔酮二异氰酸酯(IPDI)。
在本发明中,所述聚合物二元醇优选为数均分子量为2000~10000的聚醚多元醇、数均分子量为2000~10000的聚酯多元醇、数均分子量为2000~10000的端羟基聚硅氧烷和数均分子量为2000~10000的端羟基聚乳酸中的一种或多种,更优选为数均分子量为2000的端羟基聚硅氧烷或数均分子量为2000的聚四氢呋喃醚。
在本发明中,所述二异氰酸酯和所述聚合物二元醇的摩尔比优选为(2~5):1,更优选为(2.5~4.5):1。
本发明对所述丙酮的用量没有特殊要求,能够进行所述预聚反应即可。
在本发明中,所述预聚反应优选在保护气体氛围中进行,所述保护气体氛围具体优选为氮气氛围。
在本发明中,预聚反应的温度优选为60~90℃,更优选为70℃。
在本发明中,所述预聚反应的保温时间优选为1h。
在本发明中,所述预聚反应优选在搅拌的条件下进行,所述搅拌优选为机械搅拌,本发明对所述机械搅拌的具体实施过程没有特殊要求。
得到预聚体溶液后,本发明将所述预聚体溶液、扩链剂和催化剂混合发生催化反应,得到所述聚氨酯溶液。
在本发明中,所述扩链剂优选包括2,2-二羟甲基丙酸和1,4-丁二醇。
在本发明中,所述扩链剂与所述聚合物二元醇的摩尔比优选为(2~5):1,更优选为(2.1~4.8):1。
在本发明中,所述2,2-二羟甲基丙酸的质量占所述二异氰酸酯、所述聚合物二元醇和扩链剂的总质量的百分比优选为4~6wt%,更优选为 4.2~5.9wt%。
在本发明中,所述催化剂具体优选为二月硅酸二丁基锡。
在本发明中,所述催化剂与所述预聚体质量之比优选为(0.0001~0.0005):1。
在额本本发明中,所述催化反应的温度优选为70~90℃,更优选为80℃。
在本发明中,所述催化反应的保温时间优选为3~6h,更优选为3.5~5.5h。
在本发明中,所述催化反应在搅拌的条件下进行,所述搅拌的转速优选为100~2000rpm,更优选为150~1850rpm。
得到聚氨酯溶液后,本发明将所述聚氨酯溶液和中和剂混合,中和至所述聚氨酯溶液的pH值为3~10,得到中和聚氨酯溶液。
在本发明中,所述中和剂具体优选为三乙胺。
在本发明中,所述中和的温度优选为40~50℃,更优选为40℃。
在本发明中,所述中和的保温时间优选为0.5~2h,更优选为1~1.5h。
在本发明中,所述中和优选在搅拌的条件下进行,所述搅拌的转速优选为1000~2000rpm,更优选为1500~1850rpm。
得到中和聚氨酯溶液后,本发明将所述中和聚氨酯溶液去除丙酮后加水稀释后乳化,得到所述水性聚氨酯乳液。
在本发明中,所述去除丙酮的具体实施方式优选为旋转蒸发,本发明对所述旋转蒸发的具体实施过程没有特殊要求。
在本发明中,所述去除丙酮后,本发明优选对去除丙酮的产物体系浓缩,得到浓缩产物。在本发明中,所述浓缩产物的固含量优选为70~80%。本发明对所述浓缩的具体实施过程没有特殊要求。
本发明优选将所述浓缩产物和水乳化。在本发明中,所述水具体优选为高纯去离子水。
在本发明中,所述浓缩产物和水的体积比优选为(0.2~0.4):1。
在本发明中,所述乳化优选包括依次进行高速乳化和低速乳化,所述高速乳化的转速优选为8000~10000rpm,更优选为8000rpm;所述高速乳化的时间优选为10~30min,更优选为30min;所述低速乳化的转速优 选为1000~3000rpm,更优选为3000rpm;所述低速乳化的时间优选为1~2h,更优选为1h。
在本发明中,所述乳化得到乳化液,本发明优选对所述乳化液进行浓缩,得到所述水性聚氨酯乳液。在本发明中,所述浓缩的具体实施方式优选为旋转蒸发。
在本发明中,所述水性交联剂包括聚碳化二亚胺、聚氮丙啶和环氧树脂中的一种或多种,更优选包括聚碳化二亚胺、聚氮丙啶或环氧树脂。
在本发明中,所述水性聚氨酯乳液和水性交联剂的质量比优选为100:(1~1.5),具体优选为100:1或100:1.5。
本发明对所述水性聚氨酯乳液和所述水性交联剂混合的具体实施过程没有特殊要求。
得到水性聚氨酯混合浆料后,本发明将所述水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到Pickering水基泡沫浆料,所述Pickering水基泡沫浆料中含有聚氨酯乳胶粒子和疏水性固体颗粒。
在本发明中,所述疏水性固体颗粒优选包括疏水SiO 2颗粒、疏水粘土颗粒和苯乙烯颗粒中的一种或多种,更优选包括疏水SiO 2颗粒、疏水粘土颗粒或苯乙烯颗粒。
在本发明中,所述疏水性固体颗粒的粒径优选为10nm~5μm,具体优选为50nm、25nm或1μm。
在本发明中,所述疏水性无机固体颗粒的表面接触角优选为100~150°,具体优选为100°或120°。
在本发明中,所述疏水固体颗粒和所述水性聚氨酯乳液的质量比优选为(0.05~0.2):1,更优选为(0.1~0.2):1,具体优选为0.1:1、0.15:1或0.2:1。
在本发明中,所述乳化分散优选在高速乳化器中进行。
在本发明中,所述乳化分散的转速优选为8000~15000rpm,更优选为10000rpm。
在本发明中,所述乳化分散的时间优选为0.5~2h,更优选为1h。
在本发明中,所述乳化分散优选在敞口反应容器中进行。
在本发明中,所述乳化分散时,所述水性聚氨酯混合浆料的体积<所述敞口反应容器体积的1/2。
本发明对所述水性聚氨酯混合浆料和疏水性固体颗粒混合的具体实施过程没有特殊要求。
得到Pickering水基泡沫浆料后,本发明将所述Pickering水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。
在本发明中,所述干燥的温度优选为70~120℃,更优选为70~90℃。
本发明对所述干燥的时间没有特殊要求,将所述干燥物料干燥值恒重即可。
本发明提供的制备方法具有以下优点:
本发明中是采用Pickering水基泡沫模板法来制备水性聚氨合成革发泡层,以水为连续相,以空气为分散相,制备过程不使用任何有机溶剂,且发泡过程中不会产生任何有毒气体,属于清洁环保型生产方法。
本发明中提供的制备方法,通过固体颗粒稳定剂和水性聚氨酯浆料混合后高速乳化,然后干燥成孔制得的;该方法操作简单,易实现工业化生产。
本发明中采用的Pickering水基泡沫模板法的原理是利用亲水性聚氨酯乳胶粒子和疏水性固体颗粒在界面的自组装行为制得Pickering水基泡沫,并以此为模板制备合成革聚氨酯发泡层。由于二者在界面吸附形成具有Janus结构的双层固体粒子膜,因此得到的Pickering泡沫具有很强的稳定性,有效解决了现有物理机械发泡法在干燥过程中因气泡的聚集和坍塌而造成的孔径难调控问题,因而制得的合成革发泡层具有良好的卫生性能。
本发明中Pickering水基泡沫稳定剂(疏水性固体颗粒)在前期水体系中充当稳定剂的作用,后期干燥在聚氨酯发泡层中可作为填充增强剂,可提高发泡层力学性能。
为了进一步说明本发明,下面结合实施例对本发明提供的技术方案进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
称取20.00g聚四氢呋喃醚(Mn=2000)于反应器中,向反应器中加入11.1g异佛尔酮二异氰酸酯(IPDI)和300mL丙酮,在氮气保护下机械搅拌,70℃条件下反应1h,得到预聚体溶液,然后向预聚体溶液中加入2.68g 2,2-二羟甲基丙酸和1.8g 1,4丁二醇及0.01g催化剂,80℃条件下搅拌催化反应4h,得到聚氨酯溶液;向聚氨酯溶液中加入中和剂(三乙胺)进行中和,中和的温度为40℃,中和时的搅拌速度为2000rpm,中和1h,调节聚氨酯溶液的pH值为9后,将中和后的聚氨酯溶液旋转蒸发去除丙酮,浓缩到固含量为70~80%。然后向浓缩产物加入高纯去离子水,高速搅拌乳化0.5h,搅拌速度为8000rpm,低速搅拌乳化1h,速度为3000rpm,旋转蒸发浓缩,得到固含量为20%的合成革用软性水性聚氨酯。
称取上述固含量20%为的合成革软性水性聚氨酯100g,向其中加入1.0g水性交联剂(聚碳化二亚胺)混合均匀得到水性聚氨酯混合浆料;然后向水性聚氨酯混合浆料中加入10g疏水性无机固体颗粒SiO 2,所用SiO 2粒径为50nm,表面接触角为120°,将混合液通过高速乳化器乳化分散0.5h,分散速度为10000rpm,得到含有聚氨酯乳胶粒子的Pickering水基泡沫;然后在70℃的条件下干燥,得到基于Pickering泡沫模板法制备的合成革水性聚氨酯发泡层。
实施例2
称取20.00g聚四氢呋喃醚(Mn=2000)于反应器中,向反应器中加入11.1g异佛尔酮二异氰酸酯(IPDI)和200mL丙酮,在氮气保护下机械搅拌,70℃条件下反应1h,得到预聚体溶液,然后向预聚体溶液中加入2.68g 2,2-二羟甲基丙酸和1.8g 1,4丁二醇及0.01g催化剂,80℃条件下搅拌催化反应4h,得到聚氨酯溶液;向聚氨酯溶液中加入中和剂(三乙胺)进行中和,中和的温度为40℃,中和时的搅拌速度为2000rpm,中和1h,调节聚氨酯溶液的pH值为9后,将中和后的聚氨酯溶液旋转蒸发去除丙酮,浓缩到固含量为70~80%。然后向浓缩产物加入高纯去离子水,高速搅拌乳化0.5h,搅拌速度为8000rpm,低速搅拌乳化1h,速度为3000rpm,旋转蒸发浓缩,得到固含量为30%的合成革用软性水性聚氨酯。
称取将固含量30%为的软性水性聚氨酯100g,向其中加入1.5g水性交联剂(聚碳化二亚胺)混合均匀得到水性聚氨酯混合浆料;然后向水性聚氨酯混合浆料中加入15g疏水性无机固体颗粒粘土,所用粘土颗粒粒径为25nm,表面接触角为100°,将混合液通过高速乳化器乳化分散1h,分散速度为10000rpm,得到含有聚氨酯乳胶粒子的Pickering水基泡 沫;然后在90℃的条件下干燥,得到基于Pickering泡沫模板法制备的水性聚氨酯发泡层。
实施例3
称取20.00g端羟基聚硅氧烷(Mn=2000)于反应器中,向反应器中加入11.1g异佛尔酮二异氰酸酯(IPDI)和200mL丙酮,在氮气保护下机械搅拌,70℃条件下反应1h,得到预聚体溶液,然后向预聚体溶液中加入2.68g 2,2-二羟甲基丙酸和1.8g 1,4丁二醇及0.01g催化剂,80℃条件下搅拌催化反应4h,得到聚氨酯溶液;向聚氨酯溶液中加入中和剂(三乙胺)进行中和,中和的温度为40℃,中和时的搅拌速度为2000rpm,中和1h,调节聚氨酯溶液的pH值为9。将中和后的聚氨酯溶液旋转蒸发去除丙酮,浓缩到固含量为70~80%。然后向浓缩产物加入高纯去离子水,高速搅拌乳化0.5h,搅拌速度为8000rpm,低速搅拌乳化1h,速度为3000rpm,旋转蒸发浓缩,得到固含量为30%的合成革用软性水性聚氨酯。
称取将固含量40%为的软性水性聚氨酯100g,向其中加入1.5g水性交联剂(聚碳化二亚胺)混合均匀得到水性聚氨酯混合浆料;然后向水性聚氨酯混合浆料中加入20g疏水性有机聚苯乙烯固体颗粒,颗粒粒径为1μm,表面接触角为100°,将混合液通过高速乳化器乳化分散2h,分散速度为10000rpm,得到含有聚氨酯乳胶粒子的Pickering水基泡沫;然后在90℃的条件下干燥,得到基于Pickering泡沫模板法制备的水性聚氨酯发泡层。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (17)

  1. 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法,其特征在于,包括以下步骤:
    将水性聚氨酯乳液和水性交联剂混合,得到水性聚氨酯混合浆料;
    将所述水性聚氨酯混合浆料和疏水性固体颗粒混合后乳化分散,得到皮克林水基泡沫浆料,所述皮克林水基泡沫浆料中含有聚氨酯乳胶粒子和疏水性固体颗粒;
    将所述皮克林水基泡沫浆料干燥,得到所述水性聚氨酯合成革发泡层。
  2. 根据权利要求1所述的方法,其特征在于,所述水性聚氨酯乳液的固含量为20~40%;所述水性聚氨酯乳液中有机溶剂残留含量<2%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述水性聚氨酯乳液的弹性模量为20~45Mpa,所述水性聚氨酯乳液的粒径为50~300nm。
  4. 根据权利要求2所述的方法,其特征在于,所述水性聚氨酯乳液和水性交联剂的质量比为100:(1~1.5)。
  5. 根据权利要求1或4所述的方法,其特征在于,所述水性交联剂包括聚碳化二亚胺、聚氮丙啶和环氧树脂中的一种或多种。
  6. 根据权利要求1所述的方法,其特征在于,所述疏水性固体颗粒的粒径为10nm~5μm,所述疏水性无机固体颗粒的表面接触角为100~150°。
  7. 根据权利要求1或6所述的方法,其特征在于,所述疏水性固体颗粒包括疏水SiO 2颗粒、疏水粘土颗粒和苯乙烯颗粒中的一种或多种。
  8. 根据权利要求2所述的方法,其特征在于,所述疏水固体颗粒和所述水性聚氨酯乳液的质量比为(0.05~0.2):1。
  9. 根据权利要求1所述的方法,其特征在于,所述乳化分散的转速为8000~15000rpm,所述乳化分散的时间为0.5~2h。
  10. 根据权利要求1所述的方法,其特征在于,所述干燥的温度为70~120℃。
  11. 根据权利要求1或2所述的方法,其特征在于,所述水性聚氨酯乳液的制备方法包括以下步骤:
    将二异氰酸酯、聚合物二元醇和丙酮混合发生预聚反应,得到预聚体溶液;所述聚合物二元醇的数均分子量为2000~10000,所述二异氰酸酯和所述聚合物二元醇的摩尔比为(2~5):1;
    将所述预聚体溶液、扩链剂和催化剂混合发生催化反应,得到聚氨酯溶液;
    将所述聚氨酯溶液和中和剂混合,中和至所述聚氨酯溶液的pH值为3~10,得到中和聚氨酯溶液;
    将所述中和聚氨酯溶液去除丙酮后加水稀释后乳化,得到所述水性聚氨酯乳液。
  12. 根据权利要求11的方法,其特征在于,所述扩链剂与所述聚合物二元醇的摩尔比为(2~5):1。
  13. 根据权利要求12所述的方法,其特征在于,所述扩链剂包括2,2-二羟甲基丙酸和1,4-丁二醇,所述2,2-二羟甲基丙酸的质量占所述二异氰酸酯、所述聚合物二元醇和扩链剂的总质量的百分比为4~6wt%。
  14. 根据权利要求11所述的方法,其特征在于,所述预聚反应的温度为60~90℃,所述预聚反应的保温时间为1h。
  15. 根据权利要求11所述的方法,其特征在于,所述催化反应的温度为70~90℃,所述催化反应的保温时间为3~6h,所述催化反应在搅拌的条件下进行,所述搅拌的转速为100~2000rpm。
  16. 根据权利要求11所述的制备方法,其特征在于,所述中和的温度为40~50℃,所述中和的保温时间为0.5~2h,所述中和在搅拌的条件下进行,所述搅拌的转速为1000~2000rpm。
  17. 根据权利要求11所述的方法,其特征在于,所述乳化包括依次进行高速乳化和低速乳化,所述高速乳化的转速为8000~10000rpm,所述高速乳化的时间为10~30min;所述低速乳化的转速为1000~3000rpm,所述低速乳化的时间为1~2h。
PCT/CN2022/126384 2022-10-20 2022-10-20 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法 WO2024082209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126384 WO2024082209A1 (zh) 2022-10-20 2022-10-20 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126384 WO2024082209A1 (zh) 2022-10-20 2022-10-20 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法

Publications (1)

Publication Number Publication Date
WO2024082209A1 true WO2024082209A1 (zh) 2024-04-25

Family

ID=90736605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126384 WO2024082209A1 (zh) 2022-10-20 2022-10-20 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法

Country Status (1)

Country Link
WO (1) WO2024082209A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406298A (zh) * 2000-02-28 2003-03-26 松本油脂制药株式会社 多孔结构的制造方法
JP2015083724A (ja) * 2013-10-25 2015-04-30 平岡織染株式会社 ファブリック調レザー及びそれを用いたエプロン及びクッション
CN112626882A (zh) * 2020-12-11 2021-04-09 四川大学 一种新型合成革用水性聚氨酯发泡层的制备方法
CN112625297A (zh) * 2020-12-11 2021-04-09 四川大学 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法
US20210276309A1 (en) * 2018-09-07 2021-09-09 Dai Nippon Printing Co., Ltd. Decorative sheet, decorative panel, and coating agent for forming surface protective layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406298A (zh) * 2000-02-28 2003-03-26 松本油脂制药株式会社 多孔结构的制造方法
JP2015083724A (ja) * 2013-10-25 2015-04-30 平岡織染株式会社 ファブリック調レザー及びそれを用いたエプロン及びクッション
US20210276309A1 (en) * 2018-09-07 2021-09-09 Dai Nippon Printing Co., Ltd. Decorative sheet, decorative panel, and coating agent for forming surface protective layer
CN112626882A (zh) * 2020-12-11 2021-04-09 四川大学 一种新型合成革用水性聚氨酯发泡层的制备方法
CN112625297A (zh) * 2020-12-11 2021-04-09 四川大学 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法

Similar Documents

Publication Publication Date Title
CN105255348A (zh) 一种单组份透明水性聚氨酯乳液防水涂料及其制备方法
CN101550224B (zh) 阳离子聚氨酯/无机纳米材料有机-无机杂化涂饰剂制备方法
CN103524696B (zh) 一种硅烷改性的磺酸型水性聚氨酯乳液及其制备方法
CN108219656B (zh) 水性绒面革浆料、及湿法工艺加工绒面革的方法和应用
CA2648464A1 (en) Microporous coating based on polyurethane polyurea
Janik et al. Polyurethanes
KR20090122064A (ko) 수성 폴리우레탄 코팅 조성물 및 이를 이용한 투습성과내마모성이 우수한 수성 폴리우레탄 코팅 장갑의 제조방법
CN105506997A (zh) 一种消光型水性聚氨酯皮革涂饰剂及其制备方法
WO2000046301A1 (fr) Composition de resine urethane aqueuse permettant de fabriquer une matiere microporeuse, procede de fabrication d'un composite en feuilles fibreuses et d'un cuir synthetique
US20220185984A1 (en) Method for preparing wpu synthetic leather foaming layers based on pickering foam template method
CN110527418B (zh) 一种双组份弹性涂料及其制备方法
JP2008081877A (ja) 通気性コーティング布帛
JP2000297211A (ja) 多孔質形成用水系ウレタン樹脂組成物
JPH11335975A (ja) 繊維シート状複合物の製造方法及び人工皮革
JPH0660260B2 (ja) ポリウレタン発泡体の製造方法
WO2024082209A1 (zh) 一种基于Pickering泡沫模板法制备WPU合成革发泡层的新方法
CN104232001B (zh) 一种有机凹凸棒土改性的水性复膜胶及其制备方法
WO2001064998A1 (fr) Procede de production d'objet poreux
CN110117912B (zh) 一种用于超纤贝斯的水性聚氨酯
CN107199740A (zh) 一种防水透气膜及制备方法
KR102350417B1 (ko) 합성 피혁의 제조 방법
CN113372530B (zh) 一种聚氨酯或聚氨酯脲水分散体及其制备方法、水性服装革贝斯
KR100352466B1 (ko) 스팀공정을 포함한 수분산폴리우레탄을 이용한 인조피혁의제조방법
JP2003138131A (ja) 皮革様シート材料
CN113061228B (zh) 包覆碳黑粒子的交联聚氨酯微球的制备方法及聚氨酯微球及其应用