WO2024080602A1 - 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2024080602A1
WO2024080602A1 PCT/KR2023/014099 KR2023014099W WO2024080602A1 WO 2024080602 A1 WO2024080602 A1 WO 2024080602A1 KR 2023014099 W KR2023014099 W KR 2023014099W WO 2024080602 A1 WO2024080602 A1 WO 2024080602A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
secondary battery
lithium
aqueous electrolyte
negative electrode
Prior art date
Application number
PCT/KR2023/014099
Other languages
English (en)
French (fr)
Inventor
심은기
이수완
Original Assignee
주식회사 덕산일렉테라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 덕산일렉테라 filed Critical 주식회사 덕산일렉테라
Publication of WO2024080602A1 publication Critical patent/WO2024080602A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for lithium secondary batteries containing a new electrolyte additive and a lithium secondary battery containing the same.
  • the present invention relates to a non-aqueous electrolyte for lithium secondary batteries containing an additive capable of forming a stable film on the electrode surface.
  • the present invention also provides a lithium secondary battery with improved battery performance, such as improving the high-temperature lifespan of the lithium secondary battery and suppressing an increase in the thickness of the secondary battery when stored at high temperature by including such a non-aqueous electrolyte. This is what we want to provide.
  • Lithium secondary batteries are not only used as portable power sources for mobile phones and laptop computers, but their application is expanding to medium-to-large power sources such as electric bicycles and electric vehicles (EVs). With the expansion of such application fields, there is a demand for lithium secondary batteries that can maintain excellent performance not only at room temperature but also in harsher external environments such as high or low temperature environments.
  • lithium secondary batteries include a carbon-based negative electrode capable of insertion and detachment of lithium ions, a transition metal oxide-based positive electrode containing lithium, a non-aqueous electrolyte in which a lithium salt is dissolved in a mixed carbonate-based organic solvent, and a positive and negative electrode. It is generally composed of a separator that prevents contact.
  • lithium atoms on the positive electrode are ionized into lithium ions and electrons, and the electrons move to the negative electrode through an external circuit, and the lithium ions move to the negative electrode across the non-aqueous electrolyte and separator and are intercalated within the carbon negative electrode.
  • Lithium secondary batteries generate and consume electrical energy by repeating these charging and discharging cycles.
  • the positive electrode active material structurally collapses and metal ions are eluted from the positive electrode surface.
  • Metal ions eluted from the anode are electrodeposited on the cathode and may deteriorate the cathode. This deterioration of the cathode tends to further accelerate when the secondary battery is exposed to high temperatures.
  • LiPF 6 is mainly used as a lithium salt in lithium secondary batteries to achieve suitable characteristics of secondary batteries. It is known that the PF 6 - anion of LiPF 6 is very vulnerable to heat and is thermally decomposed when the secondary battery is exposed to high temperatures, generating Lewis acids such as PF 5 . PF 5 produced in this way not only causes a decomposition reaction of organic solvents such as ethylene carbonate, but also generates hydrofluoric acid (HF) to accelerate the elution of transition metals from the positive electrode active material.
  • PF 5 produced in this way not only causes a decomposition reaction of organic solvents such as ethylene carbonate, but also generates hydrofluoric acid (HF) to accelerate the elution of transition metals from the positive electrode active material.
  • the transition metal eluted in this way is electrodeposited on the anode and causes an increase in the resistance of the anode, is electrodeposited on the cathode and causes self-discharge of the cathode, or destroys the solid electrolyte interface film (SEI) on the cathode, causing further decomposition of the electrolyte solution.
  • SEI solid electrolyte interface film
  • the gases generated in this way increase the internal pressure of the lithium secondary battery, act as a resistance element to lithium movement, expand the volume (thickness) of the secondary battery, and cause major problems in reducing the weight of the secondary battery. Deteriorates the performance of secondary batteries.
  • Patent Document 1 PCT International Publication No. WO 2019/059365 A1
  • the present invention seeks to provide a non-aqueous electrolyte for lithium secondary batteries containing an additive that can form a stable film (SEI) on the electrode surface, especially the cathode surface.
  • SEI stable film
  • the present invention aims to provide an electrolyte additive for secondary batteries that is excellent in removing decomposition products generated from lithium salts while forming a strong film (SEI) on the electrode surface, especially the cathode surface. do.
  • SEI strong film
  • the present invention provides a non-aqueous electrolyte for lithium secondary batteries that can improve the high-temperature lifespan and high-temperature storage stability of lithium secondary batteries, and a lithium secondary battery containing the non-aqueous electrolyte for lithium secondary batteries.
  • a lithium secondary battery including a non-aqueous electrolyte, a positive electrode, a negative electrode, and a separator for a lithium secondary battery of the present invention is provided.
  • the negative electrode may include a carbon-based negative electrode active material and a silicon-based negative electrode active material.
  • the negative electrode may include a carbon-based negative electrode active material and a silicon-based negative electrode active material in a weight ratio of 97:3 to 50:50.
  • the negative electrode may include a carbon-based negative electrode active material and a silicon-based negative electrode active material in a weight ratio of 90:10 to 60:40.
  • a lithium secondary battery using the electrolyte for a lithium secondary battery of the present invention has improved lifespan performance at high temperatures, and a lithium secondary battery with excellent performance in suppressing expansion of the volume of the secondary battery when stored at high temperature can be implemented.
  • the compound represented by Formula 1 of the present invention can form a stable film on the electrode surface due to the pyridine group and silyl group.
  • the non-aqueous electrolyte for lithium secondary batteries of the present invention contains a compound containing a pyridine group and a silyl group as an additive, especially a compound represented by the following formula (1), thereby forming a stable film on the electrode surface, especially on the negative electrode surface, and metal ions are eluted from the positive electrode. It can effectively suppress deterioration of the SEI film and reduce the deterioration of the SEI film by removing by-products generated due to thermal decomposition of lithium salt. Therefore, the non-aqueous electrolyte for lithium secondary batteries of the present invention has improved lifespan performance at high temperatures and can implement lithium secondary batteries with excellent high-temperature storage stability.
  • non-aqueous electrolyte for lithium secondary batteries of the present invention and the lithium secondary battery containing this non-aqueous electrolyte will be described in detail.
  • the present invention provides a compound containing a pyridine group and a silyl group as an additive to an electrolyte solution for lithium secondary batteries, particularly a compound containing a pyridine group and a silyl group represented by the following formula (1).
  • An electrolyte solution for lithium secondary batteries containing a non-aqueous organic solvent is provided.
  • An electrolyte solution for lithium secondary batteries containing a non-aqueous organic solvent is provided.
  • An electrolyte solution for lithium secondary batteries containing a non-aqueous organic solvent is provided.
  • An electrolyte solution for lithium secondary batteries containing a non-aqueous organic solvent is provided.
  • the compound containing the pyridine group and the silyl group may be included in an amount of 0.05 to 20% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group may preferably be included in an amount of 0.05 to 10% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group may be included in an amount of 0.05 to 5% by weight, 0.05 to 3% by weight, or 0.05 to 2% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group may be included in an amount of 0.1 to 20% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group may preferably be included in an amount of 0.1 to 10% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group may be included in an amount of 0.1 to 5% by weight, 0.1 to 3% by weight, or 0.1 to 2% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the compound containing the pyridine group and the silyl group is contained in an amount of less than 0.05% by weight based on the total weight of the electrolyte solution for the lithium secondary battery, the effect of preventing volume expansion and reducing the internal resistance of the lithium secondary battery is not sufficient, and on the contrary, the effect of preventing the volume expansion of the lithium secondary battery and reducing the internal resistance is not sufficient. If the compound containing the group is included in more than 20% by weight based on the total weight of the electrolyte for the lithium secondary battery, the high-temperature lifespan characteristics are reduced and the high-temperature storage characteristics are reduced due to increased internal resistance and reduced capacity of the secondary battery. .
  • the electrolyte solution for a lithium secondary battery consists of a halogen-substituted or unsubstituted carbonate-based compound, a nitrile-based compound, a borate-based compound, a lithium salt-based compound, a phosphate-based compound, a sulfite-based compound, a sulfone-based compound, a sulfate-based compound, and a sultone-based compound. It may further include at least one additional additive selected from the group.
  • additional additives include lithium difluorophosphate, lithium tetrafluoro(oxalate)phosphate, and lithium bis(fluorosulfonyl)imide. imide), 1,3-Propane sultone, 1,3-Propene sultone, Fluoroethylene carbonate, Vinylene Carbonate , Vinyl Ethylene Carbonate, and Ethylene sulfate.
  • the additional additive may be included in an amount of 0.05 to 20% by weight based on the total weight of the electrolyte solution for lithium secondary batteries.
  • the additional additive may preferably be included in an amount of 0.05 to 10% by weight based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the additional additive may be included in an amount of 0.05 to 5% by weight, specifically 0.05 to 3% by weight, based on the total weight of the electrolyte solution for a lithium secondary battery.
  • the additional additive is included in an amount of less than 0.05% by weight based on the total weight of the electrolyte for a lithium secondary battery, the effect of forming a film on the electrode may be minimal, and the effect of suppressing side reactions between the electrode and the electrolyte may be reduced, and the additional additive may reduce the effect of suppressing the side reaction between the electrode and the electrolyte. If it is included in excess of 20% by weight based on the total weight of the battery electrolyte, an excessively thick film may be formed on the electrode surface, which may increase the interfacial resistance and cause a decrease in capacity.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiBF 6 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiF 2 NO 4 S 2 and LiB(C 2 O 4 ) 2 at least one selected from the group consisting of It may include more.
  • a lithium salt that has a large dissociation degree of lattice energy, has excellent ionic conductivity, and has excellent thermal stability and oxidation resistance.
  • the lithium salt acts as a passage for lithium ions within the secondary battery, enabling basic operation of the lithium secondary battery.
  • the concentration of the lithium salt may be 0.1 to 2.5 M (mol/L) based on the total amount of electrolyte for the lithium secondary battery.
  • the concentration of the lithium salt may preferably be 0.3 to 2.5 M (mol/L) based on the total amount of the electrolyte solution for the lithium secondary battery.
  • the concentration of the lithium salt may be more preferably 0.7 to 1.6 M (mol/L), considering the properties related to electrical conductivity and the viscosity related to the mobility of lithium ions.
  • the concentration of the lithium salt is less than 0.1 M, the electrical conductivity of the electrolyte for a lithium secondary battery is lowered, so the performance of the non-aqueous electrolyte to transfer ions at a high speed between the positive and negative electrodes of the lithium secondary battery is reduced, and the concentration of the lithium salt is 2.5 M. If it exceeds this, the viscosity of the electrolyte for lithium secondary batteries increases, which reduces the mobility of lithium ions and causes secondary battery performance to deteriorate at low temperatures.
  • the non-aqueous organic solvent may be a linear carbonate-based solvent, a cyclic carbonate-based solvent, or a mixed solvent thereof.
  • the linear carbonate-based solvent is from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl propyl carbonate (EPC), ethyl methyl carbonate (EMC), and methyl propyl carbonate (MPC). It may include at least one selected type.
  • the cyclic carbonate-based solvent is selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate (BC), vinylene carbonate (VC), and fluoroethylene carbonate (FEC). It may include at least one type.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • mixtures thereof can be mixed with low-viscosity carbonate-based organic solvents selected from the group.
  • the cyclic carbonate solvent has high polarity and can sufficiently dissociate lithium ions, but has the disadvantage of low ionic conductivity due to its high viscosity. Therefore, by mixing the cyclic carbonate solvent with a linear carbonate solvent of low polarity but low viscosity, lithium secondary Battery characteristics can be optimized.
  • a mixture of at least one solvent selected from the cyclic carbonate solvent and at least one solvent selected from the linear carbonate solvent as the non-aqueous organic solvent.
  • the mixed solvent of the linear carbonate-based solvent and the cyclic carbonate-based solvent may be used by mixing the linear carbonate-based solvent and the cyclic carbonate-based solvent in a volume ratio of 9:1 to 1:9.
  • the mixed solvent of the linear carbonate-based solvent and the cyclic carbonate-based solvent is mixed in a volume ratio of 2:8 to 8:2 in terms of life characteristics and storage characteristics of the secondary battery. It may be more preferable to use
  • the non-aqueous organic solvent may include ethylene carbonate (EC), propylene carbonate (PC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • the non-aqueous organic solvent is 5 to 40% by weight of ethylene carbonate (EC), 5 to 20% by weight of propylene carbonate (PC), 10 to 70% by weight of ethylmethyl carbonate (EMC), and diethyl carbonate (DEC). ) It may contain 10 to 60% by weight.
  • ethylene carbonate (EC) or propylene carbonate (PC), which have a high dielectric constant can be used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • linear carbonate-based solvents it is preferable to use dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), or diethyl carbonate (DEC), which have low viscosity.
  • the non-aqueous organic solvent may be included in an amount of 5% to 80% of the total amount of electrolyte for the lithium secondary battery.
  • the non-aqueous organic solvent may be included in 5% to 70% of the total amount of electrolyte for the lithium secondary battery.
  • Lithium secondary batteries containing the non-aqueous electrolyte have improved lifespan characteristics at high temperatures and have excellent performance in suppressing expansion of battery thickness when stored at high temperatures.
  • the lithium secondary battery of the present invention is a lithium secondary battery of the present invention.
  • the anode is LiCoO 2 , LiFePO 4 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2, or LiNi 1-xy Co x M y O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, M may include at least one type of positive electrode active material selected from the group consisting of lithium metal oxides such as Al, Sr, Mg, Mn, or La).
  • the negative electrode may include at least one negative electrode active material selected from the group consisting of silicon, silicon compounds, tin, tin compounds, lithium titanate, crystalline carbon, amorphous carbon, artificial graphite, natural graphite, and mixtures of artificial graphite and natural graphite. You can.
  • the separator may be composed solely of a porous polymer film made of at least one polyolefin-based polymer selected from ethylene polymer, propylene polymer, ethylene/butene copolymer, and ethylene/hexene copolymer, or may be composed of a laminate thereof. there is.
  • the separator may include a coating film coated with a ceramic or polymer material.
  • the non-aqueous electrolyte may include a compound containing a pyridine group and a silyl group, particularly a compound containing a pyridine group and a silyl group represented by the following formula (1);
  • It may contain a non-aqueous organic solvent.
  • lithium secondary battery examples include, but are not limited to, a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • the positive electrode active material is preferably a complex metal oxide of one or more materials selected from cobalt, manganese, and nickel and lithium.
  • the solid solution ratio between the cobalt, manganese, and nickel metals of the composite metal oxide can be varied, and in addition to the cobalt, manganese, and nickel metals, Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga Elements selected from the group consisting of , B, As, Zr, Cr, Fe, Sr, V, and rare earth elements may be further included.
  • the positive electrode active material includes LiCoO 2 , LiFePO 4 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , or LiNi 1-xy Co x M y O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1, M may be a lithium metal oxide such as Al, Sr, Mg, Mn or La) or a lithium intercalation compound such as a lithium chalcogenide compound may be used, but is not limited thereto and may be used as a positive electrode in a secondary battery. Any material available as an active material can be used.
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer may include a positive electrode active material that can occlude and release lithium, a binder, a conductive material, etc.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
  • the negative electrode active material layer may include a negative electrode active material capable of inserting and desorbing lithium, a binder, and a conductive material.
  • the negative electrode active material may be crystalline carbon, amorphous carbon, carbon composite, carbon fiber, lithium metal, lithium alloy, or carbon-silicon composite, but is not limited to this and any material that can be used as a negative electrode active material in a secondary battery can be used. there is.
  • the positive electrode and/or negative electrode can be prepared by dispersing an electrode active material, a binder, a conductive material, and, if necessary, a thickener in a solvent to prepare an electrode slurry composition, and then applying the slurry composition to an electrode current collector.
  • Aluminum or an aluminum alloy may be commonly used as the positive electrode current collector, and copper or a copper alloy may be commonly used as the negative electrode current collector.
  • the positive electrode current collector and the negative electrode current collector may have a foil or mesh shape.
  • the binder is a material that acts as a paste of the active material, adhesion of the active materials to each other, adhesion to the current collector, and buffering effect against expansion and contraction of the active material. Any binder that can be used by those skilled in the art can be used.
  • polyvinyl alcohol carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polyethylene oxide, polyvinylpyrrolidone, polyurethane, Polytetrafluoroethylene, polyvinylidene fluoride (PVdF), polyhexafluoropropylene-polyvinylidene fluoride copolymer (PVdF/HFP), poly(vinylacetate), alkylated polyethylene oxide, polyvinyl ether , poly(methyl methacrylate), poly(ethyl acrylate), polyacrylonitrile, polyvinylpyridine, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, acrylonitrile-butadiene rubber, Epoxy resin, nylon, etc. can be used, but are not limited thereto
  • the conductive material is used to provide conductivity to the electrode, and any electrically conductive material that does not cause chemical changes in the battery being constructed can be used.
  • the conductive material may be at least one selected from the group consisting of graphite-based conductive materials, carbon black-based conductive materials, and metal or metal compound-based conductive materials. Examples of the graphite-based conductive material include artificial graphite and natural graphite, and examples of the carbon black-based conductive material include acetylene black, ketjen black, denka black, and thermal black.
  • metal-based or metal compound-based conductive materials examples include tin, tin oxide, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 , and perovskite such as LaSrMnO 3 There is perovskite material. However, it is not limited to the conductive materials listed above.
  • the thickener is not particularly limited as long as it can play a role in controlling the viscosity of the active material slurry.
  • carboxymethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. can be used.
  • the solvent in which the electrode active material, binder, conductive material, etc. are dispersed may be a non-aqueous solvent or an aqueous solvent.
  • the non-aqueous solvent include N-methyl-2-pyrroldidone (NMP), dimethylformamide, dimethylacetamide, N,N-dimethylaminopropylamine, ethylene oxide, or tetrahydrofuran.
  • the aqueous solvent include water.
  • the lithium secondary battery may include a separator that prevents short circuit between the positive and negative electrodes and provides a passage for lithium ions.
  • the separator may include polypropylene, polyethylene, polyethylene/polypropylene, and polyethylene/polypropylene.
  • Polyolefin-based polymer membranes such as polyethylene, polypropylene/polyethylene/polypropylene, or their multilayers, microporous films, woven fabrics, and non-woven fabrics can be used. Additionally, a porous polyolefin film coated with a highly stable resin may be used as the separator.
  • the lithium secondary battery can be made into various shapes such as square, cylindrical, pouch, or coin.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • NCM- based positive electrode active material containing Li[ Ni A positive electrode active material slurry was prepared by adding 3% by weight of PVdF) to N-methyl-2-pyrrolidinone (NMP), an organic solvent. The positive electrode active material slurry was applied to an aluminum thin film as a current collector and dried to prepare a positive electrode, and then rolled with a roll press to prepare the positive electrode.
  • the anode and cathode prepared as above were prepared, and a separator was interposed between them. Then, the electrolyte solution for a lithium secondary battery containing a compound containing a pyridine group and a silyl group of Example 1 was injected between the two electrodes on which the separator was placed, and the pyridine group and the silyl group in the form of an aluminum pouch (Al-Pouch type) were injected between the two electrodes on which the separator was placed. A lithium secondary battery containing an electrolyte solution containing the compound was manufactured.
  • the non-aqueous electrolyte for lithium secondary batteries may contain a sultone-based compound as needed in order to prevent decomposition of the non-aqueous electrolyte and improve high temperature stability and the effect of suppressing battery expansion at high temperatures.
  • the sultone-based compounds include, for example, 1,3-propane sultone (PS), 1,4-butane sultone (BS), ethenesultone, 1,3-propene sultone, 1,4-butene sultone, and 1 It may be at least one compound selected from the group consisting of -methyl-1,3-propene sultone.
  • 1,3-propane sultone known as a gas suppressant additive for batteries, was used.
  • a lithium secondary battery containing an electrolyte solution containing 1.3-propane sultone (PS) but not the compound of Chemical Formula 1 was manufactured in the same manner as the manufacturing of the lithium secondary battery in the above example.
  • composition of the electrolyte solution for lithium secondary batteries of the above examples and comparative examples is shown in Table 1 below.
  • Composition of electrolyte for lithium secondary battery Compounds containing pyridine groups and silyl groups 1,3-propane sultone (PS) 1,3-Propenesultone (PRS) vinylene carbonate (VC) Fluoroethylene carbonate (FEC) Lithium difluorophosphate (LiPO 2 F 2 ) ethylene sulfate (Esa) Example O O O O O O O O Comparative example O O O O O O O O O O O O
  • a pouch-shaped lithium secondary battery manufactured using the electrolyte for lithium secondary batteries of the above examples and comparative examples was charged to 4.2V at 1C-rate at high temperature (45°C), then charged to 2.7V at 1C-rate with a rest time of 10 minutes. After the discharge was completed, there was another 10-minute pause. The above process was repeated 400 times to measure the battery's discharge capacity (mAh) and life capacity retention (%). The measured discharge capacity and life capacity retention rate of the battery were compared and the results are shown in Table 2.
  • the lithium secondary battery of the example showed improved results compared to the lithium secondary battery of the comparative example using 1,3-propane sultone.
  • the lifespan characteristics of the electrolyte solution containing a compound containing a pyridine group and a silyl group were improved at high temperatures compared to the electrolyte solution containing 1,3-propanesultone.
  • the lithium secondary battery of the above example contains an electrolyte solution containing a compound containing a pyridine group and a silyl group, particularly a compound containing a pyridine group and a silyl group represented by Formula 1, and thus operates at a relatively higher temperature than the lithium secondary battery of the comparative example. It was confirmed that the lifespan characteristics were improved.
  • the pouch-shaped lithium secondary battery manufactured using the electrolyte solution for lithium secondary battery of the above Examples and Comparative Examples was stored at high temperature (60°C) for 6 weeks, and then the volume increase rate of the battery was measured.
  • the volume increase rate of the lithium secondary battery after storage at high temperature (60°C) for 6 weeks is shown in Table 3 below.
  • Example 1 which used a compound containing a pyridine group and a silyl group, showed a decrease in the volume increase rate of the battery compared to the comparative example containing 1,3-propanesultone. It was confirmed that the lithium secondary battery of the example had superior battery volume increase rate performance when stored at high temperature than the lithium secondary battery of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다. 더욱 상세하게 설명하면, 본 발명은 전극 표면 상에 안정한 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수 전해액에 관한 것이다. 본 발명은 또한 이러한 비수 전해액을 포함함으로써, 리튬 이차전지의 고온 수명성능이 향상되고, 리튬 이차전지를 고온에서 저장할 때 전지의 두께가 팽창하는 것을 억제하여 고온 저장성능이 우수한 리튬 이차전지에 관한 것이다.

Description

새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
본 발명은 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액과 이를 포함하는 리튬 이차전지에 관한 것이다. 더욱 상세하게 설명하면, 본 발명은 전극 표면 상에 안정한 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수 전해액에 관한 것이다. 본 발명은 또한 이러한 비수 전해액을 포함함으로써, 리튬 이차전지의 고온 수명이 향상되고, 리튬 이차전지를 고온에서 저장하였을 때 이차전지의 두께가 증가하는 것을 억제하는 등 전지 성능이 개선된 리튬 이차전지를 제공하고자 하는 것이다.
리튬 이차전지는 휴대전화, 노트북 컴퓨터 등의 휴대용 전원으로서 사용될 뿐만 아니라 전기자전거, 전기자동차(Electric Vehicle, EV) 등 중대형 전원으로 응용이 확대되고 있다. 이와 같은 응용분야의 확대에 따라 상온에서뿐만 아니라 고온이나 저온 환경 등 보다 가혹한 외부 환경에서도 우수한 성능을 유지할 수 있는 리튬 이차전지가 요구되고 있다.
현재 널리 사용되고 있는 리튬 이차전지는 리튬이온의 삽입 및 탈리가 가능한 카본계 음극과, 리튬을 함유하는 전이금속 산화물계 양극과, 혼합 카보네이트계 유기 용매에 리튬염이 용해된 비수 전해액, 및 양극과 음극의 접촉을 방지하는 분리막으로 구성되는 것이 일반적이다. 리튬 이차전지는 충전 시 양극에 있던 리튬 원자가 리튬 이온과 전자로 이온화되면서 전자는 외부 회로를 통해 음극으로 이동하고 리튬 이온은 비수 전해액과 분리막을 건너 음극으로 이동하여 카본 음극 내에 삽입(intercalation)되고, 방전 시 전자는 외부 회로를 통해 양극으로 이동하고 동시에 리튬 이온도 카본 음극에서 탈리(deintercalaion)되어 비수 전해액과 분리막을 건너 양극으로 이동하여 양극에서 리튬 이온과 전자가 만나 안정한 상태인 리튬 원자가 된다. 리튬 이차전지는 이러한 충전과 방전을 반복하면서 전기 에너지를 생성하고 소비한다.
리튬 이차전지는 충방전이 진행되는 동안 양극 활물질이 구조적으로 붕괴되면서 양극 표면으로부터 금속 이온이 용출되기도 한다. 양극에서 용출된 금속 이온은 음극에 전착(electrodeposition)되어 음극을 열화시키기도 한다. 이러한 음극의 열화 현상은 이차전지가 고온에 노출될 때 더욱 가속화되는 경향이 있다.
이러한 문제점을 해결하기 위해, 음극 표면에 피막(고체 전해질 경계면 피막, SEI[Solid Electrolyte Interphase])을 형성할 수 있는 화합물들을 비수 전해액에 첨가하는 방법이 제안되었다. 하지만 이러한 전해액 첨가제에 의하여 이차전지의 수명 성능과 고온 안전성의 열화와 같은 다른 부작용이 발생하면서, 리튬 이차전지의 제반 성능이 감소되는 또 다른 문제가 발생한다.
리튬 이차전지의 리튬염으로는 이차전지의 적합한 특성을 구현하기 위해 LiPF6가 주로 사용되고 있다. LiPF6의 PF6 - 음이온은 열에 매우 취약하여 이차전지가 고온에 노출되었을 때 열분해되어 PF5 등의 루이스산(Lewis acid)을 발생시키는 것으로 알려져 있다. 이렇게 생성된 PF5는 에틸렌카보네이트 등의 유기 용매의 분해 반응을 야기할 뿐만 아니라, 불산(HF)을 생성하여 양극 활물질의 전이 금속 용출을 가속화한다. 이와 같이 용출된 전이 금속은 양극에 전착되어 양극의 저항을 증가시키는 원인이 되거나, 음극에 전착되어 음극의 자가 방전을 야기하거나, 음극 상의 고체 전해질 경계면 피막(SEI)을 파괴시켜, 전해액의 추가적인 분해와 이에 따른 이차전지의 저항 증가 및 수명 열화 등을 일으킨다. 이와 같은 전해액의 분해 반응은 또한 이차전지 내부에서 기체 발생을 초래한다.
이러한 이유로 완전히 충전된 상태에서 리튬 이차전지를 고온에서 저장하는 경우, 시간이 지남에 따라 고체 전해질 경계면 피막(SEI)이 서서히 붕괴되는 문제가 발생한다. 이러한 고체 전해질 경계면 피막의 붕괴는 음극 표면을 노출시킨다. 노출된 음극 표면은 전해액 중에 있는 카보네이트계 용매와 반응하면서 분해되어, 지속적인 부반응을 야기한다. 이러한 부반응은 계속적으로 기체를 발생시킨다.
이렇게 생성되는 기체들은 그 종류에 관계없이 리튬 이차전지의 내부 압력을 상승시키고, 리튬 이동에 저항 요소로 작용하고, 이차전지의 부피(두께)를 팽창시키고, 이차전지의 경량화에도 커다란 문제점을 낳고, 이차전지의 성능을 열화시킨다.
최근 리튬 이차전지의 적용 분야가 확대됨에 따라 고온 환경에서 안정성 및 긴 수명 특성이 꾸준히 요구되고 있다. 이러한 성능은 전극 및 전해액의 초기 반응에 의해 형성된 상기 고체 전해질 전극 피막에 의해 크게 좌우된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) PCT 국제공개번호 WO 2019/059365 A1
이러한 부작용을 최소화하면서 이차전지의 성능과 안전성을 향상시킬 수 있는 첨가제를 함유한 비수 전해액에 대한 개발이 지속적으로 요구되고 있다. 상기와 같은 문제점을 해결하기 위하여, 본 발명은 전극 표면, 특히 음극 표면에 안정한 피막(SEI)을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수 전해액을 제공하고자 한다.
또한, 본 발명은 상기와 같은 문제점을 해결하기 위하여, 전극 표면, 특히 음극 표면에 견고한 피막(SEI)을 형성하는 동시에 리튬염으로부터 발생된 분해산물을 제거하는 효과가 우수한 이차전지용 전해액 첨가제를 제공하고자 한다.
또한, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬 이차전지의 고온 수명과 고온저장 안정성을 향상시킬 수 있는 리튬 이차전지용 비수 전해액과 이 리튬 이차전지용 비수 전해액을 포함하는 리튬 이차전지를 제공하고자 한다.
본 발명의 한 실시 형태를 따르는 리튬 이차전지용 비수전해액은
피리딘기와 실릴기를 포함하는 화합물;
리튬염; 및
비수계 유기용매를 포함한다.
본 발명의 한 실시 형태를 따르는 리튬 이차전지용 비수전해액은
하기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물;
리튬염; 및
비수계 유기용매를 포함한다.
Figure PCTKR2023014099-appb-img-000001
본 발명의 한 실시 형태를 따르는 리튬 이차전지용 비수전해액은
피리딘기와 실릴기를 포함하는 화합물;
부가 첨가제;
리튬염; 및
비수계 유기용매를 포함한다.
본 발명의 한 실시 형태를 따르는 리튬 이차전지용 비수전해액은
상기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물;
부가 첨가제;
리튬염; 및
비수계 유기용매를 포함한다.
본 발명의 일 실시예에서는 본 발명의 리튬 이차전지용 비수 전해액, 양극, 음극 및 분리막을 포함하는 리튬 이차전지를 제공한다.
상기 음극은 탄소계 음극 활물질과 실리콘계 음극 활물질을 포함할 수 있다.
상기 음극은 탄소계 음극 활물질과 실리콘계 음극 활물질을 97:3 내지 50:50의 중량비로 포함할 수 있다.
상기 음극은 탄소계 음극 활물질과 실리콘계 음극 활물질을 90:10 내지 60:40의 중량비로 포함할 수 있다.
본 발명의 리튬 이차전지용 전해액을 이용하는 리튬 이차전지는 고온에서 수명성능이 향상되며, 고온에서 저장 시 이차전지의 부피가 팽창하는 것을 억제하는 성능이 우수한 리튬 이차전지를 구현할 수 있다. 또한, 본 발명의 화학식 1로 표시되는 화합물은 피리딘기와 실릴기에 의해 전극 표면에 안정한 피막을 형성할 수 있다.
본 발명의 리튬 이차전지용 비수전해액은 첨가제로 피리딘기와 실릴기를 포함하는 화합물, 특히 하기 화학식 1로 표시되는 화합물을 포함함으로써, 전극 표면에 특히 음극표면에 안정한 피막을 형성하여, 양극으로부터 금속 이온이 용출되는 것을 효과적으로 억제할 수 있고, 리튬염의 열분해로 인해 생성되는 부산물을 제거하여 SEI 피막의 열화를 감소시킬 수 있다. 그리하여 본 발명의 리튬 이차전지용 비수전해액은 고온에서 수명 성능이 향상되고, 고온저장 안정성이 우수한 리튬 이차전지를 구현할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 권리범위가 이들 실시예에 의해 제한되는 것으로 해석하여서는 아니 된다.
본 명세서에서 사용되는 "포함한다" "가지다" 등의 용어는, 해당 표현이 포함되는 문구 또는 문장에서 특별히 다르게 언급되지 않는 한, 다른 성분을 포함할 가능성을 내포하는 개방형 용어(Open-ended terms)로 이해되어야 한다.
본 명세서에서 "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
이하, 본 발명의 리튬 이차전지용 비수 전해액과 이 비수 전해액을 포함하는 리튬 이차전지에 대해 구체적으로 설명한다.
<리튬 이차전지용 전해액 첨가제>
본 발명은 리튬 이차전지용 전해액의 첨가제로 피리딘기와 실릴기를 포함하는 화합물, 특히 하기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2023014099-appb-img-000002
<리튬 이차전지용 전해액>
본 발명은
피리딘기와 실릴기를 포함하는 화합물;
리튬염; 및
비수계 유기용매를 포함하는 리튬 이차전지용 전해액을 제공한다.
본 발명은
*상기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물;
리튬염; 및
비수계 유기용매를 포함하는 리튬 이차전지용 전해액을 제공한다.
본 발명은
피리딘기와 실릴기를 포함하는 화합물;
부가 첨가제;
리튬염; 및
비수계 유기용매를 포함하는 리튬 이차전지용 전해액을 제공한다.
본 발명은
상기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물;
부가 첨가제;
리튬염; 및
비수계 유기용매를 포함하는 리튬 이차전지용 전해액을 제공한다.
상기 피리딘기와 실릴기를 포함하는 화합물은 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 20 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물은 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 10 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물은 보다 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 5 중량%, 0.05 내지 3 중량%, 0.05 내지 2 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물은 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.1 내지 20 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물은 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.1 내지 10 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물은 보다 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.1 내지 5 중량%, 0.1 내지 3 중량%, 또는 0.1 내지 2 중량%로 포함될 수 있다.
상기 피리딘기와 실릴기를 포함하는 화합물이 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 중량% 미만으로 포함되는 경우에는 리튬 이차전지의 부피 팽창 방지 효과와 내부 저항 감소 효과가 충분하지 않고, 반대로 상기 피리딘기와 실릴기를 포함하는 화합물이 상기 리튬 이차전지용 전해액 총 중량에 대하여 20 중량%를 초과하여 포함되면, 이차전지의 내부 저항 증가 및 용량 감소로 인한 고온 수명 특성이 저하되고 고온 저장 특성이 저하되는 문제점이 발생한다.
상기 리튬 이차전지용 전해액은 할로겐 치환되거나 치환되지 않은 카보네이트계 화합물, 니트릴계 화합물, 보레이트계 화합물, 리튬염계 화합물, 포스페이트계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 설톤계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가 첨가제를 추가로 포함할 수 있다.
상기 부가 첨가제의 대표적인 예로는 리튬디플루오로포스페이트(Lithium difluorophosphate), 리튬테트라플루오로(옥살레이트)포스페이트(Lithium tetrafluoro(oxalate)phosphate, 리튬비스(플루오로설포닐)이미드(Lithium bis(fluorosulfonyl)imide), 1,3-프로판설톤(1,3-Propane sultone), 1,3-프로펜설톤(1,3-Propene sultone), 플루오로에틸렌카보네이트(Fluoroethylene carbonate), 비닐렌카보네이트(Vinylene Carbonate), 비닐에틸렌카보네이트(Vinyl Ethylene Carbonate) 및 에틸렌설페이트(Ethylene sulfate)를 들 수 있다.
상기 부가 첨가제는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 20 중량%로 포함될 수 있다.
상기 부가 첨가제는 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 10 중량%로 포함될 수 있다.
상기 부가 첨가제는 보다 바람직하게는 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 내지 5 중량%, 구체적으로 0.05 내지 3 중량%로 포함될 수 있다.
상기 부가 첨가제가 상기 리튬 이차전지용 전해액 총 중량에 대하여 0.05 중량% 미만으로 포함되는 경우에는 전극의 피막 형성 효과가 미미하여, 전극과 전해액의 부반응 억제 효과가 저하될 수 있으며, 상기 부가 첨가제가 상기 리튬 이차전지용 전해액 총 중량에 대하여 20 중량%를 초과하여 포함되면, 전극 표면에 지나치게 두꺼운 피막이 형성되면서 계면 저항이 증가하여 용량 저하가 발생할 수 있다.
또한, 상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiBF6, LiSbF6, LiAl04, LiAlCl4, LiClO4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiF2NO4S2 및 LiB(C2O4)2로 이루어진 군에서 선택되는 적어도 1종 이상을 포함할 수 있다.
상기 리튬염은 격자 에너지의 해리도가 커서 이온전도도가 우수하고, 열 안정성 및 내산화성이 우수한 리튬염을 사용하는 것이 바람직하다. 상기 리튬염은 이차전지 내에서 리튬 이온의 이동 통로로서 작용하여 기본적인 리튬 이차전지의 작동을 가능하게 한다.
상기 리튬염의 농도는 상기 리튬 이차전지용 전해액 총량에 대하여 0.1 내지 2.5 M(mol/L)로 포함될 수 있다.
상기 리튬염의 농도는 전기 전도도와 관련된 성질 및 리튬이온의 이동성과 관련된 점도를 고려하여, 바람직하게는 상기 리튬 이차전지용 전해액 총량에 대하여 0.3 내지 2.5 M(mol/L)로 포함될 수 있다.
상기 리튬염의 농도는 전기 전도도와 관련된 성질 및 리튬이온의 이동성과 관련된 점도를 고려하여, 보다 바람직하게는 0.7 내지 1.6 M(mol/L)로 포함될 수 있다.
상기 리튬염의 농도가 0.1 M 미만이면 상기 리튬 이차전지용 전해액의 전기 전도도가 낮아져서 리튬 이차전지의 양극과 음극 사이에서 빠른 속도로 이온을 전달하는 비수 전해액의 성능이 떨어지고, 상기 리튬염의 농도가 2.5 M을 초과하면 상기 리튬 이차전지용 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소하고 낮은 온도에서 이차전지 성능이 저하되는 문제점이 있다.
상기 비수계 유기용매는 선형 카보네이트계 용매, 환형 카보네이트계 용매 또는 이들의 혼합 용매일 수 있다.
상기 선형 카보네이트계 용매는 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 에틸프로필카보네이트(EPC), 에틸메틸카보네이트(EMC) 및 메틸프로필카보네이트(MPC)로 이루어진 군에서 선택되는 적어도 1종 이상을 포함할 수 있다.
또한, 상기 환형 카보네이트계 용매는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 1,2-부틸렌카보네이트(BC), 비닐렌카보네이트(VC) 및 플루오르에틸렌카보네이트(FEC)로 이루어진 군에서 선택되는 적어도 1종 이상을 포함할 수 있다.
이차전지의 충방전 성능을 높일 수 있는 높은 이온 전도도를 갖는 환형인 고유전율의 카보네이트계 유기 용매와 상기 고유전율의 카보네이트계 유기 용매의 점도를 적절하게 조절할 수 있는 점도가 낮은 선형의 카보네이트계 유기 용매를 혼합하여 사용하는 것이 바람직할 수 있다.
구체적으로, 상기 환형 카보네이트계 용매인 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 및 이들의 혼합물로 이루어진 군에서 선택되는 고유전율의 카보네이트계 유기용매와, 상기 선형 카보네이트계 용매인 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC) 및 이들의 혼합물로 이루어진 군에서 선택되는 저점도의 카보네이트계 유기용매를 혼합하여 사용할 수 있다.
상기 환형 카보네이트 용매는 극성이 커서 리튬 이온을 충분히 해리시킬 수 있는 반면, 점도가 커서 이온 전도도가 작은 단점이 있으므로, 상기 환형 카보네이트 용매에 극성은 작지만 점도가 낮은 선형 카보네이트 용매를 혼합하여 사용함으로써 리튬 이차전지의 특성을 최적화할 수 있다.
따라서, 상기 비수계 유기 용매로 상기 환형 카보네이트 용매에서 선택되는 하나 이상의 용매와 상기 선형 카보네이트 용매에서 선택되는 하나 이상의 용매를 혼합하여 사용하는 것이 바람직할 수 있다.
상기 선형 카보네이트계 용매와 상기 환형 카보네이트계 용매의 혼합 용매는 상기 선형 카보네이트계 용매와 상기 환형 카보네이트계 용매를 9:1 내지 1:9의 부피비로 혼합하여 사용할 수 있다.
상기 선형 카보네이트계 용매와 상기 환형 카보네이트계 용매의 혼합 용매는 이차전지의 수명 특성과 저장 특성 측면에서, 상기 선형 카보네이트계 용매와 상기 환형 카보네이트계 용매를 2:8 내지 8:2의 부피비로 혼합하여 사용하는 것이 보다 바람직할 수 있다.
상기 비수계 유기 용매는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 에틸메틸카보네이트(EMC), 및 디에틸카보네이트(DEC)를 포함할 수 있다.
상기 비수계 유기 용매는 상기 에틸렌카보네이트(EC) 5 내지 40 중량%, 상기 프로필렌카보네이트(PC) 5 내지 20 중량%, 상기 에틸메틸카보네이트(EMC) 10 내지 70 중량%, 및 상기 디에틸카보네이트(DEC) 10 내지 60 중량%를 포함할 수 있다.
구체적으로, 상기 환형 카보네이트계 용매 중에서는 유전율이 높은 에틸렌카보네이트(EC) 또는 프로필렌카보네이트(PC)를 사용할 수 있는데, 음극 활물질로 인조흑연이 사용되는 경우에는 상기 에틸렌카보네이트(EC)를 사용하는 것이 바람직하며, 상기 선형 카보네이트계 용매 중에서는 점도가 낮은 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 또는 디에틸카보네이트(DEC)를 사용하는 것이 바람직하다.
상기 비수계 유기 용매는 상기 리튬 이차전지용 전해액 총량에 대하여 5% 내지 80%로 포함될 수 있다. 상기 비수계 유기 용매는 상기 리튬 이차전지용 전해액 총량에 대하여 5% 내지 70%로 포함될 수도 있다.
<리튬 이차전지>
상기 비수 전해액을 포함한 리튬 이차전지는 고온에서 수명 특성이 향상되고, 고온 저장 시 전지 두께의 팽창을 억제하는 성능이 우수하다.
이하, 본 발명의 리튬 이차전지를 구체적으로 설명한다.
본 발명의 리튬 이차전지는
양극;
음극;
분리막;
및 비수 전해액을 포함한다.
상기 양극은 LiCoO2, LiFePO4, LiMnO2, LiMn2O4, LiNiO2, 또는 LiNi1-x-yCoxMyO2(0≤x≤1, 0≤y≤1, 0≤x+y≤1, M은 Al, Sr, Mg, Mn 또는 La) 등의 리튬 금속산화물로 이루어진 군으로부터 선택되는 적어도 1종 이상의 양극 활물질을 포함할 수 있다.
상기 음극은 규소, 규소 화합물, 주석, 주석 화합물, 타이타늄산리튬, 결정질 탄소, 비정질 탄소, 인조 흑연, 천연 흑연 및 인조 흑연과 천연 흑연 혼합물로 이루어진 군으로부터 선택되는 적어도 1종 이상의 음극 활물질을 포함할 수 있다.
상기 분리막은 에틸렌 중합체, 프로필렌 중합체, 에틸렌/부텐 공중합체, 및 에틸렌/헥센 공중합체 중에서 선택된 적어도 어느 하나 이상의 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 단독으로 구성될 수도 있고 이들의 적층물로 구성될 수도 있다. 상기 분리막은 세라믹 또는 고분자 물질이 코팅된 코팅막을 포함할 수 있다.
상기 비수 전해액은 피리딘기와 실릴기를 포함하는 화합물, 특히 하기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물;
부가 첨가제;
리튬염; 및
비수계 유기용매를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023014099-appb-img-000003
상기 리튬 이차전지의 예로는 리튬 금속 이차전지, 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 이온 폴리머 이차전지 등이 있고, 여기에 한정되지 않는다.
좀 더 자세히 설명하면, 상기 양극 활물질로는 코발트, 망간, 니켈에서 선택되는 1종 이상의 물질과 리튬과의 복합 금속 산화물인 것이 바람직하다. 상기 복합 금속 산화물의 코발트, 망간, 니켈 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 이들 코발트, 망간, 니켈 금속 외에 Mg, Al, K, Na, Ca, Si, Ti, Sn, V, Ge, Ga, B, As, Zr, Cr, Fe, Sr, V 및 희토류 원소로 이루어진 군에서 선택되는 원소가 더 포함될 수 있다.
구체적으로, 상기 양극 활물질로는 LiCoO2, LiFePO4, LiMnO2, LiMn2O4, LiNiO2, 또는 LiNi1-x-yCoxMyO2(0≤x≤1, 0≤y≤1, 0≤x+y≤1, M은 Al, Sr, Mg, Mn 또는 La) 등의 리튬 금속산화물 또는 리튬 칼코제나이드 화합물과 같은 리튬 인터칼레이션 화합물을 사용할 수 있으나, 이에 제한되지 않고 이차전지에서 양극 활물질로서 사용가능한 임의의 물질을 사용할 수 있다.
상기 양극은 집전체 및 상기 집전체 상에 형성되어 있는 양극 활물질층을 포함한다. 양극 활물질층은 리튬을 흡장 및 방출할 수 있는 양극 활물질, 바인더, 도전재 등을 포함할 수 있다.
상기 음극은 집전체 및 상기 집전체 상에 형성되어 있는 음극 활물질층을 포함한다. 음극 활물질층은 리튬을 삽입 및 탈리할 수 있는 음극 활물질, 바인더, 도전재 등을 포함할 수 있다. 음극 활물질로는 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유, 리튬 금속, 리튬 합금 또는 탄소-실리콘 복합체 등을 사용할 수 있으나, 이에 제한되지 않고 이차전지에서 음극 활물질로서 사용가능한 임의의 물질을 사용할 수 있다.
상기 양극 및/또는 음극은 전극 활물질, 바인더 및 도전재, 필요한 경우 증점제를 용매에 분산시켜 전극 슬러리 조성물을 제조한 후, 상기 슬러리 조성물을 전극 집전체에 도포하여 제조할 수 있다. 양극 집전체로는 흔히 알루미늄 또는 알루미늄 합금 등을 사용할 수 있고, 음극 집전체로는 흔히 구리 또는 구리 합금 등을 사용할 수 있다.
상기 양극 집전체 및 상기 음극 집전체의 형태로는 포일이나 메시 형태를 들 수 있다.
상기 바인더는 활물질의 페이스트화, 활물질의 상호 접착, 집전체와의 접착, 활물질의 팽창 및 수축에 대한 완충 효과 등의 역할을 하는 물질로서, 당업자에 의해 사용될 수 있는 바인더라면 모두 가능하다. 예를 들면, 폴리비닐알코올, 카르복시메틸셀룰로오스, 히드록시프로필셀룰로오스, 디아세틸셀룰로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVdF), 폴리헥사플루오로프로필렌-폴리비닐리덴플루오라이드의 공중합체(PVdF/HFP), 폴리(비닐아세테이트), 알킬레이티드폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리(에틸아크릴레이트), 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 고무, 아크릴레이티드 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학 변화를 야기하지 않는 전기 전도성 재료이면 어떠한 것도 사용 가능하다. 상기 도전재로는 흑연계 도전재, 카본 블랙계 도전재, 금속 또는 금속 화합물계 도전재로 이루어진 군에서 선택되는 적어도 어느 하나 이상을 사용할 수 있다. 상기 흑연계 도전재의 예로는 인조 흑연, 천연 흑연 등이 있으며, 상기 카본 블랙계 도전재의 예로는 아세틸렌 블랙(acethylene black), 케첸 블랙(ketjen black), 덴카 블랙(denka black), 써멀 블랙(thermal black), 채널 블랙(channel black) 등이 있으며, 상기 금속계 또는 금속 화합물계 도전재의 예로는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질이 있다. 그러나 상기 열거된 도전재에 한정되는 것은 아니다.
상기 증점제는 활물질 슬러리의 점도를 조절하는 역할을 할 수 있는 것이라면 특별히 한정되지 않으며, 예를 들면 카르복시메틸 셀룰로오스, 하이드록시메틸 셀룰로오스, 하이드록시에틸 셀룰로오스, 하이드록시프로필 셀룰로오스 등을 사용할 수 있다.
상기 전극 활물질, 바인더, 도전재 등이 분산되는 용매로는 비수계 용매 또는 수계 용매를 사용할 수 있다. 상기 비수계 용매로는 N-메틸-2-피롤디돈(NMP), 디메틸포름아미드, 디메틸아세트아미드, N,N-디메틸아미노프로필아민, 에틸렌옥사이드, 또는 테트라히드로퓨란 등을 들 수 있다. 상기 수계 용매로는 물 등을 들 수 있다.
상기 리튬 이차전지는 양극 및 음극 사이에 단락을 방지하고 리튬 이온의 이동 통로를 제공하는 분리막(세퍼레이터)을 포함할 수 있으며, 상기 분리막으로는 폴리프로필렌, 폴리에틸렌, 폴리에틸렌/폴리프로필렌, 폴리에틸렌/폴리프로필렌/폴리에틸렌, 폴리프로필렌/폴리에틸렌/폴리프로필렌 등의 폴리올레핀계 고분자막 또는 이들의 다중막, 미세 다공성 필름, 직포 및 부직포를 사용할 수 있다. 또한, 상기 분리막으로 다공성의 폴리올레핀 필름에 안정성이 우수한 수지가 코팅된 필름을 사용할 수도 있다.
그리고, 상기 리튬 이차전지는 각형, 원통형, 파우치형 또는 코인형 등 여러 형상으로 만들 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석하여서는 아니 된다.
<피리딘기와 실릴기를 포함하는 화합물이 포함된 리튬 이차전지용 전해액의 제조>
[실시예 1]
에틸렌카보네이트(EC)와 에틸메틸카보네이트(EMC)의 혼합 용매(EC/EMC=3/7 부피비)에 LiPF6 와 LiFSI를 각각 0.7M, 0.3M이 되도록 용해한 후, 상기 혼합 용액에 1.0 중량%의 플루오로에틸렌 카보네이트(FEC), 1.0 중량%의 리튬 디플루오로포스페이트(LiPO2F2), 1.0 중량%의 비닐렌 카보네이트(VC), 0.5 중량%의 에틸렌설페이트(Esa), 0.5 중량%의 1.3-프로펜 설톤(PRS) 및 상기 화학식 1로 표시되는 2-(알릴디메틸실릴)피리딘[2-(Allyldimethylsilyl)Pyridine](Merck사 제조) 화합물 0.5 중량%를 첨가하여 실시예 1의 피리딘기와 실릴기를 포함하는 화합물이 포함된 리튬 이차전지용 전해액을 제조하였다.
<피리딘기와 실릴기를 포함하는 화합물이 포함된 전해액을 포함하는 리튬 이차전지의 제조>
Li[NixCo1-x-yMny]O2 (0<x<0.5, 0<y<0.5)를 포함하는 NCM계 양극 활물질 94 중량%, 도전재(Super-P) 3 중량%, 바인더(PVdF) 3 중량%를 유기용매인 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidinone, NMP)에 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 집전체인 알루미늄 박막에 도포하고 건조하여 양극을 제조한 다음, 롤프레스로 압연하여 양극을 준비하였다. 또한, SiOx를 포함하는 흑연계 음극 활물질 96 중량%, 도전재(Super-P) 1중량%, 바인더 스티렌 부타디엔 고무(SBR) 1.5중량%, CMC(카르복실 메틸 셀룰로스, Carboxyl Methyl Cellulose) 1.5중량%를 혼합하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 음극 집전체인 구리 박막에 도포하고 건조하여 음극을 준비하였다.
상기와 같이 제조한 양극 및 음극을 준비하고, 그 사이에 분리막을 개재 시켰다. 그런 다음, 상기 분리막이 게재된 두 전극 사이에 상기 실시예 1의 피리딘기와 실릴기를 포함하는 화합물이 포함된 리튬 이차전지용 전해액을 주입하여, 알루미늄 파우치 형태(Al-Pouch type)인, 피리딘기와 실릴기를 포함하는 화합물이 포함된 전해액을 포함하는 리튬 이차전지를 제조하였다.
[비교예]
<1,3-프로판설톤(PS) 첨가제가 포함된 리튬 이차전지용 전해액의 제조>
리튬 이차전지용 비수 전해액은 비수 전해액의 분해를 방지하여 고온 안정성, 고온에서의 전지 팽창 억제 효과 등을 향상시키기 위하여 필요에 따라 설톤계 화합물을 포함할 수 있다. 상기 설톤계 화합물은, 예를 특면, 1,3-프로판설톤(PS), 1,4-부탄 설톤(BS), 에텐설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물일 수 있다. 아래 비교예에서는 전지의 가스(gas) 억제 첨가제로 알려져 있는 1,3-프로판설톤을 사용하였다.
[비교예 1]
에틸렌카보네이트(EC)와 에틸메틸카보네이트(EMC)의 혼합 용매(EC/EMC=3/7 부피비)에 LiPF6 와 LiFSI를 각각 0.7M, 0.3M이 되도록 용해한 후, 상기 혼합 용액에 1.0 중량%의 플루오로에틸렌 카보네이트(FEC), 1.0 중량%의 리튬 디플루오로포스페이트(LiPO2F2), 1.0 중량%의 비닐렌 카보네이트(VC), 0.5 중량%의 에틸렌설페이트(Esa), 0.5 중량%의 1.3-프로펜 설톤(PRS) 및 0.5 중량%의 프로판 설톤(PS)를 첨가하여 비교예 1의 리튬 이차전지용 전해액을 제조하였다.
<1,3-프로판설톤(PS) 첨가제가 포함된 전해액을 포함하는 리튬 이차전지의 제조>
전해액으로 상기 화학식 1의 화합물로 표시되는 2-(알릴디메틸실릴)피리딘 화합물을 첨가하지 않고 1.3-프로판 설톤(PS)을 포함시킨 상기 비교예 1의 리튬 이차전지용 전해액을 사용하는 것을 제외하고는, 상기 실시예의 리튬 이차전지 제조와 동일한 방법으로 화학식 1의 화합물을 포함하지 않고 1.3-프로판 설톤(PS)을 포함하는 전해액을 포함하는 리튬 이차전지를 제조하였다.
상기 실시예와 비교예의 리튬 이차전지용 전해액의 구성을 아래 표 1에 나타냈다.
<리튬 이차전지용 전해액의 구성>
피리딘기와 실릴기를 포함하는 화합물 1,3-프로판설톤
(PS)
1,3-프로펜설톤
(PRS)
비닐렌 카보네이트
(VC)
플루오로에틸렌카보네이트
(FEC)
리튬디플루오로포스페이트
(LiPO2F2)
에틸렌설페이트
(Esa)
실시예 O O O O O O
비교예 O O O O O O
[실험예]
[실험예 1]
<고온(45℃) 수명 용량 유지율 측정>
상기 실시예 및 비교예의 리튬 이차전지용 전해액을 사용하여 제작한 파우치 형태의 리튬 이차전지를 고온(45℃)에서 1C-rate로 4.2V까지 충전 후 10분의 휴지 시간을 갖고 1C-rate로 2.7V까지 방전 후, 다시 10분의 휴지시간을 가졌다. 상기 과정을 400회 반복하여 전지의 방전 용량(mAh) 및 수명 용량 유지율(retention, %)을 측정하였으며, 측정된 전지의 방전 용량 및 수명 용량 유지율을 비교하여 그 결과를 표 2에 나타냈다.
1회 방전 용량
(mAh)
400회 방전 용량
(mAh)
수명용량유지율
(%)
실시예 890.9 709.9 79.7
비교예 893.1 706.2 79.1
상기 표 2에서 보는 바와 같이, 고온에서의 수명 평가 결과, 실시예의 리튬 이차전지는 1,3-프로판설톤을 사용한 비교예의 리튬 이차전지에 비해 향상된 수준의 결과를 보여주었다. 즉, 피리딘기와 실릴기를 포함하는 화합물이 포함된 전해액은 1,3-프로판설톤을 포함하고 있는 전해액에 비해 고온에서의 수명 특성이 개선됨을 확인하였다.
따라서, 상기 실시예의 리튬 이차전지는 피리딘기와 실릴기를 포함하는 화합물, 특히 상기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물이 포함된 전해액을 포함함으로써, 상기 비교예의 리튬 이차전지보다 상대적으로 고온에서 수명 특성이 향상됨을 확인할 수 있었다.
[실험예 2]
<고온(60℃) 저장 특성 측정>
상기 실시예 및 비교예의 리튬 이차전지용 전해액을 사용하여 제작한 파우치 형태의 리튬 이차전지를 고온(60℃)에서 6주간 저장 후 전지의 부피 증가율을 측정하였다. 고온(60℃)에서 6주간 저장한 후 리튬 이차전지의 부피 증가율을 하기 표 3에 나타냈다.
60℃6주 저장 후
부피 증가율(%)
실시예 4.35
비교예 4.72
상기 표 3에서 보는 바와 같이, 고온 저장 특성 비교를 위해, 실시예의 리튬 이차전지와 비교예의 리튬 이차전지를 고온(60℃)에서 6주간 방치한 후 이차전지의 부피 증가율을 측정하였다. 측정 결과를 보면, 피리딘기와 실릴기를 포함하는 화합물을 사용한 실시예 1은 1,3-프로판설톤을 포함하고 있는 비교예와 대비하여 전지의 부피 증가율이 감소하였다. 실시예의 리튬 이차전지는 비교예의 리튬 이차전지보다 고온 저장 시 전지의 부피 증가율 성능이 우수함을 확인할 수 있었다.
이상의 실시예와 비교예의 실험 결과를 비교하면, 1,3-프로판설톤(PS)을 포함하는 비교예의 리튬 이차전지에 비해, 1,3-프로판설톤(PS)를 대체하여 피리딘기와 실릴기를 포함하는 화합물, 특히 상기 화학식 1로 표시되는 피리딘기와 실릴기를 포함하는 화합물을 포함하는 실시예의 리튬 이차전지는 고온 수명 성능이 향상되고, 고온 저장 시 전지의 부피 증가율 성능도 우수함을 알 수 있었다.

Claims (8)

  1. 리튬염; 비수계 유기용매; 및 첨가제를 포함하는 리튬 이차전지용 비수 전해액으로서,
    상기 첨가제는 피리딘기와 실릴기를 포함하는 화합물인 리튬이차전지용 비수 전해액.
  2. 제1항에 있어서, 상기 첨가제는 하기 화학식 1의 화합물인 리튬 이차전지용 비수 전해액.
    [화학식 1]
    Figure PCTKR2023014099-appb-img-000004
  3. 제1항 또는 제2항에 있어서, 상기 첨가제는 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 20 중량%로 포함되는 것인 리튬 이차전지용 비수 전해액.
  4. 제1항 또는 제2항에 있어서, 할로겐 치환되거나 치환되지 않은 카보네이트계 화합물, 니트릴계 화합물, 보레이트계 화합물, 리튬염계 화합물, 포스페이트계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 설톤계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 추가로 포함하는 리튬 이차전지용 비수 전해액.
  5. 제1항 또는 제2항의 리튬 이차전지용 비수 전해액; 양극; 음극; 및 분리막을 포함하는 리튬 이차전지.
  6. 제1항 또는 제2항에 있어서, 상기 음극은 탄소계 음극 활물질, 실리콘계 음극 활물질, 및 이들의 혼합물을 포함하는 것인 리튬 이차전지.
  7. 제6항에 있어서, 상기 탄소계 음극 활물질과 실리콘계 음극 활물질은 97:3 내지 50:50의 중량비로 포함되는 리튬 이차전지.
  8. 제7항에 있어서, 상기 탄소계 음극 활물질과 실리콘계 음극 활물질은 90:10내지 60:40의 중량비로 포함되는 리튬 이차전지.
PCT/KR2023/014099 2022-10-14 2023-09-18 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지 WO2024080602A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220132699A KR20240052526A (ko) 2022-10-14 2022-10-14 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
KR10-2022-0132699 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080602A1 true WO2024080602A1 (ko) 2024-04-18

Family

ID=90669551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014099 WO2024080602A1 (ko) 2022-10-14 2023-09-18 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR20240052526A (ko)
WO (1) WO2024080602A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134168A (ja) * 2000-10-27 2002-05-10 Sumitomo Seika Chem Co Ltd リチウム二次電池用電解液
KR20160097075A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 비수계 리튬이차전지용 첨가제와, 이를 포함하는 비수계 전해액, 전극 및 비수계 리튬이차전지
KR20190141915A (ko) * 2018-06-15 2019-12-26 주식회사 엘지화학 리튬 이차전지용 음극의 제조방법
CN111416154A (zh) * 2020-05-22 2020-07-14 松山湖材料实验室 高电压锂离子电池电解液硅基吡啶添加剂、电解液及其电池
CN113851717A (zh) * 2021-10-14 2021-12-28 湖南法恩莱特新能源科技有限公司 一种锂离子电池用电解液添加剂、电解液及其应用
CN115312861A (zh) * 2022-08-16 2022-11-08 珠海冠宇电池股份有限公司 一种电解液包括该电解液的电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686983A4 (en) 2017-09-22 2020-09-30 Mitsubishi Chemical Corporation WATER-FREE ELECTROLYTE, SECONDARY BATTERY WITH WATER-FREE ELECTROLYTE AND POWER DEVICE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134168A (ja) * 2000-10-27 2002-05-10 Sumitomo Seika Chem Co Ltd リチウム二次電池用電解液
KR20160097075A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 비수계 리튬이차전지용 첨가제와, 이를 포함하는 비수계 전해액, 전극 및 비수계 리튬이차전지
KR20190141915A (ko) * 2018-06-15 2019-12-26 주식회사 엘지화학 리튬 이차전지용 음극의 제조방법
CN111416154A (zh) * 2020-05-22 2020-07-14 松山湖材料实验室 高电压锂离子电池电解液硅基吡啶添加剂、电解液及其电池
CN113851717A (zh) * 2021-10-14 2021-12-28 湖南法恩莱特新能源科技有限公司 一种锂离子电池用电解液添加剂、电解液及其应用
CN115312861A (zh) * 2022-08-16 2022-11-08 珠海冠宇电池股份有限公司 一种电解液包括该电解液的电池

Also Published As

Publication number Publication date
KR20240052526A (ko) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2016159702A1 (ko) 비수 전해액 및 이를 구비한 리튬 이차전지
WO2013012248A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2013012250A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2014116082A1 (ko) 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차 전지
WO2019103434A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2024063189A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지
WO2024038942A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액, 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2017057963A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021101174A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022114930A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020204607A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020055180A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2024080602A1 (ko) 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2024080615A1 (ko) 새로운 전해액 첨가제를 포함하는 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021049875A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지