WO2024080197A1 - 導電性組成物、導電性材料、導電性膜及び導電性物品 - Google Patents

導電性組成物、導電性材料、導電性膜及び導電性物品 Download PDF

Info

Publication number
WO2024080197A1
WO2024080197A1 PCT/JP2023/036166 JP2023036166W WO2024080197A1 WO 2024080197 A1 WO2024080197 A1 WO 2024080197A1 JP 2023036166 W JP2023036166 W JP 2023036166W WO 2024080197 A1 WO2024080197 A1 WO 2024080197A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
group
sulfonic acid
conductive polymer
mass
Prior art date
Application number
PCT/JP2023/036166
Other languages
English (en)
French (fr)
Inventor
真吾 小野寺
徹 板東
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024080197A1 publication Critical patent/WO2024080197A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a conductive composition, a conductive material, a conductive film, and a conductive article.
  • Carbon nanotubes due to their high electrical conductivity and unique shape, are used as a conductive assistant for electrodes in various batteries, electrodes for touch films, electromagnetic wave shielding materials, antistatic agents, heat dissipation materials, and the like. Carbon nanotubes are generally used as conductive materials by drying a dispersion of carbon nanotubes in water or an organic solvent or a coating film thereof, and are widely used as materials having excellent electrical or thermal conductivity due to electrical conduction or thermal conduction through the contact points between the carbon nanotubes.
  • Patent Document 1 conductive polymers that are dispersed in water or in organic solvents have been developed, and attempts have been made to use these conductive polymers in combination with carbon nanotubes.
  • a conductive composition comprising (a) carbon nanotubes, (b) a soluble conductive polymer, and (c) a solvent, wherein the soluble conductive polymer is the following (i) or (ii): (i) A composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound (ii) A conductive polymer having a sulfonic acid group-containing side chain 2.
  • a conductive assistant for a battery comprising the conductive material according to claim 9.
  • a conductive film comprising: (a) carbon nanotubes; and (b) a soluble conductive polymer, The conductive film, wherein the soluble conductive polymer is the following (i) or (ii): (i) A composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound. (ii) A conductive polymer having a sulfonic acid group-containing side chain.
  • a conductive article made from a mixture of the conductive composition described in any one of 13.1 to 7 and at least one selected from the group consisting of a resin and an inorganic material.
  • a conductive laminate comprising a substrate and a conductive layer made of the conductive material according to 9, the conductive layer being in contact with the substrate.
  • a battery comprising the conductive assistant for a battery according to 11.
  • a conductive composition which can provide a material having excellent electrical conductivity. Furthermore, according to the present invention, it is possible to provide a conductive composition which can provide a material having excellent thermal conductivity.
  • FIG. 2 is a diagram showing a schematic mechanism of electrical conductivity development in a coating film obtained from a composition containing carbon nanotubes.
  • 2 is a schematic cross-sectional view of a contact point between the carbon nanotubes of FIG. 1.
  • FIG. FIG. 2 is a schematic diagram showing a cross section around a contact point between carbon nanotubes of a material obtained from a composition containing a solvent-dispersed conductive polymer.
  • FIG. 2 is a diagram illustrating a mechanism of electrical conductivity development in a material obtained from a conductive composition according to one embodiment of the present invention.
  • x to y represents a numerical range of "greater than or equal to x and less than or equal to y.”
  • the upper and lower limits of the numerical ranges described can be combined in any way.
  • the conductive composition comprises: (a) carbon nanotubes (hereinafter also referred to as “component (a)”), (b) a soluble conductive polymer (hereinafter also referred to as “component (b)”), and (c) a solvent (hereinafter also referred to as “component (c)”).
  • component (a) carbon nanotubes
  • component (b) a soluble conductive polymer
  • component (c) a solvent
  • the soluble conductive polymer is the following (i) or (ii): (i) A composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound. (ii) A conductive polymer having a sulfonic acid group-containing side chain.
  • the conductive composition of this embodiment contains the above-mentioned components (a) to (c), and thus the material obtained from the conductive composition exhibits higher electrical and thermal conductivity than a material composed of carbon nanotubes alone (a material obtained from a carbon nanotube-containing composition without a conductive polymer).
  • a material composed of carbon nanotubes alone a material obtained from a carbon nanotube-containing composition without a conductive polymer.
  • the carbon nanotubes 10 come into contact with each other, and are electrically and thermally conductive at the contact points 10a, forming a conductive path (an electrically and thermally conductive area), so that the material (e.g., a coating film, a molded body, etc.) obtained after removing the solvent component exhibits conductivity as a whole.
  • electrical and thermal conduction paths are formed only at contact points 10a where carbon nanotubes 10 come into contact with each other.
  • FIG. 3 is a diagram that illustrates a material obtained from a composition containing a solvent-dispersed conductive polymer and carbon nanotubes.
  • a solvent-dispersed conductive polymer e.g., poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)
  • PDOT:PSS polystyrenesulfonate
  • the soluble conductive polymer 11 adheres to the periphery including the contact points between the carbon nanotubes 10, and covers a part of the surface of the carbon nanotubes 10, or covers the entire surface of the carbon nanotubes 10. Therefore, in a material (e.g., a coating film, a molded product, etc.) obtained after removing the solvent component from the conductive composition of this embodiment, the carbon nanotubes 10 are electrically connected to each other not only through the contact points and the periphery, but also through the soluble conductive polymer 11 present between each carbon nanotube 10.
  • the conductive paths between the carbon nanotubes 10 are formed in a planar manner by the soluble conductive polymer 11 interposed between each carbon nanotube 10. Therefore, the conductive paths formed per unit volume are increased compared to the states shown in Fig. 2 and Fig. 3. Therefore, in the material obtained by removing the solvent component from the conductive composition of this embodiment, the contact resistance during electrical current flow is reduced compared to the state shown in Figures 2 and 3, and the resistance value of the material as a whole after removal of the solvent component is kept low, so that the material exhibits excellent electrical conductivity and also has excellent thermal conductivity.
  • soluble conductive polymer refers to a conductive polymer that is soluble in a solvent component (organic solvent or water).
  • the conductive polymer being dissolved in a solvent component refers to a state in which the conductive polymer is dispersed in the solvent at the molecular level. Therefore, as shown in Figure 4, in the material obtained by removing the solvent component from the conductive composition containing the soluble conductive polymer, the soluble conductive polymer 11 adheres to the periphery of the carbon nanotubes 10, coating the surface of each carbon nanotube 10, and it is believed that a planar conductive path is formed at the contact points between each carbon nanotube 10.
  • a conductive polymer containing a hydrophilic dopant component e.g., polystyrene sulfonate (PSS)
  • PSS polystyrene sulfonate
  • the conductive composition of the present embodiment uses, as the soluble conductive polymer, (i) a composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound, or (ii) a conductive polymer having a sulfonic acid group-containing side chain, and thus has high affinity with the surface of hydrophobic carbon nanotubes. Due to this affinity, as shown in Figure 4, the soluble conductive polymer 11 easily adheres to the periphery of each carbon nanotube 10, and after the solvent is removed, the surface of each carbon nanotube 10 is covered, and it is presumed that a planar conductive path is formed between each carbon nanotube 10.
  • the conductive composition of this embodiment is able to achieve high electrical and thermal conductivity that could not be achieved with conventional combinations of carbon nanotubes and conductive polymers, due to the synergistic effect of the carbon nanotubes, which have high electrical and thermal conductivity, and the conductive polymer, which is both soluble and hydrophobic. Therefore, the conductive polymer to be used is not particularly limited as long as it is both soluble and hydrophobic, and can be used in the conductive composition of this embodiment, and the effects obtained by the conductive composition of this embodiment can be obtained.
  • Carbon Nanotubes examples include single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), multi-walled carbon nanotubes (MWCNT), and carbon nanofibers.
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • carbon nanofibers As the carbon nanotube, one of these may be used alone, or two or more of them may be used in combination.
  • the fiber diameter of the carbon nanotubes is not particularly limited, but from the viewpoint of obtaining good electrical conductivity in the material obtained from the conductive composition, for example, the fiber diameter of single-walled carbon nanotubes (SWCNTs) may be 0.1 to 50 nm, 0.3 to 10 nm, or 0.5 to 3 nm.
  • the fiber diameter of the multi-walled carbon nanotubes (MWCNTs) may be 1 to 500 nm, 3 to 300 nm, or 5 to 100 nm.
  • the fiber diameter of the double-walled carbon nanotube (DWCNT) may be 0.2 to 100 nm, may be 0.5 to 80 nm, or may be 1 to 50 nm.
  • the fiber diameter of the carbon nanofibers may be 100 to 1000 nm, may be 120 to 800 nm, or may be 150 to 500 nm.
  • the fiber diameter of a carbon nanotube means the outer diameter of the fiber.
  • the fiber diameter and fiber length of carbon nanotubes which will be described later, can be determined by observing the carbon nanotubes using a scanning transmission electron microscope, randomly selecting 100 carbon nanotubes from the observed image, measuring their outer diameters and lengths, and calculating the arithmetic mean values of the outer diameters and the arithmetic mean values of the lengths.
  • the fiber length of the carbon nanotubes is not particularly limited, but from the viewpoint of obtaining good electrical conductivity in the material obtained from the conductive composition, the fiber length may be, for example, 0.1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the content of component (a) may be 5% by mass or more, 10% by mass or more, or 15% by mass or more, and may be 95% by mass or less, 93% by mass or less, 90% by mass or less, 80% by mass or less, or 70% by mass or less, relative to 100% by mass of the total of components (a) and (b).
  • content of component (a) relative to the total of components (a) and (b) (100 mass %) is within the above range, good electrical conductivity can be obtained in a material obtained from the conductive composition.
  • component (a) may be, for example, 0.1 mass% or more, 0.15 mass% or more, or 0.18 mass% or more relative to 100 mass% of the total composition.
  • the carbon nanotubes can be used in the conductive composition of this embodiment in a state where they are dispersed in a dispersion medium.
  • the dispersion medium for the carbon nanotubes is brought into the conductive composition of this embodiment and is included in the solvent of component (c) in the conductive composition.
  • the dispersion medium for carbon nanotubes is not particularly limited as long as it can uniformly disperse carbon nanotubes.
  • preferred dispersion media include glycol ethers such as dipropylene glycol dimethyl ether, methyl ethyl cellosolve, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate (PGMEA); ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isophorone; alcohols such as methanol, ethanol, isopropyl alcohol, and ethylene glycol; N-methylpyrrolidone, N,N-dimethylformamide, and water.
  • glycol ethers such as dipropylene glycol dimethyl ether, methyl ethyl cellosolve, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate (PGMEA)
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isophorone
  • the soluble conductive polymer may be of the following (i) the first form or (ii) the second form. (i) A composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound. (ii) A conductive polymer having a sulfonic acid group-containing side chain.
  • the soluble conductive polymer of the first form is a complex in which a conductive polymer is doped with a hydrophobic sulfonic acid compound.
  • the soluble conductive polymer of the first embodiment described above is hydrophobic and has excellent solubility in a solvent (organic solvent or water), and therefore, after removing the solvent contained in the conductive composition, the surface of each carbon nanotube is covered with the soluble conductive polymer.
  • the conductive polymer of the first type includes polyaniline, polythiophene, polypyrrole, and derivatives thereof. These may or may not have a substituent. These may be used alone or in combination of two or more.
  • polyaniline is preferred from the viewpoints of versatility and economy.
  • the polyaniline preferably has a weight average molecular weight of 10,000 or more, more preferably 20,000 or more. More preferably, it is 30,000 or more and 1,000,000 or less. Even more preferably, it is from 40,000 to 1,000,000, and particularly preferably from 52,000 to 1,000,000.
  • the weight average molecular weight of polyaniline is measured by the method described in the Examples.
  • the polyaniline may or may not have a substituent, but from the viewpoints of versatility and economy, unsubstituted polyaniline is preferred.
  • substituents include linear or branched hydrocarbon groups such as a methyl group, an ethyl group, a hexyl group, and an octyl group; alkoxy groups such as a methoxy group and an ethoxy group; aryloxy groups such as a phenoxy group; and halogenated hydrocarbons such as a trifluoromethyl group ( -CF3 group).
  • Hydrophobic sulfonic acid compounds can be used without particular restrictions on chemical structure, as long as they form a complex that is soluble in a solvent when doped into a conductive polymer.
  • hydrophobic refers to an HLB (Hydrophilic-Lipophilic Balance) value within the range of 1-8. Furthermore, if the sulfonic acid compound has 6 or more carbon atoms, the HLB value falls within the range of 1 to 8, and the compound has hydrophobicity. In the following description, the hydrophobic sulfonic acid compound is also referred to as a hydrophobic sulfonic acid compound.
  • the hydrophobic sulfonic acid compound is doped into the substituted or unsubstituted polyaniline as a proton donor to form a polyaniline composite.
  • the fact that the hydrophobic sulfonic acid compound is doped into the polyaniline as a proton donor can be confirmed by ultraviolet/visible/near-infrared spectroscopy and X-ray photoelectron spectroscopy.
  • the sulfonic acid compound serving as the proton donor can be used without particular limitations on its chemical structure, so long as it has sufficient acidity to generate carriers in the polyaniline.
  • the hydrophobic sulfonic acid compound may have 6 or more, 7 or more, 8 or more, or 10 or more carbon atoms, and may have 35 or less, 30 or less, 25 or less, or 20 or less carbon atoms.
  • a composite in which the hydrophobic sulfonic acid compound is doped into a conductive polymer exhibits hydrophobicity as a whole and exhibits excellent solubility in a solvent (organic solvent or water).
  • the hydrophobic sulfonic acid compound may have an HLB value of 1.0 to 8.0, 2.0 to 7.0, 3.0 to 5.0, or 3.5 to 4.8.
  • HLB value of the hydrophobic sulfonic acid compound is within the above range, a composite in which the hydrophobic sulfonic acid compound is doped into a conductive polymer exhibits hydrophobicity as a whole and exhibits excellent solubility in a solvent (organic solvent or water).
  • HLB value 20 x sum of formula weights of hydrophilic parts / molecular weight
  • hydrophobic sulfonic acid compound examples include a sulfonic acid compound (proton donor) represented by the following formula (I).
  • M is a hydrogen atom, an organic free group, or an inorganic free group.
  • X is a group represented by -SO 3 - A is a hydrocarbon group which may contain a substituent.
  • Each R is independently a substituent represented by -R 1 , -OR 1 , -COR 1 , -COOR 1 , -CO(COR 1 ), or -CO(COOR 1 ).
  • R 1 is a hydrocarbon group having 4 or more carbon atoms which may contain a substituent, a silyl group, an alkylsilyl group, a group represented by -(R 2 O) x -R 3 , or a group represented by -(OSiR 3 2 ) x -OR 3 (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more). n is an integer of 2 or more. m is the valence of M.
  • M is a hydrogen atom, an organic free radical, or an inorganic free radical.
  • organic free radical include a pyridinium group, an imidazolium group, an anilinium group, etc.
  • the inorganic free radical include sodium, lithium, potassium, cesium, ammonium, etc.
  • A is a hydrocarbon group which may contain a substituent.
  • the hydrocarbon group include a corresponding (n+1)-valent group such as a linear or branched alkyl group having 1 to 24 carbon atoms (preferably 1 to 8, more preferably 1 to 4 carbon atoms) (e.g., an ethylene group); an alkenyl group; a cycloalkyl group which may have a substituent, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or menthyl; a dicycloalkyl group or a polycycloalkyl group which may be condensed, such as bicyclohexyl, norbornyl, or adamantyl; an aryl group containing an aromatic ring which may have a substituent, such as phenyl, tosyl, thiophenyl, pyrrolinyl, pyridinyl, or furanyl; a diary
  • R 1 is a hydrocarbon group having 4 or more carbon atoms (e.g., 4 to 8 or 4 to 12) which may contain a substituent (e.g., an alkyl group having 1 to 4 carbon atoms (preferably a methyl group, an ethyl group, or a propyl group)), a silyl group, an alkylsilyl group, a group represented by -(R 2 O) x -R 3 , or a group represented by -(OSiR 3 2 ) x -OR 3 (R 2 is an alkylene group, R 3 is a hydrocarbon group which may be the same or different, and x is an integer of 1 or more).
  • a substituent e.g., an alkyl group having 1 to 4 carbon atoms (preferably a methyl group, an ethyl group, or a propyl group)
  • R 2 is an alkylene group
  • R 3 is a hydrocarbon group which may be the same or different
  • hydrocarbon group for R 1 examples include linear or branched butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, pentadecyl, and eicosanyl groups.
  • n is an integer of 2 or more (eg, 2 to 4, or 2 to 3).
  • m is the valence of M.
  • the sulfonic acid compound represented by the above formula (I) is hydrophobic, and a composite in which the sulfonic acid compound is doped into a conductive polymer exhibits excellent solubility in a solvent (organic solvent or water). Therefore, by using the sulfonic acid compound represented by formula (I) as a hydrophobic sulfonic acid compound, the surface of each carbon nanotube is covered with a soluble conductive polymer (a complex in which the sulfonic acid compound represented by formula (I) is doped into a conductive polymer).
  • the hydrophobic sulfonic acid compound (proton donor) represented by formula (I) is preferably a dialkylbenzenesulfonic acid, a dialkylnaphthalenesulfonic acid, a sulfophthalic acid ester, or a sulfonic acid compound (proton donor) represented by the following formula (II) (an organic protonic acid or a salt thereof).
  • formula (II) an organic protonic acid or a salt thereof.
  • R 4 and R 5 each independently represent a hydrogen atom, a hydrocarbon group, or a group represented by R 8 3 Si— (wherein R 8 is a hydrocarbon group, and the three R 8s may be the same or different).
  • R 8 is a hydrocarbon group, and the three R 8s may be the same or different.
  • the hydrocarbon group for R4 and R5 include a linear or branched alkyl group having 1 to 24 carbon atoms; an aryl group containing an aromatic ring; and an alkylaryl group.
  • the hydrocarbon group of R8 is the same as the hydrocarbon group of R4 and R5 .
  • R 6 and R 7 are each independently a hydrocarbon group or a group represented by -(R 9 O) q -R 10 [wherein R 9 is a hydrocarbon group or a silylene group, R 10 is a hydrogen atom, a hydrocarbon group, or a group represented by R 11 3 Si- (R 11 is a hydrocarbon group, and the three R 11s may be the same or different), and q is an integer of 1 or greater].
  • the hydrocarbon group of R6 and R7 include a linear or branched alkyl group having 1 to 24 carbon atoms, preferably 4 or more carbon atoms (e.g., 4 to 10 or 4 to 14 carbon atoms); an aryl group containing an aromatic ring; and an alkylaryl group.
  • Specific examples of the hydrocarbon group of R 6 and R 7 include linear or branched butyl, pentyl, hexyl, octyl (eg, 2-ethylhexyl), and decyl groups.
  • the hydrocarbon group for R 9 includes linear or branched alkylene groups having 1 to 24 carbon atoms; arylene groups containing an aromatic ring; alkylarylene groups; arylalkylene groups, and the like.
  • the hydrocarbon groups of R 10 and R 11 are the same as those of R 4 and R 5.
  • q is preferably an integer of 1 to 10.
  • the sulfonic acid compound represented by the above formula (II) is hydrophobic, and a composite in which the sulfonic acid compound is doped into a conductive polymer exhibits excellent solubility in a solvent (organic solvent or water). Therefore, by using the sulfonic acid compound represented by formula (II) as a hydrophobic sulfonic acid compound, the surface of each carbon nanotube is covered with a soluble conductive polymer (a complex in which the sulfonic acid compound represented by formula (II) is doped into a conductive polymer).
  • the hydrophobic sulfonic acid compound (proton donor) (organic protonic acid or its salt) represented by the above formula (II) is preferably a sulfosuccinic acid derivative represented by the following formula (III).
  • M( O3SCH ( CH2COOR12 ) COOR13 ) m (III) In the above formula (III), M and m are the same as those in the above formula (I).
  • R 12 and R 13 each independently represent a hydrocarbon group or a group represented by -(R 14 O) r -R 15 [wherein R 14 is a hydrocarbon group or a silylene group, R 15 is a hydrogen atom, a hydrocarbon group, or a group represented by R 16 3 Si- (wherein R 16 is a hydrocarbon group, and the three R 16s may be the same or different), and r is an integer of 1 or greater].
  • the hydrocarbon groups of R12 and R13 are the same as the hydrocarbon groups of R6 and R7 .
  • the hydrocarbon group of R14 is the same as the hydrocarbon group of R9 .
  • the hydrocarbon groups of R15 and R16 are the same as the hydrocarbon groups of R4 and R5 .
  • r is preferably an integer of 1 to 10.
  • R 12 and R 13 are groups represented by -(R 14 O) r -R 15 are the same as the proton donor represented by formula (II) in which R 6 and R 7 are groups represented by -(R 9 O) n -R 10 .
  • the hydrocarbon group of R 12 and R 13 is the same as the hydrocarbon group of R 6 and R 7 , and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, a decyl group, or the like.
  • the sulfonic acid compound represented by the above formula (III) is hydrophobic, and a composite in which the sulfonic acid compound is doped into a conductive polymer exhibits excellent solubility in a solvent (organic solvent or water). Therefore, by using the sulfonic acid compound represented by formula (III) as a hydrophobic sulfonic acid compound, the surface of each carbon nanotube is covered with a soluble conductive polymer (a complex in which the sulfonic acid compound represented by formula (III) is doped into a conductive polymer).
  • hydrophobic sulfonic acid compound (proton donor) other than the sulfonic acid compounds (proton donors) represented by the above formulas (I) to (III), for example, camphorsulfonic acid (HLB value: 7.0), dinonylnaphthalenesulfonic acid (HLB value: 3.5), and adamantanesulfonic acid (HLB value: 7.5) can be used.
  • camphorsulfonic acid HLB value: 7.0
  • dinonylnaphthalenesulfonic acid HLB value: 3.5
  • adamantanesulfonic acid HLB value: 7.5
  • the doping ratio of the hydrophobic sulfonic acid compound (proton donor) to polyaniline is preferably 0.30 to 0.65, more preferably 0.32 to 0.60, further preferably 0.33 to 0.57, and particularly preferably 0.34 to 0.55.
  • the doping ratio is 0.30 or more, the solubility of the polyaniline complex in an organic solvent is sufficiently high.
  • the doping ratio is defined as (the number of moles of hydrophobic sulfonic acid compound (proton donor) doped in polyaniline)/(the number of moles of monomer units of polyaniline).
  • a doping ratio of 0.5 for a polyaniline complex containing unsubstituted polyaniline and a hydrophobic sulfonic acid compound (proton donor) means that one hydrophobic sulfonic acid compound (proton donor) is doped for every two monomer unit molecules of polyaniline.
  • the doping ratio can be calculated if the number of moles of the hydrophobic sulfonic acid compound (proton donor) and the monomer unit of polyaniline in the polyaniline complex can be measured.
  • the proton donor is an organic sulfonic acid
  • the number of moles of sulfur atoms derived from the proton donor and the number of moles of nitrogen atoms derived from the monomer unit of polyaniline are quantified by organic elemental analysis, and the doping rate can be calculated by taking the ratio of these values.
  • the polyaniline composite preferably contains unsubstituted polyaniline and a sulfonic acid as a proton donor, and satisfies the following formula (5). 0.32 ⁇ S5 / N5 ⁇ 0.60 (5) (In the formula, S5 is the total number of moles of sulfur atoms contained in the polyaniline complex, and N5 is the total number of moles of nitrogen atoms contained in the polyaniline complex. The moles of nitrogen atoms and sulfur atoms are values measured by organic elemental analysis.)
  • the soluble conductive polymer according to the first embodiment may be used alone or in combination of two or more types.
  • the method for producing the soluble conductive polymer according to the first embodiment described above is not particularly limited, but it can be produced, for example, by the method for producing the soluble conductive polymer according to the first embodiment described below.
  • the above-mentioned hydrophobic sulfonic acid compound (proton donor), aniline corresponding to the above-mentioned polyaniline, and optionally a surfactant (e.g., a nonionic emulsifier) are dissolved in a water-immiscible organic solvent (e.g., a hydrocarbon solvent (preferably toluene, xylene)), an acidic aqueous solution (e.g., an aqueous phosphoric acid solution) is added thereto, the reaction liquid having two liquid phases of the water-immiscible organic solvent and water is stirred, and a polymerization initiator (e.g., ammonium persulfate) is added to carry out polymerization.
  • a water-immiscible organic solvent e.g., a hydrocarbon solvent (preferably toluene, xylene)
  • an acidic aqueous solution e.g., an aqueous phosphoric acid solution
  • the mixture is allowed to stand to separate the water-immiscible organic solvent phase, thereby obtaining a polyaniline complex water-immiscible organic solvent solution.
  • This solution is transferred to an evaporator, and the volatile matter is evaporated and removed to obtain a polyaniline composite (protonated polyaniline).
  • a soluble conductive polymer of the second form is a conductive polymer having a side chain containing a sulfonic acid group (sulfonic acid group-containing side chain).
  • a conductive polymer having a sulfonic acid group-containing side chain is also referred to as a sulfonic acid group-containing conductive polymer.
  • the soluble conductive polymer of the second embodiment described above exhibits high hydrophobicity and excellent solubility in a solvent (organic solvent or water), and therefore, after removing the solvent contained in the conductive composition, the surface of each carbon nanotube is covered with the soluble conductive polymer.
  • Examples of monomers in the main chain of sulfonic acid group-containing conductive polymers include 3,4-ethylenedioxythiophene (EDOT), aniline, and methoxyaniline.
  • Examples of the sulfonic acid group-containing side chain covalently bonded to the main chain include an alkylsulfonic acid group and an alkyl ether sulfonic acid group.
  • the sulfonic acid group-containing side chain may have, for example, 1 to 15 carbon atoms or 2 to 10 carbon atoms.
  • the content of component (b) may be 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more, and may be 2000 parts by mass or less, 1000 parts by mass or less, 800 parts by mass or less, 500 parts by mass or less, or 400 parts by mass or less, relative to 100 parts by mass of component (a).
  • the content of component (b) may be 1 to 1,000 parts by mass, 1 to 400 parts by mass, or 15 to 400 parts by mass, relative to 100 parts by mass of component (a). When the content of component (b) relative to 100 parts by mass of component (a) is within the above range, good electrical conductivity can be obtained in a material obtained from the conductive composition.
  • the content of component (b) may be 0.01 to 20 mass%, 0.05 to 15 mass%, 0.08 to 10 mass%, or 0.15 to 10 mass%, relative to 100 mass% of the total composition.
  • the conductive composition according to one embodiment of the present invention includes a solvent.
  • the solvent is not particularly limited as long as it dissolves component (b), and may be water or an organic solvent, but from the viewpoint of dissolving component (b), an organic solvent is preferable.
  • the organic solvent may be a water-soluble organic solvent or an organic solvent that is substantially not miscible with water (a water-immiscible organic solvent).
  • the solvent may include a solvent that is brought into the conductive composition as a dispersion medium for component (a) the carbon nanotubes.
  • the solvent for dissolving component (b) and the dispersion medium for component (a) may be the same or different.
  • the water-soluble organic solvent may be a protic polar solvent or an aprotic polar solvent, and examples thereof include alcohols such as isopropyl alcohol, 1-propanol, 1-butanol, 2-butanol, 2-pentanol, benzyl alcohol, alkoxy alcohols (e.g., 1-methoxy-2-propanol, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 1-ethoxy-2-propanol, 2-ethoxy-1-propanol, 1-butoxy-2-propanol), and ethylene glycol; ketones such as acetone; ethers such as tetrahydrofuran, dioxane, ethylene glycol mono-tert-butyl ether, dipropylene glycol dimethyl ether, and propylene glycol monomethyl ether acetate (PGMEA); and N-methylpyrrolidone.
  • alcohols such as isopropyl alcohol, 1-propanol
  • glycol ethers such as dipropylene glycol dimethyl ether and propylene glycol monomethyl ether acetate (PGMEA) are preferred.
  • the water-immiscible organic solvent include hydrocarbon solvents such as hexane, benzene, toluene, xylene, ethylbenzene, tetralin, and IP Solvent 1620; halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane; ester solvents such as ethyl acetate, isobutyl acetate, n-butyl acetate, butyl butyrate, and ethyl lactate; ketone solvents such as methyl isobutyl ketone (MIBK), diisobutyl ketone (DIBK), methyl ethy
  • MIBK isobutyl ketone
  • toluene, xylene, methyl isobutyl ketone, chloroform, trichloroethane, ethyl acetate, tetrahydrofuran, cyclohexanone, and methyl ethyl ketone are preferred in terms of excellent solubility of the component (b).
  • the polyaniline complex of component (b) can be dissolved even if the solvent is an alcohol such as isopropyl alcohol, 1-butanol, 2-butanol, 2-pentanol, benzyl alcohol, alkoxy alcohol, etc. Alcohol is preferable from the viewpoint of reducing the environmental load compared to aromatic solvents such as toluene.
  • a mixed organic solvent can be used in which a water-immiscible organic solvent and a water-soluble organic solvent are mixed in a ratio (mass ratio) of 99 to 1:1 to 99.
  • Use of a mixed organic solvent is preferable because it can prevent the generation of gel during storage and allows long-term storage.
  • a low-polarity organic solvent can be used as the water-immiscible organic solvent of the above-mentioned mixed organic solvent.
  • Preferred low-polarity organic solvents are hydrocarbon solvents such as hexane and toluene; halogen-containing solvents such as chloroform; and isoparaffin solvents.
  • a highly polar organic solvent can be used as the water-soluble organic solvent.
  • alcohols such as methanol, ethanol, isopropyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 3-methoxy-1-butanol, 1-ethoxy-2-propanol, 2-ethoxy-1-propanol, and 1-butoxy-2-propanol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; and ethers such as tetrahydrofuran, diethyl ether, cyclopentyl methyl ether, 4-methyltetrahydropyran, and ethylene glycol mono-tert-butyl ether.
  • the mixed organic solvent may contain one or more water-immiscible organic solvents, and may contain one or more water-soluble organic solvents.
  • Component (c) may be used alone or in combination of two or more types.
  • component (c) may be 50 to 99.8% by mass, 55 to 95% by mass, or 70 to 90% by mass, based on 100% by mass of the entire composition.
  • the conductive composition further includes a phenolic compound in addition to the above-mentioned components (a) to (c).
  • a phenolic compound By including the phenolic compound, the conductivity of a material obtained by using the conductive composition can be further increased.
  • the phenolic compound is not particularly limited and is a compound represented by ArOH (wherein Ar is an aryl group or a substituted aryl group).
  • substituted phenols such as phenol, o-, m- or p-cresol, o-, m- or p-ethylphenol, o-, m- or p-propylphenol, o-, m- or p-butylphenol, o-, m- or p-chlorophenol, o-, m- or p-tert-amylphenol, salicylic acid, hydroxybenzoic acid, and hydroxynaphthalene; polyhydric phenolic compounds such as catechol and resorcinol; and polymeric compounds such as phenolic resins, polyphenols, and poly(hydroxystyrene).
  • substituted phenols such as phenol, o-, m- or p-cresol, o-, m- or p-ethylphenol, o-, m- or p-propylphenol, o-, m- or p-butylphenol, o-,
  • n1 is an integer of 1 to 5 (preferably 1 to 3).
  • R 21 is an alkyl group having 1 to 10 carbon atoms (preferably 2 to 8, more preferably 3 to 7), an alkenyl group having 2 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and tert-amyl.
  • the alkenyl group includes the above-mentioned alkyl groups each having an unsaturated bond in the molecule.
  • Cycloalkyl groups include cyclopentane, cyclohexane, and the like.
  • Alkylthio groups include methylthio, ethylthio, and the like.
  • Aryl groups include phenyl, naphthyl, and the like.
  • alkylaryl group and the arylalkyl group include the substituents obtained by combining the above-mentioned alkyl group and aryl group.
  • R 21 is preferably a methyl or ethyl group.
  • R 22 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
  • R 22 in formula (3') are the same as R 21 in formula (3) above.
  • Component (d) may be used alone or in combination of two or more types.
  • the content of component (d) may be 1 to 50 mass%, 5 to 45 mass%, 10 to 40 mass%, 10 to 30 mass%, or 10 to 20 mass%, relative to 100 mass% of the entire conductive composition.
  • the conductive composition may further contain, in addition to the above-mentioned components (a) to (c), an acid species different from the above-mentioned hydrophobic sulfonic acid compound (proton donor), and may further contain one or more selected from the group consisting of acidic substances and salts of acidic substances (hereinafter also referred to as "component (e)").
  • This component is usually used as a heat resistance stabilizer, and can further improve the heat resistance of conductive materials such as conductive films obtained using the conductive composition.
  • Component (e) may be added to the conductive composition, or may be incorporated into a coating film or the like formed from the conductive composition by immersing the coating film or the like in a solution in which an acidic substance and/or a salt of an acidic substance is dissolved.
  • the acidic substance may be either an organic acid, which is an acid of an organic compound, or an inorganic acid, which is an acid of an inorganic compound, and is preferably an organic acid.
  • the acidic substance is preferably an organic acid containing one or more sulfonic acid groups.
  • the above-mentioned organic acid having a sulfonic acid group is preferably a cyclic, linear or branched alkylsulfonic acid, a substituted or unsubstituted aromatic sulfonic acid, or a polysulfonic acid, each of which has one or more sulfonic acid groups.
  • the alkylsulfonic acid include methanesulfonic acid and ethanesulfonic acid.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 18 carbon atoms.
  • aromatic sulfonic acid examples include those having 6 to 20 carbon atoms, such as sulfonic acids having a benzene ring, sulfonic acids having a naphthalene skeleton, and sulfonic acids having an anthracene skeleton.
  • aromatic sulfonic acid examples include substituted or unsubstituted benzenesulfonic acid, substituted or unsubstituted naphthalenesulfonic acid, and substituted or unsubstituted anthracenesulfonic acid.
  • the substituent may be, for example, one or more selected from the group consisting of an alkyl group (e.g., one having 1 to 20 carbon atoms), an alkoxy group (e.g., one having 1 to 20 carbon atoms), a hydroxy group, a nitro group, a carboxy group, and an acyl group.
  • aromatic sulfonic acids include compounds represented by the following formula (4) or (5).
  • l is 1 or more
  • m is an integer of 0 or more and 5 or less
  • n is an integer of 0 or more and 5 or less. When one of m and n is 0, the other is 1 or more.
  • q is 1 or more
  • p is an integer of 0 to 7
  • R is each independently an alkyl group having 1 to 20 carbon atoms, a carboxy group, a hydroxyl group, a nitro group, a cyano group, or an amino group.
  • l is preferably 1 to 3.
  • m is preferably 1 to 3.
  • n is preferably 0 to 3.
  • q is preferably 1 to 3.
  • p is preferably 0 to 3.
  • R is preferably an alkyl group having 1 to 20 carbon atoms, a carboxy group, or a hydroxyl group.
  • Aromatic sulfonic acids include 4-sulfophthalic acid, 5-sulfoisophthalic acid, 5-sulfosalicylic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 2-hydroxy-6-naphthalenesulfonic acid, p-phenolsulfonic acid, toluenesulfonic acid, p-xylene-2-sulfonic acid, 4,4'-biphenyldisulfonic acid, dibenzofuran-2-sulfonic acid, flavianic acid, (+)-10-camphorsulfonic acid, monoisopropylnaphthalenesulfonic acid, 1-pyrenesulfonic acid, etc.
  • 4-sulfophthalic acid, 5-sulfosalicylic acid, 5-sulfoisophthalic acid, 2-naphthalenesulfonic acid, dibenzofuran-2-sulfonic acid, flavianic acid, 2-hydroxy-6-naphthalenesulfonic acid, and 1-pyrenesulfonic acid are preferred.
  • salts of acidic substances include salts of the compounds listed above.
  • counter ions of the salts include sodium, lithium, potassium, cesium, ammonium, calcium, barium, etc.
  • Component (e) may be a hydrate.
  • Component (e) may be used alone or in combination of two or more types.
  • component (e) is included, the content of component (e) is preferably 0.01 to 10 mass%, more preferably 0.02 to 5 mass%, and even more preferably 0.05 to 3 mass%, relative to 100 mass% of the total composition.
  • the mass ratio of the content of component (b) to the content of component (e) may be 1:0.01 to 1:1, preferably 1:0.05 to 1:0.5, and more preferably 1:0.07 to 1:0.1, from the viewpoint of heat resistance.
  • the conductive composition may contain various additives such as a binder in addition to the above-mentioned components (a) to (e).
  • a binder a known binder can be used.
  • the conductive composition may further contain at least one selected from the group consisting of a resin and an inorganic material, in addition to the above-mentioned components (a) to (e).
  • the resin and inorganic material any known materials used for obtaining a molded body containing carbon nanotubes can be used without any particular limitation.
  • the conductive composition contains various additives such as a binder in addition to the above-described components (a) to (e), and may contain at least one selected from the group consisting of a resin and an inorganic material.
  • composition according to one embodiment of the present invention may essentially consist of one or more components selected from the group consisting of components (a), (b), and (c), and optionally (d) and (e). In this case, it may contain other inevitable impurities within a range that does not impair the effects of the present invention. For example, 70% by mass or more, 80% by mass or more, 90% by mass or more, 98% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.9% by mass or more, or 100% by mass of the composition according to one embodiment of the present invention is Components (a) to (c), Components (a) to (d), Components (a) to (c), (e) or components (a) to (e) It may consist of.
  • the method for preparing the composition according to one embodiment of the present invention is not particularly limited, and the composition can be obtained by mixing the above-mentioned components (a) to (e) by a known method.
  • the mixing method is not particularly limited, and for example, the mixture containing the above-mentioned components (a) to (e) can be stirred and mixed by a known method, and the stirring temperature and stirring speed are not particularly limited.
  • the order of mixing is not particularly limited.
  • component (a) may be added to a solution obtained by adding component (b) to a mixed solvent of components (c) to (e), and then the solution may be mixed by stirring.
  • component (b) may be added to a solution obtained by adding component (a) to a mixed solvent, and then the solution may be mixed by stirring.
  • the conductive film comprises: A conductive film comprising: (a) carbon nanotubes; and (b) a soluble conductive polymer,
  • the soluble conductive polymer is the following (i) or (ii): (i) A composite in which a conductive polymer is doped with a hydrophobic sulfonic acid compound. (ii) A conductive polymer having a sulfonic acid group-containing side chain.
  • the conductive film according to one embodiment of the present invention is formed using the conductive composition described above.
  • a conductive film can be formed by applying the conductive composition according to one embodiment of the present invention onto a substrate and drying it to remove the component (c) (solvent).
  • the conductive composition may be applied onto a substrate such as glass, a resin film, a sheet, or a nonwoven fabric having a desired shape to form a conductive laminate.
  • the conductive film usually has a thickness of 1 mm or less, preferably 10 nm to 50 ⁇ m.
  • the surface resistance of the conductive film of one embodiment of the present invention can be, for example, 500 ⁇ / ⁇ or less, 450 ⁇ / ⁇ or less, 400 ⁇ / ⁇ or less, 300 ⁇ / ⁇ or less, 200 ⁇ / ⁇ or less, or 150 ⁇ / ⁇ or less.
  • the surface resistance of the conductive film is measured by the method described in the Examples.
  • composition can be applied by known methods such as casting, spraying, dip coating, doctor blade, bar code, spin coating, electrospinning, screen printing, gravure printing, etc.
  • a step may be provided in which the conductive film (coating film) is immersed in a solution containing the above-mentioned component (e) and dried.
  • the component (e) is preferably a compound represented by the above-mentioned formula (4) or a salt thereof.
  • the solution used for immersion may contain a solvent.
  • the solvent is not particularly limited as long as it dissolves the component (e), and examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, ester solvents, etc. One or a mixture of two or more types may be used.
  • solvents include methanol, ethanol, isopropanol, n-butanol, 1-methoxy-2-propanol, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 1-ethoxy-2-propanol, ethyl acetate, butyl acetate, MIBK, methyl ethyl ketone (MEK), ethylene glycol mono-tert-butyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, etc.
  • solvents include methanol, ethanol, isopropanol, n-butanol, 1-methoxy-2-propanol, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 1-ethoxy-2-propanol, ethyl acetate, butyl acetate, MIBK, methyl ethyl ketone (MEK), ethylene glyco
  • the content of component (e) in the solution used for immersion is preferably 10 to 1,200 parts by mass, more preferably 30 to 700 parts by mass, and even more preferably 70 to 400 parts by mass, per part by mass of the composition obtained after removing the solvent. If the amount exceeds 1,200 parts by mass, the acidic substance will be excessive in the coating film, which may cause deterioration of the polyaniline main chain and reduce the electrical conductivity.
  • the amount of component (e) in the solution used for immersion is preferably 0.1% by mass to 10% by mass, more preferably 0.3% by mass to 6% by mass, and even more preferably 0.7% by mass to 3.5% by mass.
  • the immersion method may be dipping.
  • the immersion time is preferably 1 minute or more, more preferably 3 minutes to 200 minutes, and even more preferably 7 minutes to 30 minutes.
  • the immersion temperature is preferably 5°C to 50°C. Drying after immersion is preferably carried out using an oven, a hot plate or the like.
  • the drying temperature is preferably from 80 to 200°C, and more preferably from 100 to 170°C.
  • the drying time is preferably 1 to 180 minutes, more preferably 3 to 60 minutes. If necessary, heating may be performed under reduced pressure.
  • the drying temperature and drying time are not particularly limited and may be appropriately selected depending on the material used.
  • the component (e) may be added to the conductive composition, or may be contained in a conductive film obtained from the conductive composition.
  • the component (e) may be added to the conductive composition, and further, the component (e) may be contained in a conductive film obtained from the conductive composition.
  • the conductive film according to one embodiment of the present invention may contain component (e) (hereinafter, sometimes referred to as component (e1)) added to the composition before film formation, and component (e) (hereinafter, sometimes referred to as component (e2)) added by immersion after film formation.
  • component (e1) and (e2) may be the same or different. When they are different, for example, component (e1) is a compound represented by the above formula (5), and component (e2) is a compound represented by the above formula (4).
  • the conductive film according to one embodiment of the present invention can be used as a battery material.
  • the conductive laminate according to one embodiment of the present invention includes a substrate and a conductive layer made of the conductive material according to one embodiment of the present invention, the conductive layer being in contact with the substrate.
  • a conductive laminate having a conductive layer can be produced by applying the conductive composition according to one embodiment of the present invention to a substrate such as glass, a resin film, a sheet, or a nonwoven fabric having a desired shape and removing the solvent.
  • a conductive article can be produced by processing the conductive laminate into a desired shape by a known method such as vacuum forming or pressure forming. From the viewpoint of forming, the substrate is preferably a resin film, a sheet, or a nonwoven fabric.
  • the conductive composition can be applied to the substrate by known methods such as casting, spraying, dip coating, doctor blade, bar coating, spin coating, electrospinning, screen printing, and gravure printing.
  • the coating film may be heated depending on the type of solvent.
  • the coating film is heated under an air flow at a temperature of 250°C or less, preferably 50 to 200°C, and further heated under reduced pressure or nitrogen flow as necessary.
  • the heating temperature and heating time there are no particular limitations on the heating temperature and heating time, and they may be selected appropriately depending on the material used.
  • composition according to one aspect of the present invention can be used to produce a self-supporting molded body that does not have a substrate.
  • the conductive material according to one embodiment of the present invention is made from the conductive composition according to one embodiment of the present invention.
  • the conductive material according to one embodiment of the present invention is obtained, for example, by removing the component (c) (solvent) from the conductive composition according to one embodiment of the present invention.
  • the component (c) (solvent) can be removed, for example, by applying the conductive composition onto a substrate and drying it.
  • the film, molded body, powder or granules according to an aspect of the present invention includes the conductive material according to an aspect of the present invention.
  • the shape of the conductive material according to one embodiment of the present invention is not particularly limited and can be selected according to the purpose, and examples thereof include a film, a molded body, a powder, and a granule.
  • the conductive material according to one embodiment of the present invention can be used, for example, as a conductive additive for batteries.
  • the conductive additive for batteries can be in the form of a film, powder, or granules.
  • An electrically conductive article according to one embodiment of the present invention is produced from a mixture of an electrically conductive composition according to one embodiment of the present invention and at least one selected from a resin and an inorganic material.
  • the conductive article according to one embodiment of the present invention can be obtained by mixing the conductive composition according to one embodiment of the present invention with at least one selected from the group consisting of a resin and an inorganic material, and then, for example, drying the mixture to remove component (c) (solvent).
  • component (c) solvent
  • the shape of the conductive article is not particularly limited and can be appropriately determined depending on the purpose of use.
  • a battery according to an embodiment of the present invention includes a conductive assistant for a battery, which includes the conductive material according to an embodiment of the present invention.
  • the battery is not particularly limited, but may be, for example, a lithium secondary battery.
  • the contents were transferred to a separatory funnel, and the aqueous phase and the toluene phase (organic phase) were allowed to stand and separated. After separation, the toluene phase (organic layer) was washed once with 180.3 g of an 8.5 mass % aqueous phosphoric acid solution and five times with 328.0 g of ion-exchanged water to obtain a polyaniline complex toluene solution.
  • the solution was transferred to an evaporator, heated in a water bath at 60° C., and reduced pressure to evaporate and remove the volatile matter, thereby obtaining a polyaniline composite (protonated polyaniline).
  • the weight average molecular weight (Mw) of polyaniline in polyaniline composite 1 was 73,000.
  • the weight average molecular weight of polyaniline was measured as follows. 1.65 to 1.85 g of lithium bromide was dissolved in 2000 mL of NMP (N-methyl-2-pyrrolidone) to prepare a 0.01 M lithium bromide NMP solution. 14 ⁇ L of triethylamine was added to 10 mL of this 0.01 M lithium bromide NMP solution, and the solution was stirred and dissolved to obtain a homogeneous solution. Furthermore, 50 ⁇ L of the polyaniline complex toluene solution obtained in Production Example 1 was dropped, stirred and mixed, and then passed through a 0.45 ⁇ m filter to prepare a sample for gel permeation chromatography (GPC) measurement.
  • GPC gel permeation chromatography
  • the GPC measurement was carried out using a GPC column (Shodex KF-806M manufactured by Showa Denko K.K., two columns connected together) under the following measurement conditions.
  • Solvent NMP containing 0.01M LiBr Flow rate: 0.70 mL/min Column temperature: 60° C.
  • Injection volume 100 ⁇ L UV detection wavelength: 270 nm
  • the weight average molecular weight obtained by the above method is a value calculated in terms of polystyrene (PS).
  • the doping ratio of the proton donor (sodium di-2-ethylhexyl sulfosuccinate) to polyaniline was 0.36.
  • HBL value 20 x (formula weight of SO 3 Na part) / molecular weight (A)
  • Example 1 (Preparation of Conductive Composition) 70 g of cyclohexanone (component (c)) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 30 g of 4-tert-amylphenol (component (d)) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were mixed until homogeneous to prepare mixed solution A. 1.6 g of the polyaniline complex (component (b)) obtained in Production Example 1 was dissolved in 98.4 g of mixed solution A to obtain polyaniline solution A (polyaniline complex concentration: 1.6 mass %).
  • a dispersion liquid (component (a)) of single-walled carbon nanotubes (SWCNT), 0.05 g of polyaniline solution A, and 1.95 g of mixed solution A were mixed with stirring to obtain a conductive composition (CNT/polyaniline composite-containing solution).
  • the blending ratio of each component contained in the single-walled carbon nanotube (SWCNT) dispersion is shown below.
  • PMEA Propylene glycol monomethyl ether acetate
  • the conductive composition (CNT/polyaniline composite-containing solution) obtained in Example 1 was applied to an easily adhesive PET substrate using a bar coater under the following conditions, and then dried to obtain a conductive film (CNT/polyaniline composite film).
  • the surface resistance of the conductive film (film of the CNT/polyaniline composite) obtained above was measured using a four-terminal resistivity meter "Loresta GP" (manufactured by Mitsubishi Chemical Corporation). The measurement results are shown in Table 1.
  • the thickness of the conductive film was measured using a linear gauge sensor (manufactured by Ono Sokki Co., Ltd.) The thickness of the conductive film is shown in Table 1.
  • Example 2 Comparative Example 1 A conductive composition (CNT/polyaniline composite-containing solution) was obtained in the same manner as in Example 1, except that the blending ratios of the same single-walled carbon nanotube (SWCNT) dispersion liquid, polyaniline solution A, and mixed solution A used in Example 1 were changed to the ratios shown in Table 1, respectively.
  • Conductive films films of CNT/polyaniline composites
  • Example 2 to 5 and Comparative Example 1 were used instead of the conductive composition of Example 1.
  • the measurement results of the film thickness and surface resistance of each conductive film are shown in Table 1.
  • Example 6 Preparation of Composition
  • 70 g of tetrahydrofuran (component (c)) (manufactured by Tokyo Chemical Industry Co., Ltd.) and 30 g of 4-tert-amylphenol (component (d)) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were mixed until homogeneous to prepare a mixed solution B.
  • 0.4 g of the polyaniline complex (component (b)) obtained in Production Example 1 was dissolved in 99.6 g of the mixed solution B to obtain a polyaniline solution B (polyaniline complex concentration: 0.4 mass %).
  • Example 1 2 g of the same single-walled carbon nanotube (SWCNT) dispersion liquid (component (a)) (single-walled carbon nanotube concentration: 0.4 mass %) used in Example 1 and 2 g of polyaniline solution B were mixed with stirring to obtain a conductive composition (CNT/polyaniline composite-containing solution).
  • SWCNT single-walled carbon nanotube
  • the conductive composition (CNT/polyaniline composite-containing solution) obtained in Example 6 was applied to a glass substrate by spin coating under the following conditions, and then dried to obtain a conductive film (CNT/polyaniline composite film).
  • the surface resistance of the conductive film (CNT/polyaniline composite film) obtained above was measured using a four-terminal resistivity meter "Loresta GP" (manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 2.
  • the thickness of the conductive film was measured using a linear gauge sensor (manufactured by Ono Sokki Co., Ltd.) The thickness of the conductive film is shown in Table 2.
  • Example 7 0.4 g of the polyaniline composite obtained in Production Example 1 was dissolved in 99.6 g of tetrahydrofuran to obtain a polyaniline solution C (polyaniline composite concentration: 0.4 mass %). The subsequent steps were carried out in the same manner as in Example 6, except that the polyaniline solution B in Example 6 was replaced with the polyaniline solution C, to obtain a conductive composition (a solution containing a CNT/polyaniline composite). A conductive film (film of a CNT/polyaniline composite) was produced and evaluated in the same manner as in Example 6, except that the conductive composition of Example 7 (CNT/polyaniline composite-containing solution) was used instead of the conductive composition of Example 6. The measurement results of the film thickness and surface resistance of the conductive film are shown in Table 2.
  • Comparative Example 2 2 g of the same single-walled carbon nanotube (SWCNT) dispersion liquid (carbon nanotube concentration: 0.4 mass%) as used in Example 1 and 2 g of tetrahydrofuran (component (c)) (manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed together to obtain a conductive composition (CNT dispersion liquid).
  • a conductive film film of CNT alone was produced and evaluated in the same manner as in Example 6, except that the conductive composition (CNT dispersion) of Comparative Example 2 was used instead of the conductive composition of Example 6.
  • the measurement results of the film thickness and surface resistance of the conductive film are shown in Table 2.
  • THF tetrahydrofuran
  • tAP 4-tert-amylphenol
  • the conductive composition and conductive film of the present invention can be used as a conductive assistant, electrodes for touch films, electromagnetic shielding materials, antistatic agents, batteries, capacitors, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(a)カーボンナノチューブ、(b)可溶性導電性高分子、及び(c)溶媒を含み、前記可溶性導電性高分子が、以下の(i)又は(ii)である、導電性組成物。 (i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体 (ii)スルホン酸基含有側鎖を有する導電性高分子

Description

導電性組成物、導電性材料、導電性膜及び導電性物品
 本発明は、導電性組成物、導電性材料、導電性膜及び導電物品に関する。
 カーボンナノチューブは、高い導電性及びその特異な形状から、各種電池における電極の導電助剤、タッチフィルム用電極、電磁波シールド材、帯電防止剤、放熱材料等として使用される。
 カーボンナノチューブは一般に、水又は有機溶媒に分散した分散液又はその塗布膜等を乾燥することで導電材料等として用いられており、カーボンナノチューブ同士の接点を介した電気伝導又は熱伝導により、優れた導電性又は熱伝導性を有するものとして、広く用いられている。
 近年、水分散型又は有機溶媒分散型の導電性高分子が開発され、これらの導電性高分子をカーボンナノチューブと複合化して用いる試みがなされている(特許文献1)。
特開2015-170740号公報
 近年、カーボンナノチューブを用いた材料において、より優れた導電性、熱伝導性が求められている。
 特許文献1の技術でも、導電性、熱伝導性向上の効果は、必ずしも十分ではなかった。
 本発明の目的は、優れた導電性を有する材料が得られる導電性組成物を提供することである。
 また、本発明の目的は、優れた熱伝導性を有する材料が得られる導電性組成物を提供することである。
 本発明によれば、以下の導電性組成物等が提供される。
1.(a)カーボンナノチューブ、(b)可溶性導電性高分子、及び(c)溶媒を含み、前記可溶性導電性高分子が、以下の(i)又は(ii)である、導電性組成物。
(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
(ii)スルホン酸基含有側鎖を有する導電性高分子
2.前記(i)における前記疎水性のスルホン酸化合物、又は前記(ii)における前記スルホン酸基含有側鎖の炭素数が6以上である、1に記載の導電性組成物。
3.前記(i)における前記疎水性のスルホン酸化合物のHLB値が1~8である、1又は2に記載の導電性組成物。
4.前記(i)における前記疎水性のスルホン酸化合物が、下記式(III)で表されるスルホン酸化合物である、1~3のいずれかに記載の導電性組成物。
    M(OSCH(CHCOOR12)COOR13    (III)
 (式(III)において、
Mは、水素原子、有機遊離基又は無機遊離基であり、
mはMの価数であり、
12及びR13は、それぞれ独立して、炭化水素基又は-(R14O)-R15で表される基であり、
14は炭化水素基又はシリレン基であり、
15は水素原子、炭化水素基又はR16 Si-で表される基であり、
16は炭化水素基であり、3つのR16は同一又は異なっていてもよく、rは1以上の整数である。)
5.前記(i)における前記導電性高分子がポリアニリンである、1~4のいずれかに記載の導電性組成物。
6.さらに(d)フェノール性化合物を含む、1~5のいずれかに記載の導電性組成物。
7.前記成分(b)の含有量が、前記成分(a)100質量部に対して、1~400質量部である、1~6のいずれかに記載の導電性組成物。
8.さらに、樹脂及び無機材料からなる群から選ばれる少なくとも一つを含む、1~7のいずれかに記載の導電性組成物。
9.1~8のいずれかに記載の前記導電性組成物から作製された、導電性材料。
10.9に記載の導電性材料を含む、膜、成形体、粉体又は粒体。
11.9に記載の導電性材料を含む、電池用導電助剤。
12.(a)カーボンナノチューブ、及び(b)可溶性導電性高分子を含む導電性膜であって、
 前記可溶性導電性高分子が、以下の(i)又は(ii)である、導電性膜。
(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
(ii)スルホン酸基含有側鎖を有する導電性高分子
13.1~7のいずれかに記載の前記導電性組成物と、樹脂及び無機材料からなる群から選ばれる少なくとも一つとの混合物から作製された、導電性物品。
14.基材と、9に記載の導電性材料からなる導電層と、を含み、前記導電層と前記基材とが接している、導電性積層体。
15.11に記載の電池用導電助剤を含む、電池。
 本発明によれば、優れた導電性を有する材料が得られる導電性組成物が提供できる。
 また、本発明によれば、優れた熱伝導性を有する材料が得られる導電性組成物を提供できる。
カーボンナノチューブを含む組成物から得られる塗膜中における導電性発現の機構を模式的に示す図である。 図1のカーボンナノチューブ同士の接触点の断面を模式的に示す図である。 溶媒分散型導電性高分子を含む組成物から得られる材料のカーボンナノチューブ同士の接触点周囲の断面を模式的に示す図である。 本発明の一態様に係る導電性組成物から得られる材料の導電性発現の機構を模式的に示す図である。
 本明細書において、「x~y」は「x以上、y以下」の数値範囲を表すものとする。数値範囲に関して記載された上限値及び下限値は任意に組み合わせることができる。
[導電性組成物]
 本発明の一態様に係る導電性組成物は、
 (a)カーボンナノチューブ(以下、「成分(a)」ともいう。)、
 (b)可溶性導電性高分子(以下、「成分(b)」ともいう。)、及び
 (c)溶媒(以下、「成分(c)」ともいう。)
を含む。
 そして、前記可溶性導電性高分子が、以下の(i)又は(ii)である。
(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
(ii)スルホン酸基含有側鎖を有する導電性高分子
 本態様の導電性組成物は、上記した成分(a)~成分(c)を含むことで、該導電性組成物から得られる材料が、カーボンナノチューブ単独で構成される材料(導電性高分子を配合しないカーボンナノチューブ含有組成物から得られる材料)よりも、さらに高い導電性及び熱伝導性を示す。その理由は以下の通りであると推測される。
 図1に示すように、カーボンナノチューブを含む組成物から溶媒成分を除去して得られる材料(例えば塗膜、成形体等)では、カーボンナノチューブ10同士が接触することで、その接触点10aにおいて電気的及び熱的に導通し導通パス(電気及び熱の導通領域)が形成されることで、溶媒成分除去後に得られる材料(例えば塗膜、成形体等)全体として導電性を発現する。
 カーボンナノチューブ単独で構成される材料の場合、図2に示すように、カーボンナノチューブ10同士が接触する接触点10aでしか、電気及び熱の導通パスが形成されない。
 一方、図3は、溶媒分散型導電性高分子及びカーボンナノチューブを含む組成物から得られる材料を模式的に示す図である。
 溶媒分散型の導電性高分子(例えば、ポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS))は、一般に、数十nm程度の粒子として溶媒中に分散している。このため、図3に示すように、溶媒分散型の導電性高分子とカーボンナノチューブ(一般的な単層カーボンナノチューブの繊維径:0.5~3nm)とを混合しても、溶媒分散型の導電性高分子粒子12は、カーボンナノチューブ10と点接触しているだけである。このため、カーボンナノチューブ10間の導通パスは、カーボンナノチューブ10同士の接触点10aと、各カーボンナノチューブ10と導電性高分子粒子12との接触点でしか形成されない。
 従って、溶媒分散型の導電性高分子とカーボンナノチューブとを混合しても、カーボンナノチューブ10間の導通パスの増大量が少ないため、導電性高分子を配合しても、導電性や熱伝導性はあまり上がらない。
 これに対し、本態様の可溶性導電性高分子を用いた導電性組成物から溶媒成分を除去して得られる材料は、図4に示すように、可溶性導電性高分子11がカーボンナノチューブ10同士の接触点を含む周囲に付着し、カーボンナノチューブ10の表面の一部を被覆した状態、又はカーボンナノチューブ10の表面全体を被覆した状態となる。このため、本態様の導電性組成物の溶媒成分除去後に得られる材料(例えば塗膜、成形体等)では、カーボンナノチューブ10同士が、その接触点やその周囲のみならず各カーボンナノチューブ10の間に存在する可溶性導電性高分子11をも介して、電気的に接続した状態となる。
 つまり、本態様の導電性組成物の溶媒成分除去後に得られる材料では、図4に示すように、カーボンナノチューブ10間の導通パスが、各カーボンナノチューブ10の間に介在する可溶性導電性高分子11により面状に形成される。このため、図2や図3に示す状態と比較して、単位体積当たりに形成される導通パスが増大する。
 このため、本態様の導電性組成物から溶媒成分を除去して得られる材料では、図2や図3に示す状態と比較して、通電時における接触抵抗が低減し、溶媒成分除去後の材料全体としての抵抗値が低く抑えられるため、優れた導電性を示し、また熱伝導性にも優れる。
 なお、「可溶性導電性高分子」とは、溶媒成分(有機溶媒又は水)に対して溶解性を示す導電性高分子をいう。導電性高分子が溶媒成分に溶解しているとは、導電性高分子が分子レベルで溶媒中に分散している状態をいう。
 従って、図4に示すように、該可溶性導電性高分子を含む導電性組成物から溶媒成分を除去して得られる材料では、カーボンナノチューブ10の周囲に可溶性導電性高分子11が付着することにより、各カーボンナノチューブ10の表面を被覆した状態となり、各カーボンナノチューブ10間の接触点において、導通パスが面状に形成されるものと考えられる。
 また、カーボンナノチューブと混合する導電性高分子として、親水性のドーパント成分(例えば、ポリスチレンスルホン酸(PSS))を有する導電性高分子を用いた場合、又は分子全体が親水性を示す導電性高分子を用いた場合には、疎水性であるカーボンナノチューブの表面との親和性が低いため、各カーボンナノチューブの表面が、導電性高分子によって全体的に被覆された状態となり難い。
 これに対して、本態様の導電性組成物は、可溶性導電性高分子として、(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体、又は(ii)スルホン酸基含有側鎖を有する導電性高分子を用いることで、疎水性のカーボンナノチューブの表面との親和性が高い。
 この親和性によって、図4に示すように、各カーボンナノチューブ10の周囲に可溶性導電性高分子11が付着し易く、溶媒を除去した後に各カーボンナノチューブ10の表面を被覆した状態が得られるため、各カーボンナノチューブ10間に、導通パスが面状に形成されると推測される。
 本態様の導電性組成物は、導電性及び熱伝導性の高いカーボンナノチューブと、可溶性と疎水性とを併せ持つ導電性高分子との相乗効果により、従来のカーボンナノチューブと導電性高分子との組合せでは得られなかった高い導電性及び熱伝導性を得ることができるものと考えられる。
 従って、用いる導電性高分子は、可溶性と疎水性とを併せ持つものであれば特に限定されず、本態様の導電性組成物に用いることができ、かつ本態様の導電性組成物によって得られる効果が得られる。
 以下、本態様の導電性組成物の各成分について説明する。
(成分(a):カーボンナノチューブ)
 カーボンナノチューブとしては、単層カーボンナノチューブ(SWCNT)、二層カーボンナノチューブ(DWCNT)、多層カーボンナノチューブ(MWCNT)、カーボンナノファイバー等が挙げられる。
 カーボンナノチューブとしては、これらのうちの一種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 カーボンナノチューブの繊維径は特に限定されないが、導電性組成物から得られる材料において良好な導電性を得る観点から、例えば、単層カーボンナノチューブ(SWCNT)の繊維径は、0.1~50nmであってもよく、0.3~10nmであってもよく、0.5~3nmであってもよい。
 多層カーボンナノチューブ(MWCNT)の繊維径は、1~500nmであってもよく、3~300nmであってもよく、5~100nmであってもよい。
 二層カーボンナノチューブ(DWCNT)の繊維径は、0.2~100nmであってもよく、0.5~80nmであってもよく、1~50nmであってもよい。
 カーボンナノファイバー(CNF)の繊維径は、100~1000nmであってもよく、120~800nmであってもよく、150~500nmであってもよい。
 本明細書において、カーボンナノチューブの繊維径は、繊維外径を意味する。
 カーボンナノチューブの繊維径及び後述する繊維長は、カーボンナノチューブを走査透過電子顕微鏡によって観察し、観察画像において、任意の100個のカーボンナノチューブを選んでそれらの外径及び長さを計測し、外径の算術平均値及び長さの算術平均値を算出することにより決定できる。
 カーボンナノチューブの繊維長は、特に限定されないが、導電性組成物から得られる材料において良好な導電性を得る観点から、繊維長は、例えば0.1μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよい。
 成分(a)の含有量は、成分(a)と成分(b)の合計100質量%に対して、5質量%以上、10質量%以上、又は15質量%以上であってもよく、95質量%以下、93質量%以下、90質量%以下、80質量%以下、又は70質量%以下であってもよい。
 成分(a)と成分(b)の合計100質量%に対する成分(a)の含有量が上記範囲にあれば、導電性組成物から得られる材料において、良好な導電性が得られる。
 成分(a)の含有量は、組成物全体100質量%に対して、例えば0.1質量%以上、0.15質量%以上、又は0.18質量%以上であってもよい。
 カーボンナノチューブは分散媒中に分散された状態で本態様の導電性組成物に用いることができる。この場合、カーボンナノチューブの分散媒は、本態様の導電性組成物に持ち込まれ、導電組成物中の成分(c)の溶媒に含まれる。
 カーボンナノチューブの分散媒は、カーボンナノチューブを均一に分散可能なものであれば特に限定されないが、例えば、ジプロピレングリコールジメチルエーテル、メチルエチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のグリコールエーテル類、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン等のケトン類、メタノール、エタノール、イソプロピルアルコール、エチレングリコール等のアルコール類、N-メチルピロリドン、N,N-ジメチルホルムアミド、水等が好ましい。
(成分(b):可溶性導電性高分子)
 可溶性導電性高分子としては、以下の(i)第一形態又は(ii)第二形態が挙げられる。
(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
(ii)スルホン酸基含有側鎖を有する導電性高分子
(i)第一形態
 第一形態の可溶性導電性高分子は、疎水性のスルホン酸化合物が導電性高分子にドープした複合体である。
 上述した第一形態の可溶性導電性高分子は、疎水性を示し、且つ、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。このため、導電性組成物に含まれる溶媒を除去した後に、各カーボンナノチューブの表面が、該可溶性導電性高分子によって被覆された状態が得られる。
 第一形態の導電性高分子としては、ポリアニリン、ポリチオフェン、ポリピロール及びこれらの誘導体等が挙げられる。これらは置換基を有してもよいし有していなくてもよい。これらは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 導電性高分子としては、汎用性及び経済性の観点から、ポリアニリンが好ましい。
 複合体において良好な導電性を得る観点から、ポリアニリンは、好ましくは重量平均分子量が10,000以上であり、より好ましくは20,000以上であり、
さらに好ましくは30,000以上1,000,000以下であり、
よりさらに好ましくは40,000以上1,000,000以下であり、特に好ましくは52,000以上1,000,000以下である。
 ポリアニリンの重量平均分子量は、実施例に記載の方法により測定する。
 ポリアニリンは置換基を有しても有さなくてもよいが、汎用性及び経済性の観点から、好ましくは無置換のポリアニリンである。
 置換基を有する場合の置換基としては、例えばメチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;トリフルオロメチル基(-CF基)等のハロゲン化炭化水素が挙げられる。
 疎水性のスルホン酸化合物は、導電性高分子にドープすることで、溶媒に対して溶解性を示す複合体を形成するものであれば、特に化学構造上の制限なく使用できる。
 本明細書において、「疎水性」とは、HLB(Hydrophilic-Lipophilic Balance)値が1~8の範囲内であることをいう。
 また、スルホン酸化合物の炭素数が6以上であれば、HLB値が1~8の範囲内となり、疎水性を有する。
 以下の説明において、疎水性のスルホン酸化合物を、疎水性スルホン酸化合物ともいう。
 疎水性スルホン酸化合物は、置換又は無置換のポリアニリンにプロトン供与体としてドープして、ポリアニリン複合体を形成する。
 疎水性スルホン酸化合物がプロトン供与体としてポリアニリンにドープしていることは、紫外・可視・近赤外分光法やX線光電子分光法によって確認することができる。
 プロトン供与体としてのスルホン酸化合物は、ポリアニリンにキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。
 疎水性スルホン酸化合物の炭素数は、6以上、7以上、8以上、又は10以上であってもよく、35以下、30以下、25以下、又は20以下であってもよい。
 疎水性スルホン酸化合物の炭素数が上記範囲にあれば、該疎水性スルホン酸化合物が導電性高分子にドープした複合体が、全体として疎水性を示し、且つ、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。
 疎水性スルホン酸化合物のHLB値は、1.0~8.0、2.0~7.0、3.0~5.0、又は3.5~4.8であってもよい。
 疎水性スルホン酸化合物のHLB値が上記範囲にあれば、該疎水性スルホン酸化合物が導電性高分子にドープした複合体が、全体として疎水性を示し、且つ、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。
 スルホン酸化合物のHLB値は、下記のグリフィン法に基づく式により算出する。
  HLB値=20×親水部の式量の総和/分子量
 疎水性スルホン酸化合物(プロトン供与体)としては、例えば、下記式(I)で表されるスルホン酸化合物(プロトン供与体)が挙げられる。
     M(XAR    (I)
(式(I)中、Mは、水素原子、有機遊離基又は無機遊離基である。
 Xは、-SO で表される基である。Aは、置換基を含んでもよい炭化水素基である。
 Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は―CO(COOR)で表される置換基ある。
 Rは、置換基を含んでもよい炭素数が4以上の炭化水素基、シリル基、アルキルシリル基、-(RO)-Rで表される基、又は-(OSiR -OR(Rはアルキレン基、Rはそれぞれ同一でもよく、異なっていてもよい炭化水素基であり、xは1以上の整数である)で表される基である。
 nは2以上の整数である。
 mはMの価数である。)
 上記式(I)において、Mは、水素原子、有機遊離基又は無機遊離基である。
 上記有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基等が挙げられる。上記無機遊離基としては、例えばナトリウム、リチウム、カリウム、セシウム、アンモニウム等が挙げられる。
 Aは、置換基を含んでもよい炭化水素基である。
 当該炭化水素基としては、例えば炭素数1~24(好ましくは1~8、より好ましくは1~4)の直鎖若しくは分岐状のアルキル基(例えば、エチレン基);アルケニル基;シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、メンチル等の置換基を含んでいてもよいシクロアルキル基;ビシクロヘキシル、ノルボルニル、アダマンチル等の縮合してもよいジシクロアルキル基若しくはポリシクロアルキル基;フェニル、トシル、チオフェニル、ピローリニル、ピリジニル、フラニル等の置換基を含んでいてもよい芳香環を含むアリール基;ナフチル、アントラセニル、フルオレニル、1,2,3,4-テトラヒドロナフチル、インダニル、キノリニル、インドニル等の縮合していてもよいジアリール基若しくはポリアリール基;アルキルアリール基等であって、対応する(n+1)価の基が挙げられる。
 Rは、それぞれ独立して、-R、-OR、-COR、-COOR、-CO(COR)、又は―CO(COOR)で表される置換基ある。
 Rは、置換基(例えば、炭素数1~4のアルキル基(好ましくは、メチル基、エチル基、プロピル基))を含んでもよい炭素数が4以上(例えば、4~8、又は4~12)の炭化水素基、シリル基、アルキルシリル基、-(RO)-Rで表される基、又は-(OSiR -OR(Rはアルキレン基、Rはそれぞれ同一でもよく、異なっていてもよい炭化水素基であり、xは1以上の整数である)で表される基である。
 Rの炭化水素基の例としては、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基等が挙げられる。
 nは2以上(例えば、2~4、又は2~3)の整数である。
 mはMの価数である。
 上述した式(I)で表されるスルホン酸化合物は疎水性であり、また、該スルホン酸化合物が導電性高分子にドープした複合体は、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。
 このため、式(I)で表されるスルホン酸化合物を疎水性スルホン酸化合物として用いることで、各カーボンナノチューブの表面が、可溶性導電性高分子(式(I)のスルホン酸化合物が導電性高分子にドープした複合体)によって被覆された状態が得られる。
 式(I)で表される疎水性スルホン酸化合物(プロトン供与体)は、好ましくは、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、スルホフタル酸エステル、又は下記式(II)で表されるスルホン酸化合物(プロトン供与体)(有機プロトン酸又はその塩)である。
     M(XCR(CR COOR)COOR    (II)
 上記式(II)において、M及びXは、式(I)と同様である。
 pはMの価数である。
 R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-で表される基(ここで、Rは、炭化水素基であり、3つのRは同一又は異なっていてもよい)である。
 R及びRの炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキル基;芳香環を含むアリール基;アルキルアリール基等が挙げられる。
 Rの炭化水素基は、R及びRの炭化水素基と同様である。
 R及びRは、それぞれ独立して炭化水素基又は-(RO)-R10で表される基[ここで、Rは炭化水素基又はシリレン基であり、R10は水素原子、炭化水素基又はR11 Si-で表される基(R11は、炭化水素基であり、3つのR11は同一又は異なっていてもよい)であり、qは1以上の整数である]である。
 R及びRの炭化水素基としては、炭素数1~24、好ましくは炭素数4以上(例えば、4~10、又は4~14)の直鎖若しくは分岐状のアルキル基;芳香環を含むアリール基;アルキルアリール基等が挙げられる。
 R及びRの炭化水素基の具体例としては、直鎖又は分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基(例えば、2-エチルヘキシル)、デシル基等が挙げられる。
 Rの炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキレン基;芳香環を含むアリーレン基;アルキルアリーレン基;アリールアルキレン基等である。
 また、R10及びR11の炭化水素基としては、R及びRの場合と同様である。qは、1~10の整数であることが好ましい。
 R及びRが-(RO)-R10で表される基である場合の式(II)で示されるプロトン供与体の酸の具体例としては、下記式で示される酸が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、Xは、-SOで表される基等である。)
 上述した式(II)で表されるスルホン酸化合物は疎水性であり、また、該スルホン酸化合物が導電性高分子にドープした複合体は、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。
 このため、式(II)で表されるスルホン酸化合物を疎水性スルホン酸化合物として用いることで、各カーボンナノチューブの表面が、可溶性導電性高分子(式(II)のスルホン酸化合物が導電性高分子にドープした複合体)によって被覆された状態が得られる。
 上記式(II)で表される疎水性スルホン酸化合物(プロトン供与体)(有機プロトン酸又はその塩)は、好ましくは下記式(III)で表されるスルホコハク酸誘導体である。
    M(OSCH(CHCOOR12)COOR13    (III)
 上記式(III)において、M及びmは、上記式(I)と同様である。
 R12及びR13は、それぞれ独立して炭化水素基又は-(R14O)-R15で表される基[ここで、R14は炭化水素基又はシリレン基であり、R15は水素原子、炭化水素基又はR16 Si-で表される基(ここで、R16は炭化水素基であり、3つのR16は同一又は異なっていてもよい)であり、rは1以上の整数である]である。
 R12及びR13の炭化水素基は、R及びRの炭化水素基と同様である。
 R14の炭化水素基は、Rの炭化水素基と同様である。また、R15及びR16の炭化水素基は、R及びRの炭化水素基と同様である。
 rは、好ましくは1~10の整数である。
 R12及びR13が、-(R14O)-R15で表される基である場合の式(III)で表されるスルホコハク酸誘導体の具体例は、R及びRが-(RO)-R10で表される基である場合の式(II)で表されるプロトン供与体と同様である。
 R12及びR13の炭化水素基は、R及びRの炭化水素基と同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基等が好ましい。
 上述した式(III)で表されるスルホン酸化合物は疎水性であり、また、該スルホン酸化合物が導電性高分子にドープした複合体は、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。
 このため、式(III)で表されるスルホン酸化合物を疎水性スルホン酸化合物として用いることで、各カーボンナノチューブの表面が、可溶性導電性高分子(式(III)のスルホン酸化合物が導電性高分子にドープした複合体)によって被覆された状態が得られる。
 また、疎水性スルホン酸化合物(プロトン供与体)としては、上記式(I)~(III)で表されるスルホン酸化合物(プロトン供与体)以外のものとして、例えば、カンファースルホン酸(HLB値:7.0)、ジノニルナフタレンスルホン酸(HLB値:3.5)、アダマンタンスルホン酸(HLB値:7.5)を用いることができる。
 疎水性スルホン酸化合物を、ポリアニリンに対するプロトン供与体として用いる場合、ポリアニリンに対する疎水性スルホン酸化合物(プロトン供与体)のドープ率は、好ましくは0.30以上0.65以下であり、より好ましくは0.32以上0.60以下であり、さらに好ましくは0.33以上0.57以下であり、特に好ましくは0.34以上0.55以下である。ドープ率が0.30以上であれば、ポリアニリン複合体の有機溶媒への溶解性が十分高い。
 ドープ率は(ポリアニリンにドープしている疎水性スルホン酸化合物(プロトン供与体)のモル数)/(ポリアニリンのモノマーユニットのモル数)で定義される。例えば無置換ポリアニリンと疎水性スルホン酸化合物(プロトン供与体)を含むポリアニリン複合体のドープ率が0.5であることは、ポリアニリンのモノマーユニット分子2個に対し、疎水性スルホン酸化合物(プロトン供与体)が1個ドープしていることを意味する。
 ドープ率は、ポリアニリン複合体中の疎水性スルホン酸化合物(プロトン供与体)とポリアニリンのモノマーユニットのモル数が測定できれば算出可能である。
 本態様では、プロトン供与体が有機スルホン酸であるため、プロトン供与体由来の硫黄原子のモル数と、ポリアニリンのモノマーユニット由来の窒素原子のモル数を、有機元素分析法により定量し、これらの値の比を取ることでドープ率を算出できる。
 ポリアニリン複合体は、好ましくは無置換ポリアニリンとプロトン供与体であるスルホン酸とを含み、下記式(5)を満たす。
     0.32≦S/N≦0.60   (5)
(式中、Sはポリアニリン複合体に含まれる硫黄原子のモル数の合計であり、Nはポリアニリン複合体に含まれる窒素原子のモル数の合計である。上記窒素原子及び硫黄原子のモル数は、有機元素分析法により測定した値である。)
 第一形態に係る可溶性導電性高分子は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 上述の第一形態に係る可溶性導電性高分子を製造する方法は格別限定されないが、例えば、以下に説明する第一形態に係る可溶性導電性高分子の製造方法により製造することができる。
 例えば、上述の疎水性スルホン酸化合物(プロトン供与体)、上述のポリアニリンに対応するアニリン、必要に応じて界面活性剤(例えば非イオン乳化剤)を水不混和性有機溶媒(例えば炭化水素系溶媒(好ましくはトルエン、キシレン))に溶解させ、そこに酸性水溶液(例えば、リン酸水溶液)を加え、水不混和性有機溶媒と水の2つの液相を有する反応液を撹拌し、重合開始剤(例えば過硫酸アンモニウム)を投入し、重合を行う。
 重合後、静置により水不混和性有機溶媒相を分離することで、ポリアニリン複合体水不混和性有機溶媒溶液を得ることができる。
 この溶液をエバポレーターに移し、揮発分を蒸発留去し、ポリアニリン複合体(プロトネーションされたポリアニリン)を得ることができる。
(ii)第二形態
 第二形態の可溶性導電性高分子は、スルホン酸基を含有する側鎖(スルホン酸基含有側鎖)を有する導電性高分子である。
 尚、以下の説明において、スルホン酸基含有側鎖を有する導電性高分子を、スルホン酸基含有導電性高分子ともいう。
 上述した第二形態の可溶性導電性高分子は、高い疎水性を示し、且つ、溶媒(有機溶媒又は水)に対して優れた溶解性を示す。このため、導電性組成物に含まれる溶媒を除去した後に、該可溶性導電性高分子によって、各カーボンナノチューブの表面が被覆された状態が得られる。
 スルホン酸基含有導電性高分子の主鎖の単量体としては、3,4-エチレンジオキシチオフェン(EDOT)、アニリン、メトキシアニリン等が挙げられる。
 主鎖に共有結合するスルホン酸基含有側鎖としては、アルキルスルホン酸基、アルキルエーテルスルホン酸基等が挙げられる。
 スルホン酸基含有側鎖の炭素数は、例えば1~15であってもよく、2~10であってもよい。
 成分(b)の含有量は、成分(a)100質量部に対して、1質量部以上、5質量部以上、10質量部以上、15質量部以上、又は20質量部以上であってもよく、2000質量部以下、1000質量部以下、800質量部以下、500質量部以下、又は400質量部以下であってもよい。
 また、成分(b)の含有量は、成分(a)100質量部に対して、1~1000質量部であってもよく、1~400質量部であってもよく、15~400質量部であってもよい。
 成分(a)100質量部に対する成分(b)の含有量が上記範囲にあれば、導電性組成物から得られる材料において、良好な導電性が得られる。
 成分(b)の含有量は、組成物全体100質量%に対して、0.01~20質量%であってもよく、0.05~15質量%であってもよく、0.08~10質量%であってもよく、0.15~10質量%であってもよい。
(成分(c):溶媒)
 本発明の一態様に係る導電性組成物は、溶媒を含む。
 溶媒は、成分(b)を溶解するものであれば特に制限はなく、水でも有機溶媒でもよいが、成分(b)を溶解させる観点から、有機溶媒が好ましい。有機溶媒は、水溶性有機溶媒でもよいし、実質的に水に混和しない有機溶媒(水不混和性有機溶媒)でもよい。
 溶媒には、成分(a)カーボンナノチューブの分散媒として導電性組成物中に持ち込まれる溶媒を含んでいてもよい。
 また、成分(b)を溶解する溶媒と、成分(a)の分散媒とが同じであってもよいし、異なっていてもよい。
 水溶性有機溶媒は、プロトン性極性溶媒でも非プロトン性極性溶媒でもよく、例えばイソプロピルアルコール、1-プロパノール、1-ブタノール、2-ブタノール、2-ペンタノール、ベンジルアルコール、アルコキシアルコール(例えば1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、1-エトキシ―2-プロパノール、2-エトキシ-1-プロパノール、1-ブトキシ-2-プロパノール)、エチレングリコール等のアルコール類;アセトン等のケトン類;テトラヒドロフラン、ジオキサン、エチレングリコールモノ-tert-ブチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のエーテル類;Nメチルピロリドン等が挙げられる。
 一実施形態においては、上記水溶性有機溶媒のうち、ジプロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のグリコールエーテル類が好ましい。
 水不混和性有機溶媒としては、例えば、ヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン、IPソルベント1620等の炭化水素系溶媒;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン等の含ハロゲン系溶媒;酢酸エチル、酢酸イソブチル、酢酸n-ブチル、酪酸ブチル、乳酸エチル等のエステル系溶媒;メチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類溶媒:シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、1,2-ジエトキシエタン等のエーテル類溶媒等が挙げられる。また、炭化水素系溶媒として1種又は2種以上のイソパラフィンを含むイソパラフィン系溶媒を用いてもよい。
 これらのうち、成分(b)の溶解性に優れる点でトルエン、キシレン、メチルイソブチルケトン、クロロホルム、トリクロロエタン、酢酸エチル、テトラヒドロフラン及びシクロヘキサノン、メチルエチルケトンが好ましい。
 尚、成分(b)のうちポリアニリン複合体は、溶媒がイソプロピルアルコール、1-ブタノール、2-ブタノール、2-ペンタノール、ベンジルアルコール、アルコキシアルコール等のアルコール類であっても溶解することができる。アルコールは、トルエン等の芳香族に比べて環境負荷低減の観点から好ましい。
 溶媒として有機溶媒を用いる場合、水不混和性有機溶媒と水溶性有機溶媒を99~1:1~99(質量比)で混合した混合有機溶媒を用いることができる。混合有機溶媒を用いることにより、保存時のゲル等の発生を防止でき、長期保存できることから好ましい。
 上記混合有機溶媒の水不混和性有機溶媒として低極性有機溶媒が使用でき、低極性有機溶媒は、ヘキサン、トルエン等の炭化水素系溶媒;クロロホルム等の含ハロゲン系溶媒;イソパラフィン系溶媒が好ましい。
 混合有機溶媒の水溶性有機溶媒としては、高極性有機溶媒が使用でき、例えば、メタノール、エタノール、イソプロピルアルコール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール、1-エトキシ―2-プロパノール、2-エトキシ-1-プロパノール、1-ブトキシ-2-プロパノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、エチレングリコールモノ-tert-ブチルエーテル等のエーテル類が好ましい。
 混合有機溶媒は水不混和性有機溶媒を1種又は2種以上含んでもよく、水溶性有機溶媒を1種又は2種以上含んでもよい。
 成分(c)は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 成分(c)の含有量は、組成物全体100質量%に対して、50~99.8質量%、55~95質量%、又は70~90質量%でもよい。
(成分(d):フェノール性化合物)
 一実施形態において、導電性組成物は、上述した成分(a)~(c)に加えて、さらにフェノール性化合物を含む。フェノール性化合物を含むことで、該導電性組成物を用いて得られる材料の導電性をさらに高めることができる。
 フェノール性化合物は特に限定されず、ArOH(ここで、Arはアリール基又は置換アリール基である)で表される化合物である。具体的には、フェノール、o-,m-又はp-クレゾール、o-,m-又はp-エチルフェノール、o-,m-又はp-プロピルフェノール、o-,m-又はp-ブチルフェノール、o-,m-又はp-クロロフェノール、o-,m-又はp-tert-アミルフェノール、サリチル酸、ヒドロキシ安息香酸、ヒドロキシナフタレン等の置換フェノール類;カテコール、レゾルシノール等の多価フェノール性化合物;及びフェノール樹脂、ポリフェノール、ポリ(ヒドロキシスチレン)等の高分子化合物等を例示することができる。
 また、下記式(3)で表されるフェノール性化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000002
(式(3)中、n1は1~5(好ましくは1~3)の整数である。
 R21は、それぞれ炭素数1~10(好ましくは2~8、より好ましくは3~7)のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
 上記のR21について、以下に説明する。
 アルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、tert-アミル等が挙げられる。
 アルケニル基としては、上述したアルキル基の分子内に不飽和結合を有する置換基が挙げられる。
 シクロアルキル基としては、シクロペンタン、シクロヘキサン等が挙げられる。
 アルキルチオ基としては、メチルチオ、エチルチオ等が挙げられる。
 アリール基としては、フェニル、ナフチル等が挙げられる。
 アルキルアリール基、及びアリールアルキル基としては、上述したアルキル基とアリール基を組み合わせて得られる置換基等が挙げられる。
 これらの基のうち、R21としては、メチル又はエチル基が好ましい。
 また、下記式(3’)で表されるフェノール性化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000003
(式(3’)中、R22は炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数3~10のシクロアルキル基、炭素数1~20のアルキルチオ基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
 式(3’)におけるR22の具体例は上記式(3)におけるR21と同様である。
 成分(d)は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 成分(d)の含有量は、導電性組成物全体100質量%に対して、1~50質量%であってもよく、5~45質量%であってもよく、10~40質量%であってもよく、10~30質量%であってもよく、10~20質量%であってもよい。
(成分(e):酸性物質及び/又は酸性物質の塩)
 一実施形態において、導電性組成物は、上述した成分(a)~(c)に加えて、さらに、上述の疎水性スルホン酸化合物(プロトン供与体)と異なる酸種を添加してよく、さらに、酸性物質及び酸性物質の塩からなる群から選択される1以上(以下、「成分(e)」ともいう。)を含んでもよい。当該成分は、通常、耐熱安定化剤として用い、該導電性組成物を用いて得られる導電性膜等の導電材料の耐熱性をさらに向上することができる。
 成分(e)は、導電性組成物に添加してもよいし、導電性組成物から形成された塗膜等を酸性物質及び/又は酸性物質の塩を溶解した溶液に浸漬することで含有させてもよい。
 酸性物質は、有機化合物の酸である有機酸、無機化合物の酸である無機酸のいずれでもよく、好ましくは有機酸である。酸性物質としては、好ましくはスルホン酸基を1つ以上含む有機酸である。
 上記スルホン酸基を有する有機酸は、好ましくはスルホン酸基を1つ以上有する、環状、鎖状又は分岐のアルキルスルホン酸、置換又は無置換の芳香族スルホン酸、又はポリスルホン酸である。
 上記アルキルスルホン酸としては、例えば、メタンスルホン酸、エタンスルホン酸が挙げられる。ここで、アルキル基は好ましくは炭素数が1~18の直鎖又は分岐のアルキル基である。
 上記芳香族スルホン酸としては、炭素数6~20のものが挙げられ、例えば、ベンゼン環を有するスルホン酸、ナフタレン骨格を有するスルホン酸、アントラセン骨格を有するスルホン酸が挙げられる。また、上記芳香族スルホン酸としては、置換又は無置換のベンゼンスルホン酸、置換又は無置換のナフタレンスルホン酸及び置換又は無置換のアントラセンスルホン酸が挙げられる。
 置換基としては、例えば、アルキル基(例えば炭素数1~20のもの)、アルコキシ基(例えば炭素数1~20のもの)、ヒドロキシ基、ニトロ基、カルボキシ基、アシル基からなる群から選択される置換基であり、1以上置換していてもよい。
 具体的に、芳香族スルホン酸として、下記式(4)又は(5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(4)中、lは1以上であり、mは0以上5以下の整数であり、nは0以上5以下の整数である。m又はnの一方が0の場合、他方は1以上である。)
Figure JPOXMLDOC01-appb-C000005
(式(5)中、qは1以上であり、pは0以上7以下の整数であり、Rは、それぞれ独立に炭素数1~20のアルキル基、カルボキシ基、水酸基、ニトロ基、シアノ基、アミノ基である。)
 式(4)のlは1~3が好ましい。式(4)のmは1~3が好ましい。式(4)のnは0~3が好ましい。
 式(5)のqは1~3が好ましい。式(5)のpは0~3が好ましい。式(5)のRは炭素数1~20のアルキル基、カルボキシ基、水酸基が好ましい。
 芳香族スルホン酸としては、4-スルホフタル酸、5-スルホイソフタル酸、5-スルホサリチル酸、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、2-ヒドロキシ-6-ナフタレンスルホン酸、p-フェノールスルホン酸、トルエンスルホン酸、p-キシレン-2-スルホン酸、4,4’-ビフェニルジスルホン酸、ジベンゾフラン-2-スルホン酸、フラビアン酸、(+)-10-カンファースルホン酸、モノイソプロピルナフタレンスルホン酸、1-ピレンスルホン酸等が挙げられる。これらの中でも、耐熱性向上の観点から、4-スルホフタル酸、5-スルホサリチル酸、5-スルホイソフタル酸、2-ナフタレンスルホン酸、ジベンゾフラン-2-スルホン酸、フラビアン酸、2-ヒドロキシ-6-ナフタレンスルホン酸及び1-ピレンスルホン酸が好ましい。
 酸性物質の塩としては、上記に挙げた化合物の塩が挙げられる。塩の対イオンとしては、ナトリウム、リチウム、カリウム、セシウム、アンモニウム、カルシウム、バリウム等が挙げられる。
 成分(e)は水和物であってもよい。
 成分(e)は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。
 成分(e)を含む場合、成分(e)の含有量は、組成物全体100質量%に対して、0.01~10質量%であることが好ましく、0.02~5質量%がより好ましく、0.05~3質量%がさらに好ましい。
 成分(e)を含む場合、成分(b)の含有量と、成分(e)の含有量と、の質量比率(「成分(b)の含有量」:「成分(e)の含有量」)は、耐熱性の観点から、1:0.01~1:1でもよく、1:0.05~1:0.5であることが好ましく、1:0.07~1:0.1がより好ましい。
 一実施形態において、導電性組成物は、前述した成分(a)~(e)以外に、バインダー等の各種添加剤を含有していてもよい。バインダーとしては、公知のものを用いることができる。
 一実施形態において、導電性組成物は、前述した成分(a)~(e)以外に、さらに、樹脂及び無機材料からなる群から選ばれる少なくとも一つを含んでいてもよい。
 樹脂及び無機材料としては、カーボンナノチューブを含む成形体を得るために使用される公知ものを、特に限定なく用いることができる。
 一実施形態において、導電性組成物は、前述した成分(a)~(e)以外に、バインダー等の各種添加剤を含有し、樹脂及び無機材料からなる群から選ばれる少なくとも一つを含んでいてもよい。
 本発明の一態様に係る組成物は、本質的に、成分(a)、(b)及び(c)、並びに、任意に(d)及び(e)からなる群から選択される1以上の成分からなってもよい。この場合、本発明の効果を損なわない範囲で他に不可避不純物を含んでもよい。
 本発明の一態様に係る組成物の、例えば、70質量%以上、80質量%以上、90質量%以上、98質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上、又は100質量%が、
成分(a)~(c)、
成分(a)~(d)、
成分(a)~(c)、(e)又は
成分(a)~(e)
からなっていてもよい。
 本発明の一態様に係る組成物の調製方法は、特に限定されず、前述した成分(a)~成分(e)を公知の方法により混合することで得られる。
 混合方法は特に限定されず、例えば前述した成分(a)~成分(e)を含む混合液を、公知の方法で攪拌混合することで行うことができ、攪拌温度や攪拌速度は、特に限定されない。
 また、混合の順序は特に限定されないが、例えば、成分(c)~成分(e)を混合した混合溶媒に成分(b)を加えて得られた溶液に、成分(a)を加えた後、攪拌混合してもよく、混合溶媒に成分(a)を加えて得られた溶液に、成分(b)を加えた後、攪拌混合してもよい。
[導電性膜]
 本発明の一態様に係る導電性膜は、
 (a)カーボンナノチューブ、及び
 (b)可溶性導電性高分子
を含むを含む導電性膜であって、
 前記可溶性導電性高分子が、以下の(i)又は(ii)である。
(i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
(ii)スルホン酸基含有側鎖を有する導電性高分子
 本発明の一態様に係る導電性膜は、上述の導電性組成物を用いてなる。
 例えば、本発明の一態様に係る導電性組成物を基体上に塗布し、乾燥して成分(c)(溶媒)を除去することで導電性膜を形成することができる。当該導電性組成物を、所望の形状を有するガラス、樹脂フィルム、シート、不織布等の基材上に塗布することで導電性積層体としてもよい。
 当該導電性膜の厚さは、通常1mm以下、好ましくは10nm~50μmである。
 本発明の一態様に係る導電性膜の表面抵抗は、導電材としての効果発揮の観点から、例えば、500Ω/□以下、450Ω/□以下、400Ω/□以下、300Ω/□以下、200Ω/□以下、又は150Ω/□以下が挙げられる。
 導電性膜の表面抵抗は、実施例に記載の方法により測定する。
 組成物を塗布する方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコード法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等の公知の方法を用いることができる。
 また、上記の導電性膜(塗膜)を、上記成分(e)を含む溶液に浸漬し、乾燥する工程を設けてもよい。この場合の成分(e)としては、上記式(4)で表される化合物又はその塩が好ましい。
 浸漬に用いる溶液は、溶媒を含んでもよい。
 溶媒は、成分(e)が溶解すれば特に限定されず、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒等が挙げられる。1種又は2種以上を混合して使用してもよい。
 溶媒として、具体的には、メタノール、エタノール、イソプロパノール、n-ブタノール、1-メトキシ-2-プロパノール、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、1-エトキシ-2-プロパノール、酢酸エチル、酢酸ブチル、MIBK、メチルエチルケトン(MEK)、エチレングリコールモノtertブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等が挙げられる。
 浸漬に用いる溶液中の成分(e)の含有量は、溶媒を除去し得られた組成物1質量部に対して、10~1200質量部が好ましく、30~700質量部がより好ましく、70~400質量部がさらに好ましい。
 1200質量部を超えると、塗膜内に酸性物質が過剰となりポリアニリン主鎖の劣化を引き起こし、導電性が低下するおそれがある。
 また、成分(e)は、浸漬に用いる溶液中、0.1質量%~10質量%が好ましく、0.3質量%~6質量%がより好ましく、0.7質量%~3.5質量%がさらに好ましい。
 浸漬方法は、ディップ等が挙げられる。
 浸漬時間は1分間以上が好ましく、3分間以上200分間以下がより好ましく、7分間以上~30分間以下がさらに好ましい。浸漬温度は、5℃~50℃が好ましい。
 浸漬後の乾燥は、オーブン、ホットプレート等により行うことが好ましい。
 乾燥温度は、80~200℃が好ましく、100~170℃がより好ましい。
 乾燥時間は、1~180分間が好ましく3~60分間がより好ましい。必要に応じて、減圧下で加熱してもよい。乾燥温度及び乾燥時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。
 上述したように、成分(e)は上記の導電性組成物中に加えてもよいし、導電性組成物から得られた導電性膜に含ませてもよい。導電性組成物中に成分(e)を加え、さらに当該導電性組成物から得られた導電性膜に成分(e)を含ませてもよい。
 即ち、本発明の一態様に係る導電性膜は、成膜前の組成物に加えられた成分(e)(以下、成分(e1)と称する場合がある)と、成膜後に浸漬することにより加えられた成分(e)(以下、成分(e2)と称する場合がある)とを含む場合がある。成分(e1)と(e2)は同一でもよく、異なってもよい。異なる場合、例えば、成分(e1)は上記式(5)で表される化合物であり、成分(e2)は上記式(4)で表される化合物である。
 本発明の一態様に係る導電性膜は、電池材料として用いることができる。
[導電性積層体]
 本発明の一態様に係る導電性積層体は、基材と、本発明の一態様に係る導電性材料からなる導電層と、を含み、該導電層と基材とが接している。
 例えば、本発明の一態様に係る導電性組成物を、所望の形状を有するガラス、樹脂フィルム、シート、不織布等の基材に塗布し、溶媒を除去することによって、導電層(導電性膜)を有する導電性積層体を製造することができる。当該導電性積層体を真空成形や圧空成形等の公知の方法により所望の形状に加工することにより、導電性物品を製造することができる。成形の観点からは、基材は樹脂フィルム、シート又は不織布等が好ましい。
 導電性組成物の基材への塗布方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコート法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等、公知の方法を用いることができる。上記塗布膜を乾燥する際、溶媒の種類によっては、塗布膜を加熱してもよい。例えば、空気気流下250℃以下、好ましくは50以上200℃以下の温度で加熱し、さらに、必要に応じて、減圧下や窒素気流下にて加熱する。加熱温度及び加熱時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。
 尚、本発明の一態様に係る組成物を用いて、基材を有しない自己支持型成形体とすることもできる。
[導電性材料]
 本発明の一態様に係る導電性材料は、本発明の一態様に係る導電性組成物から作製される。
 本発明の一態様に係る導電性材料は、例えば、本発明の一態様に係る導電性組成物から成分(c)(溶媒)を除去してなる。
 前記成分(c)(溶媒)の除去方法としては、例えば、導電性組成物を基材上に塗布し、乾燥させることが挙げられる。
 本発明の一態様に係る膜、成形体、粉体又は粒体は、本発明の一態様に係る導電性材料を含む。
 つまり、本発明の一態様に係る導電性材料の形状は、特に限定されず、目的に応じて選択することができ、例えば、膜、成形体、粉体、粒体等が挙げられる。
 本発明の一態様に係る導電性材料は、例えば電池用導電助剤として使用できる。電池用導電助剤の形状としては、膜、粉体又は粒体が挙げられる。
[導電性物品]
 本発明の一態様に係る導電性物品は、本発明の一態様に係る導電性組成物と、樹脂及び無機材料から選ばれる少なくとも一つとの混合物から作成される。
 本発明の一態様に係る導電性物品は、本発明の一態様に係る導電性組成物を、樹脂及び無機材料からなる群から選ばれる少なくとも一つと混合し、例えば、該混合物を乾燥して成分(c)(溶媒)を除去することにより得られる。
 導電性物品の形状は特に限定されず、使用目的に応じて適宜決定することができる。
[電池]
 本発明の一態様に係る電池は、本発明の一態様に係る導電性材料を含む電池用導電助剤を含む。
 電池としては、特に限定されないが、例えばリチウム二次電池が挙げられる。
製造例1(ポリアニリン複合体の製造)
 1,000mLセパラブルフラスコに「ネオコールSWC」(ジ-2-エチルヘキシルスルホコハク酸ナトリウム、第一工業製薬株式会社製、HBL値:3.66)32.4g、アニリン13.3g、「ソルボンT-20」(ポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤、東邦化学工業株式会社製)0.9gを入れ、トルエン320.4gにて溶解させた。そこに8.5質量%リン酸水溶液450gを加え、トルエンと水の2つの液相を有する反応液を撹拌し、反応液の内温を5℃まで冷却した。反応液の内温が5℃に到達した時点で、反応液を撹拌しながら、滴下漏斗を用いて、APS(過硫酸アンモニウム)39.3gを8.5質量%リン酸水溶液90.2gに溶解した溶液を添加し、溶液内温を5℃に保ったまま4時間攪拌した。攪拌停止後、分液漏斗に内容物を移し、水相とトルエン相(有機相)を静置分離した。
 分離後、トルエン相(有機層)を8.5質量%リン酸水溶液180.3gで1回、イオン交換水328.0gで5回洗浄することにより、ポリアニリン複合体トルエン溶液を得た。
 この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、ポリアニリン複合体(プロトネーションされたポリアニリン)を得た。ポリアニリン複合体1のポリアニリンの重量平均分子量(Mw)は73,000あった。
 ポリアニリンの重量平均分子量は以下のようにして測定した。
 NMP(N-メチル-2-ピロリドン)2000mLに対し、臭化リチウム1.65~1.85gを溶解し0.01M臭化リチウムのNMP溶液を調製した。この0.01M臭化リチウムのNMP溶液10mLに、14μLのトリエチルアミンを添加し、撹拌溶解させ、均一な溶液にした。さらに、製造例1で得たポリアニリン複合体トルエン溶液を50μL滴下し、撹拌混合後、0.45μmフィルターを通し、ゲルパーミエーションクロマトグラフ(GPC)測定用サンプルを調製した。
 GPC測定は、GPCカラム(昭和電工株式会社製「ShodexKF-806M」、2本連結)を用いて、以下の測定条件で行った。
溶媒:0.01MLiBr含有NMP
流量:0.70mL/分
カラム温度:60℃
注入量:100μL
UV検出波長:270nm
 上記方法で得られた重量平均分子量は、ポリスチレン(PS)換算値である。
 ポリアニリンに対するプロトン供与体(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)のドープ率は0.36であった。
 「ネオコールSWC」(ジ-2-エチルヘキシルスルホコハク酸ナトリウム、第一工業製薬株式会社製)のHBL値は、下記式(A)に基づいて算出した。
  HBL値=20×(SONa部の式量)/分子量  ・・・(A)
 ジ-2-エチルヘキシルスルホコハク酸ナトリウム(分子量:443.61、SONa部の式量:81.07)の式(A)に基づくHLB値は、式(A)=20×81.07/443.61=3.66である。
実施例1(導電性組成物の調製)
 シクロヘキサノン(成分(c))(東京化成工業製)70g、及び4-tert-アミルフェノール(成分(d))(富士フイルム和光純薬株式会社製)30gを均一になるまで混合して混合溶液Aを調製した。98.4gの混合溶液Aに、製造例1で得たポリアニリン複合体(成分(b))1.6gを溶解し、ポリアニリン溶液A(ポリアニリン複合体濃度:1.6質量%)を得た。
 2gの単層カーボンナノチューブ(SWCNT)の分散液(成分(a))、0.05gのポリアニリン溶液A、及び1.95gの混合溶液Aを撹拌混合し、導電性組成物(CNT/ポリアニリン複合体含有溶液)を得た。
 尚、単層カーボンナノチューブ(SWCNT)分散液に含まれる各成分の配合割合を以下に示す。
カーボンナノチューブ(SWCNT):0.4質量%
アルキルアセタール化ポリビニルアルコール:1.0質量%
プロピレングリコールモノメチルエーテルアセテート(PGMEA):98.6質量%
(導電性膜の評価(表面抵抗))
 実施例1で得られた導電性組成物(CNT/ポリアニリン複合体含有溶液)を、易接着PET基材に下記条件でバーコーターにより塗布した後乾燥し、導電性膜(CNT/ポリアニリン複合体の膜)を得た。
 バーコート条件
  塗工装置:ミニコータ「MC30」(株式会社宝泉製)
  塗工速度:30mm/s
  アプリケーター間隔:150μm
  乾燥条件:150℃、10min
 上記で得られた導電性膜(CNT/ポリアニリン複合体の膜)の表面抵抗を、四端子法による抵抗率計「ロレスターGP」(三菱化学株式会社製)を用いて測定した。
 測定結果を表1に示す。
 導電性膜の膜厚は、リニアゲージセンサー(株式会社小野測器者製)を用いて測定した。導電性膜の膜厚を表1に示す。
実施例2~5、比較例1
 実施例1で用いたのと同じ単層カーボンナノチューブ(SWCNT)分散液、ポリアニリン溶液A、及び混合溶液Aの配合割合を、それぞれ表1に示す割合に変更したこと以外は、実施例1と同様にして、導電性組成物(CNT/ポリアニリン複合体含有溶液)を得た。
 実施例1の導電性組成物に代えて、実施例2~5、比較例1の導電性組成物(CNT/ポリアニリン複合体含有溶液)を用いたこと以外は、実施例1と同様にして、導電性膜(CNT/ポリアニリン複合体の膜)を作製し、評価した。各導電性膜の膜厚及び表面抵抗の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 尚、表1中、「CHN」はシクロヘキサノンを示し、「tAP」は4-tert-アミルフェノールを示す。また、表1及び後述する表2中、「E+XX」は「×10XX」を意味する。
実施例6(組成物の調製)
 テトラヒドロフラン(成分(c))(東京化成工業製)70g、及び4-tert-アミルフェノール(成分(d))(富士フイルム和光純薬株式会社製)30gを均一になるまで混合して混合溶液Bを調製した。99.6gの混合溶液Bに、製造例1で得たポリアニリン複合体(成分(b))0.4gを溶解し、ポリアニリン溶液B(ポリアニリン複合体濃度:0.4質量%)を得た。
 実施例1で用いたのと同じ単層カーボンナノチューブ(SWCNT)分散液(成分(a))(単層カーボンナノチューブ濃度0.4質量%)2g、及び2gのポリアニリン溶液Bとを撹拌混合し、導電性組成物(CNT/ポリアニリン複合体含有溶液)を得た。
(導電性膜の評価(表面抵抗))
 実施例6で得た導電性組成物(CNT/ポリアニリン複合体含有溶液)を、ガラス基板に下記条件でスピンコート法により塗布した後乾燥し、導電性膜(CNT/ポリアニリン複合体の膜)を得た。
 スピンコート条件
  塗工装置:スピンコーター「MS-A100」(株式会社ミカサ製)
  回転数:500rpm
  乾燥条件:150℃、5min
 上記で得られた導電性膜(CNT/ポリアニリン複合体の膜)の表面抵抗を、四端子法による抵抗率計「ロレスターGP」(三菱化学株式会社製)を用いて測定した。結果を表2に示す。
 導電性膜の膜厚を、リニアゲージセンサー(株式会社小野測器製)を用いて測定した。導電性膜の膜厚を表2に示す。
実施例7
 99.6gのテトラヒドロフランに、製造例1で得たポリアニリン複合体0.4gを溶解し、ポリアニリン溶液C(ポリアニリン複合体濃度:0.4質量%)を得た。
 以降の工程は、実施例6におけるポリアニリン溶液Bをポリアニリン溶液Cに代えた以外は、実施例6と同様にして、導電性組成物(CNT/ポリアニリン複合体含有溶液)を得た。
 実施例6の導電性組成物に代えて、実施例7の導電性組成物(CNT/ポリアニリン複合体含有溶液)を用いたこと以外は、実施例6と同様にして、導電性膜(CNT/ポリアニリン複合体の膜)を作製し、評価した。導電性膜の膜厚及び表面抵抗の測定結果を表2に示す。
比較例2
 実施例1で用いたのと同じ単層カーボンナノチューブ(SWCNT)分散液(カーボンナノチューブ濃度0.4質量%)2g、及び2gのテトラヒドロフラン(成分(c))(東京化成工業製)を混合し、導電性組成物(CNT分散液)を得た。
 実施例6の導電性組成物に代えて、比較例2の導電性組成物(CNT分散液)を用いたこと以外は、実施例6と同様にして、導電性膜(CNT単体の膜)を作製し、評価した。導電性膜の膜厚及び表面抵抗の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 尚、表2中、「THF」はテトラヒドロフランを示し、「tAP」は4-tert-アミルフェノールを示す。
 表1~2に示すように、カーボンナノチューブにポリアニリン複合体を配合した実施例1~7の導電性組成物から得られた導電性膜は、カーボンナノチューブのみを用いた比較例1及び2に比べて表面抵抗が低い値に抑えられており、優れた導電性が得られた。また、ポリアニリン複合体の配合量の増大に伴って、得られる導電性膜の表面抵抗が低下しており、ポリアニリン複合体の配合量が最も高い実施例5の導電性膜は、実施例1の導電性膜と比較して、表面抵抗が大幅に低下した。
 本発明の導電性組成物及び本発明の導電性膜は、導電助剤、タッチフィルム用電極、電磁波シールド材、帯電防止剤、電池、コンデンサ等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。

Claims (15)

  1.  (a)カーボンナノチューブ、
     (b)可溶性導電性高分子、及び
     (c)溶媒
    を含み、
     前記可溶性導電性高分子が、以下の(i)又は(ii)である、導電性組成物。
    (i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
    (ii)スルホン酸基含有側鎖を有する導電性高分子
  2.  前記(i)における前記疎水性のスルホン酸化合物、又は前記(ii)における前記スルホン酸基含有側鎖の炭素数が6以上である、請求項1に記載の導電性組成物。
  3.  前記(i)における前記疎水性のスルホン酸化合物のHLB値が1~8である、請求項1又は2に記載の導電性組成物。
  4.  前記(i)における前記疎水性のスルホン酸化合物が、下記式(III)で表されるスルホン酸化合物である、請求項1~3のいずれかに記載の導電性組成物。
        M(OSCH(CHCOOR12)COOR13    (III)
     (式(III)において、
    Mは、水素原子、有機遊離基又は無機遊離基であり、
    mはMの価数であり、
    12及びR13は、それぞれ独立して、炭化水素基又は-(R14O)-R15で表される基であり、
    14は炭化水素基又はシリレン基であり、
    15は水素原子、炭化水素基又はR16 Si-で表される基であり、
    16は炭化水素基であり、3つのR16は同一又は異なっていてもよく、rは1以上の整数である。)
  5.  前記(i)における前記導電性高分子がポリアニリンである、請求項1~4のいずれかに記載の導電性組成物。
  6.  さらに(d)フェノール性化合物を含む、請求項1~5のいずれかに記載の導電性組成物。
  7.  前記成分(b)の含有量が、前記成分(a)100質量部に対して、1~400質量部である、請求項1~6のいずれかに記載の導電性組成物。
  8.  さらに、樹脂及び無機材料からなる群から選ばれる少なくとも一つを含む、請求項1~7のいずれかに記載の導電性組成物。
  9.  請求項1~8のいずれかに記載の前記導電性組成物から作製された、導電性材料。
  10.  請求項9に記載の導電性材料を含む、膜、成形体、粉体又は粒体。
  11.  請求項9に記載の導電性材料を含む、電池用導電助剤。
  12.  (a)カーボンナノチューブ、及び
     (b)可溶性導電性高分子
    を含む導電性膜であって、
     前記可溶性導電性高分子が、以下の(i)又は(ii)である、導電性膜。
    (i)導電性高分子に疎水性のスルホン酸化合物がドープした複合体
    (ii)スルホン酸基含有側鎖を有する導電性高分子
  13.  請求項1~7のいずれかに記載の前記導電性組成物と、樹脂及び無機材料からなる群から選ばれる少なくとも一つとの混合物から作製された、導電性物品。
  14.  基材と、 
     請求項9に記載の導電性材料からなる導電層と、を含み、
     前記導電層と前記基材が接している、
     導電性積層体。
  15.  請求項11に記載の電池用導電助剤を含む、電池。
PCT/JP2023/036166 2022-10-14 2023-10-04 導電性組成物、導電性材料、導電性膜及び導電性物品 WO2024080197A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165807 2022-10-14
JP2022165807 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080197A1 true WO2024080197A1 (ja) 2024-04-18

Family

ID=90669187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036166 WO2024080197A1 (ja) 2022-10-14 2023-10-04 導電性組成物、導電性材料、導電性膜及び導電性物品

Country Status (1)

Country Link
WO (1) WO2024080197A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178878A (ja) * 2010-03-01 2011-09-15 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有組成物、その製造方法、及びそれらから得られる導電層を有する固体電解コンデンサ
JP2019112499A (ja) * 2017-12-21 2019-07-11 出光興産株式会社 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2019216155A1 (ja) * 2018-05-08 2019-11-14 出光興産株式会社 組成物、導電性膜の製造方法、導電性膜及びコンデンサ
JP2020153025A (ja) * 2019-03-19 2020-09-24 出光興産株式会社 導電性高分子含有不織布、及び導電性高分子含有不織布の製造方法
CN112430352A (zh) * 2020-12-01 2021-03-02 福州大学 一种双网络交联包覆的聚苯胺/多壁碳纳米管复合导电填料及其制备方法
JP2021113286A (ja) * 2020-01-20 2021-08-05 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178878A (ja) * 2010-03-01 2011-09-15 Mitsubishi Rayon Co Ltd カーボンナノチューブ含有組成物、その製造方法、及びそれらから得られる導電層を有する固体電解コンデンサ
JP2019112499A (ja) * 2017-12-21 2019-07-11 出光興産株式会社 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2019216155A1 (ja) * 2018-05-08 2019-11-14 出光興産株式会社 組成物、導電性膜の製造方法、導電性膜及びコンデンサ
JP2020153025A (ja) * 2019-03-19 2020-09-24 出光興産株式会社 導電性高分子含有不織布、及び導電性高分子含有不織布の製造方法
JP2021113286A (ja) * 2020-01-20 2021-08-05 出光興産株式会社 ポリアニリン組成物、塗膜、ポリアニリン含有多孔質体、及び塗膜又はポリアニリン含有多孔質体の製造方法
CN112430352A (zh) * 2020-12-01 2021-03-02 福州大学 一种双网络交联包覆的聚苯胺/多壁碳纳米管复合导电填料及其制备方法

Similar Documents

Publication Publication Date Title
EP3168260B1 (en) Method for producing polyaniline complex composition and polyaniline complex composition
JP6069420B2 (ja) π共役高分子組成物
WO2004113441A1 (ja) 導電性組成物、導電性塗料、導電性樹脂、コンデンサ、光電変換素子、およびその製造方法
CN108976875A (zh) 导电性高分子分散液、导电性基板及其制造方法
JP7020902B2 (ja) 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
WO2024080197A1 (ja) 導電性組成物、導電性材料、導電性膜及び導電性物品
CN110197869B (zh) 一种聚离子液体基热电材料的制备方法
WO2020096028A1 (ja) 導電性高分子含有多孔質体の製造方法
JP7279031B2 (ja) 組成物、導電性膜の製造方法、導電性膜及びコンデンサ
WO2023228831A1 (ja) 組成物、導電性膜、コンデンサ及び電池
JP2020153025A (ja) 導電性高分子含有不織布、及び導電性高分子含有不織布の製造方法
Zhang et al. High dielectric constant polyaniline/sulfonated poly (aryl ether ketone) composite membranes with good thermal and mechanical properties
Tan et al. Phase‐separated, conducting composites from polyaniline and benzobisthiazole rigid‐rod polymer
US20240084134A1 (en) Electric conductive polymer composition
Wang et al. Free‐standing aniline oligomer functionalized multiwalled carbon nanotube films from a filtration method
JP5731974B2 (ja) 導電性組成物
JP2021020976A (ja) 導電性高分子分散液、導電性フィルム及びその製造方法、並びに導電性離型フィルム及びその製造方法
JP5532383B2 (ja) 導電性高分子膜の製造方法
JP2021048044A (ja) 導電性フィルム及びその製造方法
JP2010100838A (ja) 導電性コーティング組成物